PR gold/12675
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header. This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438 const unsigned int shnum = this->elf_file_.shnum();
439 this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers. The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section. Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451 const unsigned int shnum = this->shnum();
452 this->symtab_shndx_ = 0;
453 if (shnum > 0)
454 {
455 // Look through the sections in reverse order, since gas tends
456 // to put the symbol table at the end.
457 const unsigned char* p = pshdrs + shnum * This::shdr_size;
458 unsigned int i = shnum;
459 unsigned int xindex_shndx = 0;
460 unsigned int xindex_link = 0;
461 while (i > 0)
462 {
463 --i;
464 p -= This::shdr_size;
465 typename This::Shdr shdr(p);
466 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467 {
468 this->symtab_shndx_ = i;
469 if (xindex_shndx > 0 && xindex_link == i)
470 {
471 Xindex* xindex =
472 new Xindex(this->elf_file_.large_shndx_offset());
473 xindex->read_symtab_xindex<size, big_endian>(this,
474 xindex_shndx,
475 pshdrs);
476 this->set_xindex(xindex);
477 }
478 break;
479 }
480
481 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482 // one. This will work if it follows the SHT_SYMTAB
483 // section.
484 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485 {
486 xindex_shndx = i;
487 xindex_link = this->adjust_shndx(shdr.get_sh_link());
488 }
489 }
490 }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500 gold_assert(this->symtab_shndx_ != -1U);
501 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503 return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512 const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
515 return ((sh_type == elfcpp::SHT_PROGBITS
516 || sh_type == elfcpp::SHT_X86_64_UNWIND)
517 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
518 }
519
520 // Return whether there is a GNU .eh_frame section, given the section
521 // headers and the section names.
522
523 template<int size, bool big_endian>
524 bool
525 Sized_relobj_file<size, big_endian>::find_eh_frame(
526 const unsigned char* pshdrs,
527 const char* names,
528 section_size_type names_size) const
529 {
530 const unsigned int shnum = this->shnum();
531 const unsigned char* p = pshdrs + This::shdr_size;
532 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
533 {
534 typename This::Shdr shdr(p);
535 if (this->check_eh_frame_flags(&shdr))
536 {
537 if (shdr.get_sh_name() >= names_size)
538 {
539 this->error(_("bad section name offset for section %u: %lu"),
540 i, static_cast<unsigned long>(shdr.get_sh_name()));
541 continue;
542 }
543
544 const char* name = names + shdr.get_sh_name();
545 if (strcmp(name, ".eh_frame") == 0)
546 return true;
547 }
548 }
549 return false;
550 }
551
552 // Build a table for any compressed debug sections, mapping each section index
553 // to the uncompressed size.
554
555 template<int size, bool big_endian>
556 Compressed_section_map*
557 build_compressed_section_map(
558 const unsigned char* pshdrs,
559 unsigned int shnum,
560 const char* names,
561 section_size_type names_size,
562 Sized_relobj_file<size, big_endian>* obj)
563 {
564 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
565 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
566 const unsigned char* p = pshdrs + shdr_size;
567 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
568 {
569 typename elfcpp::Shdr<size, big_endian> shdr(p);
570 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
571 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
572 {
573 if (shdr.get_sh_name() >= names_size)
574 {
575 obj->error(_("bad section name offset for section %u: %lu"),
576 i, static_cast<unsigned long>(shdr.get_sh_name()));
577 continue;
578 }
579
580 const char* name = names + shdr.get_sh_name();
581 if (is_compressed_debug_section(name))
582 {
583 section_size_type len;
584 const unsigned char* contents =
585 obj->section_contents(i, &len, false);
586 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
587 if (uncompressed_size != -1ULL)
588 (*uncompressed_sizes)[i] =
589 convert_to_section_size_type(uncompressed_size);
590 }
591 }
592 }
593 return uncompressed_sizes;
594 }
595
596 // Read the sections and symbols from an object file.
597
598 template<int size, bool big_endian>
599 void
600 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
601 {
602 this->read_section_data(&this->elf_file_, sd);
603
604 const unsigned char* const pshdrs = sd->section_headers->data();
605
606 this->find_symtab(pshdrs);
607
608 const unsigned char* namesu = sd->section_names->data();
609 const char* names = reinterpret_cast<const char*>(namesu);
610 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
611 {
612 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
613 this->has_eh_frame_ = true;
614 }
615 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
616 this->compressed_sections_ =
617 build_compressed_section_map(pshdrs, this->shnum(), names,
618 sd->section_names_size, this);
619
620 sd->symbols = NULL;
621 sd->symbols_size = 0;
622 sd->external_symbols_offset = 0;
623 sd->symbol_names = NULL;
624 sd->symbol_names_size = 0;
625
626 if (this->symtab_shndx_ == 0)
627 {
628 // No symbol table. Weird but legal.
629 return;
630 }
631
632 // Get the symbol table section header.
633 typename This::Shdr symtabshdr(pshdrs
634 + this->symtab_shndx_ * This::shdr_size);
635 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
636
637 // If this object has a .eh_frame section, we need all the symbols.
638 // Otherwise we only need the external symbols. While it would be
639 // simpler to just always read all the symbols, I've seen object
640 // files with well over 2000 local symbols, which for a 64-bit
641 // object file format is over 5 pages that we don't need to read
642 // now.
643
644 const int sym_size = This::sym_size;
645 const unsigned int loccount = symtabshdr.get_sh_info();
646 this->local_symbol_count_ = loccount;
647 this->local_values_.resize(loccount);
648 section_offset_type locsize = loccount * sym_size;
649 off_t dataoff = symtabshdr.get_sh_offset();
650 section_size_type datasize =
651 convert_to_section_size_type(symtabshdr.get_sh_size());
652 off_t extoff = dataoff + locsize;
653 section_size_type extsize = datasize - locsize;
654
655 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
656 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
657
658 if (readsize == 0)
659 {
660 // No external symbols. Also weird but also legal.
661 return;
662 }
663
664 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
665
666 // Read the section header for the symbol names.
667 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
668 if (strtab_shndx >= this->shnum())
669 {
670 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
671 return;
672 }
673 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
674 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
675 {
676 this->error(_("symbol table name section has wrong type: %u"),
677 static_cast<unsigned int>(strtabshdr.get_sh_type()));
678 return;
679 }
680
681 // Read the symbol names.
682 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
683 strtabshdr.get_sh_size(),
684 false, true);
685
686 sd->symbols = fvsymtab;
687 sd->symbols_size = readsize;
688 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
689 sd->symbol_names = fvstrtab;
690 sd->symbol_names_size =
691 convert_to_section_size_type(strtabshdr.get_sh_size());
692 }
693
694 // Return the section index of symbol SYM. Set *VALUE to its value in
695 // the object file. Set *IS_ORDINARY if this is an ordinary section
696 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
697 // Note that for a symbol which is not defined in this object file,
698 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
699 // the final value of the symbol in the link.
700
701 template<int size, bool big_endian>
702 unsigned int
703 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
704 Address* value,
705 bool* is_ordinary)
706 {
707 section_size_type symbols_size;
708 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
709 &symbols_size,
710 false);
711
712 const size_t count = symbols_size / This::sym_size;
713 gold_assert(sym < count);
714
715 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
716 *value = elfsym.get_st_value();
717
718 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
719 }
720
721 // Return whether to include a section group in the link. LAYOUT is
722 // used to keep track of which section groups we have already seen.
723 // INDEX is the index of the section group and SHDR is the section
724 // header. If we do not want to include this group, we set bits in
725 // OMIT for each section which should be discarded.
726
727 template<int size, bool big_endian>
728 bool
729 Sized_relobj_file<size, big_endian>::include_section_group(
730 Symbol_table* symtab,
731 Layout* layout,
732 unsigned int index,
733 const char* name,
734 const unsigned char* shdrs,
735 const char* section_names,
736 section_size_type section_names_size,
737 std::vector<bool>* omit)
738 {
739 // Read the section contents.
740 typename This::Shdr shdr(shdrs + index * This::shdr_size);
741 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
742 shdr.get_sh_size(), true, false);
743 const elfcpp::Elf_Word* pword =
744 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
745
746 // The first word contains flags. We only care about COMDAT section
747 // groups. Other section groups are always included in the link
748 // just like ordinary sections.
749 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
750
751 // Look up the group signature, which is the name of a symbol. This
752 // is a lot of effort to go to to read a string. Why didn't they
753 // just have the group signature point into the string table, rather
754 // than indirect through a symbol?
755
756 // Get the appropriate symbol table header (this will normally be
757 // the single SHT_SYMTAB section, but in principle it need not be).
758 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
759 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
760
761 // Read the symbol table entry.
762 unsigned int symndx = shdr.get_sh_info();
763 if (symndx >= symshdr.get_sh_size() / This::sym_size)
764 {
765 this->error(_("section group %u info %u out of range"),
766 index, symndx);
767 return false;
768 }
769 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
770 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
771 false);
772 elfcpp::Sym<size, big_endian> sym(psym);
773
774 // Read the symbol table names.
775 section_size_type symnamelen;
776 const unsigned char* psymnamesu;
777 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
778 &symnamelen, true);
779 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
780
781 // Get the section group signature.
782 if (sym.get_st_name() >= symnamelen)
783 {
784 this->error(_("symbol %u name offset %u out of range"),
785 symndx, sym.get_st_name());
786 return false;
787 }
788
789 std::string signature(psymnames + sym.get_st_name());
790
791 // It seems that some versions of gas will create a section group
792 // associated with a section symbol, and then fail to give a name to
793 // the section symbol. In such a case, use the name of the section.
794 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
795 {
796 bool is_ordinary;
797 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
798 sym.get_st_shndx(),
799 &is_ordinary);
800 if (!is_ordinary || sym_shndx >= this->shnum())
801 {
802 this->error(_("symbol %u invalid section index %u"),
803 symndx, sym_shndx);
804 return false;
805 }
806 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
807 if (member_shdr.get_sh_name() < section_names_size)
808 signature = section_names + member_shdr.get_sh_name();
809 }
810
811 // Record this section group in the layout, and see whether we've already
812 // seen one with the same signature.
813 bool include_group;
814 bool is_comdat;
815 Kept_section* kept_section = NULL;
816
817 if ((flags & elfcpp::GRP_COMDAT) == 0)
818 {
819 include_group = true;
820 is_comdat = false;
821 }
822 else
823 {
824 include_group = layout->find_or_add_kept_section(signature,
825 this, index, true,
826 true, &kept_section);
827 is_comdat = true;
828 }
829
830 if (is_comdat && include_group)
831 {
832 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
833 if (incremental_inputs != NULL)
834 incremental_inputs->report_comdat_group(this, signature.c_str());
835 }
836
837 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
838
839 std::vector<unsigned int> shndxes;
840 bool relocate_group = include_group && parameters->options().relocatable();
841 if (relocate_group)
842 shndxes.reserve(count - 1);
843
844 for (size_t i = 1; i < count; ++i)
845 {
846 elfcpp::Elf_Word shndx =
847 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
848
849 if (relocate_group)
850 shndxes.push_back(shndx);
851
852 if (shndx >= this->shnum())
853 {
854 this->error(_("section %u in section group %u out of range"),
855 shndx, index);
856 continue;
857 }
858
859 // Check for an earlier section number, since we're going to get
860 // it wrong--we may have already decided to include the section.
861 if (shndx < index)
862 this->error(_("invalid section group %u refers to earlier section %u"),
863 index, shndx);
864
865 // Get the name of the member section.
866 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
867 if (member_shdr.get_sh_name() >= section_names_size)
868 {
869 // This is an error, but it will be diagnosed eventually
870 // in do_layout, so we don't need to do anything here but
871 // ignore it.
872 continue;
873 }
874 std::string mname(section_names + member_shdr.get_sh_name());
875
876 if (include_group)
877 {
878 if (is_comdat)
879 kept_section->add_comdat_section(mname, shndx,
880 member_shdr.get_sh_size());
881 }
882 else
883 {
884 (*omit)[shndx] = true;
885
886 if (is_comdat)
887 {
888 Relobj* kept_object = kept_section->object();
889 if (kept_section->is_comdat())
890 {
891 // Find the corresponding kept section, and store
892 // that info in the discarded section table.
893 unsigned int kept_shndx;
894 uint64_t kept_size;
895 if (kept_section->find_comdat_section(mname, &kept_shndx,
896 &kept_size))
897 {
898 // We don't keep a mapping for this section if
899 // it has a different size. The mapping is only
900 // used for relocation processing, and we don't
901 // want to treat the sections as similar if the
902 // sizes are different. Checking the section
903 // size is the approach used by the GNU linker.
904 if (kept_size == member_shdr.get_sh_size())
905 this->set_kept_comdat_section(shndx, kept_object,
906 kept_shndx);
907 }
908 }
909 else
910 {
911 // The existing section is a linkonce section. Add
912 // a mapping if there is exactly one section in the
913 // group (which is true when COUNT == 2) and if it
914 // is the same size.
915 if (count == 2
916 && (kept_section->linkonce_size()
917 == member_shdr.get_sh_size()))
918 this->set_kept_comdat_section(shndx, kept_object,
919 kept_section->shndx());
920 }
921 }
922 }
923 }
924
925 if (relocate_group)
926 layout->layout_group(symtab, this, index, name, signature.c_str(),
927 shdr, flags, &shndxes);
928
929 return include_group;
930 }
931
932 // Whether to include a linkonce section in the link. NAME is the
933 // name of the section and SHDR is the section header.
934
935 // Linkonce sections are a GNU extension implemented in the original
936 // GNU linker before section groups were defined. The semantics are
937 // that we only include one linkonce section with a given name. The
938 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
939 // where T is the type of section and SYMNAME is the name of a symbol.
940 // In an attempt to make linkonce sections interact well with section
941 // groups, we try to identify SYMNAME and use it like a section group
942 // signature. We want to block section groups with that signature,
943 // but not other linkonce sections with that signature. We also use
944 // the full name of the linkonce section as a normal section group
945 // signature.
946
947 template<int size, bool big_endian>
948 bool
949 Sized_relobj_file<size, big_endian>::include_linkonce_section(
950 Layout* layout,
951 unsigned int index,
952 const char* name,
953 const elfcpp::Shdr<size, big_endian>& shdr)
954 {
955 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
956 // In general the symbol name we want will be the string following
957 // the last '.'. However, we have to handle the case of
958 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
959 // some versions of gcc. So we use a heuristic: if the name starts
960 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
961 // we look for the last '.'. We can't always simply skip
962 // ".gnu.linkonce.X", because we have to deal with cases like
963 // ".gnu.linkonce.d.rel.ro.local".
964 const char* const linkonce_t = ".gnu.linkonce.t.";
965 const char* symname;
966 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
967 symname = name + strlen(linkonce_t);
968 else
969 symname = strrchr(name, '.') + 1;
970 std::string sig1(symname);
971 std::string sig2(name);
972 Kept_section* kept1;
973 Kept_section* kept2;
974 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
975 false, &kept1);
976 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
977 true, &kept2);
978
979 if (!include2)
980 {
981 // We are not including this section because we already saw the
982 // name of the section as a signature. This normally implies
983 // that the kept section is another linkonce section. If it is
984 // the same size, record it as the section which corresponds to
985 // this one.
986 if (kept2->object() != NULL
987 && !kept2->is_comdat()
988 && kept2->linkonce_size() == sh_size)
989 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
990 }
991 else if (!include1)
992 {
993 // The section is being discarded on the basis of its symbol
994 // name. This means that the corresponding kept section was
995 // part of a comdat group, and it will be difficult to identify
996 // the specific section within that group that corresponds to
997 // this linkonce section. We'll handle the simple case where
998 // the group has only one member section. Otherwise, it's not
999 // worth the effort.
1000 unsigned int kept_shndx;
1001 uint64_t kept_size;
1002 if (kept1->object() != NULL
1003 && kept1->is_comdat()
1004 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1005 && kept_size == sh_size)
1006 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1007 }
1008 else
1009 {
1010 kept1->set_linkonce_size(sh_size);
1011 kept2->set_linkonce_size(sh_size);
1012 }
1013
1014 return include1 && include2;
1015 }
1016
1017 // Layout an input section.
1018
1019 template<int size, bool big_endian>
1020 inline void
1021 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1022 unsigned int shndx,
1023 const char* name,
1024 typename This::Shdr& shdr,
1025 unsigned int reloc_shndx,
1026 unsigned int reloc_type)
1027 {
1028 off_t offset;
1029 Output_section* os = layout->layout(this, shndx, name, shdr,
1030 reloc_shndx, reloc_type, &offset);
1031
1032 this->output_sections()[shndx] = os;
1033 if (offset == -1)
1034 this->section_offsets()[shndx] = invalid_address;
1035 else
1036 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1037
1038 // If this section requires special handling, and if there are
1039 // relocs that apply to it, then we must do the special handling
1040 // before we apply the relocs.
1041 if (offset == -1 && reloc_shndx != 0)
1042 this->set_relocs_must_follow_section_writes();
1043 }
1044
1045 // Lay out the input sections. We walk through the sections and check
1046 // whether they should be included in the link. If they should, we
1047 // pass them to the Layout object, which will return an output section
1048 // and an offset.
1049 // During garbage collection (--gc-sections) and identical code folding
1050 // (--icf), this function is called twice. When it is called the first
1051 // time, it is for setting up some sections as roots to a work-list for
1052 // --gc-sections and to do comdat processing. Actual layout happens the
1053 // second time around after all the relevant sections have been determined.
1054 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1055 // set to true after the garbage collection worklist or identical code
1056 // folding is processed and the relevant sections to be kept are
1057 // determined. Then, this function is called again to layout the sections.
1058
1059 template<int size, bool big_endian>
1060 void
1061 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1062 Layout* layout,
1063 Read_symbols_data* sd)
1064 {
1065 const unsigned int shnum = this->shnum();
1066 bool is_gc_pass_one = ((parameters->options().gc_sections()
1067 && !symtab->gc()->is_worklist_ready())
1068 || (parameters->options().icf_enabled()
1069 && !symtab->icf()->is_icf_ready()));
1070
1071 bool is_gc_pass_two = ((parameters->options().gc_sections()
1072 && symtab->gc()->is_worklist_ready())
1073 || (parameters->options().icf_enabled()
1074 && symtab->icf()->is_icf_ready()));
1075
1076 bool is_gc_or_icf = (parameters->options().gc_sections()
1077 || parameters->options().icf_enabled());
1078
1079 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1080 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1081
1082 if (shnum == 0)
1083 return;
1084 Symbols_data* gc_sd = NULL;
1085 if (is_gc_pass_one)
1086 {
1087 // During garbage collection save the symbols data to use it when
1088 // re-entering this function.
1089 gc_sd = new Symbols_data;
1090 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1091 this->set_symbols_data(gc_sd);
1092 }
1093 else if (is_gc_pass_two)
1094 {
1095 gc_sd = this->get_symbols_data();
1096 }
1097
1098 const unsigned char* section_headers_data = NULL;
1099 section_size_type section_names_size;
1100 const unsigned char* symbols_data = NULL;
1101 section_size_type symbols_size;
1102 section_offset_type external_symbols_offset;
1103 const unsigned char* symbol_names_data = NULL;
1104 section_size_type symbol_names_size;
1105
1106 if (is_gc_or_icf)
1107 {
1108 section_headers_data = gc_sd->section_headers_data;
1109 section_names_size = gc_sd->section_names_size;
1110 symbols_data = gc_sd->symbols_data;
1111 symbols_size = gc_sd->symbols_size;
1112 external_symbols_offset = gc_sd->external_symbols_offset;
1113 symbol_names_data = gc_sd->symbol_names_data;
1114 symbol_names_size = gc_sd->symbol_names_size;
1115 }
1116 else
1117 {
1118 section_headers_data = sd->section_headers->data();
1119 section_names_size = sd->section_names_size;
1120 if (sd->symbols != NULL)
1121 symbols_data = sd->symbols->data();
1122 symbols_size = sd->symbols_size;
1123 external_symbols_offset = sd->external_symbols_offset;
1124 if (sd->symbol_names != NULL)
1125 symbol_names_data = sd->symbol_names->data();
1126 symbol_names_size = sd->symbol_names_size;
1127 }
1128
1129 // Get the section headers.
1130 const unsigned char* shdrs = section_headers_data;
1131 const unsigned char* pshdrs;
1132
1133 // Get the section names.
1134 const unsigned char* pnamesu = (is_gc_or_icf)
1135 ? gc_sd->section_names_data
1136 : sd->section_names->data();
1137
1138 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1139
1140 // If any input files have been claimed by plugins, we need to defer
1141 // actual layout until the replacement files have arrived.
1142 const bool should_defer_layout =
1143 (parameters->options().has_plugins()
1144 && parameters->options().plugins()->should_defer_layout());
1145 unsigned int num_sections_to_defer = 0;
1146
1147 // For each section, record the index of the reloc section if any.
1148 // Use 0 to mean that there is no reloc section, -1U to mean that
1149 // there is more than one.
1150 std::vector<unsigned int> reloc_shndx(shnum, 0);
1151 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1152 // Skip the first, dummy, section.
1153 pshdrs = shdrs + This::shdr_size;
1154 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1155 {
1156 typename This::Shdr shdr(pshdrs);
1157
1158 // Count the number of sections whose layout will be deferred.
1159 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1160 ++num_sections_to_defer;
1161
1162 unsigned int sh_type = shdr.get_sh_type();
1163 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1164 {
1165 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1166 if (target_shndx == 0 || target_shndx >= shnum)
1167 {
1168 this->error(_("relocation section %u has bad info %u"),
1169 i, target_shndx);
1170 continue;
1171 }
1172
1173 if (reloc_shndx[target_shndx] != 0)
1174 reloc_shndx[target_shndx] = -1U;
1175 else
1176 {
1177 reloc_shndx[target_shndx] = i;
1178 reloc_type[target_shndx] = sh_type;
1179 }
1180 }
1181 }
1182
1183 Output_sections& out_sections(this->output_sections());
1184 std::vector<Address>& out_section_offsets(this->section_offsets());
1185
1186 if (!is_gc_pass_two)
1187 {
1188 out_sections.resize(shnum);
1189 out_section_offsets.resize(shnum);
1190 }
1191
1192 // If we are only linking for symbols, then there is nothing else to
1193 // do here.
1194 if (this->input_file()->just_symbols())
1195 {
1196 if (!is_gc_pass_two)
1197 {
1198 delete sd->section_headers;
1199 sd->section_headers = NULL;
1200 delete sd->section_names;
1201 sd->section_names = NULL;
1202 }
1203 return;
1204 }
1205
1206 if (num_sections_to_defer > 0)
1207 {
1208 parameters->options().plugins()->add_deferred_layout_object(this);
1209 this->deferred_layout_.reserve(num_sections_to_defer);
1210 }
1211
1212 // Whether we've seen a .note.GNU-stack section.
1213 bool seen_gnu_stack = false;
1214 // The flags of a .note.GNU-stack section.
1215 uint64_t gnu_stack_flags = 0;
1216
1217 // Keep track of which sections to omit.
1218 std::vector<bool> omit(shnum, false);
1219
1220 // Keep track of reloc sections when emitting relocations.
1221 const bool relocatable = parameters->options().relocatable();
1222 const bool emit_relocs = (relocatable
1223 || parameters->options().emit_relocs());
1224 std::vector<unsigned int> reloc_sections;
1225
1226 // Keep track of .eh_frame sections.
1227 std::vector<unsigned int> eh_frame_sections;
1228
1229 // Skip the first, dummy, section.
1230 pshdrs = shdrs + This::shdr_size;
1231 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1232 {
1233 typename This::Shdr shdr(pshdrs);
1234
1235 if (shdr.get_sh_name() >= section_names_size)
1236 {
1237 this->error(_("bad section name offset for section %u: %lu"),
1238 i, static_cast<unsigned long>(shdr.get_sh_name()));
1239 return;
1240 }
1241
1242 const char* name = pnames + shdr.get_sh_name();
1243
1244 if (!is_gc_pass_two)
1245 {
1246 if (this->handle_gnu_warning_section(name, i, symtab))
1247 {
1248 if (!relocatable && !parameters->options().shared())
1249 omit[i] = true;
1250 }
1251
1252 // The .note.GNU-stack section is special. It gives the
1253 // protection flags that this object file requires for the stack
1254 // in memory.
1255 if (strcmp(name, ".note.GNU-stack") == 0)
1256 {
1257 seen_gnu_stack = true;
1258 gnu_stack_flags |= shdr.get_sh_flags();
1259 omit[i] = true;
1260 }
1261
1262 // The .note.GNU-split-stack section is also special. It
1263 // indicates that the object was compiled with
1264 // -fsplit-stack.
1265 if (this->handle_split_stack_section(name))
1266 {
1267 if (!relocatable && !parameters->options().shared())
1268 omit[i] = true;
1269 }
1270
1271 // Skip attributes section.
1272 if (parameters->target().is_attributes_section(name))
1273 {
1274 omit[i] = true;
1275 }
1276
1277 bool discard = omit[i];
1278 if (!discard)
1279 {
1280 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1281 {
1282 if (!this->include_section_group(symtab, layout, i, name,
1283 shdrs, pnames,
1284 section_names_size,
1285 &omit))
1286 discard = true;
1287 }
1288 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1289 && Layout::is_linkonce(name))
1290 {
1291 if (!this->include_linkonce_section(layout, i, name, shdr))
1292 discard = true;
1293 }
1294 }
1295
1296 // Add the section to the incremental inputs layout.
1297 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1298 if (incremental_inputs != NULL
1299 && !discard
1300 && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1301 || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1302 || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1303 {
1304 off_t sh_size = shdr.get_sh_size();
1305 section_size_type uncompressed_size;
1306 if (this->section_is_compressed(i, &uncompressed_size))
1307 sh_size = uncompressed_size;
1308 incremental_inputs->report_input_section(this, i, name, sh_size);
1309 }
1310
1311 if (discard)
1312 {
1313 // Do not include this section in the link.
1314 out_sections[i] = NULL;
1315 out_section_offsets[i] = invalid_address;
1316 continue;
1317 }
1318 }
1319
1320 if (is_gc_pass_one && parameters->options().gc_sections())
1321 {
1322 if (this->is_section_name_included(name)
1323 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1324 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1325 {
1326 symtab->gc()->worklist().push(Section_id(this, i));
1327 }
1328 // If the section name XXX can be represented as a C identifier
1329 // it cannot be discarded if there are references to
1330 // __start_XXX and __stop_XXX symbols. These need to be
1331 // specially handled.
1332 if (is_cident(name))
1333 {
1334 symtab->gc()->add_cident_section(name, Section_id(this, i));
1335 }
1336 }
1337
1338 // When doing a relocatable link we are going to copy input
1339 // reloc sections into the output. We only want to copy the
1340 // ones associated with sections which are not being discarded.
1341 // However, we don't know that yet for all sections. So save
1342 // reloc sections and process them later. Garbage collection is
1343 // not triggered when relocatable code is desired.
1344 if (emit_relocs
1345 && (shdr.get_sh_type() == elfcpp::SHT_REL
1346 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1347 {
1348 reloc_sections.push_back(i);
1349 continue;
1350 }
1351
1352 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1353 continue;
1354
1355 // The .eh_frame section is special. It holds exception frame
1356 // information that we need to read in order to generate the
1357 // exception frame header. We process these after all the other
1358 // sections so that the exception frame reader can reliably
1359 // determine which sections are being discarded, and discard the
1360 // corresponding information.
1361 if (!relocatable
1362 && strcmp(name, ".eh_frame") == 0
1363 && this->check_eh_frame_flags(&shdr))
1364 {
1365 if (is_gc_pass_one)
1366 {
1367 out_sections[i] = reinterpret_cast<Output_section*>(1);
1368 out_section_offsets[i] = invalid_address;
1369 }
1370 else
1371 eh_frame_sections.push_back(i);
1372 continue;
1373 }
1374
1375 if (is_gc_pass_two && parameters->options().gc_sections())
1376 {
1377 // This is executed during the second pass of garbage
1378 // collection. do_layout has been called before and some
1379 // sections have been already discarded. Simply ignore
1380 // such sections this time around.
1381 if (out_sections[i] == NULL)
1382 {
1383 gold_assert(out_section_offsets[i] == invalid_address);
1384 continue;
1385 }
1386 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1387 && symtab->gc()->is_section_garbage(this, i))
1388 {
1389 if (parameters->options().print_gc_sections())
1390 gold_info(_("%s: removing unused section from '%s'"
1391 " in file '%s'"),
1392 program_name, this->section_name(i).c_str(),
1393 this->name().c_str());
1394 out_sections[i] = NULL;
1395 out_section_offsets[i] = invalid_address;
1396 continue;
1397 }
1398 }
1399
1400 if (is_gc_pass_two && parameters->options().icf_enabled())
1401 {
1402 if (out_sections[i] == NULL)
1403 {
1404 gold_assert(out_section_offsets[i] == invalid_address);
1405 continue;
1406 }
1407 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1408 && symtab->icf()->is_section_folded(this, i))
1409 {
1410 if (parameters->options().print_icf_sections())
1411 {
1412 Section_id folded =
1413 symtab->icf()->get_folded_section(this, i);
1414 Relobj* folded_obj =
1415 reinterpret_cast<Relobj*>(folded.first);
1416 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1417 "into '%s' in file '%s'"),
1418 program_name, this->section_name(i).c_str(),
1419 this->name().c_str(),
1420 folded_obj->section_name(folded.second).c_str(),
1421 folded_obj->name().c_str());
1422 }
1423 out_sections[i] = NULL;
1424 out_section_offsets[i] = invalid_address;
1425 continue;
1426 }
1427 }
1428
1429 // Defer layout here if input files are claimed by plugins. When gc
1430 // is turned on this function is called twice. For the second call
1431 // should_defer_layout should be false.
1432 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1433 {
1434 gold_assert(!is_gc_pass_two);
1435 this->deferred_layout_.push_back(Deferred_layout(i, name,
1436 pshdrs,
1437 reloc_shndx[i],
1438 reloc_type[i]));
1439 // Put dummy values here; real values will be supplied by
1440 // do_layout_deferred_sections.
1441 out_sections[i] = reinterpret_cast<Output_section*>(2);
1442 out_section_offsets[i] = invalid_address;
1443 continue;
1444 }
1445
1446 // During gc_pass_two if a section that was previously deferred is
1447 // found, do not layout the section as layout_deferred_sections will
1448 // do it later from gold.cc.
1449 if (is_gc_pass_two
1450 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1451 continue;
1452
1453 if (is_gc_pass_one)
1454 {
1455 // This is during garbage collection. The out_sections are
1456 // assigned in the second call to this function.
1457 out_sections[i] = reinterpret_cast<Output_section*>(1);
1458 out_section_offsets[i] = invalid_address;
1459 }
1460 else
1461 {
1462 // When garbage collection is switched on the actual layout
1463 // only happens in the second call.
1464 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1465 reloc_type[i]);
1466 }
1467 }
1468
1469 if (!is_gc_pass_two)
1470 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1471
1472 // When doing a relocatable link handle the reloc sections at the
1473 // end. Garbage collection and Identical Code Folding is not
1474 // turned on for relocatable code.
1475 if (emit_relocs)
1476 this->size_relocatable_relocs();
1477
1478 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1479
1480 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1481 p != reloc_sections.end();
1482 ++p)
1483 {
1484 unsigned int i = *p;
1485 const unsigned char* pshdr;
1486 pshdr = section_headers_data + i * This::shdr_size;
1487 typename This::Shdr shdr(pshdr);
1488
1489 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1490 if (data_shndx >= shnum)
1491 {
1492 // We already warned about this above.
1493 continue;
1494 }
1495
1496 Output_section* data_section = out_sections[data_shndx];
1497 if (data_section == reinterpret_cast<Output_section*>(2))
1498 {
1499 // The layout for the data section was deferred, so we need
1500 // to defer the relocation section, too.
1501 const char* name = pnames + shdr.get_sh_name();
1502 this->deferred_layout_relocs_.push_back(
1503 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1504 out_sections[i] = reinterpret_cast<Output_section*>(2);
1505 out_section_offsets[i] = invalid_address;
1506 continue;
1507 }
1508 if (data_section == NULL)
1509 {
1510 out_sections[i] = NULL;
1511 out_section_offsets[i] = invalid_address;
1512 continue;
1513 }
1514
1515 Relocatable_relocs* rr = new Relocatable_relocs();
1516 this->set_relocatable_relocs(i, rr);
1517
1518 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1519 rr);
1520 out_sections[i] = os;
1521 out_section_offsets[i] = invalid_address;
1522 }
1523
1524 // Handle the .eh_frame sections at the end.
1525 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1526 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1527 p != eh_frame_sections.end();
1528 ++p)
1529 {
1530 gold_assert(this->has_eh_frame_);
1531 gold_assert(external_symbols_offset != 0);
1532
1533 unsigned int i = *p;
1534 const unsigned char* pshdr;
1535 pshdr = section_headers_data + i * This::shdr_size;
1536 typename This::Shdr shdr(pshdr);
1537
1538 off_t offset;
1539 Output_section* os = layout->layout_eh_frame(this,
1540 symbols_data,
1541 symbols_size,
1542 symbol_names_data,
1543 symbol_names_size,
1544 i, shdr,
1545 reloc_shndx[i],
1546 reloc_type[i],
1547 &offset);
1548 out_sections[i] = os;
1549 if (os == NULL || offset == -1)
1550 {
1551 // An object can contain at most one section holding exception
1552 // frame information.
1553 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1554 this->discarded_eh_frame_shndx_ = i;
1555 out_section_offsets[i] = invalid_address;
1556 }
1557 else
1558 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1559
1560 // If this section requires special handling, and if there are
1561 // relocs that apply to it, then we must do the special handling
1562 // before we apply the relocs.
1563 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1564 this->set_relocs_must_follow_section_writes();
1565 }
1566
1567 if (is_gc_pass_two)
1568 {
1569 delete[] gc_sd->section_headers_data;
1570 delete[] gc_sd->section_names_data;
1571 delete[] gc_sd->symbols_data;
1572 delete[] gc_sd->symbol_names_data;
1573 this->set_symbols_data(NULL);
1574 }
1575 else
1576 {
1577 delete sd->section_headers;
1578 sd->section_headers = NULL;
1579 delete sd->section_names;
1580 sd->section_names = NULL;
1581 }
1582 }
1583
1584 // Layout sections whose layout was deferred while waiting for
1585 // input files from a plugin.
1586
1587 template<int size, bool big_endian>
1588 void
1589 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1590 {
1591 typename std::vector<Deferred_layout>::iterator deferred;
1592
1593 for (deferred = this->deferred_layout_.begin();
1594 deferred != this->deferred_layout_.end();
1595 ++deferred)
1596 {
1597 typename This::Shdr shdr(deferred->shdr_data_);
1598 // If the section is not included, it is because the garbage collector
1599 // decided it is not needed. Avoid reverting that decision.
1600 if (!this->is_section_included(deferred->shndx_))
1601 continue;
1602
1603 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1604 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1605 }
1606
1607 this->deferred_layout_.clear();
1608
1609 // Now handle the deferred relocation sections.
1610
1611 Output_sections& out_sections(this->output_sections());
1612 std::vector<Address>& out_section_offsets(this->section_offsets());
1613
1614 for (deferred = this->deferred_layout_relocs_.begin();
1615 deferred != this->deferred_layout_relocs_.end();
1616 ++deferred)
1617 {
1618 unsigned int shndx = deferred->shndx_;
1619 typename This::Shdr shdr(deferred->shdr_data_);
1620 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1621
1622 Output_section* data_section = out_sections[data_shndx];
1623 if (data_section == NULL)
1624 {
1625 out_sections[shndx] = NULL;
1626 out_section_offsets[shndx] = invalid_address;
1627 continue;
1628 }
1629
1630 Relocatable_relocs* rr = new Relocatable_relocs();
1631 this->set_relocatable_relocs(shndx, rr);
1632
1633 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1634 data_section, rr);
1635 out_sections[shndx] = os;
1636 out_section_offsets[shndx] = invalid_address;
1637 }
1638 }
1639
1640 // Add the symbols to the symbol table.
1641
1642 template<int size, bool big_endian>
1643 void
1644 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1645 Read_symbols_data* sd,
1646 Layout*)
1647 {
1648 if (sd->symbols == NULL)
1649 {
1650 gold_assert(sd->symbol_names == NULL);
1651 return;
1652 }
1653
1654 const int sym_size = This::sym_size;
1655 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1656 / sym_size);
1657 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1658 {
1659 this->error(_("size of symbols is not multiple of symbol size"));
1660 return;
1661 }
1662
1663 this->symbols_.resize(symcount);
1664
1665 const char* sym_names =
1666 reinterpret_cast<const char*>(sd->symbol_names->data());
1667 symtab->add_from_relobj(this,
1668 sd->symbols->data() + sd->external_symbols_offset,
1669 symcount, this->local_symbol_count_,
1670 sym_names, sd->symbol_names_size,
1671 &this->symbols_,
1672 &this->defined_count_);
1673
1674 delete sd->symbols;
1675 sd->symbols = NULL;
1676 delete sd->symbol_names;
1677 sd->symbol_names = NULL;
1678 }
1679
1680 // Find out if this object, that is a member of a lib group, should be included
1681 // in the link. We check every symbol defined by this object. If the symbol
1682 // table has a strong undefined reference to that symbol, we have to include
1683 // the object.
1684
1685 template<int size, bool big_endian>
1686 Archive::Should_include
1687 Sized_relobj_file<size, big_endian>::do_should_include_member(
1688 Symbol_table* symtab,
1689 Layout* layout,
1690 Read_symbols_data* sd,
1691 std::string* why)
1692 {
1693 char* tmpbuf = NULL;
1694 size_t tmpbuflen = 0;
1695 const char* sym_names =
1696 reinterpret_cast<const char*>(sd->symbol_names->data());
1697 const unsigned char* syms =
1698 sd->symbols->data() + sd->external_symbols_offset;
1699 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1700 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1701 / sym_size);
1702
1703 const unsigned char* p = syms;
1704
1705 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1706 {
1707 elfcpp::Sym<size, big_endian> sym(p);
1708 unsigned int st_shndx = sym.get_st_shndx();
1709 if (st_shndx == elfcpp::SHN_UNDEF)
1710 continue;
1711
1712 unsigned int st_name = sym.get_st_name();
1713 const char* name = sym_names + st_name;
1714 Symbol* symbol;
1715 Archive::Should_include t = Archive::should_include_member(symtab,
1716 layout,
1717 name,
1718 &symbol, why,
1719 &tmpbuf,
1720 &tmpbuflen);
1721 if (t == Archive::SHOULD_INCLUDE_YES)
1722 {
1723 if (tmpbuf != NULL)
1724 free(tmpbuf);
1725 return t;
1726 }
1727 }
1728 if (tmpbuf != NULL)
1729 free(tmpbuf);
1730 return Archive::SHOULD_INCLUDE_UNKNOWN;
1731 }
1732
1733 // Iterate over global defined symbols, calling a visitor class V for each.
1734
1735 template<int size, bool big_endian>
1736 void
1737 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1738 Read_symbols_data* sd,
1739 Library_base::Symbol_visitor_base* v)
1740 {
1741 const char* sym_names =
1742 reinterpret_cast<const char*>(sd->symbol_names->data());
1743 const unsigned char* syms =
1744 sd->symbols->data() + sd->external_symbols_offset;
1745 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1746 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1747 / sym_size);
1748 const unsigned char* p = syms;
1749
1750 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1751 {
1752 elfcpp::Sym<size, big_endian> sym(p);
1753 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1754 v->visit(sym_names + sym.get_st_name());
1755 }
1756 }
1757
1758 // Return whether the local symbol SYMNDX has a PLT offset.
1759
1760 template<int size, bool big_endian>
1761 bool
1762 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1763 unsigned int symndx) const
1764 {
1765 typename Local_plt_offsets::const_iterator p =
1766 this->local_plt_offsets_.find(symndx);
1767 return p != this->local_plt_offsets_.end();
1768 }
1769
1770 // Get the PLT offset of a local symbol.
1771
1772 template<int size, bool big_endian>
1773 unsigned int
1774 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1775 {
1776 typename Local_plt_offsets::const_iterator p =
1777 this->local_plt_offsets_.find(symndx);
1778 gold_assert(p != this->local_plt_offsets_.end());
1779 return p->second;
1780 }
1781
1782 // Set the PLT offset of a local symbol.
1783
1784 template<int size, bool big_endian>
1785 void
1786 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1787 unsigned int symndx, unsigned int plt_offset)
1788 {
1789 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1790 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1791 gold_assert(ins.second);
1792 }
1793
1794 // First pass over the local symbols. Here we add their names to
1795 // *POOL and *DYNPOOL, and we store the symbol value in
1796 // THIS->LOCAL_VALUES_. This function is always called from a
1797 // singleton thread. This is followed by a call to
1798 // finalize_local_symbols.
1799
1800 template<int size, bool big_endian>
1801 void
1802 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1803 Stringpool* dynpool)
1804 {
1805 gold_assert(this->symtab_shndx_ != -1U);
1806 if (this->symtab_shndx_ == 0)
1807 {
1808 // This object has no symbols. Weird but legal.
1809 return;
1810 }
1811
1812 // Read the symbol table section header.
1813 const unsigned int symtab_shndx = this->symtab_shndx_;
1814 typename This::Shdr symtabshdr(this,
1815 this->elf_file_.section_header(symtab_shndx));
1816 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1817
1818 // Read the local symbols.
1819 const int sym_size = This::sym_size;
1820 const unsigned int loccount = this->local_symbol_count_;
1821 gold_assert(loccount == symtabshdr.get_sh_info());
1822 off_t locsize = loccount * sym_size;
1823 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1824 locsize, true, true);
1825
1826 // Read the symbol names.
1827 const unsigned int strtab_shndx =
1828 this->adjust_shndx(symtabshdr.get_sh_link());
1829 section_size_type strtab_size;
1830 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1831 &strtab_size,
1832 true);
1833 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1834
1835 // Loop over the local symbols.
1836
1837 const Output_sections& out_sections(this->output_sections());
1838 unsigned int shnum = this->shnum();
1839 unsigned int count = 0;
1840 unsigned int dyncount = 0;
1841 // Skip the first, dummy, symbol.
1842 psyms += sym_size;
1843 bool strip_all = parameters->options().strip_all();
1844 bool discard_all = parameters->options().discard_all();
1845 bool discard_locals = parameters->options().discard_locals();
1846 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1847 {
1848 elfcpp::Sym<size, big_endian> sym(psyms);
1849
1850 Symbol_value<size>& lv(this->local_values_[i]);
1851
1852 bool is_ordinary;
1853 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1854 &is_ordinary);
1855 lv.set_input_shndx(shndx, is_ordinary);
1856
1857 if (sym.get_st_type() == elfcpp::STT_SECTION)
1858 lv.set_is_section_symbol();
1859 else if (sym.get_st_type() == elfcpp::STT_TLS)
1860 lv.set_is_tls_symbol();
1861 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1862 lv.set_is_ifunc_symbol();
1863
1864 // Save the input symbol value for use in do_finalize_local_symbols().
1865 lv.set_input_value(sym.get_st_value());
1866
1867 // Decide whether this symbol should go into the output file.
1868
1869 if ((shndx < shnum && out_sections[shndx] == NULL)
1870 || shndx == this->discarded_eh_frame_shndx_)
1871 {
1872 lv.set_no_output_symtab_entry();
1873 gold_assert(!lv.needs_output_dynsym_entry());
1874 continue;
1875 }
1876
1877 if (sym.get_st_type() == elfcpp::STT_SECTION)
1878 {
1879 lv.set_no_output_symtab_entry();
1880 gold_assert(!lv.needs_output_dynsym_entry());
1881 continue;
1882 }
1883
1884 if (sym.get_st_name() >= strtab_size)
1885 {
1886 this->error(_("local symbol %u section name out of range: %u >= %u"),
1887 i, sym.get_st_name(),
1888 static_cast<unsigned int>(strtab_size));
1889 lv.set_no_output_symtab_entry();
1890 continue;
1891 }
1892
1893 const char* name = pnames + sym.get_st_name();
1894
1895 // If needed, add the symbol to the dynamic symbol table string pool.
1896 if (lv.needs_output_dynsym_entry())
1897 {
1898 dynpool->add(name, true, NULL);
1899 ++dyncount;
1900 }
1901
1902 if (strip_all
1903 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1904 {
1905 lv.set_no_output_symtab_entry();
1906 continue;
1907 }
1908
1909 // If --discard-locals option is used, discard all temporary local
1910 // symbols. These symbols start with system-specific local label
1911 // prefixes, typically .L for ELF system. We want to be compatible
1912 // with GNU ld so here we essentially use the same check in
1913 // bfd_is_local_label(). The code is different because we already
1914 // know that:
1915 //
1916 // - the symbol is local and thus cannot have global or weak binding.
1917 // - the symbol is not a section symbol.
1918 // - the symbol has a name.
1919 //
1920 // We do not discard a symbol if it needs a dynamic symbol entry.
1921 if (discard_locals
1922 && sym.get_st_type() != elfcpp::STT_FILE
1923 && !lv.needs_output_dynsym_entry()
1924 && lv.may_be_discarded_from_output_symtab()
1925 && parameters->target().is_local_label_name(name))
1926 {
1927 lv.set_no_output_symtab_entry();
1928 continue;
1929 }
1930
1931 // Discard the local symbol if -retain_symbols_file is specified
1932 // and the local symbol is not in that file.
1933 if (!parameters->options().should_retain_symbol(name))
1934 {
1935 lv.set_no_output_symtab_entry();
1936 continue;
1937 }
1938
1939 // Add the symbol to the symbol table string pool.
1940 pool->add(name, true, NULL);
1941 ++count;
1942 }
1943
1944 this->output_local_symbol_count_ = count;
1945 this->output_local_dynsym_count_ = dyncount;
1946 }
1947
1948 // Compute the final value of a local symbol.
1949
1950 template<int size, bool big_endian>
1951 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1952 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1953 unsigned int r_sym,
1954 const Symbol_value<size>* lv_in,
1955 Symbol_value<size>* lv_out,
1956 bool relocatable,
1957 const Output_sections& out_sections,
1958 const std::vector<Address>& out_offsets,
1959 const Symbol_table* symtab)
1960 {
1961 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1962 // we may have a memory leak.
1963 gold_assert(lv_out->has_output_value());
1964
1965 bool is_ordinary;
1966 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1967
1968 // Set the output symbol value.
1969
1970 if (!is_ordinary)
1971 {
1972 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1973 lv_out->set_output_value(lv_in->input_value());
1974 else
1975 {
1976 this->error(_("unknown section index %u for local symbol %u"),
1977 shndx, r_sym);
1978 lv_out->set_output_value(0);
1979 return This::CFLV_ERROR;
1980 }
1981 }
1982 else
1983 {
1984 if (shndx >= this->shnum())
1985 {
1986 this->error(_("local symbol %u section index %u out of range"),
1987 r_sym, shndx);
1988 lv_out->set_output_value(0);
1989 return This::CFLV_ERROR;
1990 }
1991
1992 Output_section* os = out_sections[shndx];
1993 Address secoffset = out_offsets[shndx];
1994 if (symtab->is_section_folded(this, shndx))
1995 {
1996 gold_assert(os == NULL && secoffset == invalid_address);
1997 // Get the os of the section it is folded onto.
1998 Section_id folded = symtab->icf()->get_folded_section(this,
1999 shndx);
2000 gold_assert(folded.first != NULL);
2001 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2002 <Sized_relobj_file<size, big_endian>*>(folded.first);
2003 os = folded_obj->output_section(folded.second);
2004 gold_assert(os != NULL);
2005 secoffset = folded_obj->get_output_section_offset(folded.second);
2006
2007 // This could be a relaxed input section.
2008 if (secoffset == invalid_address)
2009 {
2010 const Output_relaxed_input_section* relaxed_section =
2011 os->find_relaxed_input_section(folded_obj, folded.second);
2012 gold_assert(relaxed_section != NULL);
2013 secoffset = relaxed_section->address() - os->address();
2014 }
2015 }
2016
2017 if (os == NULL)
2018 {
2019 // This local symbol belongs to a section we are discarding.
2020 // In some cases when applying relocations later, we will
2021 // attempt to match it to the corresponding kept section,
2022 // so we leave the input value unchanged here.
2023 return This::CFLV_DISCARDED;
2024 }
2025 else if (secoffset == invalid_address)
2026 {
2027 uint64_t start;
2028
2029 // This is a SHF_MERGE section or one which otherwise
2030 // requires special handling.
2031 if (shndx == this->discarded_eh_frame_shndx_)
2032 {
2033 // This local symbol belongs to a discarded .eh_frame
2034 // section. Just treat it like the case in which
2035 // os == NULL above.
2036 gold_assert(this->has_eh_frame_);
2037 return This::CFLV_DISCARDED;
2038 }
2039 else if (!lv_in->is_section_symbol())
2040 {
2041 // This is not a section symbol. We can determine
2042 // the final value now.
2043 lv_out->set_output_value(
2044 os->output_address(this, shndx, lv_in->input_value()));
2045 }
2046 else if (!os->find_starting_output_address(this, shndx, &start))
2047 {
2048 // This is a section symbol, but apparently not one in a
2049 // merged section. First check to see if this is a relaxed
2050 // input section. If so, use its address. Otherwise just
2051 // use the start of the output section. This happens with
2052 // relocatable links when the input object has section
2053 // symbols for arbitrary non-merge sections.
2054 const Output_section_data* posd =
2055 os->find_relaxed_input_section(this, shndx);
2056 if (posd != NULL)
2057 {
2058 Address relocatable_link_adjustment =
2059 relocatable ? os->address() : 0;
2060 lv_out->set_output_value(posd->address()
2061 - relocatable_link_adjustment);
2062 }
2063 else
2064 lv_out->set_output_value(os->address());
2065 }
2066 else
2067 {
2068 // We have to consider the addend to determine the
2069 // value to use in a relocation. START is the start
2070 // of this input section. If we are doing a relocatable
2071 // link, use offset from start output section instead of
2072 // address.
2073 Address adjusted_start =
2074 relocatable ? start - os->address() : start;
2075 Merged_symbol_value<size>* msv =
2076 new Merged_symbol_value<size>(lv_in->input_value(),
2077 adjusted_start);
2078 lv_out->set_merged_symbol_value(msv);
2079 }
2080 }
2081 else if (lv_in->is_tls_symbol())
2082 lv_out->set_output_value(os->tls_offset()
2083 + secoffset
2084 + lv_in->input_value());
2085 else
2086 lv_out->set_output_value((relocatable ? 0 : os->address())
2087 + secoffset
2088 + lv_in->input_value());
2089 }
2090 return This::CFLV_OK;
2091 }
2092
2093 // Compute final local symbol value. R_SYM is the index of a local
2094 // symbol in symbol table. LV points to a symbol value, which is
2095 // expected to hold the input value and to be over-written by the
2096 // final value. SYMTAB points to a symbol table. Some targets may want
2097 // to know would-be-finalized local symbol values in relaxation.
2098 // Hence we provide this method. Since this method updates *LV, a
2099 // callee should make a copy of the original local symbol value and
2100 // use the copy instead of modifying an object's local symbols before
2101 // everything is finalized. The caller should also free up any allocated
2102 // memory in the return value in *LV.
2103 template<int size, bool big_endian>
2104 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2105 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2106 unsigned int r_sym,
2107 const Symbol_value<size>* lv_in,
2108 Symbol_value<size>* lv_out,
2109 const Symbol_table* symtab)
2110 {
2111 // This is just a wrapper of compute_final_local_value_internal.
2112 const bool relocatable = parameters->options().relocatable();
2113 const Output_sections& out_sections(this->output_sections());
2114 const std::vector<Address>& out_offsets(this->section_offsets());
2115 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2116 relocatable, out_sections,
2117 out_offsets, symtab);
2118 }
2119
2120 // Finalize the local symbols. Here we set the final value in
2121 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2122 // This function is always called from a singleton thread. The actual
2123 // output of the local symbols will occur in a separate task.
2124
2125 template<int size, bool big_endian>
2126 unsigned int
2127 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2128 unsigned int index,
2129 off_t off,
2130 Symbol_table* symtab)
2131 {
2132 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2133
2134 const unsigned int loccount = this->local_symbol_count_;
2135 this->local_symbol_offset_ = off;
2136
2137 const bool relocatable = parameters->options().relocatable();
2138 const Output_sections& out_sections(this->output_sections());
2139 const std::vector<Address>& out_offsets(this->section_offsets());
2140
2141 for (unsigned int i = 1; i < loccount; ++i)
2142 {
2143 Symbol_value<size>* lv = &this->local_values_[i];
2144
2145 Compute_final_local_value_status cflv_status =
2146 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2147 out_sections, out_offsets,
2148 symtab);
2149 switch (cflv_status)
2150 {
2151 case CFLV_OK:
2152 if (!lv->is_output_symtab_index_set())
2153 {
2154 lv->set_output_symtab_index(index);
2155 ++index;
2156 }
2157 break;
2158 case CFLV_DISCARDED:
2159 case CFLV_ERROR:
2160 // Do nothing.
2161 break;
2162 default:
2163 gold_unreachable();
2164 }
2165 }
2166 return index;
2167 }
2168
2169 // Set the output dynamic symbol table indexes for the local variables.
2170
2171 template<int size, bool big_endian>
2172 unsigned int
2173 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2174 unsigned int index)
2175 {
2176 const unsigned int loccount = this->local_symbol_count_;
2177 for (unsigned int i = 1; i < loccount; ++i)
2178 {
2179 Symbol_value<size>& lv(this->local_values_[i]);
2180 if (lv.needs_output_dynsym_entry())
2181 {
2182 lv.set_output_dynsym_index(index);
2183 ++index;
2184 }
2185 }
2186 return index;
2187 }
2188
2189 // Set the offset where local dynamic symbol information will be stored.
2190 // Returns the count of local symbols contributed to the symbol table by
2191 // this object.
2192
2193 template<int size, bool big_endian>
2194 unsigned int
2195 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2196 {
2197 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2198 this->local_dynsym_offset_ = off;
2199 return this->output_local_dynsym_count_;
2200 }
2201
2202 // If Symbols_data is not NULL get the section flags from here otherwise
2203 // get it from the file.
2204
2205 template<int size, bool big_endian>
2206 uint64_t
2207 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2208 {
2209 Symbols_data* sd = this->get_symbols_data();
2210 if (sd != NULL)
2211 {
2212 const unsigned char* pshdrs = sd->section_headers_data
2213 + This::shdr_size * shndx;
2214 typename This::Shdr shdr(pshdrs);
2215 return shdr.get_sh_flags();
2216 }
2217 // If sd is NULL, read the section header from the file.
2218 return this->elf_file_.section_flags(shndx);
2219 }
2220
2221 // Get the section's ent size from Symbols_data. Called by get_section_contents
2222 // in icf.cc
2223
2224 template<int size, bool big_endian>
2225 uint64_t
2226 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2227 {
2228 Symbols_data* sd = this->get_symbols_data();
2229 gold_assert(sd != NULL);
2230
2231 const unsigned char* pshdrs = sd->section_headers_data
2232 + This::shdr_size * shndx;
2233 typename This::Shdr shdr(pshdrs);
2234 return shdr.get_sh_entsize();
2235 }
2236
2237 // Write out the local symbols.
2238
2239 template<int size, bool big_endian>
2240 void
2241 Sized_relobj_file<size, big_endian>::write_local_symbols(
2242 Output_file* of,
2243 const Stringpool* sympool,
2244 const Stringpool* dynpool,
2245 Output_symtab_xindex* symtab_xindex,
2246 Output_symtab_xindex* dynsym_xindex,
2247 off_t symtab_off)
2248 {
2249 const bool strip_all = parameters->options().strip_all();
2250 if (strip_all)
2251 {
2252 if (this->output_local_dynsym_count_ == 0)
2253 return;
2254 this->output_local_symbol_count_ = 0;
2255 }
2256
2257 gold_assert(this->symtab_shndx_ != -1U);
2258 if (this->symtab_shndx_ == 0)
2259 {
2260 // This object has no symbols. Weird but legal.
2261 return;
2262 }
2263
2264 // Read the symbol table section header.
2265 const unsigned int symtab_shndx = this->symtab_shndx_;
2266 typename This::Shdr symtabshdr(this,
2267 this->elf_file_.section_header(symtab_shndx));
2268 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2269 const unsigned int loccount = this->local_symbol_count_;
2270 gold_assert(loccount == symtabshdr.get_sh_info());
2271
2272 // Read the local symbols.
2273 const int sym_size = This::sym_size;
2274 off_t locsize = loccount * sym_size;
2275 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2276 locsize, true, false);
2277
2278 // Read the symbol names.
2279 const unsigned int strtab_shndx =
2280 this->adjust_shndx(symtabshdr.get_sh_link());
2281 section_size_type strtab_size;
2282 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2283 &strtab_size,
2284 false);
2285 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2286
2287 // Get views into the output file for the portions of the symbol table
2288 // and the dynamic symbol table that we will be writing.
2289 off_t output_size = this->output_local_symbol_count_ * sym_size;
2290 unsigned char* oview = NULL;
2291 if (output_size > 0)
2292 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2293 output_size);
2294
2295 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2296 unsigned char* dyn_oview = NULL;
2297 if (dyn_output_size > 0)
2298 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2299 dyn_output_size);
2300
2301 const Output_sections out_sections(this->output_sections());
2302
2303 gold_assert(this->local_values_.size() == loccount);
2304
2305 unsigned char* ov = oview;
2306 unsigned char* dyn_ov = dyn_oview;
2307 psyms += sym_size;
2308 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2309 {
2310 elfcpp::Sym<size, big_endian> isym(psyms);
2311
2312 Symbol_value<size>& lv(this->local_values_[i]);
2313
2314 bool is_ordinary;
2315 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2316 &is_ordinary);
2317 if (is_ordinary)
2318 {
2319 gold_assert(st_shndx < out_sections.size());
2320 if (out_sections[st_shndx] == NULL)
2321 continue;
2322 st_shndx = out_sections[st_shndx]->out_shndx();
2323 if (st_shndx >= elfcpp::SHN_LORESERVE)
2324 {
2325 if (lv.has_output_symtab_entry())
2326 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2327 if (lv.has_output_dynsym_entry())
2328 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2329 st_shndx = elfcpp::SHN_XINDEX;
2330 }
2331 }
2332
2333 // Write the symbol to the output symbol table.
2334 if (lv.has_output_symtab_entry())
2335 {
2336 elfcpp::Sym_write<size, big_endian> osym(ov);
2337
2338 gold_assert(isym.get_st_name() < strtab_size);
2339 const char* name = pnames + isym.get_st_name();
2340 osym.put_st_name(sympool->get_offset(name));
2341 osym.put_st_value(this->local_values_[i].value(this, 0));
2342 osym.put_st_size(isym.get_st_size());
2343 osym.put_st_info(isym.get_st_info());
2344 osym.put_st_other(isym.get_st_other());
2345 osym.put_st_shndx(st_shndx);
2346
2347 ov += sym_size;
2348 }
2349
2350 // Write the symbol to the output dynamic symbol table.
2351 if (lv.has_output_dynsym_entry())
2352 {
2353 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2354 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2355
2356 gold_assert(isym.get_st_name() < strtab_size);
2357 const char* name = pnames + isym.get_st_name();
2358 osym.put_st_name(dynpool->get_offset(name));
2359 osym.put_st_value(this->local_values_[i].value(this, 0));
2360 osym.put_st_size(isym.get_st_size());
2361 osym.put_st_info(isym.get_st_info());
2362 osym.put_st_other(isym.get_st_other());
2363 osym.put_st_shndx(st_shndx);
2364
2365 dyn_ov += sym_size;
2366 }
2367 }
2368
2369
2370 if (output_size > 0)
2371 {
2372 gold_assert(ov - oview == output_size);
2373 of->write_output_view(symtab_off + this->local_symbol_offset_,
2374 output_size, oview);
2375 }
2376
2377 if (dyn_output_size > 0)
2378 {
2379 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2380 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2381 dyn_oview);
2382 }
2383 }
2384
2385 // Set *INFO to symbolic information about the offset OFFSET in the
2386 // section SHNDX. Return true if we found something, false if we
2387 // found nothing.
2388
2389 template<int size, bool big_endian>
2390 bool
2391 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2392 unsigned int shndx,
2393 off_t offset,
2394 Symbol_location_info* info)
2395 {
2396 if (this->symtab_shndx_ == 0)
2397 return false;
2398
2399 section_size_type symbols_size;
2400 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2401 &symbols_size,
2402 false);
2403
2404 unsigned int symbol_names_shndx =
2405 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2406 section_size_type names_size;
2407 const unsigned char* symbol_names_u =
2408 this->section_contents(symbol_names_shndx, &names_size, false);
2409 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2410
2411 const int sym_size = This::sym_size;
2412 const size_t count = symbols_size / sym_size;
2413
2414 const unsigned char* p = symbols;
2415 for (size_t i = 0; i < count; ++i, p += sym_size)
2416 {
2417 elfcpp::Sym<size, big_endian> sym(p);
2418
2419 if (sym.get_st_type() == elfcpp::STT_FILE)
2420 {
2421 if (sym.get_st_name() >= names_size)
2422 info->source_file = "(invalid)";
2423 else
2424 info->source_file = symbol_names + sym.get_st_name();
2425 continue;
2426 }
2427
2428 bool is_ordinary;
2429 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2430 &is_ordinary);
2431 if (is_ordinary
2432 && st_shndx == shndx
2433 && static_cast<off_t>(sym.get_st_value()) <= offset
2434 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2435 > offset))
2436 {
2437 if (sym.get_st_name() > names_size)
2438 info->enclosing_symbol_name = "(invalid)";
2439 else
2440 {
2441 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2442 if (parameters->options().do_demangle())
2443 {
2444 char* demangled_name = cplus_demangle(
2445 info->enclosing_symbol_name.c_str(),
2446 DMGL_ANSI | DMGL_PARAMS);
2447 if (demangled_name != NULL)
2448 {
2449 info->enclosing_symbol_name.assign(demangled_name);
2450 free(demangled_name);
2451 }
2452 }
2453 }
2454 return true;
2455 }
2456 }
2457
2458 return false;
2459 }
2460
2461 // Look for a kept section corresponding to the given discarded section,
2462 // and return its output address. This is used only for relocations in
2463 // debugging sections. If we can't find the kept section, return 0.
2464
2465 template<int size, bool big_endian>
2466 typename Sized_relobj_file<size, big_endian>::Address
2467 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2468 unsigned int shndx,
2469 bool* found) const
2470 {
2471 Relobj* kept_object;
2472 unsigned int kept_shndx;
2473 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2474 {
2475 Sized_relobj_file<size, big_endian>* kept_relobj =
2476 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2477 Output_section* os = kept_relobj->output_section(kept_shndx);
2478 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2479 if (os != NULL && offset != invalid_address)
2480 {
2481 *found = true;
2482 return os->address() + offset;
2483 }
2484 }
2485 *found = false;
2486 return 0;
2487 }
2488
2489 // Get symbol counts.
2490
2491 template<int size, bool big_endian>
2492 void
2493 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2494 const Symbol_table*,
2495 size_t* defined,
2496 size_t* used) const
2497 {
2498 *defined = this->defined_count_;
2499 size_t count = 0;
2500 for (typename Symbols::const_iterator p = this->symbols_.begin();
2501 p != this->symbols_.end();
2502 ++p)
2503 if (*p != NULL
2504 && (*p)->source() == Symbol::FROM_OBJECT
2505 && (*p)->object() == this
2506 && (*p)->is_defined())
2507 ++count;
2508 *used = count;
2509 }
2510
2511 // Input_objects methods.
2512
2513 // Add a regular relocatable object to the list. Return false if this
2514 // object should be ignored.
2515
2516 bool
2517 Input_objects::add_object(Object* obj)
2518 {
2519 // Print the filename if the -t/--trace option is selected.
2520 if (parameters->options().trace())
2521 gold_info("%s", obj->name().c_str());
2522
2523 if (!obj->is_dynamic())
2524 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2525 else
2526 {
2527 // See if this is a duplicate SONAME.
2528 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2529 const char* soname = dynobj->soname();
2530
2531 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2532 this->sonames_.insert(soname);
2533 if (!ins.second)
2534 {
2535 // We have already seen a dynamic object with this soname.
2536 return false;
2537 }
2538
2539 this->dynobj_list_.push_back(dynobj);
2540 }
2541
2542 // Add this object to the cross-referencer if requested.
2543 if (parameters->options().user_set_print_symbol_counts()
2544 || parameters->options().cref())
2545 {
2546 if (this->cref_ == NULL)
2547 this->cref_ = new Cref();
2548 this->cref_->add_object(obj);
2549 }
2550
2551 return true;
2552 }
2553
2554 // For each dynamic object, record whether we've seen all of its
2555 // explicit dependencies.
2556
2557 void
2558 Input_objects::check_dynamic_dependencies() const
2559 {
2560 bool issued_copy_dt_needed_error = false;
2561 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2562 p != this->dynobj_list_.end();
2563 ++p)
2564 {
2565 const Dynobj::Needed& needed((*p)->needed());
2566 bool found_all = true;
2567 Dynobj::Needed::const_iterator pneeded;
2568 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2569 {
2570 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2571 {
2572 found_all = false;
2573 break;
2574 }
2575 }
2576 (*p)->set_has_unknown_needed_entries(!found_all);
2577
2578 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2579 // that gold does not support. However, they cause no trouble
2580 // unless there is a DT_NEEDED entry that we don't know about;
2581 // warn only in that case.
2582 if (!found_all
2583 && !issued_copy_dt_needed_error
2584 && (parameters->options().copy_dt_needed_entries()
2585 || parameters->options().add_needed()))
2586 {
2587 const char* optname;
2588 if (parameters->options().copy_dt_needed_entries())
2589 optname = "--copy-dt-needed-entries";
2590 else
2591 optname = "--add-needed";
2592 gold_error(_("%s is not supported but is required for %s in %s"),
2593 optname, (*pneeded).c_str(), (*p)->name().c_str());
2594 issued_copy_dt_needed_error = true;
2595 }
2596 }
2597 }
2598
2599 // Start processing an archive.
2600
2601 void
2602 Input_objects::archive_start(Archive* archive)
2603 {
2604 if (parameters->options().user_set_print_symbol_counts()
2605 || parameters->options().cref())
2606 {
2607 if (this->cref_ == NULL)
2608 this->cref_ = new Cref();
2609 this->cref_->add_archive_start(archive);
2610 }
2611 }
2612
2613 // Stop processing an archive.
2614
2615 void
2616 Input_objects::archive_stop(Archive* archive)
2617 {
2618 if (parameters->options().user_set_print_symbol_counts()
2619 || parameters->options().cref())
2620 this->cref_->add_archive_stop(archive);
2621 }
2622
2623 // Print symbol counts
2624
2625 void
2626 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2627 {
2628 if (parameters->options().user_set_print_symbol_counts()
2629 && this->cref_ != NULL)
2630 this->cref_->print_symbol_counts(symtab);
2631 }
2632
2633 // Print a cross reference table.
2634
2635 void
2636 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2637 {
2638 if (parameters->options().cref() && this->cref_ != NULL)
2639 this->cref_->print_cref(symtab, f);
2640 }
2641
2642 // Relocate_info methods.
2643
2644 // Return a string describing the location of a relocation when file
2645 // and lineno information is not available. This is only used in
2646 // error messages.
2647
2648 template<int size, bool big_endian>
2649 std::string
2650 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2651 {
2652 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2653 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2654 if (!ret.empty())
2655 return ret;
2656
2657 ret = this->object->name();
2658
2659 Symbol_location_info info;
2660 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2661 {
2662 if (!info.source_file.empty())
2663 {
2664 ret += ":";
2665 ret += info.source_file;
2666 }
2667 size_t len = info.enclosing_symbol_name.length() + 100;
2668 char* buf = new char[len];
2669 snprintf(buf, len, _(":function %s"),
2670 info.enclosing_symbol_name.c_str());
2671 ret += buf;
2672 delete[] buf;
2673 return ret;
2674 }
2675
2676 ret += "(";
2677 ret += this->object->section_name(this->data_shndx);
2678 char buf[100];
2679 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2680 ret += buf;
2681 return ret;
2682 }
2683
2684 } // End namespace gold.
2685
2686 namespace
2687 {
2688
2689 using namespace gold;
2690
2691 // Read an ELF file with the header and return the appropriate
2692 // instance of Object.
2693
2694 template<int size, bool big_endian>
2695 Object*
2696 make_elf_sized_object(const std::string& name, Input_file* input_file,
2697 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2698 bool* punconfigured)
2699 {
2700 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2701 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2702 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2703 if (target == NULL)
2704 gold_fatal(_("%s: unsupported ELF machine number %d"),
2705 name.c_str(), ehdr.get_e_machine());
2706
2707 if (!parameters->target_valid())
2708 set_parameters_target(target);
2709 else if (target != &parameters->target())
2710 {
2711 if (punconfigured != NULL)
2712 *punconfigured = true;
2713 else
2714 gold_error(_("%s: incompatible target"), name.c_str());
2715 return NULL;
2716 }
2717
2718 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2719 ehdr);
2720 }
2721
2722 } // End anonymous namespace.
2723
2724 namespace gold
2725 {
2726
2727 // Return whether INPUT_FILE is an ELF object.
2728
2729 bool
2730 is_elf_object(Input_file* input_file, off_t offset,
2731 const unsigned char** start, int* read_size)
2732 {
2733 off_t filesize = input_file->file().filesize();
2734 int want = elfcpp::Elf_recognizer::max_header_size;
2735 if (filesize - offset < want)
2736 want = filesize - offset;
2737
2738 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2739 true, false);
2740 *start = p;
2741 *read_size = want;
2742
2743 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2744 }
2745
2746 // Read an ELF file and return the appropriate instance of Object.
2747
2748 Object*
2749 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2750 const unsigned char* p, section_offset_type bytes,
2751 bool* punconfigured)
2752 {
2753 if (punconfigured != NULL)
2754 *punconfigured = false;
2755
2756 std::string error;
2757 bool big_endian = false;
2758 int size = 0;
2759 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2760 &big_endian, &error))
2761 {
2762 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2763 return NULL;
2764 }
2765
2766 if (size == 32)
2767 {
2768 if (big_endian)
2769 {
2770 #ifdef HAVE_TARGET_32_BIG
2771 elfcpp::Ehdr<32, true> ehdr(p);
2772 return make_elf_sized_object<32, true>(name, input_file,
2773 offset, ehdr, punconfigured);
2774 #else
2775 if (punconfigured != NULL)
2776 *punconfigured = true;
2777 else
2778 gold_error(_("%s: not configured to support "
2779 "32-bit big-endian object"),
2780 name.c_str());
2781 return NULL;
2782 #endif
2783 }
2784 else
2785 {
2786 #ifdef HAVE_TARGET_32_LITTLE
2787 elfcpp::Ehdr<32, false> ehdr(p);
2788 return make_elf_sized_object<32, false>(name, input_file,
2789 offset, ehdr, punconfigured);
2790 #else
2791 if (punconfigured != NULL)
2792 *punconfigured = true;
2793 else
2794 gold_error(_("%s: not configured to support "
2795 "32-bit little-endian object"),
2796 name.c_str());
2797 return NULL;
2798 #endif
2799 }
2800 }
2801 else if (size == 64)
2802 {
2803 if (big_endian)
2804 {
2805 #ifdef HAVE_TARGET_64_BIG
2806 elfcpp::Ehdr<64, true> ehdr(p);
2807 return make_elf_sized_object<64, true>(name, input_file,
2808 offset, ehdr, punconfigured);
2809 #else
2810 if (punconfigured != NULL)
2811 *punconfigured = true;
2812 else
2813 gold_error(_("%s: not configured to support "
2814 "64-bit big-endian object"),
2815 name.c_str());
2816 return NULL;
2817 #endif
2818 }
2819 else
2820 {
2821 #ifdef HAVE_TARGET_64_LITTLE
2822 elfcpp::Ehdr<64, false> ehdr(p);
2823 return make_elf_sized_object<64, false>(name, input_file,
2824 offset, ehdr, punconfigured);
2825 #else
2826 if (punconfigured != NULL)
2827 *punconfigured = true;
2828 else
2829 gold_error(_("%s: not configured to support "
2830 "64-bit little-endian object"),
2831 name.c_str());
2832 return NULL;
2833 #endif
2834 }
2835 }
2836 else
2837 gold_unreachable();
2838 }
2839
2840 // Instantiate the templates we need.
2841
2842 #ifdef HAVE_TARGET_32_LITTLE
2843 template
2844 void
2845 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2846 Read_symbols_data*);
2847 #endif
2848
2849 #ifdef HAVE_TARGET_32_BIG
2850 template
2851 void
2852 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2853 Read_symbols_data*);
2854 #endif
2855
2856 #ifdef HAVE_TARGET_64_LITTLE
2857 template
2858 void
2859 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2860 Read_symbols_data*);
2861 #endif
2862
2863 #ifdef HAVE_TARGET_64_BIG
2864 template
2865 void
2866 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2867 Read_symbols_data*);
2868 #endif
2869
2870 #ifdef HAVE_TARGET_32_LITTLE
2871 template
2872 class Sized_relobj_file<32, false>;
2873 #endif
2874
2875 #ifdef HAVE_TARGET_32_BIG
2876 template
2877 class Sized_relobj_file<32, true>;
2878 #endif
2879
2880 #ifdef HAVE_TARGET_64_LITTLE
2881 template
2882 class Sized_relobj_file<64, false>;
2883 #endif
2884
2885 #ifdef HAVE_TARGET_64_BIG
2886 template
2887 class Sized_relobj_file<64, true>;
2888 #endif
2889
2890 #ifdef HAVE_TARGET_32_LITTLE
2891 template
2892 struct Relocate_info<32, false>;
2893 #endif
2894
2895 #ifdef HAVE_TARGET_32_BIG
2896 template
2897 struct Relocate_info<32, true>;
2898 #endif
2899
2900 #ifdef HAVE_TARGET_64_LITTLE
2901 template
2902 struct Relocate_info<64, false>;
2903 #endif
2904
2905 #ifdef HAVE_TARGET_64_BIG
2906 template
2907 struct Relocate_info<64, true>;
2908 #endif
2909
2910 #ifdef HAVE_TARGET_32_LITTLE
2911 template
2912 void
2913 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2914
2915 template
2916 void
2917 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2918 const unsigned char*);
2919 #endif
2920
2921 #ifdef HAVE_TARGET_32_BIG
2922 template
2923 void
2924 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2925
2926 template
2927 void
2928 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2929 const unsigned char*);
2930 #endif
2931
2932 #ifdef HAVE_TARGET_64_LITTLE
2933 template
2934 void
2935 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2936
2937 template
2938 void
2939 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2940 const unsigned char*);
2941 #endif
2942
2943 #ifdef HAVE_TARGET_64_BIG
2944 template
2945 void
2946 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2947
2948 template
2949 void
2950 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2951 const unsigned char*);
2952 #endif
2953
2954 } // End namespace gold.
This page took 0.105464 seconds and 5 git commands to generate.