Fix handling of relocations against TLS section symbols.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
60 delete this->symbols;
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
64 delete this->versym;
65 if (this->verdef != NULL)
66 delete this->verdef;
67 if (this->verneed != NULL)
68 delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81 if (!this->symtab_xindex_.empty())
82 return;
83
84 gold_assert(symtab_shndx != 0);
85
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
89 while (i > 0)
90 {
91 --i;
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 {
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 return;
97 }
98 }
99
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
111 {
112 section_size_type bytecount;
113 const unsigned char* contents;
114 if (pshdrs == NULL)
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
116 else
117 {
118 const unsigned char* p = (pshdrs
119 + (xindex_shndx
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124 }
125
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
129 {
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133 }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142 if (symndx >= this->symtab_xindex_.size())
143 {
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 symndx);
146 return elfcpp::SHN_UNDEF;
147 }
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 {
151 object->error(_("extended index for symbol %u out of range: %u"),
152 symndx, shndx);
153 return elfcpp::SHN_UNDEF;
154 }
155 return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167 va_list args;
168 va_start(args, format);
169 char* buf = NULL;
170 if (vasprintf(&buf, format, args) < 0)
171 gold_nomem();
172 va_end(args);
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
174 free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
191 {
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 true, true);
199
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
213 false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
223 {
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227 {
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
233 // simultaneously.
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
236 false);
237 if (len == 0)
238 {
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
242 }
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
245 return true;
246 }
247 return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
257 {
258 this->uses_split_stack_ = true;
259 return true;
260 }
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262 {
263 this->has_no_split_stack_ = true;
264 return true;
265 }
266 return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
278 {
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
289 {
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 sd->symbols_size);
294 }
295 else
296 {
297 gc_sd->symbols_data = NULL;
298 }
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
302 {
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
307 }
308 else
309 {
310 gc_sd->symbol_names_data = NULL;
311 }
312 gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".sdata", name)
335 && strstr(name, "personality"))
336 || (is_prefix_of(".gnu.linkonce.d", name)
337 && strstr(name, "personality"))
338 || (is_prefix_of(".rodata", name)
339 && strstr(name, "nptl_version")))
340 {
341 return true;
342 }
343 return false;
344 }
345
346 // Finalize the incremental relocation information. Allocates a block
347 // of relocation entries for each symbol, and sets the reloc_bases_
348 // array to point to the first entry in each block. If CLEAR_COUNTS
349 // is TRUE, also clear the per-symbol relocation counters.
350
351 void
352 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
353 {
354 unsigned int nsyms = this->get_global_symbols()->size();
355 this->reloc_bases_ = new unsigned int[nsyms];
356
357 gold_assert(this->reloc_bases_ != NULL);
358 gold_assert(layout->incremental_inputs() != NULL);
359
360 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
361 for (unsigned int i = 0; i < nsyms; ++i)
362 {
363 this->reloc_bases_[i] = rindex;
364 rindex += this->reloc_counts_[i];
365 if (clear_counts)
366 this->reloc_counts_[i] = 0;
367 }
368 layout->incremental_inputs()->set_reloc_count(rindex);
369 }
370
371 // Class Sized_relobj.
372
373 // Iterate over local symbols, calling a visitor class V for each GOT offset
374 // associated with a local symbol.
375
376 template<int size, bool big_endian>
377 void
378 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
379 Got_offset_list::Visitor* v) const
380 {
381 unsigned int nsyms = this->local_symbol_count();
382 for (unsigned int i = 0; i < nsyms; i++)
383 {
384 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
385 if (p != this->local_got_offsets_.end())
386 {
387 const Got_offset_list* got_offsets = p->second;
388 got_offsets->for_all_got_offsets(v);
389 }
390 }
391 }
392
393 // Get the address of an output section.
394
395 template<int size, bool big_endian>
396 uint64_t
397 Sized_relobj<size, big_endian>::do_output_section_address(
398 unsigned int shndx)
399 {
400 // If the input file is linked as --just-symbols, the output
401 // section address is the input section address.
402 if (this->just_symbols())
403 return this->section_address(shndx);
404
405 const Output_section* os = this->do_output_section(shndx);
406 gold_assert(os != NULL);
407 return os->address();
408 }
409
410 // Class Sized_relobj_file.
411
412 template<int size, bool big_endian>
413 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
414 const std::string& name,
415 Input_file* input_file,
416 off_t offset,
417 const elfcpp::Ehdr<size, big_endian>& ehdr)
418 : Sized_relobj<size, big_endian>(name, input_file, offset),
419 elf_file_(this, ehdr),
420 symtab_shndx_(-1U),
421 local_symbol_count_(0),
422 output_local_symbol_count_(0),
423 output_local_dynsym_count_(0),
424 symbols_(),
425 defined_count_(0),
426 local_symbol_offset_(0),
427 local_dynsym_offset_(0),
428 local_values_(),
429 local_plt_offsets_(),
430 kept_comdat_sections_(),
431 has_eh_frame_(false),
432 discarded_eh_frame_shndx_(-1U),
433 deferred_layout_(),
434 deferred_layout_relocs_(),
435 compressed_sections_()
436 {
437 this->e_type_ = ehdr.get_e_type();
438 }
439
440 template<int size, bool big_endian>
441 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
442 {
443 }
444
445 // Set up an object file based on the file header. This sets up the
446 // section information.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::do_setup()
451 {
452 const unsigned int shnum = this->elf_file_.shnum();
453 this->set_shnum(shnum);
454 }
455
456 // Find the SHT_SYMTAB section, given the section headers. The ELF
457 // standard says that maybe in the future there can be more than one
458 // SHT_SYMTAB section. Until somebody figures out how that could
459 // work, we assume there is only one.
460
461 template<int size, bool big_endian>
462 void
463 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
464 {
465 const unsigned int shnum = this->shnum();
466 this->symtab_shndx_ = 0;
467 if (shnum > 0)
468 {
469 // Look through the sections in reverse order, since gas tends
470 // to put the symbol table at the end.
471 const unsigned char* p = pshdrs + shnum * This::shdr_size;
472 unsigned int i = shnum;
473 unsigned int xindex_shndx = 0;
474 unsigned int xindex_link = 0;
475 while (i > 0)
476 {
477 --i;
478 p -= This::shdr_size;
479 typename This::Shdr shdr(p);
480 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
481 {
482 this->symtab_shndx_ = i;
483 if (xindex_shndx > 0 && xindex_link == i)
484 {
485 Xindex* xindex =
486 new Xindex(this->elf_file_.large_shndx_offset());
487 xindex->read_symtab_xindex<size, big_endian>(this,
488 xindex_shndx,
489 pshdrs);
490 this->set_xindex(xindex);
491 }
492 break;
493 }
494
495 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
496 // one. This will work if it follows the SHT_SYMTAB
497 // section.
498 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
499 {
500 xindex_shndx = i;
501 xindex_link = this->adjust_shndx(shdr.get_sh_link());
502 }
503 }
504 }
505 }
506
507 // Return the Xindex structure to use for object with lots of
508 // sections.
509
510 template<int size, bool big_endian>
511 Xindex*
512 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
513 {
514 gold_assert(this->symtab_shndx_ != -1U);
515 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
516 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
517 return xindex;
518 }
519
520 // Return whether SHDR has the right type and flags to be a GNU
521 // .eh_frame section.
522
523 template<int size, bool big_endian>
524 bool
525 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
526 const elfcpp::Shdr<size, big_endian>* shdr) const
527 {
528 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
529 return ((sh_type == elfcpp::SHT_PROGBITS
530 || sh_type == elfcpp::SHT_X86_64_UNWIND)
531 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
532 }
533
534 // Find the section header with the given name.
535
536 template<int size, bool big_endian>
537 const unsigned char*
538 Object::find_shdr(
539 const unsigned char* pshdrs,
540 const char* name,
541 const char* names,
542 section_size_type names_size,
543 const unsigned char* hdr) const
544 {
545 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
546 const unsigned int shnum = this->shnum();
547 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
548 size_t sh_name = 0;
549
550 while (1)
551 {
552 if (hdr)
553 {
554 // We found HDR last time we were called, continue looking.
555 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
556 sh_name = shdr.get_sh_name();
557 }
558 else
559 {
560 // Look for the next occurrence of NAME in NAMES.
561 // The fact that .shstrtab produced by current GNU tools is
562 // string merged means we shouldn't have both .not.foo and
563 // .foo in .shstrtab, and multiple .foo sections should all
564 // have the same sh_name. However, this is not guaranteed
565 // by the ELF spec and not all ELF object file producers may
566 // be so clever.
567 size_t len = strlen(name) + 1;
568 const char *p = sh_name ? names + sh_name + len : names;
569 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
570 name, len));
571 if (p == NULL)
572 return NULL;
573 sh_name = p - names;
574 hdr = pshdrs;
575 if (sh_name == 0)
576 return hdr;
577 }
578
579 hdr += shdr_size;
580 while (hdr < hdr_end)
581 {
582 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
583 if (shdr.get_sh_name() == sh_name)
584 return hdr;
585 hdr += shdr_size;
586 }
587 hdr = NULL;
588 if (sh_name == 0)
589 return hdr;
590 }
591 }
592
593 // Return whether there is a GNU .eh_frame section, given the section
594 // headers and the section names.
595
596 template<int size, bool big_endian>
597 bool
598 Sized_relobj_file<size, big_endian>::find_eh_frame(
599 const unsigned char* pshdrs,
600 const char* names,
601 section_size_type names_size) const
602 {
603 const unsigned char* s = NULL;
604
605 while (1)
606 {
607 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
608 names, names_size, s);
609 if (s == NULL)
610 return false;
611
612 typename This::Shdr shdr(s);
613 if (this->check_eh_frame_flags(&shdr))
614 return true;
615 }
616 }
617
618 // Return TRUE if this is a section whose contents will be needed in the
619 // Add_symbols task. This function is only called for sections that have
620 // already passed the test in is_compressed_debug_section(), so we know
621 // that the section name begins with ".zdebug".
622
623 static bool
624 need_decompressed_section(const char* name)
625 {
626 // Skip over the ".zdebug" and a quick check for the "_".
627 name += 7;
628 if (*name++ != '_')
629 return false;
630
631 #ifdef ENABLE_THREADS
632 // Decompressing these sections now will help only if we're
633 // multithreaded.
634 if (parameters->options().threads())
635 {
636 // We will need .zdebug_str if this is not an incremental link
637 // (i.e., we are processing string merge sections) or if we need
638 // to build a gdb index.
639 if ((!parameters->incremental() || parameters->options().gdb_index())
640 && strcmp(name, "str") == 0)
641 return true;
642
643 // We will need these other sections when building a gdb index.
644 if (parameters->options().gdb_index()
645 && (strcmp(name, "info") == 0
646 || strcmp(name, "types") == 0
647 || strcmp(name, "pubnames") == 0
648 || strcmp(name, "pubtypes") == 0
649 || strcmp(name, "ranges") == 0
650 || strcmp(name, "abbrev") == 0))
651 return true;
652 }
653 #endif
654
655 // Even when single-threaded, we will need .zdebug_str if this is
656 // not an incremental link and we are building a gdb index.
657 // Otherwise, we would decompress the section twice: once for
658 // string merge processing, and once for building the gdb index.
659 if (!parameters->incremental()
660 && parameters->options().gdb_index()
661 && strcmp(name, "str") == 0)
662 return true;
663
664 return false;
665 }
666
667 // Build a table for any compressed debug sections, mapping each section index
668 // to the uncompressed size and (if needed) the decompressed contents.
669
670 template<int size, bool big_endian>
671 Compressed_section_map*
672 build_compressed_section_map(
673 const unsigned char* pshdrs,
674 unsigned int shnum,
675 const char* names,
676 section_size_type names_size,
677 Sized_relobj_file<size, big_endian>* obj)
678 {
679 Compressed_section_map* uncompressed_map = new Compressed_section_map();
680 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
681 const unsigned char* p = pshdrs + shdr_size;
682
683 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
684 {
685 typename elfcpp::Shdr<size, big_endian> shdr(p);
686 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
687 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
688 {
689 if (shdr.get_sh_name() >= names_size)
690 {
691 obj->error(_("bad section name offset for section %u: %lu"),
692 i, static_cast<unsigned long>(shdr.get_sh_name()));
693 continue;
694 }
695
696 const char* name = names + shdr.get_sh_name();
697 if (is_compressed_debug_section(name))
698 {
699 section_size_type len;
700 const unsigned char* contents =
701 obj->section_contents(i, &len, false);
702 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
703 Compressed_section_info info;
704 info.size = convert_to_section_size_type(uncompressed_size);
705 info.contents = NULL;
706 if (uncompressed_size != -1ULL)
707 {
708 unsigned char* uncompressed_data = NULL;
709 if (need_decompressed_section(name))
710 {
711 uncompressed_data = new unsigned char[uncompressed_size];
712 if (decompress_input_section(contents, len,
713 uncompressed_data,
714 uncompressed_size))
715 info.contents = uncompressed_data;
716 else
717 delete[] uncompressed_data;
718 }
719 (*uncompressed_map)[i] = info;
720 }
721 }
722 }
723 }
724 return uncompressed_map;
725 }
726
727 // Stash away info for a number of special sections.
728 // Return true if any of the sections found require local symbols to be read.
729
730 template<int size, bool big_endian>
731 bool
732 Sized_relobj_file<size, big_endian>::do_find_special_sections(
733 Read_symbols_data* sd)
734 {
735 const unsigned char* const pshdrs = sd->section_headers->data();
736 const unsigned char* namesu = sd->section_names->data();
737 const char* names = reinterpret_cast<const char*>(namesu);
738
739 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
740 this->has_eh_frame_ = true;
741
742 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
743 this->compressed_sections_
744 = build_compressed_section_map(pshdrs, this->shnum(), names,
745 sd->section_names_size, this);
746 return (this->has_eh_frame_
747 || (!parameters->options().relocatable()
748 && parameters->options().gdb_index()
749 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
750 || memmem(names, sd->section_names_size, "debug_types",
751 13) == 0)));
752 }
753
754 // Read the sections and symbols from an object file.
755
756 template<int size, bool big_endian>
757 void
758 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
759 {
760 this->base_read_symbols(sd);
761 }
762
763 // Read the sections and symbols from an object file. This is common
764 // code for all target-specific overrides of do_read_symbols().
765
766 template<int size, bool big_endian>
767 void
768 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
769 {
770 this->read_section_data(&this->elf_file_, sd);
771
772 const unsigned char* const pshdrs = sd->section_headers->data();
773
774 this->find_symtab(pshdrs);
775
776 bool need_local_symbols = this->do_find_special_sections(sd);
777
778 sd->symbols = NULL;
779 sd->symbols_size = 0;
780 sd->external_symbols_offset = 0;
781 sd->symbol_names = NULL;
782 sd->symbol_names_size = 0;
783
784 if (this->symtab_shndx_ == 0)
785 {
786 // No symbol table. Weird but legal.
787 return;
788 }
789
790 // Get the symbol table section header.
791 typename This::Shdr symtabshdr(pshdrs
792 + this->symtab_shndx_ * This::shdr_size);
793 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
794
795 // If this object has a .eh_frame section, or if building a .gdb_index
796 // section and there is debug info, we need all the symbols.
797 // Otherwise we only need the external symbols. While it would be
798 // simpler to just always read all the symbols, I've seen object
799 // files with well over 2000 local symbols, which for a 64-bit
800 // object file format is over 5 pages that we don't need to read
801 // now.
802
803 const int sym_size = This::sym_size;
804 const unsigned int loccount = symtabshdr.get_sh_info();
805 this->local_symbol_count_ = loccount;
806 this->local_values_.resize(loccount);
807 section_offset_type locsize = loccount * sym_size;
808 off_t dataoff = symtabshdr.get_sh_offset();
809 section_size_type datasize =
810 convert_to_section_size_type(symtabshdr.get_sh_size());
811 off_t extoff = dataoff + locsize;
812 section_size_type extsize = datasize - locsize;
813
814 off_t readoff = need_local_symbols ? dataoff : extoff;
815 section_size_type readsize = need_local_symbols ? datasize : extsize;
816
817 if (readsize == 0)
818 {
819 // No external symbols. Also weird but also legal.
820 return;
821 }
822
823 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
824
825 // Read the section header for the symbol names.
826 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
827 if (strtab_shndx >= this->shnum())
828 {
829 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
830 return;
831 }
832 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
833 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
834 {
835 this->error(_("symbol table name section has wrong type: %u"),
836 static_cast<unsigned int>(strtabshdr.get_sh_type()));
837 return;
838 }
839
840 // Read the symbol names.
841 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
842 strtabshdr.get_sh_size(),
843 false, true);
844
845 sd->symbols = fvsymtab;
846 sd->symbols_size = readsize;
847 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
848 sd->symbol_names = fvstrtab;
849 sd->symbol_names_size =
850 convert_to_section_size_type(strtabshdr.get_sh_size());
851 }
852
853 // Return the section index of symbol SYM. Set *VALUE to its value in
854 // the object file. Set *IS_ORDINARY if this is an ordinary section
855 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
856 // Note that for a symbol which is not defined in this object file,
857 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
858 // the final value of the symbol in the link.
859
860 template<int size, bool big_endian>
861 unsigned int
862 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
863 Address* value,
864 bool* is_ordinary)
865 {
866 section_size_type symbols_size;
867 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
868 &symbols_size,
869 false);
870
871 const size_t count = symbols_size / This::sym_size;
872 gold_assert(sym < count);
873
874 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
875 *value = elfsym.get_st_value();
876
877 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
878 }
879
880 // Return whether to include a section group in the link. LAYOUT is
881 // used to keep track of which section groups we have already seen.
882 // INDEX is the index of the section group and SHDR is the section
883 // header. If we do not want to include this group, we set bits in
884 // OMIT for each section which should be discarded.
885
886 template<int size, bool big_endian>
887 bool
888 Sized_relobj_file<size, big_endian>::include_section_group(
889 Symbol_table* symtab,
890 Layout* layout,
891 unsigned int index,
892 const char* name,
893 const unsigned char* shdrs,
894 const char* section_names,
895 section_size_type section_names_size,
896 std::vector<bool>* omit)
897 {
898 // Read the section contents.
899 typename This::Shdr shdr(shdrs + index * This::shdr_size);
900 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
901 shdr.get_sh_size(), true, false);
902 const elfcpp::Elf_Word* pword =
903 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
904
905 // The first word contains flags. We only care about COMDAT section
906 // groups. Other section groups are always included in the link
907 // just like ordinary sections.
908 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
909
910 // Look up the group signature, which is the name of a symbol. ELF
911 // uses a symbol name because some group signatures are long, and
912 // the name is generally already in the symbol table, so it makes
913 // sense to put the long string just once in .strtab rather than in
914 // both .strtab and .shstrtab.
915
916 // Get the appropriate symbol table header (this will normally be
917 // the single SHT_SYMTAB section, but in principle it need not be).
918 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
919 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
920
921 // Read the symbol table entry.
922 unsigned int symndx = shdr.get_sh_info();
923 if (symndx >= symshdr.get_sh_size() / This::sym_size)
924 {
925 this->error(_("section group %u info %u out of range"),
926 index, symndx);
927 return false;
928 }
929 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
930 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
931 false);
932 elfcpp::Sym<size, big_endian> sym(psym);
933
934 // Read the symbol table names.
935 section_size_type symnamelen;
936 const unsigned char* psymnamesu;
937 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
938 &symnamelen, true);
939 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
940
941 // Get the section group signature.
942 if (sym.get_st_name() >= symnamelen)
943 {
944 this->error(_("symbol %u name offset %u out of range"),
945 symndx, sym.get_st_name());
946 return false;
947 }
948
949 std::string signature(psymnames + sym.get_st_name());
950
951 // It seems that some versions of gas will create a section group
952 // associated with a section symbol, and then fail to give a name to
953 // the section symbol. In such a case, use the name of the section.
954 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
955 {
956 bool is_ordinary;
957 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
958 sym.get_st_shndx(),
959 &is_ordinary);
960 if (!is_ordinary || sym_shndx >= this->shnum())
961 {
962 this->error(_("symbol %u invalid section index %u"),
963 symndx, sym_shndx);
964 return false;
965 }
966 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
967 if (member_shdr.get_sh_name() < section_names_size)
968 signature = section_names + member_shdr.get_sh_name();
969 }
970
971 // Record this section group in the layout, and see whether we've already
972 // seen one with the same signature.
973 bool include_group;
974 bool is_comdat;
975 Kept_section* kept_section = NULL;
976
977 if ((flags & elfcpp::GRP_COMDAT) == 0)
978 {
979 include_group = true;
980 is_comdat = false;
981 }
982 else
983 {
984 include_group = layout->find_or_add_kept_section(signature,
985 this, index, true,
986 true, &kept_section);
987 is_comdat = true;
988 }
989
990 if (is_comdat && include_group)
991 {
992 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
993 if (incremental_inputs != NULL)
994 incremental_inputs->report_comdat_group(this, signature.c_str());
995 }
996
997 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
998
999 std::vector<unsigned int> shndxes;
1000 bool relocate_group = include_group && parameters->options().relocatable();
1001 if (relocate_group)
1002 shndxes.reserve(count - 1);
1003
1004 for (size_t i = 1; i < count; ++i)
1005 {
1006 elfcpp::Elf_Word shndx =
1007 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1008
1009 if (relocate_group)
1010 shndxes.push_back(shndx);
1011
1012 if (shndx >= this->shnum())
1013 {
1014 this->error(_("section %u in section group %u out of range"),
1015 shndx, index);
1016 continue;
1017 }
1018
1019 // Check for an earlier section number, since we're going to get
1020 // it wrong--we may have already decided to include the section.
1021 if (shndx < index)
1022 this->error(_("invalid section group %u refers to earlier section %u"),
1023 index, shndx);
1024
1025 // Get the name of the member section.
1026 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1027 if (member_shdr.get_sh_name() >= section_names_size)
1028 {
1029 // This is an error, but it will be diagnosed eventually
1030 // in do_layout, so we don't need to do anything here but
1031 // ignore it.
1032 continue;
1033 }
1034 std::string mname(section_names + member_shdr.get_sh_name());
1035
1036 if (include_group)
1037 {
1038 if (is_comdat)
1039 kept_section->add_comdat_section(mname, shndx,
1040 member_shdr.get_sh_size());
1041 }
1042 else
1043 {
1044 (*omit)[shndx] = true;
1045
1046 if (is_comdat)
1047 {
1048 Relobj* kept_object = kept_section->object();
1049 if (kept_section->is_comdat())
1050 {
1051 // Find the corresponding kept section, and store
1052 // that info in the discarded section table.
1053 unsigned int kept_shndx;
1054 uint64_t kept_size;
1055 if (kept_section->find_comdat_section(mname, &kept_shndx,
1056 &kept_size))
1057 {
1058 // We don't keep a mapping for this section if
1059 // it has a different size. The mapping is only
1060 // used for relocation processing, and we don't
1061 // want to treat the sections as similar if the
1062 // sizes are different. Checking the section
1063 // size is the approach used by the GNU linker.
1064 if (kept_size == member_shdr.get_sh_size())
1065 this->set_kept_comdat_section(shndx, kept_object,
1066 kept_shndx);
1067 }
1068 }
1069 else
1070 {
1071 // The existing section is a linkonce section. Add
1072 // a mapping if there is exactly one section in the
1073 // group (which is true when COUNT == 2) and if it
1074 // is the same size.
1075 if (count == 2
1076 && (kept_section->linkonce_size()
1077 == member_shdr.get_sh_size()))
1078 this->set_kept_comdat_section(shndx, kept_object,
1079 kept_section->shndx());
1080 }
1081 }
1082 }
1083 }
1084
1085 if (relocate_group)
1086 layout->layout_group(symtab, this, index, name, signature.c_str(),
1087 shdr, flags, &shndxes);
1088
1089 return include_group;
1090 }
1091
1092 // Whether to include a linkonce section in the link. NAME is the
1093 // name of the section and SHDR is the section header.
1094
1095 // Linkonce sections are a GNU extension implemented in the original
1096 // GNU linker before section groups were defined. The semantics are
1097 // that we only include one linkonce section with a given name. The
1098 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1099 // where T is the type of section and SYMNAME is the name of a symbol.
1100 // In an attempt to make linkonce sections interact well with section
1101 // groups, we try to identify SYMNAME and use it like a section group
1102 // signature. We want to block section groups with that signature,
1103 // but not other linkonce sections with that signature. We also use
1104 // the full name of the linkonce section as a normal section group
1105 // signature.
1106
1107 template<int size, bool big_endian>
1108 bool
1109 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1110 Layout* layout,
1111 unsigned int index,
1112 const char* name,
1113 const elfcpp::Shdr<size, big_endian>& shdr)
1114 {
1115 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1116 // In general the symbol name we want will be the string following
1117 // the last '.'. However, we have to handle the case of
1118 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1119 // some versions of gcc. So we use a heuristic: if the name starts
1120 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1121 // we look for the last '.'. We can't always simply skip
1122 // ".gnu.linkonce.X", because we have to deal with cases like
1123 // ".gnu.linkonce.d.rel.ro.local".
1124 const char* const linkonce_t = ".gnu.linkonce.t.";
1125 const char* symname;
1126 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1127 symname = name + strlen(linkonce_t);
1128 else
1129 symname = strrchr(name, '.') + 1;
1130 std::string sig1(symname);
1131 std::string sig2(name);
1132 Kept_section* kept1;
1133 Kept_section* kept2;
1134 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1135 false, &kept1);
1136 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1137 true, &kept2);
1138
1139 if (!include2)
1140 {
1141 // We are not including this section because we already saw the
1142 // name of the section as a signature. This normally implies
1143 // that the kept section is another linkonce section. If it is
1144 // the same size, record it as the section which corresponds to
1145 // this one.
1146 if (kept2->object() != NULL
1147 && !kept2->is_comdat()
1148 && kept2->linkonce_size() == sh_size)
1149 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1150 }
1151 else if (!include1)
1152 {
1153 // The section is being discarded on the basis of its symbol
1154 // name. This means that the corresponding kept section was
1155 // part of a comdat group, and it will be difficult to identify
1156 // the specific section within that group that corresponds to
1157 // this linkonce section. We'll handle the simple case where
1158 // the group has only one member section. Otherwise, it's not
1159 // worth the effort.
1160 unsigned int kept_shndx;
1161 uint64_t kept_size;
1162 if (kept1->object() != NULL
1163 && kept1->is_comdat()
1164 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1165 && kept_size == sh_size)
1166 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1167 }
1168 else
1169 {
1170 kept1->set_linkonce_size(sh_size);
1171 kept2->set_linkonce_size(sh_size);
1172 }
1173
1174 return include1 && include2;
1175 }
1176
1177 // Layout an input section.
1178
1179 template<int size, bool big_endian>
1180 inline void
1181 Sized_relobj_file<size, big_endian>::layout_section(
1182 Layout* layout,
1183 unsigned int shndx,
1184 const char* name,
1185 const typename This::Shdr& shdr,
1186 unsigned int reloc_shndx,
1187 unsigned int reloc_type)
1188 {
1189 off_t offset;
1190 Output_section* os = layout->layout(this, shndx, name, shdr,
1191 reloc_shndx, reloc_type, &offset);
1192
1193 this->output_sections()[shndx] = os;
1194 if (offset == -1)
1195 this->section_offsets()[shndx] = invalid_address;
1196 else
1197 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1198
1199 // If this section requires special handling, and if there are
1200 // relocs that apply to it, then we must do the special handling
1201 // before we apply the relocs.
1202 if (offset == -1 && reloc_shndx != 0)
1203 this->set_relocs_must_follow_section_writes();
1204 }
1205
1206 // Layout an input .eh_frame section.
1207
1208 template<int size, bool big_endian>
1209 void
1210 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1211 Layout* layout,
1212 const unsigned char* symbols_data,
1213 section_size_type symbols_size,
1214 const unsigned char* symbol_names_data,
1215 section_size_type symbol_names_size,
1216 unsigned int shndx,
1217 const typename This::Shdr& shdr,
1218 unsigned int reloc_shndx,
1219 unsigned int reloc_type)
1220 {
1221 gold_assert(this->has_eh_frame_);
1222
1223 off_t offset;
1224 Output_section* os = layout->layout_eh_frame(this,
1225 symbols_data,
1226 symbols_size,
1227 symbol_names_data,
1228 symbol_names_size,
1229 shndx,
1230 shdr,
1231 reloc_shndx,
1232 reloc_type,
1233 &offset);
1234 this->output_sections()[shndx] = os;
1235 if (os == NULL || offset == -1)
1236 {
1237 // An object can contain at most one section holding exception
1238 // frame information.
1239 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1240 this->discarded_eh_frame_shndx_ = shndx;
1241 this->section_offsets()[shndx] = invalid_address;
1242 }
1243 else
1244 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1245
1246 // If this section requires special handling, and if there are
1247 // relocs that aply to it, then we must do the special handling
1248 // before we apply the relocs.
1249 if (os != NULL && offset == -1 && reloc_shndx != 0)
1250 this->set_relocs_must_follow_section_writes();
1251 }
1252
1253 // Lay out the input sections. We walk through the sections and check
1254 // whether they should be included in the link. If they should, we
1255 // pass them to the Layout object, which will return an output section
1256 // and an offset.
1257 // This function is called twice sometimes, two passes, when mapping
1258 // of input sections to output sections must be delayed.
1259 // This is true for the following :
1260 // * Garbage collection (--gc-sections): Some input sections will be
1261 // discarded and hence the assignment must wait until the second pass.
1262 // In the first pass, it is for setting up some sections as roots to
1263 // a work-list for --gc-sections and to do comdat processing.
1264 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1265 // will be folded and hence the assignment must wait.
1266 // * Using plugins to map some sections to unique segments: Mapping
1267 // some sections to unique segments requires mapping them to unique
1268 // output sections too. This can be done via plugins now and this
1269 // information is not available in the first pass.
1270
1271 template<int size, bool big_endian>
1272 void
1273 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1274 Layout* layout,
1275 Read_symbols_data* sd)
1276 {
1277 const unsigned int shnum = this->shnum();
1278
1279 /* Should this function be called twice? */
1280 bool is_two_pass = (parameters->options().gc_sections()
1281 || parameters->options().icf_enabled()
1282 || layout->is_unique_segment_for_sections_specified());
1283
1284 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1285 a two-pass approach is not needed. */
1286 bool is_pass_one = false;
1287 bool is_pass_two = false;
1288
1289 Symbols_data* gc_sd = NULL;
1290
1291 /* Check if do_layout needs to be two-pass. If so, find out which pass
1292 should happen. In the first pass, the data in sd is saved to be used
1293 later in the second pass. */
1294 if (is_two_pass)
1295 {
1296 gc_sd = this->get_symbols_data();
1297 if (gc_sd == NULL)
1298 {
1299 gold_assert(sd != NULL);
1300 is_pass_one = true;
1301 }
1302 else
1303 {
1304 if (parameters->options().gc_sections())
1305 gold_assert(symtab->gc()->is_worklist_ready());
1306 if (parameters->options().icf_enabled())
1307 gold_assert(symtab->icf()->is_icf_ready());
1308 is_pass_two = true;
1309 }
1310 }
1311
1312 if (shnum == 0)
1313 return;
1314
1315 if (is_pass_one)
1316 {
1317 // During garbage collection save the symbols data to use it when
1318 // re-entering this function.
1319 gc_sd = new Symbols_data;
1320 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1321 this->set_symbols_data(gc_sd);
1322 }
1323
1324 const unsigned char* section_headers_data = NULL;
1325 section_size_type section_names_size;
1326 const unsigned char* symbols_data = NULL;
1327 section_size_type symbols_size;
1328 const unsigned char* symbol_names_data = NULL;
1329 section_size_type symbol_names_size;
1330
1331 if (is_two_pass)
1332 {
1333 section_headers_data = gc_sd->section_headers_data;
1334 section_names_size = gc_sd->section_names_size;
1335 symbols_data = gc_sd->symbols_data;
1336 symbols_size = gc_sd->symbols_size;
1337 symbol_names_data = gc_sd->symbol_names_data;
1338 symbol_names_size = gc_sd->symbol_names_size;
1339 }
1340 else
1341 {
1342 section_headers_data = sd->section_headers->data();
1343 section_names_size = sd->section_names_size;
1344 if (sd->symbols != NULL)
1345 symbols_data = sd->symbols->data();
1346 symbols_size = sd->symbols_size;
1347 if (sd->symbol_names != NULL)
1348 symbol_names_data = sd->symbol_names->data();
1349 symbol_names_size = sd->symbol_names_size;
1350 }
1351
1352 // Get the section headers.
1353 const unsigned char* shdrs = section_headers_data;
1354 const unsigned char* pshdrs;
1355
1356 // Get the section names.
1357 const unsigned char* pnamesu = (is_two_pass
1358 ? gc_sd->section_names_data
1359 : sd->section_names->data());
1360
1361 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1362
1363 // If any input files have been claimed by plugins, we need to defer
1364 // actual layout until the replacement files have arrived.
1365 const bool should_defer_layout =
1366 (parameters->options().has_plugins()
1367 && parameters->options().plugins()->should_defer_layout());
1368 unsigned int num_sections_to_defer = 0;
1369
1370 // For each section, record the index of the reloc section if any.
1371 // Use 0 to mean that there is no reloc section, -1U to mean that
1372 // there is more than one.
1373 std::vector<unsigned int> reloc_shndx(shnum, 0);
1374 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1375 // Skip the first, dummy, section.
1376 pshdrs = shdrs + This::shdr_size;
1377 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1378 {
1379 typename This::Shdr shdr(pshdrs);
1380
1381 // Count the number of sections whose layout will be deferred.
1382 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1383 ++num_sections_to_defer;
1384
1385 unsigned int sh_type = shdr.get_sh_type();
1386 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1387 {
1388 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1389 if (target_shndx == 0 || target_shndx >= shnum)
1390 {
1391 this->error(_("relocation section %u has bad info %u"),
1392 i, target_shndx);
1393 continue;
1394 }
1395
1396 if (reloc_shndx[target_shndx] != 0)
1397 reloc_shndx[target_shndx] = -1U;
1398 else
1399 {
1400 reloc_shndx[target_shndx] = i;
1401 reloc_type[target_shndx] = sh_type;
1402 }
1403 }
1404 }
1405
1406 Output_sections& out_sections(this->output_sections());
1407 std::vector<Address>& out_section_offsets(this->section_offsets());
1408
1409 if (!is_pass_two)
1410 {
1411 out_sections.resize(shnum);
1412 out_section_offsets.resize(shnum);
1413 }
1414
1415 // If we are only linking for symbols, then there is nothing else to
1416 // do here.
1417 if (this->input_file()->just_symbols())
1418 {
1419 if (!is_pass_two)
1420 {
1421 delete sd->section_headers;
1422 sd->section_headers = NULL;
1423 delete sd->section_names;
1424 sd->section_names = NULL;
1425 }
1426 return;
1427 }
1428
1429 if (num_sections_to_defer > 0)
1430 {
1431 parameters->options().plugins()->add_deferred_layout_object(this);
1432 this->deferred_layout_.reserve(num_sections_to_defer);
1433 }
1434
1435 // Whether we've seen a .note.GNU-stack section.
1436 bool seen_gnu_stack = false;
1437 // The flags of a .note.GNU-stack section.
1438 uint64_t gnu_stack_flags = 0;
1439
1440 // Keep track of which sections to omit.
1441 std::vector<bool> omit(shnum, false);
1442
1443 // Keep track of reloc sections when emitting relocations.
1444 const bool relocatable = parameters->options().relocatable();
1445 const bool emit_relocs = (relocatable
1446 || parameters->options().emit_relocs());
1447 std::vector<unsigned int> reloc_sections;
1448
1449 // Keep track of .eh_frame sections.
1450 std::vector<unsigned int> eh_frame_sections;
1451
1452 // Keep track of .debug_info and .debug_types sections.
1453 std::vector<unsigned int> debug_info_sections;
1454 std::vector<unsigned int> debug_types_sections;
1455
1456 // Skip the first, dummy, section.
1457 pshdrs = shdrs + This::shdr_size;
1458 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1459 {
1460 typename This::Shdr shdr(pshdrs);
1461
1462 if (shdr.get_sh_name() >= section_names_size)
1463 {
1464 this->error(_("bad section name offset for section %u: %lu"),
1465 i, static_cast<unsigned long>(shdr.get_sh_name()));
1466 return;
1467 }
1468
1469 const char* name = pnames + shdr.get_sh_name();
1470
1471 if (!is_pass_two)
1472 {
1473 if (this->handle_gnu_warning_section(name, i, symtab))
1474 {
1475 if (!relocatable && !parameters->options().shared())
1476 omit[i] = true;
1477 }
1478
1479 // The .note.GNU-stack section is special. It gives the
1480 // protection flags that this object file requires for the stack
1481 // in memory.
1482 if (strcmp(name, ".note.GNU-stack") == 0)
1483 {
1484 seen_gnu_stack = true;
1485 gnu_stack_flags |= shdr.get_sh_flags();
1486 omit[i] = true;
1487 }
1488
1489 // The .note.GNU-split-stack section is also special. It
1490 // indicates that the object was compiled with
1491 // -fsplit-stack.
1492 if (this->handle_split_stack_section(name))
1493 {
1494 if (!relocatable && !parameters->options().shared())
1495 omit[i] = true;
1496 }
1497
1498 // Skip attributes section.
1499 if (parameters->target().is_attributes_section(name))
1500 {
1501 omit[i] = true;
1502 }
1503
1504 bool discard = omit[i];
1505 if (!discard)
1506 {
1507 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1508 {
1509 if (!this->include_section_group(symtab, layout, i, name,
1510 shdrs, pnames,
1511 section_names_size,
1512 &omit))
1513 discard = true;
1514 }
1515 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1516 && Layout::is_linkonce(name))
1517 {
1518 if (!this->include_linkonce_section(layout, i, name, shdr))
1519 discard = true;
1520 }
1521 }
1522
1523 // Add the section to the incremental inputs layout.
1524 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1525 if (incremental_inputs != NULL
1526 && !discard
1527 && can_incremental_update(shdr.get_sh_type()))
1528 {
1529 off_t sh_size = shdr.get_sh_size();
1530 section_size_type uncompressed_size;
1531 if (this->section_is_compressed(i, &uncompressed_size))
1532 sh_size = uncompressed_size;
1533 incremental_inputs->report_input_section(this, i, name, sh_size);
1534 }
1535
1536 if (discard)
1537 {
1538 // Do not include this section in the link.
1539 out_sections[i] = NULL;
1540 out_section_offsets[i] = invalid_address;
1541 continue;
1542 }
1543 }
1544
1545 if (is_pass_one && parameters->options().gc_sections())
1546 {
1547 if (this->is_section_name_included(name)
1548 || layout->keep_input_section (this, name)
1549 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1550 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1551 {
1552 symtab->gc()->worklist().push(Section_id(this, i));
1553 }
1554 // If the section name XXX can be represented as a C identifier
1555 // it cannot be discarded if there are references to
1556 // __start_XXX and __stop_XXX symbols. These need to be
1557 // specially handled.
1558 if (is_cident(name))
1559 {
1560 symtab->gc()->add_cident_section(name, Section_id(this, i));
1561 }
1562 }
1563
1564 // When doing a relocatable link we are going to copy input
1565 // reloc sections into the output. We only want to copy the
1566 // ones associated with sections which are not being discarded.
1567 // However, we don't know that yet for all sections. So save
1568 // reloc sections and process them later. Garbage collection is
1569 // not triggered when relocatable code is desired.
1570 if (emit_relocs
1571 && (shdr.get_sh_type() == elfcpp::SHT_REL
1572 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1573 {
1574 reloc_sections.push_back(i);
1575 continue;
1576 }
1577
1578 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1579 continue;
1580
1581 // The .eh_frame section is special. It holds exception frame
1582 // information that we need to read in order to generate the
1583 // exception frame header. We process these after all the other
1584 // sections so that the exception frame reader can reliably
1585 // determine which sections are being discarded, and discard the
1586 // corresponding information.
1587 if (!relocatable
1588 && strcmp(name, ".eh_frame") == 0
1589 && this->check_eh_frame_flags(&shdr))
1590 {
1591 if (is_pass_one)
1592 {
1593 out_sections[i] = reinterpret_cast<Output_section*>(1);
1594 out_section_offsets[i] = invalid_address;
1595 }
1596 else if (should_defer_layout)
1597 this->deferred_layout_.push_back(Deferred_layout(i, name,
1598 pshdrs,
1599 reloc_shndx[i],
1600 reloc_type[i]));
1601 else
1602 eh_frame_sections.push_back(i);
1603 continue;
1604 }
1605
1606 if (is_pass_two && parameters->options().gc_sections())
1607 {
1608 // This is executed during the second pass of garbage
1609 // collection. do_layout has been called before and some
1610 // sections have been already discarded. Simply ignore
1611 // such sections this time around.
1612 if (out_sections[i] == NULL)
1613 {
1614 gold_assert(out_section_offsets[i] == invalid_address);
1615 continue;
1616 }
1617 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1618 && symtab->gc()->is_section_garbage(this, i))
1619 {
1620 if (parameters->options().print_gc_sections())
1621 gold_info(_("%s: removing unused section from '%s'"
1622 " in file '%s'"),
1623 program_name, this->section_name(i).c_str(),
1624 this->name().c_str());
1625 out_sections[i] = NULL;
1626 out_section_offsets[i] = invalid_address;
1627 continue;
1628 }
1629 }
1630
1631 if (is_pass_two && parameters->options().icf_enabled())
1632 {
1633 if (out_sections[i] == NULL)
1634 {
1635 gold_assert(out_section_offsets[i] == invalid_address);
1636 continue;
1637 }
1638 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1639 && symtab->icf()->is_section_folded(this, i))
1640 {
1641 if (parameters->options().print_icf_sections())
1642 {
1643 Section_id folded =
1644 symtab->icf()->get_folded_section(this, i);
1645 Relobj* folded_obj =
1646 reinterpret_cast<Relobj*>(folded.first);
1647 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1648 "into '%s' in file '%s'"),
1649 program_name, this->section_name(i).c_str(),
1650 this->name().c_str(),
1651 folded_obj->section_name(folded.second).c_str(),
1652 folded_obj->name().c_str());
1653 }
1654 out_sections[i] = NULL;
1655 out_section_offsets[i] = invalid_address;
1656 continue;
1657 }
1658 }
1659
1660 // Defer layout here if input files are claimed by plugins. When gc
1661 // is turned on this function is called twice. For the second call
1662 // should_defer_layout should be false.
1663 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1664 {
1665 gold_assert(!is_pass_two);
1666 this->deferred_layout_.push_back(Deferred_layout(i, name,
1667 pshdrs,
1668 reloc_shndx[i],
1669 reloc_type[i]));
1670 // Put dummy values here; real values will be supplied by
1671 // do_layout_deferred_sections.
1672 out_sections[i] = reinterpret_cast<Output_section*>(2);
1673 out_section_offsets[i] = invalid_address;
1674 continue;
1675 }
1676
1677 // During gc_pass_two if a section that was previously deferred is
1678 // found, do not layout the section as layout_deferred_sections will
1679 // do it later from gold.cc.
1680 if (is_pass_two
1681 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1682 continue;
1683
1684 if (is_pass_one)
1685 {
1686 // This is during garbage collection. The out_sections are
1687 // assigned in the second call to this function.
1688 out_sections[i] = reinterpret_cast<Output_section*>(1);
1689 out_section_offsets[i] = invalid_address;
1690 }
1691 else
1692 {
1693 // When garbage collection is switched on the actual layout
1694 // only happens in the second call.
1695 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1696 reloc_type[i]);
1697
1698 // When generating a .gdb_index section, we do additional
1699 // processing of .debug_info and .debug_types sections after all
1700 // the other sections for the same reason as above.
1701 if (!relocatable
1702 && parameters->options().gdb_index()
1703 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1704 {
1705 if (strcmp(name, ".debug_info") == 0
1706 || strcmp(name, ".zdebug_info") == 0)
1707 debug_info_sections.push_back(i);
1708 else if (strcmp(name, ".debug_types") == 0
1709 || strcmp(name, ".zdebug_types") == 0)
1710 debug_types_sections.push_back(i);
1711 }
1712 }
1713 }
1714
1715 if (!is_pass_two)
1716 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1717
1718 // Handle the .eh_frame sections after the other sections.
1719 gold_assert(!is_pass_one || eh_frame_sections.empty());
1720 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1721 p != eh_frame_sections.end();
1722 ++p)
1723 {
1724 unsigned int i = *p;
1725 const unsigned char* pshdr;
1726 pshdr = section_headers_data + i * This::shdr_size;
1727 typename This::Shdr shdr(pshdr);
1728
1729 this->layout_eh_frame_section(layout,
1730 symbols_data,
1731 symbols_size,
1732 symbol_names_data,
1733 symbol_names_size,
1734 i,
1735 shdr,
1736 reloc_shndx[i],
1737 reloc_type[i]);
1738 }
1739
1740 // When doing a relocatable link handle the reloc sections at the
1741 // end. Garbage collection and Identical Code Folding is not
1742 // turned on for relocatable code.
1743 if (emit_relocs)
1744 this->size_relocatable_relocs();
1745
1746 gold_assert(!is_two_pass || reloc_sections.empty());
1747
1748 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1749 p != reloc_sections.end();
1750 ++p)
1751 {
1752 unsigned int i = *p;
1753 const unsigned char* pshdr;
1754 pshdr = section_headers_data + i * This::shdr_size;
1755 typename This::Shdr shdr(pshdr);
1756
1757 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1758 if (data_shndx >= shnum)
1759 {
1760 // We already warned about this above.
1761 continue;
1762 }
1763
1764 Output_section* data_section = out_sections[data_shndx];
1765 if (data_section == reinterpret_cast<Output_section*>(2))
1766 {
1767 // The layout for the data section was deferred, so we need
1768 // to defer the relocation section, too.
1769 const char* name = pnames + shdr.get_sh_name();
1770 this->deferred_layout_relocs_.push_back(
1771 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1772 out_sections[i] = reinterpret_cast<Output_section*>(2);
1773 out_section_offsets[i] = invalid_address;
1774 continue;
1775 }
1776 if (data_section == NULL)
1777 {
1778 out_sections[i] = NULL;
1779 out_section_offsets[i] = invalid_address;
1780 continue;
1781 }
1782
1783 Relocatable_relocs* rr = new Relocatable_relocs();
1784 this->set_relocatable_relocs(i, rr);
1785
1786 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1787 rr);
1788 out_sections[i] = os;
1789 out_section_offsets[i] = invalid_address;
1790 }
1791
1792 // When building a .gdb_index section, scan the .debug_info and
1793 // .debug_types sections.
1794 gold_assert(!is_pass_one
1795 || (debug_info_sections.empty() && debug_types_sections.empty()));
1796 for (std::vector<unsigned int>::const_iterator p
1797 = debug_info_sections.begin();
1798 p != debug_info_sections.end();
1799 ++p)
1800 {
1801 unsigned int i = *p;
1802 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1803 i, reloc_shndx[i], reloc_type[i]);
1804 }
1805 for (std::vector<unsigned int>::const_iterator p
1806 = debug_types_sections.begin();
1807 p != debug_types_sections.end();
1808 ++p)
1809 {
1810 unsigned int i = *p;
1811 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1812 i, reloc_shndx[i], reloc_type[i]);
1813 }
1814
1815 if (is_pass_two)
1816 {
1817 delete[] gc_sd->section_headers_data;
1818 delete[] gc_sd->section_names_data;
1819 delete[] gc_sd->symbols_data;
1820 delete[] gc_sd->symbol_names_data;
1821 this->set_symbols_data(NULL);
1822 }
1823 else
1824 {
1825 delete sd->section_headers;
1826 sd->section_headers = NULL;
1827 delete sd->section_names;
1828 sd->section_names = NULL;
1829 }
1830 }
1831
1832 // Layout sections whose layout was deferred while waiting for
1833 // input files from a plugin.
1834
1835 template<int size, bool big_endian>
1836 void
1837 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1838 {
1839 typename std::vector<Deferred_layout>::iterator deferred;
1840
1841 for (deferred = this->deferred_layout_.begin();
1842 deferred != this->deferred_layout_.end();
1843 ++deferred)
1844 {
1845 typename This::Shdr shdr(deferred->shdr_data_);
1846
1847 if (!parameters->options().relocatable()
1848 && deferred->name_ == ".eh_frame"
1849 && this->check_eh_frame_flags(&shdr))
1850 {
1851 // Checking is_section_included is not reliable for
1852 // .eh_frame sections, because they do not have an output
1853 // section. This is not a problem normally because we call
1854 // layout_eh_frame_section unconditionally, but when
1855 // deferring sections that is not true. We don't want to
1856 // keep all .eh_frame sections because that will cause us to
1857 // keep all sections that they refer to, which is the wrong
1858 // way around. Instead, the eh_frame code will discard
1859 // .eh_frame sections that refer to discarded sections.
1860
1861 // Reading the symbols again here may be slow.
1862 Read_symbols_data sd;
1863 this->base_read_symbols(&sd);
1864 this->layout_eh_frame_section(layout,
1865 sd.symbols->data(),
1866 sd.symbols_size,
1867 sd.symbol_names->data(),
1868 sd.symbol_names_size,
1869 deferred->shndx_,
1870 shdr,
1871 deferred->reloc_shndx_,
1872 deferred->reloc_type_);
1873 continue;
1874 }
1875
1876 // If the section is not included, it is because the garbage collector
1877 // decided it is not needed. Avoid reverting that decision.
1878 if (!this->is_section_included(deferred->shndx_))
1879 continue;
1880
1881 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1882 shdr, deferred->reloc_shndx_,
1883 deferred->reloc_type_);
1884 }
1885
1886 this->deferred_layout_.clear();
1887
1888 // Now handle the deferred relocation sections.
1889
1890 Output_sections& out_sections(this->output_sections());
1891 std::vector<Address>& out_section_offsets(this->section_offsets());
1892
1893 for (deferred = this->deferred_layout_relocs_.begin();
1894 deferred != this->deferred_layout_relocs_.end();
1895 ++deferred)
1896 {
1897 unsigned int shndx = deferred->shndx_;
1898 typename This::Shdr shdr(deferred->shdr_data_);
1899 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1900
1901 Output_section* data_section = out_sections[data_shndx];
1902 if (data_section == NULL)
1903 {
1904 out_sections[shndx] = NULL;
1905 out_section_offsets[shndx] = invalid_address;
1906 continue;
1907 }
1908
1909 Relocatable_relocs* rr = new Relocatable_relocs();
1910 this->set_relocatable_relocs(shndx, rr);
1911
1912 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1913 data_section, rr);
1914 out_sections[shndx] = os;
1915 out_section_offsets[shndx] = invalid_address;
1916 }
1917 }
1918
1919 // Add the symbols to the symbol table.
1920
1921 template<int size, bool big_endian>
1922 void
1923 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1924 Read_symbols_data* sd,
1925 Layout*)
1926 {
1927 if (sd->symbols == NULL)
1928 {
1929 gold_assert(sd->symbol_names == NULL);
1930 return;
1931 }
1932
1933 const int sym_size = This::sym_size;
1934 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1935 / sym_size);
1936 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1937 {
1938 this->error(_("size of symbols is not multiple of symbol size"));
1939 return;
1940 }
1941
1942 this->symbols_.resize(symcount);
1943
1944 const char* sym_names =
1945 reinterpret_cast<const char*>(sd->symbol_names->data());
1946 symtab->add_from_relobj(this,
1947 sd->symbols->data() + sd->external_symbols_offset,
1948 symcount, this->local_symbol_count_,
1949 sym_names, sd->symbol_names_size,
1950 &this->symbols_,
1951 &this->defined_count_);
1952
1953 delete sd->symbols;
1954 sd->symbols = NULL;
1955 delete sd->symbol_names;
1956 sd->symbol_names = NULL;
1957 }
1958
1959 // Find out if this object, that is a member of a lib group, should be included
1960 // in the link. We check every symbol defined by this object. If the symbol
1961 // table has a strong undefined reference to that symbol, we have to include
1962 // the object.
1963
1964 template<int size, bool big_endian>
1965 Archive::Should_include
1966 Sized_relobj_file<size, big_endian>::do_should_include_member(
1967 Symbol_table* symtab,
1968 Layout* layout,
1969 Read_symbols_data* sd,
1970 std::string* why)
1971 {
1972 char* tmpbuf = NULL;
1973 size_t tmpbuflen = 0;
1974 const char* sym_names =
1975 reinterpret_cast<const char*>(sd->symbol_names->data());
1976 const unsigned char* syms =
1977 sd->symbols->data() + sd->external_symbols_offset;
1978 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1979 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1980 / sym_size);
1981
1982 const unsigned char* p = syms;
1983
1984 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1985 {
1986 elfcpp::Sym<size, big_endian> sym(p);
1987 unsigned int st_shndx = sym.get_st_shndx();
1988 if (st_shndx == elfcpp::SHN_UNDEF)
1989 continue;
1990
1991 unsigned int st_name = sym.get_st_name();
1992 const char* name = sym_names + st_name;
1993 Symbol* symbol;
1994 Archive::Should_include t = Archive::should_include_member(symtab,
1995 layout,
1996 name,
1997 &symbol, why,
1998 &tmpbuf,
1999 &tmpbuflen);
2000 if (t == Archive::SHOULD_INCLUDE_YES)
2001 {
2002 if (tmpbuf != NULL)
2003 free(tmpbuf);
2004 return t;
2005 }
2006 }
2007 if (tmpbuf != NULL)
2008 free(tmpbuf);
2009 return Archive::SHOULD_INCLUDE_UNKNOWN;
2010 }
2011
2012 // Iterate over global defined symbols, calling a visitor class V for each.
2013
2014 template<int size, bool big_endian>
2015 void
2016 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2017 Read_symbols_data* sd,
2018 Library_base::Symbol_visitor_base* v)
2019 {
2020 const char* sym_names =
2021 reinterpret_cast<const char*>(sd->symbol_names->data());
2022 const unsigned char* syms =
2023 sd->symbols->data() + sd->external_symbols_offset;
2024 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2025 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2026 / sym_size);
2027 const unsigned char* p = syms;
2028
2029 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2030 {
2031 elfcpp::Sym<size, big_endian> sym(p);
2032 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2033 v->visit(sym_names + sym.get_st_name());
2034 }
2035 }
2036
2037 // Return whether the local symbol SYMNDX has a PLT offset.
2038
2039 template<int size, bool big_endian>
2040 bool
2041 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2042 unsigned int symndx) const
2043 {
2044 typename Local_plt_offsets::const_iterator p =
2045 this->local_plt_offsets_.find(symndx);
2046 return p != this->local_plt_offsets_.end();
2047 }
2048
2049 // Get the PLT offset of a local symbol.
2050
2051 template<int size, bool big_endian>
2052 unsigned int
2053 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2054 unsigned int symndx) const
2055 {
2056 typename Local_plt_offsets::const_iterator p =
2057 this->local_plt_offsets_.find(symndx);
2058 gold_assert(p != this->local_plt_offsets_.end());
2059 return p->second;
2060 }
2061
2062 // Set the PLT offset of a local symbol.
2063
2064 template<int size, bool big_endian>
2065 void
2066 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2067 unsigned int symndx, unsigned int plt_offset)
2068 {
2069 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2070 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2071 gold_assert(ins.second);
2072 }
2073
2074 // First pass over the local symbols. Here we add their names to
2075 // *POOL and *DYNPOOL, and we store the symbol value in
2076 // THIS->LOCAL_VALUES_. This function is always called from a
2077 // singleton thread. This is followed by a call to
2078 // finalize_local_symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2083 Stringpool* dynpool)
2084 {
2085 gold_assert(this->symtab_shndx_ != -1U);
2086 if (this->symtab_shndx_ == 0)
2087 {
2088 // This object has no symbols. Weird but legal.
2089 return;
2090 }
2091
2092 // Read the symbol table section header.
2093 const unsigned int symtab_shndx = this->symtab_shndx_;
2094 typename This::Shdr symtabshdr(this,
2095 this->elf_file_.section_header(symtab_shndx));
2096 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2097
2098 // Read the local symbols.
2099 const int sym_size = This::sym_size;
2100 const unsigned int loccount = this->local_symbol_count_;
2101 gold_assert(loccount == symtabshdr.get_sh_info());
2102 off_t locsize = loccount * sym_size;
2103 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2104 locsize, true, true);
2105
2106 // Read the symbol names.
2107 const unsigned int strtab_shndx =
2108 this->adjust_shndx(symtabshdr.get_sh_link());
2109 section_size_type strtab_size;
2110 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2111 &strtab_size,
2112 true);
2113 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2114
2115 // Loop over the local symbols.
2116
2117 const Output_sections& out_sections(this->output_sections());
2118 unsigned int shnum = this->shnum();
2119 unsigned int count = 0;
2120 unsigned int dyncount = 0;
2121 // Skip the first, dummy, symbol.
2122 psyms += sym_size;
2123 bool strip_all = parameters->options().strip_all();
2124 bool discard_all = parameters->options().discard_all();
2125 bool discard_locals = parameters->options().discard_locals();
2126 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2127 {
2128 elfcpp::Sym<size, big_endian> sym(psyms);
2129
2130 Symbol_value<size>& lv(this->local_values_[i]);
2131
2132 bool is_ordinary;
2133 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2134 &is_ordinary);
2135 lv.set_input_shndx(shndx, is_ordinary);
2136
2137 if (sym.get_st_type() == elfcpp::STT_SECTION)
2138 lv.set_is_section_symbol();
2139 else if (sym.get_st_type() == elfcpp::STT_TLS)
2140 lv.set_is_tls_symbol();
2141 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2142 lv.set_is_ifunc_symbol();
2143
2144 // Save the input symbol value for use in do_finalize_local_symbols().
2145 lv.set_input_value(sym.get_st_value());
2146
2147 // Decide whether this symbol should go into the output file.
2148
2149 if ((shndx < shnum && out_sections[shndx] == NULL)
2150 || shndx == this->discarded_eh_frame_shndx_)
2151 {
2152 lv.set_no_output_symtab_entry();
2153 gold_assert(!lv.needs_output_dynsym_entry());
2154 continue;
2155 }
2156
2157 if (sym.get_st_type() == elfcpp::STT_SECTION
2158 || !this->adjust_local_symbol(&lv))
2159 {
2160 lv.set_no_output_symtab_entry();
2161 gold_assert(!lv.needs_output_dynsym_entry());
2162 continue;
2163 }
2164
2165 if (sym.get_st_name() >= strtab_size)
2166 {
2167 this->error(_("local symbol %u section name out of range: %u >= %u"),
2168 i, sym.get_st_name(),
2169 static_cast<unsigned int>(strtab_size));
2170 lv.set_no_output_symtab_entry();
2171 continue;
2172 }
2173
2174 const char* name = pnames + sym.get_st_name();
2175
2176 // If needed, add the symbol to the dynamic symbol table string pool.
2177 if (lv.needs_output_dynsym_entry())
2178 {
2179 dynpool->add(name, true, NULL);
2180 ++dyncount;
2181 }
2182
2183 if (strip_all
2184 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2185 {
2186 lv.set_no_output_symtab_entry();
2187 continue;
2188 }
2189
2190 // If --discard-locals option is used, discard all temporary local
2191 // symbols. These symbols start with system-specific local label
2192 // prefixes, typically .L for ELF system. We want to be compatible
2193 // with GNU ld so here we essentially use the same check in
2194 // bfd_is_local_label(). The code is different because we already
2195 // know that:
2196 //
2197 // - the symbol is local and thus cannot have global or weak binding.
2198 // - the symbol is not a section symbol.
2199 // - the symbol has a name.
2200 //
2201 // We do not discard a symbol if it needs a dynamic symbol entry.
2202 if (discard_locals
2203 && sym.get_st_type() != elfcpp::STT_FILE
2204 && !lv.needs_output_dynsym_entry()
2205 && lv.may_be_discarded_from_output_symtab()
2206 && parameters->target().is_local_label_name(name))
2207 {
2208 lv.set_no_output_symtab_entry();
2209 continue;
2210 }
2211
2212 // Discard the local symbol if -retain_symbols_file is specified
2213 // and the local symbol is not in that file.
2214 if (!parameters->options().should_retain_symbol(name))
2215 {
2216 lv.set_no_output_symtab_entry();
2217 continue;
2218 }
2219
2220 // Add the symbol to the symbol table string pool.
2221 pool->add(name, true, NULL);
2222 ++count;
2223 }
2224
2225 this->output_local_symbol_count_ = count;
2226 this->output_local_dynsym_count_ = dyncount;
2227 }
2228
2229 // Compute the final value of a local symbol.
2230
2231 template<int size, bool big_endian>
2232 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2233 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2234 unsigned int r_sym,
2235 const Symbol_value<size>* lv_in,
2236 Symbol_value<size>* lv_out,
2237 bool relocatable,
2238 const Output_sections& out_sections,
2239 const std::vector<Address>& out_offsets,
2240 const Symbol_table* symtab)
2241 {
2242 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2243 // we may have a memory leak.
2244 gold_assert(lv_out->has_output_value());
2245
2246 bool is_ordinary;
2247 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2248
2249 // Set the output symbol value.
2250
2251 if (!is_ordinary)
2252 {
2253 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2254 lv_out->set_output_value(lv_in->input_value());
2255 else
2256 {
2257 this->error(_("unknown section index %u for local symbol %u"),
2258 shndx, r_sym);
2259 lv_out->set_output_value(0);
2260 return This::CFLV_ERROR;
2261 }
2262 }
2263 else
2264 {
2265 if (shndx >= this->shnum())
2266 {
2267 this->error(_("local symbol %u section index %u out of range"),
2268 r_sym, shndx);
2269 lv_out->set_output_value(0);
2270 return This::CFLV_ERROR;
2271 }
2272
2273 Output_section* os = out_sections[shndx];
2274 Address secoffset = out_offsets[shndx];
2275 if (symtab->is_section_folded(this, shndx))
2276 {
2277 gold_assert(os == NULL && secoffset == invalid_address);
2278 // Get the os of the section it is folded onto.
2279 Section_id folded = symtab->icf()->get_folded_section(this,
2280 shndx);
2281 gold_assert(folded.first != NULL);
2282 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2283 <Sized_relobj_file<size, big_endian>*>(folded.first);
2284 os = folded_obj->output_section(folded.second);
2285 gold_assert(os != NULL);
2286 secoffset = folded_obj->get_output_section_offset(folded.second);
2287
2288 // This could be a relaxed input section.
2289 if (secoffset == invalid_address)
2290 {
2291 const Output_relaxed_input_section* relaxed_section =
2292 os->find_relaxed_input_section(folded_obj, folded.second);
2293 gold_assert(relaxed_section != NULL);
2294 secoffset = relaxed_section->address() - os->address();
2295 }
2296 }
2297
2298 if (os == NULL)
2299 {
2300 // This local symbol belongs to a section we are discarding.
2301 // In some cases when applying relocations later, we will
2302 // attempt to match it to the corresponding kept section,
2303 // so we leave the input value unchanged here.
2304 return This::CFLV_DISCARDED;
2305 }
2306 else if (secoffset == invalid_address)
2307 {
2308 uint64_t start;
2309
2310 // This is a SHF_MERGE section or one which otherwise
2311 // requires special handling.
2312 if (shndx == this->discarded_eh_frame_shndx_)
2313 {
2314 // This local symbol belongs to a discarded .eh_frame
2315 // section. Just treat it like the case in which
2316 // os == NULL above.
2317 gold_assert(this->has_eh_frame_);
2318 return This::CFLV_DISCARDED;
2319 }
2320 else if (!lv_in->is_section_symbol())
2321 {
2322 // This is not a section symbol. We can determine
2323 // the final value now.
2324 lv_out->set_output_value(
2325 os->output_address(this, shndx, lv_in->input_value()));
2326 }
2327 else if (!os->find_starting_output_address(this, shndx, &start))
2328 {
2329 // This is a section symbol, but apparently not one in a
2330 // merged section. First check to see if this is a relaxed
2331 // input section. If so, use its address. Otherwise just
2332 // use the start of the output section. This happens with
2333 // relocatable links when the input object has section
2334 // symbols for arbitrary non-merge sections.
2335 const Output_section_data* posd =
2336 os->find_relaxed_input_section(this, shndx);
2337 if (posd != NULL)
2338 {
2339 Address relocatable_link_adjustment =
2340 relocatable ? os->address() : 0;
2341 lv_out->set_output_value(posd->address()
2342 - relocatable_link_adjustment);
2343 }
2344 else
2345 lv_out->set_output_value(os->address());
2346 }
2347 else
2348 {
2349 // We have to consider the addend to determine the
2350 // value to use in a relocation. START is the start
2351 // of this input section. If we are doing a relocatable
2352 // link, use offset from start output section instead of
2353 // address.
2354 Address adjusted_start =
2355 relocatable ? start - os->address() : start;
2356 Merged_symbol_value<size>* msv =
2357 new Merged_symbol_value<size>(lv_in->input_value(),
2358 adjusted_start);
2359 lv_out->set_merged_symbol_value(msv);
2360 }
2361 }
2362 else if (lv_in->is_tls_symbol()
2363 || (lv_in->is_section_symbol()
2364 && (os->flags() & elfcpp::SHF_TLS)))
2365 lv_out->set_output_value(os->tls_offset()
2366 + secoffset
2367 + lv_in->input_value());
2368 else
2369 lv_out->set_output_value((relocatable ? 0 : os->address())
2370 + secoffset
2371 + lv_in->input_value());
2372 }
2373 return This::CFLV_OK;
2374 }
2375
2376 // Compute final local symbol value. R_SYM is the index of a local
2377 // symbol in symbol table. LV points to a symbol value, which is
2378 // expected to hold the input value and to be over-written by the
2379 // final value. SYMTAB points to a symbol table. Some targets may want
2380 // to know would-be-finalized local symbol values in relaxation.
2381 // Hence we provide this method. Since this method updates *LV, a
2382 // callee should make a copy of the original local symbol value and
2383 // use the copy instead of modifying an object's local symbols before
2384 // everything is finalized. The caller should also free up any allocated
2385 // memory in the return value in *LV.
2386 template<int size, bool big_endian>
2387 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2388 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2389 unsigned int r_sym,
2390 const Symbol_value<size>* lv_in,
2391 Symbol_value<size>* lv_out,
2392 const Symbol_table* symtab)
2393 {
2394 // This is just a wrapper of compute_final_local_value_internal.
2395 const bool relocatable = parameters->options().relocatable();
2396 const Output_sections& out_sections(this->output_sections());
2397 const std::vector<Address>& out_offsets(this->section_offsets());
2398 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2399 relocatable, out_sections,
2400 out_offsets, symtab);
2401 }
2402
2403 // Finalize the local symbols. Here we set the final value in
2404 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2405 // This function is always called from a singleton thread. The actual
2406 // output of the local symbols will occur in a separate task.
2407
2408 template<int size, bool big_endian>
2409 unsigned int
2410 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2411 unsigned int index,
2412 off_t off,
2413 Symbol_table* symtab)
2414 {
2415 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2416
2417 const unsigned int loccount = this->local_symbol_count_;
2418 this->local_symbol_offset_ = off;
2419
2420 const bool relocatable = parameters->options().relocatable();
2421 const Output_sections& out_sections(this->output_sections());
2422 const std::vector<Address>& out_offsets(this->section_offsets());
2423
2424 for (unsigned int i = 1; i < loccount; ++i)
2425 {
2426 Symbol_value<size>* lv = &this->local_values_[i];
2427
2428 Compute_final_local_value_status cflv_status =
2429 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2430 out_sections, out_offsets,
2431 symtab);
2432 switch (cflv_status)
2433 {
2434 case CFLV_OK:
2435 if (!lv->is_output_symtab_index_set())
2436 {
2437 lv->set_output_symtab_index(index);
2438 ++index;
2439 }
2440 break;
2441 case CFLV_DISCARDED:
2442 case CFLV_ERROR:
2443 // Do nothing.
2444 break;
2445 default:
2446 gold_unreachable();
2447 }
2448 }
2449 return index;
2450 }
2451
2452 // Set the output dynamic symbol table indexes for the local variables.
2453
2454 template<int size, bool big_endian>
2455 unsigned int
2456 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2457 unsigned int index)
2458 {
2459 const unsigned int loccount = this->local_symbol_count_;
2460 for (unsigned int i = 1; i < loccount; ++i)
2461 {
2462 Symbol_value<size>& lv(this->local_values_[i]);
2463 if (lv.needs_output_dynsym_entry())
2464 {
2465 lv.set_output_dynsym_index(index);
2466 ++index;
2467 }
2468 }
2469 return index;
2470 }
2471
2472 // Set the offset where local dynamic symbol information will be stored.
2473 // Returns the count of local symbols contributed to the symbol table by
2474 // this object.
2475
2476 template<int size, bool big_endian>
2477 unsigned int
2478 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2479 {
2480 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2481 this->local_dynsym_offset_ = off;
2482 return this->output_local_dynsym_count_;
2483 }
2484
2485 // If Symbols_data is not NULL get the section flags from here otherwise
2486 // get it from the file.
2487
2488 template<int size, bool big_endian>
2489 uint64_t
2490 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2491 {
2492 Symbols_data* sd = this->get_symbols_data();
2493 if (sd != NULL)
2494 {
2495 const unsigned char* pshdrs = sd->section_headers_data
2496 + This::shdr_size * shndx;
2497 typename This::Shdr shdr(pshdrs);
2498 return shdr.get_sh_flags();
2499 }
2500 // If sd is NULL, read the section header from the file.
2501 return this->elf_file_.section_flags(shndx);
2502 }
2503
2504 // Get the section's ent size from Symbols_data. Called by get_section_contents
2505 // in icf.cc
2506
2507 template<int size, bool big_endian>
2508 uint64_t
2509 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2510 {
2511 Symbols_data* sd = this->get_symbols_data();
2512 gold_assert(sd != NULL);
2513
2514 const unsigned char* pshdrs = sd->section_headers_data
2515 + This::shdr_size * shndx;
2516 typename This::Shdr shdr(pshdrs);
2517 return shdr.get_sh_entsize();
2518 }
2519
2520 // Write out the local symbols.
2521
2522 template<int size, bool big_endian>
2523 void
2524 Sized_relobj_file<size, big_endian>::write_local_symbols(
2525 Output_file* of,
2526 const Stringpool* sympool,
2527 const Stringpool* dynpool,
2528 Output_symtab_xindex* symtab_xindex,
2529 Output_symtab_xindex* dynsym_xindex,
2530 off_t symtab_off)
2531 {
2532 const bool strip_all = parameters->options().strip_all();
2533 if (strip_all)
2534 {
2535 if (this->output_local_dynsym_count_ == 0)
2536 return;
2537 this->output_local_symbol_count_ = 0;
2538 }
2539
2540 gold_assert(this->symtab_shndx_ != -1U);
2541 if (this->symtab_shndx_ == 0)
2542 {
2543 // This object has no symbols. Weird but legal.
2544 return;
2545 }
2546
2547 // Read the symbol table section header.
2548 const unsigned int symtab_shndx = this->symtab_shndx_;
2549 typename This::Shdr symtabshdr(this,
2550 this->elf_file_.section_header(symtab_shndx));
2551 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2552 const unsigned int loccount = this->local_symbol_count_;
2553 gold_assert(loccount == symtabshdr.get_sh_info());
2554
2555 // Read the local symbols.
2556 const int sym_size = This::sym_size;
2557 off_t locsize = loccount * sym_size;
2558 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2559 locsize, true, false);
2560
2561 // Read the symbol names.
2562 const unsigned int strtab_shndx =
2563 this->adjust_shndx(symtabshdr.get_sh_link());
2564 section_size_type strtab_size;
2565 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2566 &strtab_size,
2567 false);
2568 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2569
2570 // Get views into the output file for the portions of the symbol table
2571 // and the dynamic symbol table that we will be writing.
2572 off_t output_size = this->output_local_symbol_count_ * sym_size;
2573 unsigned char* oview = NULL;
2574 if (output_size > 0)
2575 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2576 output_size);
2577
2578 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2579 unsigned char* dyn_oview = NULL;
2580 if (dyn_output_size > 0)
2581 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2582 dyn_output_size);
2583
2584 const Output_sections out_sections(this->output_sections());
2585
2586 gold_assert(this->local_values_.size() == loccount);
2587
2588 unsigned char* ov = oview;
2589 unsigned char* dyn_ov = dyn_oview;
2590 psyms += sym_size;
2591 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2592 {
2593 elfcpp::Sym<size, big_endian> isym(psyms);
2594
2595 Symbol_value<size>& lv(this->local_values_[i]);
2596
2597 bool is_ordinary;
2598 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2599 &is_ordinary);
2600 if (is_ordinary)
2601 {
2602 gold_assert(st_shndx < out_sections.size());
2603 if (out_sections[st_shndx] == NULL)
2604 continue;
2605 st_shndx = out_sections[st_shndx]->out_shndx();
2606 if (st_shndx >= elfcpp::SHN_LORESERVE)
2607 {
2608 if (lv.has_output_symtab_entry())
2609 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2610 if (lv.has_output_dynsym_entry())
2611 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2612 st_shndx = elfcpp::SHN_XINDEX;
2613 }
2614 }
2615
2616 // Write the symbol to the output symbol table.
2617 if (lv.has_output_symtab_entry())
2618 {
2619 elfcpp::Sym_write<size, big_endian> osym(ov);
2620
2621 gold_assert(isym.get_st_name() < strtab_size);
2622 const char* name = pnames + isym.get_st_name();
2623 osym.put_st_name(sympool->get_offset(name));
2624 osym.put_st_value(this->local_values_[i].value(this, 0));
2625 osym.put_st_size(isym.get_st_size());
2626 osym.put_st_info(isym.get_st_info());
2627 osym.put_st_other(isym.get_st_other());
2628 osym.put_st_shndx(st_shndx);
2629
2630 ov += sym_size;
2631 }
2632
2633 // Write the symbol to the output dynamic symbol table.
2634 if (lv.has_output_dynsym_entry())
2635 {
2636 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2637 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2638
2639 gold_assert(isym.get_st_name() < strtab_size);
2640 const char* name = pnames + isym.get_st_name();
2641 osym.put_st_name(dynpool->get_offset(name));
2642 osym.put_st_value(this->local_values_[i].value(this, 0));
2643 osym.put_st_size(isym.get_st_size());
2644 osym.put_st_info(isym.get_st_info());
2645 osym.put_st_other(isym.get_st_other());
2646 osym.put_st_shndx(st_shndx);
2647
2648 dyn_ov += sym_size;
2649 }
2650 }
2651
2652
2653 if (output_size > 0)
2654 {
2655 gold_assert(ov - oview == output_size);
2656 of->write_output_view(symtab_off + this->local_symbol_offset_,
2657 output_size, oview);
2658 }
2659
2660 if (dyn_output_size > 0)
2661 {
2662 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2663 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2664 dyn_oview);
2665 }
2666 }
2667
2668 // Set *INFO to symbolic information about the offset OFFSET in the
2669 // section SHNDX. Return true if we found something, false if we
2670 // found nothing.
2671
2672 template<int size, bool big_endian>
2673 bool
2674 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2675 unsigned int shndx,
2676 off_t offset,
2677 Symbol_location_info* info)
2678 {
2679 if (this->symtab_shndx_ == 0)
2680 return false;
2681
2682 section_size_type symbols_size;
2683 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2684 &symbols_size,
2685 false);
2686
2687 unsigned int symbol_names_shndx =
2688 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2689 section_size_type names_size;
2690 const unsigned char* symbol_names_u =
2691 this->section_contents(symbol_names_shndx, &names_size, false);
2692 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2693
2694 const int sym_size = This::sym_size;
2695 const size_t count = symbols_size / sym_size;
2696
2697 const unsigned char* p = symbols;
2698 for (size_t i = 0; i < count; ++i, p += sym_size)
2699 {
2700 elfcpp::Sym<size, big_endian> sym(p);
2701
2702 if (sym.get_st_type() == elfcpp::STT_FILE)
2703 {
2704 if (sym.get_st_name() >= names_size)
2705 info->source_file = "(invalid)";
2706 else
2707 info->source_file = symbol_names + sym.get_st_name();
2708 continue;
2709 }
2710
2711 bool is_ordinary;
2712 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2713 &is_ordinary);
2714 if (is_ordinary
2715 && st_shndx == shndx
2716 && static_cast<off_t>(sym.get_st_value()) <= offset
2717 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2718 > offset))
2719 {
2720 info->enclosing_symbol_type = sym.get_st_type();
2721 if (sym.get_st_name() > names_size)
2722 info->enclosing_symbol_name = "(invalid)";
2723 else
2724 {
2725 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2726 if (parameters->options().do_demangle())
2727 {
2728 char* demangled_name = cplus_demangle(
2729 info->enclosing_symbol_name.c_str(),
2730 DMGL_ANSI | DMGL_PARAMS);
2731 if (demangled_name != NULL)
2732 {
2733 info->enclosing_symbol_name.assign(demangled_name);
2734 free(demangled_name);
2735 }
2736 }
2737 }
2738 return true;
2739 }
2740 }
2741
2742 return false;
2743 }
2744
2745 // Look for a kept section corresponding to the given discarded section,
2746 // and return its output address. This is used only for relocations in
2747 // debugging sections. If we can't find the kept section, return 0.
2748
2749 template<int size, bool big_endian>
2750 typename Sized_relobj_file<size, big_endian>::Address
2751 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2752 unsigned int shndx,
2753 bool* found) const
2754 {
2755 Relobj* kept_object;
2756 unsigned int kept_shndx;
2757 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2758 {
2759 Sized_relobj_file<size, big_endian>* kept_relobj =
2760 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2761 Output_section* os = kept_relobj->output_section(kept_shndx);
2762 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2763 if (os != NULL && offset != invalid_address)
2764 {
2765 *found = true;
2766 return os->address() + offset;
2767 }
2768 }
2769 *found = false;
2770 return 0;
2771 }
2772
2773 // Get symbol counts.
2774
2775 template<int size, bool big_endian>
2776 void
2777 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2778 const Symbol_table*,
2779 size_t* defined,
2780 size_t* used) const
2781 {
2782 *defined = this->defined_count_;
2783 size_t count = 0;
2784 for (typename Symbols::const_iterator p = this->symbols_.begin();
2785 p != this->symbols_.end();
2786 ++p)
2787 if (*p != NULL
2788 && (*p)->source() == Symbol::FROM_OBJECT
2789 && (*p)->object() == this
2790 && (*p)->is_defined())
2791 ++count;
2792 *used = count;
2793 }
2794
2795 // Return a view of the decompressed contents of a section. Set *PLEN
2796 // to the size. Set *IS_NEW to true if the contents need to be freed
2797 // by the caller.
2798
2799 template<int size, bool big_endian>
2800 const unsigned char*
2801 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2802 unsigned int shndx,
2803 section_size_type* plen,
2804 bool* is_new)
2805 {
2806 section_size_type buffer_size;
2807 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2808 false);
2809
2810 if (this->compressed_sections_ == NULL)
2811 {
2812 *plen = buffer_size;
2813 *is_new = false;
2814 return buffer;
2815 }
2816
2817 Compressed_section_map::const_iterator p =
2818 this->compressed_sections_->find(shndx);
2819 if (p == this->compressed_sections_->end())
2820 {
2821 *plen = buffer_size;
2822 *is_new = false;
2823 return buffer;
2824 }
2825
2826 section_size_type uncompressed_size = p->second.size;
2827 if (p->second.contents != NULL)
2828 {
2829 *plen = uncompressed_size;
2830 *is_new = false;
2831 return p->second.contents;
2832 }
2833
2834 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2835 if (!decompress_input_section(buffer,
2836 buffer_size,
2837 uncompressed_data,
2838 uncompressed_size))
2839 this->error(_("could not decompress section %s"),
2840 this->do_section_name(shndx).c_str());
2841
2842 // We could cache the results in p->second.contents and store
2843 // false in *IS_NEW, but build_compressed_section_map() would
2844 // have done so if it had expected it to be profitable. If
2845 // we reach this point, we expect to need the contents only
2846 // once in this pass.
2847 *plen = uncompressed_size;
2848 *is_new = true;
2849 return uncompressed_data;
2850 }
2851
2852 // Discard any buffers of uncompressed sections. This is done
2853 // at the end of the Add_symbols task.
2854
2855 template<int size, bool big_endian>
2856 void
2857 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2858 {
2859 if (this->compressed_sections_ == NULL)
2860 return;
2861
2862 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2863 p != this->compressed_sections_->end();
2864 ++p)
2865 {
2866 if (p->second.contents != NULL)
2867 {
2868 delete[] p->second.contents;
2869 p->second.contents = NULL;
2870 }
2871 }
2872 }
2873
2874 // Input_objects methods.
2875
2876 // Add a regular relocatable object to the list. Return false if this
2877 // object should be ignored.
2878
2879 bool
2880 Input_objects::add_object(Object* obj)
2881 {
2882 // Print the filename if the -t/--trace option is selected.
2883 if (parameters->options().trace())
2884 gold_info("%s", obj->name().c_str());
2885
2886 if (!obj->is_dynamic())
2887 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2888 else
2889 {
2890 // See if this is a duplicate SONAME.
2891 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2892 const char* soname = dynobj->soname();
2893
2894 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2895 this->sonames_.insert(soname);
2896 if (!ins.second)
2897 {
2898 // We have already seen a dynamic object with this soname.
2899 return false;
2900 }
2901
2902 this->dynobj_list_.push_back(dynobj);
2903 }
2904
2905 // Add this object to the cross-referencer if requested.
2906 if (parameters->options().user_set_print_symbol_counts()
2907 || parameters->options().cref())
2908 {
2909 if (this->cref_ == NULL)
2910 this->cref_ = new Cref();
2911 this->cref_->add_object(obj);
2912 }
2913
2914 return true;
2915 }
2916
2917 // For each dynamic object, record whether we've seen all of its
2918 // explicit dependencies.
2919
2920 void
2921 Input_objects::check_dynamic_dependencies() const
2922 {
2923 bool issued_copy_dt_needed_error = false;
2924 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2925 p != this->dynobj_list_.end();
2926 ++p)
2927 {
2928 const Dynobj::Needed& needed((*p)->needed());
2929 bool found_all = true;
2930 Dynobj::Needed::const_iterator pneeded;
2931 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2932 {
2933 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2934 {
2935 found_all = false;
2936 break;
2937 }
2938 }
2939 (*p)->set_has_unknown_needed_entries(!found_all);
2940
2941 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2942 // that gold does not support. However, they cause no trouble
2943 // unless there is a DT_NEEDED entry that we don't know about;
2944 // warn only in that case.
2945 if (!found_all
2946 && !issued_copy_dt_needed_error
2947 && (parameters->options().copy_dt_needed_entries()
2948 || parameters->options().add_needed()))
2949 {
2950 const char* optname;
2951 if (parameters->options().copy_dt_needed_entries())
2952 optname = "--copy-dt-needed-entries";
2953 else
2954 optname = "--add-needed";
2955 gold_error(_("%s is not supported but is required for %s in %s"),
2956 optname, (*pneeded).c_str(), (*p)->name().c_str());
2957 issued_copy_dt_needed_error = true;
2958 }
2959 }
2960 }
2961
2962 // Start processing an archive.
2963
2964 void
2965 Input_objects::archive_start(Archive* archive)
2966 {
2967 if (parameters->options().user_set_print_symbol_counts()
2968 || parameters->options().cref())
2969 {
2970 if (this->cref_ == NULL)
2971 this->cref_ = new Cref();
2972 this->cref_->add_archive_start(archive);
2973 }
2974 }
2975
2976 // Stop processing an archive.
2977
2978 void
2979 Input_objects::archive_stop(Archive* archive)
2980 {
2981 if (parameters->options().user_set_print_symbol_counts()
2982 || parameters->options().cref())
2983 this->cref_->add_archive_stop(archive);
2984 }
2985
2986 // Print symbol counts
2987
2988 void
2989 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2990 {
2991 if (parameters->options().user_set_print_symbol_counts()
2992 && this->cref_ != NULL)
2993 this->cref_->print_symbol_counts(symtab);
2994 }
2995
2996 // Print a cross reference table.
2997
2998 void
2999 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3000 {
3001 if (parameters->options().cref() && this->cref_ != NULL)
3002 this->cref_->print_cref(symtab, f);
3003 }
3004
3005 // Relocate_info methods.
3006
3007 // Return a string describing the location of a relocation when file
3008 // and lineno information is not available. This is only used in
3009 // error messages.
3010
3011 template<int size, bool big_endian>
3012 std::string
3013 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3014 {
3015 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3016 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3017 if (!ret.empty())
3018 return ret;
3019
3020 ret = this->object->name();
3021
3022 Symbol_location_info info;
3023 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3024 {
3025 if (!info.source_file.empty())
3026 {
3027 ret += ":";
3028 ret += info.source_file;
3029 }
3030 ret += ":";
3031 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3032 ret += _("function ");
3033 ret += info.enclosing_symbol_name;
3034 return ret;
3035 }
3036
3037 ret += "(";
3038 ret += this->object->section_name(this->data_shndx);
3039 char buf[100];
3040 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3041 ret += buf;
3042 return ret;
3043 }
3044
3045 } // End namespace gold.
3046
3047 namespace
3048 {
3049
3050 using namespace gold;
3051
3052 // Read an ELF file with the header and return the appropriate
3053 // instance of Object.
3054
3055 template<int size, bool big_endian>
3056 Object*
3057 make_elf_sized_object(const std::string& name, Input_file* input_file,
3058 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3059 bool* punconfigured)
3060 {
3061 Target* target = select_target(input_file, offset,
3062 ehdr.get_e_machine(), size, big_endian,
3063 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3064 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3065 if (target == NULL)
3066 gold_fatal(_("%s: unsupported ELF machine number %d"),
3067 name.c_str(), ehdr.get_e_machine());
3068
3069 if (!parameters->target_valid())
3070 set_parameters_target(target);
3071 else if (target != &parameters->target())
3072 {
3073 if (punconfigured != NULL)
3074 *punconfigured = true;
3075 else
3076 gold_error(_("%s: incompatible target"), name.c_str());
3077 return NULL;
3078 }
3079
3080 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3081 ehdr);
3082 }
3083
3084 } // End anonymous namespace.
3085
3086 namespace gold
3087 {
3088
3089 // Return whether INPUT_FILE is an ELF object.
3090
3091 bool
3092 is_elf_object(Input_file* input_file, off_t offset,
3093 const unsigned char** start, int* read_size)
3094 {
3095 off_t filesize = input_file->file().filesize();
3096 int want = elfcpp::Elf_recognizer::max_header_size;
3097 if (filesize - offset < want)
3098 want = filesize - offset;
3099
3100 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3101 true, false);
3102 *start = p;
3103 *read_size = want;
3104
3105 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3106 }
3107
3108 // Read an ELF file and return the appropriate instance of Object.
3109
3110 Object*
3111 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3112 const unsigned char* p, section_offset_type bytes,
3113 bool* punconfigured)
3114 {
3115 if (punconfigured != NULL)
3116 *punconfigured = false;
3117
3118 std::string error;
3119 bool big_endian = false;
3120 int size = 0;
3121 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3122 &big_endian, &error))
3123 {
3124 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3125 return NULL;
3126 }
3127
3128 if (size == 32)
3129 {
3130 if (big_endian)
3131 {
3132 #ifdef HAVE_TARGET_32_BIG
3133 elfcpp::Ehdr<32, true> ehdr(p);
3134 return make_elf_sized_object<32, true>(name, input_file,
3135 offset, ehdr, punconfigured);
3136 #else
3137 if (punconfigured != NULL)
3138 *punconfigured = true;
3139 else
3140 gold_error(_("%s: not configured to support "
3141 "32-bit big-endian object"),
3142 name.c_str());
3143 return NULL;
3144 #endif
3145 }
3146 else
3147 {
3148 #ifdef HAVE_TARGET_32_LITTLE
3149 elfcpp::Ehdr<32, false> ehdr(p);
3150 return make_elf_sized_object<32, false>(name, input_file,
3151 offset, ehdr, punconfigured);
3152 #else
3153 if (punconfigured != NULL)
3154 *punconfigured = true;
3155 else
3156 gold_error(_("%s: not configured to support "
3157 "32-bit little-endian object"),
3158 name.c_str());
3159 return NULL;
3160 #endif
3161 }
3162 }
3163 else if (size == 64)
3164 {
3165 if (big_endian)
3166 {
3167 #ifdef HAVE_TARGET_64_BIG
3168 elfcpp::Ehdr<64, true> ehdr(p);
3169 return make_elf_sized_object<64, true>(name, input_file,
3170 offset, ehdr, punconfigured);
3171 #else
3172 if (punconfigured != NULL)
3173 *punconfigured = true;
3174 else
3175 gold_error(_("%s: not configured to support "
3176 "64-bit big-endian object"),
3177 name.c_str());
3178 return NULL;
3179 #endif
3180 }
3181 else
3182 {
3183 #ifdef HAVE_TARGET_64_LITTLE
3184 elfcpp::Ehdr<64, false> ehdr(p);
3185 return make_elf_sized_object<64, false>(name, input_file,
3186 offset, ehdr, punconfigured);
3187 #else
3188 if (punconfigured != NULL)
3189 *punconfigured = true;
3190 else
3191 gold_error(_("%s: not configured to support "
3192 "64-bit little-endian object"),
3193 name.c_str());
3194 return NULL;
3195 #endif
3196 }
3197 }
3198 else
3199 gold_unreachable();
3200 }
3201
3202 // Instantiate the templates we need.
3203
3204 #ifdef HAVE_TARGET_32_LITTLE
3205 template
3206 void
3207 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3208 Read_symbols_data*);
3209 template
3210 const unsigned char*
3211 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3212 section_size_type, const unsigned char*) const;
3213 #endif
3214
3215 #ifdef HAVE_TARGET_32_BIG
3216 template
3217 void
3218 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3219 Read_symbols_data*);
3220 template
3221 const unsigned char*
3222 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3223 section_size_type, const unsigned char*) const;
3224 #endif
3225
3226 #ifdef HAVE_TARGET_64_LITTLE
3227 template
3228 void
3229 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3230 Read_symbols_data*);
3231 template
3232 const unsigned char*
3233 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3234 section_size_type, const unsigned char*) const;
3235 #endif
3236
3237 #ifdef HAVE_TARGET_64_BIG
3238 template
3239 void
3240 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3241 Read_symbols_data*);
3242 template
3243 const unsigned char*
3244 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3245 section_size_type, const unsigned char*) const;
3246 #endif
3247
3248 #ifdef HAVE_TARGET_32_LITTLE
3249 template
3250 class Sized_relobj<32, false>;
3251
3252 template
3253 class Sized_relobj_file<32, false>;
3254 #endif
3255
3256 #ifdef HAVE_TARGET_32_BIG
3257 template
3258 class Sized_relobj<32, true>;
3259
3260 template
3261 class Sized_relobj_file<32, true>;
3262 #endif
3263
3264 #ifdef HAVE_TARGET_64_LITTLE
3265 template
3266 class Sized_relobj<64, false>;
3267
3268 template
3269 class Sized_relobj_file<64, false>;
3270 #endif
3271
3272 #ifdef HAVE_TARGET_64_BIG
3273 template
3274 class Sized_relobj<64, true>;
3275
3276 template
3277 class Sized_relobj_file<64, true>;
3278 #endif
3279
3280 #ifdef HAVE_TARGET_32_LITTLE
3281 template
3282 struct Relocate_info<32, false>;
3283 #endif
3284
3285 #ifdef HAVE_TARGET_32_BIG
3286 template
3287 struct Relocate_info<32, true>;
3288 #endif
3289
3290 #ifdef HAVE_TARGET_64_LITTLE
3291 template
3292 struct Relocate_info<64, false>;
3293 #endif
3294
3295 #ifdef HAVE_TARGET_64_BIG
3296 template
3297 struct Relocate_info<64, true>;
3298 #endif
3299
3300 #ifdef HAVE_TARGET_32_LITTLE
3301 template
3302 void
3303 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3304
3305 template
3306 void
3307 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3308 const unsigned char*);
3309 #endif
3310
3311 #ifdef HAVE_TARGET_32_BIG
3312 template
3313 void
3314 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3315
3316 template
3317 void
3318 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3319 const unsigned char*);
3320 #endif
3321
3322 #ifdef HAVE_TARGET_64_LITTLE
3323 template
3324 void
3325 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3326
3327 template
3328 void
3329 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3330 const unsigned char*);
3331 #endif
3332
3333 #ifdef HAVE_TARGET_64_BIG
3334 template
3335 void
3336 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3337
3338 template
3339 void
3340 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3341 const unsigned char*);
3342 #endif
3343
3344 } // End namespace gold.
This page took 0.152302 seconds and 5 git commands to generate.