Take addend into account when making GOT entries for local symbols.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 discarded_eh_frame_shndx_(-1U),
480 is_deferred_layout_(false),
481 deferred_layout_(),
482 deferred_layout_relocs_()
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == elfcpp::SHT_X86_64_UNWIND)
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 if (is_zcompressed)
755 {
756 // Skip over the ".zdebug" prefix.
757 name += 7;
758 uncompressed_size = get_uncompressed_size(contents, len);
759 }
760 else
761 {
762 // Skip over the ".debug" prefix.
763 name += 6;
764 elfcpp::Chdr<size, big_endian> chdr(contents);
765 uncompressed_size = chdr.get_ch_size();
766 }
767 Compressed_section_info info;
768 info.size = convert_to_section_size_type(uncompressed_size);
769 info.flag = shdr.get_sh_flags();
770 info.contents = NULL;
771 if (uncompressed_size != -1ULL)
772 {
773 unsigned char* uncompressed_data = NULL;
774 if (decompress_if_needed && need_decompressed_section(name))
775 {
776 uncompressed_data = new unsigned char[uncompressed_size];
777 if (decompress_input_section(contents, len,
778 uncompressed_data,
779 uncompressed_size,
780 size, big_endian,
781 shdr.get_sh_flags()))
782 info.contents = uncompressed_data;
783 else
784 delete[] uncompressed_data;
785 }
786 (*uncompressed_map)[i] = info;
787 }
788 }
789 }
790 }
791 return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800 Read_symbols_data* sd)
801 {
802 const unsigned char* const pshdrs = sd->section_headers->data();
803 const unsigned char* namesu = sd->section_names->data();
804 const char* names = reinterpret_cast<const char*>(namesu);
805
806 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807 this->has_eh_frame_ = true;
808
809 Compressed_section_map* compressed_sections =
810 build_compressed_section_map<size, big_endian>(
811 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812 if (compressed_sections != NULL)
813 this->set_compressed_sections(compressed_sections);
814
815 return (this->has_eh_frame_
816 || (!parameters->options().relocatable()
817 && parameters->options().gdb_index()
818 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
819 || memmem(names, sd->section_names_size, "debug_types",
820 13) == 0)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829 this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file. This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839 this->read_section_data(&this->elf_file_, sd);
840
841 const unsigned char* const pshdrs = sd->section_headers->data();
842
843 this->find_symtab(pshdrs);
844
845 bool need_local_symbols = this->do_find_special_sections(sd);
846
847 sd->symbols = NULL;
848 sd->symbols_size = 0;
849 sd->external_symbols_offset = 0;
850 sd->symbol_names = NULL;
851 sd->symbol_names_size = 0;
852
853 if (this->symtab_shndx_ == 0)
854 {
855 // No symbol table. Weird but legal.
856 return;
857 }
858
859 // Get the symbol table section header.
860 typename This::Shdr symtabshdr(pshdrs
861 + this->symtab_shndx_ * This::shdr_size);
862 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864 // If this object has a .eh_frame section, or if building a .gdb_index
865 // section and there is debug info, we need all the symbols.
866 // Otherwise we only need the external symbols. While it would be
867 // simpler to just always read all the symbols, I've seen object
868 // files with well over 2000 local symbols, which for a 64-bit
869 // object file format is over 5 pages that we don't need to read
870 // now.
871
872 const int sym_size = This::sym_size;
873 const unsigned int loccount = symtabshdr.get_sh_info();
874 this->local_symbol_count_ = loccount;
875 this->local_values_.resize(loccount);
876 section_offset_type locsize = loccount * sym_size;
877 off_t dataoff = symtabshdr.get_sh_offset();
878 section_size_type datasize =
879 convert_to_section_size_type(symtabshdr.get_sh_size());
880 off_t extoff = dataoff + locsize;
881 section_size_type extsize = datasize - locsize;
882
883 off_t readoff = need_local_symbols ? dataoff : extoff;
884 section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886 if (readsize == 0)
887 {
888 // No external symbols. Also weird but also legal.
889 return;
890 }
891
892 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894 // Read the section header for the symbol names.
895 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896 if (strtab_shndx >= this->shnum())
897 {
898 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899 return;
900 }
901 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903 {
904 this->error(_("symbol table name section has wrong type: %u"),
905 static_cast<unsigned int>(strtabshdr.get_sh_type()));
906 return;
907 }
908
909 // Read the symbol names.
910 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911 strtabshdr.get_sh_size(),
912 false, true);
913
914 sd->symbols = fvsymtab;
915 sd->symbols_size = readsize;
916 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917 sd->symbol_names = fvstrtab;
918 sd->symbol_names_size =
919 convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM. Set *VALUE to its value in
923 // the object file. Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932 Address* value,
933 bool* is_ordinary)
934 {
935 section_size_type symbols_size;
936 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937 &symbols_size,
938 false);
939
940 const size_t count = symbols_size / This::sym_size;
941 gold_assert(sym < count);
942
943 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944 *value = elfsym.get_st_value();
945
946 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link. LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header. If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958 Symbol_table* symtab,
959 Layout* layout,
960 unsigned int index,
961 const char* name,
962 const unsigned char* shdrs,
963 const char* section_names,
964 section_size_type section_names_size,
965 std::vector<bool>* omit)
966 {
967 // Read the section contents.
968 typename This::Shdr shdr(shdrs + index * This::shdr_size);
969 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970 shdr.get_sh_size(), true, false);
971 const elfcpp::Elf_Word* pword =
972 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974 // The first word contains flags. We only care about COMDAT section
975 // groups. Other section groups are always included in the link
976 // just like ordinary sections.
977 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979 // Look up the group signature, which is the name of a symbol. ELF
980 // uses a symbol name because some group signatures are long, and
981 // the name is generally already in the symbol table, so it makes
982 // sense to put the long string just once in .strtab rather than in
983 // both .strtab and .shstrtab.
984
985 // Get the appropriate symbol table header (this will normally be
986 // the single SHT_SYMTAB section, but in principle it need not be).
987 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990 // Read the symbol table entry.
991 unsigned int symndx = shdr.get_sh_info();
992 if (symndx >= symshdr.get_sh_size() / This::sym_size)
993 {
994 this->error(_("section group %u info %u out of range"),
995 index, symndx);
996 return false;
997 }
998 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000 false);
1001 elfcpp::Sym<size, big_endian> sym(psym);
1002
1003 // Read the symbol table names.
1004 section_size_type symnamelen;
1005 const unsigned char* psymnamesu;
1006 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007 &symnamelen, true);
1008 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010 // Get the section group signature.
1011 if (sym.get_st_name() >= symnamelen)
1012 {
1013 this->error(_("symbol %u name offset %u out of range"),
1014 symndx, sym.get_st_name());
1015 return false;
1016 }
1017
1018 std::string signature(psymnames + sym.get_st_name());
1019
1020 // It seems that some versions of gas will create a section group
1021 // associated with a section symbol, and then fail to give a name to
1022 // the section symbol. In such a case, use the name of the section.
1023 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024 {
1025 bool is_ordinary;
1026 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027 sym.get_st_shndx(),
1028 &is_ordinary);
1029 if (!is_ordinary || sym_shndx >= this->shnum())
1030 {
1031 this->error(_("symbol %u invalid section index %u"),
1032 symndx, sym_shndx);
1033 return false;
1034 }
1035 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036 if (member_shdr.get_sh_name() < section_names_size)
1037 signature = section_names + member_shdr.get_sh_name();
1038 }
1039
1040 // Record this section group in the layout, and see whether we've already
1041 // seen one with the same signature.
1042 bool include_group;
1043 bool is_comdat;
1044 Kept_section* kept_section = NULL;
1045
1046 if ((flags & elfcpp::GRP_COMDAT) == 0)
1047 {
1048 include_group = true;
1049 is_comdat = false;
1050 }
1051 else
1052 {
1053 include_group = layout->find_or_add_kept_section(signature,
1054 this, index, true,
1055 true, &kept_section);
1056 is_comdat = true;
1057 }
1058
1059 if (is_comdat && include_group)
1060 {
1061 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062 if (incremental_inputs != NULL)
1063 incremental_inputs->report_comdat_group(this, signature.c_str());
1064 }
1065
1066 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068 std::vector<unsigned int> shndxes;
1069 bool relocate_group = include_group && parameters->options().relocatable();
1070 if (relocate_group)
1071 shndxes.reserve(count - 1);
1072
1073 for (size_t i = 1; i < count; ++i)
1074 {
1075 elfcpp::Elf_Word shndx =
1076 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078 if (relocate_group)
1079 shndxes.push_back(shndx);
1080
1081 if (shndx >= this->shnum())
1082 {
1083 this->error(_("section %u in section group %u out of range"),
1084 shndx, index);
1085 continue;
1086 }
1087
1088 // Check for an earlier section number, since we're going to get
1089 // it wrong--we may have already decided to include the section.
1090 if (shndx < index)
1091 this->error(_("invalid section group %u refers to earlier section %u"),
1092 index, shndx);
1093
1094 // Get the name of the member section.
1095 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096 if (member_shdr.get_sh_name() >= section_names_size)
1097 {
1098 // This is an error, but it will be diagnosed eventually
1099 // in do_layout, so we don't need to do anything here but
1100 // ignore it.
1101 continue;
1102 }
1103 std::string mname(section_names + member_shdr.get_sh_name());
1104
1105 if (include_group)
1106 {
1107 if (is_comdat)
1108 kept_section->add_comdat_section(mname, shndx,
1109 member_shdr.get_sh_size());
1110 }
1111 else
1112 {
1113 (*omit)[shndx] = true;
1114
1115 if (is_comdat)
1116 {
1117 Relobj* kept_object = kept_section->object();
1118 if (kept_section->is_comdat())
1119 {
1120 // Find the corresponding kept section, and store
1121 // that info in the discarded section table.
1122 unsigned int kept_shndx;
1123 uint64_t kept_size;
1124 if (kept_section->find_comdat_section(mname, &kept_shndx,
1125 &kept_size))
1126 {
1127 // We don't keep a mapping for this section if
1128 // it has a different size. The mapping is only
1129 // used for relocation processing, and we don't
1130 // want to treat the sections as similar if the
1131 // sizes are different. Checking the section
1132 // size is the approach used by the GNU linker.
1133 if (kept_size == member_shdr.get_sh_size())
1134 this->set_kept_comdat_section(shndx, kept_object,
1135 kept_shndx);
1136 }
1137 }
1138 else
1139 {
1140 // The existing section is a linkonce section. Add
1141 // a mapping if there is exactly one section in the
1142 // group (which is true when COUNT == 2) and if it
1143 // is the same size.
1144 if (count == 2
1145 && (kept_section->linkonce_size()
1146 == member_shdr.get_sh_size()))
1147 this->set_kept_comdat_section(shndx, kept_object,
1148 kept_section->shndx());
1149 }
1150 }
1151 }
1152 }
1153
1154 if (relocate_group)
1155 layout->layout_group(symtab, this, index, name, signature.c_str(),
1156 shdr, flags, &shndxes);
1157
1158 return include_group;
1159 }
1160
1161 // Whether to include a linkonce section in the link. NAME is the
1162 // name of the section and SHDR is the section header.
1163
1164 // Linkonce sections are a GNU extension implemented in the original
1165 // GNU linker before section groups were defined. The semantics are
1166 // that we only include one linkonce section with a given name. The
1167 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1168 // where T is the type of section and SYMNAME is the name of a symbol.
1169 // In an attempt to make linkonce sections interact well with section
1170 // groups, we try to identify SYMNAME and use it like a section group
1171 // signature. We want to block section groups with that signature,
1172 // but not other linkonce sections with that signature. We also use
1173 // the full name of the linkonce section as a normal section group
1174 // signature.
1175
1176 template<int size, bool big_endian>
1177 bool
1178 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1179 Layout* layout,
1180 unsigned int index,
1181 const char* name,
1182 const elfcpp::Shdr<size, big_endian>& shdr)
1183 {
1184 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1185 // In general the symbol name we want will be the string following
1186 // the last '.'. However, we have to handle the case of
1187 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1188 // some versions of gcc. So we use a heuristic: if the name starts
1189 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1190 // we look for the last '.'. We can't always simply skip
1191 // ".gnu.linkonce.X", because we have to deal with cases like
1192 // ".gnu.linkonce.d.rel.ro.local".
1193 const char* const linkonce_t = ".gnu.linkonce.t.";
1194 const char* symname;
1195 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1196 symname = name + strlen(linkonce_t);
1197 else
1198 symname = strrchr(name, '.') + 1;
1199 std::string sig1(symname);
1200 std::string sig2(name);
1201 Kept_section* kept1;
1202 Kept_section* kept2;
1203 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1204 false, &kept1);
1205 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1206 true, &kept2);
1207
1208 if (!include2)
1209 {
1210 // We are not including this section because we already saw the
1211 // name of the section as a signature. This normally implies
1212 // that the kept section is another linkonce section. If it is
1213 // the same size, record it as the section which corresponds to
1214 // this one.
1215 if (kept2->object() != NULL
1216 && !kept2->is_comdat()
1217 && kept2->linkonce_size() == sh_size)
1218 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1219 }
1220 else if (!include1)
1221 {
1222 // The section is being discarded on the basis of its symbol
1223 // name. This means that the corresponding kept section was
1224 // part of a comdat group, and it will be difficult to identify
1225 // the specific section within that group that corresponds to
1226 // this linkonce section. We'll handle the simple case where
1227 // the group has only one member section. Otherwise, it's not
1228 // worth the effort.
1229 unsigned int kept_shndx;
1230 uint64_t kept_size;
1231 if (kept1->object() != NULL
1232 && kept1->is_comdat()
1233 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1234 && kept_size == sh_size)
1235 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1236 }
1237 else
1238 {
1239 kept1->set_linkonce_size(sh_size);
1240 kept2->set_linkonce_size(sh_size);
1241 }
1242
1243 return include1 && include2;
1244 }
1245
1246 // Layout an input section.
1247
1248 template<int size, bool big_endian>
1249 inline void
1250 Sized_relobj_file<size, big_endian>::layout_section(
1251 Layout* layout,
1252 unsigned int shndx,
1253 const char* name,
1254 const typename This::Shdr& shdr,
1255 unsigned int reloc_shndx,
1256 unsigned int reloc_type)
1257 {
1258 off_t offset;
1259 Output_section* os = layout->layout(this, shndx, name, shdr,
1260 reloc_shndx, reloc_type, &offset);
1261
1262 this->output_sections()[shndx] = os;
1263 if (offset == -1)
1264 this->section_offsets()[shndx] = invalid_address;
1265 else
1266 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1267
1268 // If this section requires special handling, and if there are
1269 // relocs that apply to it, then we must do the special handling
1270 // before we apply the relocs.
1271 if (offset == -1 && reloc_shndx != 0)
1272 this->set_relocs_must_follow_section_writes();
1273 }
1274
1275 // Layout an input .eh_frame section.
1276
1277 template<int size, bool big_endian>
1278 void
1279 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1280 Layout* layout,
1281 const unsigned char* symbols_data,
1282 section_size_type symbols_size,
1283 const unsigned char* symbol_names_data,
1284 section_size_type symbol_names_size,
1285 unsigned int shndx,
1286 const typename This::Shdr& shdr,
1287 unsigned int reloc_shndx,
1288 unsigned int reloc_type)
1289 {
1290 gold_assert(this->has_eh_frame_);
1291
1292 off_t offset;
1293 Output_section* os = layout->layout_eh_frame(this,
1294 symbols_data,
1295 symbols_size,
1296 symbol_names_data,
1297 symbol_names_size,
1298 shndx,
1299 shdr,
1300 reloc_shndx,
1301 reloc_type,
1302 &offset);
1303 this->output_sections()[shndx] = os;
1304 if (os == NULL || offset == -1)
1305 {
1306 // An object can contain at most one section holding exception
1307 // frame information.
1308 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1309 this->discarded_eh_frame_shndx_ = shndx;
1310 this->section_offsets()[shndx] = invalid_address;
1311 }
1312 else
1313 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1314
1315 // If this section requires special handling, and if there are
1316 // relocs that aply to it, then we must do the special handling
1317 // before we apply the relocs.
1318 if (os != NULL && offset == -1 && reloc_shndx != 0)
1319 this->set_relocs_must_follow_section_writes();
1320 }
1321
1322 // Lay out the input sections. We walk through the sections and check
1323 // whether they should be included in the link. If they should, we
1324 // pass them to the Layout object, which will return an output section
1325 // and an offset.
1326 // This function is called twice sometimes, two passes, when mapping
1327 // of input sections to output sections must be delayed.
1328 // This is true for the following :
1329 // * Garbage collection (--gc-sections): Some input sections will be
1330 // discarded and hence the assignment must wait until the second pass.
1331 // In the first pass, it is for setting up some sections as roots to
1332 // a work-list for --gc-sections and to do comdat processing.
1333 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1334 // will be folded and hence the assignment must wait.
1335 // * Using plugins to map some sections to unique segments: Mapping
1336 // some sections to unique segments requires mapping them to unique
1337 // output sections too. This can be done via plugins now and this
1338 // information is not available in the first pass.
1339
1340 template<int size, bool big_endian>
1341 void
1342 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1343 Layout* layout,
1344 Read_symbols_data* sd)
1345 {
1346 const unsigned int shnum = this->shnum();
1347
1348 /* Should this function be called twice? */
1349 bool is_two_pass = (parameters->options().gc_sections()
1350 || parameters->options().icf_enabled()
1351 || layout->is_unique_segment_for_sections_specified());
1352
1353 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1354 a two-pass approach is not needed. */
1355 bool is_pass_one = false;
1356 bool is_pass_two = false;
1357
1358 Symbols_data* gc_sd = NULL;
1359
1360 /* Check if do_layout needs to be two-pass. If so, find out which pass
1361 should happen. In the first pass, the data in sd is saved to be used
1362 later in the second pass. */
1363 if (is_two_pass)
1364 {
1365 gc_sd = this->get_symbols_data();
1366 if (gc_sd == NULL)
1367 {
1368 gold_assert(sd != NULL);
1369 is_pass_one = true;
1370 }
1371 else
1372 {
1373 if (parameters->options().gc_sections())
1374 gold_assert(symtab->gc()->is_worklist_ready());
1375 if (parameters->options().icf_enabled())
1376 gold_assert(symtab->icf()->is_icf_ready());
1377 is_pass_two = true;
1378 }
1379 }
1380
1381 if (shnum == 0)
1382 return;
1383
1384 if (is_pass_one)
1385 {
1386 // During garbage collection save the symbols data to use it when
1387 // re-entering this function.
1388 gc_sd = new Symbols_data;
1389 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1390 this->set_symbols_data(gc_sd);
1391 }
1392
1393 const unsigned char* section_headers_data = NULL;
1394 section_size_type section_names_size;
1395 const unsigned char* symbols_data = NULL;
1396 section_size_type symbols_size;
1397 const unsigned char* symbol_names_data = NULL;
1398 section_size_type symbol_names_size;
1399
1400 if (is_two_pass)
1401 {
1402 section_headers_data = gc_sd->section_headers_data;
1403 section_names_size = gc_sd->section_names_size;
1404 symbols_data = gc_sd->symbols_data;
1405 symbols_size = gc_sd->symbols_size;
1406 symbol_names_data = gc_sd->symbol_names_data;
1407 symbol_names_size = gc_sd->symbol_names_size;
1408 }
1409 else
1410 {
1411 section_headers_data = sd->section_headers->data();
1412 section_names_size = sd->section_names_size;
1413 if (sd->symbols != NULL)
1414 symbols_data = sd->symbols->data();
1415 symbols_size = sd->symbols_size;
1416 if (sd->symbol_names != NULL)
1417 symbol_names_data = sd->symbol_names->data();
1418 symbol_names_size = sd->symbol_names_size;
1419 }
1420
1421 // Get the section headers.
1422 const unsigned char* shdrs = section_headers_data;
1423 const unsigned char* pshdrs;
1424
1425 // Get the section names.
1426 const unsigned char* pnamesu = (is_two_pass
1427 ? gc_sd->section_names_data
1428 : sd->section_names->data());
1429
1430 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1431
1432 // If any input files have been claimed by plugins, we need to defer
1433 // actual layout until the replacement files have arrived.
1434 const bool should_defer_layout =
1435 (parameters->options().has_plugins()
1436 && parameters->options().plugins()->should_defer_layout());
1437 unsigned int num_sections_to_defer = 0;
1438
1439 // For each section, record the index of the reloc section if any.
1440 // Use 0 to mean that there is no reloc section, -1U to mean that
1441 // there is more than one.
1442 std::vector<unsigned int> reloc_shndx(shnum, 0);
1443 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1444 // Skip the first, dummy, section.
1445 pshdrs = shdrs + This::shdr_size;
1446 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1447 {
1448 typename This::Shdr shdr(pshdrs);
1449
1450 // Count the number of sections whose layout will be deferred.
1451 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1452 ++num_sections_to_defer;
1453
1454 unsigned int sh_type = shdr.get_sh_type();
1455 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1456 {
1457 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1458 if (target_shndx == 0 || target_shndx >= shnum)
1459 {
1460 this->error(_("relocation section %u has bad info %u"),
1461 i, target_shndx);
1462 continue;
1463 }
1464
1465 if (reloc_shndx[target_shndx] != 0)
1466 reloc_shndx[target_shndx] = -1U;
1467 else
1468 {
1469 reloc_shndx[target_shndx] = i;
1470 reloc_type[target_shndx] = sh_type;
1471 }
1472 }
1473 }
1474
1475 Output_sections& out_sections(this->output_sections());
1476 std::vector<Address>& out_section_offsets(this->section_offsets());
1477
1478 if (!is_pass_two)
1479 {
1480 out_sections.resize(shnum);
1481 out_section_offsets.resize(shnum);
1482 }
1483
1484 // If we are only linking for symbols, then there is nothing else to
1485 // do here.
1486 if (this->input_file()->just_symbols())
1487 {
1488 if (!is_pass_two)
1489 {
1490 delete sd->section_headers;
1491 sd->section_headers = NULL;
1492 delete sd->section_names;
1493 sd->section_names = NULL;
1494 }
1495 return;
1496 }
1497
1498 if (num_sections_to_defer > 0)
1499 {
1500 parameters->options().plugins()->add_deferred_layout_object(this);
1501 this->deferred_layout_.reserve(num_sections_to_defer);
1502 this->is_deferred_layout_ = true;
1503 }
1504
1505 // Whether we've seen a .note.GNU-stack section.
1506 bool seen_gnu_stack = false;
1507 // The flags of a .note.GNU-stack section.
1508 uint64_t gnu_stack_flags = 0;
1509
1510 // Keep track of which sections to omit.
1511 std::vector<bool> omit(shnum, false);
1512
1513 // Keep track of reloc sections when emitting relocations.
1514 const bool relocatable = parameters->options().relocatable();
1515 const bool emit_relocs = (relocatable
1516 || parameters->options().emit_relocs());
1517 std::vector<unsigned int> reloc_sections;
1518
1519 // Keep track of .eh_frame sections.
1520 std::vector<unsigned int> eh_frame_sections;
1521
1522 // Keep track of .debug_info and .debug_types sections.
1523 std::vector<unsigned int> debug_info_sections;
1524 std::vector<unsigned int> debug_types_sections;
1525
1526 // Skip the first, dummy, section.
1527 pshdrs = shdrs + This::shdr_size;
1528 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1529 {
1530 typename This::Shdr shdr(pshdrs);
1531
1532 if (shdr.get_sh_name() >= section_names_size)
1533 {
1534 this->error(_("bad section name offset for section %u: %lu"),
1535 i, static_cast<unsigned long>(shdr.get_sh_name()));
1536 return;
1537 }
1538
1539 const char* name = pnames + shdr.get_sh_name();
1540
1541 if (!is_pass_two)
1542 {
1543 if (this->handle_gnu_warning_section(name, i, symtab))
1544 {
1545 if (!relocatable && !parameters->options().shared())
1546 omit[i] = true;
1547 }
1548
1549 // The .note.GNU-stack section is special. It gives the
1550 // protection flags that this object file requires for the stack
1551 // in memory.
1552 if (strcmp(name, ".note.GNU-stack") == 0)
1553 {
1554 seen_gnu_stack = true;
1555 gnu_stack_flags |= shdr.get_sh_flags();
1556 omit[i] = true;
1557 }
1558
1559 // The .note.GNU-split-stack section is also special. It
1560 // indicates that the object was compiled with
1561 // -fsplit-stack.
1562 if (this->handle_split_stack_section(name))
1563 {
1564 if (!relocatable && !parameters->options().shared())
1565 omit[i] = true;
1566 }
1567
1568 // Skip attributes section.
1569 if (parameters->target().is_attributes_section(name))
1570 {
1571 omit[i] = true;
1572 }
1573
1574 bool discard = omit[i];
1575 if (!discard)
1576 {
1577 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1578 {
1579 if (!this->include_section_group(symtab, layout, i, name,
1580 shdrs, pnames,
1581 section_names_size,
1582 &omit))
1583 discard = true;
1584 }
1585 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1586 && Layout::is_linkonce(name))
1587 {
1588 if (!this->include_linkonce_section(layout, i, name, shdr))
1589 discard = true;
1590 }
1591 }
1592
1593 // Add the section to the incremental inputs layout.
1594 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1595 if (incremental_inputs != NULL
1596 && !discard
1597 && can_incremental_update(shdr.get_sh_type()))
1598 {
1599 off_t sh_size = shdr.get_sh_size();
1600 section_size_type uncompressed_size;
1601 if (this->section_is_compressed(i, &uncompressed_size))
1602 sh_size = uncompressed_size;
1603 incremental_inputs->report_input_section(this, i, name, sh_size);
1604 }
1605
1606 if (discard)
1607 {
1608 // Do not include this section in the link.
1609 out_sections[i] = NULL;
1610 out_section_offsets[i] = invalid_address;
1611 continue;
1612 }
1613 }
1614
1615 if (is_pass_one && parameters->options().gc_sections())
1616 {
1617 if (this->is_section_name_included(name)
1618 || layout->keep_input_section (this, name)
1619 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1620 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1621 {
1622 symtab->gc()->worklist().push_back(Section_id(this, i));
1623 }
1624 // If the section name XXX can be represented as a C identifier
1625 // it cannot be discarded if there are references to
1626 // __start_XXX and __stop_XXX symbols. These need to be
1627 // specially handled.
1628 if (is_cident(name))
1629 {
1630 symtab->gc()->add_cident_section(name, Section_id(this, i));
1631 }
1632 }
1633
1634 // When doing a relocatable link we are going to copy input
1635 // reloc sections into the output. We only want to copy the
1636 // ones associated with sections which are not being discarded.
1637 // However, we don't know that yet for all sections. So save
1638 // reloc sections and process them later. Garbage collection is
1639 // not triggered when relocatable code is desired.
1640 if (emit_relocs
1641 && (shdr.get_sh_type() == elfcpp::SHT_REL
1642 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1643 {
1644 reloc_sections.push_back(i);
1645 continue;
1646 }
1647
1648 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1649 continue;
1650
1651 // The .eh_frame section is special. It holds exception frame
1652 // information that we need to read in order to generate the
1653 // exception frame header. We process these after all the other
1654 // sections so that the exception frame reader can reliably
1655 // determine which sections are being discarded, and discard the
1656 // corresponding information.
1657 if (!relocatable
1658 && strcmp(name, ".eh_frame") == 0
1659 && this->check_eh_frame_flags(&shdr))
1660 {
1661 if (is_pass_one)
1662 {
1663 if (this->is_deferred_layout())
1664 out_sections[i] = reinterpret_cast<Output_section*>(2);
1665 else
1666 out_sections[i] = reinterpret_cast<Output_section*>(1);
1667 out_section_offsets[i] = invalid_address;
1668 }
1669 else if (this->is_deferred_layout())
1670 this->deferred_layout_.push_back(Deferred_layout(i, name,
1671 pshdrs,
1672 reloc_shndx[i],
1673 reloc_type[i]));
1674 else
1675 eh_frame_sections.push_back(i);
1676 continue;
1677 }
1678
1679 if (is_pass_two && parameters->options().gc_sections())
1680 {
1681 // This is executed during the second pass of garbage
1682 // collection. do_layout has been called before and some
1683 // sections have been already discarded. Simply ignore
1684 // such sections this time around.
1685 if (out_sections[i] == NULL)
1686 {
1687 gold_assert(out_section_offsets[i] == invalid_address);
1688 continue;
1689 }
1690 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1691 && symtab->gc()->is_section_garbage(this, i))
1692 {
1693 if (parameters->options().print_gc_sections())
1694 gold_info(_("%s: removing unused section from '%s'"
1695 " in file '%s'"),
1696 program_name, this->section_name(i).c_str(),
1697 this->name().c_str());
1698 out_sections[i] = NULL;
1699 out_section_offsets[i] = invalid_address;
1700 continue;
1701 }
1702 }
1703
1704 if (is_pass_two && parameters->options().icf_enabled())
1705 {
1706 if (out_sections[i] == NULL)
1707 {
1708 gold_assert(out_section_offsets[i] == invalid_address);
1709 continue;
1710 }
1711 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1712 && symtab->icf()->is_section_folded(this, i))
1713 {
1714 if (parameters->options().print_icf_sections())
1715 {
1716 Section_id folded =
1717 symtab->icf()->get_folded_section(this, i);
1718 Relobj* folded_obj =
1719 reinterpret_cast<Relobj*>(folded.first);
1720 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1721 "into '%s' in file '%s'"),
1722 program_name, this->section_name(i).c_str(),
1723 this->name().c_str(),
1724 folded_obj->section_name(folded.second).c_str(),
1725 folded_obj->name().c_str());
1726 }
1727 out_sections[i] = NULL;
1728 out_section_offsets[i] = invalid_address;
1729 continue;
1730 }
1731 }
1732
1733 // Defer layout here if input files are claimed by plugins. When gc
1734 // is turned on this function is called twice; we only want to do this
1735 // on the first pass.
1736 if (!is_pass_two
1737 && this->is_deferred_layout()
1738 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1739 {
1740 this->deferred_layout_.push_back(Deferred_layout(i, name,
1741 pshdrs,
1742 reloc_shndx[i],
1743 reloc_type[i]));
1744 // Put dummy values here; real values will be supplied by
1745 // do_layout_deferred_sections.
1746 out_sections[i] = reinterpret_cast<Output_section*>(2);
1747 out_section_offsets[i] = invalid_address;
1748 continue;
1749 }
1750
1751 // During gc_pass_two if a section that was previously deferred is
1752 // found, do not layout the section as layout_deferred_sections will
1753 // do it later from gold.cc.
1754 if (is_pass_two
1755 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1756 continue;
1757
1758 if (is_pass_one)
1759 {
1760 // This is during garbage collection. The out_sections are
1761 // assigned in the second call to this function.
1762 out_sections[i] = reinterpret_cast<Output_section*>(1);
1763 out_section_offsets[i] = invalid_address;
1764 }
1765 else
1766 {
1767 // When garbage collection is switched on the actual layout
1768 // only happens in the second call.
1769 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1770 reloc_type[i]);
1771
1772 // When generating a .gdb_index section, we do additional
1773 // processing of .debug_info and .debug_types sections after all
1774 // the other sections for the same reason as above.
1775 if (!relocatable
1776 && parameters->options().gdb_index()
1777 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1778 {
1779 if (strcmp(name, ".debug_info") == 0
1780 || strcmp(name, ".zdebug_info") == 0)
1781 debug_info_sections.push_back(i);
1782 else if (strcmp(name, ".debug_types") == 0
1783 || strcmp(name, ".zdebug_types") == 0)
1784 debug_types_sections.push_back(i);
1785 }
1786 }
1787 }
1788
1789 if (!is_pass_two)
1790 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1791
1792 // Handle the .eh_frame sections after the other sections.
1793 gold_assert(!is_pass_one || eh_frame_sections.empty());
1794 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1795 p != eh_frame_sections.end();
1796 ++p)
1797 {
1798 unsigned int i = *p;
1799 const unsigned char* pshdr;
1800 pshdr = section_headers_data + i * This::shdr_size;
1801 typename This::Shdr shdr(pshdr);
1802
1803 this->layout_eh_frame_section(layout,
1804 symbols_data,
1805 symbols_size,
1806 symbol_names_data,
1807 symbol_names_size,
1808 i,
1809 shdr,
1810 reloc_shndx[i],
1811 reloc_type[i]);
1812 }
1813
1814 // When doing a relocatable link handle the reloc sections at the
1815 // end. Garbage collection and Identical Code Folding is not
1816 // turned on for relocatable code.
1817 if (emit_relocs)
1818 this->size_relocatable_relocs();
1819
1820 gold_assert(!is_two_pass || reloc_sections.empty());
1821
1822 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1823 p != reloc_sections.end();
1824 ++p)
1825 {
1826 unsigned int i = *p;
1827 const unsigned char* pshdr;
1828 pshdr = section_headers_data + i * This::shdr_size;
1829 typename This::Shdr shdr(pshdr);
1830
1831 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1832 if (data_shndx >= shnum)
1833 {
1834 // We already warned about this above.
1835 continue;
1836 }
1837
1838 Output_section* data_section = out_sections[data_shndx];
1839 if (data_section == reinterpret_cast<Output_section*>(2))
1840 {
1841 if (is_pass_two)
1842 continue;
1843 // The layout for the data section was deferred, so we need
1844 // to defer the relocation section, too.
1845 const char* name = pnames + shdr.get_sh_name();
1846 this->deferred_layout_relocs_.push_back(
1847 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1848 out_sections[i] = reinterpret_cast<Output_section*>(2);
1849 out_section_offsets[i] = invalid_address;
1850 continue;
1851 }
1852 if (data_section == NULL)
1853 {
1854 out_sections[i] = NULL;
1855 out_section_offsets[i] = invalid_address;
1856 continue;
1857 }
1858
1859 Relocatable_relocs* rr = new Relocatable_relocs();
1860 this->set_relocatable_relocs(i, rr);
1861
1862 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1863 rr);
1864 out_sections[i] = os;
1865 out_section_offsets[i] = invalid_address;
1866 }
1867
1868 // When building a .gdb_index section, scan the .debug_info and
1869 // .debug_types sections.
1870 gold_assert(!is_pass_one
1871 || (debug_info_sections.empty() && debug_types_sections.empty()));
1872 for (std::vector<unsigned int>::const_iterator p
1873 = debug_info_sections.begin();
1874 p != debug_info_sections.end();
1875 ++p)
1876 {
1877 unsigned int i = *p;
1878 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1879 i, reloc_shndx[i], reloc_type[i]);
1880 }
1881 for (std::vector<unsigned int>::const_iterator p
1882 = debug_types_sections.begin();
1883 p != debug_types_sections.end();
1884 ++p)
1885 {
1886 unsigned int i = *p;
1887 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1888 i, reloc_shndx[i], reloc_type[i]);
1889 }
1890
1891 if (is_pass_two)
1892 {
1893 delete[] gc_sd->section_headers_data;
1894 delete[] gc_sd->section_names_data;
1895 delete[] gc_sd->symbols_data;
1896 delete[] gc_sd->symbol_names_data;
1897 this->set_symbols_data(NULL);
1898 }
1899 else
1900 {
1901 delete sd->section_headers;
1902 sd->section_headers = NULL;
1903 delete sd->section_names;
1904 sd->section_names = NULL;
1905 }
1906 }
1907
1908 // Layout sections whose layout was deferred while waiting for
1909 // input files from a plugin.
1910
1911 template<int size, bool big_endian>
1912 void
1913 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1914 {
1915 typename std::vector<Deferred_layout>::iterator deferred;
1916
1917 for (deferred = this->deferred_layout_.begin();
1918 deferred != this->deferred_layout_.end();
1919 ++deferred)
1920 {
1921 typename This::Shdr shdr(deferred->shdr_data_);
1922
1923 if (!parameters->options().relocatable()
1924 && deferred->name_ == ".eh_frame"
1925 && this->check_eh_frame_flags(&shdr))
1926 {
1927 // Checking is_section_included is not reliable for
1928 // .eh_frame sections, because they do not have an output
1929 // section. This is not a problem normally because we call
1930 // layout_eh_frame_section unconditionally, but when
1931 // deferring sections that is not true. We don't want to
1932 // keep all .eh_frame sections because that will cause us to
1933 // keep all sections that they refer to, which is the wrong
1934 // way around. Instead, the eh_frame code will discard
1935 // .eh_frame sections that refer to discarded sections.
1936
1937 // Reading the symbols again here may be slow.
1938 Read_symbols_data sd;
1939 this->base_read_symbols(&sd);
1940 this->layout_eh_frame_section(layout,
1941 sd.symbols->data(),
1942 sd.symbols_size,
1943 sd.symbol_names->data(),
1944 sd.symbol_names_size,
1945 deferred->shndx_,
1946 shdr,
1947 deferred->reloc_shndx_,
1948 deferred->reloc_type_);
1949 continue;
1950 }
1951
1952 // If the section is not included, it is because the garbage collector
1953 // decided it is not needed. Avoid reverting that decision.
1954 if (!this->is_section_included(deferred->shndx_))
1955 continue;
1956
1957 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1958 shdr, deferred->reloc_shndx_,
1959 deferred->reloc_type_);
1960 }
1961
1962 this->deferred_layout_.clear();
1963
1964 // Now handle the deferred relocation sections.
1965
1966 Output_sections& out_sections(this->output_sections());
1967 std::vector<Address>& out_section_offsets(this->section_offsets());
1968
1969 for (deferred = this->deferred_layout_relocs_.begin();
1970 deferred != this->deferred_layout_relocs_.end();
1971 ++deferred)
1972 {
1973 unsigned int shndx = deferred->shndx_;
1974 typename This::Shdr shdr(deferred->shdr_data_);
1975 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1976
1977 Output_section* data_section = out_sections[data_shndx];
1978 if (data_section == NULL)
1979 {
1980 out_sections[shndx] = NULL;
1981 out_section_offsets[shndx] = invalid_address;
1982 continue;
1983 }
1984
1985 Relocatable_relocs* rr = new Relocatable_relocs();
1986 this->set_relocatable_relocs(shndx, rr);
1987
1988 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1989 data_section, rr);
1990 out_sections[shndx] = os;
1991 out_section_offsets[shndx] = invalid_address;
1992 }
1993 }
1994
1995 // Add the symbols to the symbol table.
1996
1997 template<int size, bool big_endian>
1998 void
1999 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2000 Read_symbols_data* sd,
2001 Layout*)
2002 {
2003 if (sd->symbols == NULL)
2004 {
2005 gold_assert(sd->symbol_names == NULL);
2006 return;
2007 }
2008
2009 const int sym_size = This::sym_size;
2010 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2011 / sym_size);
2012 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2013 {
2014 this->error(_("size of symbols is not multiple of symbol size"));
2015 return;
2016 }
2017
2018 this->symbols_.resize(symcount);
2019
2020 const char* sym_names =
2021 reinterpret_cast<const char*>(sd->symbol_names->data());
2022 symtab->add_from_relobj(this,
2023 sd->symbols->data() + sd->external_symbols_offset,
2024 symcount, this->local_symbol_count_,
2025 sym_names, sd->symbol_names_size,
2026 &this->symbols_,
2027 &this->defined_count_);
2028
2029 delete sd->symbols;
2030 sd->symbols = NULL;
2031 delete sd->symbol_names;
2032 sd->symbol_names = NULL;
2033 }
2034
2035 // Find out if this object, that is a member of a lib group, should be included
2036 // in the link. We check every symbol defined by this object. If the symbol
2037 // table has a strong undefined reference to that symbol, we have to include
2038 // the object.
2039
2040 template<int size, bool big_endian>
2041 Archive::Should_include
2042 Sized_relobj_file<size, big_endian>::do_should_include_member(
2043 Symbol_table* symtab,
2044 Layout* layout,
2045 Read_symbols_data* sd,
2046 std::string* why)
2047 {
2048 char* tmpbuf = NULL;
2049 size_t tmpbuflen = 0;
2050 const char* sym_names =
2051 reinterpret_cast<const char*>(sd->symbol_names->data());
2052 const unsigned char* syms =
2053 sd->symbols->data() + sd->external_symbols_offset;
2054 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2055 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2056 / sym_size);
2057
2058 const unsigned char* p = syms;
2059
2060 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2061 {
2062 elfcpp::Sym<size, big_endian> sym(p);
2063 unsigned int st_shndx = sym.get_st_shndx();
2064 if (st_shndx == elfcpp::SHN_UNDEF)
2065 continue;
2066
2067 unsigned int st_name = sym.get_st_name();
2068 const char* name = sym_names + st_name;
2069 Symbol* symbol;
2070 Archive::Should_include t = Archive::should_include_member(symtab,
2071 layout,
2072 name,
2073 &symbol, why,
2074 &tmpbuf,
2075 &tmpbuflen);
2076 if (t == Archive::SHOULD_INCLUDE_YES)
2077 {
2078 if (tmpbuf != NULL)
2079 free(tmpbuf);
2080 return t;
2081 }
2082 }
2083 if (tmpbuf != NULL)
2084 free(tmpbuf);
2085 return Archive::SHOULD_INCLUDE_UNKNOWN;
2086 }
2087
2088 // Iterate over global defined symbols, calling a visitor class V for each.
2089
2090 template<int size, bool big_endian>
2091 void
2092 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2093 Read_symbols_data* sd,
2094 Library_base::Symbol_visitor_base* v)
2095 {
2096 const char* sym_names =
2097 reinterpret_cast<const char*>(sd->symbol_names->data());
2098 const unsigned char* syms =
2099 sd->symbols->data() + sd->external_symbols_offset;
2100 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2101 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2102 / sym_size);
2103 const unsigned char* p = syms;
2104
2105 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2106 {
2107 elfcpp::Sym<size, big_endian> sym(p);
2108 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2109 v->visit(sym_names + sym.get_st_name());
2110 }
2111 }
2112
2113 // Return whether the local symbol SYMNDX has a PLT offset.
2114
2115 template<int size, bool big_endian>
2116 bool
2117 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2118 unsigned int symndx) const
2119 {
2120 typename Local_plt_offsets::const_iterator p =
2121 this->local_plt_offsets_.find(symndx);
2122 return p != this->local_plt_offsets_.end();
2123 }
2124
2125 // Get the PLT offset of a local symbol.
2126
2127 template<int size, bool big_endian>
2128 unsigned int
2129 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2130 unsigned int symndx) const
2131 {
2132 typename Local_plt_offsets::const_iterator p =
2133 this->local_plt_offsets_.find(symndx);
2134 gold_assert(p != this->local_plt_offsets_.end());
2135 return p->second;
2136 }
2137
2138 // Set the PLT offset of a local symbol.
2139
2140 template<int size, bool big_endian>
2141 void
2142 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2143 unsigned int symndx, unsigned int plt_offset)
2144 {
2145 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2146 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2147 gold_assert(ins.second);
2148 }
2149
2150 // First pass over the local symbols. Here we add their names to
2151 // *POOL and *DYNPOOL, and we store the symbol value in
2152 // THIS->LOCAL_VALUES_. This function is always called from a
2153 // singleton thread. This is followed by a call to
2154 // finalize_local_symbols.
2155
2156 template<int size, bool big_endian>
2157 void
2158 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2159 Stringpool* dynpool)
2160 {
2161 gold_assert(this->symtab_shndx_ != -1U);
2162 if (this->symtab_shndx_ == 0)
2163 {
2164 // This object has no symbols. Weird but legal.
2165 return;
2166 }
2167
2168 // Read the symbol table section header.
2169 const unsigned int symtab_shndx = this->symtab_shndx_;
2170 typename This::Shdr symtabshdr(this,
2171 this->elf_file_.section_header(symtab_shndx));
2172 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2173
2174 // Read the local symbols.
2175 const int sym_size = This::sym_size;
2176 const unsigned int loccount = this->local_symbol_count_;
2177 gold_assert(loccount == symtabshdr.get_sh_info());
2178 off_t locsize = loccount * sym_size;
2179 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2180 locsize, true, true);
2181
2182 // Read the symbol names.
2183 const unsigned int strtab_shndx =
2184 this->adjust_shndx(symtabshdr.get_sh_link());
2185 section_size_type strtab_size;
2186 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2187 &strtab_size,
2188 true);
2189 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2190
2191 // Loop over the local symbols.
2192
2193 const Output_sections& out_sections(this->output_sections());
2194 std::vector<Address>& out_section_offsets(this->section_offsets());
2195 unsigned int shnum = this->shnum();
2196 unsigned int count = 0;
2197 unsigned int dyncount = 0;
2198 // Skip the first, dummy, symbol.
2199 psyms += sym_size;
2200 bool strip_all = parameters->options().strip_all();
2201 bool discard_all = parameters->options().discard_all();
2202 bool discard_locals = parameters->options().discard_locals();
2203 bool discard_sec_merge = parameters->options().discard_sec_merge();
2204 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2205 {
2206 elfcpp::Sym<size, big_endian> sym(psyms);
2207
2208 Symbol_value<size>& lv(this->local_values_[i]);
2209
2210 bool is_ordinary;
2211 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2212 &is_ordinary);
2213 lv.set_input_shndx(shndx, is_ordinary);
2214
2215 if (sym.get_st_type() == elfcpp::STT_SECTION)
2216 lv.set_is_section_symbol();
2217 else if (sym.get_st_type() == elfcpp::STT_TLS)
2218 lv.set_is_tls_symbol();
2219 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2220 lv.set_is_ifunc_symbol();
2221
2222 // Save the input symbol value for use in do_finalize_local_symbols().
2223 lv.set_input_value(sym.get_st_value());
2224
2225 // Decide whether this symbol should go into the output file.
2226
2227 if ((shndx < shnum && out_sections[shndx] == NULL)
2228 || shndx == this->discarded_eh_frame_shndx_)
2229 {
2230 lv.set_no_output_symtab_entry();
2231 gold_assert(!lv.needs_output_dynsym_entry());
2232 continue;
2233 }
2234
2235 if (sym.get_st_type() == elfcpp::STT_SECTION
2236 || !this->adjust_local_symbol(&lv))
2237 {
2238 lv.set_no_output_symtab_entry();
2239 gold_assert(!lv.needs_output_dynsym_entry());
2240 continue;
2241 }
2242
2243 if (sym.get_st_name() >= strtab_size)
2244 {
2245 this->error(_("local symbol %u section name out of range: %u >= %u"),
2246 i, sym.get_st_name(),
2247 static_cast<unsigned int>(strtab_size));
2248 lv.set_no_output_symtab_entry();
2249 continue;
2250 }
2251
2252 const char* name = pnames + sym.get_st_name();
2253
2254 // If needed, add the symbol to the dynamic symbol table string pool.
2255 if (lv.needs_output_dynsym_entry())
2256 {
2257 dynpool->add(name, true, NULL);
2258 ++dyncount;
2259 }
2260
2261 if (strip_all
2262 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2263 {
2264 lv.set_no_output_symtab_entry();
2265 continue;
2266 }
2267
2268 // By default, discard temporary local symbols in merge sections.
2269 // If --discard-locals option is used, discard all temporary local
2270 // symbols. These symbols start with system-specific local label
2271 // prefixes, typically .L for ELF system. We want to be compatible
2272 // with GNU ld so here we essentially use the same check in
2273 // bfd_is_local_label(). The code is different because we already
2274 // know that:
2275 //
2276 // - the symbol is local and thus cannot have global or weak binding.
2277 // - the symbol is not a section symbol.
2278 // - the symbol has a name.
2279 //
2280 // We do not discard a symbol if it needs a dynamic symbol entry.
2281 if ((discard_locals
2282 || (discard_sec_merge
2283 && is_ordinary
2284 && out_section_offsets[shndx] == invalid_address))
2285 && sym.get_st_type() != elfcpp::STT_FILE
2286 && !lv.needs_output_dynsym_entry()
2287 && lv.may_be_discarded_from_output_symtab()
2288 && parameters->target().is_local_label_name(name))
2289 {
2290 lv.set_no_output_symtab_entry();
2291 continue;
2292 }
2293
2294 // Discard the local symbol if -retain_symbols_file is specified
2295 // and the local symbol is not in that file.
2296 if (!parameters->options().should_retain_symbol(name))
2297 {
2298 lv.set_no_output_symtab_entry();
2299 continue;
2300 }
2301
2302 // Add the symbol to the symbol table string pool.
2303 pool->add(name, true, NULL);
2304 ++count;
2305 }
2306
2307 this->output_local_symbol_count_ = count;
2308 this->output_local_dynsym_count_ = dyncount;
2309 }
2310
2311 // Compute the final value of a local symbol.
2312
2313 template<int size, bool big_endian>
2314 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2315 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2316 unsigned int r_sym,
2317 const Symbol_value<size>* lv_in,
2318 Symbol_value<size>* lv_out,
2319 bool relocatable,
2320 const Output_sections& out_sections,
2321 const std::vector<Address>& out_offsets,
2322 const Symbol_table* symtab)
2323 {
2324 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2325 // we may have a memory leak.
2326 gold_assert(lv_out->has_output_value());
2327
2328 bool is_ordinary;
2329 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2330
2331 // Set the output symbol value.
2332
2333 if (!is_ordinary)
2334 {
2335 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2336 lv_out->set_output_value(lv_in->input_value());
2337 else
2338 {
2339 this->error(_("unknown section index %u for local symbol %u"),
2340 shndx, r_sym);
2341 lv_out->set_output_value(0);
2342 return This::CFLV_ERROR;
2343 }
2344 }
2345 else
2346 {
2347 if (shndx >= this->shnum())
2348 {
2349 this->error(_("local symbol %u section index %u out of range"),
2350 r_sym, shndx);
2351 lv_out->set_output_value(0);
2352 return This::CFLV_ERROR;
2353 }
2354
2355 Output_section* os = out_sections[shndx];
2356 Address secoffset = out_offsets[shndx];
2357 if (symtab->is_section_folded(this, shndx))
2358 {
2359 gold_assert(os == NULL && secoffset == invalid_address);
2360 // Get the os of the section it is folded onto.
2361 Section_id folded = symtab->icf()->get_folded_section(this,
2362 shndx);
2363 gold_assert(folded.first != NULL);
2364 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2365 <Sized_relobj_file<size, big_endian>*>(folded.first);
2366 os = folded_obj->output_section(folded.second);
2367 gold_assert(os != NULL);
2368 secoffset = folded_obj->get_output_section_offset(folded.second);
2369
2370 // This could be a relaxed input section.
2371 if (secoffset == invalid_address)
2372 {
2373 const Output_relaxed_input_section* relaxed_section =
2374 os->find_relaxed_input_section(folded_obj, folded.second);
2375 gold_assert(relaxed_section != NULL);
2376 secoffset = relaxed_section->address() - os->address();
2377 }
2378 }
2379
2380 if (os == NULL)
2381 {
2382 // This local symbol belongs to a section we are discarding.
2383 // In some cases when applying relocations later, we will
2384 // attempt to match it to the corresponding kept section,
2385 // so we leave the input value unchanged here.
2386 return This::CFLV_DISCARDED;
2387 }
2388 else if (secoffset == invalid_address)
2389 {
2390 uint64_t start;
2391
2392 // This is a SHF_MERGE section or one which otherwise
2393 // requires special handling.
2394 if (shndx == this->discarded_eh_frame_shndx_)
2395 {
2396 // This local symbol belongs to a discarded .eh_frame
2397 // section. Just treat it like the case in which
2398 // os == NULL above.
2399 gold_assert(this->has_eh_frame_);
2400 return This::CFLV_DISCARDED;
2401 }
2402 else if (!lv_in->is_section_symbol())
2403 {
2404 // This is not a section symbol. We can determine
2405 // the final value now.
2406 lv_out->set_output_value(
2407 os->output_address(this, shndx, lv_in->input_value()));
2408 }
2409 else if (!os->find_starting_output_address(this, shndx, &start))
2410 {
2411 // This is a section symbol, but apparently not one in a
2412 // merged section. First check to see if this is a relaxed
2413 // input section. If so, use its address. Otherwise just
2414 // use the start of the output section. This happens with
2415 // relocatable links when the input object has section
2416 // symbols for arbitrary non-merge sections.
2417 const Output_section_data* posd =
2418 os->find_relaxed_input_section(this, shndx);
2419 if (posd != NULL)
2420 {
2421 Address relocatable_link_adjustment =
2422 relocatable ? os->address() : 0;
2423 lv_out->set_output_value(posd->address()
2424 - relocatable_link_adjustment);
2425 }
2426 else
2427 lv_out->set_output_value(os->address());
2428 }
2429 else
2430 {
2431 // We have to consider the addend to determine the
2432 // value to use in a relocation. START is the start
2433 // of this input section. If we are doing a relocatable
2434 // link, use offset from start output section instead of
2435 // address.
2436 Address adjusted_start =
2437 relocatable ? start - os->address() : start;
2438 Merged_symbol_value<size>* msv =
2439 new Merged_symbol_value<size>(lv_in->input_value(),
2440 adjusted_start);
2441 lv_out->set_merged_symbol_value(msv);
2442 }
2443 }
2444 else if (lv_in->is_tls_symbol()
2445 || (lv_in->is_section_symbol()
2446 && (os->flags() & elfcpp::SHF_TLS)))
2447 lv_out->set_output_value(os->tls_offset()
2448 + secoffset
2449 + lv_in->input_value());
2450 else
2451 lv_out->set_output_value((relocatable ? 0 : os->address())
2452 + secoffset
2453 + lv_in->input_value());
2454 }
2455 return This::CFLV_OK;
2456 }
2457
2458 // Compute final local symbol value. R_SYM is the index of a local
2459 // symbol in symbol table. LV points to a symbol value, which is
2460 // expected to hold the input value and to be over-written by the
2461 // final value. SYMTAB points to a symbol table. Some targets may want
2462 // to know would-be-finalized local symbol values in relaxation.
2463 // Hence we provide this method. Since this method updates *LV, a
2464 // callee should make a copy of the original local symbol value and
2465 // use the copy instead of modifying an object's local symbols before
2466 // everything is finalized. The caller should also free up any allocated
2467 // memory in the return value in *LV.
2468 template<int size, bool big_endian>
2469 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2470 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2471 unsigned int r_sym,
2472 const Symbol_value<size>* lv_in,
2473 Symbol_value<size>* lv_out,
2474 const Symbol_table* symtab)
2475 {
2476 // This is just a wrapper of compute_final_local_value_internal.
2477 const bool relocatable = parameters->options().relocatable();
2478 const Output_sections& out_sections(this->output_sections());
2479 const std::vector<Address>& out_offsets(this->section_offsets());
2480 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2481 relocatable, out_sections,
2482 out_offsets, symtab);
2483 }
2484
2485 // Finalize the local symbols. Here we set the final value in
2486 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2487 // This function is always called from a singleton thread. The actual
2488 // output of the local symbols will occur in a separate task.
2489
2490 template<int size, bool big_endian>
2491 unsigned int
2492 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2493 unsigned int index,
2494 off_t off,
2495 Symbol_table* symtab)
2496 {
2497 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2498
2499 const unsigned int loccount = this->local_symbol_count_;
2500 this->local_symbol_offset_ = off;
2501
2502 const bool relocatable = parameters->options().relocatable();
2503 const Output_sections& out_sections(this->output_sections());
2504 const std::vector<Address>& out_offsets(this->section_offsets());
2505
2506 for (unsigned int i = 1; i < loccount; ++i)
2507 {
2508 Symbol_value<size>* lv = &this->local_values_[i];
2509
2510 Compute_final_local_value_status cflv_status =
2511 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2512 out_sections, out_offsets,
2513 symtab);
2514 switch (cflv_status)
2515 {
2516 case CFLV_OK:
2517 if (!lv->is_output_symtab_index_set())
2518 {
2519 lv->set_output_symtab_index(index);
2520 ++index;
2521 }
2522 break;
2523 case CFLV_DISCARDED:
2524 case CFLV_ERROR:
2525 // Do nothing.
2526 break;
2527 default:
2528 gold_unreachable();
2529 }
2530 }
2531 return index;
2532 }
2533
2534 // Set the output dynamic symbol table indexes for the local variables.
2535
2536 template<int size, bool big_endian>
2537 unsigned int
2538 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2539 unsigned int index)
2540 {
2541 const unsigned int loccount = this->local_symbol_count_;
2542 for (unsigned int i = 1; i < loccount; ++i)
2543 {
2544 Symbol_value<size>& lv(this->local_values_[i]);
2545 if (lv.needs_output_dynsym_entry())
2546 {
2547 lv.set_output_dynsym_index(index);
2548 ++index;
2549 }
2550 }
2551 return index;
2552 }
2553
2554 // Set the offset where local dynamic symbol information will be stored.
2555 // Returns the count of local symbols contributed to the symbol table by
2556 // this object.
2557
2558 template<int size, bool big_endian>
2559 unsigned int
2560 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2561 {
2562 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2563 this->local_dynsym_offset_ = off;
2564 return this->output_local_dynsym_count_;
2565 }
2566
2567 // If Symbols_data is not NULL get the section flags from here otherwise
2568 // get it from the file.
2569
2570 template<int size, bool big_endian>
2571 uint64_t
2572 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2573 {
2574 Symbols_data* sd = this->get_symbols_data();
2575 if (sd != NULL)
2576 {
2577 const unsigned char* pshdrs = sd->section_headers_data
2578 + This::shdr_size * shndx;
2579 typename This::Shdr shdr(pshdrs);
2580 return shdr.get_sh_flags();
2581 }
2582 // If sd is NULL, read the section header from the file.
2583 return this->elf_file_.section_flags(shndx);
2584 }
2585
2586 // Get the section's ent size from Symbols_data. Called by get_section_contents
2587 // in icf.cc
2588
2589 template<int size, bool big_endian>
2590 uint64_t
2591 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2592 {
2593 Symbols_data* sd = this->get_symbols_data();
2594 gold_assert(sd != NULL);
2595
2596 const unsigned char* pshdrs = sd->section_headers_data
2597 + This::shdr_size * shndx;
2598 typename This::Shdr shdr(pshdrs);
2599 return shdr.get_sh_entsize();
2600 }
2601
2602 // Write out the local symbols.
2603
2604 template<int size, bool big_endian>
2605 void
2606 Sized_relobj_file<size, big_endian>::write_local_symbols(
2607 Output_file* of,
2608 const Stringpool* sympool,
2609 const Stringpool* dynpool,
2610 Output_symtab_xindex* symtab_xindex,
2611 Output_symtab_xindex* dynsym_xindex,
2612 off_t symtab_off)
2613 {
2614 const bool strip_all = parameters->options().strip_all();
2615 if (strip_all)
2616 {
2617 if (this->output_local_dynsym_count_ == 0)
2618 return;
2619 this->output_local_symbol_count_ = 0;
2620 }
2621
2622 gold_assert(this->symtab_shndx_ != -1U);
2623 if (this->symtab_shndx_ == 0)
2624 {
2625 // This object has no symbols. Weird but legal.
2626 return;
2627 }
2628
2629 // Read the symbol table section header.
2630 const unsigned int symtab_shndx = this->symtab_shndx_;
2631 typename This::Shdr symtabshdr(this,
2632 this->elf_file_.section_header(symtab_shndx));
2633 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2634 const unsigned int loccount = this->local_symbol_count_;
2635 gold_assert(loccount == symtabshdr.get_sh_info());
2636
2637 // Read the local symbols.
2638 const int sym_size = This::sym_size;
2639 off_t locsize = loccount * sym_size;
2640 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2641 locsize, true, false);
2642
2643 // Read the symbol names.
2644 const unsigned int strtab_shndx =
2645 this->adjust_shndx(symtabshdr.get_sh_link());
2646 section_size_type strtab_size;
2647 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2648 &strtab_size,
2649 false);
2650 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2651
2652 // Get views into the output file for the portions of the symbol table
2653 // and the dynamic symbol table that we will be writing.
2654 off_t output_size = this->output_local_symbol_count_ * sym_size;
2655 unsigned char* oview = NULL;
2656 if (output_size > 0)
2657 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2658 output_size);
2659
2660 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2661 unsigned char* dyn_oview = NULL;
2662 if (dyn_output_size > 0)
2663 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2664 dyn_output_size);
2665
2666 const Output_sections& out_sections(this->output_sections());
2667
2668 gold_assert(this->local_values_.size() == loccount);
2669
2670 unsigned char* ov = oview;
2671 unsigned char* dyn_ov = dyn_oview;
2672 psyms += sym_size;
2673 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2674 {
2675 elfcpp::Sym<size, big_endian> isym(psyms);
2676
2677 Symbol_value<size>& lv(this->local_values_[i]);
2678 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = lv.value(this, 0);
2679
2680 bool is_ordinary;
2681 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2682 &is_ordinary);
2683 if (is_ordinary)
2684 {
2685 gold_assert(st_shndx < out_sections.size());
2686 if (out_sections[st_shndx] == NULL)
2687 continue;
2688 // In relocatable object files symbol values are section relative.
2689 if (parameters->options().relocatable())
2690 sym_value -= out_sections[st_shndx]->address();
2691 st_shndx = out_sections[st_shndx]->out_shndx();
2692 if (st_shndx >= elfcpp::SHN_LORESERVE)
2693 {
2694 if (lv.has_output_symtab_entry())
2695 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2696 if (lv.has_output_dynsym_entry())
2697 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2698 st_shndx = elfcpp::SHN_XINDEX;
2699 }
2700 }
2701
2702 // Write the symbol to the output symbol table.
2703 if (lv.has_output_symtab_entry())
2704 {
2705 elfcpp::Sym_write<size, big_endian> osym(ov);
2706
2707 gold_assert(isym.get_st_name() < strtab_size);
2708 const char* name = pnames + isym.get_st_name();
2709 osym.put_st_name(sympool->get_offset(name));
2710 osym.put_st_value(sym_value);
2711 osym.put_st_size(isym.get_st_size());
2712 osym.put_st_info(isym.get_st_info());
2713 osym.put_st_other(isym.get_st_other());
2714 osym.put_st_shndx(st_shndx);
2715
2716 ov += sym_size;
2717 }
2718
2719 // Write the symbol to the output dynamic symbol table.
2720 if (lv.has_output_dynsym_entry())
2721 {
2722 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2723 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2724
2725 gold_assert(isym.get_st_name() < strtab_size);
2726 const char* name = pnames + isym.get_st_name();
2727 osym.put_st_name(dynpool->get_offset(name));
2728 osym.put_st_value(sym_value);
2729 osym.put_st_size(isym.get_st_size());
2730 osym.put_st_info(isym.get_st_info());
2731 osym.put_st_other(isym.get_st_other());
2732 osym.put_st_shndx(st_shndx);
2733
2734 dyn_ov += sym_size;
2735 }
2736 }
2737
2738
2739 if (output_size > 0)
2740 {
2741 gold_assert(ov - oview == output_size);
2742 of->write_output_view(symtab_off + this->local_symbol_offset_,
2743 output_size, oview);
2744 }
2745
2746 if (dyn_output_size > 0)
2747 {
2748 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2749 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2750 dyn_oview);
2751 }
2752 }
2753
2754 // Set *INFO to symbolic information about the offset OFFSET in the
2755 // section SHNDX. Return true if we found something, false if we
2756 // found nothing.
2757
2758 template<int size, bool big_endian>
2759 bool
2760 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2761 unsigned int shndx,
2762 off_t offset,
2763 Symbol_location_info* info)
2764 {
2765 if (this->symtab_shndx_ == 0)
2766 return false;
2767
2768 section_size_type symbols_size;
2769 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2770 &symbols_size,
2771 false);
2772
2773 unsigned int symbol_names_shndx =
2774 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2775 section_size_type names_size;
2776 const unsigned char* symbol_names_u =
2777 this->section_contents(symbol_names_shndx, &names_size, false);
2778 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2779
2780 const int sym_size = This::sym_size;
2781 const size_t count = symbols_size / sym_size;
2782
2783 const unsigned char* p = symbols;
2784 for (size_t i = 0; i < count; ++i, p += sym_size)
2785 {
2786 elfcpp::Sym<size, big_endian> sym(p);
2787
2788 if (sym.get_st_type() == elfcpp::STT_FILE)
2789 {
2790 if (sym.get_st_name() >= names_size)
2791 info->source_file = "(invalid)";
2792 else
2793 info->source_file = symbol_names + sym.get_st_name();
2794 continue;
2795 }
2796
2797 bool is_ordinary;
2798 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2799 &is_ordinary);
2800 if (is_ordinary
2801 && st_shndx == shndx
2802 && static_cast<off_t>(sym.get_st_value()) <= offset
2803 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2804 > offset))
2805 {
2806 info->enclosing_symbol_type = sym.get_st_type();
2807 if (sym.get_st_name() > names_size)
2808 info->enclosing_symbol_name = "(invalid)";
2809 else
2810 {
2811 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2812 if (parameters->options().do_demangle())
2813 {
2814 char* demangled_name = cplus_demangle(
2815 info->enclosing_symbol_name.c_str(),
2816 DMGL_ANSI | DMGL_PARAMS);
2817 if (demangled_name != NULL)
2818 {
2819 info->enclosing_symbol_name.assign(demangled_name);
2820 free(demangled_name);
2821 }
2822 }
2823 }
2824 return true;
2825 }
2826 }
2827
2828 return false;
2829 }
2830
2831 // Look for a kept section corresponding to the given discarded section,
2832 // and return its output address. This is used only for relocations in
2833 // debugging sections. If we can't find the kept section, return 0.
2834
2835 template<int size, bool big_endian>
2836 typename Sized_relobj_file<size, big_endian>::Address
2837 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2838 unsigned int shndx,
2839 bool* found) const
2840 {
2841 Relobj* kept_object;
2842 unsigned int kept_shndx;
2843 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2844 {
2845 Sized_relobj_file<size, big_endian>* kept_relobj =
2846 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2847 Output_section* os = kept_relobj->output_section(kept_shndx);
2848 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2849 if (os != NULL && offset != invalid_address)
2850 {
2851 *found = true;
2852 return os->address() + offset;
2853 }
2854 }
2855 *found = false;
2856 return 0;
2857 }
2858
2859 // Get symbol counts.
2860
2861 template<int size, bool big_endian>
2862 void
2863 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2864 const Symbol_table*,
2865 size_t* defined,
2866 size_t* used) const
2867 {
2868 *defined = this->defined_count_;
2869 size_t count = 0;
2870 for (typename Symbols::const_iterator p = this->symbols_.begin();
2871 p != this->symbols_.end();
2872 ++p)
2873 if (*p != NULL
2874 && (*p)->source() == Symbol::FROM_OBJECT
2875 && (*p)->object() == this
2876 && (*p)->is_defined())
2877 ++count;
2878 *used = count;
2879 }
2880
2881 // Return a view of the decompressed contents of a section. Set *PLEN
2882 // to the size. Set *IS_NEW to true if the contents need to be freed
2883 // by the caller.
2884
2885 const unsigned char*
2886 Object::decompressed_section_contents(
2887 unsigned int shndx,
2888 section_size_type* plen,
2889 bool* is_new)
2890 {
2891 section_size_type buffer_size;
2892 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2893 false);
2894
2895 if (this->compressed_sections_ == NULL)
2896 {
2897 *plen = buffer_size;
2898 *is_new = false;
2899 return buffer;
2900 }
2901
2902 Compressed_section_map::const_iterator p =
2903 this->compressed_sections_->find(shndx);
2904 if (p == this->compressed_sections_->end())
2905 {
2906 *plen = buffer_size;
2907 *is_new = false;
2908 return buffer;
2909 }
2910
2911 section_size_type uncompressed_size = p->second.size;
2912 if (p->second.contents != NULL)
2913 {
2914 *plen = uncompressed_size;
2915 *is_new = false;
2916 return p->second.contents;
2917 }
2918
2919 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2920 if (!decompress_input_section(buffer,
2921 buffer_size,
2922 uncompressed_data,
2923 uncompressed_size,
2924 elfsize(),
2925 is_big_endian(),
2926 p->second.flag))
2927 this->error(_("could not decompress section %s"),
2928 this->do_section_name(shndx).c_str());
2929
2930 // We could cache the results in p->second.contents and store
2931 // false in *IS_NEW, but build_compressed_section_map() would
2932 // have done so if it had expected it to be profitable. If
2933 // we reach this point, we expect to need the contents only
2934 // once in this pass.
2935 *plen = uncompressed_size;
2936 *is_new = true;
2937 return uncompressed_data;
2938 }
2939
2940 // Discard any buffers of uncompressed sections. This is done
2941 // at the end of the Add_symbols task.
2942
2943 void
2944 Object::discard_decompressed_sections()
2945 {
2946 if (this->compressed_sections_ == NULL)
2947 return;
2948
2949 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2950 p != this->compressed_sections_->end();
2951 ++p)
2952 {
2953 if (p->second.contents != NULL)
2954 {
2955 delete[] p->second.contents;
2956 p->second.contents = NULL;
2957 }
2958 }
2959 }
2960
2961 // Input_objects methods.
2962
2963 // Add a regular relocatable object to the list. Return false if this
2964 // object should be ignored.
2965
2966 bool
2967 Input_objects::add_object(Object* obj)
2968 {
2969 // Print the filename if the -t/--trace option is selected.
2970 if (parameters->options().trace())
2971 gold_info("%s", obj->name().c_str());
2972
2973 if (!obj->is_dynamic())
2974 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2975 else
2976 {
2977 // See if this is a duplicate SONAME.
2978 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2979 const char* soname = dynobj->soname();
2980
2981 Unordered_map<std::string, Object*>::value_type val(soname, obj);
2982 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2983 this->sonames_.insert(val);
2984 if (!ins.second)
2985 {
2986 // We have already seen a dynamic object with this soname.
2987 // If any instances of this object on the command line have
2988 // the --no-as-needed flag, make sure the one we keep is
2989 // marked so.
2990 if (!obj->as_needed())
2991 {
2992 gold_assert(ins.first->second != NULL);
2993 ins.first->second->clear_as_needed();
2994 }
2995 return false;
2996 }
2997
2998 this->dynobj_list_.push_back(dynobj);
2999 }
3000
3001 // Add this object to the cross-referencer if requested.
3002 if (parameters->options().user_set_print_symbol_counts()
3003 || parameters->options().cref())
3004 {
3005 if (this->cref_ == NULL)
3006 this->cref_ = new Cref();
3007 this->cref_->add_object(obj);
3008 }
3009
3010 return true;
3011 }
3012
3013 // For each dynamic object, record whether we've seen all of its
3014 // explicit dependencies.
3015
3016 void
3017 Input_objects::check_dynamic_dependencies() const
3018 {
3019 bool issued_copy_dt_needed_error = false;
3020 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3021 p != this->dynobj_list_.end();
3022 ++p)
3023 {
3024 const Dynobj::Needed& needed((*p)->needed());
3025 bool found_all = true;
3026 Dynobj::Needed::const_iterator pneeded;
3027 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3028 {
3029 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3030 {
3031 found_all = false;
3032 break;
3033 }
3034 }
3035 (*p)->set_has_unknown_needed_entries(!found_all);
3036
3037 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3038 // that gold does not support. However, they cause no trouble
3039 // unless there is a DT_NEEDED entry that we don't know about;
3040 // warn only in that case.
3041 if (!found_all
3042 && !issued_copy_dt_needed_error
3043 && (parameters->options().copy_dt_needed_entries()
3044 || parameters->options().add_needed()))
3045 {
3046 const char* optname;
3047 if (parameters->options().copy_dt_needed_entries())
3048 optname = "--copy-dt-needed-entries";
3049 else
3050 optname = "--add-needed";
3051 gold_error(_("%s is not supported but is required for %s in %s"),
3052 optname, (*pneeded).c_str(), (*p)->name().c_str());
3053 issued_copy_dt_needed_error = true;
3054 }
3055 }
3056 }
3057
3058 // Start processing an archive.
3059
3060 void
3061 Input_objects::archive_start(Archive* archive)
3062 {
3063 if (parameters->options().user_set_print_symbol_counts()
3064 || parameters->options().cref())
3065 {
3066 if (this->cref_ == NULL)
3067 this->cref_ = new Cref();
3068 this->cref_->add_archive_start(archive);
3069 }
3070 }
3071
3072 // Stop processing an archive.
3073
3074 void
3075 Input_objects::archive_stop(Archive* archive)
3076 {
3077 if (parameters->options().user_set_print_symbol_counts()
3078 || parameters->options().cref())
3079 this->cref_->add_archive_stop(archive);
3080 }
3081
3082 // Print symbol counts
3083
3084 void
3085 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3086 {
3087 if (parameters->options().user_set_print_symbol_counts()
3088 && this->cref_ != NULL)
3089 this->cref_->print_symbol_counts(symtab);
3090 }
3091
3092 // Print a cross reference table.
3093
3094 void
3095 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3096 {
3097 if (parameters->options().cref() && this->cref_ != NULL)
3098 this->cref_->print_cref(symtab, f);
3099 }
3100
3101 // Relocate_info methods.
3102
3103 // Return a string describing the location of a relocation when file
3104 // and lineno information is not available. This is only used in
3105 // error messages.
3106
3107 template<int size, bool big_endian>
3108 std::string
3109 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3110 {
3111 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3112 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3113 if (!ret.empty())
3114 return ret;
3115
3116 ret = this->object->name();
3117
3118 Symbol_location_info info;
3119 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3120 {
3121 if (!info.source_file.empty())
3122 {
3123 ret += ":";
3124 ret += info.source_file;
3125 }
3126 ret += ":";
3127 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3128 ret += _("function ");
3129 ret += info.enclosing_symbol_name;
3130 return ret;
3131 }
3132
3133 ret += "(";
3134 ret += this->object->section_name(this->data_shndx);
3135 char buf[100];
3136 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3137 ret += buf;
3138 return ret;
3139 }
3140
3141 } // End namespace gold.
3142
3143 namespace
3144 {
3145
3146 using namespace gold;
3147
3148 // Read an ELF file with the header and return the appropriate
3149 // instance of Object.
3150
3151 template<int size, bool big_endian>
3152 Object*
3153 make_elf_sized_object(const std::string& name, Input_file* input_file,
3154 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3155 bool* punconfigured)
3156 {
3157 Target* target = select_target(input_file, offset,
3158 ehdr.get_e_machine(), size, big_endian,
3159 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3160 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3161 if (target == NULL)
3162 gold_fatal(_("%s: unsupported ELF machine number %d"),
3163 name.c_str(), ehdr.get_e_machine());
3164
3165 if (!parameters->target_valid())
3166 set_parameters_target(target);
3167 else if (target != &parameters->target())
3168 {
3169 if (punconfigured != NULL)
3170 *punconfigured = true;
3171 else
3172 gold_error(_("%s: incompatible target"), name.c_str());
3173 return NULL;
3174 }
3175
3176 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3177 ehdr);
3178 }
3179
3180 } // End anonymous namespace.
3181
3182 namespace gold
3183 {
3184
3185 // Return whether INPUT_FILE is an ELF object.
3186
3187 bool
3188 is_elf_object(Input_file* input_file, off_t offset,
3189 const unsigned char** start, int* read_size)
3190 {
3191 off_t filesize = input_file->file().filesize();
3192 int want = elfcpp::Elf_recognizer::max_header_size;
3193 if (filesize - offset < want)
3194 want = filesize - offset;
3195
3196 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3197 true, false);
3198 *start = p;
3199 *read_size = want;
3200
3201 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3202 }
3203
3204 // Read an ELF file and return the appropriate instance of Object.
3205
3206 Object*
3207 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3208 const unsigned char* p, section_offset_type bytes,
3209 bool* punconfigured)
3210 {
3211 if (punconfigured != NULL)
3212 *punconfigured = false;
3213
3214 std::string error;
3215 bool big_endian = false;
3216 int size = 0;
3217 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3218 &big_endian, &error))
3219 {
3220 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3221 return NULL;
3222 }
3223
3224 if (size == 32)
3225 {
3226 if (big_endian)
3227 {
3228 #ifdef HAVE_TARGET_32_BIG
3229 elfcpp::Ehdr<32, true> ehdr(p);
3230 return make_elf_sized_object<32, true>(name, input_file,
3231 offset, ehdr, punconfigured);
3232 #else
3233 if (punconfigured != NULL)
3234 *punconfigured = true;
3235 else
3236 gold_error(_("%s: not configured to support "
3237 "32-bit big-endian object"),
3238 name.c_str());
3239 return NULL;
3240 #endif
3241 }
3242 else
3243 {
3244 #ifdef HAVE_TARGET_32_LITTLE
3245 elfcpp::Ehdr<32, false> ehdr(p);
3246 return make_elf_sized_object<32, false>(name, input_file,
3247 offset, ehdr, punconfigured);
3248 #else
3249 if (punconfigured != NULL)
3250 *punconfigured = true;
3251 else
3252 gold_error(_("%s: not configured to support "
3253 "32-bit little-endian object"),
3254 name.c_str());
3255 return NULL;
3256 #endif
3257 }
3258 }
3259 else if (size == 64)
3260 {
3261 if (big_endian)
3262 {
3263 #ifdef HAVE_TARGET_64_BIG
3264 elfcpp::Ehdr<64, true> ehdr(p);
3265 return make_elf_sized_object<64, true>(name, input_file,
3266 offset, ehdr, punconfigured);
3267 #else
3268 if (punconfigured != NULL)
3269 *punconfigured = true;
3270 else
3271 gold_error(_("%s: not configured to support "
3272 "64-bit big-endian object"),
3273 name.c_str());
3274 return NULL;
3275 #endif
3276 }
3277 else
3278 {
3279 #ifdef HAVE_TARGET_64_LITTLE
3280 elfcpp::Ehdr<64, false> ehdr(p);
3281 return make_elf_sized_object<64, false>(name, input_file,
3282 offset, ehdr, punconfigured);
3283 #else
3284 if (punconfigured != NULL)
3285 *punconfigured = true;
3286 else
3287 gold_error(_("%s: not configured to support "
3288 "64-bit little-endian object"),
3289 name.c_str());
3290 return NULL;
3291 #endif
3292 }
3293 }
3294 else
3295 gold_unreachable();
3296 }
3297
3298 // Instantiate the templates we need.
3299
3300 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3301 template
3302 void
3303 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3304 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3305 Unordered_map<section_offset_type,
3306 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3307 #endif
3308
3309 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3310 template
3311 void
3312 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3313 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3314 Unordered_map<section_offset_type,
3315 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3316 #endif
3317
3318 #ifdef HAVE_TARGET_32_LITTLE
3319 template
3320 void
3321 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3322 Read_symbols_data*);
3323 template
3324 const unsigned char*
3325 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3326 section_size_type, const unsigned char*) const;
3327 #endif
3328
3329 #ifdef HAVE_TARGET_32_BIG
3330 template
3331 void
3332 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3333 Read_symbols_data*);
3334 template
3335 const unsigned char*
3336 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3337 section_size_type, const unsigned char*) const;
3338 #endif
3339
3340 #ifdef HAVE_TARGET_64_LITTLE
3341 template
3342 void
3343 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3344 Read_symbols_data*);
3345 template
3346 const unsigned char*
3347 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3348 section_size_type, const unsigned char*) const;
3349 #endif
3350
3351 #ifdef HAVE_TARGET_64_BIG
3352 template
3353 void
3354 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3355 Read_symbols_data*);
3356 template
3357 const unsigned char*
3358 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3359 section_size_type, const unsigned char*) const;
3360 #endif
3361
3362 #ifdef HAVE_TARGET_32_LITTLE
3363 template
3364 class Sized_relobj<32, false>;
3365
3366 template
3367 class Sized_relobj_file<32, false>;
3368 #endif
3369
3370 #ifdef HAVE_TARGET_32_BIG
3371 template
3372 class Sized_relobj<32, true>;
3373
3374 template
3375 class Sized_relobj_file<32, true>;
3376 #endif
3377
3378 #ifdef HAVE_TARGET_64_LITTLE
3379 template
3380 class Sized_relobj<64, false>;
3381
3382 template
3383 class Sized_relobj_file<64, false>;
3384 #endif
3385
3386 #ifdef HAVE_TARGET_64_BIG
3387 template
3388 class Sized_relobj<64, true>;
3389
3390 template
3391 class Sized_relobj_file<64, true>;
3392 #endif
3393
3394 #ifdef HAVE_TARGET_32_LITTLE
3395 template
3396 struct Relocate_info<32, false>;
3397 #endif
3398
3399 #ifdef HAVE_TARGET_32_BIG
3400 template
3401 struct Relocate_info<32, true>;
3402 #endif
3403
3404 #ifdef HAVE_TARGET_64_LITTLE
3405 template
3406 struct Relocate_info<64, false>;
3407 #endif
3408
3409 #ifdef HAVE_TARGET_64_BIG
3410 template
3411 struct Relocate_info<64, true>;
3412 #endif
3413
3414 #ifdef HAVE_TARGET_32_LITTLE
3415 template
3416 void
3417 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3418
3419 template
3420 void
3421 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3422 const unsigned char*);
3423 #endif
3424
3425 #ifdef HAVE_TARGET_32_BIG
3426 template
3427 void
3428 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3429
3430 template
3431 void
3432 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3433 const unsigned char*);
3434 #endif
3435
3436 #ifdef HAVE_TARGET_64_LITTLE
3437 template
3438 void
3439 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3440
3441 template
3442 void
3443 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3444 const unsigned char*);
3445 #endif
3446
3447 #ifdef HAVE_TARGET_64_BIG
3448 template
3449 void
3450 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3451
3452 template
3453 void
3454 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3455 const unsigned char*);
3456 #endif
3457
3458 } // End namespace gold.
This page took 0.16915 seconds and 5 git commands to generate.