Remove is_merge_section_for.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 if (this->object_merge_map_ == NULL)
289 {
290 this->object_merge_map_ = new Object_merge_map();
291 }
292
293 this->object_merge_map_->add_mapping(output_data, shndx, offset, length,
294 output_offset);
295 }
296
297 bool
298 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
299 section_offset_type *poutput) const {
300 Object_merge_map* object_merge_map = this->object_merge_map_;
301 if (object_merge_map == NULL)
302 return false;
303 return object_merge_map->get_output_offset(shndx, offset, poutput);
304 }
305
306 const Output_section_data*
307 Relobj::find_merge_section(unsigned int shndx) const {
308 Object_merge_map* object_merge_map = this->object_merge_map_;
309 if (object_merge_map == NULL)
310 return NULL;
311 return object_merge_map->find_merge_section(shndx);
312 }
313
314 // To copy the symbols data read from the file to a local data structure.
315 // This function is called from do_layout only while doing garbage
316 // collection.
317
318 void
319 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
320 unsigned int section_header_size)
321 {
322 gc_sd->section_headers_data =
323 new unsigned char[(section_header_size)];
324 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
325 section_header_size);
326 gc_sd->section_names_data =
327 new unsigned char[sd->section_names_size];
328 memcpy(gc_sd->section_names_data, sd->section_names->data(),
329 sd->section_names_size);
330 gc_sd->section_names_size = sd->section_names_size;
331 if (sd->symbols != NULL)
332 {
333 gc_sd->symbols_data =
334 new unsigned char[sd->symbols_size];
335 memcpy(gc_sd->symbols_data, sd->symbols->data(),
336 sd->symbols_size);
337 }
338 else
339 {
340 gc_sd->symbols_data = NULL;
341 }
342 gc_sd->symbols_size = sd->symbols_size;
343 gc_sd->external_symbols_offset = sd->external_symbols_offset;
344 if (sd->symbol_names != NULL)
345 {
346 gc_sd->symbol_names_data =
347 new unsigned char[sd->symbol_names_size];
348 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
349 sd->symbol_names_size);
350 }
351 else
352 {
353 gc_sd->symbol_names_data = NULL;
354 }
355 gc_sd->symbol_names_size = sd->symbol_names_size;
356 }
357
358 // This function determines if a particular section name must be included
359 // in the link. This is used during garbage collection to determine the
360 // roots of the worklist.
361
362 bool
363 Relobj::is_section_name_included(const char* name)
364 {
365 if (is_prefix_of(".ctors", name)
366 || is_prefix_of(".dtors", name)
367 || is_prefix_of(".note", name)
368 || is_prefix_of(".init", name)
369 || is_prefix_of(".fini", name)
370 || is_prefix_of(".gcc_except_table", name)
371 || is_prefix_of(".jcr", name)
372 || is_prefix_of(".preinit_array", name)
373 || (is_prefix_of(".text", name)
374 && strstr(name, "personality"))
375 || (is_prefix_of(".data", name)
376 && strstr(name, "personality"))
377 || (is_prefix_of(".sdata", name)
378 && strstr(name, "personality"))
379 || (is_prefix_of(".gnu.linkonce.d", name)
380 && strstr(name, "personality"))
381 || (is_prefix_of(".rodata", name)
382 && strstr(name, "nptl_version")))
383 {
384 return true;
385 }
386 return false;
387 }
388
389 // Finalize the incremental relocation information. Allocates a block
390 // of relocation entries for each symbol, and sets the reloc_bases_
391 // array to point to the first entry in each block. If CLEAR_COUNTS
392 // is TRUE, also clear the per-symbol relocation counters.
393
394 void
395 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
396 {
397 unsigned int nsyms = this->get_global_symbols()->size();
398 this->reloc_bases_ = new unsigned int[nsyms];
399
400 gold_assert(this->reloc_bases_ != NULL);
401 gold_assert(layout->incremental_inputs() != NULL);
402
403 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
404 for (unsigned int i = 0; i < nsyms; ++i)
405 {
406 this->reloc_bases_[i] = rindex;
407 rindex += this->reloc_counts_[i];
408 if (clear_counts)
409 this->reloc_counts_[i] = 0;
410 }
411 layout->incremental_inputs()->set_reloc_count(rindex);
412 }
413
414 // Class Sized_relobj.
415
416 // Iterate over local symbols, calling a visitor class V for each GOT offset
417 // associated with a local symbol.
418
419 template<int size, bool big_endian>
420 void
421 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
422 Got_offset_list::Visitor* v) const
423 {
424 unsigned int nsyms = this->local_symbol_count();
425 for (unsigned int i = 0; i < nsyms; i++)
426 {
427 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
428 if (p != this->local_got_offsets_.end())
429 {
430 const Got_offset_list* got_offsets = p->second;
431 got_offsets->for_all_got_offsets(v);
432 }
433 }
434 }
435
436 // Get the address of an output section.
437
438 template<int size, bool big_endian>
439 uint64_t
440 Sized_relobj<size, big_endian>::do_output_section_address(
441 unsigned int shndx)
442 {
443 // If the input file is linked as --just-symbols, the output
444 // section address is the input section address.
445 if (this->just_symbols())
446 return this->section_address(shndx);
447
448 const Output_section* os = this->do_output_section(shndx);
449 gold_assert(os != NULL);
450 return os->address();
451 }
452
453 // Class Sized_relobj_file.
454
455 template<int size, bool big_endian>
456 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
457 const std::string& name,
458 Input_file* input_file,
459 off_t offset,
460 const elfcpp::Ehdr<size, big_endian>& ehdr)
461 : Sized_relobj<size, big_endian>(name, input_file, offset),
462 elf_file_(this, ehdr),
463 symtab_shndx_(-1U),
464 local_symbol_count_(0),
465 output_local_symbol_count_(0),
466 output_local_dynsym_count_(0),
467 symbols_(),
468 defined_count_(0),
469 local_symbol_offset_(0),
470 local_dynsym_offset_(0),
471 local_values_(),
472 local_plt_offsets_(),
473 kept_comdat_sections_(),
474 has_eh_frame_(false),
475 discarded_eh_frame_shndx_(-1U),
476 is_deferred_layout_(false),
477 deferred_layout_(),
478 deferred_layout_relocs_()
479 {
480 this->e_type_ = ehdr.get_e_type();
481 }
482
483 template<int size, bool big_endian>
484 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
485 {
486 }
487
488 // Set up an object file based on the file header. This sets up the
489 // section information.
490
491 template<int size, bool big_endian>
492 void
493 Sized_relobj_file<size, big_endian>::do_setup()
494 {
495 const unsigned int shnum = this->elf_file_.shnum();
496 this->set_shnum(shnum);
497 }
498
499 // Find the SHT_SYMTAB section, given the section headers. The ELF
500 // standard says that maybe in the future there can be more than one
501 // SHT_SYMTAB section. Until somebody figures out how that could
502 // work, we assume there is only one.
503
504 template<int size, bool big_endian>
505 void
506 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
507 {
508 const unsigned int shnum = this->shnum();
509 this->symtab_shndx_ = 0;
510 if (shnum > 0)
511 {
512 // Look through the sections in reverse order, since gas tends
513 // to put the symbol table at the end.
514 const unsigned char* p = pshdrs + shnum * This::shdr_size;
515 unsigned int i = shnum;
516 unsigned int xindex_shndx = 0;
517 unsigned int xindex_link = 0;
518 while (i > 0)
519 {
520 --i;
521 p -= This::shdr_size;
522 typename This::Shdr shdr(p);
523 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
524 {
525 this->symtab_shndx_ = i;
526 if (xindex_shndx > 0 && xindex_link == i)
527 {
528 Xindex* xindex =
529 new Xindex(this->elf_file_.large_shndx_offset());
530 xindex->read_symtab_xindex<size, big_endian>(this,
531 xindex_shndx,
532 pshdrs);
533 this->set_xindex(xindex);
534 }
535 break;
536 }
537
538 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
539 // one. This will work if it follows the SHT_SYMTAB
540 // section.
541 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
542 {
543 xindex_shndx = i;
544 xindex_link = this->adjust_shndx(shdr.get_sh_link());
545 }
546 }
547 }
548 }
549
550 // Return the Xindex structure to use for object with lots of
551 // sections.
552
553 template<int size, bool big_endian>
554 Xindex*
555 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
556 {
557 gold_assert(this->symtab_shndx_ != -1U);
558 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
559 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
560 return xindex;
561 }
562
563 // Return whether SHDR has the right type and flags to be a GNU
564 // .eh_frame section.
565
566 template<int size, bool big_endian>
567 bool
568 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
569 const elfcpp::Shdr<size, big_endian>* shdr) const
570 {
571 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
572 return ((sh_type == elfcpp::SHT_PROGBITS
573 || sh_type == elfcpp::SHT_X86_64_UNWIND)
574 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
575 }
576
577 // Find the section header with the given name.
578
579 template<int size, bool big_endian>
580 const unsigned char*
581 Object::find_shdr(
582 const unsigned char* pshdrs,
583 const char* name,
584 const char* names,
585 section_size_type names_size,
586 const unsigned char* hdr) const
587 {
588 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
589 const unsigned int shnum = this->shnum();
590 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
591 size_t sh_name = 0;
592
593 while (1)
594 {
595 if (hdr)
596 {
597 // We found HDR last time we were called, continue looking.
598 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
599 sh_name = shdr.get_sh_name();
600 }
601 else
602 {
603 // Look for the next occurrence of NAME in NAMES.
604 // The fact that .shstrtab produced by current GNU tools is
605 // string merged means we shouldn't have both .not.foo and
606 // .foo in .shstrtab, and multiple .foo sections should all
607 // have the same sh_name. However, this is not guaranteed
608 // by the ELF spec and not all ELF object file producers may
609 // be so clever.
610 size_t len = strlen(name) + 1;
611 const char *p = sh_name ? names + sh_name + len : names;
612 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
613 name, len));
614 if (p == NULL)
615 return NULL;
616 sh_name = p - names;
617 hdr = pshdrs;
618 if (sh_name == 0)
619 return hdr;
620 }
621
622 hdr += shdr_size;
623 while (hdr < hdr_end)
624 {
625 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
626 if (shdr.get_sh_name() == sh_name)
627 return hdr;
628 hdr += shdr_size;
629 }
630 hdr = NULL;
631 if (sh_name == 0)
632 return hdr;
633 }
634 }
635
636 // Return whether there is a GNU .eh_frame section, given the section
637 // headers and the section names.
638
639 template<int size, bool big_endian>
640 bool
641 Sized_relobj_file<size, big_endian>::find_eh_frame(
642 const unsigned char* pshdrs,
643 const char* names,
644 section_size_type names_size) const
645 {
646 const unsigned char* s = NULL;
647
648 while (1)
649 {
650 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
651 names, names_size, s);
652 if (s == NULL)
653 return false;
654
655 typename This::Shdr shdr(s);
656 if (this->check_eh_frame_flags(&shdr))
657 return true;
658 }
659 }
660
661 // Return TRUE if this is a section whose contents will be needed in the
662 // Add_symbols task. This function is only called for sections that have
663 // already passed the test in is_compressed_debug_section(), so we know
664 // that the section name begins with ".zdebug".
665
666 static bool
667 need_decompressed_section(const char* name)
668 {
669 // Skip over the ".zdebug" and a quick check for the "_".
670 name += 7;
671 if (*name++ != '_')
672 return false;
673
674 #ifdef ENABLE_THREADS
675 // Decompressing these sections now will help only if we're
676 // multithreaded.
677 if (parameters->options().threads())
678 {
679 // We will need .zdebug_str if this is not an incremental link
680 // (i.e., we are processing string merge sections) or if we need
681 // to build a gdb index.
682 if ((!parameters->incremental() || parameters->options().gdb_index())
683 && strcmp(name, "str") == 0)
684 return true;
685
686 // We will need these other sections when building a gdb index.
687 if (parameters->options().gdb_index()
688 && (strcmp(name, "info") == 0
689 || strcmp(name, "types") == 0
690 || strcmp(name, "pubnames") == 0
691 || strcmp(name, "pubtypes") == 0
692 || strcmp(name, "ranges") == 0
693 || strcmp(name, "abbrev") == 0))
694 return true;
695 }
696 #endif
697
698 // Even when single-threaded, we will need .zdebug_str if this is
699 // not an incremental link and we are building a gdb index.
700 // Otherwise, we would decompress the section twice: once for
701 // string merge processing, and once for building the gdb index.
702 if (!parameters->incremental()
703 && parameters->options().gdb_index()
704 && strcmp(name, "str") == 0)
705 return true;
706
707 return false;
708 }
709
710 // Build a table for any compressed debug sections, mapping each section index
711 // to the uncompressed size and (if needed) the decompressed contents.
712
713 template<int size, bool big_endian>
714 Compressed_section_map*
715 build_compressed_section_map(
716 const unsigned char* pshdrs,
717 unsigned int shnum,
718 const char* names,
719 section_size_type names_size,
720 Object* obj,
721 bool decompress_if_needed)
722 {
723 Compressed_section_map* uncompressed_map = new Compressed_section_map();
724 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
725 const unsigned char* p = pshdrs + shdr_size;
726
727 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
728 {
729 typename elfcpp::Shdr<size, big_endian> shdr(p);
730 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
731 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
732 {
733 if (shdr.get_sh_name() >= names_size)
734 {
735 obj->error(_("bad section name offset for section %u: %lu"),
736 i, static_cast<unsigned long>(shdr.get_sh_name()));
737 continue;
738 }
739
740 const char* name = names + shdr.get_sh_name();
741 if (is_compressed_debug_section(name))
742 {
743 section_size_type len;
744 const unsigned char* contents =
745 obj->section_contents(i, &len, false);
746 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
747 Compressed_section_info info;
748 info.size = convert_to_section_size_type(uncompressed_size);
749 info.contents = NULL;
750 if (uncompressed_size != -1ULL)
751 {
752 unsigned char* uncompressed_data = NULL;
753 if (decompress_if_needed && need_decompressed_section(name))
754 {
755 uncompressed_data = new unsigned char[uncompressed_size];
756 if (decompress_input_section(contents, len,
757 uncompressed_data,
758 uncompressed_size))
759 info.contents = uncompressed_data;
760 else
761 delete[] uncompressed_data;
762 }
763 (*uncompressed_map)[i] = info;
764 }
765 }
766 }
767 }
768 return uncompressed_map;
769 }
770
771 // Stash away info for a number of special sections.
772 // Return true if any of the sections found require local symbols to be read.
773
774 template<int size, bool big_endian>
775 bool
776 Sized_relobj_file<size, big_endian>::do_find_special_sections(
777 Read_symbols_data* sd)
778 {
779 const unsigned char* const pshdrs = sd->section_headers->data();
780 const unsigned char* namesu = sd->section_names->data();
781 const char* names = reinterpret_cast<const char*>(namesu);
782
783 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
784 this->has_eh_frame_ = true;
785
786 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
787 {
788 Compressed_section_map* compressed_sections =
789 build_compressed_section_map<size, big_endian>(
790 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
791 if (compressed_sections != NULL)
792 this->set_compressed_sections(compressed_sections);
793 }
794
795 return (this->has_eh_frame_
796 || (!parameters->options().relocatable()
797 && parameters->options().gdb_index()
798 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
799 || memmem(names, sd->section_names_size, "debug_types",
800 13) == 0)));
801 }
802
803 // Read the sections and symbols from an object file.
804
805 template<int size, bool big_endian>
806 void
807 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
808 {
809 this->base_read_symbols(sd);
810 }
811
812 // Read the sections and symbols from an object file. This is common
813 // code for all target-specific overrides of do_read_symbols().
814
815 template<int size, bool big_endian>
816 void
817 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
818 {
819 this->read_section_data(&this->elf_file_, sd);
820
821 const unsigned char* const pshdrs = sd->section_headers->data();
822
823 this->find_symtab(pshdrs);
824
825 bool need_local_symbols = this->do_find_special_sections(sd);
826
827 sd->symbols = NULL;
828 sd->symbols_size = 0;
829 sd->external_symbols_offset = 0;
830 sd->symbol_names = NULL;
831 sd->symbol_names_size = 0;
832
833 if (this->symtab_shndx_ == 0)
834 {
835 // No symbol table. Weird but legal.
836 return;
837 }
838
839 // Get the symbol table section header.
840 typename This::Shdr symtabshdr(pshdrs
841 + this->symtab_shndx_ * This::shdr_size);
842 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
843
844 // If this object has a .eh_frame section, or if building a .gdb_index
845 // section and there is debug info, we need all the symbols.
846 // Otherwise we only need the external symbols. While it would be
847 // simpler to just always read all the symbols, I've seen object
848 // files with well over 2000 local symbols, which for a 64-bit
849 // object file format is over 5 pages that we don't need to read
850 // now.
851
852 const int sym_size = This::sym_size;
853 const unsigned int loccount = symtabshdr.get_sh_info();
854 this->local_symbol_count_ = loccount;
855 this->local_values_.resize(loccount);
856 section_offset_type locsize = loccount * sym_size;
857 off_t dataoff = symtabshdr.get_sh_offset();
858 section_size_type datasize =
859 convert_to_section_size_type(symtabshdr.get_sh_size());
860 off_t extoff = dataoff + locsize;
861 section_size_type extsize = datasize - locsize;
862
863 off_t readoff = need_local_symbols ? dataoff : extoff;
864 section_size_type readsize = need_local_symbols ? datasize : extsize;
865
866 if (readsize == 0)
867 {
868 // No external symbols. Also weird but also legal.
869 return;
870 }
871
872 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
873
874 // Read the section header for the symbol names.
875 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
876 if (strtab_shndx >= this->shnum())
877 {
878 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
879 return;
880 }
881 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
882 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
883 {
884 this->error(_("symbol table name section has wrong type: %u"),
885 static_cast<unsigned int>(strtabshdr.get_sh_type()));
886 return;
887 }
888
889 // Read the symbol names.
890 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
891 strtabshdr.get_sh_size(),
892 false, true);
893
894 sd->symbols = fvsymtab;
895 sd->symbols_size = readsize;
896 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
897 sd->symbol_names = fvstrtab;
898 sd->symbol_names_size =
899 convert_to_section_size_type(strtabshdr.get_sh_size());
900 }
901
902 // Return the section index of symbol SYM. Set *VALUE to its value in
903 // the object file. Set *IS_ORDINARY if this is an ordinary section
904 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
905 // Note that for a symbol which is not defined in this object file,
906 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
907 // the final value of the symbol in the link.
908
909 template<int size, bool big_endian>
910 unsigned int
911 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
912 Address* value,
913 bool* is_ordinary)
914 {
915 section_size_type symbols_size;
916 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
917 &symbols_size,
918 false);
919
920 const size_t count = symbols_size / This::sym_size;
921 gold_assert(sym < count);
922
923 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
924 *value = elfsym.get_st_value();
925
926 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
927 }
928
929 // Return whether to include a section group in the link. LAYOUT is
930 // used to keep track of which section groups we have already seen.
931 // INDEX is the index of the section group and SHDR is the section
932 // header. If we do not want to include this group, we set bits in
933 // OMIT for each section which should be discarded.
934
935 template<int size, bool big_endian>
936 bool
937 Sized_relobj_file<size, big_endian>::include_section_group(
938 Symbol_table* symtab,
939 Layout* layout,
940 unsigned int index,
941 const char* name,
942 const unsigned char* shdrs,
943 const char* section_names,
944 section_size_type section_names_size,
945 std::vector<bool>* omit)
946 {
947 // Read the section contents.
948 typename This::Shdr shdr(shdrs + index * This::shdr_size);
949 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
950 shdr.get_sh_size(), true, false);
951 const elfcpp::Elf_Word* pword =
952 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
953
954 // The first word contains flags. We only care about COMDAT section
955 // groups. Other section groups are always included in the link
956 // just like ordinary sections.
957 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
958
959 // Look up the group signature, which is the name of a symbol. ELF
960 // uses a symbol name because some group signatures are long, and
961 // the name is generally already in the symbol table, so it makes
962 // sense to put the long string just once in .strtab rather than in
963 // both .strtab and .shstrtab.
964
965 // Get the appropriate symbol table header (this will normally be
966 // the single SHT_SYMTAB section, but in principle it need not be).
967 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
968 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
969
970 // Read the symbol table entry.
971 unsigned int symndx = shdr.get_sh_info();
972 if (symndx >= symshdr.get_sh_size() / This::sym_size)
973 {
974 this->error(_("section group %u info %u out of range"),
975 index, symndx);
976 return false;
977 }
978 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
979 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
980 false);
981 elfcpp::Sym<size, big_endian> sym(psym);
982
983 // Read the symbol table names.
984 section_size_type symnamelen;
985 const unsigned char* psymnamesu;
986 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
987 &symnamelen, true);
988 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
989
990 // Get the section group signature.
991 if (sym.get_st_name() >= symnamelen)
992 {
993 this->error(_("symbol %u name offset %u out of range"),
994 symndx, sym.get_st_name());
995 return false;
996 }
997
998 std::string signature(psymnames + sym.get_st_name());
999
1000 // It seems that some versions of gas will create a section group
1001 // associated with a section symbol, and then fail to give a name to
1002 // the section symbol. In such a case, use the name of the section.
1003 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1004 {
1005 bool is_ordinary;
1006 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1007 sym.get_st_shndx(),
1008 &is_ordinary);
1009 if (!is_ordinary || sym_shndx >= this->shnum())
1010 {
1011 this->error(_("symbol %u invalid section index %u"),
1012 symndx, sym_shndx);
1013 return false;
1014 }
1015 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1016 if (member_shdr.get_sh_name() < section_names_size)
1017 signature = section_names + member_shdr.get_sh_name();
1018 }
1019
1020 // Record this section group in the layout, and see whether we've already
1021 // seen one with the same signature.
1022 bool include_group;
1023 bool is_comdat;
1024 Kept_section* kept_section = NULL;
1025
1026 if ((flags & elfcpp::GRP_COMDAT) == 0)
1027 {
1028 include_group = true;
1029 is_comdat = false;
1030 }
1031 else
1032 {
1033 include_group = layout->find_or_add_kept_section(signature,
1034 this, index, true,
1035 true, &kept_section);
1036 is_comdat = true;
1037 }
1038
1039 if (is_comdat && include_group)
1040 {
1041 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1042 if (incremental_inputs != NULL)
1043 incremental_inputs->report_comdat_group(this, signature.c_str());
1044 }
1045
1046 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1047
1048 std::vector<unsigned int> shndxes;
1049 bool relocate_group = include_group && parameters->options().relocatable();
1050 if (relocate_group)
1051 shndxes.reserve(count - 1);
1052
1053 for (size_t i = 1; i < count; ++i)
1054 {
1055 elfcpp::Elf_Word shndx =
1056 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1057
1058 if (relocate_group)
1059 shndxes.push_back(shndx);
1060
1061 if (shndx >= this->shnum())
1062 {
1063 this->error(_("section %u in section group %u out of range"),
1064 shndx, index);
1065 continue;
1066 }
1067
1068 // Check for an earlier section number, since we're going to get
1069 // it wrong--we may have already decided to include the section.
1070 if (shndx < index)
1071 this->error(_("invalid section group %u refers to earlier section %u"),
1072 index, shndx);
1073
1074 // Get the name of the member section.
1075 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1076 if (member_shdr.get_sh_name() >= section_names_size)
1077 {
1078 // This is an error, but it will be diagnosed eventually
1079 // in do_layout, so we don't need to do anything here but
1080 // ignore it.
1081 continue;
1082 }
1083 std::string mname(section_names + member_shdr.get_sh_name());
1084
1085 if (include_group)
1086 {
1087 if (is_comdat)
1088 kept_section->add_comdat_section(mname, shndx,
1089 member_shdr.get_sh_size());
1090 }
1091 else
1092 {
1093 (*omit)[shndx] = true;
1094
1095 if (is_comdat)
1096 {
1097 Relobj* kept_object = kept_section->object();
1098 if (kept_section->is_comdat())
1099 {
1100 // Find the corresponding kept section, and store
1101 // that info in the discarded section table.
1102 unsigned int kept_shndx;
1103 uint64_t kept_size;
1104 if (kept_section->find_comdat_section(mname, &kept_shndx,
1105 &kept_size))
1106 {
1107 // We don't keep a mapping for this section if
1108 // it has a different size. The mapping is only
1109 // used for relocation processing, and we don't
1110 // want to treat the sections as similar if the
1111 // sizes are different. Checking the section
1112 // size is the approach used by the GNU linker.
1113 if (kept_size == member_shdr.get_sh_size())
1114 this->set_kept_comdat_section(shndx, kept_object,
1115 kept_shndx);
1116 }
1117 }
1118 else
1119 {
1120 // The existing section is a linkonce section. Add
1121 // a mapping if there is exactly one section in the
1122 // group (which is true when COUNT == 2) and if it
1123 // is the same size.
1124 if (count == 2
1125 && (kept_section->linkonce_size()
1126 == member_shdr.get_sh_size()))
1127 this->set_kept_comdat_section(shndx, kept_object,
1128 kept_section->shndx());
1129 }
1130 }
1131 }
1132 }
1133
1134 if (relocate_group)
1135 layout->layout_group(symtab, this, index, name, signature.c_str(),
1136 shdr, flags, &shndxes);
1137
1138 return include_group;
1139 }
1140
1141 // Whether to include a linkonce section in the link. NAME is the
1142 // name of the section and SHDR is the section header.
1143
1144 // Linkonce sections are a GNU extension implemented in the original
1145 // GNU linker before section groups were defined. The semantics are
1146 // that we only include one linkonce section with a given name. The
1147 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1148 // where T is the type of section and SYMNAME is the name of a symbol.
1149 // In an attempt to make linkonce sections interact well with section
1150 // groups, we try to identify SYMNAME and use it like a section group
1151 // signature. We want to block section groups with that signature,
1152 // but not other linkonce sections with that signature. We also use
1153 // the full name of the linkonce section as a normal section group
1154 // signature.
1155
1156 template<int size, bool big_endian>
1157 bool
1158 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1159 Layout* layout,
1160 unsigned int index,
1161 const char* name,
1162 const elfcpp::Shdr<size, big_endian>& shdr)
1163 {
1164 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1165 // In general the symbol name we want will be the string following
1166 // the last '.'. However, we have to handle the case of
1167 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1168 // some versions of gcc. So we use a heuristic: if the name starts
1169 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1170 // we look for the last '.'. We can't always simply skip
1171 // ".gnu.linkonce.X", because we have to deal with cases like
1172 // ".gnu.linkonce.d.rel.ro.local".
1173 const char* const linkonce_t = ".gnu.linkonce.t.";
1174 const char* symname;
1175 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1176 symname = name + strlen(linkonce_t);
1177 else
1178 symname = strrchr(name, '.') + 1;
1179 std::string sig1(symname);
1180 std::string sig2(name);
1181 Kept_section* kept1;
1182 Kept_section* kept2;
1183 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1184 false, &kept1);
1185 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1186 true, &kept2);
1187
1188 if (!include2)
1189 {
1190 // We are not including this section because we already saw the
1191 // name of the section as a signature. This normally implies
1192 // that the kept section is another linkonce section. If it is
1193 // the same size, record it as the section which corresponds to
1194 // this one.
1195 if (kept2->object() != NULL
1196 && !kept2->is_comdat()
1197 && kept2->linkonce_size() == sh_size)
1198 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1199 }
1200 else if (!include1)
1201 {
1202 // The section is being discarded on the basis of its symbol
1203 // name. This means that the corresponding kept section was
1204 // part of a comdat group, and it will be difficult to identify
1205 // the specific section within that group that corresponds to
1206 // this linkonce section. We'll handle the simple case where
1207 // the group has only one member section. Otherwise, it's not
1208 // worth the effort.
1209 unsigned int kept_shndx;
1210 uint64_t kept_size;
1211 if (kept1->object() != NULL
1212 && kept1->is_comdat()
1213 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1214 && kept_size == sh_size)
1215 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1216 }
1217 else
1218 {
1219 kept1->set_linkonce_size(sh_size);
1220 kept2->set_linkonce_size(sh_size);
1221 }
1222
1223 return include1 && include2;
1224 }
1225
1226 // Layout an input section.
1227
1228 template<int size, bool big_endian>
1229 inline void
1230 Sized_relobj_file<size, big_endian>::layout_section(
1231 Layout* layout,
1232 unsigned int shndx,
1233 const char* name,
1234 const typename This::Shdr& shdr,
1235 unsigned int reloc_shndx,
1236 unsigned int reloc_type)
1237 {
1238 off_t offset;
1239 Output_section* os = layout->layout(this, shndx, name, shdr,
1240 reloc_shndx, reloc_type, &offset);
1241
1242 this->output_sections()[shndx] = os;
1243 if (offset == -1)
1244 this->section_offsets()[shndx] = invalid_address;
1245 else
1246 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1247
1248 // If this section requires special handling, and if there are
1249 // relocs that apply to it, then we must do the special handling
1250 // before we apply the relocs.
1251 if (offset == -1 && reloc_shndx != 0)
1252 this->set_relocs_must_follow_section_writes();
1253 }
1254
1255 // Layout an input .eh_frame section.
1256
1257 template<int size, bool big_endian>
1258 void
1259 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1260 Layout* layout,
1261 const unsigned char* symbols_data,
1262 section_size_type symbols_size,
1263 const unsigned char* symbol_names_data,
1264 section_size_type symbol_names_size,
1265 unsigned int shndx,
1266 const typename This::Shdr& shdr,
1267 unsigned int reloc_shndx,
1268 unsigned int reloc_type)
1269 {
1270 gold_assert(this->has_eh_frame_);
1271
1272 off_t offset;
1273 Output_section* os = layout->layout_eh_frame(this,
1274 symbols_data,
1275 symbols_size,
1276 symbol_names_data,
1277 symbol_names_size,
1278 shndx,
1279 shdr,
1280 reloc_shndx,
1281 reloc_type,
1282 &offset);
1283 this->output_sections()[shndx] = os;
1284 if (os == NULL || offset == -1)
1285 {
1286 // An object can contain at most one section holding exception
1287 // frame information.
1288 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1289 this->discarded_eh_frame_shndx_ = shndx;
1290 this->section_offsets()[shndx] = invalid_address;
1291 }
1292 else
1293 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1294
1295 // If this section requires special handling, and if there are
1296 // relocs that aply to it, then we must do the special handling
1297 // before we apply the relocs.
1298 if (os != NULL && offset == -1 && reloc_shndx != 0)
1299 this->set_relocs_must_follow_section_writes();
1300 }
1301
1302 // Lay out the input sections. We walk through the sections and check
1303 // whether they should be included in the link. If they should, we
1304 // pass them to the Layout object, which will return an output section
1305 // and an offset.
1306 // This function is called twice sometimes, two passes, when mapping
1307 // of input sections to output sections must be delayed.
1308 // This is true for the following :
1309 // * Garbage collection (--gc-sections): Some input sections will be
1310 // discarded and hence the assignment must wait until the second pass.
1311 // In the first pass, it is for setting up some sections as roots to
1312 // a work-list for --gc-sections and to do comdat processing.
1313 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1314 // will be folded and hence the assignment must wait.
1315 // * Using plugins to map some sections to unique segments: Mapping
1316 // some sections to unique segments requires mapping them to unique
1317 // output sections too. This can be done via plugins now and this
1318 // information is not available in the first pass.
1319
1320 template<int size, bool big_endian>
1321 void
1322 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1323 Layout* layout,
1324 Read_symbols_data* sd)
1325 {
1326 const unsigned int shnum = this->shnum();
1327
1328 /* Should this function be called twice? */
1329 bool is_two_pass = (parameters->options().gc_sections()
1330 || parameters->options().icf_enabled()
1331 || layout->is_unique_segment_for_sections_specified());
1332
1333 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1334 a two-pass approach is not needed. */
1335 bool is_pass_one = false;
1336 bool is_pass_two = false;
1337
1338 Symbols_data* gc_sd = NULL;
1339
1340 /* Check if do_layout needs to be two-pass. If so, find out which pass
1341 should happen. In the first pass, the data in sd is saved to be used
1342 later in the second pass. */
1343 if (is_two_pass)
1344 {
1345 gc_sd = this->get_symbols_data();
1346 if (gc_sd == NULL)
1347 {
1348 gold_assert(sd != NULL);
1349 is_pass_one = true;
1350 }
1351 else
1352 {
1353 if (parameters->options().gc_sections())
1354 gold_assert(symtab->gc()->is_worklist_ready());
1355 if (parameters->options().icf_enabled())
1356 gold_assert(symtab->icf()->is_icf_ready());
1357 is_pass_two = true;
1358 }
1359 }
1360
1361 if (shnum == 0)
1362 return;
1363
1364 if (is_pass_one)
1365 {
1366 // During garbage collection save the symbols data to use it when
1367 // re-entering this function.
1368 gc_sd = new Symbols_data;
1369 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1370 this->set_symbols_data(gc_sd);
1371 }
1372
1373 const unsigned char* section_headers_data = NULL;
1374 section_size_type section_names_size;
1375 const unsigned char* symbols_data = NULL;
1376 section_size_type symbols_size;
1377 const unsigned char* symbol_names_data = NULL;
1378 section_size_type symbol_names_size;
1379
1380 if (is_two_pass)
1381 {
1382 section_headers_data = gc_sd->section_headers_data;
1383 section_names_size = gc_sd->section_names_size;
1384 symbols_data = gc_sd->symbols_data;
1385 symbols_size = gc_sd->symbols_size;
1386 symbol_names_data = gc_sd->symbol_names_data;
1387 symbol_names_size = gc_sd->symbol_names_size;
1388 }
1389 else
1390 {
1391 section_headers_data = sd->section_headers->data();
1392 section_names_size = sd->section_names_size;
1393 if (sd->symbols != NULL)
1394 symbols_data = sd->symbols->data();
1395 symbols_size = sd->symbols_size;
1396 if (sd->symbol_names != NULL)
1397 symbol_names_data = sd->symbol_names->data();
1398 symbol_names_size = sd->symbol_names_size;
1399 }
1400
1401 // Get the section headers.
1402 const unsigned char* shdrs = section_headers_data;
1403 const unsigned char* pshdrs;
1404
1405 // Get the section names.
1406 const unsigned char* pnamesu = (is_two_pass
1407 ? gc_sd->section_names_data
1408 : sd->section_names->data());
1409
1410 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1411
1412 // If any input files have been claimed by plugins, we need to defer
1413 // actual layout until the replacement files have arrived.
1414 const bool should_defer_layout =
1415 (parameters->options().has_plugins()
1416 && parameters->options().plugins()->should_defer_layout());
1417 unsigned int num_sections_to_defer = 0;
1418
1419 // For each section, record the index of the reloc section if any.
1420 // Use 0 to mean that there is no reloc section, -1U to mean that
1421 // there is more than one.
1422 std::vector<unsigned int> reloc_shndx(shnum, 0);
1423 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1424 // Skip the first, dummy, section.
1425 pshdrs = shdrs + This::shdr_size;
1426 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1427 {
1428 typename This::Shdr shdr(pshdrs);
1429
1430 // Count the number of sections whose layout will be deferred.
1431 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1432 ++num_sections_to_defer;
1433
1434 unsigned int sh_type = shdr.get_sh_type();
1435 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1436 {
1437 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1438 if (target_shndx == 0 || target_shndx >= shnum)
1439 {
1440 this->error(_("relocation section %u has bad info %u"),
1441 i, target_shndx);
1442 continue;
1443 }
1444
1445 if (reloc_shndx[target_shndx] != 0)
1446 reloc_shndx[target_shndx] = -1U;
1447 else
1448 {
1449 reloc_shndx[target_shndx] = i;
1450 reloc_type[target_shndx] = sh_type;
1451 }
1452 }
1453 }
1454
1455 Output_sections& out_sections(this->output_sections());
1456 std::vector<Address>& out_section_offsets(this->section_offsets());
1457
1458 if (!is_pass_two)
1459 {
1460 out_sections.resize(shnum);
1461 out_section_offsets.resize(shnum);
1462 }
1463
1464 // If we are only linking for symbols, then there is nothing else to
1465 // do here.
1466 if (this->input_file()->just_symbols())
1467 {
1468 if (!is_pass_two)
1469 {
1470 delete sd->section_headers;
1471 sd->section_headers = NULL;
1472 delete sd->section_names;
1473 sd->section_names = NULL;
1474 }
1475 return;
1476 }
1477
1478 if (num_sections_to_defer > 0)
1479 {
1480 parameters->options().plugins()->add_deferred_layout_object(this);
1481 this->deferred_layout_.reserve(num_sections_to_defer);
1482 this->is_deferred_layout_ = true;
1483 }
1484
1485 // Whether we've seen a .note.GNU-stack section.
1486 bool seen_gnu_stack = false;
1487 // The flags of a .note.GNU-stack section.
1488 uint64_t gnu_stack_flags = 0;
1489
1490 // Keep track of which sections to omit.
1491 std::vector<bool> omit(shnum, false);
1492
1493 // Keep track of reloc sections when emitting relocations.
1494 const bool relocatable = parameters->options().relocatable();
1495 const bool emit_relocs = (relocatable
1496 || parameters->options().emit_relocs());
1497 std::vector<unsigned int> reloc_sections;
1498
1499 // Keep track of .eh_frame sections.
1500 std::vector<unsigned int> eh_frame_sections;
1501
1502 // Keep track of .debug_info and .debug_types sections.
1503 std::vector<unsigned int> debug_info_sections;
1504 std::vector<unsigned int> debug_types_sections;
1505
1506 // Skip the first, dummy, section.
1507 pshdrs = shdrs + This::shdr_size;
1508 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1509 {
1510 typename This::Shdr shdr(pshdrs);
1511
1512 if (shdr.get_sh_name() >= section_names_size)
1513 {
1514 this->error(_("bad section name offset for section %u: %lu"),
1515 i, static_cast<unsigned long>(shdr.get_sh_name()));
1516 return;
1517 }
1518
1519 const char* name = pnames + shdr.get_sh_name();
1520
1521 if (!is_pass_two)
1522 {
1523 if (this->handle_gnu_warning_section(name, i, symtab))
1524 {
1525 if (!relocatable && !parameters->options().shared())
1526 omit[i] = true;
1527 }
1528
1529 // The .note.GNU-stack section is special. It gives the
1530 // protection flags that this object file requires for the stack
1531 // in memory.
1532 if (strcmp(name, ".note.GNU-stack") == 0)
1533 {
1534 seen_gnu_stack = true;
1535 gnu_stack_flags |= shdr.get_sh_flags();
1536 omit[i] = true;
1537 }
1538
1539 // The .note.GNU-split-stack section is also special. It
1540 // indicates that the object was compiled with
1541 // -fsplit-stack.
1542 if (this->handle_split_stack_section(name))
1543 {
1544 if (!relocatable && !parameters->options().shared())
1545 omit[i] = true;
1546 }
1547
1548 // Skip attributes section.
1549 if (parameters->target().is_attributes_section(name))
1550 {
1551 omit[i] = true;
1552 }
1553
1554 bool discard = omit[i];
1555 if (!discard)
1556 {
1557 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1558 {
1559 if (!this->include_section_group(symtab, layout, i, name,
1560 shdrs, pnames,
1561 section_names_size,
1562 &omit))
1563 discard = true;
1564 }
1565 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1566 && Layout::is_linkonce(name))
1567 {
1568 if (!this->include_linkonce_section(layout, i, name, shdr))
1569 discard = true;
1570 }
1571 }
1572
1573 // Add the section to the incremental inputs layout.
1574 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1575 if (incremental_inputs != NULL
1576 && !discard
1577 && can_incremental_update(shdr.get_sh_type()))
1578 {
1579 off_t sh_size = shdr.get_sh_size();
1580 section_size_type uncompressed_size;
1581 if (this->section_is_compressed(i, &uncompressed_size))
1582 sh_size = uncompressed_size;
1583 incremental_inputs->report_input_section(this, i, name, sh_size);
1584 }
1585
1586 if (discard)
1587 {
1588 // Do not include this section in the link.
1589 out_sections[i] = NULL;
1590 out_section_offsets[i] = invalid_address;
1591 continue;
1592 }
1593 }
1594
1595 if (is_pass_one && parameters->options().gc_sections())
1596 {
1597 if (this->is_section_name_included(name)
1598 || layout->keep_input_section (this, name)
1599 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1600 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1601 {
1602 symtab->gc()->worklist().push(Section_id(this, i));
1603 }
1604 // If the section name XXX can be represented as a C identifier
1605 // it cannot be discarded if there are references to
1606 // __start_XXX and __stop_XXX symbols. These need to be
1607 // specially handled.
1608 if (is_cident(name))
1609 {
1610 symtab->gc()->add_cident_section(name, Section_id(this, i));
1611 }
1612 }
1613
1614 // When doing a relocatable link we are going to copy input
1615 // reloc sections into the output. We only want to copy the
1616 // ones associated with sections which are not being discarded.
1617 // However, we don't know that yet for all sections. So save
1618 // reloc sections and process them later. Garbage collection is
1619 // not triggered when relocatable code is desired.
1620 if (emit_relocs
1621 && (shdr.get_sh_type() == elfcpp::SHT_REL
1622 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1623 {
1624 reloc_sections.push_back(i);
1625 continue;
1626 }
1627
1628 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1629 continue;
1630
1631 // The .eh_frame section is special. It holds exception frame
1632 // information that we need to read in order to generate the
1633 // exception frame header. We process these after all the other
1634 // sections so that the exception frame reader can reliably
1635 // determine which sections are being discarded, and discard the
1636 // corresponding information.
1637 if (!relocatable
1638 && strcmp(name, ".eh_frame") == 0
1639 && this->check_eh_frame_flags(&shdr))
1640 {
1641 if (is_pass_one)
1642 {
1643 if (this->is_deferred_layout())
1644 out_sections[i] = reinterpret_cast<Output_section*>(2);
1645 else
1646 out_sections[i] = reinterpret_cast<Output_section*>(1);
1647 out_section_offsets[i] = invalid_address;
1648 }
1649 else if (this->is_deferred_layout())
1650 this->deferred_layout_.push_back(Deferred_layout(i, name,
1651 pshdrs,
1652 reloc_shndx[i],
1653 reloc_type[i]));
1654 else
1655 eh_frame_sections.push_back(i);
1656 continue;
1657 }
1658
1659 if (is_pass_two && parameters->options().gc_sections())
1660 {
1661 // This is executed during the second pass of garbage
1662 // collection. do_layout has been called before and some
1663 // sections have been already discarded. Simply ignore
1664 // such sections this time around.
1665 if (out_sections[i] == NULL)
1666 {
1667 gold_assert(out_section_offsets[i] == invalid_address);
1668 continue;
1669 }
1670 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1671 && symtab->gc()->is_section_garbage(this, i))
1672 {
1673 if (parameters->options().print_gc_sections())
1674 gold_info(_("%s: removing unused section from '%s'"
1675 " in file '%s'"),
1676 program_name, this->section_name(i).c_str(),
1677 this->name().c_str());
1678 out_sections[i] = NULL;
1679 out_section_offsets[i] = invalid_address;
1680 continue;
1681 }
1682 }
1683
1684 if (is_pass_two && parameters->options().icf_enabled())
1685 {
1686 if (out_sections[i] == NULL)
1687 {
1688 gold_assert(out_section_offsets[i] == invalid_address);
1689 continue;
1690 }
1691 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1692 && symtab->icf()->is_section_folded(this, i))
1693 {
1694 if (parameters->options().print_icf_sections())
1695 {
1696 Section_id folded =
1697 symtab->icf()->get_folded_section(this, i);
1698 Relobj* folded_obj =
1699 reinterpret_cast<Relobj*>(folded.first);
1700 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1701 "into '%s' in file '%s'"),
1702 program_name, this->section_name(i).c_str(),
1703 this->name().c_str(),
1704 folded_obj->section_name(folded.second).c_str(),
1705 folded_obj->name().c_str());
1706 }
1707 out_sections[i] = NULL;
1708 out_section_offsets[i] = invalid_address;
1709 continue;
1710 }
1711 }
1712
1713 // Defer layout here if input files are claimed by plugins. When gc
1714 // is turned on this function is called twice; we only want to do this
1715 // on the first pass.
1716 if (!is_pass_two
1717 && this->is_deferred_layout()
1718 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1719 {
1720 this->deferred_layout_.push_back(Deferred_layout(i, name,
1721 pshdrs,
1722 reloc_shndx[i],
1723 reloc_type[i]));
1724 // Put dummy values here; real values will be supplied by
1725 // do_layout_deferred_sections.
1726 out_sections[i] = reinterpret_cast<Output_section*>(2);
1727 out_section_offsets[i] = invalid_address;
1728 continue;
1729 }
1730
1731 // During gc_pass_two if a section that was previously deferred is
1732 // found, do not layout the section as layout_deferred_sections will
1733 // do it later from gold.cc.
1734 if (is_pass_two
1735 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1736 continue;
1737
1738 if (is_pass_one)
1739 {
1740 // This is during garbage collection. The out_sections are
1741 // assigned in the second call to this function.
1742 out_sections[i] = reinterpret_cast<Output_section*>(1);
1743 out_section_offsets[i] = invalid_address;
1744 }
1745 else
1746 {
1747 // When garbage collection is switched on the actual layout
1748 // only happens in the second call.
1749 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1750 reloc_type[i]);
1751
1752 // When generating a .gdb_index section, we do additional
1753 // processing of .debug_info and .debug_types sections after all
1754 // the other sections for the same reason as above.
1755 if (!relocatable
1756 && parameters->options().gdb_index()
1757 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1758 {
1759 if (strcmp(name, ".debug_info") == 0
1760 || strcmp(name, ".zdebug_info") == 0)
1761 debug_info_sections.push_back(i);
1762 else if (strcmp(name, ".debug_types") == 0
1763 || strcmp(name, ".zdebug_types") == 0)
1764 debug_types_sections.push_back(i);
1765 }
1766 }
1767 }
1768
1769 if (!is_pass_two)
1770 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1771
1772 // Handle the .eh_frame sections after the other sections.
1773 gold_assert(!is_pass_one || eh_frame_sections.empty());
1774 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1775 p != eh_frame_sections.end();
1776 ++p)
1777 {
1778 unsigned int i = *p;
1779 const unsigned char* pshdr;
1780 pshdr = section_headers_data + i * This::shdr_size;
1781 typename This::Shdr shdr(pshdr);
1782
1783 this->layout_eh_frame_section(layout,
1784 symbols_data,
1785 symbols_size,
1786 symbol_names_data,
1787 symbol_names_size,
1788 i,
1789 shdr,
1790 reloc_shndx[i],
1791 reloc_type[i]);
1792 }
1793
1794 // When doing a relocatable link handle the reloc sections at the
1795 // end. Garbage collection and Identical Code Folding is not
1796 // turned on for relocatable code.
1797 if (emit_relocs)
1798 this->size_relocatable_relocs();
1799
1800 gold_assert(!is_two_pass || reloc_sections.empty());
1801
1802 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1803 p != reloc_sections.end();
1804 ++p)
1805 {
1806 unsigned int i = *p;
1807 const unsigned char* pshdr;
1808 pshdr = section_headers_data + i * This::shdr_size;
1809 typename This::Shdr shdr(pshdr);
1810
1811 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1812 if (data_shndx >= shnum)
1813 {
1814 // We already warned about this above.
1815 continue;
1816 }
1817
1818 Output_section* data_section = out_sections[data_shndx];
1819 if (data_section == reinterpret_cast<Output_section*>(2))
1820 {
1821 if (is_pass_two)
1822 continue;
1823 // The layout for the data section was deferred, so we need
1824 // to defer the relocation section, too.
1825 const char* name = pnames + shdr.get_sh_name();
1826 this->deferred_layout_relocs_.push_back(
1827 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1828 out_sections[i] = reinterpret_cast<Output_section*>(2);
1829 out_section_offsets[i] = invalid_address;
1830 continue;
1831 }
1832 if (data_section == NULL)
1833 {
1834 out_sections[i] = NULL;
1835 out_section_offsets[i] = invalid_address;
1836 continue;
1837 }
1838
1839 Relocatable_relocs* rr = new Relocatable_relocs();
1840 this->set_relocatable_relocs(i, rr);
1841
1842 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1843 rr);
1844 out_sections[i] = os;
1845 out_section_offsets[i] = invalid_address;
1846 }
1847
1848 // When building a .gdb_index section, scan the .debug_info and
1849 // .debug_types sections.
1850 gold_assert(!is_pass_one
1851 || (debug_info_sections.empty() && debug_types_sections.empty()));
1852 for (std::vector<unsigned int>::const_iterator p
1853 = debug_info_sections.begin();
1854 p != debug_info_sections.end();
1855 ++p)
1856 {
1857 unsigned int i = *p;
1858 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1859 i, reloc_shndx[i], reloc_type[i]);
1860 }
1861 for (std::vector<unsigned int>::const_iterator p
1862 = debug_types_sections.begin();
1863 p != debug_types_sections.end();
1864 ++p)
1865 {
1866 unsigned int i = *p;
1867 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1868 i, reloc_shndx[i], reloc_type[i]);
1869 }
1870
1871 if (is_pass_two)
1872 {
1873 delete[] gc_sd->section_headers_data;
1874 delete[] gc_sd->section_names_data;
1875 delete[] gc_sd->symbols_data;
1876 delete[] gc_sd->symbol_names_data;
1877 this->set_symbols_data(NULL);
1878 }
1879 else
1880 {
1881 delete sd->section_headers;
1882 sd->section_headers = NULL;
1883 delete sd->section_names;
1884 sd->section_names = NULL;
1885 }
1886 }
1887
1888 // Layout sections whose layout was deferred while waiting for
1889 // input files from a plugin.
1890
1891 template<int size, bool big_endian>
1892 void
1893 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1894 {
1895 typename std::vector<Deferred_layout>::iterator deferred;
1896
1897 for (deferred = this->deferred_layout_.begin();
1898 deferred != this->deferred_layout_.end();
1899 ++deferred)
1900 {
1901 typename This::Shdr shdr(deferred->shdr_data_);
1902
1903 if (!parameters->options().relocatable()
1904 && deferred->name_ == ".eh_frame"
1905 && this->check_eh_frame_flags(&shdr))
1906 {
1907 // Checking is_section_included is not reliable for
1908 // .eh_frame sections, because they do not have an output
1909 // section. This is not a problem normally because we call
1910 // layout_eh_frame_section unconditionally, but when
1911 // deferring sections that is not true. We don't want to
1912 // keep all .eh_frame sections because that will cause us to
1913 // keep all sections that they refer to, which is the wrong
1914 // way around. Instead, the eh_frame code will discard
1915 // .eh_frame sections that refer to discarded sections.
1916
1917 // Reading the symbols again here may be slow.
1918 Read_symbols_data sd;
1919 this->base_read_symbols(&sd);
1920 this->layout_eh_frame_section(layout,
1921 sd.symbols->data(),
1922 sd.symbols_size,
1923 sd.symbol_names->data(),
1924 sd.symbol_names_size,
1925 deferred->shndx_,
1926 shdr,
1927 deferred->reloc_shndx_,
1928 deferred->reloc_type_);
1929 continue;
1930 }
1931
1932 // If the section is not included, it is because the garbage collector
1933 // decided it is not needed. Avoid reverting that decision.
1934 if (!this->is_section_included(deferred->shndx_))
1935 continue;
1936
1937 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1938 shdr, deferred->reloc_shndx_,
1939 deferred->reloc_type_);
1940 }
1941
1942 this->deferred_layout_.clear();
1943
1944 // Now handle the deferred relocation sections.
1945
1946 Output_sections& out_sections(this->output_sections());
1947 std::vector<Address>& out_section_offsets(this->section_offsets());
1948
1949 for (deferred = this->deferred_layout_relocs_.begin();
1950 deferred != this->deferred_layout_relocs_.end();
1951 ++deferred)
1952 {
1953 unsigned int shndx = deferred->shndx_;
1954 typename This::Shdr shdr(deferred->shdr_data_);
1955 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1956
1957 Output_section* data_section = out_sections[data_shndx];
1958 if (data_section == NULL)
1959 {
1960 out_sections[shndx] = NULL;
1961 out_section_offsets[shndx] = invalid_address;
1962 continue;
1963 }
1964
1965 Relocatable_relocs* rr = new Relocatable_relocs();
1966 this->set_relocatable_relocs(shndx, rr);
1967
1968 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1969 data_section, rr);
1970 out_sections[shndx] = os;
1971 out_section_offsets[shndx] = invalid_address;
1972 }
1973 }
1974
1975 // Add the symbols to the symbol table.
1976
1977 template<int size, bool big_endian>
1978 void
1979 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1980 Read_symbols_data* sd,
1981 Layout*)
1982 {
1983 if (sd->symbols == NULL)
1984 {
1985 gold_assert(sd->symbol_names == NULL);
1986 return;
1987 }
1988
1989 const int sym_size = This::sym_size;
1990 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1991 / sym_size);
1992 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1993 {
1994 this->error(_("size of symbols is not multiple of symbol size"));
1995 return;
1996 }
1997
1998 this->symbols_.resize(symcount);
1999
2000 const char* sym_names =
2001 reinterpret_cast<const char*>(sd->symbol_names->data());
2002 symtab->add_from_relobj(this,
2003 sd->symbols->data() + sd->external_symbols_offset,
2004 symcount, this->local_symbol_count_,
2005 sym_names, sd->symbol_names_size,
2006 &this->symbols_,
2007 &this->defined_count_);
2008
2009 delete sd->symbols;
2010 sd->symbols = NULL;
2011 delete sd->symbol_names;
2012 sd->symbol_names = NULL;
2013 }
2014
2015 // Find out if this object, that is a member of a lib group, should be included
2016 // in the link. We check every symbol defined by this object. If the symbol
2017 // table has a strong undefined reference to that symbol, we have to include
2018 // the object.
2019
2020 template<int size, bool big_endian>
2021 Archive::Should_include
2022 Sized_relobj_file<size, big_endian>::do_should_include_member(
2023 Symbol_table* symtab,
2024 Layout* layout,
2025 Read_symbols_data* sd,
2026 std::string* why)
2027 {
2028 char* tmpbuf = NULL;
2029 size_t tmpbuflen = 0;
2030 const char* sym_names =
2031 reinterpret_cast<const char*>(sd->symbol_names->data());
2032 const unsigned char* syms =
2033 sd->symbols->data() + sd->external_symbols_offset;
2034 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2035 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2036 / sym_size);
2037
2038 const unsigned char* p = syms;
2039
2040 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2041 {
2042 elfcpp::Sym<size, big_endian> sym(p);
2043 unsigned int st_shndx = sym.get_st_shndx();
2044 if (st_shndx == elfcpp::SHN_UNDEF)
2045 continue;
2046
2047 unsigned int st_name = sym.get_st_name();
2048 const char* name = sym_names + st_name;
2049 Symbol* symbol;
2050 Archive::Should_include t = Archive::should_include_member(symtab,
2051 layout,
2052 name,
2053 &symbol, why,
2054 &tmpbuf,
2055 &tmpbuflen);
2056 if (t == Archive::SHOULD_INCLUDE_YES)
2057 {
2058 if (tmpbuf != NULL)
2059 free(tmpbuf);
2060 return t;
2061 }
2062 }
2063 if (tmpbuf != NULL)
2064 free(tmpbuf);
2065 return Archive::SHOULD_INCLUDE_UNKNOWN;
2066 }
2067
2068 // Iterate over global defined symbols, calling a visitor class V for each.
2069
2070 template<int size, bool big_endian>
2071 void
2072 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2073 Read_symbols_data* sd,
2074 Library_base::Symbol_visitor_base* v)
2075 {
2076 const char* sym_names =
2077 reinterpret_cast<const char*>(sd->symbol_names->data());
2078 const unsigned char* syms =
2079 sd->symbols->data() + sd->external_symbols_offset;
2080 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2081 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2082 / sym_size);
2083 const unsigned char* p = syms;
2084
2085 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2086 {
2087 elfcpp::Sym<size, big_endian> sym(p);
2088 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2089 v->visit(sym_names + sym.get_st_name());
2090 }
2091 }
2092
2093 // Return whether the local symbol SYMNDX has a PLT offset.
2094
2095 template<int size, bool big_endian>
2096 bool
2097 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2098 unsigned int symndx) const
2099 {
2100 typename Local_plt_offsets::const_iterator p =
2101 this->local_plt_offsets_.find(symndx);
2102 return p != this->local_plt_offsets_.end();
2103 }
2104
2105 // Get the PLT offset of a local symbol.
2106
2107 template<int size, bool big_endian>
2108 unsigned int
2109 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2110 unsigned int symndx) const
2111 {
2112 typename Local_plt_offsets::const_iterator p =
2113 this->local_plt_offsets_.find(symndx);
2114 gold_assert(p != this->local_plt_offsets_.end());
2115 return p->second;
2116 }
2117
2118 // Set the PLT offset of a local symbol.
2119
2120 template<int size, bool big_endian>
2121 void
2122 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2123 unsigned int symndx, unsigned int plt_offset)
2124 {
2125 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2126 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2127 gold_assert(ins.second);
2128 }
2129
2130 // First pass over the local symbols. Here we add their names to
2131 // *POOL and *DYNPOOL, and we store the symbol value in
2132 // THIS->LOCAL_VALUES_. This function is always called from a
2133 // singleton thread. This is followed by a call to
2134 // finalize_local_symbols.
2135
2136 template<int size, bool big_endian>
2137 void
2138 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2139 Stringpool* dynpool)
2140 {
2141 gold_assert(this->symtab_shndx_ != -1U);
2142 if (this->symtab_shndx_ == 0)
2143 {
2144 // This object has no symbols. Weird but legal.
2145 return;
2146 }
2147
2148 // Read the symbol table section header.
2149 const unsigned int symtab_shndx = this->symtab_shndx_;
2150 typename This::Shdr symtabshdr(this,
2151 this->elf_file_.section_header(symtab_shndx));
2152 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2153
2154 // Read the local symbols.
2155 const int sym_size = This::sym_size;
2156 const unsigned int loccount = this->local_symbol_count_;
2157 gold_assert(loccount == symtabshdr.get_sh_info());
2158 off_t locsize = loccount * sym_size;
2159 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2160 locsize, true, true);
2161
2162 // Read the symbol names.
2163 const unsigned int strtab_shndx =
2164 this->adjust_shndx(symtabshdr.get_sh_link());
2165 section_size_type strtab_size;
2166 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2167 &strtab_size,
2168 true);
2169 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2170
2171 // Loop over the local symbols.
2172
2173 const Output_sections& out_sections(this->output_sections());
2174 unsigned int shnum = this->shnum();
2175 unsigned int count = 0;
2176 unsigned int dyncount = 0;
2177 // Skip the first, dummy, symbol.
2178 psyms += sym_size;
2179 bool strip_all = parameters->options().strip_all();
2180 bool discard_all = parameters->options().discard_all();
2181 bool discard_locals = parameters->options().discard_locals();
2182 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2183 {
2184 elfcpp::Sym<size, big_endian> sym(psyms);
2185
2186 Symbol_value<size>& lv(this->local_values_[i]);
2187
2188 bool is_ordinary;
2189 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2190 &is_ordinary);
2191 lv.set_input_shndx(shndx, is_ordinary);
2192
2193 if (sym.get_st_type() == elfcpp::STT_SECTION)
2194 lv.set_is_section_symbol();
2195 else if (sym.get_st_type() == elfcpp::STT_TLS)
2196 lv.set_is_tls_symbol();
2197 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2198 lv.set_is_ifunc_symbol();
2199
2200 // Save the input symbol value for use in do_finalize_local_symbols().
2201 lv.set_input_value(sym.get_st_value());
2202
2203 // Decide whether this symbol should go into the output file.
2204
2205 if ((shndx < shnum && out_sections[shndx] == NULL)
2206 || shndx == this->discarded_eh_frame_shndx_)
2207 {
2208 lv.set_no_output_symtab_entry();
2209 gold_assert(!lv.needs_output_dynsym_entry());
2210 continue;
2211 }
2212
2213 if (sym.get_st_type() == elfcpp::STT_SECTION
2214 || !this->adjust_local_symbol(&lv))
2215 {
2216 lv.set_no_output_symtab_entry();
2217 gold_assert(!lv.needs_output_dynsym_entry());
2218 continue;
2219 }
2220
2221 if (sym.get_st_name() >= strtab_size)
2222 {
2223 this->error(_("local symbol %u section name out of range: %u >= %u"),
2224 i, sym.get_st_name(),
2225 static_cast<unsigned int>(strtab_size));
2226 lv.set_no_output_symtab_entry();
2227 continue;
2228 }
2229
2230 const char* name = pnames + sym.get_st_name();
2231
2232 // If needed, add the symbol to the dynamic symbol table string pool.
2233 if (lv.needs_output_dynsym_entry())
2234 {
2235 dynpool->add(name, true, NULL);
2236 ++dyncount;
2237 }
2238
2239 if (strip_all
2240 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2241 {
2242 lv.set_no_output_symtab_entry();
2243 continue;
2244 }
2245
2246 // If --discard-locals option is used, discard all temporary local
2247 // symbols. These symbols start with system-specific local label
2248 // prefixes, typically .L for ELF system. We want to be compatible
2249 // with GNU ld so here we essentially use the same check in
2250 // bfd_is_local_label(). The code is different because we already
2251 // know that:
2252 //
2253 // - the symbol is local and thus cannot have global or weak binding.
2254 // - the symbol is not a section symbol.
2255 // - the symbol has a name.
2256 //
2257 // We do not discard a symbol if it needs a dynamic symbol entry.
2258 if (discard_locals
2259 && sym.get_st_type() != elfcpp::STT_FILE
2260 && !lv.needs_output_dynsym_entry()
2261 && lv.may_be_discarded_from_output_symtab()
2262 && parameters->target().is_local_label_name(name))
2263 {
2264 lv.set_no_output_symtab_entry();
2265 continue;
2266 }
2267
2268 // Discard the local symbol if -retain_symbols_file is specified
2269 // and the local symbol is not in that file.
2270 if (!parameters->options().should_retain_symbol(name))
2271 {
2272 lv.set_no_output_symtab_entry();
2273 continue;
2274 }
2275
2276 // Add the symbol to the symbol table string pool.
2277 pool->add(name, true, NULL);
2278 ++count;
2279 }
2280
2281 this->output_local_symbol_count_ = count;
2282 this->output_local_dynsym_count_ = dyncount;
2283 }
2284
2285 // Compute the final value of a local symbol.
2286
2287 template<int size, bool big_endian>
2288 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2289 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2290 unsigned int r_sym,
2291 const Symbol_value<size>* lv_in,
2292 Symbol_value<size>* lv_out,
2293 bool relocatable,
2294 const Output_sections& out_sections,
2295 const std::vector<Address>& out_offsets,
2296 const Symbol_table* symtab)
2297 {
2298 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2299 // we may have a memory leak.
2300 gold_assert(lv_out->has_output_value());
2301
2302 bool is_ordinary;
2303 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2304
2305 // Set the output symbol value.
2306
2307 if (!is_ordinary)
2308 {
2309 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2310 lv_out->set_output_value(lv_in->input_value());
2311 else
2312 {
2313 this->error(_("unknown section index %u for local symbol %u"),
2314 shndx, r_sym);
2315 lv_out->set_output_value(0);
2316 return This::CFLV_ERROR;
2317 }
2318 }
2319 else
2320 {
2321 if (shndx >= this->shnum())
2322 {
2323 this->error(_("local symbol %u section index %u out of range"),
2324 r_sym, shndx);
2325 lv_out->set_output_value(0);
2326 return This::CFLV_ERROR;
2327 }
2328
2329 Output_section* os = out_sections[shndx];
2330 Address secoffset = out_offsets[shndx];
2331 if (symtab->is_section_folded(this, shndx))
2332 {
2333 gold_assert(os == NULL && secoffset == invalid_address);
2334 // Get the os of the section it is folded onto.
2335 Section_id folded = symtab->icf()->get_folded_section(this,
2336 shndx);
2337 gold_assert(folded.first != NULL);
2338 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2339 <Sized_relobj_file<size, big_endian>*>(folded.first);
2340 os = folded_obj->output_section(folded.second);
2341 gold_assert(os != NULL);
2342 secoffset = folded_obj->get_output_section_offset(folded.second);
2343
2344 // This could be a relaxed input section.
2345 if (secoffset == invalid_address)
2346 {
2347 const Output_relaxed_input_section* relaxed_section =
2348 os->find_relaxed_input_section(folded_obj, folded.second);
2349 gold_assert(relaxed_section != NULL);
2350 secoffset = relaxed_section->address() - os->address();
2351 }
2352 }
2353
2354 if (os == NULL)
2355 {
2356 // This local symbol belongs to a section we are discarding.
2357 // In some cases when applying relocations later, we will
2358 // attempt to match it to the corresponding kept section,
2359 // so we leave the input value unchanged here.
2360 return This::CFLV_DISCARDED;
2361 }
2362 else if (secoffset == invalid_address)
2363 {
2364 uint64_t start;
2365
2366 // This is a SHF_MERGE section or one which otherwise
2367 // requires special handling.
2368 if (shndx == this->discarded_eh_frame_shndx_)
2369 {
2370 // This local symbol belongs to a discarded .eh_frame
2371 // section. Just treat it like the case in which
2372 // os == NULL above.
2373 gold_assert(this->has_eh_frame_);
2374 return This::CFLV_DISCARDED;
2375 }
2376 else if (!lv_in->is_section_symbol())
2377 {
2378 // This is not a section symbol. We can determine
2379 // the final value now.
2380 lv_out->set_output_value(
2381 os->output_address(this, shndx, lv_in->input_value()));
2382 }
2383 else if (!os->find_starting_output_address(this, shndx, &start))
2384 {
2385 // This is a section symbol, but apparently not one in a
2386 // merged section. First check to see if this is a relaxed
2387 // input section. If so, use its address. Otherwise just
2388 // use the start of the output section. This happens with
2389 // relocatable links when the input object has section
2390 // symbols for arbitrary non-merge sections.
2391 const Output_section_data* posd =
2392 os->find_relaxed_input_section(this, shndx);
2393 if (posd != NULL)
2394 {
2395 Address relocatable_link_adjustment =
2396 relocatable ? os->address() : 0;
2397 lv_out->set_output_value(posd->address()
2398 - relocatable_link_adjustment);
2399 }
2400 else
2401 lv_out->set_output_value(os->address());
2402 }
2403 else
2404 {
2405 // We have to consider the addend to determine the
2406 // value to use in a relocation. START is the start
2407 // of this input section. If we are doing a relocatable
2408 // link, use offset from start output section instead of
2409 // address.
2410 Address adjusted_start =
2411 relocatable ? start - os->address() : start;
2412 Merged_symbol_value<size>* msv =
2413 new Merged_symbol_value<size>(lv_in->input_value(),
2414 adjusted_start);
2415 lv_out->set_merged_symbol_value(msv);
2416 }
2417 }
2418 else if (lv_in->is_tls_symbol()
2419 || (lv_in->is_section_symbol()
2420 && (os->flags() & elfcpp::SHF_TLS)))
2421 lv_out->set_output_value(os->tls_offset()
2422 + secoffset
2423 + lv_in->input_value());
2424 else
2425 lv_out->set_output_value((relocatable ? 0 : os->address())
2426 + secoffset
2427 + lv_in->input_value());
2428 }
2429 return This::CFLV_OK;
2430 }
2431
2432 // Compute final local symbol value. R_SYM is the index of a local
2433 // symbol in symbol table. LV points to a symbol value, which is
2434 // expected to hold the input value and to be over-written by the
2435 // final value. SYMTAB points to a symbol table. Some targets may want
2436 // to know would-be-finalized local symbol values in relaxation.
2437 // Hence we provide this method. Since this method updates *LV, a
2438 // callee should make a copy of the original local symbol value and
2439 // use the copy instead of modifying an object's local symbols before
2440 // everything is finalized. The caller should also free up any allocated
2441 // memory in the return value in *LV.
2442 template<int size, bool big_endian>
2443 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2444 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2445 unsigned int r_sym,
2446 const Symbol_value<size>* lv_in,
2447 Symbol_value<size>* lv_out,
2448 const Symbol_table* symtab)
2449 {
2450 // This is just a wrapper of compute_final_local_value_internal.
2451 const bool relocatable = parameters->options().relocatable();
2452 const Output_sections& out_sections(this->output_sections());
2453 const std::vector<Address>& out_offsets(this->section_offsets());
2454 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2455 relocatable, out_sections,
2456 out_offsets, symtab);
2457 }
2458
2459 // Finalize the local symbols. Here we set the final value in
2460 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2461 // This function is always called from a singleton thread. The actual
2462 // output of the local symbols will occur in a separate task.
2463
2464 template<int size, bool big_endian>
2465 unsigned int
2466 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2467 unsigned int index,
2468 off_t off,
2469 Symbol_table* symtab)
2470 {
2471 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2472
2473 const unsigned int loccount = this->local_symbol_count_;
2474 this->local_symbol_offset_ = off;
2475
2476 const bool relocatable = parameters->options().relocatable();
2477 const Output_sections& out_sections(this->output_sections());
2478 const std::vector<Address>& out_offsets(this->section_offsets());
2479
2480 for (unsigned int i = 1; i < loccount; ++i)
2481 {
2482 Symbol_value<size>* lv = &this->local_values_[i];
2483
2484 Compute_final_local_value_status cflv_status =
2485 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2486 out_sections, out_offsets,
2487 symtab);
2488 switch (cflv_status)
2489 {
2490 case CFLV_OK:
2491 if (!lv->is_output_symtab_index_set())
2492 {
2493 lv->set_output_symtab_index(index);
2494 ++index;
2495 }
2496 break;
2497 case CFLV_DISCARDED:
2498 case CFLV_ERROR:
2499 // Do nothing.
2500 break;
2501 default:
2502 gold_unreachable();
2503 }
2504 }
2505 return index;
2506 }
2507
2508 // Set the output dynamic symbol table indexes for the local variables.
2509
2510 template<int size, bool big_endian>
2511 unsigned int
2512 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2513 unsigned int index)
2514 {
2515 const unsigned int loccount = this->local_symbol_count_;
2516 for (unsigned int i = 1; i < loccount; ++i)
2517 {
2518 Symbol_value<size>& lv(this->local_values_[i]);
2519 if (lv.needs_output_dynsym_entry())
2520 {
2521 lv.set_output_dynsym_index(index);
2522 ++index;
2523 }
2524 }
2525 return index;
2526 }
2527
2528 // Set the offset where local dynamic symbol information will be stored.
2529 // Returns the count of local symbols contributed to the symbol table by
2530 // this object.
2531
2532 template<int size, bool big_endian>
2533 unsigned int
2534 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2535 {
2536 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2537 this->local_dynsym_offset_ = off;
2538 return this->output_local_dynsym_count_;
2539 }
2540
2541 // If Symbols_data is not NULL get the section flags from here otherwise
2542 // get it from the file.
2543
2544 template<int size, bool big_endian>
2545 uint64_t
2546 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2547 {
2548 Symbols_data* sd = this->get_symbols_data();
2549 if (sd != NULL)
2550 {
2551 const unsigned char* pshdrs = sd->section_headers_data
2552 + This::shdr_size * shndx;
2553 typename This::Shdr shdr(pshdrs);
2554 return shdr.get_sh_flags();
2555 }
2556 // If sd is NULL, read the section header from the file.
2557 return this->elf_file_.section_flags(shndx);
2558 }
2559
2560 // Get the section's ent size from Symbols_data. Called by get_section_contents
2561 // in icf.cc
2562
2563 template<int size, bool big_endian>
2564 uint64_t
2565 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2566 {
2567 Symbols_data* sd = this->get_symbols_data();
2568 gold_assert(sd != NULL);
2569
2570 const unsigned char* pshdrs = sd->section_headers_data
2571 + This::shdr_size * shndx;
2572 typename This::Shdr shdr(pshdrs);
2573 return shdr.get_sh_entsize();
2574 }
2575
2576 // Write out the local symbols.
2577
2578 template<int size, bool big_endian>
2579 void
2580 Sized_relobj_file<size, big_endian>::write_local_symbols(
2581 Output_file* of,
2582 const Stringpool* sympool,
2583 const Stringpool* dynpool,
2584 Output_symtab_xindex* symtab_xindex,
2585 Output_symtab_xindex* dynsym_xindex,
2586 off_t symtab_off)
2587 {
2588 const bool strip_all = parameters->options().strip_all();
2589 if (strip_all)
2590 {
2591 if (this->output_local_dynsym_count_ == 0)
2592 return;
2593 this->output_local_symbol_count_ = 0;
2594 }
2595
2596 gold_assert(this->symtab_shndx_ != -1U);
2597 if (this->symtab_shndx_ == 0)
2598 {
2599 // This object has no symbols. Weird but legal.
2600 return;
2601 }
2602
2603 // Read the symbol table section header.
2604 const unsigned int symtab_shndx = this->symtab_shndx_;
2605 typename This::Shdr symtabshdr(this,
2606 this->elf_file_.section_header(symtab_shndx));
2607 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2608 const unsigned int loccount = this->local_symbol_count_;
2609 gold_assert(loccount == symtabshdr.get_sh_info());
2610
2611 // Read the local symbols.
2612 const int sym_size = This::sym_size;
2613 off_t locsize = loccount * sym_size;
2614 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2615 locsize, true, false);
2616
2617 // Read the symbol names.
2618 const unsigned int strtab_shndx =
2619 this->adjust_shndx(symtabshdr.get_sh_link());
2620 section_size_type strtab_size;
2621 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2622 &strtab_size,
2623 false);
2624 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2625
2626 // Get views into the output file for the portions of the symbol table
2627 // and the dynamic symbol table that we will be writing.
2628 off_t output_size = this->output_local_symbol_count_ * sym_size;
2629 unsigned char* oview = NULL;
2630 if (output_size > 0)
2631 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2632 output_size);
2633
2634 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2635 unsigned char* dyn_oview = NULL;
2636 if (dyn_output_size > 0)
2637 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2638 dyn_output_size);
2639
2640 const Output_sections& out_sections(this->output_sections());
2641
2642 gold_assert(this->local_values_.size() == loccount);
2643
2644 unsigned char* ov = oview;
2645 unsigned char* dyn_ov = dyn_oview;
2646 psyms += sym_size;
2647 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2648 {
2649 elfcpp::Sym<size, big_endian> isym(psyms);
2650
2651 Symbol_value<size>& lv(this->local_values_[i]);
2652
2653 bool is_ordinary;
2654 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2655 &is_ordinary);
2656 if (is_ordinary)
2657 {
2658 gold_assert(st_shndx < out_sections.size());
2659 if (out_sections[st_shndx] == NULL)
2660 continue;
2661 st_shndx = out_sections[st_shndx]->out_shndx();
2662 if (st_shndx >= elfcpp::SHN_LORESERVE)
2663 {
2664 if (lv.has_output_symtab_entry())
2665 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2666 if (lv.has_output_dynsym_entry())
2667 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2668 st_shndx = elfcpp::SHN_XINDEX;
2669 }
2670 }
2671
2672 // Write the symbol to the output symbol table.
2673 if (lv.has_output_symtab_entry())
2674 {
2675 elfcpp::Sym_write<size, big_endian> osym(ov);
2676
2677 gold_assert(isym.get_st_name() < strtab_size);
2678 const char* name = pnames + isym.get_st_name();
2679 osym.put_st_name(sympool->get_offset(name));
2680 osym.put_st_value(this->local_values_[i].value(this, 0));
2681 osym.put_st_size(isym.get_st_size());
2682 osym.put_st_info(isym.get_st_info());
2683 osym.put_st_other(isym.get_st_other());
2684 osym.put_st_shndx(st_shndx);
2685
2686 ov += sym_size;
2687 }
2688
2689 // Write the symbol to the output dynamic symbol table.
2690 if (lv.has_output_dynsym_entry())
2691 {
2692 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2693 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2694
2695 gold_assert(isym.get_st_name() < strtab_size);
2696 const char* name = pnames + isym.get_st_name();
2697 osym.put_st_name(dynpool->get_offset(name));
2698 osym.put_st_value(this->local_values_[i].value(this, 0));
2699 osym.put_st_size(isym.get_st_size());
2700 osym.put_st_info(isym.get_st_info());
2701 osym.put_st_other(isym.get_st_other());
2702 osym.put_st_shndx(st_shndx);
2703
2704 dyn_ov += sym_size;
2705 }
2706 }
2707
2708
2709 if (output_size > 0)
2710 {
2711 gold_assert(ov - oview == output_size);
2712 of->write_output_view(symtab_off + this->local_symbol_offset_,
2713 output_size, oview);
2714 }
2715
2716 if (dyn_output_size > 0)
2717 {
2718 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2719 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2720 dyn_oview);
2721 }
2722 }
2723
2724 // Set *INFO to symbolic information about the offset OFFSET in the
2725 // section SHNDX. Return true if we found something, false if we
2726 // found nothing.
2727
2728 template<int size, bool big_endian>
2729 bool
2730 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2731 unsigned int shndx,
2732 off_t offset,
2733 Symbol_location_info* info)
2734 {
2735 if (this->symtab_shndx_ == 0)
2736 return false;
2737
2738 section_size_type symbols_size;
2739 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2740 &symbols_size,
2741 false);
2742
2743 unsigned int symbol_names_shndx =
2744 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2745 section_size_type names_size;
2746 const unsigned char* symbol_names_u =
2747 this->section_contents(symbol_names_shndx, &names_size, false);
2748 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2749
2750 const int sym_size = This::sym_size;
2751 const size_t count = symbols_size / sym_size;
2752
2753 const unsigned char* p = symbols;
2754 for (size_t i = 0; i < count; ++i, p += sym_size)
2755 {
2756 elfcpp::Sym<size, big_endian> sym(p);
2757
2758 if (sym.get_st_type() == elfcpp::STT_FILE)
2759 {
2760 if (sym.get_st_name() >= names_size)
2761 info->source_file = "(invalid)";
2762 else
2763 info->source_file = symbol_names + sym.get_st_name();
2764 continue;
2765 }
2766
2767 bool is_ordinary;
2768 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2769 &is_ordinary);
2770 if (is_ordinary
2771 && st_shndx == shndx
2772 && static_cast<off_t>(sym.get_st_value()) <= offset
2773 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2774 > offset))
2775 {
2776 info->enclosing_symbol_type = sym.get_st_type();
2777 if (sym.get_st_name() > names_size)
2778 info->enclosing_symbol_name = "(invalid)";
2779 else
2780 {
2781 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2782 if (parameters->options().do_demangle())
2783 {
2784 char* demangled_name = cplus_demangle(
2785 info->enclosing_symbol_name.c_str(),
2786 DMGL_ANSI | DMGL_PARAMS);
2787 if (demangled_name != NULL)
2788 {
2789 info->enclosing_symbol_name.assign(demangled_name);
2790 free(demangled_name);
2791 }
2792 }
2793 }
2794 return true;
2795 }
2796 }
2797
2798 return false;
2799 }
2800
2801 // Look for a kept section corresponding to the given discarded section,
2802 // and return its output address. This is used only for relocations in
2803 // debugging sections. If we can't find the kept section, return 0.
2804
2805 template<int size, bool big_endian>
2806 typename Sized_relobj_file<size, big_endian>::Address
2807 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2808 unsigned int shndx,
2809 bool* found) const
2810 {
2811 Relobj* kept_object;
2812 unsigned int kept_shndx;
2813 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2814 {
2815 Sized_relobj_file<size, big_endian>* kept_relobj =
2816 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2817 Output_section* os = kept_relobj->output_section(kept_shndx);
2818 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2819 if (os != NULL && offset != invalid_address)
2820 {
2821 *found = true;
2822 return os->address() + offset;
2823 }
2824 }
2825 *found = false;
2826 return 0;
2827 }
2828
2829 // Get symbol counts.
2830
2831 template<int size, bool big_endian>
2832 void
2833 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2834 const Symbol_table*,
2835 size_t* defined,
2836 size_t* used) const
2837 {
2838 *defined = this->defined_count_;
2839 size_t count = 0;
2840 for (typename Symbols::const_iterator p = this->symbols_.begin();
2841 p != this->symbols_.end();
2842 ++p)
2843 if (*p != NULL
2844 && (*p)->source() == Symbol::FROM_OBJECT
2845 && (*p)->object() == this
2846 && (*p)->is_defined())
2847 ++count;
2848 *used = count;
2849 }
2850
2851 // Return a view of the decompressed contents of a section. Set *PLEN
2852 // to the size. Set *IS_NEW to true if the contents need to be freed
2853 // by the caller.
2854
2855 const unsigned char*
2856 Object::decompressed_section_contents(
2857 unsigned int shndx,
2858 section_size_type* plen,
2859 bool* is_new)
2860 {
2861 section_size_type buffer_size;
2862 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2863 false);
2864
2865 if (this->compressed_sections_ == NULL)
2866 {
2867 *plen = buffer_size;
2868 *is_new = false;
2869 return buffer;
2870 }
2871
2872 Compressed_section_map::const_iterator p =
2873 this->compressed_sections_->find(shndx);
2874 if (p == this->compressed_sections_->end())
2875 {
2876 *plen = buffer_size;
2877 *is_new = false;
2878 return buffer;
2879 }
2880
2881 section_size_type uncompressed_size = p->second.size;
2882 if (p->second.contents != NULL)
2883 {
2884 *plen = uncompressed_size;
2885 *is_new = false;
2886 return p->second.contents;
2887 }
2888
2889 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2890 if (!decompress_input_section(buffer,
2891 buffer_size,
2892 uncompressed_data,
2893 uncompressed_size))
2894 this->error(_("could not decompress section %s"),
2895 this->do_section_name(shndx).c_str());
2896
2897 // We could cache the results in p->second.contents and store
2898 // false in *IS_NEW, but build_compressed_section_map() would
2899 // have done so if it had expected it to be profitable. If
2900 // we reach this point, we expect to need the contents only
2901 // once in this pass.
2902 *plen = uncompressed_size;
2903 *is_new = true;
2904 return uncompressed_data;
2905 }
2906
2907 // Discard any buffers of uncompressed sections. This is done
2908 // at the end of the Add_symbols task.
2909
2910 void
2911 Object::discard_decompressed_sections()
2912 {
2913 if (this->compressed_sections_ == NULL)
2914 return;
2915
2916 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2917 p != this->compressed_sections_->end();
2918 ++p)
2919 {
2920 if (p->second.contents != NULL)
2921 {
2922 delete[] p->second.contents;
2923 p->second.contents = NULL;
2924 }
2925 }
2926 }
2927
2928 // Input_objects methods.
2929
2930 // Add a regular relocatable object to the list. Return false if this
2931 // object should be ignored.
2932
2933 bool
2934 Input_objects::add_object(Object* obj)
2935 {
2936 // Print the filename if the -t/--trace option is selected.
2937 if (parameters->options().trace())
2938 gold_info("%s", obj->name().c_str());
2939
2940 if (!obj->is_dynamic())
2941 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2942 else
2943 {
2944 // See if this is a duplicate SONAME.
2945 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2946 const char* soname = dynobj->soname();
2947
2948 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2949 this->sonames_.insert(soname);
2950 if (!ins.second)
2951 {
2952 // We have already seen a dynamic object with this soname.
2953 return false;
2954 }
2955
2956 this->dynobj_list_.push_back(dynobj);
2957 }
2958
2959 // Add this object to the cross-referencer if requested.
2960 if (parameters->options().user_set_print_symbol_counts()
2961 || parameters->options().cref())
2962 {
2963 if (this->cref_ == NULL)
2964 this->cref_ = new Cref();
2965 this->cref_->add_object(obj);
2966 }
2967
2968 return true;
2969 }
2970
2971 // For each dynamic object, record whether we've seen all of its
2972 // explicit dependencies.
2973
2974 void
2975 Input_objects::check_dynamic_dependencies() const
2976 {
2977 bool issued_copy_dt_needed_error = false;
2978 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2979 p != this->dynobj_list_.end();
2980 ++p)
2981 {
2982 const Dynobj::Needed& needed((*p)->needed());
2983 bool found_all = true;
2984 Dynobj::Needed::const_iterator pneeded;
2985 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2986 {
2987 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2988 {
2989 found_all = false;
2990 break;
2991 }
2992 }
2993 (*p)->set_has_unknown_needed_entries(!found_all);
2994
2995 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2996 // that gold does not support. However, they cause no trouble
2997 // unless there is a DT_NEEDED entry that we don't know about;
2998 // warn only in that case.
2999 if (!found_all
3000 && !issued_copy_dt_needed_error
3001 && (parameters->options().copy_dt_needed_entries()
3002 || parameters->options().add_needed()))
3003 {
3004 const char* optname;
3005 if (parameters->options().copy_dt_needed_entries())
3006 optname = "--copy-dt-needed-entries";
3007 else
3008 optname = "--add-needed";
3009 gold_error(_("%s is not supported but is required for %s in %s"),
3010 optname, (*pneeded).c_str(), (*p)->name().c_str());
3011 issued_copy_dt_needed_error = true;
3012 }
3013 }
3014 }
3015
3016 // Start processing an archive.
3017
3018 void
3019 Input_objects::archive_start(Archive* archive)
3020 {
3021 if (parameters->options().user_set_print_symbol_counts()
3022 || parameters->options().cref())
3023 {
3024 if (this->cref_ == NULL)
3025 this->cref_ = new Cref();
3026 this->cref_->add_archive_start(archive);
3027 }
3028 }
3029
3030 // Stop processing an archive.
3031
3032 void
3033 Input_objects::archive_stop(Archive* archive)
3034 {
3035 if (parameters->options().user_set_print_symbol_counts()
3036 || parameters->options().cref())
3037 this->cref_->add_archive_stop(archive);
3038 }
3039
3040 // Print symbol counts
3041
3042 void
3043 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3044 {
3045 if (parameters->options().user_set_print_symbol_counts()
3046 && this->cref_ != NULL)
3047 this->cref_->print_symbol_counts(symtab);
3048 }
3049
3050 // Print a cross reference table.
3051
3052 void
3053 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3054 {
3055 if (parameters->options().cref() && this->cref_ != NULL)
3056 this->cref_->print_cref(symtab, f);
3057 }
3058
3059 // Relocate_info methods.
3060
3061 // Return a string describing the location of a relocation when file
3062 // and lineno information is not available. This is only used in
3063 // error messages.
3064
3065 template<int size, bool big_endian>
3066 std::string
3067 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3068 {
3069 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3070 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3071 if (!ret.empty())
3072 return ret;
3073
3074 ret = this->object->name();
3075
3076 Symbol_location_info info;
3077 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3078 {
3079 if (!info.source_file.empty())
3080 {
3081 ret += ":";
3082 ret += info.source_file;
3083 }
3084 ret += ":";
3085 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3086 ret += _("function ");
3087 ret += info.enclosing_symbol_name;
3088 return ret;
3089 }
3090
3091 ret += "(";
3092 ret += this->object->section_name(this->data_shndx);
3093 char buf[100];
3094 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3095 ret += buf;
3096 return ret;
3097 }
3098
3099 } // End namespace gold.
3100
3101 namespace
3102 {
3103
3104 using namespace gold;
3105
3106 // Read an ELF file with the header and return the appropriate
3107 // instance of Object.
3108
3109 template<int size, bool big_endian>
3110 Object*
3111 make_elf_sized_object(const std::string& name, Input_file* input_file,
3112 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3113 bool* punconfigured)
3114 {
3115 Target* target = select_target(input_file, offset,
3116 ehdr.get_e_machine(), size, big_endian,
3117 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3118 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3119 if (target == NULL)
3120 gold_fatal(_("%s: unsupported ELF machine number %d"),
3121 name.c_str(), ehdr.get_e_machine());
3122
3123 if (!parameters->target_valid())
3124 set_parameters_target(target);
3125 else if (target != &parameters->target())
3126 {
3127 if (punconfigured != NULL)
3128 *punconfigured = true;
3129 else
3130 gold_error(_("%s: incompatible target"), name.c_str());
3131 return NULL;
3132 }
3133
3134 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3135 ehdr);
3136 }
3137
3138 } // End anonymous namespace.
3139
3140 namespace gold
3141 {
3142
3143 // Return whether INPUT_FILE is an ELF object.
3144
3145 bool
3146 is_elf_object(Input_file* input_file, off_t offset,
3147 const unsigned char** start, int* read_size)
3148 {
3149 off_t filesize = input_file->file().filesize();
3150 int want = elfcpp::Elf_recognizer::max_header_size;
3151 if (filesize - offset < want)
3152 want = filesize - offset;
3153
3154 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3155 true, false);
3156 *start = p;
3157 *read_size = want;
3158
3159 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3160 }
3161
3162 // Read an ELF file and return the appropriate instance of Object.
3163
3164 Object*
3165 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3166 const unsigned char* p, section_offset_type bytes,
3167 bool* punconfigured)
3168 {
3169 if (punconfigured != NULL)
3170 *punconfigured = false;
3171
3172 std::string error;
3173 bool big_endian = false;
3174 int size = 0;
3175 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3176 &big_endian, &error))
3177 {
3178 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3179 return NULL;
3180 }
3181
3182 if (size == 32)
3183 {
3184 if (big_endian)
3185 {
3186 #ifdef HAVE_TARGET_32_BIG
3187 elfcpp::Ehdr<32, true> ehdr(p);
3188 return make_elf_sized_object<32, true>(name, input_file,
3189 offset, ehdr, punconfigured);
3190 #else
3191 if (punconfigured != NULL)
3192 *punconfigured = true;
3193 else
3194 gold_error(_("%s: not configured to support "
3195 "32-bit big-endian object"),
3196 name.c_str());
3197 return NULL;
3198 #endif
3199 }
3200 else
3201 {
3202 #ifdef HAVE_TARGET_32_LITTLE
3203 elfcpp::Ehdr<32, false> ehdr(p);
3204 return make_elf_sized_object<32, false>(name, input_file,
3205 offset, ehdr, punconfigured);
3206 #else
3207 if (punconfigured != NULL)
3208 *punconfigured = true;
3209 else
3210 gold_error(_("%s: not configured to support "
3211 "32-bit little-endian object"),
3212 name.c_str());
3213 return NULL;
3214 #endif
3215 }
3216 }
3217 else if (size == 64)
3218 {
3219 if (big_endian)
3220 {
3221 #ifdef HAVE_TARGET_64_BIG
3222 elfcpp::Ehdr<64, true> ehdr(p);
3223 return make_elf_sized_object<64, true>(name, input_file,
3224 offset, ehdr, punconfigured);
3225 #else
3226 if (punconfigured != NULL)
3227 *punconfigured = true;
3228 else
3229 gold_error(_("%s: not configured to support "
3230 "64-bit big-endian object"),
3231 name.c_str());
3232 return NULL;
3233 #endif
3234 }
3235 else
3236 {
3237 #ifdef HAVE_TARGET_64_LITTLE
3238 elfcpp::Ehdr<64, false> ehdr(p);
3239 return make_elf_sized_object<64, false>(name, input_file,
3240 offset, ehdr, punconfigured);
3241 #else
3242 if (punconfigured != NULL)
3243 *punconfigured = true;
3244 else
3245 gold_error(_("%s: not configured to support "
3246 "64-bit little-endian object"),
3247 name.c_str());
3248 return NULL;
3249 #endif
3250 }
3251 }
3252 else
3253 gold_unreachable();
3254 }
3255
3256 // Instantiate the templates we need.
3257
3258 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3259 template
3260 void
3261 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3262 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3263 Unordered_map<section_offset_type,
3264 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3265 #endif
3266
3267 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3268 template
3269 void
3270 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3271 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3272 Unordered_map<section_offset_type,
3273 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3274 #endif
3275
3276 #ifdef HAVE_TARGET_32_LITTLE
3277 template
3278 void
3279 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3280 Read_symbols_data*);
3281 template
3282 const unsigned char*
3283 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3284 section_size_type, const unsigned char*) const;
3285 #endif
3286
3287 #ifdef HAVE_TARGET_32_BIG
3288 template
3289 void
3290 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3291 Read_symbols_data*);
3292 template
3293 const unsigned char*
3294 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3295 section_size_type, const unsigned char*) const;
3296 #endif
3297
3298 #ifdef HAVE_TARGET_64_LITTLE
3299 template
3300 void
3301 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3302 Read_symbols_data*);
3303 template
3304 const unsigned char*
3305 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3306 section_size_type, const unsigned char*) const;
3307 #endif
3308
3309 #ifdef HAVE_TARGET_64_BIG
3310 template
3311 void
3312 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3313 Read_symbols_data*);
3314 template
3315 const unsigned char*
3316 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3317 section_size_type, const unsigned char*) const;
3318 #endif
3319
3320 #ifdef HAVE_TARGET_32_LITTLE
3321 template
3322 class Sized_relobj<32, false>;
3323
3324 template
3325 class Sized_relobj_file<32, false>;
3326 #endif
3327
3328 #ifdef HAVE_TARGET_32_BIG
3329 template
3330 class Sized_relobj<32, true>;
3331
3332 template
3333 class Sized_relobj_file<32, true>;
3334 #endif
3335
3336 #ifdef HAVE_TARGET_64_LITTLE
3337 template
3338 class Sized_relobj<64, false>;
3339
3340 template
3341 class Sized_relobj_file<64, false>;
3342 #endif
3343
3344 #ifdef HAVE_TARGET_64_BIG
3345 template
3346 class Sized_relobj<64, true>;
3347
3348 template
3349 class Sized_relobj_file<64, true>;
3350 #endif
3351
3352 #ifdef HAVE_TARGET_32_LITTLE
3353 template
3354 struct Relocate_info<32, false>;
3355 #endif
3356
3357 #ifdef HAVE_TARGET_32_BIG
3358 template
3359 struct Relocate_info<32, true>;
3360 #endif
3361
3362 #ifdef HAVE_TARGET_64_LITTLE
3363 template
3364 struct Relocate_info<64, false>;
3365 #endif
3366
3367 #ifdef HAVE_TARGET_64_BIG
3368 template
3369 struct Relocate_info<64, true>;
3370 #endif
3371
3372 #ifdef HAVE_TARGET_32_LITTLE
3373 template
3374 void
3375 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3376
3377 template
3378 void
3379 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3380 const unsigned char*);
3381 #endif
3382
3383 #ifdef HAVE_TARGET_32_BIG
3384 template
3385 void
3386 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3387
3388 template
3389 void
3390 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3391 const unsigned char*);
3392 #endif
3393
3394 #ifdef HAVE_TARGET_64_LITTLE
3395 template
3396 void
3397 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3398
3399 template
3400 void
3401 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3402 const unsigned char*);
3403 #endif
3404
3405 #ifdef HAVE_TARGET_64_BIG
3406 template
3407 void
3408 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3409
3410 template
3411 void
3412 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3413 const unsigned char*);
3414 #endif
3415
3416 } // End namespace gold.
This page took 0.100721 seconds and 5 git commands to generate.