* incremental-dump.cc (dump_incremental_inputs): Print dynamic reloc
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header. This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438 const unsigned int shnum = this->elf_file_.shnum();
439 this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers. The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section. Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451 const unsigned int shnum = this->shnum();
452 this->symtab_shndx_ = 0;
453 if (shnum > 0)
454 {
455 // Look through the sections in reverse order, since gas tends
456 // to put the symbol table at the end.
457 const unsigned char* p = pshdrs + shnum * This::shdr_size;
458 unsigned int i = shnum;
459 unsigned int xindex_shndx = 0;
460 unsigned int xindex_link = 0;
461 while (i > 0)
462 {
463 --i;
464 p -= This::shdr_size;
465 typename This::Shdr shdr(p);
466 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467 {
468 this->symtab_shndx_ = i;
469 if (xindex_shndx > 0 && xindex_link == i)
470 {
471 Xindex* xindex =
472 new Xindex(this->elf_file_.large_shndx_offset());
473 xindex->read_symtab_xindex<size, big_endian>(this,
474 xindex_shndx,
475 pshdrs);
476 this->set_xindex(xindex);
477 }
478 break;
479 }
480
481 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482 // one. This will work if it follows the SHT_SYMTAB
483 // section.
484 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485 {
486 xindex_shndx = i;
487 xindex_link = this->adjust_shndx(shdr.get_sh_link());
488 }
489 }
490 }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500 gold_assert(this->symtab_shndx_ != -1U);
501 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503 return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512 const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
515 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
516 }
517
518 // Return whether there is a GNU .eh_frame section, given the section
519 // headers and the section names.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::find_eh_frame(
524 const unsigned char* pshdrs,
525 const char* names,
526 section_size_type names_size) const
527 {
528 const unsigned int shnum = this->shnum();
529 const unsigned char* p = pshdrs + This::shdr_size;
530 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
531 {
532 typename This::Shdr shdr(p);
533 if (this->check_eh_frame_flags(&shdr))
534 {
535 if (shdr.get_sh_name() >= names_size)
536 {
537 this->error(_("bad section name offset for section %u: %lu"),
538 i, static_cast<unsigned long>(shdr.get_sh_name()));
539 continue;
540 }
541
542 const char* name = names + shdr.get_sh_name();
543 if (strcmp(name, ".eh_frame") == 0)
544 return true;
545 }
546 }
547 return false;
548 }
549
550 // Build a table for any compressed debug sections, mapping each section index
551 // to the uncompressed size.
552
553 template<int size, bool big_endian>
554 Compressed_section_map*
555 build_compressed_section_map(
556 const unsigned char* pshdrs,
557 unsigned int shnum,
558 const char* names,
559 section_size_type names_size,
560 Sized_relobj_file<size, big_endian>* obj)
561 {
562 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
563 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
564 const unsigned char* p = pshdrs + shdr_size;
565 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
566 {
567 typename elfcpp::Shdr<size, big_endian> shdr(p);
568 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
569 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570 {
571 if (shdr.get_sh_name() >= names_size)
572 {
573 obj->error(_("bad section name offset for section %u: %lu"),
574 i, static_cast<unsigned long>(shdr.get_sh_name()));
575 continue;
576 }
577
578 const char* name = names + shdr.get_sh_name();
579 if (is_compressed_debug_section(name))
580 {
581 section_size_type len;
582 const unsigned char* contents =
583 obj->section_contents(i, &len, false);
584 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
585 if (uncompressed_size != -1ULL)
586 (*uncompressed_sizes)[i] =
587 convert_to_section_size_type(uncompressed_size);
588 }
589 }
590 }
591 return uncompressed_sizes;
592 }
593
594 // Read the sections and symbols from an object file.
595
596 template<int size, bool big_endian>
597 void
598 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
599 {
600 this->read_section_data(&this->elf_file_, sd);
601
602 const unsigned char* const pshdrs = sd->section_headers->data();
603
604 this->find_symtab(pshdrs);
605
606 const unsigned char* namesu = sd->section_names->data();
607 const char* names = reinterpret_cast<const char*>(namesu);
608 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
609 {
610 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
611 this->has_eh_frame_ = true;
612 }
613 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
614 this->compressed_sections_ =
615 build_compressed_section_map(pshdrs, this->shnum(), names,
616 sd->section_names_size, this);
617
618 sd->symbols = NULL;
619 sd->symbols_size = 0;
620 sd->external_symbols_offset = 0;
621 sd->symbol_names = NULL;
622 sd->symbol_names_size = 0;
623
624 if (this->symtab_shndx_ == 0)
625 {
626 // No symbol table. Weird but legal.
627 return;
628 }
629
630 // Get the symbol table section header.
631 typename This::Shdr symtabshdr(pshdrs
632 + this->symtab_shndx_ * This::shdr_size);
633 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
634
635 // If this object has a .eh_frame section, we need all the symbols.
636 // Otherwise we only need the external symbols. While it would be
637 // simpler to just always read all the symbols, I've seen object
638 // files with well over 2000 local symbols, which for a 64-bit
639 // object file format is over 5 pages that we don't need to read
640 // now.
641
642 const int sym_size = This::sym_size;
643 const unsigned int loccount = symtabshdr.get_sh_info();
644 this->local_symbol_count_ = loccount;
645 this->local_values_.resize(loccount);
646 section_offset_type locsize = loccount * sym_size;
647 off_t dataoff = symtabshdr.get_sh_offset();
648 section_size_type datasize =
649 convert_to_section_size_type(symtabshdr.get_sh_size());
650 off_t extoff = dataoff + locsize;
651 section_size_type extsize = datasize - locsize;
652
653 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
654 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
655
656 if (readsize == 0)
657 {
658 // No external symbols. Also weird but also legal.
659 return;
660 }
661
662 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
663
664 // Read the section header for the symbol names.
665 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
666 if (strtab_shndx >= this->shnum())
667 {
668 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
669 return;
670 }
671 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
672 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
673 {
674 this->error(_("symbol table name section has wrong type: %u"),
675 static_cast<unsigned int>(strtabshdr.get_sh_type()));
676 return;
677 }
678
679 // Read the symbol names.
680 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
681 strtabshdr.get_sh_size(),
682 false, true);
683
684 sd->symbols = fvsymtab;
685 sd->symbols_size = readsize;
686 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
687 sd->symbol_names = fvstrtab;
688 sd->symbol_names_size =
689 convert_to_section_size_type(strtabshdr.get_sh_size());
690 }
691
692 // Return the section index of symbol SYM. Set *VALUE to its value in
693 // the object file. Set *IS_ORDINARY if this is an ordinary section
694 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
695 // Note that for a symbol which is not defined in this object file,
696 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
697 // the final value of the symbol in the link.
698
699 template<int size, bool big_endian>
700 unsigned int
701 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
702 Address* value,
703 bool* is_ordinary)
704 {
705 section_size_type symbols_size;
706 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
707 &symbols_size,
708 false);
709
710 const size_t count = symbols_size / This::sym_size;
711 gold_assert(sym < count);
712
713 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
714 *value = elfsym.get_st_value();
715
716 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
717 }
718
719 // Return whether to include a section group in the link. LAYOUT is
720 // used to keep track of which section groups we have already seen.
721 // INDEX is the index of the section group and SHDR is the section
722 // header. If we do not want to include this group, we set bits in
723 // OMIT for each section which should be discarded.
724
725 template<int size, bool big_endian>
726 bool
727 Sized_relobj_file<size, big_endian>::include_section_group(
728 Symbol_table* symtab,
729 Layout* layout,
730 unsigned int index,
731 const char* name,
732 const unsigned char* shdrs,
733 const char* section_names,
734 section_size_type section_names_size,
735 std::vector<bool>* omit)
736 {
737 // Read the section contents.
738 typename This::Shdr shdr(shdrs + index * This::shdr_size);
739 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
740 shdr.get_sh_size(), true, false);
741 const elfcpp::Elf_Word* pword =
742 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
743
744 // The first word contains flags. We only care about COMDAT section
745 // groups. Other section groups are always included in the link
746 // just like ordinary sections.
747 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
748
749 // Look up the group signature, which is the name of a symbol. This
750 // is a lot of effort to go to to read a string. Why didn't they
751 // just have the group signature point into the string table, rather
752 // than indirect through a symbol?
753
754 // Get the appropriate symbol table header (this will normally be
755 // the single SHT_SYMTAB section, but in principle it need not be).
756 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
757 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
758
759 // Read the symbol table entry.
760 unsigned int symndx = shdr.get_sh_info();
761 if (symndx >= symshdr.get_sh_size() / This::sym_size)
762 {
763 this->error(_("section group %u info %u out of range"),
764 index, symndx);
765 return false;
766 }
767 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
768 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
769 false);
770 elfcpp::Sym<size, big_endian> sym(psym);
771
772 // Read the symbol table names.
773 section_size_type symnamelen;
774 const unsigned char* psymnamesu;
775 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
776 &symnamelen, true);
777 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
778
779 // Get the section group signature.
780 if (sym.get_st_name() >= symnamelen)
781 {
782 this->error(_("symbol %u name offset %u out of range"),
783 symndx, sym.get_st_name());
784 return false;
785 }
786
787 std::string signature(psymnames + sym.get_st_name());
788
789 // It seems that some versions of gas will create a section group
790 // associated with a section symbol, and then fail to give a name to
791 // the section symbol. In such a case, use the name of the section.
792 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
793 {
794 bool is_ordinary;
795 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
796 sym.get_st_shndx(),
797 &is_ordinary);
798 if (!is_ordinary || sym_shndx >= this->shnum())
799 {
800 this->error(_("symbol %u invalid section index %u"),
801 symndx, sym_shndx);
802 return false;
803 }
804 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
805 if (member_shdr.get_sh_name() < section_names_size)
806 signature = section_names + member_shdr.get_sh_name();
807 }
808
809 // Record this section group in the layout, and see whether we've already
810 // seen one with the same signature.
811 bool include_group;
812 bool is_comdat;
813 Kept_section* kept_section = NULL;
814
815 if ((flags & elfcpp::GRP_COMDAT) == 0)
816 {
817 include_group = true;
818 is_comdat = false;
819 }
820 else
821 {
822 include_group = layout->find_or_add_kept_section(signature,
823 this, index, true,
824 true, &kept_section);
825 is_comdat = true;
826 }
827
828 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
829
830 std::vector<unsigned int> shndxes;
831 bool relocate_group = include_group && parameters->options().relocatable();
832 if (relocate_group)
833 shndxes.reserve(count - 1);
834
835 for (size_t i = 1; i < count; ++i)
836 {
837 elfcpp::Elf_Word shndx =
838 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
839
840 if (relocate_group)
841 shndxes.push_back(shndx);
842
843 if (shndx >= this->shnum())
844 {
845 this->error(_("section %u in section group %u out of range"),
846 shndx, index);
847 continue;
848 }
849
850 // Check for an earlier section number, since we're going to get
851 // it wrong--we may have already decided to include the section.
852 if (shndx < index)
853 this->error(_("invalid section group %u refers to earlier section %u"),
854 index, shndx);
855
856 // Get the name of the member section.
857 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
858 if (member_shdr.get_sh_name() >= section_names_size)
859 {
860 // This is an error, but it will be diagnosed eventually
861 // in do_layout, so we don't need to do anything here but
862 // ignore it.
863 continue;
864 }
865 std::string mname(section_names + member_shdr.get_sh_name());
866
867 if (include_group)
868 {
869 if (is_comdat)
870 kept_section->add_comdat_section(mname, shndx,
871 member_shdr.get_sh_size());
872 }
873 else
874 {
875 (*omit)[shndx] = true;
876
877 if (is_comdat)
878 {
879 Relobj* kept_object = kept_section->object();
880 if (kept_section->is_comdat())
881 {
882 // Find the corresponding kept section, and store
883 // that info in the discarded section table.
884 unsigned int kept_shndx;
885 uint64_t kept_size;
886 if (kept_section->find_comdat_section(mname, &kept_shndx,
887 &kept_size))
888 {
889 // We don't keep a mapping for this section if
890 // it has a different size. The mapping is only
891 // used for relocation processing, and we don't
892 // want to treat the sections as similar if the
893 // sizes are different. Checking the section
894 // size is the approach used by the GNU linker.
895 if (kept_size == member_shdr.get_sh_size())
896 this->set_kept_comdat_section(shndx, kept_object,
897 kept_shndx);
898 }
899 }
900 else
901 {
902 // The existing section is a linkonce section. Add
903 // a mapping if there is exactly one section in the
904 // group (which is true when COUNT == 2) and if it
905 // is the same size.
906 if (count == 2
907 && (kept_section->linkonce_size()
908 == member_shdr.get_sh_size()))
909 this->set_kept_comdat_section(shndx, kept_object,
910 kept_section->shndx());
911 }
912 }
913 }
914 }
915
916 if (relocate_group)
917 layout->layout_group(symtab, this, index, name, signature.c_str(),
918 shdr, flags, &shndxes);
919
920 return include_group;
921 }
922
923 // Whether to include a linkonce section in the link. NAME is the
924 // name of the section and SHDR is the section header.
925
926 // Linkonce sections are a GNU extension implemented in the original
927 // GNU linker before section groups were defined. The semantics are
928 // that we only include one linkonce section with a given name. The
929 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
930 // where T is the type of section and SYMNAME is the name of a symbol.
931 // In an attempt to make linkonce sections interact well with section
932 // groups, we try to identify SYMNAME and use it like a section group
933 // signature. We want to block section groups with that signature,
934 // but not other linkonce sections with that signature. We also use
935 // the full name of the linkonce section as a normal section group
936 // signature.
937
938 template<int size, bool big_endian>
939 bool
940 Sized_relobj_file<size, big_endian>::include_linkonce_section(
941 Layout* layout,
942 unsigned int index,
943 const char* name,
944 const elfcpp::Shdr<size, big_endian>& shdr)
945 {
946 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
947 // In general the symbol name we want will be the string following
948 // the last '.'. However, we have to handle the case of
949 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
950 // some versions of gcc. So we use a heuristic: if the name starts
951 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
952 // we look for the last '.'. We can't always simply skip
953 // ".gnu.linkonce.X", because we have to deal with cases like
954 // ".gnu.linkonce.d.rel.ro.local".
955 const char* const linkonce_t = ".gnu.linkonce.t.";
956 const char* symname;
957 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
958 symname = name + strlen(linkonce_t);
959 else
960 symname = strrchr(name, '.') + 1;
961 std::string sig1(symname);
962 std::string sig2(name);
963 Kept_section* kept1;
964 Kept_section* kept2;
965 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
966 false, &kept1);
967 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
968 true, &kept2);
969
970 if (!include2)
971 {
972 // We are not including this section because we already saw the
973 // name of the section as a signature. This normally implies
974 // that the kept section is another linkonce section. If it is
975 // the same size, record it as the section which corresponds to
976 // this one.
977 if (kept2->object() != NULL
978 && !kept2->is_comdat()
979 && kept2->linkonce_size() == sh_size)
980 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
981 }
982 else if (!include1)
983 {
984 // The section is being discarded on the basis of its symbol
985 // name. This means that the corresponding kept section was
986 // part of a comdat group, and it will be difficult to identify
987 // the specific section within that group that corresponds to
988 // this linkonce section. We'll handle the simple case where
989 // the group has only one member section. Otherwise, it's not
990 // worth the effort.
991 unsigned int kept_shndx;
992 uint64_t kept_size;
993 if (kept1->object() != NULL
994 && kept1->is_comdat()
995 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
996 && kept_size == sh_size)
997 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
998 }
999 else
1000 {
1001 kept1->set_linkonce_size(sh_size);
1002 kept2->set_linkonce_size(sh_size);
1003 }
1004
1005 return include1 && include2;
1006 }
1007
1008 // Layout an input section.
1009
1010 template<int size, bool big_endian>
1011 inline void
1012 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1013 unsigned int shndx,
1014 const char* name,
1015 typename This::Shdr& shdr,
1016 unsigned int reloc_shndx,
1017 unsigned int reloc_type)
1018 {
1019 off_t offset;
1020 Output_section* os = layout->layout(this, shndx, name, shdr,
1021 reloc_shndx, reloc_type, &offset);
1022
1023 this->output_sections()[shndx] = os;
1024 if (offset == -1)
1025 this->section_offsets()[shndx] = invalid_address;
1026 else
1027 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1028
1029 // If this section requires special handling, and if there are
1030 // relocs that apply to it, then we must do the special handling
1031 // before we apply the relocs.
1032 if (offset == -1 && reloc_shndx != 0)
1033 this->set_relocs_must_follow_section_writes();
1034 }
1035
1036 // Lay out the input sections. We walk through the sections and check
1037 // whether they should be included in the link. If they should, we
1038 // pass them to the Layout object, which will return an output section
1039 // and an offset.
1040 // During garbage collection (--gc-sections) and identical code folding
1041 // (--icf), this function is called twice. When it is called the first
1042 // time, it is for setting up some sections as roots to a work-list for
1043 // --gc-sections and to do comdat processing. Actual layout happens the
1044 // second time around after all the relevant sections have been determined.
1045 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1046 // set to true after the garbage collection worklist or identical code
1047 // folding is processed and the relevant sections to be kept are
1048 // determined. Then, this function is called again to layout the sections.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1053 Layout* layout,
1054 Read_symbols_data* sd)
1055 {
1056 const unsigned int shnum = this->shnum();
1057 bool is_gc_pass_one = ((parameters->options().gc_sections()
1058 && !symtab->gc()->is_worklist_ready())
1059 || (parameters->options().icf_enabled()
1060 && !symtab->icf()->is_icf_ready()));
1061
1062 bool is_gc_pass_two = ((parameters->options().gc_sections()
1063 && symtab->gc()->is_worklist_ready())
1064 || (parameters->options().icf_enabled()
1065 && symtab->icf()->is_icf_ready()));
1066
1067 bool is_gc_or_icf = (parameters->options().gc_sections()
1068 || parameters->options().icf_enabled());
1069
1070 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1071 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1072
1073 if (shnum == 0)
1074 return;
1075 Symbols_data* gc_sd = NULL;
1076 if (is_gc_pass_one)
1077 {
1078 // During garbage collection save the symbols data to use it when
1079 // re-entering this function.
1080 gc_sd = new Symbols_data;
1081 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1082 this->set_symbols_data(gc_sd);
1083 }
1084 else if (is_gc_pass_two)
1085 {
1086 gc_sd = this->get_symbols_data();
1087 }
1088
1089 const unsigned char* section_headers_data = NULL;
1090 section_size_type section_names_size;
1091 const unsigned char* symbols_data = NULL;
1092 section_size_type symbols_size;
1093 section_offset_type external_symbols_offset;
1094 const unsigned char* symbol_names_data = NULL;
1095 section_size_type symbol_names_size;
1096
1097 if (is_gc_or_icf)
1098 {
1099 section_headers_data = gc_sd->section_headers_data;
1100 section_names_size = gc_sd->section_names_size;
1101 symbols_data = gc_sd->symbols_data;
1102 symbols_size = gc_sd->symbols_size;
1103 external_symbols_offset = gc_sd->external_symbols_offset;
1104 symbol_names_data = gc_sd->symbol_names_data;
1105 symbol_names_size = gc_sd->symbol_names_size;
1106 }
1107 else
1108 {
1109 section_headers_data = sd->section_headers->data();
1110 section_names_size = sd->section_names_size;
1111 if (sd->symbols != NULL)
1112 symbols_data = sd->symbols->data();
1113 symbols_size = sd->symbols_size;
1114 external_symbols_offset = sd->external_symbols_offset;
1115 if (sd->symbol_names != NULL)
1116 symbol_names_data = sd->symbol_names->data();
1117 symbol_names_size = sd->symbol_names_size;
1118 }
1119
1120 // Get the section headers.
1121 const unsigned char* shdrs = section_headers_data;
1122 const unsigned char* pshdrs;
1123
1124 // Get the section names.
1125 const unsigned char* pnamesu = (is_gc_or_icf)
1126 ? gc_sd->section_names_data
1127 : sd->section_names->data();
1128
1129 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1130
1131 // If any input files have been claimed by plugins, we need to defer
1132 // actual layout until the replacement files have arrived.
1133 const bool should_defer_layout =
1134 (parameters->options().has_plugins()
1135 && parameters->options().plugins()->should_defer_layout());
1136 unsigned int num_sections_to_defer = 0;
1137
1138 // For each section, record the index of the reloc section if any.
1139 // Use 0 to mean that there is no reloc section, -1U to mean that
1140 // there is more than one.
1141 std::vector<unsigned int> reloc_shndx(shnum, 0);
1142 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1143 // Skip the first, dummy, section.
1144 pshdrs = shdrs + This::shdr_size;
1145 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1146 {
1147 typename This::Shdr shdr(pshdrs);
1148
1149 // Count the number of sections whose layout will be deferred.
1150 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1151 ++num_sections_to_defer;
1152
1153 unsigned int sh_type = shdr.get_sh_type();
1154 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1155 {
1156 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1157 if (target_shndx == 0 || target_shndx >= shnum)
1158 {
1159 this->error(_("relocation section %u has bad info %u"),
1160 i, target_shndx);
1161 continue;
1162 }
1163
1164 if (reloc_shndx[target_shndx] != 0)
1165 reloc_shndx[target_shndx] = -1U;
1166 else
1167 {
1168 reloc_shndx[target_shndx] = i;
1169 reloc_type[target_shndx] = sh_type;
1170 }
1171 }
1172 }
1173
1174 Output_sections& out_sections(this->output_sections());
1175 std::vector<Address>& out_section_offsets(this->section_offsets());
1176
1177 if (!is_gc_pass_two)
1178 {
1179 out_sections.resize(shnum);
1180 out_section_offsets.resize(shnum);
1181 }
1182
1183 // If we are only linking for symbols, then there is nothing else to
1184 // do here.
1185 if (this->input_file()->just_symbols())
1186 {
1187 if (!is_gc_pass_two)
1188 {
1189 delete sd->section_headers;
1190 sd->section_headers = NULL;
1191 delete sd->section_names;
1192 sd->section_names = NULL;
1193 }
1194 return;
1195 }
1196
1197 if (num_sections_to_defer > 0)
1198 {
1199 parameters->options().plugins()->add_deferred_layout_object(this);
1200 this->deferred_layout_.reserve(num_sections_to_defer);
1201 }
1202
1203 // Whether we've seen a .note.GNU-stack section.
1204 bool seen_gnu_stack = false;
1205 // The flags of a .note.GNU-stack section.
1206 uint64_t gnu_stack_flags = 0;
1207
1208 // Keep track of which sections to omit.
1209 std::vector<bool> omit(shnum, false);
1210
1211 // Keep track of reloc sections when emitting relocations.
1212 const bool relocatable = parameters->options().relocatable();
1213 const bool emit_relocs = (relocatable
1214 || parameters->options().emit_relocs());
1215 std::vector<unsigned int> reloc_sections;
1216
1217 // Keep track of .eh_frame sections.
1218 std::vector<unsigned int> eh_frame_sections;
1219
1220 // Skip the first, dummy, section.
1221 pshdrs = shdrs + This::shdr_size;
1222 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1223 {
1224 typename This::Shdr shdr(pshdrs);
1225
1226 if (shdr.get_sh_name() >= section_names_size)
1227 {
1228 this->error(_("bad section name offset for section %u: %lu"),
1229 i, static_cast<unsigned long>(shdr.get_sh_name()));
1230 return;
1231 }
1232
1233 const char* name = pnames + shdr.get_sh_name();
1234
1235 if (!is_gc_pass_two)
1236 {
1237 if (this->handle_gnu_warning_section(name, i, symtab))
1238 {
1239 if (!relocatable)
1240 omit[i] = true;
1241 }
1242
1243 // The .note.GNU-stack section is special. It gives the
1244 // protection flags that this object file requires for the stack
1245 // in memory.
1246 if (strcmp(name, ".note.GNU-stack") == 0)
1247 {
1248 seen_gnu_stack = true;
1249 gnu_stack_flags |= shdr.get_sh_flags();
1250 omit[i] = true;
1251 }
1252
1253 // The .note.GNU-split-stack section is also special. It
1254 // indicates that the object was compiled with
1255 // -fsplit-stack.
1256 if (this->handle_split_stack_section(name))
1257 {
1258 if (!parameters->options().relocatable()
1259 && !parameters->options().shared())
1260 omit[i] = true;
1261 }
1262
1263 // Skip attributes section.
1264 if (parameters->target().is_attributes_section(name))
1265 {
1266 omit[i] = true;
1267 }
1268
1269 bool discard = omit[i];
1270 if (!discard)
1271 {
1272 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1273 {
1274 if (!this->include_section_group(symtab, layout, i, name,
1275 shdrs, pnames,
1276 section_names_size,
1277 &omit))
1278 discard = true;
1279 }
1280 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1281 && Layout::is_linkonce(name))
1282 {
1283 if (!this->include_linkonce_section(layout, i, name, shdr))
1284 discard = true;
1285 }
1286 }
1287
1288 // Add the section to the incremental inputs layout.
1289 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1290 if (incremental_inputs != NULL
1291 && !discard
1292 && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1293 || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1294 || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1295 incremental_inputs->report_input_section(this, i, name,
1296 shdr.get_sh_size());
1297
1298 if (discard)
1299 {
1300 // Do not include this section in the link.
1301 out_sections[i] = NULL;
1302 out_section_offsets[i] = invalid_address;
1303 continue;
1304 }
1305 }
1306
1307 if (is_gc_pass_one && parameters->options().gc_sections())
1308 {
1309 if (this->is_section_name_included(name)
1310 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1311 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1312 {
1313 symtab->gc()->worklist().push(Section_id(this, i));
1314 }
1315 // If the section name XXX can be represented as a C identifier
1316 // it cannot be discarded if there are references to
1317 // __start_XXX and __stop_XXX symbols. These need to be
1318 // specially handled.
1319 if (is_cident(name))
1320 {
1321 symtab->gc()->add_cident_section(name, Section_id(this, i));
1322 }
1323 }
1324
1325 // When doing a relocatable link we are going to copy input
1326 // reloc sections into the output. We only want to copy the
1327 // ones associated with sections which are not being discarded.
1328 // However, we don't know that yet for all sections. So save
1329 // reloc sections and process them later. Garbage collection is
1330 // not triggered when relocatable code is desired.
1331 if (emit_relocs
1332 && (shdr.get_sh_type() == elfcpp::SHT_REL
1333 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1334 {
1335 reloc_sections.push_back(i);
1336 continue;
1337 }
1338
1339 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1340 continue;
1341
1342 // The .eh_frame section is special. It holds exception frame
1343 // information that we need to read in order to generate the
1344 // exception frame header. We process these after all the other
1345 // sections so that the exception frame reader can reliably
1346 // determine which sections are being discarded, and discard the
1347 // corresponding information.
1348 if (!relocatable
1349 && strcmp(name, ".eh_frame") == 0
1350 && this->check_eh_frame_flags(&shdr))
1351 {
1352 if (is_gc_pass_one)
1353 {
1354 out_sections[i] = reinterpret_cast<Output_section*>(1);
1355 out_section_offsets[i] = invalid_address;
1356 }
1357 else
1358 eh_frame_sections.push_back(i);
1359 continue;
1360 }
1361
1362 if (is_gc_pass_two && parameters->options().gc_sections())
1363 {
1364 // This is executed during the second pass of garbage
1365 // collection. do_layout has been called before and some
1366 // sections have been already discarded. Simply ignore
1367 // such sections this time around.
1368 if (out_sections[i] == NULL)
1369 {
1370 gold_assert(out_section_offsets[i] == invalid_address);
1371 continue;
1372 }
1373 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1374 && symtab->gc()->is_section_garbage(this, i))
1375 {
1376 if (parameters->options().print_gc_sections())
1377 gold_info(_("%s: removing unused section from '%s'"
1378 " in file '%s'"),
1379 program_name, this->section_name(i).c_str(),
1380 this->name().c_str());
1381 out_sections[i] = NULL;
1382 out_section_offsets[i] = invalid_address;
1383 continue;
1384 }
1385 }
1386
1387 if (is_gc_pass_two && parameters->options().icf_enabled())
1388 {
1389 if (out_sections[i] == NULL)
1390 {
1391 gold_assert(out_section_offsets[i] == invalid_address);
1392 continue;
1393 }
1394 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1395 && symtab->icf()->is_section_folded(this, i))
1396 {
1397 if (parameters->options().print_icf_sections())
1398 {
1399 Section_id folded =
1400 symtab->icf()->get_folded_section(this, i);
1401 Relobj* folded_obj =
1402 reinterpret_cast<Relobj*>(folded.first);
1403 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1404 "into '%s' in file '%s'"),
1405 program_name, this->section_name(i).c_str(),
1406 this->name().c_str(),
1407 folded_obj->section_name(folded.second).c_str(),
1408 folded_obj->name().c_str());
1409 }
1410 out_sections[i] = NULL;
1411 out_section_offsets[i] = invalid_address;
1412 continue;
1413 }
1414 }
1415
1416 // Defer layout here if input files are claimed by plugins. When gc
1417 // is turned on this function is called twice. For the second call
1418 // should_defer_layout should be false.
1419 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1420 {
1421 gold_assert(!is_gc_pass_two);
1422 this->deferred_layout_.push_back(Deferred_layout(i, name,
1423 pshdrs,
1424 reloc_shndx[i],
1425 reloc_type[i]));
1426 // Put dummy values here; real values will be supplied by
1427 // do_layout_deferred_sections.
1428 out_sections[i] = reinterpret_cast<Output_section*>(2);
1429 out_section_offsets[i] = invalid_address;
1430 continue;
1431 }
1432
1433 // During gc_pass_two if a section that was previously deferred is
1434 // found, do not layout the section as layout_deferred_sections will
1435 // do it later from gold.cc.
1436 if (is_gc_pass_two
1437 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1438 continue;
1439
1440 if (is_gc_pass_one)
1441 {
1442 // This is during garbage collection. The out_sections are
1443 // assigned in the second call to this function.
1444 out_sections[i] = reinterpret_cast<Output_section*>(1);
1445 out_section_offsets[i] = invalid_address;
1446 }
1447 else
1448 {
1449 // When garbage collection is switched on the actual layout
1450 // only happens in the second call.
1451 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1452 reloc_type[i]);
1453 }
1454 }
1455
1456 if (!is_gc_pass_two)
1457 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1458
1459 // When doing a relocatable link handle the reloc sections at the
1460 // end. Garbage collection and Identical Code Folding is not
1461 // turned on for relocatable code.
1462 if (emit_relocs)
1463 this->size_relocatable_relocs();
1464
1465 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1466
1467 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1468 p != reloc_sections.end();
1469 ++p)
1470 {
1471 unsigned int i = *p;
1472 const unsigned char* pshdr;
1473 pshdr = section_headers_data + i * This::shdr_size;
1474 typename This::Shdr shdr(pshdr);
1475
1476 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1477 if (data_shndx >= shnum)
1478 {
1479 // We already warned about this above.
1480 continue;
1481 }
1482
1483 Output_section* data_section = out_sections[data_shndx];
1484 if (data_section == reinterpret_cast<Output_section*>(2))
1485 {
1486 // The layout for the data section was deferred, so we need
1487 // to defer the relocation section, too.
1488 const char* name = pnames + shdr.get_sh_name();
1489 this->deferred_layout_relocs_.push_back(
1490 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1491 out_sections[i] = reinterpret_cast<Output_section*>(2);
1492 out_section_offsets[i] = invalid_address;
1493 continue;
1494 }
1495 if (data_section == NULL)
1496 {
1497 out_sections[i] = NULL;
1498 out_section_offsets[i] = invalid_address;
1499 continue;
1500 }
1501
1502 Relocatable_relocs* rr = new Relocatable_relocs();
1503 this->set_relocatable_relocs(i, rr);
1504
1505 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1506 rr);
1507 out_sections[i] = os;
1508 out_section_offsets[i] = invalid_address;
1509 }
1510
1511 // Handle the .eh_frame sections at the end.
1512 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1513 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1514 p != eh_frame_sections.end();
1515 ++p)
1516 {
1517 gold_assert(this->has_eh_frame_);
1518 gold_assert(external_symbols_offset != 0);
1519
1520 unsigned int i = *p;
1521 const unsigned char* pshdr;
1522 pshdr = section_headers_data + i * This::shdr_size;
1523 typename This::Shdr shdr(pshdr);
1524
1525 off_t offset;
1526 Output_section* os = layout->layout_eh_frame(this,
1527 symbols_data,
1528 symbols_size,
1529 symbol_names_data,
1530 symbol_names_size,
1531 i, shdr,
1532 reloc_shndx[i],
1533 reloc_type[i],
1534 &offset);
1535 out_sections[i] = os;
1536 if (os == NULL || offset == -1)
1537 {
1538 // An object can contain at most one section holding exception
1539 // frame information.
1540 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1541 this->discarded_eh_frame_shndx_ = i;
1542 out_section_offsets[i] = invalid_address;
1543 }
1544 else
1545 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1546
1547 // If this section requires special handling, and if there are
1548 // relocs that apply to it, then we must do the special handling
1549 // before we apply the relocs.
1550 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1551 this->set_relocs_must_follow_section_writes();
1552 }
1553
1554 if (is_gc_pass_two)
1555 {
1556 delete[] gc_sd->section_headers_data;
1557 delete[] gc_sd->section_names_data;
1558 delete[] gc_sd->symbols_data;
1559 delete[] gc_sd->symbol_names_data;
1560 this->set_symbols_data(NULL);
1561 }
1562 else
1563 {
1564 delete sd->section_headers;
1565 sd->section_headers = NULL;
1566 delete sd->section_names;
1567 sd->section_names = NULL;
1568 }
1569 }
1570
1571 // Layout sections whose layout was deferred while waiting for
1572 // input files from a plugin.
1573
1574 template<int size, bool big_endian>
1575 void
1576 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1577 {
1578 typename std::vector<Deferred_layout>::iterator deferred;
1579
1580 for (deferred = this->deferred_layout_.begin();
1581 deferred != this->deferred_layout_.end();
1582 ++deferred)
1583 {
1584 typename This::Shdr shdr(deferred->shdr_data_);
1585 // If the section is not included, it is because the garbage collector
1586 // decided it is not needed. Avoid reverting that decision.
1587 if (!this->is_section_included(deferred->shndx_))
1588 continue;
1589
1590 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1591 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1592 }
1593
1594 this->deferred_layout_.clear();
1595
1596 // Now handle the deferred relocation sections.
1597
1598 Output_sections& out_sections(this->output_sections());
1599 std::vector<Address>& out_section_offsets(this->section_offsets());
1600
1601 for (deferred = this->deferred_layout_relocs_.begin();
1602 deferred != this->deferred_layout_relocs_.end();
1603 ++deferred)
1604 {
1605 unsigned int shndx = deferred->shndx_;
1606 typename This::Shdr shdr(deferred->shdr_data_);
1607 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1608
1609 Output_section* data_section = out_sections[data_shndx];
1610 if (data_section == NULL)
1611 {
1612 out_sections[shndx] = NULL;
1613 out_section_offsets[shndx] = invalid_address;
1614 continue;
1615 }
1616
1617 Relocatable_relocs* rr = new Relocatable_relocs();
1618 this->set_relocatable_relocs(shndx, rr);
1619
1620 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1621 data_section, rr);
1622 out_sections[shndx] = os;
1623 out_section_offsets[shndx] = invalid_address;
1624 }
1625 }
1626
1627 // Add the symbols to the symbol table.
1628
1629 template<int size, bool big_endian>
1630 void
1631 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1632 Read_symbols_data* sd,
1633 Layout*)
1634 {
1635 if (sd->symbols == NULL)
1636 {
1637 gold_assert(sd->symbol_names == NULL);
1638 return;
1639 }
1640
1641 const int sym_size = This::sym_size;
1642 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1643 / sym_size);
1644 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1645 {
1646 this->error(_("size of symbols is not multiple of symbol size"));
1647 return;
1648 }
1649
1650 this->symbols_.resize(symcount);
1651
1652 const char* sym_names =
1653 reinterpret_cast<const char*>(sd->symbol_names->data());
1654 symtab->add_from_relobj(this,
1655 sd->symbols->data() + sd->external_symbols_offset,
1656 symcount, this->local_symbol_count_,
1657 sym_names, sd->symbol_names_size,
1658 &this->symbols_,
1659 &this->defined_count_);
1660
1661 delete sd->symbols;
1662 sd->symbols = NULL;
1663 delete sd->symbol_names;
1664 sd->symbol_names = NULL;
1665 }
1666
1667 // Find out if this object, that is a member of a lib group, should be included
1668 // in the link. We check every symbol defined by this object. If the symbol
1669 // table has a strong undefined reference to that symbol, we have to include
1670 // the object.
1671
1672 template<int size, bool big_endian>
1673 Archive::Should_include
1674 Sized_relobj_file<size, big_endian>::do_should_include_member(
1675 Symbol_table* symtab,
1676 Layout* layout,
1677 Read_symbols_data* sd,
1678 std::string* why)
1679 {
1680 char* tmpbuf = NULL;
1681 size_t tmpbuflen = 0;
1682 const char* sym_names =
1683 reinterpret_cast<const char*>(sd->symbol_names->data());
1684 const unsigned char* syms =
1685 sd->symbols->data() + sd->external_symbols_offset;
1686 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1687 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1688 / sym_size);
1689
1690 const unsigned char* p = syms;
1691
1692 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1693 {
1694 elfcpp::Sym<size, big_endian> sym(p);
1695 unsigned int st_shndx = sym.get_st_shndx();
1696 if (st_shndx == elfcpp::SHN_UNDEF)
1697 continue;
1698
1699 unsigned int st_name = sym.get_st_name();
1700 const char* name = sym_names + st_name;
1701 Symbol* symbol;
1702 Archive::Should_include t = Archive::should_include_member(symtab,
1703 layout,
1704 name,
1705 &symbol, why,
1706 &tmpbuf,
1707 &tmpbuflen);
1708 if (t == Archive::SHOULD_INCLUDE_YES)
1709 {
1710 if (tmpbuf != NULL)
1711 free(tmpbuf);
1712 return t;
1713 }
1714 }
1715 if (tmpbuf != NULL)
1716 free(tmpbuf);
1717 return Archive::SHOULD_INCLUDE_UNKNOWN;
1718 }
1719
1720 // Iterate over global defined symbols, calling a visitor class V for each.
1721
1722 template<int size, bool big_endian>
1723 void
1724 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1725 Read_symbols_data* sd,
1726 Library_base::Symbol_visitor_base* v)
1727 {
1728 const char* sym_names =
1729 reinterpret_cast<const char*>(sd->symbol_names->data());
1730 const unsigned char* syms =
1731 sd->symbols->data() + sd->external_symbols_offset;
1732 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1733 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1734 / sym_size);
1735 const unsigned char* p = syms;
1736
1737 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1738 {
1739 elfcpp::Sym<size, big_endian> sym(p);
1740 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1741 v->visit(sym_names + sym.get_st_name());
1742 }
1743 }
1744
1745 // Return whether the local symbol SYMNDX has a PLT offset.
1746
1747 template<int size, bool big_endian>
1748 bool
1749 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1750 unsigned int symndx) const
1751 {
1752 typename Local_plt_offsets::const_iterator p =
1753 this->local_plt_offsets_.find(symndx);
1754 return p != this->local_plt_offsets_.end();
1755 }
1756
1757 // Get the PLT offset of a local symbol.
1758
1759 template<int size, bool big_endian>
1760 unsigned int
1761 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1762 {
1763 typename Local_plt_offsets::const_iterator p =
1764 this->local_plt_offsets_.find(symndx);
1765 gold_assert(p != this->local_plt_offsets_.end());
1766 return p->second;
1767 }
1768
1769 // Set the PLT offset of a local symbol.
1770
1771 template<int size, bool big_endian>
1772 void
1773 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1774 unsigned int symndx, unsigned int plt_offset)
1775 {
1776 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1777 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1778 gold_assert(ins.second);
1779 }
1780
1781 // First pass over the local symbols. Here we add their names to
1782 // *POOL and *DYNPOOL, and we store the symbol value in
1783 // THIS->LOCAL_VALUES_. This function is always called from a
1784 // singleton thread. This is followed by a call to
1785 // finalize_local_symbols.
1786
1787 template<int size, bool big_endian>
1788 void
1789 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1790 Stringpool* dynpool)
1791 {
1792 gold_assert(this->symtab_shndx_ != -1U);
1793 if (this->symtab_shndx_ == 0)
1794 {
1795 // This object has no symbols. Weird but legal.
1796 return;
1797 }
1798
1799 // Read the symbol table section header.
1800 const unsigned int symtab_shndx = this->symtab_shndx_;
1801 typename This::Shdr symtabshdr(this,
1802 this->elf_file_.section_header(symtab_shndx));
1803 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1804
1805 // Read the local symbols.
1806 const int sym_size = This::sym_size;
1807 const unsigned int loccount = this->local_symbol_count_;
1808 gold_assert(loccount == symtabshdr.get_sh_info());
1809 off_t locsize = loccount * sym_size;
1810 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1811 locsize, true, true);
1812
1813 // Read the symbol names.
1814 const unsigned int strtab_shndx =
1815 this->adjust_shndx(symtabshdr.get_sh_link());
1816 section_size_type strtab_size;
1817 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1818 &strtab_size,
1819 true);
1820 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1821
1822 // Loop over the local symbols.
1823
1824 const Output_sections& out_sections(this->output_sections());
1825 unsigned int shnum = this->shnum();
1826 unsigned int count = 0;
1827 unsigned int dyncount = 0;
1828 // Skip the first, dummy, symbol.
1829 psyms += sym_size;
1830 bool strip_all = parameters->options().strip_all();
1831 bool discard_all = parameters->options().discard_all();
1832 bool discard_locals = parameters->options().discard_locals();
1833 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1834 {
1835 elfcpp::Sym<size, big_endian> sym(psyms);
1836
1837 Symbol_value<size>& lv(this->local_values_[i]);
1838
1839 bool is_ordinary;
1840 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1841 &is_ordinary);
1842 lv.set_input_shndx(shndx, is_ordinary);
1843
1844 if (sym.get_st_type() == elfcpp::STT_SECTION)
1845 lv.set_is_section_symbol();
1846 else if (sym.get_st_type() == elfcpp::STT_TLS)
1847 lv.set_is_tls_symbol();
1848 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1849 lv.set_is_ifunc_symbol();
1850
1851 // Save the input symbol value for use in do_finalize_local_symbols().
1852 lv.set_input_value(sym.get_st_value());
1853
1854 // Decide whether this symbol should go into the output file.
1855
1856 if ((shndx < shnum && out_sections[shndx] == NULL)
1857 || shndx == this->discarded_eh_frame_shndx_)
1858 {
1859 lv.set_no_output_symtab_entry();
1860 gold_assert(!lv.needs_output_dynsym_entry());
1861 continue;
1862 }
1863
1864 if (sym.get_st_type() == elfcpp::STT_SECTION)
1865 {
1866 lv.set_no_output_symtab_entry();
1867 gold_assert(!lv.needs_output_dynsym_entry());
1868 continue;
1869 }
1870
1871 if (sym.get_st_name() >= strtab_size)
1872 {
1873 this->error(_("local symbol %u section name out of range: %u >= %u"),
1874 i, sym.get_st_name(),
1875 static_cast<unsigned int>(strtab_size));
1876 lv.set_no_output_symtab_entry();
1877 continue;
1878 }
1879
1880 const char* name = pnames + sym.get_st_name();
1881
1882 // If needed, add the symbol to the dynamic symbol table string pool.
1883 if (lv.needs_output_dynsym_entry())
1884 {
1885 dynpool->add(name, true, NULL);
1886 ++dyncount;
1887 }
1888
1889 if (strip_all
1890 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1891 {
1892 lv.set_no_output_symtab_entry();
1893 continue;
1894 }
1895
1896 // If --discard-locals option is used, discard all temporary local
1897 // symbols. These symbols start with system-specific local label
1898 // prefixes, typically .L for ELF system. We want to be compatible
1899 // with GNU ld so here we essentially use the same check in
1900 // bfd_is_local_label(). The code is different because we already
1901 // know that:
1902 //
1903 // - the symbol is local and thus cannot have global or weak binding.
1904 // - the symbol is not a section symbol.
1905 // - the symbol has a name.
1906 //
1907 // We do not discard a symbol if it needs a dynamic symbol entry.
1908 if (discard_locals
1909 && sym.get_st_type() != elfcpp::STT_FILE
1910 && !lv.needs_output_dynsym_entry()
1911 && lv.may_be_discarded_from_output_symtab()
1912 && parameters->target().is_local_label_name(name))
1913 {
1914 lv.set_no_output_symtab_entry();
1915 continue;
1916 }
1917
1918 // Discard the local symbol if -retain_symbols_file is specified
1919 // and the local symbol is not in that file.
1920 if (!parameters->options().should_retain_symbol(name))
1921 {
1922 lv.set_no_output_symtab_entry();
1923 continue;
1924 }
1925
1926 // Add the symbol to the symbol table string pool.
1927 pool->add(name, true, NULL);
1928 ++count;
1929 }
1930
1931 this->output_local_symbol_count_ = count;
1932 this->output_local_dynsym_count_ = dyncount;
1933 }
1934
1935 // Compute the final value of a local symbol.
1936
1937 template<int size, bool big_endian>
1938 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1939 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1940 unsigned int r_sym,
1941 const Symbol_value<size>* lv_in,
1942 Symbol_value<size>* lv_out,
1943 bool relocatable,
1944 const Output_sections& out_sections,
1945 const std::vector<Address>& out_offsets,
1946 const Symbol_table* symtab)
1947 {
1948 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1949 // we may have a memory leak.
1950 gold_assert(lv_out->has_output_value());
1951
1952 bool is_ordinary;
1953 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1954
1955 // Set the output symbol value.
1956
1957 if (!is_ordinary)
1958 {
1959 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1960 lv_out->set_output_value(lv_in->input_value());
1961 else
1962 {
1963 this->error(_("unknown section index %u for local symbol %u"),
1964 shndx, r_sym);
1965 lv_out->set_output_value(0);
1966 return This::CFLV_ERROR;
1967 }
1968 }
1969 else
1970 {
1971 if (shndx >= this->shnum())
1972 {
1973 this->error(_("local symbol %u section index %u out of range"),
1974 r_sym, shndx);
1975 lv_out->set_output_value(0);
1976 return This::CFLV_ERROR;
1977 }
1978
1979 Output_section* os = out_sections[shndx];
1980 Address secoffset = out_offsets[shndx];
1981 if (symtab->is_section_folded(this, shndx))
1982 {
1983 gold_assert(os == NULL && secoffset == invalid_address);
1984 // Get the os of the section it is folded onto.
1985 Section_id folded = symtab->icf()->get_folded_section(this,
1986 shndx);
1987 gold_assert(folded.first != NULL);
1988 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
1989 <Sized_relobj_file<size, big_endian>*>(folded.first);
1990 os = folded_obj->output_section(folded.second);
1991 gold_assert(os != NULL);
1992 secoffset = folded_obj->get_output_section_offset(folded.second);
1993
1994 // This could be a relaxed input section.
1995 if (secoffset == invalid_address)
1996 {
1997 const Output_relaxed_input_section* relaxed_section =
1998 os->find_relaxed_input_section(folded_obj, folded.second);
1999 gold_assert(relaxed_section != NULL);
2000 secoffset = relaxed_section->address() - os->address();
2001 }
2002 }
2003
2004 if (os == NULL)
2005 {
2006 // This local symbol belongs to a section we are discarding.
2007 // In some cases when applying relocations later, we will
2008 // attempt to match it to the corresponding kept section,
2009 // so we leave the input value unchanged here.
2010 return This::CFLV_DISCARDED;
2011 }
2012 else if (secoffset == invalid_address)
2013 {
2014 uint64_t start;
2015
2016 // This is a SHF_MERGE section or one which otherwise
2017 // requires special handling.
2018 if (shndx == this->discarded_eh_frame_shndx_)
2019 {
2020 // This local symbol belongs to a discarded .eh_frame
2021 // section. Just treat it like the case in which
2022 // os == NULL above.
2023 gold_assert(this->has_eh_frame_);
2024 return This::CFLV_DISCARDED;
2025 }
2026 else if (!lv_in->is_section_symbol())
2027 {
2028 // This is not a section symbol. We can determine
2029 // the final value now.
2030 lv_out->set_output_value(
2031 os->output_address(this, shndx, lv_in->input_value()));
2032 }
2033 else if (!os->find_starting_output_address(this, shndx, &start))
2034 {
2035 // This is a section symbol, but apparently not one in a
2036 // merged section. First check to see if this is a relaxed
2037 // input section. If so, use its address. Otherwise just
2038 // use the start of the output section. This happens with
2039 // relocatable links when the input object has section
2040 // symbols for arbitrary non-merge sections.
2041 const Output_section_data* posd =
2042 os->find_relaxed_input_section(this, shndx);
2043 if (posd != NULL)
2044 {
2045 Address relocatable_link_adjustment =
2046 relocatable ? os->address() : 0;
2047 lv_out->set_output_value(posd->address()
2048 - relocatable_link_adjustment);
2049 }
2050 else
2051 lv_out->set_output_value(os->address());
2052 }
2053 else
2054 {
2055 // We have to consider the addend to determine the
2056 // value to use in a relocation. START is the start
2057 // of this input section. If we are doing a relocatable
2058 // link, use offset from start output section instead of
2059 // address.
2060 Address adjusted_start =
2061 relocatable ? start - os->address() : start;
2062 Merged_symbol_value<size>* msv =
2063 new Merged_symbol_value<size>(lv_in->input_value(),
2064 adjusted_start);
2065 lv_out->set_merged_symbol_value(msv);
2066 }
2067 }
2068 else if (lv_in->is_tls_symbol())
2069 lv_out->set_output_value(os->tls_offset()
2070 + secoffset
2071 + lv_in->input_value());
2072 else
2073 lv_out->set_output_value((relocatable ? 0 : os->address())
2074 + secoffset
2075 + lv_in->input_value());
2076 }
2077 return This::CFLV_OK;
2078 }
2079
2080 // Compute final local symbol value. R_SYM is the index of a local
2081 // symbol in symbol table. LV points to a symbol value, which is
2082 // expected to hold the input value and to be over-written by the
2083 // final value. SYMTAB points to a symbol table. Some targets may want
2084 // to know would-be-finalized local symbol values in relaxation.
2085 // Hence we provide this method. Since this method updates *LV, a
2086 // callee should make a copy of the original local symbol value and
2087 // use the copy instead of modifying an object's local symbols before
2088 // everything is finalized. The caller should also free up any allocated
2089 // memory in the return value in *LV.
2090 template<int size, bool big_endian>
2091 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2092 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2093 unsigned int r_sym,
2094 const Symbol_value<size>* lv_in,
2095 Symbol_value<size>* lv_out,
2096 const Symbol_table* symtab)
2097 {
2098 // This is just a wrapper of compute_final_local_value_internal.
2099 const bool relocatable = parameters->options().relocatable();
2100 const Output_sections& out_sections(this->output_sections());
2101 const std::vector<Address>& out_offsets(this->section_offsets());
2102 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2103 relocatable, out_sections,
2104 out_offsets, symtab);
2105 }
2106
2107 // Finalize the local symbols. Here we set the final value in
2108 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2109 // This function is always called from a singleton thread. The actual
2110 // output of the local symbols will occur in a separate task.
2111
2112 template<int size, bool big_endian>
2113 unsigned int
2114 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2115 unsigned int index,
2116 off_t off,
2117 Symbol_table* symtab)
2118 {
2119 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2120
2121 const unsigned int loccount = this->local_symbol_count_;
2122 this->local_symbol_offset_ = off;
2123
2124 const bool relocatable = parameters->options().relocatable();
2125 const Output_sections& out_sections(this->output_sections());
2126 const std::vector<Address>& out_offsets(this->section_offsets());
2127
2128 for (unsigned int i = 1; i < loccount; ++i)
2129 {
2130 Symbol_value<size>* lv = &this->local_values_[i];
2131
2132 Compute_final_local_value_status cflv_status =
2133 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2134 out_sections, out_offsets,
2135 symtab);
2136 switch (cflv_status)
2137 {
2138 case CFLV_OK:
2139 if (!lv->is_output_symtab_index_set())
2140 {
2141 lv->set_output_symtab_index(index);
2142 ++index;
2143 }
2144 break;
2145 case CFLV_DISCARDED:
2146 case CFLV_ERROR:
2147 // Do nothing.
2148 break;
2149 default:
2150 gold_unreachable();
2151 }
2152 }
2153 return index;
2154 }
2155
2156 // Set the output dynamic symbol table indexes for the local variables.
2157
2158 template<int size, bool big_endian>
2159 unsigned int
2160 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2161 unsigned int index)
2162 {
2163 const unsigned int loccount = this->local_symbol_count_;
2164 for (unsigned int i = 1; i < loccount; ++i)
2165 {
2166 Symbol_value<size>& lv(this->local_values_[i]);
2167 if (lv.needs_output_dynsym_entry())
2168 {
2169 lv.set_output_dynsym_index(index);
2170 ++index;
2171 }
2172 }
2173 return index;
2174 }
2175
2176 // Set the offset where local dynamic symbol information will be stored.
2177 // Returns the count of local symbols contributed to the symbol table by
2178 // this object.
2179
2180 template<int size, bool big_endian>
2181 unsigned int
2182 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2183 {
2184 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2185 this->local_dynsym_offset_ = off;
2186 return this->output_local_dynsym_count_;
2187 }
2188
2189 // If Symbols_data is not NULL get the section flags from here otherwise
2190 // get it from the file.
2191
2192 template<int size, bool big_endian>
2193 uint64_t
2194 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2195 {
2196 Symbols_data* sd = this->get_symbols_data();
2197 if (sd != NULL)
2198 {
2199 const unsigned char* pshdrs = sd->section_headers_data
2200 + This::shdr_size * shndx;
2201 typename This::Shdr shdr(pshdrs);
2202 return shdr.get_sh_flags();
2203 }
2204 // If sd is NULL, read the section header from the file.
2205 return this->elf_file_.section_flags(shndx);
2206 }
2207
2208 // Get the section's ent size from Symbols_data. Called by get_section_contents
2209 // in icf.cc
2210
2211 template<int size, bool big_endian>
2212 uint64_t
2213 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2214 {
2215 Symbols_data* sd = this->get_symbols_data();
2216 gold_assert(sd != NULL);
2217
2218 const unsigned char* pshdrs = sd->section_headers_data
2219 + This::shdr_size * shndx;
2220 typename This::Shdr shdr(pshdrs);
2221 return shdr.get_sh_entsize();
2222 }
2223
2224 // Write out the local symbols.
2225
2226 template<int size, bool big_endian>
2227 void
2228 Sized_relobj_file<size, big_endian>::write_local_symbols(
2229 Output_file* of,
2230 const Stringpool* sympool,
2231 const Stringpool* dynpool,
2232 Output_symtab_xindex* symtab_xindex,
2233 Output_symtab_xindex* dynsym_xindex,
2234 off_t symtab_off)
2235 {
2236 const bool strip_all = parameters->options().strip_all();
2237 if (strip_all)
2238 {
2239 if (this->output_local_dynsym_count_ == 0)
2240 return;
2241 this->output_local_symbol_count_ = 0;
2242 }
2243
2244 gold_assert(this->symtab_shndx_ != -1U);
2245 if (this->symtab_shndx_ == 0)
2246 {
2247 // This object has no symbols. Weird but legal.
2248 return;
2249 }
2250
2251 // Read the symbol table section header.
2252 const unsigned int symtab_shndx = this->symtab_shndx_;
2253 typename This::Shdr symtabshdr(this,
2254 this->elf_file_.section_header(symtab_shndx));
2255 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2256 const unsigned int loccount = this->local_symbol_count_;
2257 gold_assert(loccount == symtabshdr.get_sh_info());
2258
2259 // Read the local symbols.
2260 const int sym_size = This::sym_size;
2261 off_t locsize = loccount * sym_size;
2262 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2263 locsize, true, false);
2264
2265 // Read the symbol names.
2266 const unsigned int strtab_shndx =
2267 this->adjust_shndx(symtabshdr.get_sh_link());
2268 section_size_type strtab_size;
2269 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2270 &strtab_size,
2271 false);
2272 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2273
2274 // Get views into the output file for the portions of the symbol table
2275 // and the dynamic symbol table that we will be writing.
2276 off_t output_size = this->output_local_symbol_count_ * sym_size;
2277 unsigned char* oview = NULL;
2278 if (output_size > 0)
2279 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2280 output_size);
2281
2282 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2283 unsigned char* dyn_oview = NULL;
2284 if (dyn_output_size > 0)
2285 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2286 dyn_output_size);
2287
2288 const Output_sections out_sections(this->output_sections());
2289
2290 gold_assert(this->local_values_.size() == loccount);
2291
2292 unsigned char* ov = oview;
2293 unsigned char* dyn_ov = dyn_oview;
2294 psyms += sym_size;
2295 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2296 {
2297 elfcpp::Sym<size, big_endian> isym(psyms);
2298
2299 Symbol_value<size>& lv(this->local_values_[i]);
2300
2301 bool is_ordinary;
2302 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2303 &is_ordinary);
2304 if (is_ordinary)
2305 {
2306 gold_assert(st_shndx < out_sections.size());
2307 if (out_sections[st_shndx] == NULL)
2308 continue;
2309 st_shndx = out_sections[st_shndx]->out_shndx();
2310 if (st_shndx >= elfcpp::SHN_LORESERVE)
2311 {
2312 if (lv.has_output_symtab_entry())
2313 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2314 if (lv.has_output_dynsym_entry())
2315 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2316 st_shndx = elfcpp::SHN_XINDEX;
2317 }
2318 }
2319
2320 // Write the symbol to the output symbol table.
2321 if (lv.has_output_symtab_entry())
2322 {
2323 elfcpp::Sym_write<size, big_endian> osym(ov);
2324
2325 gold_assert(isym.get_st_name() < strtab_size);
2326 const char* name = pnames + isym.get_st_name();
2327 osym.put_st_name(sympool->get_offset(name));
2328 osym.put_st_value(this->local_values_[i].value(this, 0));
2329 osym.put_st_size(isym.get_st_size());
2330 osym.put_st_info(isym.get_st_info());
2331 osym.put_st_other(isym.get_st_other());
2332 osym.put_st_shndx(st_shndx);
2333
2334 ov += sym_size;
2335 }
2336
2337 // Write the symbol to the output dynamic symbol table.
2338 if (lv.has_output_dynsym_entry())
2339 {
2340 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2341 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2342
2343 gold_assert(isym.get_st_name() < strtab_size);
2344 const char* name = pnames + isym.get_st_name();
2345 osym.put_st_name(dynpool->get_offset(name));
2346 osym.put_st_value(this->local_values_[i].value(this, 0));
2347 osym.put_st_size(isym.get_st_size());
2348 osym.put_st_info(isym.get_st_info());
2349 osym.put_st_other(isym.get_st_other());
2350 osym.put_st_shndx(st_shndx);
2351
2352 dyn_ov += sym_size;
2353 }
2354 }
2355
2356
2357 if (output_size > 0)
2358 {
2359 gold_assert(ov - oview == output_size);
2360 of->write_output_view(symtab_off + this->local_symbol_offset_,
2361 output_size, oview);
2362 }
2363
2364 if (dyn_output_size > 0)
2365 {
2366 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2367 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2368 dyn_oview);
2369 }
2370 }
2371
2372 // Set *INFO to symbolic information about the offset OFFSET in the
2373 // section SHNDX. Return true if we found something, false if we
2374 // found nothing.
2375
2376 template<int size, bool big_endian>
2377 bool
2378 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2379 unsigned int shndx,
2380 off_t offset,
2381 Symbol_location_info* info)
2382 {
2383 if (this->symtab_shndx_ == 0)
2384 return false;
2385
2386 section_size_type symbols_size;
2387 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2388 &symbols_size,
2389 false);
2390
2391 unsigned int symbol_names_shndx =
2392 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2393 section_size_type names_size;
2394 const unsigned char* symbol_names_u =
2395 this->section_contents(symbol_names_shndx, &names_size, false);
2396 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2397
2398 const int sym_size = This::sym_size;
2399 const size_t count = symbols_size / sym_size;
2400
2401 const unsigned char* p = symbols;
2402 for (size_t i = 0; i < count; ++i, p += sym_size)
2403 {
2404 elfcpp::Sym<size, big_endian> sym(p);
2405
2406 if (sym.get_st_type() == elfcpp::STT_FILE)
2407 {
2408 if (sym.get_st_name() >= names_size)
2409 info->source_file = "(invalid)";
2410 else
2411 info->source_file = symbol_names + sym.get_st_name();
2412 continue;
2413 }
2414
2415 bool is_ordinary;
2416 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2417 &is_ordinary);
2418 if (is_ordinary
2419 && st_shndx == shndx
2420 && static_cast<off_t>(sym.get_st_value()) <= offset
2421 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2422 > offset))
2423 {
2424 if (sym.get_st_name() > names_size)
2425 info->enclosing_symbol_name = "(invalid)";
2426 else
2427 {
2428 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2429 if (parameters->options().do_demangle())
2430 {
2431 char* demangled_name = cplus_demangle(
2432 info->enclosing_symbol_name.c_str(),
2433 DMGL_ANSI | DMGL_PARAMS);
2434 if (demangled_name != NULL)
2435 {
2436 info->enclosing_symbol_name.assign(demangled_name);
2437 free(demangled_name);
2438 }
2439 }
2440 }
2441 return true;
2442 }
2443 }
2444
2445 return false;
2446 }
2447
2448 // Look for a kept section corresponding to the given discarded section,
2449 // and return its output address. This is used only for relocations in
2450 // debugging sections. If we can't find the kept section, return 0.
2451
2452 template<int size, bool big_endian>
2453 typename Sized_relobj_file<size, big_endian>::Address
2454 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2455 unsigned int shndx,
2456 bool* found) const
2457 {
2458 Relobj* kept_object;
2459 unsigned int kept_shndx;
2460 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2461 {
2462 Sized_relobj_file<size, big_endian>* kept_relobj =
2463 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2464 Output_section* os = kept_relobj->output_section(kept_shndx);
2465 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2466 if (os != NULL && offset != invalid_address)
2467 {
2468 *found = true;
2469 return os->address() + offset;
2470 }
2471 }
2472 *found = false;
2473 return 0;
2474 }
2475
2476 // Get symbol counts.
2477
2478 template<int size, bool big_endian>
2479 void
2480 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2481 const Symbol_table*,
2482 size_t* defined,
2483 size_t* used) const
2484 {
2485 *defined = this->defined_count_;
2486 size_t count = 0;
2487 for (typename Symbols::const_iterator p = this->symbols_.begin();
2488 p != this->symbols_.end();
2489 ++p)
2490 if (*p != NULL
2491 && (*p)->source() == Symbol::FROM_OBJECT
2492 && (*p)->object() == this
2493 && (*p)->is_defined())
2494 ++count;
2495 *used = count;
2496 }
2497
2498 // Input_objects methods.
2499
2500 // Add a regular relocatable object to the list. Return false if this
2501 // object should be ignored.
2502
2503 bool
2504 Input_objects::add_object(Object* obj)
2505 {
2506 // Print the filename if the -t/--trace option is selected.
2507 if (parameters->options().trace())
2508 gold_info("%s", obj->name().c_str());
2509
2510 if (!obj->is_dynamic())
2511 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2512 else
2513 {
2514 // See if this is a duplicate SONAME.
2515 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2516 const char* soname = dynobj->soname();
2517
2518 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2519 this->sonames_.insert(soname);
2520 if (!ins.second)
2521 {
2522 // We have already seen a dynamic object with this soname.
2523 return false;
2524 }
2525
2526 this->dynobj_list_.push_back(dynobj);
2527 }
2528
2529 // Add this object to the cross-referencer if requested.
2530 if (parameters->options().user_set_print_symbol_counts()
2531 || parameters->options().cref())
2532 {
2533 if (this->cref_ == NULL)
2534 this->cref_ = new Cref();
2535 this->cref_->add_object(obj);
2536 }
2537
2538 return true;
2539 }
2540
2541 // For each dynamic object, record whether we've seen all of its
2542 // explicit dependencies.
2543
2544 void
2545 Input_objects::check_dynamic_dependencies() const
2546 {
2547 bool issued_copy_dt_needed_error = false;
2548 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2549 p != this->dynobj_list_.end();
2550 ++p)
2551 {
2552 const Dynobj::Needed& needed((*p)->needed());
2553 bool found_all = true;
2554 Dynobj::Needed::const_iterator pneeded;
2555 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2556 {
2557 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2558 {
2559 found_all = false;
2560 break;
2561 }
2562 }
2563 (*p)->set_has_unknown_needed_entries(!found_all);
2564
2565 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2566 // that gold does not support. However, they cause no trouble
2567 // unless there is a DT_NEEDED entry that we don't know about;
2568 // warn only in that case.
2569 if (!found_all
2570 && !issued_copy_dt_needed_error
2571 && (parameters->options().copy_dt_needed_entries()
2572 || parameters->options().add_needed()))
2573 {
2574 const char* optname;
2575 if (parameters->options().copy_dt_needed_entries())
2576 optname = "--copy-dt-needed-entries";
2577 else
2578 optname = "--add-needed";
2579 gold_error(_("%s is not supported but is required for %s in %s"),
2580 optname, (*pneeded).c_str(), (*p)->name().c_str());
2581 issued_copy_dt_needed_error = true;
2582 }
2583 }
2584 }
2585
2586 // Start processing an archive.
2587
2588 void
2589 Input_objects::archive_start(Archive* archive)
2590 {
2591 if (parameters->options().user_set_print_symbol_counts()
2592 || parameters->options().cref())
2593 {
2594 if (this->cref_ == NULL)
2595 this->cref_ = new Cref();
2596 this->cref_->add_archive_start(archive);
2597 }
2598 }
2599
2600 // Stop processing an archive.
2601
2602 void
2603 Input_objects::archive_stop(Archive* archive)
2604 {
2605 if (parameters->options().user_set_print_symbol_counts()
2606 || parameters->options().cref())
2607 this->cref_->add_archive_stop(archive);
2608 }
2609
2610 // Print symbol counts
2611
2612 void
2613 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2614 {
2615 if (parameters->options().user_set_print_symbol_counts()
2616 && this->cref_ != NULL)
2617 this->cref_->print_symbol_counts(symtab);
2618 }
2619
2620 // Print a cross reference table.
2621
2622 void
2623 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2624 {
2625 if (parameters->options().cref() && this->cref_ != NULL)
2626 this->cref_->print_cref(symtab, f);
2627 }
2628
2629 // Relocate_info methods.
2630
2631 // Return a string describing the location of a relocation when file
2632 // and lineno information is not available. This is only used in
2633 // error messages.
2634
2635 template<int size, bool big_endian>
2636 std::string
2637 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2638 {
2639 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2640 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2641 if (!ret.empty())
2642 return ret;
2643
2644 ret = this->object->name();
2645
2646 Symbol_location_info info;
2647 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2648 {
2649 if (!info.source_file.empty())
2650 {
2651 ret += ":";
2652 ret += info.source_file;
2653 }
2654 size_t len = info.enclosing_symbol_name.length() + 100;
2655 char* buf = new char[len];
2656 snprintf(buf, len, _(":function %s"),
2657 info.enclosing_symbol_name.c_str());
2658 ret += buf;
2659 delete[] buf;
2660 return ret;
2661 }
2662
2663 ret += "(";
2664 ret += this->object->section_name(this->data_shndx);
2665 char buf[100];
2666 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2667 ret += buf;
2668 return ret;
2669 }
2670
2671 } // End namespace gold.
2672
2673 namespace
2674 {
2675
2676 using namespace gold;
2677
2678 // Read an ELF file with the header and return the appropriate
2679 // instance of Object.
2680
2681 template<int size, bool big_endian>
2682 Object*
2683 make_elf_sized_object(const std::string& name, Input_file* input_file,
2684 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2685 bool* punconfigured)
2686 {
2687 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2688 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2689 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2690 if (target == NULL)
2691 gold_fatal(_("%s: unsupported ELF machine number %d"),
2692 name.c_str(), ehdr.get_e_machine());
2693
2694 if (!parameters->target_valid())
2695 set_parameters_target(target);
2696 else if (target != &parameters->target())
2697 {
2698 if (punconfigured != NULL)
2699 *punconfigured = true;
2700 else
2701 gold_error(_("%s: incompatible target"), name.c_str());
2702 return NULL;
2703 }
2704
2705 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2706 ehdr);
2707 }
2708
2709 } // End anonymous namespace.
2710
2711 namespace gold
2712 {
2713
2714 // Return whether INPUT_FILE is an ELF object.
2715
2716 bool
2717 is_elf_object(Input_file* input_file, off_t offset,
2718 const unsigned char** start, int* read_size)
2719 {
2720 off_t filesize = input_file->file().filesize();
2721 int want = elfcpp::Elf_recognizer::max_header_size;
2722 if (filesize - offset < want)
2723 want = filesize - offset;
2724
2725 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2726 true, false);
2727 *start = p;
2728 *read_size = want;
2729
2730 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2731 }
2732
2733 // Read an ELF file and return the appropriate instance of Object.
2734
2735 Object*
2736 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2737 const unsigned char* p, section_offset_type bytes,
2738 bool* punconfigured)
2739 {
2740 if (punconfigured != NULL)
2741 *punconfigured = false;
2742
2743 std::string error;
2744 bool big_endian = false;
2745 int size = 0;
2746 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2747 &big_endian, &error))
2748 {
2749 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2750 return NULL;
2751 }
2752
2753 if (size == 32)
2754 {
2755 if (big_endian)
2756 {
2757 #ifdef HAVE_TARGET_32_BIG
2758 elfcpp::Ehdr<32, true> ehdr(p);
2759 return make_elf_sized_object<32, true>(name, input_file,
2760 offset, ehdr, punconfigured);
2761 #else
2762 if (punconfigured != NULL)
2763 *punconfigured = true;
2764 else
2765 gold_error(_("%s: not configured to support "
2766 "32-bit big-endian object"),
2767 name.c_str());
2768 return NULL;
2769 #endif
2770 }
2771 else
2772 {
2773 #ifdef HAVE_TARGET_32_LITTLE
2774 elfcpp::Ehdr<32, false> ehdr(p);
2775 return make_elf_sized_object<32, false>(name, input_file,
2776 offset, ehdr, punconfigured);
2777 #else
2778 if (punconfigured != NULL)
2779 *punconfigured = true;
2780 else
2781 gold_error(_("%s: not configured to support "
2782 "32-bit little-endian object"),
2783 name.c_str());
2784 return NULL;
2785 #endif
2786 }
2787 }
2788 else if (size == 64)
2789 {
2790 if (big_endian)
2791 {
2792 #ifdef HAVE_TARGET_64_BIG
2793 elfcpp::Ehdr<64, true> ehdr(p);
2794 return make_elf_sized_object<64, true>(name, input_file,
2795 offset, ehdr, punconfigured);
2796 #else
2797 if (punconfigured != NULL)
2798 *punconfigured = true;
2799 else
2800 gold_error(_("%s: not configured to support "
2801 "64-bit big-endian object"),
2802 name.c_str());
2803 return NULL;
2804 #endif
2805 }
2806 else
2807 {
2808 #ifdef HAVE_TARGET_64_LITTLE
2809 elfcpp::Ehdr<64, false> ehdr(p);
2810 return make_elf_sized_object<64, false>(name, input_file,
2811 offset, ehdr, punconfigured);
2812 #else
2813 if (punconfigured != NULL)
2814 *punconfigured = true;
2815 else
2816 gold_error(_("%s: not configured to support "
2817 "64-bit little-endian object"),
2818 name.c_str());
2819 return NULL;
2820 #endif
2821 }
2822 }
2823 else
2824 gold_unreachable();
2825 }
2826
2827 // Instantiate the templates we need.
2828
2829 #ifdef HAVE_TARGET_32_LITTLE
2830 template
2831 void
2832 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2833 Read_symbols_data*);
2834 #endif
2835
2836 #ifdef HAVE_TARGET_32_BIG
2837 template
2838 void
2839 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2840 Read_symbols_data*);
2841 #endif
2842
2843 #ifdef HAVE_TARGET_64_LITTLE
2844 template
2845 void
2846 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2847 Read_symbols_data*);
2848 #endif
2849
2850 #ifdef HAVE_TARGET_64_BIG
2851 template
2852 void
2853 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2854 Read_symbols_data*);
2855 #endif
2856
2857 #ifdef HAVE_TARGET_32_LITTLE
2858 template
2859 class Sized_relobj_file<32, false>;
2860 #endif
2861
2862 #ifdef HAVE_TARGET_32_BIG
2863 template
2864 class Sized_relobj_file<32, true>;
2865 #endif
2866
2867 #ifdef HAVE_TARGET_64_LITTLE
2868 template
2869 class Sized_relobj_file<64, false>;
2870 #endif
2871
2872 #ifdef HAVE_TARGET_64_BIG
2873 template
2874 class Sized_relobj_file<64, true>;
2875 #endif
2876
2877 #ifdef HAVE_TARGET_32_LITTLE
2878 template
2879 struct Relocate_info<32, false>;
2880 #endif
2881
2882 #ifdef HAVE_TARGET_32_BIG
2883 template
2884 struct Relocate_info<32, true>;
2885 #endif
2886
2887 #ifdef HAVE_TARGET_64_LITTLE
2888 template
2889 struct Relocate_info<64, false>;
2890 #endif
2891
2892 #ifdef HAVE_TARGET_64_BIG
2893 template
2894 struct Relocate_info<64, true>;
2895 #endif
2896
2897 #ifdef HAVE_TARGET_32_LITTLE
2898 template
2899 void
2900 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2901
2902 template
2903 void
2904 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2905 const unsigned char*);
2906 #endif
2907
2908 #ifdef HAVE_TARGET_32_BIG
2909 template
2910 void
2911 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2912
2913 template
2914 void
2915 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2916 const unsigned char*);
2917 #endif
2918
2919 #ifdef HAVE_TARGET_64_LITTLE
2920 template
2921 void
2922 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2923
2924 template
2925 void
2926 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2927 const unsigned char*);
2928 #endif
2929
2930 #ifdef HAVE_TARGET_64_BIG
2931 template
2932 void
2933 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2934
2935 template
2936 void
2937 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2938 const unsigned char*);
2939 #endif
2940
2941 } // End namespace gold.
This page took 0.101557 seconds and 5 git commands to generate.