Add support for .note.gnu.property sections.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_(),
482 output_views_(NULL)
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == parameters->target().unwind_section_type())
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 if (is_zcompressed)
755 {
756 // Skip over the ".zdebug" prefix.
757 name += 7;
758 uncompressed_size = get_uncompressed_size(contents, len);
759 }
760 else
761 {
762 // Skip over the ".debug" prefix.
763 name += 6;
764 elfcpp::Chdr<size, big_endian> chdr(contents);
765 uncompressed_size = chdr.get_ch_size();
766 }
767 Compressed_section_info info;
768 info.size = convert_to_section_size_type(uncompressed_size);
769 info.flag = shdr.get_sh_flags();
770 info.contents = NULL;
771 if (uncompressed_size != -1ULL)
772 {
773 unsigned char* uncompressed_data = NULL;
774 if (decompress_if_needed && need_decompressed_section(name))
775 {
776 uncompressed_data = new unsigned char[uncompressed_size];
777 if (decompress_input_section(contents, len,
778 uncompressed_data,
779 uncompressed_size,
780 size, big_endian,
781 shdr.get_sh_flags()))
782 info.contents = uncompressed_data;
783 else
784 delete[] uncompressed_data;
785 }
786 (*uncompressed_map)[i] = info;
787 }
788 }
789 }
790 }
791 return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800 Read_symbols_data* sd)
801 {
802 const unsigned char* const pshdrs = sd->section_headers->data();
803 const unsigned char* namesu = sd->section_names->data();
804 const char* names = reinterpret_cast<const char*>(namesu);
805
806 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807 this->has_eh_frame_ = true;
808
809 Compressed_section_map* compressed_sections =
810 build_compressed_section_map<size, big_endian>(
811 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812 if (compressed_sections != NULL)
813 this->set_compressed_sections(compressed_sections);
814
815 return (this->has_eh_frame_
816 || (!parameters->options().relocatable()
817 && parameters->options().gdb_index()
818 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819 || memmem(names, sd->section_names_size,
820 "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829 this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file. This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839 this->read_section_data(&this->elf_file_, sd);
840
841 const unsigned char* const pshdrs = sd->section_headers->data();
842
843 this->find_symtab(pshdrs);
844
845 bool need_local_symbols = this->do_find_special_sections(sd);
846
847 sd->symbols = NULL;
848 sd->symbols_size = 0;
849 sd->external_symbols_offset = 0;
850 sd->symbol_names = NULL;
851 sd->symbol_names_size = 0;
852
853 if (this->symtab_shndx_ == 0)
854 {
855 // No symbol table. Weird but legal.
856 return;
857 }
858
859 // Get the symbol table section header.
860 typename This::Shdr symtabshdr(pshdrs
861 + this->symtab_shndx_ * This::shdr_size);
862 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864 // If this object has a .eh_frame section, or if building a .gdb_index
865 // section and there is debug info, we need all the symbols.
866 // Otherwise we only need the external symbols. While it would be
867 // simpler to just always read all the symbols, I've seen object
868 // files with well over 2000 local symbols, which for a 64-bit
869 // object file format is over 5 pages that we don't need to read
870 // now.
871
872 const int sym_size = This::sym_size;
873 const unsigned int loccount = symtabshdr.get_sh_info();
874 this->local_symbol_count_ = loccount;
875 this->local_values_.resize(loccount);
876 section_offset_type locsize = loccount * sym_size;
877 off_t dataoff = symtabshdr.get_sh_offset();
878 section_size_type datasize =
879 convert_to_section_size_type(symtabshdr.get_sh_size());
880 off_t extoff = dataoff + locsize;
881 section_size_type extsize = datasize - locsize;
882
883 off_t readoff = need_local_symbols ? dataoff : extoff;
884 section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886 if (readsize == 0)
887 {
888 // No external symbols. Also weird but also legal.
889 return;
890 }
891
892 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894 // Read the section header for the symbol names.
895 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896 if (strtab_shndx >= this->shnum())
897 {
898 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899 return;
900 }
901 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903 {
904 this->error(_("symbol table name section has wrong type: %u"),
905 static_cast<unsigned int>(strtabshdr.get_sh_type()));
906 return;
907 }
908
909 // Read the symbol names.
910 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911 strtabshdr.get_sh_size(),
912 false, true);
913
914 sd->symbols = fvsymtab;
915 sd->symbols_size = readsize;
916 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917 sd->symbol_names = fvstrtab;
918 sd->symbol_names_size =
919 convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM. Set *VALUE to its value in
923 // the object file. Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932 Address* value,
933 bool* is_ordinary)
934 {
935 section_size_type symbols_size;
936 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937 &symbols_size,
938 false);
939
940 const size_t count = symbols_size / This::sym_size;
941 gold_assert(sym < count);
942
943 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944 *value = elfsym.get_st_value();
945
946 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link. LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header. If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958 Symbol_table* symtab,
959 Layout* layout,
960 unsigned int index,
961 const char* name,
962 const unsigned char* shdrs,
963 const char* section_names,
964 section_size_type section_names_size,
965 std::vector<bool>* omit)
966 {
967 // Read the section contents.
968 typename This::Shdr shdr(shdrs + index * This::shdr_size);
969 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970 shdr.get_sh_size(), true, false);
971 const elfcpp::Elf_Word* pword =
972 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974 // The first word contains flags. We only care about COMDAT section
975 // groups. Other section groups are always included in the link
976 // just like ordinary sections.
977 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979 // Look up the group signature, which is the name of a symbol. ELF
980 // uses a symbol name because some group signatures are long, and
981 // the name is generally already in the symbol table, so it makes
982 // sense to put the long string just once in .strtab rather than in
983 // both .strtab and .shstrtab.
984
985 // Get the appropriate symbol table header (this will normally be
986 // the single SHT_SYMTAB section, but in principle it need not be).
987 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990 // Read the symbol table entry.
991 unsigned int symndx = shdr.get_sh_info();
992 if (symndx >= symshdr.get_sh_size() / This::sym_size)
993 {
994 this->error(_("section group %u info %u out of range"),
995 index, symndx);
996 return false;
997 }
998 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000 false);
1001 elfcpp::Sym<size, big_endian> sym(psym);
1002
1003 // Read the symbol table names.
1004 section_size_type symnamelen;
1005 const unsigned char* psymnamesu;
1006 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007 &symnamelen, true);
1008 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010 // Get the section group signature.
1011 if (sym.get_st_name() >= symnamelen)
1012 {
1013 this->error(_("symbol %u name offset %u out of range"),
1014 symndx, sym.get_st_name());
1015 return false;
1016 }
1017
1018 std::string signature(psymnames + sym.get_st_name());
1019
1020 // It seems that some versions of gas will create a section group
1021 // associated with a section symbol, and then fail to give a name to
1022 // the section symbol. In such a case, use the name of the section.
1023 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024 {
1025 bool is_ordinary;
1026 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027 sym.get_st_shndx(),
1028 &is_ordinary);
1029 if (!is_ordinary || sym_shndx >= this->shnum())
1030 {
1031 this->error(_("symbol %u invalid section index %u"),
1032 symndx, sym_shndx);
1033 return false;
1034 }
1035 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036 if (member_shdr.get_sh_name() < section_names_size)
1037 signature = section_names + member_shdr.get_sh_name();
1038 }
1039
1040 // Record this section group in the layout, and see whether we've already
1041 // seen one with the same signature.
1042 bool include_group;
1043 bool is_comdat;
1044 Kept_section* kept_section = NULL;
1045
1046 if ((flags & elfcpp::GRP_COMDAT) == 0)
1047 {
1048 include_group = true;
1049 is_comdat = false;
1050 }
1051 else
1052 {
1053 include_group = layout->find_or_add_kept_section(signature,
1054 this, index, true,
1055 true, &kept_section);
1056 is_comdat = true;
1057 }
1058
1059 if (is_comdat && include_group)
1060 {
1061 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062 if (incremental_inputs != NULL)
1063 incremental_inputs->report_comdat_group(this, signature.c_str());
1064 }
1065
1066 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068 std::vector<unsigned int> shndxes;
1069 bool relocate_group = include_group && parameters->options().relocatable();
1070 if (relocate_group)
1071 shndxes.reserve(count - 1);
1072
1073 for (size_t i = 1; i < count; ++i)
1074 {
1075 elfcpp::Elf_Word shndx =
1076 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078 if (relocate_group)
1079 shndxes.push_back(shndx);
1080
1081 if (shndx >= this->shnum())
1082 {
1083 this->error(_("section %u in section group %u out of range"),
1084 shndx, index);
1085 continue;
1086 }
1087
1088 // Check for an earlier section number, since we're going to get
1089 // it wrong--we may have already decided to include the section.
1090 if (shndx < index)
1091 this->error(_("invalid section group %u refers to earlier section %u"),
1092 index, shndx);
1093
1094 // Get the name of the member section.
1095 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096 if (member_shdr.get_sh_name() >= section_names_size)
1097 {
1098 // This is an error, but it will be diagnosed eventually
1099 // in do_layout, so we don't need to do anything here but
1100 // ignore it.
1101 continue;
1102 }
1103 std::string mname(section_names + member_shdr.get_sh_name());
1104
1105 if (include_group)
1106 {
1107 if (is_comdat)
1108 kept_section->add_comdat_section(mname, shndx,
1109 member_shdr.get_sh_size());
1110 }
1111 else
1112 {
1113 (*omit)[shndx] = true;
1114
1115 // Store a mapping from this section to the Kept_section
1116 // information for the group. This mapping is used for
1117 // relocation processing and diagnostics.
1118 // If the kept section is a linkonce section, we don't
1119 // bother with it unless the comdat group contains just
1120 // a single section, making it easy to match up.
1121 if (is_comdat
1122 && (kept_section->is_comdat() || count == 2))
1123 this->set_kept_comdat_section(shndx, true, symndx,
1124 member_shdr.get_sh_size(),
1125 kept_section);
1126 }
1127 }
1128
1129 if (relocate_group)
1130 layout->layout_group(symtab, this, index, name, signature.c_str(),
1131 shdr, flags, &shndxes);
1132
1133 return include_group;
1134 }
1135
1136 // Whether to include a linkonce section in the link. NAME is the
1137 // name of the section and SHDR is the section header.
1138
1139 // Linkonce sections are a GNU extension implemented in the original
1140 // GNU linker before section groups were defined. The semantics are
1141 // that we only include one linkonce section with a given name. The
1142 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1143 // where T is the type of section and SYMNAME is the name of a symbol.
1144 // In an attempt to make linkonce sections interact well with section
1145 // groups, we try to identify SYMNAME and use it like a section group
1146 // signature. We want to block section groups with that signature,
1147 // but not other linkonce sections with that signature. We also use
1148 // the full name of the linkonce section as a normal section group
1149 // signature.
1150
1151 template<int size, bool big_endian>
1152 bool
1153 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1154 Layout* layout,
1155 unsigned int index,
1156 const char* name,
1157 const elfcpp::Shdr<size, big_endian>& shdr)
1158 {
1159 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1160 // In general the symbol name we want will be the string following
1161 // the last '.'. However, we have to handle the case of
1162 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1163 // some versions of gcc. So we use a heuristic: if the name starts
1164 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1165 // we look for the last '.'. We can't always simply skip
1166 // ".gnu.linkonce.X", because we have to deal with cases like
1167 // ".gnu.linkonce.d.rel.ro.local".
1168 const char* const linkonce_t = ".gnu.linkonce.t.";
1169 const char* symname;
1170 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1171 symname = name + strlen(linkonce_t);
1172 else
1173 symname = strrchr(name, '.') + 1;
1174 std::string sig1(symname);
1175 std::string sig2(name);
1176 Kept_section* kept1;
1177 Kept_section* kept2;
1178 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1179 false, &kept1);
1180 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1181 true, &kept2);
1182
1183 if (!include2)
1184 {
1185 // We are not including this section because we already saw the
1186 // name of the section as a signature. This normally implies
1187 // that the kept section is another linkonce section. If it is
1188 // the same size, record it as the section which corresponds to
1189 // this one.
1190 if (kept2->object() != NULL && !kept2->is_comdat())
1191 this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1192 }
1193 else if (!include1)
1194 {
1195 // The section is being discarded on the basis of its symbol
1196 // name. This means that the corresponding kept section was
1197 // part of a comdat group, and it will be difficult to identify
1198 // the specific section within that group that corresponds to
1199 // this linkonce section. We'll handle the simple case where
1200 // the group has only one member section. Otherwise, it's not
1201 // worth the effort.
1202 if (kept1->object() != NULL && kept1->is_comdat())
1203 this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1204 }
1205 else
1206 {
1207 kept1->set_linkonce_size(sh_size);
1208 kept2->set_linkonce_size(sh_size);
1209 }
1210
1211 return include1 && include2;
1212 }
1213
1214 // Layout an input section.
1215
1216 template<int size, bool big_endian>
1217 inline void
1218 Sized_relobj_file<size, big_endian>::layout_section(
1219 Layout* layout,
1220 unsigned int shndx,
1221 const char* name,
1222 const typename This::Shdr& shdr,
1223 unsigned int sh_type,
1224 unsigned int reloc_shndx,
1225 unsigned int reloc_type)
1226 {
1227 off_t offset;
1228 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1229 reloc_shndx, reloc_type, &offset);
1230
1231 this->output_sections()[shndx] = os;
1232 if (offset == -1)
1233 this->section_offsets()[shndx] = invalid_address;
1234 else
1235 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1236
1237 // If this section requires special handling, and if there are
1238 // relocs that apply to it, then we must do the special handling
1239 // before we apply the relocs.
1240 if (offset == -1 && reloc_shndx != 0)
1241 this->set_relocs_must_follow_section_writes();
1242 }
1243
1244 // Layout an input .eh_frame section.
1245
1246 template<int size, bool big_endian>
1247 void
1248 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1249 Layout* layout,
1250 const unsigned char* symbols_data,
1251 section_size_type symbols_size,
1252 const unsigned char* symbol_names_data,
1253 section_size_type symbol_names_size,
1254 unsigned int shndx,
1255 const typename This::Shdr& shdr,
1256 unsigned int reloc_shndx,
1257 unsigned int reloc_type)
1258 {
1259 gold_assert(this->has_eh_frame_);
1260
1261 off_t offset;
1262 Output_section* os = layout->layout_eh_frame(this,
1263 symbols_data,
1264 symbols_size,
1265 symbol_names_data,
1266 symbol_names_size,
1267 shndx,
1268 shdr,
1269 reloc_shndx,
1270 reloc_type,
1271 &offset);
1272 this->output_sections()[shndx] = os;
1273 if (os == NULL || offset == -1)
1274 this->section_offsets()[shndx] = invalid_address;
1275 else
1276 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1277
1278 // If this section requires special handling, and if there are
1279 // relocs that aply to it, then we must do the special handling
1280 // before we apply the relocs.
1281 if (os != NULL && offset == -1 && reloc_shndx != 0)
1282 this->set_relocs_must_follow_section_writes();
1283 }
1284
1285 // Layout an input .note.gnu.property section.
1286
1287 // This note section has an *extremely* non-standard layout.
1288 // The gABI spec says that ELF-64 files should have 8-byte fields and
1289 // 8-byte alignment in the note section, but the Gnu tools generally
1290 // use 4-byte fields and 4-byte alignment (see the comment for
1291 // Layout::create_note). This section uses 4-byte fields (i.e.,
1292 // namesz, descsz, and type are always 4 bytes), the name field is
1293 // padded to a multiple of 4 bytes, but the desc field is padded
1294 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1295 // The individual properties within the desc field always use
1296 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1297 // a multiple of 4 or 8 bytes, depending on the ELF class.
1298
1299 template<int size, bool big_endian>
1300 void
1301 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1302 Layout* layout,
1303 unsigned int shndx)
1304 {
1305 section_size_type contents_len;
1306 const unsigned char* pcontents = this->section_contents(shndx,
1307 &contents_len,
1308 false);
1309 const unsigned char* pcontents_end = pcontents + contents_len;
1310
1311 // Loop over all the notes in this section.
1312 while (pcontents < pcontents_end)
1313 {
1314 if (pcontents + 16 > pcontents_end)
1315 {
1316 gold_warning(_("%s: corrupt .note.gnu.property section "
1317 "(note too short)"),
1318 this->name().c_str());
1319 return;
1320 }
1321
1322 size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1323 size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1324 unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1325 const unsigned char* pname = pcontents + 12;
1326
1327 if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1328 {
1329 gold_warning(_("%s: corrupt .note.gnu.property section "
1330 "(name is not 'GNU')"),
1331 this->name().c_str());
1332 return;
1333 }
1334
1335 if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1336 {
1337 gold_warning(_("%s: unsupported note type %d "
1338 "in .note.gnu.property section"),
1339 this->name().c_str(), ntype);
1340 return;
1341 }
1342
1343 size_t aligned_namesz = align_address(namesz, 4);
1344 const unsigned char* pdesc = pname + aligned_namesz;
1345
1346 if (pdesc + descsz > pcontents + contents_len)
1347 {
1348 gold_warning(_("%s: corrupt .note.gnu.property section"),
1349 this->name().c_str());
1350 return;
1351 }
1352
1353 const unsigned char* pprop = pdesc;
1354
1355 // Loop over the program properties in this note.
1356 while (pprop < pdesc + descsz)
1357 {
1358 if (pprop + 8 > pdesc + descsz)
1359 {
1360 gold_warning(_("%s: corrupt .note.gnu.property section"),
1361 this->name().c_str());
1362 return;
1363 }
1364 unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1365 size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1366 pprop += 8;
1367 if (pprop + pr_datasz > pdesc + descsz)
1368 {
1369 gold_warning(_("%s: corrupt .note.gnu.property section"),
1370 this->name().c_str());
1371 return;
1372 }
1373 layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1374 pprop += align_address(pr_datasz, size / 8);
1375 }
1376
1377 pcontents = pdesc + align_address(descsz, size / 8);
1378 }
1379 }
1380
1381 // Lay out the input sections. We walk through the sections and check
1382 // whether they should be included in the link. If they should, we
1383 // pass them to the Layout object, which will return an output section
1384 // and an offset.
1385 // This function is called twice sometimes, two passes, when mapping
1386 // of input sections to output sections must be delayed.
1387 // This is true for the following :
1388 // * Garbage collection (--gc-sections): Some input sections will be
1389 // discarded and hence the assignment must wait until the second pass.
1390 // In the first pass, it is for setting up some sections as roots to
1391 // a work-list for --gc-sections and to do comdat processing.
1392 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1393 // will be folded and hence the assignment must wait.
1394 // * Using plugins to map some sections to unique segments: Mapping
1395 // some sections to unique segments requires mapping them to unique
1396 // output sections too. This can be done via plugins now and this
1397 // information is not available in the first pass.
1398
1399 template<int size, bool big_endian>
1400 void
1401 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1402 Layout* layout,
1403 Read_symbols_data* sd)
1404 {
1405 const unsigned int unwind_section_type =
1406 parameters->target().unwind_section_type();
1407 const unsigned int shnum = this->shnum();
1408
1409 /* Should this function be called twice? */
1410 bool is_two_pass = (parameters->options().gc_sections()
1411 || parameters->options().icf_enabled()
1412 || layout->is_unique_segment_for_sections_specified());
1413
1414 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1415 a two-pass approach is not needed. */
1416 bool is_pass_one = false;
1417 bool is_pass_two = false;
1418
1419 Symbols_data* gc_sd = NULL;
1420
1421 /* Check if do_layout needs to be two-pass. If so, find out which pass
1422 should happen. In the first pass, the data in sd is saved to be used
1423 later in the second pass. */
1424 if (is_two_pass)
1425 {
1426 gc_sd = this->get_symbols_data();
1427 if (gc_sd == NULL)
1428 {
1429 gold_assert(sd != NULL);
1430 is_pass_one = true;
1431 }
1432 else
1433 {
1434 if (parameters->options().gc_sections())
1435 gold_assert(symtab->gc()->is_worklist_ready());
1436 if (parameters->options().icf_enabled())
1437 gold_assert(symtab->icf()->is_icf_ready());
1438 is_pass_two = true;
1439 }
1440 }
1441
1442 if (shnum == 0)
1443 return;
1444
1445 if (is_pass_one)
1446 {
1447 // During garbage collection save the symbols data to use it when
1448 // re-entering this function.
1449 gc_sd = new Symbols_data;
1450 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1451 this->set_symbols_data(gc_sd);
1452 }
1453
1454 const unsigned char* section_headers_data = NULL;
1455 section_size_type section_names_size;
1456 const unsigned char* symbols_data = NULL;
1457 section_size_type symbols_size;
1458 const unsigned char* symbol_names_data = NULL;
1459 section_size_type symbol_names_size;
1460
1461 if (is_two_pass)
1462 {
1463 section_headers_data = gc_sd->section_headers_data;
1464 section_names_size = gc_sd->section_names_size;
1465 symbols_data = gc_sd->symbols_data;
1466 symbols_size = gc_sd->symbols_size;
1467 symbol_names_data = gc_sd->symbol_names_data;
1468 symbol_names_size = gc_sd->symbol_names_size;
1469 }
1470 else
1471 {
1472 section_headers_data = sd->section_headers->data();
1473 section_names_size = sd->section_names_size;
1474 if (sd->symbols != NULL)
1475 symbols_data = sd->symbols->data();
1476 symbols_size = sd->symbols_size;
1477 if (sd->symbol_names != NULL)
1478 symbol_names_data = sd->symbol_names->data();
1479 symbol_names_size = sd->symbol_names_size;
1480 }
1481
1482 // Get the section headers.
1483 const unsigned char* shdrs = section_headers_data;
1484 const unsigned char* pshdrs;
1485
1486 // Get the section names.
1487 const unsigned char* pnamesu = (is_two_pass
1488 ? gc_sd->section_names_data
1489 : sd->section_names->data());
1490
1491 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1492
1493 // If any input files have been claimed by plugins, we need to defer
1494 // actual layout until the replacement files have arrived.
1495 const bool should_defer_layout =
1496 (parameters->options().has_plugins()
1497 && parameters->options().plugins()->should_defer_layout());
1498 unsigned int num_sections_to_defer = 0;
1499
1500 // For each section, record the index of the reloc section if any.
1501 // Use 0 to mean that there is no reloc section, -1U to mean that
1502 // there is more than one.
1503 std::vector<unsigned int> reloc_shndx(shnum, 0);
1504 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1505 // Skip the first, dummy, section.
1506 pshdrs = shdrs + This::shdr_size;
1507 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1508 {
1509 typename This::Shdr shdr(pshdrs);
1510
1511 // Count the number of sections whose layout will be deferred.
1512 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1513 ++num_sections_to_defer;
1514
1515 unsigned int sh_type = shdr.get_sh_type();
1516 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1517 {
1518 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1519 if (target_shndx == 0 || target_shndx >= shnum)
1520 {
1521 this->error(_("relocation section %u has bad info %u"),
1522 i, target_shndx);
1523 continue;
1524 }
1525
1526 if (reloc_shndx[target_shndx] != 0)
1527 reloc_shndx[target_shndx] = -1U;
1528 else
1529 {
1530 reloc_shndx[target_shndx] = i;
1531 reloc_type[target_shndx] = sh_type;
1532 }
1533 }
1534 }
1535
1536 Output_sections& out_sections(this->output_sections());
1537 std::vector<Address>& out_section_offsets(this->section_offsets());
1538
1539 if (!is_pass_two)
1540 {
1541 out_sections.resize(shnum);
1542 out_section_offsets.resize(shnum);
1543 }
1544
1545 // If we are only linking for symbols, then there is nothing else to
1546 // do here.
1547 if (this->input_file()->just_symbols())
1548 {
1549 if (!is_pass_two)
1550 {
1551 delete sd->section_headers;
1552 sd->section_headers = NULL;
1553 delete sd->section_names;
1554 sd->section_names = NULL;
1555 }
1556 return;
1557 }
1558
1559 if (num_sections_to_defer > 0)
1560 {
1561 parameters->options().plugins()->add_deferred_layout_object(this);
1562 this->deferred_layout_.reserve(num_sections_to_defer);
1563 this->is_deferred_layout_ = true;
1564 }
1565
1566 // Whether we've seen a .note.GNU-stack section.
1567 bool seen_gnu_stack = false;
1568 // The flags of a .note.GNU-stack section.
1569 uint64_t gnu_stack_flags = 0;
1570
1571 // Keep track of which sections to omit.
1572 std::vector<bool> omit(shnum, false);
1573
1574 // Keep track of reloc sections when emitting relocations.
1575 const bool relocatable = parameters->options().relocatable();
1576 const bool emit_relocs = (relocatable
1577 || parameters->options().emit_relocs());
1578 std::vector<unsigned int> reloc_sections;
1579
1580 // Keep track of .eh_frame sections.
1581 std::vector<unsigned int> eh_frame_sections;
1582
1583 // Keep track of .debug_info and .debug_types sections.
1584 std::vector<unsigned int> debug_info_sections;
1585 std::vector<unsigned int> debug_types_sections;
1586
1587 // Skip the first, dummy, section.
1588 pshdrs = shdrs + This::shdr_size;
1589 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1590 {
1591 typename This::Shdr shdr(pshdrs);
1592 const unsigned int sh_name = shdr.get_sh_name();
1593 unsigned int sh_type = shdr.get_sh_type();
1594
1595 if (sh_name >= section_names_size)
1596 {
1597 this->error(_("bad section name offset for section %u: %lu"),
1598 i, static_cast<unsigned long>(sh_name));
1599 return;
1600 }
1601
1602 const char* name = pnames + sh_name;
1603
1604 if (!is_pass_two)
1605 {
1606 if (this->handle_gnu_warning_section(name, i, symtab))
1607 {
1608 if (!relocatable && !parameters->options().shared())
1609 omit[i] = true;
1610 }
1611
1612 // The .note.GNU-stack section is special. It gives the
1613 // protection flags that this object file requires for the stack
1614 // in memory.
1615 if (strcmp(name, ".note.GNU-stack") == 0)
1616 {
1617 seen_gnu_stack = true;
1618 gnu_stack_flags |= shdr.get_sh_flags();
1619 omit[i] = true;
1620 }
1621
1622 // The .note.GNU-split-stack section is also special. It
1623 // indicates that the object was compiled with
1624 // -fsplit-stack.
1625 if (this->handle_split_stack_section(name))
1626 {
1627 if (!relocatable && !parameters->options().shared())
1628 omit[i] = true;
1629 }
1630
1631 // Skip attributes section.
1632 if (parameters->target().is_attributes_section(name))
1633 {
1634 omit[i] = true;
1635 }
1636
1637 // Handle .note.gnu.property sections.
1638 if (sh_type == elfcpp::SHT_NOTE
1639 && strcmp(name, ".note.gnu.property") == 0)
1640 {
1641 this->layout_gnu_property_section(layout, i);
1642 omit[i] = true;
1643 }
1644
1645 bool discard = omit[i];
1646 if (!discard)
1647 {
1648 if (sh_type == elfcpp::SHT_GROUP)
1649 {
1650 if (!this->include_section_group(symtab, layout, i, name,
1651 shdrs, pnames,
1652 section_names_size,
1653 &omit))
1654 discard = true;
1655 }
1656 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1657 && Layout::is_linkonce(name))
1658 {
1659 if (!this->include_linkonce_section(layout, i, name, shdr))
1660 discard = true;
1661 }
1662 }
1663
1664 // Add the section to the incremental inputs layout.
1665 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1666 if (incremental_inputs != NULL
1667 && !discard
1668 && can_incremental_update(sh_type))
1669 {
1670 off_t sh_size = shdr.get_sh_size();
1671 section_size_type uncompressed_size;
1672 if (this->section_is_compressed(i, &uncompressed_size))
1673 sh_size = uncompressed_size;
1674 incremental_inputs->report_input_section(this, i, name, sh_size);
1675 }
1676
1677 if (discard)
1678 {
1679 // Do not include this section in the link.
1680 out_sections[i] = NULL;
1681 out_section_offsets[i] = invalid_address;
1682 continue;
1683 }
1684 }
1685
1686 if (is_pass_one && parameters->options().gc_sections())
1687 {
1688 if (this->is_section_name_included(name)
1689 || layout->keep_input_section (this, name)
1690 || sh_type == elfcpp::SHT_INIT_ARRAY
1691 || sh_type == elfcpp::SHT_FINI_ARRAY)
1692 {
1693 symtab->gc()->worklist().push_back(Section_id(this, i));
1694 }
1695 // If the section name XXX can be represented as a C identifier
1696 // it cannot be discarded if there are references to
1697 // __start_XXX and __stop_XXX symbols. These need to be
1698 // specially handled.
1699 if (is_cident(name))
1700 {
1701 symtab->gc()->add_cident_section(name, Section_id(this, i));
1702 }
1703 }
1704
1705 // When doing a relocatable link we are going to copy input
1706 // reloc sections into the output. We only want to copy the
1707 // ones associated with sections which are not being discarded.
1708 // However, we don't know that yet for all sections. So save
1709 // reloc sections and process them later. Garbage collection is
1710 // not triggered when relocatable code is desired.
1711 if (emit_relocs
1712 && (sh_type == elfcpp::SHT_REL
1713 || sh_type == elfcpp::SHT_RELA))
1714 {
1715 reloc_sections.push_back(i);
1716 continue;
1717 }
1718
1719 if (relocatable && sh_type == elfcpp::SHT_GROUP)
1720 continue;
1721
1722 // The .eh_frame section is special. It holds exception frame
1723 // information that we need to read in order to generate the
1724 // exception frame header. We process these after all the other
1725 // sections so that the exception frame reader can reliably
1726 // determine which sections are being discarded, and discard the
1727 // corresponding information.
1728 if (this->check_eh_frame_flags(&shdr)
1729 && strcmp(name, ".eh_frame") == 0)
1730 {
1731 // If the target has a special unwind section type, let's
1732 // canonicalize it here.
1733 sh_type = unwind_section_type;
1734 if (!relocatable)
1735 {
1736 if (is_pass_one)
1737 {
1738 if (this->is_deferred_layout())
1739 out_sections[i] = reinterpret_cast<Output_section*>(2);
1740 else
1741 out_sections[i] = reinterpret_cast<Output_section*>(1);
1742 out_section_offsets[i] = invalid_address;
1743 }
1744 else if (this->is_deferred_layout())
1745 this->deferred_layout_.push_back(
1746 Deferred_layout(i, name, sh_type, pshdrs,
1747 reloc_shndx[i], reloc_type[i]));
1748 else
1749 eh_frame_sections.push_back(i);
1750 continue;
1751 }
1752 }
1753
1754 if (is_pass_two && parameters->options().gc_sections())
1755 {
1756 // This is executed during the second pass of garbage
1757 // collection. do_layout has been called before and some
1758 // sections have been already discarded. Simply ignore
1759 // such sections this time around.
1760 if (out_sections[i] == NULL)
1761 {
1762 gold_assert(out_section_offsets[i] == invalid_address);
1763 continue;
1764 }
1765 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1766 && symtab->gc()->is_section_garbage(this, i))
1767 {
1768 if (parameters->options().print_gc_sections())
1769 gold_info(_("%s: removing unused section from '%s'"
1770 " in file '%s'"),
1771 program_name, this->section_name(i).c_str(),
1772 this->name().c_str());
1773 out_sections[i] = NULL;
1774 out_section_offsets[i] = invalid_address;
1775 continue;
1776 }
1777 }
1778
1779 if (is_pass_two && parameters->options().icf_enabled())
1780 {
1781 if (out_sections[i] == NULL)
1782 {
1783 gold_assert(out_section_offsets[i] == invalid_address);
1784 continue;
1785 }
1786 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1787 && symtab->icf()->is_section_folded(this, i))
1788 {
1789 if (parameters->options().print_icf_sections())
1790 {
1791 Section_id folded =
1792 symtab->icf()->get_folded_section(this, i);
1793 Relobj* folded_obj =
1794 reinterpret_cast<Relobj*>(folded.first);
1795 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1796 "into '%s' in file '%s'"),
1797 program_name, this->section_name(i).c_str(),
1798 this->name().c_str(),
1799 folded_obj->section_name(folded.second).c_str(),
1800 folded_obj->name().c_str());
1801 }
1802 out_sections[i] = NULL;
1803 out_section_offsets[i] = invalid_address;
1804 continue;
1805 }
1806 }
1807
1808 // Defer layout here if input files are claimed by plugins. When gc
1809 // is turned on this function is called twice; we only want to do this
1810 // on the first pass.
1811 if (!is_pass_two
1812 && this->is_deferred_layout()
1813 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1814 {
1815 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1816 pshdrs,
1817 reloc_shndx[i],
1818 reloc_type[i]));
1819 // Put dummy values here; real values will be supplied by
1820 // do_layout_deferred_sections.
1821 out_sections[i] = reinterpret_cast<Output_section*>(2);
1822 out_section_offsets[i] = invalid_address;
1823 continue;
1824 }
1825
1826 // During gc_pass_two if a section that was previously deferred is
1827 // found, do not layout the section as layout_deferred_sections will
1828 // do it later from gold.cc.
1829 if (is_pass_two
1830 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1831 continue;
1832
1833 if (is_pass_one)
1834 {
1835 // This is during garbage collection. The out_sections are
1836 // assigned in the second call to this function.
1837 out_sections[i] = reinterpret_cast<Output_section*>(1);
1838 out_section_offsets[i] = invalid_address;
1839 }
1840 else
1841 {
1842 // When garbage collection is switched on the actual layout
1843 // only happens in the second call.
1844 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1845 reloc_type[i]);
1846
1847 // When generating a .gdb_index section, we do additional
1848 // processing of .debug_info and .debug_types sections after all
1849 // the other sections for the same reason as above.
1850 if (!relocatable
1851 && parameters->options().gdb_index()
1852 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1853 {
1854 if (strcmp(name, ".debug_info") == 0
1855 || strcmp(name, ".zdebug_info") == 0)
1856 debug_info_sections.push_back(i);
1857 else if (strcmp(name, ".debug_types") == 0
1858 || strcmp(name, ".zdebug_types") == 0)
1859 debug_types_sections.push_back(i);
1860 }
1861 }
1862 }
1863
1864 if (!is_pass_two)
1865 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1866
1867 // Handle the .eh_frame sections after the other sections.
1868 gold_assert(!is_pass_one || eh_frame_sections.empty());
1869 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1870 p != eh_frame_sections.end();
1871 ++p)
1872 {
1873 unsigned int i = *p;
1874 const unsigned char* pshdr;
1875 pshdr = section_headers_data + i * This::shdr_size;
1876 typename This::Shdr shdr(pshdr);
1877
1878 this->layout_eh_frame_section(layout,
1879 symbols_data,
1880 symbols_size,
1881 symbol_names_data,
1882 symbol_names_size,
1883 i,
1884 shdr,
1885 reloc_shndx[i],
1886 reloc_type[i]);
1887 }
1888
1889 // When doing a relocatable link handle the reloc sections at the
1890 // end. Garbage collection and Identical Code Folding is not
1891 // turned on for relocatable code.
1892 if (emit_relocs)
1893 this->size_relocatable_relocs();
1894
1895 gold_assert(!is_two_pass || reloc_sections.empty());
1896
1897 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1898 p != reloc_sections.end();
1899 ++p)
1900 {
1901 unsigned int i = *p;
1902 const unsigned char* pshdr;
1903 pshdr = section_headers_data + i * This::shdr_size;
1904 typename This::Shdr shdr(pshdr);
1905
1906 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1907 if (data_shndx >= shnum)
1908 {
1909 // We already warned about this above.
1910 continue;
1911 }
1912
1913 Output_section* data_section = out_sections[data_shndx];
1914 if (data_section == reinterpret_cast<Output_section*>(2))
1915 {
1916 if (is_pass_two)
1917 continue;
1918 // The layout for the data section was deferred, so we need
1919 // to defer the relocation section, too.
1920 const char* name = pnames + shdr.get_sh_name();
1921 this->deferred_layout_relocs_.push_back(
1922 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1923 elfcpp::SHT_NULL));
1924 out_sections[i] = reinterpret_cast<Output_section*>(2);
1925 out_section_offsets[i] = invalid_address;
1926 continue;
1927 }
1928 if (data_section == NULL)
1929 {
1930 out_sections[i] = NULL;
1931 out_section_offsets[i] = invalid_address;
1932 continue;
1933 }
1934
1935 Relocatable_relocs* rr = new Relocatable_relocs();
1936 this->set_relocatable_relocs(i, rr);
1937
1938 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1939 rr);
1940 out_sections[i] = os;
1941 out_section_offsets[i] = invalid_address;
1942 }
1943
1944 // When building a .gdb_index section, scan the .debug_info and
1945 // .debug_types sections.
1946 gold_assert(!is_pass_one
1947 || (debug_info_sections.empty() && debug_types_sections.empty()));
1948 for (std::vector<unsigned int>::const_iterator p
1949 = debug_info_sections.begin();
1950 p != debug_info_sections.end();
1951 ++p)
1952 {
1953 unsigned int i = *p;
1954 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1955 i, reloc_shndx[i], reloc_type[i]);
1956 }
1957 for (std::vector<unsigned int>::const_iterator p
1958 = debug_types_sections.begin();
1959 p != debug_types_sections.end();
1960 ++p)
1961 {
1962 unsigned int i = *p;
1963 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1964 i, reloc_shndx[i], reloc_type[i]);
1965 }
1966
1967 if (is_pass_two)
1968 {
1969 delete[] gc_sd->section_headers_data;
1970 delete[] gc_sd->section_names_data;
1971 delete[] gc_sd->symbols_data;
1972 delete[] gc_sd->symbol_names_data;
1973 this->set_symbols_data(NULL);
1974 }
1975 else
1976 {
1977 delete sd->section_headers;
1978 sd->section_headers = NULL;
1979 delete sd->section_names;
1980 sd->section_names = NULL;
1981 }
1982 }
1983
1984 // Layout sections whose layout was deferred while waiting for
1985 // input files from a plugin.
1986
1987 template<int size, bool big_endian>
1988 void
1989 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1990 {
1991 typename std::vector<Deferred_layout>::iterator deferred;
1992
1993 for (deferred = this->deferred_layout_.begin();
1994 deferred != this->deferred_layout_.end();
1995 ++deferred)
1996 {
1997 typename This::Shdr shdr(deferred->shdr_data_);
1998
1999 if (!parameters->options().relocatable()
2000 && deferred->name_ == ".eh_frame"
2001 && this->check_eh_frame_flags(&shdr))
2002 {
2003 // Checking is_section_included is not reliable for
2004 // .eh_frame sections, because they do not have an output
2005 // section. This is not a problem normally because we call
2006 // layout_eh_frame_section unconditionally, but when
2007 // deferring sections that is not true. We don't want to
2008 // keep all .eh_frame sections because that will cause us to
2009 // keep all sections that they refer to, which is the wrong
2010 // way around. Instead, the eh_frame code will discard
2011 // .eh_frame sections that refer to discarded sections.
2012
2013 // Reading the symbols again here may be slow.
2014 Read_symbols_data sd;
2015 this->base_read_symbols(&sd);
2016 this->layout_eh_frame_section(layout,
2017 sd.symbols->data(),
2018 sd.symbols_size,
2019 sd.symbol_names->data(),
2020 sd.symbol_names_size,
2021 deferred->shndx_,
2022 shdr,
2023 deferred->reloc_shndx_,
2024 deferred->reloc_type_);
2025 continue;
2026 }
2027
2028 // If the section is not included, it is because the garbage collector
2029 // decided it is not needed. Avoid reverting that decision.
2030 if (!this->is_section_included(deferred->shndx_))
2031 continue;
2032
2033 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2034 shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2035 deferred->reloc_type_);
2036 }
2037
2038 this->deferred_layout_.clear();
2039
2040 // Now handle the deferred relocation sections.
2041
2042 Output_sections& out_sections(this->output_sections());
2043 std::vector<Address>& out_section_offsets(this->section_offsets());
2044
2045 for (deferred = this->deferred_layout_relocs_.begin();
2046 deferred != this->deferred_layout_relocs_.end();
2047 ++deferred)
2048 {
2049 unsigned int shndx = deferred->shndx_;
2050 typename This::Shdr shdr(deferred->shdr_data_);
2051 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2052
2053 Output_section* data_section = out_sections[data_shndx];
2054 if (data_section == NULL)
2055 {
2056 out_sections[shndx] = NULL;
2057 out_section_offsets[shndx] = invalid_address;
2058 continue;
2059 }
2060
2061 Relocatable_relocs* rr = new Relocatable_relocs();
2062 this->set_relocatable_relocs(shndx, rr);
2063
2064 Output_section* os = layout->layout_reloc(this, shndx, shdr,
2065 data_section, rr);
2066 out_sections[shndx] = os;
2067 out_section_offsets[shndx] = invalid_address;
2068 }
2069 }
2070
2071 // Add the symbols to the symbol table.
2072
2073 template<int size, bool big_endian>
2074 void
2075 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2076 Read_symbols_data* sd,
2077 Layout*)
2078 {
2079 if (sd->symbols == NULL)
2080 {
2081 gold_assert(sd->symbol_names == NULL);
2082 return;
2083 }
2084
2085 const int sym_size = This::sym_size;
2086 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2087 / sym_size);
2088 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2089 {
2090 this->error(_("size of symbols is not multiple of symbol size"));
2091 return;
2092 }
2093
2094 this->symbols_.resize(symcount);
2095
2096 const char* sym_names =
2097 reinterpret_cast<const char*>(sd->symbol_names->data());
2098 symtab->add_from_relobj(this,
2099 sd->symbols->data() + sd->external_symbols_offset,
2100 symcount, this->local_symbol_count_,
2101 sym_names, sd->symbol_names_size,
2102 &this->symbols_,
2103 &this->defined_count_);
2104
2105 delete sd->symbols;
2106 sd->symbols = NULL;
2107 delete sd->symbol_names;
2108 sd->symbol_names = NULL;
2109 }
2110
2111 // Find out if this object, that is a member of a lib group, should be included
2112 // in the link. We check every symbol defined by this object. If the symbol
2113 // table has a strong undefined reference to that symbol, we have to include
2114 // the object.
2115
2116 template<int size, bool big_endian>
2117 Archive::Should_include
2118 Sized_relobj_file<size, big_endian>::do_should_include_member(
2119 Symbol_table* symtab,
2120 Layout* layout,
2121 Read_symbols_data* sd,
2122 std::string* why)
2123 {
2124 char* tmpbuf = NULL;
2125 size_t tmpbuflen = 0;
2126 const char* sym_names =
2127 reinterpret_cast<const char*>(sd->symbol_names->data());
2128 const unsigned char* syms =
2129 sd->symbols->data() + sd->external_symbols_offset;
2130 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2131 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2132 / sym_size);
2133
2134 const unsigned char* p = syms;
2135
2136 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2137 {
2138 elfcpp::Sym<size, big_endian> sym(p);
2139 unsigned int st_shndx = sym.get_st_shndx();
2140 if (st_shndx == elfcpp::SHN_UNDEF)
2141 continue;
2142
2143 unsigned int st_name = sym.get_st_name();
2144 const char* name = sym_names + st_name;
2145 Symbol* symbol;
2146 Archive::Should_include t = Archive::should_include_member(symtab,
2147 layout,
2148 name,
2149 &symbol, why,
2150 &tmpbuf,
2151 &tmpbuflen);
2152 if (t == Archive::SHOULD_INCLUDE_YES)
2153 {
2154 if (tmpbuf != NULL)
2155 free(tmpbuf);
2156 return t;
2157 }
2158 }
2159 if (tmpbuf != NULL)
2160 free(tmpbuf);
2161 return Archive::SHOULD_INCLUDE_UNKNOWN;
2162 }
2163
2164 // Iterate over global defined symbols, calling a visitor class V for each.
2165
2166 template<int size, bool big_endian>
2167 void
2168 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2169 Read_symbols_data* sd,
2170 Library_base::Symbol_visitor_base* v)
2171 {
2172 const char* sym_names =
2173 reinterpret_cast<const char*>(sd->symbol_names->data());
2174 const unsigned char* syms =
2175 sd->symbols->data() + sd->external_symbols_offset;
2176 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2177 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2178 / sym_size);
2179 const unsigned char* p = syms;
2180
2181 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2182 {
2183 elfcpp::Sym<size, big_endian> sym(p);
2184 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2185 v->visit(sym_names + sym.get_st_name());
2186 }
2187 }
2188
2189 // Return whether the local symbol SYMNDX has a PLT offset.
2190
2191 template<int size, bool big_endian>
2192 bool
2193 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2194 unsigned int symndx) const
2195 {
2196 typename Local_plt_offsets::const_iterator p =
2197 this->local_plt_offsets_.find(symndx);
2198 return p != this->local_plt_offsets_.end();
2199 }
2200
2201 // Get the PLT offset of a local symbol.
2202
2203 template<int size, bool big_endian>
2204 unsigned int
2205 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2206 unsigned int symndx) const
2207 {
2208 typename Local_plt_offsets::const_iterator p =
2209 this->local_plt_offsets_.find(symndx);
2210 gold_assert(p != this->local_plt_offsets_.end());
2211 return p->second;
2212 }
2213
2214 // Set the PLT offset of a local symbol.
2215
2216 template<int size, bool big_endian>
2217 void
2218 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2219 unsigned int symndx, unsigned int plt_offset)
2220 {
2221 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2222 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2223 gold_assert(ins.second);
2224 }
2225
2226 // First pass over the local symbols. Here we add their names to
2227 // *POOL and *DYNPOOL, and we store the symbol value in
2228 // THIS->LOCAL_VALUES_. This function is always called from a
2229 // singleton thread. This is followed by a call to
2230 // finalize_local_symbols.
2231
2232 template<int size, bool big_endian>
2233 void
2234 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2235 Stringpool* dynpool)
2236 {
2237 gold_assert(this->symtab_shndx_ != -1U);
2238 if (this->symtab_shndx_ == 0)
2239 {
2240 // This object has no symbols. Weird but legal.
2241 return;
2242 }
2243
2244 // Read the symbol table section header.
2245 const unsigned int symtab_shndx = this->symtab_shndx_;
2246 typename This::Shdr symtabshdr(this,
2247 this->elf_file_.section_header(symtab_shndx));
2248 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2249
2250 // Read the local symbols.
2251 const int sym_size = This::sym_size;
2252 const unsigned int loccount = this->local_symbol_count_;
2253 gold_assert(loccount == symtabshdr.get_sh_info());
2254 off_t locsize = loccount * sym_size;
2255 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2256 locsize, true, true);
2257
2258 // Read the symbol names.
2259 const unsigned int strtab_shndx =
2260 this->adjust_shndx(symtabshdr.get_sh_link());
2261 section_size_type strtab_size;
2262 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2263 &strtab_size,
2264 true);
2265 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2266
2267 // Loop over the local symbols.
2268
2269 const Output_sections& out_sections(this->output_sections());
2270 std::vector<Address>& out_section_offsets(this->section_offsets());
2271 unsigned int shnum = this->shnum();
2272 unsigned int count = 0;
2273 unsigned int dyncount = 0;
2274 // Skip the first, dummy, symbol.
2275 psyms += sym_size;
2276 bool strip_all = parameters->options().strip_all();
2277 bool discard_all = parameters->options().discard_all();
2278 bool discard_locals = parameters->options().discard_locals();
2279 bool discard_sec_merge = parameters->options().discard_sec_merge();
2280 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2281 {
2282 elfcpp::Sym<size, big_endian> sym(psyms);
2283
2284 Symbol_value<size>& lv(this->local_values_[i]);
2285
2286 bool is_ordinary;
2287 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2288 &is_ordinary);
2289 lv.set_input_shndx(shndx, is_ordinary);
2290
2291 if (sym.get_st_type() == elfcpp::STT_SECTION)
2292 lv.set_is_section_symbol();
2293 else if (sym.get_st_type() == elfcpp::STT_TLS)
2294 lv.set_is_tls_symbol();
2295 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2296 lv.set_is_ifunc_symbol();
2297
2298 // Save the input symbol value for use in do_finalize_local_symbols().
2299 lv.set_input_value(sym.get_st_value());
2300
2301 // Decide whether this symbol should go into the output file.
2302
2303 if (is_ordinary
2304 && shndx < shnum
2305 && (out_sections[shndx] == NULL
2306 || (out_sections[shndx]->order() == ORDER_EHFRAME
2307 && out_section_offsets[shndx] == invalid_address)))
2308 {
2309 // This is either a discarded section or an optimized .eh_frame
2310 // section.
2311 lv.set_no_output_symtab_entry();
2312 gold_assert(!lv.needs_output_dynsym_entry());
2313 continue;
2314 }
2315
2316 if (sym.get_st_type() == elfcpp::STT_SECTION
2317 || !this->adjust_local_symbol(&lv))
2318 {
2319 lv.set_no_output_symtab_entry();
2320 gold_assert(!lv.needs_output_dynsym_entry());
2321 continue;
2322 }
2323
2324 if (sym.get_st_name() >= strtab_size)
2325 {
2326 this->error(_("local symbol %u section name out of range: %u >= %u"),
2327 i, sym.get_st_name(),
2328 static_cast<unsigned int>(strtab_size));
2329 lv.set_no_output_symtab_entry();
2330 continue;
2331 }
2332
2333 const char* name = pnames + sym.get_st_name();
2334
2335 // If needed, add the symbol to the dynamic symbol table string pool.
2336 if (lv.needs_output_dynsym_entry())
2337 {
2338 dynpool->add(name, true, NULL);
2339 ++dyncount;
2340 }
2341
2342 if (strip_all
2343 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2344 {
2345 lv.set_no_output_symtab_entry();
2346 continue;
2347 }
2348
2349 // By default, discard temporary local symbols in merge sections.
2350 // If --discard-locals option is used, discard all temporary local
2351 // symbols. These symbols start with system-specific local label
2352 // prefixes, typically .L for ELF system. We want to be compatible
2353 // with GNU ld so here we essentially use the same check in
2354 // bfd_is_local_label(). The code is different because we already
2355 // know that:
2356 //
2357 // - the symbol is local and thus cannot have global or weak binding.
2358 // - the symbol is not a section symbol.
2359 // - the symbol has a name.
2360 //
2361 // We do not discard a symbol if it needs a dynamic symbol entry.
2362 if ((discard_locals
2363 || (discard_sec_merge
2364 && is_ordinary
2365 && out_section_offsets[shndx] == invalid_address))
2366 && sym.get_st_type() != elfcpp::STT_FILE
2367 && !lv.needs_output_dynsym_entry()
2368 && lv.may_be_discarded_from_output_symtab()
2369 && parameters->target().is_local_label_name(name))
2370 {
2371 lv.set_no_output_symtab_entry();
2372 continue;
2373 }
2374
2375 // Discard the local symbol if -retain_symbols_file is specified
2376 // and the local symbol is not in that file.
2377 if (!parameters->options().should_retain_symbol(name))
2378 {
2379 lv.set_no_output_symtab_entry();
2380 continue;
2381 }
2382
2383 // Add the symbol to the symbol table string pool.
2384 pool->add(name, true, NULL);
2385 ++count;
2386 }
2387
2388 this->output_local_symbol_count_ = count;
2389 this->output_local_dynsym_count_ = dyncount;
2390 }
2391
2392 // Compute the final value of a local symbol.
2393
2394 template<int size, bool big_endian>
2395 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2396 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2397 unsigned int r_sym,
2398 const Symbol_value<size>* lv_in,
2399 Symbol_value<size>* lv_out,
2400 bool relocatable,
2401 const Output_sections& out_sections,
2402 const std::vector<Address>& out_offsets,
2403 const Symbol_table* symtab)
2404 {
2405 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2406 // we may have a memory leak.
2407 gold_assert(lv_out->has_output_value());
2408
2409 bool is_ordinary;
2410 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2411
2412 // Set the output symbol value.
2413
2414 if (!is_ordinary)
2415 {
2416 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2417 lv_out->set_output_value(lv_in->input_value());
2418 else
2419 {
2420 this->error(_("unknown section index %u for local symbol %u"),
2421 shndx, r_sym);
2422 lv_out->set_output_value(0);
2423 return This::CFLV_ERROR;
2424 }
2425 }
2426 else
2427 {
2428 if (shndx >= this->shnum())
2429 {
2430 this->error(_("local symbol %u section index %u out of range"),
2431 r_sym, shndx);
2432 lv_out->set_output_value(0);
2433 return This::CFLV_ERROR;
2434 }
2435
2436 Output_section* os = out_sections[shndx];
2437 Address secoffset = out_offsets[shndx];
2438 if (symtab->is_section_folded(this, shndx))
2439 {
2440 gold_assert(os == NULL && secoffset == invalid_address);
2441 // Get the os of the section it is folded onto.
2442 Section_id folded = symtab->icf()->get_folded_section(this,
2443 shndx);
2444 gold_assert(folded.first != NULL);
2445 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2446 <Sized_relobj_file<size, big_endian>*>(folded.first);
2447 os = folded_obj->output_section(folded.second);
2448 gold_assert(os != NULL);
2449 secoffset = folded_obj->get_output_section_offset(folded.second);
2450
2451 // This could be a relaxed input section.
2452 if (secoffset == invalid_address)
2453 {
2454 const Output_relaxed_input_section* relaxed_section =
2455 os->find_relaxed_input_section(folded_obj, folded.second);
2456 gold_assert(relaxed_section != NULL);
2457 secoffset = relaxed_section->address() - os->address();
2458 }
2459 }
2460
2461 if (os == NULL)
2462 {
2463 // This local symbol belongs to a section we are discarding.
2464 // In some cases when applying relocations later, we will
2465 // attempt to match it to the corresponding kept section,
2466 // so we leave the input value unchanged here.
2467 return This::CFLV_DISCARDED;
2468 }
2469 else if (secoffset == invalid_address)
2470 {
2471 uint64_t start;
2472
2473 // This is a SHF_MERGE section or one which otherwise
2474 // requires special handling.
2475 if (os->order() == ORDER_EHFRAME)
2476 {
2477 // This local symbol belongs to a discarded or optimized
2478 // .eh_frame section. Just treat it like the case in which
2479 // os == NULL above.
2480 gold_assert(this->has_eh_frame_);
2481 return This::CFLV_DISCARDED;
2482 }
2483 else if (!lv_in->is_section_symbol())
2484 {
2485 // This is not a section symbol. We can determine
2486 // the final value now.
2487 uint64_t value =
2488 os->output_address(this, shndx, lv_in->input_value());
2489 if (relocatable)
2490 value -= os->address();
2491 lv_out->set_output_value(value);
2492 }
2493 else if (!os->find_starting_output_address(this, shndx, &start))
2494 {
2495 // This is a section symbol, but apparently not one in a
2496 // merged section. First check to see if this is a relaxed
2497 // input section. If so, use its address. Otherwise just
2498 // use the start of the output section. This happens with
2499 // relocatable links when the input object has section
2500 // symbols for arbitrary non-merge sections.
2501 const Output_section_data* posd =
2502 os->find_relaxed_input_section(this, shndx);
2503 if (posd != NULL)
2504 {
2505 uint64_t value = posd->address();
2506 if (relocatable)
2507 value -= os->address();
2508 lv_out->set_output_value(value);
2509 }
2510 else
2511 lv_out->set_output_value(os->address());
2512 }
2513 else
2514 {
2515 // We have to consider the addend to determine the
2516 // value to use in a relocation. START is the start
2517 // of this input section. If we are doing a relocatable
2518 // link, use offset from start output section instead of
2519 // address.
2520 Address adjusted_start =
2521 relocatable ? start - os->address() : start;
2522 Merged_symbol_value<size>* msv =
2523 new Merged_symbol_value<size>(lv_in->input_value(),
2524 adjusted_start);
2525 lv_out->set_merged_symbol_value(msv);
2526 }
2527 }
2528 else if (lv_in->is_tls_symbol()
2529 || (lv_in->is_section_symbol()
2530 && (os->flags() & elfcpp::SHF_TLS)))
2531 lv_out->set_output_value(os->tls_offset()
2532 + secoffset
2533 + lv_in->input_value());
2534 else
2535 lv_out->set_output_value((relocatable ? 0 : os->address())
2536 + secoffset
2537 + lv_in->input_value());
2538 }
2539 return This::CFLV_OK;
2540 }
2541
2542 // Compute final local symbol value. R_SYM is the index of a local
2543 // symbol in symbol table. LV points to a symbol value, which is
2544 // expected to hold the input value and to be over-written by the
2545 // final value. SYMTAB points to a symbol table. Some targets may want
2546 // to know would-be-finalized local symbol values in relaxation.
2547 // Hence we provide this method. Since this method updates *LV, a
2548 // callee should make a copy of the original local symbol value and
2549 // use the copy instead of modifying an object's local symbols before
2550 // everything is finalized. The caller should also free up any allocated
2551 // memory in the return value in *LV.
2552 template<int size, bool big_endian>
2553 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2554 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2555 unsigned int r_sym,
2556 const Symbol_value<size>* lv_in,
2557 Symbol_value<size>* lv_out,
2558 const Symbol_table* symtab)
2559 {
2560 // This is just a wrapper of compute_final_local_value_internal.
2561 const bool relocatable = parameters->options().relocatable();
2562 const Output_sections& out_sections(this->output_sections());
2563 const std::vector<Address>& out_offsets(this->section_offsets());
2564 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2565 relocatable, out_sections,
2566 out_offsets, symtab);
2567 }
2568
2569 // Finalize the local symbols. Here we set the final value in
2570 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2571 // This function is always called from a singleton thread. The actual
2572 // output of the local symbols will occur in a separate task.
2573
2574 template<int size, bool big_endian>
2575 unsigned int
2576 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2577 unsigned int index,
2578 off_t off,
2579 Symbol_table* symtab)
2580 {
2581 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2582
2583 const unsigned int loccount = this->local_symbol_count_;
2584 this->local_symbol_offset_ = off;
2585
2586 const bool relocatable = parameters->options().relocatable();
2587 const Output_sections& out_sections(this->output_sections());
2588 const std::vector<Address>& out_offsets(this->section_offsets());
2589
2590 for (unsigned int i = 1; i < loccount; ++i)
2591 {
2592 Symbol_value<size>* lv = &this->local_values_[i];
2593
2594 Compute_final_local_value_status cflv_status =
2595 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2596 out_sections, out_offsets,
2597 symtab);
2598 switch (cflv_status)
2599 {
2600 case CFLV_OK:
2601 if (!lv->is_output_symtab_index_set())
2602 {
2603 lv->set_output_symtab_index(index);
2604 ++index;
2605 }
2606 break;
2607 case CFLV_DISCARDED:
2608 case CFLV_ERROR:
2609 // Do nothing.
2610 break;
2611 default:
2612 gold_unreachable();
2613 }
2614 }
2615 return index;
2616 }
2617
2618 // Set the output dynamic symbol table indexes for the local variables.
2619
2620 template<int size, bool big_endian>
2621 unsigned int
2622 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2623 unsigned int index)
2624 {
2625 const unsigned int loccount = this->local_symbol_count_;
2626 for (unsigned int i = 1; i < loccount; ++i)
2627 {
2628 Symbol_value<size>& lv(this->local_values_[i]);
2629 if (lv.needs_output_dynsym_entry())
2630 {
2631 lv.set_output_dynsym_index(index);
2632 ++index;
2633 }
2634 }
2635 return index;
2636 }
2637
2638 // Set the offset where local dynamic symbol information will be stored.
2639 // Returns the count of local symbols contributed to the symbol table by
2640 // this object.
2641
2642 template<int size, bool big_endian>
2643 unsigned int
2644 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2645 {
2646 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2647 this->local_dynsym_offset_ = off;
2648 return this->output_local_dynsym_count_;
2649 }
2650
2651 // If Symbols_data is not NULL get the section flags from here otherwise
2652 // get it from the file.
2653
2654 template<int size, bool big_endian>
2655 uint64_t
2656 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2657 {
2658 Symbols_data* sd = this->get_symbols_data();
2659 if (sd != NULL)
2660 {
2661 const unsigned char* pshdrs = sd->section_headers_data
2662 + This::shdr_size * shndx;
2663 typename This::Shdr shdr(pshdrs);
2664 return shdr.get_sh_flags();
2665 }
2666 // If sd is NULL, read the section header from the file.
2667 return this->elf_file_.section_flags(shndx);
2668 }
2669
2670 // Get the section's ent size from Symbols_data. Called by get_section_contents
2671 // in icf.cc
2672
2673 template<int size, bool big_endian>
2674 uint64_t
2675 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2676 {
2677 Symbols_data* sd = this->get_symbols_data();
2678 gold_assert(sd != NULL);
2679
2680 const unsigned char* pshdrs = sd->section_headers_data
2681 + This::shdr_size * shndx;
2682 typename This::Shdr shdr(pshdrs);
2683 return shdr.get_sh_entsize();
2684 }
2685
2686 // Write out the local symbols.
2687
2688 template<int size, bool big_endian>
2689 void
2690 Sized_relobj_file<size, big_endian>::write_local_symbols(
2691 Output_file* of,
2692 const Stringpool* sympool,
2693 const Stringpool* dynpool,
2694 Output_symtab_xindex* symtab_xindex,
2695 Output_symtab_xindex* dynsym_xindex,
2696 off_t symtab_off)
2697 {
2698 const bool strip_all = parameters->options().strip_all();
2699 if (strip_all)
2700 {
2701 if (this->output_local_dynsym_count_ == 0)
2702 return;
2703 this->output_local_symbol_count_ = 0;
2704 }
2705
2706 gold_assert(this->symtab_shndx_ != -1U);
2707 if (this->symtab_shndx_ == 0)
2708 {
2709 // This object has no symbols. Weird but legal.
2710 return;
2711 }
2712
2713 // Read the symbol table section header.
2714 const unsigned int symtab_shndx = this->symtab_shndx_;
2715 typename This::Shdr symtabshdr(this,
2716 this->elf_file_.section_header(symtab_shndx));
2717 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2718 const unsigned int loccount = this->local_symbol_count_;
2719 gold_assert(loccount == symtabshdr.get_sh_info());
2720
2721 // Read the local symbols.
2722 const int sym_size = This::sym_size;
2723 off_t locsize = loccount * sym_size;
2724 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2725 locsize, true, false);
2726
2727 // Read the symbol names.
2728 const unsigned int strtab_shndx =
2729 this->adjust_shndx(symtabshdr.get_sh_link());
2730 section_size_type strtab_size;
2731 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2732 &strtab_size,
2733 false);
2734 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2735
2736 // Get views into the output file for the portions of the symbol table
2737 // and the dynamic symbol table that we will be writing.
2738 off_t output_size = this->output_local_symbol_count_ * sym_size;
2739 unsigned char* oview = NULL;
2740 if (output_size > 0)
2741 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2742 output_size);
2743
2744 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2745 unsigned char* dyn_oview = NULL;
2746 if (dyn_output_size > 0)
2747 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2748 dyn_output_size);
2749
2750 const Output_sections& out_sections(this->output_sections());
2751
2752 gold_assert(this->local_values_.size() == loccount);
2753
2754 unsigned char* ov = oview;
2755 unsigned char* dyn_ov = dyn_oview;
2756 psyms += sym_size;
2757 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2758 {
2759 elfcpp::Sym<size, big_endian> isym(psyms);
2760
2761 Symbol_value<size>& lv(this->local_values_[i]);
2762
2763 bool is_ordinary;
2764 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2765 &is_ordinary);
2766 if (is_ordinary)
2767 {
2768 gold_assert(st_shndx < out_sections.size());
2769 if (out_sections[st_shndx] == NULL)
2770 continue;
2771 st_shndx = out_sections[st_shndx]->out_shndx();
2772 if (st_shndx >= elfcpp::SHN_LORESERVE)
2773 {
2774 if (lv.has_output_symtab_entry())
2775 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2776 if (lv.has_output_dynsym_entry())
2777 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2778 st_shndx = elfcpp::SHN_XINDEX;
2779 }
2780 }
2781
2782 // Write the symbol to the output symbol table.
2783 if (lv.has_output_symtab_entry())
2784 {
2785 elfcpp::Sym_write<size, big_endian> osym(ov);
2786
2787 gold_assert(isym.get_st_name() < strtab_size);
2788 const char* name = pnames + isym.get_st_name();
2789 osym.put_st_name(sympool->get_offset(name));
2790 osym.put_st_value(lv.value(this, 0));
2791 osym.put_st_size(isym.get_st_size());
2792 osym.put_st_info(isym.get_st_info());
2793 osym.put_st_other(isym.get_st_other());
2794 osym.put_st_shndx(st_shndx);
2795
2796 ov += sym_size;
2797 }
2798
2799 // Write the symbol to the output dynamic symbol table.
2800 if (lv.has_output_dynsym_entry())
2801 {
2802 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2803 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2804
2805 gold_assert(isym.get_st_name() < strtab_size);
2806 const char* name = pnames + isym.get_st_name();
2807 osym.put_st_name(dynpool->get_offset(name));
2808 osym.put_st_value(lv.value(this, 0));
2809 osym.put_st_size(isym.get_st_size());
2810 osym.put_st_info(isym.get_st_info());
2811 osym.put_st_other(isym.get_st_other());
2812 osym.put_st_shndx(st_shndx);
2813
2814 dyn_ov += sym_size;
2815 }
2816 }
2817
2818
2819 if (output_size > 0)
2820 {
2821 gold_assert(ov - oview == output_size);
2822 of->write_output_view(symtab_off + this->local_symbol_offset_,
2823 output_size, oview);
2824 }
2825
2826 if (dyn_output_size > 0)
2827 {
2828 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2829 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2830 dyn_oview);
2831 }
2832 }
2833
2834 // Set *INFO to symbolic information about the offset OFFSET in the
2835 // section SHNDX. Return true if we found something, false if we
2836 // found nothing.
2837
2838 template<int size, bool big_endian>
2839 bool
2840 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2841 unsigned int shndx,
2842 off_t offset,
2843 Symbol_location_info* info)
2844 {
2845 if (this->symtab_shndx_ == 0)
2846 return false;
2847
2848 section_size_type symbols_size;
2849 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2850 &symbols_size,
2851 false);
2852
2853 unsigned int symbol_names_shndx =
2854 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2855 section_size_type names_size;
2856 const unsigned char* symbol_names_u =
2857 this->section_contents(symbol_names_shndx, &names_size, false);
2858 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2859
2860 const int sym_size = This::sym_size;
2861 const size_t count = symbols_size / sym_size;
2862
2863 const unsigned char* p = symbols;
2864 for (size_t i = 0; i < count; ++i, p += sym_size)
2865 {
2866 elfcpp::Sym<size, big_endian> sym(p);
2867
2868 if (sym.get_st_type() == elfcpp::STT_FILE)
2869 {
2870 if (sym.get_st_name() >= names_size)
2871 info->source_file = "(invalid)";
2872 else
2873 info->source_file = symbol_names + sym.get_st_name();
2874 continue;
2875 }
2876
2877 bool is_ordinary;
2878 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2879 &is_ordinary);
2880 if (is_ordinary
2881 && st_shndx == shndx
2882 && static_cast<off_t>(sym.get_st_value()) <= offset
2883 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2884 > offset))
2885 {
2886 info->enclosing_symbol_type = sym.get_st_type();
2887 if (sym.get_st_name() > names_size)
2888 info->enclosing_symbol_name = "(invalid)";
2889 else
2890 {
2891 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2892 if (parameters->options().do_demangle())
2893 {
2894 char* demangled_name = cplus_demangle(
2895 info->enclosing_symbol_name.c_str(),
2896 DMGL_ANSI | DMGL_PARAMS);
2897 if (demangled_name != NULL)
2898 {
2899 info->enclosing_symbol_name.assign(demangled_name);
2900 free(demangled_name);
2901 }
2902 }
2903 }
2904 return true;
2905 }
2906 }
2907
2908 return false;
2909 }
2910
2911 // Look for a kept section corresponding to the given discarded section,
2912 // and return its output address. This is used only for relocations in
2913 // debugging sections. If we can't find the kept section, return 0.
2914
2915 template<int size, bool big_endian>
2916 typename Sized_relobj_file<size, big_endian>::Address
2917 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2918 unsigned int shndx,
2919 std::string& section_name,
2920 bool* pfound) const
2921 {
2922 Kept_section* kept_section;
2923 bool is_comdat;
2924 uint64_t sh_size;
2925 unsigned int symndx;
2926 bool found = false;
2927
2928 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2929 &kept_section))
2930 {
2931 Relobj* kept_object = kept_section->object();
2932 unsigned int kept_shndx = 0;
2933 if (!kept_section->is_comdat())
2934 {
2935 // The kept section is a linkonce section.
2936 if (sh_size == kept_section->linkonce_size())
2937 found = true;
2938 }
2939 else
2940 {
2941 if (is_comdat)
2942 {
2943 // Find the corresponding kept section.
2944 // Since we're using this mapping for relocation processing,
2945 // we don't want to match sections unless they have the same
2946 // size.
2947 uint64_t kept_size;
2948 if (kept_section->find_comdat_section(section_name, &kept_shndx,
2949 &kept_size))
2950 {
2951 if (sh_size == kept_size)
2952 found = true;
2953 }
2954 }
2955 else
2956 {
2957 uint64_t kept_size;
2958 if (kept_section->find_single_comdat_section(&kept_shndx,
2959 &kept_size)
2960 && sh_size == kept_size)
2961 found = true;
2962 }
2963 }
2964
2965 if (found)
2966 {
2967 Sized_relobj_file<size, big_endian>* kept_relobj =
2968 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2969 Output_section* os = kept_relobj->output_section(kept_shndx);
2970 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2971 if (os != NULL && offset != invalid_address)
2972 {
2973 *pfound = true;
2974 return os->address() + offset;
2975 }
2976 }
2977 }
2978 *pfound = false;
2979 return 0;
2980 }
2981
2982 // Look for a kept section corresponding to the given discarded section,
2983 // and return its object file.
2984
2985 template<int size, bool big_endian>
2986 Relobj*
2987 Sized_relobj_file<size, big_endian>::find_kept_section_object(
2988 unsigned int shndx, unsigned int *symndx_p) const
2989 {
2990 Kept_section* kept_section;
2991 bool is_comdat;
2992 uint64_t sh_size;
2993 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
2994 &kept_section))
2995 return kept_section->object();
2996 return NULL;
2997 }
2998
2999 // Return the name of symbol SYMNDX.
3000
3001 template<int size, bool big_endian>
3002 const char*
3003 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3004 {
3005 if (this->symtab_shndx_ == 0)
3006 return NULL;
3007
3008 section_size_type symbols_size;
3009 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3010 &symbols_size,
3011 false);
3012
3013 unsigned int symbol_names_shndx =
3014 this->adjust_shndx(this->section_link(this->symtab_shndx_));
3015 section_size_type names_size;
3016 const unsigned char* symbol_names_u =
3017 this->section_contents(symbol_names_shndx, &names_size, false);
3018 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3019
3020 const unsigned char* p = symbols + symndx * This::sym_size;
3021
3022 if (p >= symbols + symbols_size)
3023 return NULL;
3024
3025 elfcpp::Sym<size, big_endian> sym(p);
3026
3027 return symbol_names + sym.get_st_name();
3028 }
3029
3030 // Get symbol counts.
3031
3032 template<int size, bool big_endian>
3033 void
3034 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3035 const Symbol_table*,
3036 size_t* defined,
3037 size_t* used) const
3038 {
3039 *defined = this->defined_count_;
3040 size_t count = 0;
3041 for (typename Symbols::const_iterator p = this->symbols_.begin();
3042 p != this->symbols_.end();
3043 ++p)
3044 if (*p != NULL
3045 && (*p)->source() == Symbol::FROM_OBJECT
3046 && (*p)->object() == this
3047 && (*p)->is_defined())
3048 ++count;
3049 *used = count;
3050 }
3051
3052 // Return a view of the decompressed contents of a section. Set *PLEN
3053 // to the size. Set *IS_NEW to true if the contents need to be freed
3054 // by the caller.
3055
3056 const unsigned char*
3057 Object::decompressed_section_contents(
3058 unsigned int shndx,
3059 section_size_type* plen,
3060 bool* is_new)
3061 {
3062 section_size_type buffer_size;
3063 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3064 false);
3065
3066 if (this->compressed_sections_ == NULL)
3067 {
3068 *plen = buffer_size;
3069 *is_new = false;
3070 return buffer;
3071 }
3072
3073 Compressed_section_map::const_iterator p =
3074 this->compressed_sections_->find(shndx);
3075 if (p == this->compressed_sections_->end())
3076 {
3077 *plen = buffer_size;
3078 *is_new = false;
3079 return buffer;
3080 }
3081
3082 section_size_type uncompressed_size = p->second.size;
3083 if (p->second.contents != NULL)
3084 {
3085 *plen = uncompressed_size;
3086 *is_new = false;
3087 return p->second.contents;
3088 }
3089
3090 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3091 if (!decompress_input_section(buffer,
3092 buffer_size,
3093 uncompressed_data,
3094 uncompressed_size,
3095 elfsize(),
3096 is_big_endian(),
3097 p->second.flag))
3098 this->error(_("could not decompress section %s"),
3099 this->do_section_name(shndx).c_str());
3100
3101 // We could cache the results in p->second.contents and store
3102 // false in *IS_NEW, but build_compressed_section_map() would
3103 // have done so if it had expected it to be profitable. If
3104 // we reach this point, we expect to need the contents only
3105 // once in this pass.
3106 *plen = uncompressed_size;
3107 *is_new = true;
3108 return uncompressed_data;
3109 }
3110
3111 // Discard any buffers of uncompressed sections. This is done
3112 // at the end of the Add_symbols task.
3113
3114 void
3115 Object::discard_decompressed_sections()
3116 {
3117 if (this->compressed_sections_ == NULL)
3118 return;
3119
3120 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3121 p != this->compressed_sections_->end();
3122 ++p)
3123 {
3124 if (p->second.contents != NULL)
3125 {
3126 delete[] p->second.contents;
3127 p->second.contents = NULL;
3128 }
3129 }
3130 }
3131
3132 // Input_objects methods.
3133
3134 // Add a regular relocatable object to the list. Return false if this
3135 // object should be ignored.
3136
3137 bool
3138 Input_objects::add_object(Object* obj)
3139 {
3140 // Print the filename if the -t/--trace option is selected.
3141 if (parameters->options().trace())
3142 gold_info("%s", obj->name().c_str());
3143
3144 if (!obj->is_dynamic())
3145 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3146 else
3147 {
3148 // See if this is a duplicate SONAME.
3149 Dynobj* dynobj = static_cast<Dynobj*>(obj);
3150 const char* soname = dynobj->soname();
3151
3152 Unordered_map<std::string, Object*>::value_type val(soname, obj);
3153 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3154 this->sonames_.insert(val);
3155 if (!ins.second)
3156 {
3157 // We have already seen a dynamic object with this soname.
3158 // If any instances of this object on the command line have
3159 // the --no-as-needed flag, make sure the one we keep is
3160 // marked so.
3161 if (!obj->as_needed())
3162 {
3163 gold_assert(ins.first->second != NULL);
3164 ins.first->second->clear_as_needed();
3165 }
3166 return false;
3167 }
3168
3169 this->dynobj_list_.push_back(dynobj);
3170 }
3171
3172 // Add this object to the cross-referencer if requested.
3173 if (parameters->options().user_set_print_symbol_counts()
3174 || parameters->options().cref())
3175 {
3176 if (this->cref_ == NULL)
3177 this->cref_ = new Cref();
3178 this->cref_->add_object(obj);
3179 }
3180
3181 return true;
3182 }
3183
3184 // For each dynamic object, record whether we've seen all of its
3185 // explicit dependencies.
3186
3187 void
3188 Input_objects::check_dynamic_dependencies() const
3189 {
3190 bool issued_copy_dt_needed_error = false;
3191 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3192 p != this->dynobj_list_.end();
3193 ++p)
3194 {
3195 const Dynobj::Needed& needed((*p)->needed());
3196 bool found_all = true;
3197 Dynobj::Needed::const_iterator pneeded;
3198 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3199 {
3200 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3201 {
3202 found_all = false;
3203 break;
3204 }
3205 }
3206 (*p)->set_has_unknown_needed_entries(!found_all);
3207
3208 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3209 // that gold does not support. However, they cause no trouble
3210 // unless there is a DT_NEEDED entry that we don't know about;
3211 // warn only in that case.
3212 if (!found_all
3213 && !issued_copy_dt_needed_error
3214 && (parameters->options().copy_dt_needed_entries()
3215 || parameters->options().add_needed()))
3216 {
3217 const char* optname;
3218 if (parameters->options().copy_dt_needed_entries())
3219 optname = "--copy-dt-needed-entries";
3220 else
3221 optname = "--add-needed";
3222 gold_error(_("%s is not supported but is required for %s in %s"),
3223 optname, (*pneeded).c_str(), (*p)->name().c_str());
3224 issued_copy_dt_needed_error = true;
3225 }
3226 }
3227 }
3228
3229 // Start processing an archive.
3230
3231 void
3232 Input_objects::archive_start(Archive* archive)
3233 {
3234 if (parameters->options().user_set_print_symbol_counts()
3235 || parameters->options().cref())
3236 {
3237 if (this->cref_ == NULL)
3238 this->cref_ = new Cref();
3239 this->cref_->add_archive_start(archive);
3240 }
3241 }
3242
3243 // Stop processing an archive.
3244
3245 void
3246 Input_objects::archive_stop(Archive* archive)
3247 {
3248 if (parameters->options().user_set_print_symbol_counts()
3249 || parameters->options().cref())
3250 this->cref_->add_archive_stop(archive);
3251 }
3252
3253 // Print symbol counts
3254
3255 void
3256 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3257 {
3258 if (parameters->options().user_set_print_symbol_counts()
3259 && this->cref_ != NULL)
3260 this->cref_->print_symbol_counts(symtab);
3261 }
3262
3263 // Print a cross reference table.
3264
3265 void
3266 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3267 {
3268 if (parameters->options().cref() && this->cref_ != NULL)
3269 this->cref_->print_cref(symtab, f);
3270 }
3271
3272 // Relocate_info methods.
3273
3274 // Return a string describing the location of a relocation when file
3275 // and lineno information is not available. This is only used in
3276 // error messages.
3277
3278 template<int size, bool big_endian>
3279 std::string
3280 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3281 {
3282 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3283 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3284 if (!ret.empty())
3285 return ret;
3286
3287 ret = this->object->name();
3288
3289 Symbol_location_info info;
3290 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3291 {
3292 if (!info.source_file.empty())
3293 {
3294 ret += ":";
3295 ret += info.source_file;
3296 }
3297 ret += ":";
3298 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3299 ret += _("function ");
3300 ret += info.enclosing_symbol_name;
3301 return ret;
3302 }
3303
3304 ret += "(";
3305 ret += this->object->section_name(this->data_shndx);
3306 char buf[100];
3307 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3308 ret += buf;
3309 return ret;
3310 }
3311
3312 } // End namespace gold.
3313
3314 namespace
3315 {
3316
3317 using namespace gold;
3318
3319 // Read an ELF file with the header and return the appropriate
3320 // instance of Object.
3321
3322 template<int size, bool big_endian>
3323 Object*
3324 make_elf_sized_object(const std::string& name, Input_file* input_file,
3325 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3326 bool* punconfigured)
3327 {
3328 Target* target = select_target(input_file, offset,
3329 ehdr.get_e_machine(), size, big_endian,
3330 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3331 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3332 if (target == NULL)
3333 gold_fatal(_("%s: unsupported ELF machine number %d"),
3334 name.c_str(), ehdr.get_e_machine());
3335
3336 if (!parameters->target_valid())
3337 set_parameters_target(target);
3338 else if (target != &parameters->target())
3339 {
3340 if (punconfigured != NULL)
3341 *punconfigured = true;
3342 else
3343 gold_error(_("%s: incompatible target"), name.c_str());
3344 return NULL;
3345 }
3346
3347 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3348 ehdr);
3349 }
3350
3351 } // End anonymous namespace.
3352
3353 namespace gold
3354 {
3355
3356 // Return whether INPUT_FILE is an ELF object.
3357
3358 bool
3359 is_elf_object(Input_file* input_file, off_t offset,
3360 const unsigned char** start, int* read_size)
3361 {
3362 off_t filesize = input_file->file().filesize();
3363 int want = elfcpp::Elf_recognizer::max_header_size;
3364 if (filesize - offset < want)
3365 want = filesize - offset;
3366
3367 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3368 true, false);
3369 *start = p;
3370 *read_size = want;
3371
3372 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3373 }
3374
3375 // Read an ELF file and return the appropriate instance of Object.
3376
3377 Object*
3378 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3379 const unsigned char* p, section_offset_type bytes,
3380 bool* punconfigured)
3381 {
3382 if (punconfigured != NULL)
3383 *punconfigured = false;
3384
3385 std::string error;
3386 bool big_endian = false;
3387 int size = 0;
3388 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3389 &big_endian, &error))
3390 {
3391 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3392 return NULL;
3393 }
3394
3395 if (size == 32)
3396 {
3397 if (big_endian)
3398 {
3399 #ifdef HAVE_TARGET_32_BIG
3400 elfcpp::Ehdr<32, true> ehdr(p);
3401 return make_elf_sized_object<32, true>(name, input_file,
3402 offset, ehdr, punconfigured);
3403 #else
3404 if (punconfigured != NULL)
3405 *punconfigured = true;
3406 else
3407 gold_error(_("%s: not configured to support "
3408 "32-bit big-endian object"),
3409 name.c_str());
3410 return NULL;
3411 #endif
3412 }
3413 else
3414 {
3415 #ifdef HAVE_TARGET_32_LITTLE
3416 elfcpp::Ehdr<32, false> ehdr(p);
3417 return make_elf_sized_object<32, false>(name, input_file,
3418 offset, ehdr, punconfigured);
3419 #else
3420 if (punconfigured != NULL)
3421 *punconfigured = true;
3422 else
3423 gold_error(_("%s: not configured to support "
3424 "32-bit little-endian object"),
3425 name.c_str());
3426 return NULL;
3427 #endif
3428 }
3429 }
3430 else if (size == 64)
3431 {
3432 if (big_endian)
3433 {
3434 #ifdef HAVE_TARGET_64_BIG
3435 elfcpp::Ehdr<64, true> ehdr(p);
3436 return make_elf_sized_object<64, true>(name, input_file,
3437 offset, ehdr, punconfigured);
3438 #else
3439 if (punconfigured != NULL)
3440 *punconfigured = true;
3441 else
3442 gold_error(_("%s: not configured to support "
3443 "64-bit big-endian object"),
3444 name.c_str());
3445 return NULL;
3446 #endif
3447 }
3448 else
3449 {
3450 #ifdef HAVE_TARGET_64_LITTLE
3451 elfcpp::Ehdr<64, false> ehdr(p);
3452 return make_elf_sized_object<64, false>(name, input_file,
3453 offset, ehdr, punconfigured);
3454 #else
3455 if (punconfigured != NULL)
3456 *punconfigured = true;
3457 else
3458 gold_error(_("%s: not configured to support "
3459 "64-bit little-endian object"),
3460 name.c_str());
3461 return NULL;
3462 #endif
3463 }
3464 }
3465 else
3466 gold_unreachable();
3467 }
3468
3469 // Instantiate the templates we need.
3470
3471 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3472 template
3473 void
3474 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3475 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3476 Unordered_map<section_offset_type,
3477 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3478 #endif
3479
3480 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3481 template
3482 void
3483 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3484 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3485 Unordered_map<section_offset_type,
3486 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3487 #endif
3488
3489 #ifdef HAVE_TARGET_32_LITTLE
3490 template
3491 void
3492 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3493 Read_symbols_data*);
3494 template
3495 const unsigned char*
3496 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3497 section_size_type, const unsigned char*) const;
3498 #endif
3499
3500 #ifdef HAVE_TARGET_32_BIG
3501 template
3502 void
3503 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3504 Read_symbols_data*);
3505 template
3506 const unsigned char*
3507 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3508 section_size_type, const unsigned char*) const;
3509 #endif
3510
3511 #ifdef HAVE_TARGET_64_LITTLE
3512 template
3513 void
3514 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3515 Read_symbols_data*);
3516 template
3517 const unsigned char*
3518 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3519 section_size_type, const unsigned char*) const;
3520 #endif
3521
3522 #ifdef HAVE_TARGET_64_BIG
3523 template
3524 void
3525 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3526 Read_symbols_data*);
3527 template
3528 const unsigned char*
3529 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3530 section_size_type, const unsigned char*) const;
3531 #endif
3532
3533 #ifdef HAVE_TARGET_32_LITTLE
3534 template
3535 class Sized_relobj<32, false>;
3536
3537 template
3538 class Sized_relobj_file<32, false>;
3539 #endif
3540
3541 #ifdef HAVE_TARGET_32_BIG
3542 template
3543 class Sized_relobj<32, true>;
3544
3545 template
3546 class Sized_relobj_file<32, true>;
3547 #endif
3548
3549 #ifdef HAVE_TARGET_64_LITTLE
3550 template
3551 class Sized_relobj<64, false>;
3552
3553 template
3554 class Sized_relobj_file<64, false>;
3555 #endif
3556
3557 #ifdef HAVE_TARGET_64_BIG
3558 template
3559 class Sized_relobj<64, true>;
3560
3561 template
3562 class Sized_relobj_file<64, true>;
3563 #endif
3564
3565 #ifdef HAVE_TARGET_32_LITTLE
3566 template
3567 struct Relocate_info<32, false>;
3568 #endif
3569
3570 #ifdef HAVE_TARGET_32_BIG
3571 template
3572 struct Relocate_info<32, true>;
3573 #endif
3574
3575 #ifdef HAVE_TARGET_64_LITTLE
3576 template
3577 struct Relocate_info<64, false>;
3578 #endif
3579
3580 #ifdef HAVE_TARGET_64_BIG
3581 template
3582 struct Relocate_info<64, true>;
3583 #endif
3584
3585 #ifdef HAVE_TARGET_32_LITTLE
3586 template
3587 void
3588 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3589
3590 template
3591 void
3592 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3593 const unsigned char*);
3594 #endif
3595
3596 #ifdef HAVE_TARGET_32_BIG
3597 template
3598 void
3599 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3600
3601 template
3602 void
3603 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3604 const unsigned char*);
3605 #endif
3606
3607 #ifdef HAVE_TARGET_64_LITTLE
3608 template
3609 void
3610 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3611
3612 template
3613 void
3614 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3615 const unsigned char*);
3616 #endif
3617
3618 #ifdef HAVE_TARGET_64_BIG
3619 template
3620 void
3621 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3622
3623 template
3624 void
3625 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3626 const unsigned char*);
3627 #endif
3628
3629 #ifdef HAVE_TARGET_32_LITTLE
3630 template
3631 Compressed_section_map*
3632 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3633 const char*, section_size_type,
3634 Object*, bool);
3635 #endif
3636
3637 #ifdef HAVE_TARGET_32_BIG
3638 template
3639 Compressed_section_map*
3640 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3641 const char*, section_size_type,
3642 Object*, bool);
3643 #endif
3644
3645 #ifdef HAVE_TARGET_64_LITTLE
3646 template
3647 Compressed_section_map*
3648 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3649 const char*, section_size_type,
3650 Object*, bool);
3651 #endif
3652
3653 #ifdef HAVE_TARGET_64_BIG
3654 template
3655 Compressed_section_map*
3656 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3657 const char*, section_size_type,
3658 Object*, bool);
3659 #endif
3660
3661 } // End namespace gold.
This page took 0.101691 seconds and 5 git commands to generate.