* incremental-dump.cc (dump_incremental_inputs): Print COMDAT groups.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header. This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438 const unsigned int shnum = this->elf_file_.shnum();
439 this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers. The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section. Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451 const unsigned int shnum = this->shnum();
452 this->symtab_shndx_ = 0;
453 if (shnum > 0)
454 {
455 // Look through the sections in reverse order, since gas tends
456 // to put the symbol table at the end.
457 const unsigned char* p = pshdrs + shnum * This::shdr_size;
458 unsigned int i = shnum;
459 unsigned int xindex_shndx = 0;
460 unsigned int xindex_link = 0;
461 while (i > 0)
462 {
463 --i;
464 p -= This::shdr_size;
465 typename This::Shdr shdr(p);
466 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467 {
468 this->symtab_shndx_ = i;
469 if (xindex_shndx > 0 && xindex_link == i)
470 {
471 Xindex* xindex =
472 new Xindex(this->elf_file_.large_shndx_offset());
473 xindex->read_symtab_xindex<size, big_endian>(this,
474 xindex_shndx,
475 pshdrs);
476 this->set_xindex(xindex);
477 }
478 break;
479 }
480
481 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482 // one. This will work if it follows the SHT_SYMTAB
483 // section.
484 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485 {
486 xindex_shndx = i;
487 xindex_link = this->adjust_shndx(shdr.get_sh_link());
488 }
489 }
490 }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500 gold_assert(this->symtab_shndx_ != -1U);
501 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503 return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512 const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
515 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
516 }
517
518 // Return whether there is a GNU .eh_frame section, given the section
519 // headers and the section names.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::find_eh_frame(
524 const unsigned char* pshdrs,
525 const char* names,
526 section_size_type names_size) const
527 {
528 const unsigned int shnum = this->shnum();
529 const unsigned char* p = pshdrs + This::shdr_size;
530 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
531 {
532 typename This::Shdr shdr(p);
533 if (this->check_eh_frame_flags(&shdr))
534 {
535 if (shdr.get_sh_name() >= names_size)
536 {
537 this->error(_("bad section name offset for section %u: %lu"),
538 i, static_cast<unsigned long>(shdr.get_sh_name()));
539 continue;
540 }
541
542 const char* name = names + shdr.get_sh_name();
543 if (strcmp(name, ".eh_frame") == 0)
544 return true;
545 }
546 }
547 return false;
548 }
549
550 // Build a table for any compressed debug sections, mapping each section index
551 // to the uncompressed size.
552
553 template<int size, bool big_endian>
554 Compressed_section_map*
555 build_compressed_section_map(
556 const unsigned char* pshdrs,
557 unsigned int shnum,
558 const char* names,
559 section_size_type names_size,
560 Sized_relobj_file<size, big_endian>* obj)
561 {
562 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
563 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
564 const unsigned char* p = pshdrs + shdr_size;
565 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
566 {
567 typename elfcpp::Shdr<size, big_endian> shdr(p);
568 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
569 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570 {
571 if (shdr.get_sh_name() >= names_size)
572 {
573 obj->error(_("bad section name offset for section %u: %lu"),
574 i, static_cast<unsigned long>(shdr.get_sh_name()));
575 continue;
576 }
577
578 const char* name = names + shdr.get_sh_name();
579 if (is_compressed_debug_section(name))
580 {
581 section_size_type len;
582 const unsigned char* contents =
583 obj->section_contents(i, &len, false);
584 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
585 if (uncompressed_size != -1ULL)
586 (*uncompressed_sizes)[i] =
587 convert_to_section_size_type(uncompressed_size);
588 }
589 }
590 }
591 return uncompressed_sizes;
592 }
593
594 // Read the sections and symbols from an object file.
595
596 template<int size, bool big_endian>
597 void
598 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
599 {
600 this->read_section_data(&this->elf_file_, sd);
601
602 const unsigned char* const pshdrs = sd->section_headers->data();
603
604 this->find_symtab(pshdrs);
605
606 const unsigned char* namesu = sd->section_names->data();
607 const char* names = reinterpret_cast<const char*>(namesu);
608 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
609 {
610 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
611 this->has_eh_frame_ = true;
612 }
613 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
614 this->compressed_sections_ =
615 build_compressed_section_map(pshdrs, this->shnum(), names,
616 sd->section_names_size, this);
617
618 sd->symbols = NULL;
619 sd->symbols_size = 0;
620 sd->external_symbols_offset = 0;
621 sd->symbol_names = NULL;
622 sd->symbol_names_size = 0;
623
624 if (this->symtab_shndx_ == 0)
625 {
626 // No symbol table. Weird but legal.
627 return;
628 }
629
630 // Get the symbol table section header.
631 typename This::Shdr symtabshdr(pshdrs
632 + this->symtab_shndx_ * This::shdr_size);
633 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
634
635 // If this object has a .eh_frame section, we need all the symbols.
636 // Otherwise we only need the external symbols. While it would be
637 // simpler to just always read all the symbols, I've seen object
638 // files with well over 2000 local symbols, which for a 64-bit
639 // object file format is over 5 pages that we don't need to read
640 // now.
641
642 const int sym_size = This::sym_size;
643 const unsigned int loccount = symtabshdr.get_sh_info();
644 this->local_symbol_count_ = loccount;
645 this->local_values_.resize(loccount);
646 section_offset_type locsize = loccount * sym_size;
647 off_t dataoff = symtabshdr.get_sh_offset();
648 section_size_type datasize =
649 convert_to_section_size_type(symtabshdr.get_sh_size());
650 off_t extoff = dataoff + locsize;
651 section_size_type extsize = datasize - locsize;
652
653 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
654 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
655
656 if (readsize == 0)
657 {
658 // No external symbols. Also weird but also legal.
659 return;
660 }
661
662 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
663
664 // Read the section header for the symbol names.
665 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
666 if (strtab_shndx >= this->shnum())
667 {
668 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
669 return;
670 }
671 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
672 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
673 {
674 this->error(_("symbol table name section has wrong type: %u"),
675 static_cast<unsigned int>(strtabshdr.get_sh_type()));
676 return;
677 }
678
679 // Read the symbol names.
680 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
681 strtabshdr.get_sh_size(),
682 false, true);
683
684 sd->symbols = fvsymtab;
685 sd->symbols_size = readsize;
686 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
687 sd->symbol_names = fvstrtab;
688 sd->symbol_names_size =
689 convert_to_section_size_type(strtabshdr.get_sh_size());
690 }
691
692 // Return the section index of symbol SYM. Set *VALUE to its value in
693 // the object file. Set *IS_ORDINARY if this is an ordinary section
694 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
695 // Note that for a symbol which is not defined in this object file,
696 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
697 // the final value of the symbol in the link.
698
699 template<int size, bool big_endian>
700 unsigned int
701 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
702 Address* value,
703 bool* is_ordinary)
704 {
705 section_size_type symbols_size;
706 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
707 &symbols_size,
708 false);
709
710 const size_t count = symbols_size / This::sym_size;
711 gold_assert(sym < count);
712
713 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
714 *value = elfsym.get_st_value();
715
716 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
717 }
718
719 // Return whether to include a section group in the link. LAYOUT is
720 // used to keep track of which section groups we have already seen.
721 // INDEX is the index of the section group and SHDR is the section
722 // header. If we do not want to include this group, we set bits in
723 // OMIT for each section which should be discarded.
724
725 template<int size, bool big_endian>
726 bool
727 Sized_relobj_file<size, big_endian>::include_section_group(
728 Symbol_table* symtab,
729 Layout* layout,
730 unsigned int index,
731 const char* name,
732 const unsigned char* shdrs,
733 const char* section_names,
734 section_size_type section_names_size,
735 std::vector<bool>* omit)
736 {
737 // Read the section contents.
738 typename This::Shdr shdr(shdrs + index * This::shdr_size);
739 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
740 shdr.get_sh_size(), true, false);
741 const elfcpp::Elf_Word* pword =
742 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
743
744 // The first word contains flags. We only care about COMDAT section
745 // groups. Other section groups are always included in the link
746 // just like ordinary sections.
747 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
748
749 // Look up the group signature, which is the name of a symbol. This
750 // is a lot of effort to go to to read a string. Why didn't they
751 // just have the group signature point into the string table, rather
752 // than indirect through a symbol?
753
754 // Get the appropriate symbol table header (this will normally be
755 // the single SHT_SYMTAB section, but in principle it need not be).
756 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
757 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
758
759 // Read the symbol table entry.
760 unsigned int symndx = shdr.get_sh_info();
761 if (symndx >= symshdr.get_sh_size() / This::sym_size)
762 {
763 this->error(_("section group %u info %u out of range"),
764 index, symndx);
765 return false;
766 }
767 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
768 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
769 false);
770 elfcpp::Sym<size, big_endian> sym(psym);
771
772 // Read the symbol table names.
773 section_size_type symnamelen;
774 const unsigned char* psymnamesu;
775 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
776 &symnamelen, true);
777 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
778
779 // Get the section group signature.
780 if (sym.get_st_name() >= symnamelen)
781 {
782 this->error(_("symbol %u name offset %u out of range"),
783 symndx, sym.get_st_name());
784 return false;
785 }
786
787 std::string signature(psymnames + sym.get_st_name());
788
789 // It seems that some versions of gas will create a section group
790 // associated with a section symbol, and then fail to give a name to
791 // the section symbol. In such a case, use the name of the section.
792 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
793 {
794 bool is_ordinary;
795 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
796 sym.get_st_shndx(),
797 &is_ordinary);
798 if (!is_ordinary || sym_shndx >= this->shnum())
799 {
800 this->error(_("symbol %u invalid section index %u"),
801 symndx, sym_shndx);
802 return false;
803 }
804 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
805 if (member_shdr.get_sh_name() < section_names_size)
806 signature = section_names + member_shdr.get_sh_name();
807 }
808
809 // Record this section group in the layout, and see whether we've already
810 // seen one with the same signature.
811 bool include_group;
812 bool is_comdat;
813 Kept_section* kept_section = NULL;
814
815 if ((flags & elfcpp::GRP_COMDAT) == 0)
816 {
817 include_group = true;
818 is_comdat = false;
819 }
820 else
821 {
822 include_group = layout->find_or_add_kept_section(signature,
823 this, index, true,
824 true, &kept_section);
825 is_comdat = true;
826 }
827
828 if (is_comdat && include_group)
829 {
830 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
831 if (incremental_inputs != NULL)
832 incremental_inputs->report_comdat_group(this, signature.c_str());
833 }
834
835 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
836
837 std::vector<unsigned int> shndxes;
838 bool relocate_group = include_group && parameters->options().relocatable();
839 if (relocate_group)
840 shndxes.reserve(count - 1);
841
842 for (size_t i = 1; i < count; ++i)
843 {
844 elfcpp::Elf_Word shndx =
845 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
846
847 if (relocate_group)
848 shndxes.push_back(shndx);
849
850 if (shndx >= this->shnum())
851 {
852 this->error(_("section %u in section group %u out of range"),
853 shndx, index);
854 continue;
855 }
856
857 // Check for an earlier section number, since we're going to get
858 // it wrong--we may have already decided to include the section.
859 if (shndx < index)
860 this->error(_("invalid section group %u refers to earlier section %u"),
861 index, shndx);
862
863 // Get the name of the member section.
864 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
865 if (member_shdr.get_sh_name() >= section_names_size)
866 {
867 // This is an error, but it will be diagnosed eventually
868 // in do_layout, so we don't need to do anything here but
869 // ignore it.
870 continue;
871 }
872 std::string mname(section_names + member_shdr.get_sh_name());
873
874 if (include_group)
875 {
876 if (is_comdat)
877 kept_section->add_comdat_section(mname, shndx,
878 member_shdr.get_sh_size());
879 }
880 else
881 {
882 (*omit)[shndx] = true;
883
884 if (is_comdat)
885 {
886 Relobj* kept_object = kept_section->object();
887 if (kept_section->is_comdat())
888 {
889 // Find the corresponding kept section, and store
890 // that info in the discarded section table.
891 unsigned int kept_shndx;
892 uint64_t kept_size;
893 if (kept_section->find_comdat_section(mname, &kept_shndx,
894 &kept_size))
895 {
896 // We don't keep a mapping for this section if
897 // it has a different size. The mapping is only
898 // used for relocation processing, and we don't
899 // want to treat the sections as similar if the
900 // sizes are different. Checking the section
901 // size is the approach used by the GNU linker.
902 if (kept_size == member_shdr.get_sh_size())
903 this->set_kept_comdat_section(shndx, kept_object,
904 kept_shndx);
905 }
906 }
907 else
908 {
909 // The existing section is a linkonce section. Add
910 // a mapping if there is exactly one section in the
911 // group (which is true when COUNT == 2) and if it
912 // is the same size.
913 if (count == 2
914 && (kept_section->linkonce_size()
915 == member_shdr.get_sh_size()))
916 this->set_kept_comdat_section(shndx, kept_object,
917 kept_section->shndx());
918 }
919 }
920 }
921 }
922
923 if (relocate_group)
924 layout->layout_group(symtab, this, index, name, signature.c_str(),
925 shdr, flags, &shndxes);
926
927 return include_group;
928 }
929
930 // Whether to include a linkonce section in the link. NAME is the
931 // name of the section and SHDR is the section header.
932
933 // Linkonce sections are a GNU extension implemented in the original
934 // GNU linker before section groups were defined. The semantics are
935 // that we only include one linkonce section with a given name. The
936 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
937 // where T is the type of section and SYMNAME is the name of a symbol.
938 // In an attempt to make linkonce sections interact well with section
939 // groups, we try to identify SYMNAME and use it like a section group
940 // signature. We want to block section groups with that signature,
941 // but not other linkonce sections with that signature. We also use
942 // the full name of the linkonce section as a normal section group
943 // signature.
944
945 template<int size, bool big_endian>
946 bool
947 Sized_relobj_file<size, big_endian>::include_linkonce_section(
948 Layout* layout,
949 unsigned int index,
950 const char* name,
951 const elfcpp::Shdr<size, big_endian>& shdr)
952 {
953 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
954 // In general the symbol name we want will be the string following
955 // the last '.'. However, we have to handle the case of
956 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
957 // some versions of gcc. So we use a heuristic: if the name starts
958 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
959 // we look for the last '.'. We can't always simply skip
960 // ".gnu.linkonce.X", because we have to deal with cases like
961 // ".gnu.linkonce.d.rel.ro.local".
962 const char* const linkonce_t = ".gnu.linkonce.t.";
963 const char* symname;
964 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
965 symname = name + strlen(linkonce_t);
966 else
967 symname = strrchr(name, '.') + 1;
968 std::string sig1(symname);
969 std::string sig2(name);
970 Kept_section* kept1;
971 Kept_section* kept2;
972 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
973 false, &kept1);
974 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
975 true, &kept2);
976
977 if (!include2)
978 {
979 // We are not including this section because we already saw the
980 // name of the section as a signature. This normally implies
981 // that the kept section is another linkonce section. If it is
982 // the same size, record it as the section which corresponds to
983 // this one.
984 if (kept2->object() != NULL
985 && !kept2->is_comdat()
986 && kept2->linkonce_size() == sh_size)
987 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
988 }
989 else if (!include1)
990 {
991 // The section is being discarded on the basis of its symbol
992 // name. This means that the corresponding kept section was
993 // part of a comdat group, and it will be difficult to identify
994 // the specific section within that group that corresponds to
995 // this linkonce section. We'll handle the simple case where
996 // the group has only one member section. Otherwise, it's not
997 // worth the effort.
998 unsigned int kept_shndx;
999 uint64_t kept_size;
1000 if (kept1->object() != NULL
1001 && kept1->is_comdat()
1002 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1003 && kept_size == sh_size)
1004 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1005 }
1006 else
1007 {
1008 kept1->set_linkonce_size(sh_size);
1009 kept2->set_linkonce_size(sh_size);
1010 }
1011
1012 return include1 && include2;
1013 }
1014
1015 // Layout an input section.
1016
1017 template<int size, bool big_endian>
1018 inline void
1019 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1020 unsigned int shndx,
1021 const char* name,
1022 typename This::Shdr& shdr,
1023 unsigned int reloc_shndx,
1024 unsigned int reloc_type)
1025 {
1026 off_t offset;
1027 Output_section* os = layout->layout(this, shndx, name, shdr,
1028 reloc_shndx, reloc_type, &offset);
1029
1030 this->output_sections()[shndx] = os;
1031 if (offset == -1)
1032 this->section_offsets()[shndx] = invalid_address;
1033 else
1034 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1035
1036 // If this section requires special handling, and if there are
1037 // relocs that apply to it, then we must do the special handling
1038 // before we apply the relocs.
1039 if (offset == -1 && reloc_shndx != 0)
1040 this->set_relocs_must_follow_section_writes();
1041 }
1042
1043 // Lay out the input sections. We walk through the sections and check
1044 // whether they should be included in the link. If they should, we
1045 // pass them to the Layout object, which will return an output section
1046 // and an offset.
1047 // During garbage collection (--gc-sections) and identical code folding
1048 // (--icf), this function is called twice. When it is called the first
1049 // time, it is for setting up some sections as roots to a work-list for
1050 // --gc-sections and to do comdat processing. Actual layout happens the
1051 // second time around after all the relevant sections have been determined.
1052 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1053 // set to true after the garbage collection worklist or identical code
1054 // folding is processed and the relevant sections to be kept are
1055 // determined. Then, this function is called again to layout the sections.
1056
1057 template<int size, bool big_endian>
1058 void
1059 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1060 Layout* layout,
1061 Read_symbols_data* sd)
1062 {
1063 const unsigned int shnum = this->shnum();
1064 bool is_gc_pass_one = ((parameters->options().gc_sections()
1065 && !symtab->gc()->is_worklist_ready())
1066 || (parameters->options().icf_enabled()
1067 && !symtab->icf()->is_icf_ready()));
1068
1069 bool is_gc_pass_two = ((parameters->options().gc_sections()
1070 && symtab->gc()->is_worklist_ready())
1071 || (parameters->options().icf_enabled()
1072 && symtab->icf()->is_icf_ready()));
1073
1074 bool is_gc_or_icf = (parameters->options().gc_sections()
1075 || parameters->options().icf_enabled());
1076
1077 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1078 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1079
1080 if (shnum == 0)
1081 return;
1082 Symbols_data* gc_sd = NULL;
1083 if (is_gc_pass_one)
1084 {
1085 // During garbage collection save the symbols data to use it when
1086 // re-entering this function.
1087 gc_sd = new Symbols_data;
1088 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1089 this->set_symbols_data(gc_sd);
1090 }
1091 else if (is_gc_pass_two)
1092 {
1093 gc_sd = this->get_symbols_data();
1094 }
1095
1096 const unsigned char* section_headers_data = NULL;
1097 section_size_type section_names_size;
1098 const unsigned char* symbols_data = NULL;
1099 section_size_type symbols_size;
1100 section_offset_type external_symbols_offset;
1101 const unsigned char* symbol_names_data = NULL;
1102 section_size_type symbol_names_size;
1103
1104 if (is_gc_or_icf)
1105 {
1106 section_headers_data = gc_sd->section_headers_data;
1107 section_names_size = gc_sd->section_names_size;
1108 symbols_data = gc_sd->symbols_data;
1109 symbols_size = gc_sd->symbols_size;
1110 external_symbols_offset = gc_sd->external_symbols_offset;
1111 symbol_names_data = gc_sd->symbol_names_data;
1112 symbol_names_size = gc_sd->symbol_names_size;
1113 }
1114 else
1115 {
1116 section_headers_data = sd->section_headers->data();
1117 section_names_size = sd->section_names_size;
1118 if (sd->symbols != NULL)
1119 symbols_data = sd->symbols->data();
1120 symbols_size = sd->symbols_size;
1121 external_symbols_offset = sd->external_symbols_offset;
1122 if (sd->symbol_names != NULL)
1123 symbol_names_data = sd->symbol_names->data();
1124 symbol_names_size = sd->symbol_names_size;
1125 }
1126
1127 // Get the section headers.
1128 const unsigned char* shdrs = section_headers_data;
1129 const unsigned char* pshdrs;
1130
1131 // Get the section names.
1132 const unsigned char* pnamesu = (is_gc_or_icf)
1133 ? gc_sd->section_names_data
1134 : sd->section_names->data();
1135
1136 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1137
1138 // If any input files have been claimed by plugins, we need to defer
1139 // actual layout until the replacement files have arrived.
1140 const bool should_defer_layout =
1141 (parameters->options().has_plugins()
1142 && parameters->options().plugins()->should_defer_layout());
1143 unsigned int num_sections_to_defer = 0;
1144
1145 // For each section, record the index of the reloc section if any.
1146 // Use 0 to mean that there is no reloc section, -1U to mean that
1147 // there is more than one.
1148 std::vector<unsigned int> reloc_shndx(shnum, 0);
1149 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1150 // Skip the first, dummy, section.
1151 pshdrs = shdrs + This::shdr_size;
1152 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1153 {
1154 typename This::Shdr shdr(pshdrs);
1155
1156 // Count the number of sections whose layout will be deferred.
1157 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1158 ++num_sections_to_defer;
1159
1160 unsigned int sh_type = shdr.get_sh_type();
1161 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1162 {
1163 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1164 if (target_shndx == 0 || target_shndx >= shnum)
1165 {
1166 this->error(_("relocation section %u has bad info %u"),
1167 i, target_shndx);
1168 continue;
1169 }
1170
1171 if (reloc_shndx[target_shndx] != 0)
1172 reloc_shndx[target_shndx] = -1U;
1173 else
1174 {
1175 reloc_shndx[target_shndx] = i;
1176 reloc_type[target_shndx] = sh_type;
1177 }
1178 }
1179 }
1180
1181 Output_sections& out_sections(this->output_sections());
1182 std::vector<Address>& out_section_offsets(this->section_offsets());
1183
1184 if (!is_gc_pass_two)
1185 {
1186 out_sections.resize(shnum);
1187 out_section_offsets.resize(shnum);
1188 }
1189
1190 // If we are only linking for symbols, then there is nothing else to
1191 // do here.
1192 if (this->input_file()->just_symbols())
1193 {
1194 if (!is_gc_pass_two)
1195 {
1196 delete sd->section_headers;
1197 sd->section_headers = NULL;
1198 delete sd->section_names;
1199 sd->section_names = NULL;
1200 }
1201 return;
1202 }
1203
1204 if (num_sections_to_defer > 0)
1205 {
1206 parameters->options().plugins()->add_deferred_layout_object(this);
1207 this->deferred_layout_.reserve(num_sections_to_defer);
1208 }
1209
1210 // Whether we've seen a .note.GNU-stack section.
1211 bool seen_gnu_stack = false;
1212 // The flags of a .note.GNU-stack section.
1213 uint64_t gnu_stack_flags = 0;
1214
1215 // Keep track of which sections to omit.
1216 std::vector<bool> omit(shnum, false);
1217
1218 // Keep track of reloc sections when emitting relocations.
1219 const bool relocatable = parameters->options().relocatable();
1220 const bool emit_relocs = (relocatable
1221 || parameters->options().emit_relocs());
1222 std::vector<unsigned int> reloc_sections;
1223
1224 // Keep track of .eh_frame sections.
1225 std::vector<unsigned int> eh_frame_sections;
1226
1227 // Skip the first, dummy, section.
1228 pshdrs = shdrs + This::shdr_size;
1229 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1230 {
1231 typename This::Shdr shdr(pshdrs);
1232
1233 if (shdr.get_sh_name() >= section_names_size)
1234 {
1235 this->error(_("bad section name offset for section %u: %lu"),
1236 i, static_cast<unsigned long>(shdr.get_sh_name()));
1237 return;
1238 }
1239
1240 const char* name = pnames + shdr.get_sh_name();
1241
1242 if (!is_gc_pass_two)
1243 {
1244 if (this->handle_gnu_warning_section(name, i, symtab))
1245 {
1246 if (!relocatable)
1247 omit[i] = true;
1248 }
1249
1250 // The .note.GNU-stack section is special. It gives the
1251 // protection flags that this object file requires for the stack
1252 // in memory.
1253 if (strcmp(name, ".note.GNU-stack") == 0)
1254 {
1255 seen_gnu_stack = true;
1256 gnu_stack_flags |= shdr.get_sh_flags();
1257 omit[i] = true;
1258 }
1259
1260 // The .note.GNU-split-stack section is also special. It
1261 // indicates that the object was compiled with
1262 // -fsplit-stack.
1263 if (this->handle_split_stack_section(name))
1264 {
1265 if (!parameters->options().relocatable()
1266 && !parameters->options().shared())
1267 omit[i] = true;
1268 }
1269
1270 // Skip attributes section.
1271 if (parameters->target().is_attributes_section(name))
1272 {
1273 omit[i] = true;
1274 }
1275
1276 bool discard = omit[i];
1277 if (!discard)
1278 {
1279 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1280 {
1281 if (!this->include_section_group(symtab, layout, i, name,
1282 shdrs, pnames,
1283 section_names_size,
1284 &omit))
1285 discard = true;
1286 }
1287 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1288 && Layout::is_linkonce(name))
1289 {
1290 if (!this->include_linkonce_section(layout, i, name, shdr))
1291 discard = true;
1292 }
1293 }
1294
1295 // Add the section to the incremental inputs layout.
1296 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1297 if (incremental_inputs != NULL
1298 && !discard
1299 && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1300 || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1301 || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1302 incremental_inputs->report_input_section(this, i, name,
1303 shdr.get_sh_size());
1304
1305 if (discard)
1306 {
1307 // Do not include this section in the link.
1308 out_sections[i] = NULL;
1309 out_section_offsets[i] = invalid_address;
1310 continue;
1311 }
1312 }
1313
1314 if (is_gc_pass_one && parameters->options().gc_sections())
1315 {
1316 if (this->is_section_name_included(name)
1317 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1318 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1319 {
1320 symtab->gc()->worklist().push(Section_id(this, i));
1321 }
1322 // If the section name XXX can be represented as a C identifier
1323 // it cannot be discarded if there are references to
1324 // __start_XXX and __stop_XXX symbols. These need to be
1325 // specially handled.
1326 if (is_cident(name))
1327 {
1328 symtab->gc()->add_cident_section(name, Section_id(this, i));
1329 }
1330 }
1331
1332 // When doing a relocatable link we are going to copy input
1333 // reloc sections into the output. We only want to copy the
1334 // ones associated with sections which are not being discarded.
1335 // However, we don't know that yet for all sections. So save
1336 // reloc sections and process them later. Garbage collection is
1337 // not triggered when relocatable code is desired.
1338 if (emit_relocs
1339 && (shdr.get_sh_type() == elfcpp::SHT_REL
1340 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1341 {
1342 reloc_sections.push_back(i);
1343 continue;
1344 }
1345
1346 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1347 continue;
1348
1349 // The .eh_frame section is special. It holds exception frame
1350 // information that we need to read in order to generate the
1351 // exception frame header. We process these after all the other
1352 // sections so that the exception frame reader can reliably
1353 // determine which sections are being discarded, and discard the
1354 // corresponding information.
1355 if (!relocatable
1356 && strcmp(name, ".eh_frame") == 0
1357 && this->check_eh_frame_flags(&shdr))
1358 {
1359 if (is_gc_pass_one)
1360 {
1361 out_sections[i] = reinterpret_cast<Output_section*>(1);
1362 out_section_offsets[i] = invalid_address;
1363 }
1364 else
1365 eh_frame_sections.push_back(i);
1366 continue;
1367 }
1368
1369 if (is_gc_pass_two && parameters->options().gc_sections())
1370 {
1371 // This is executed during the second pass of garbage
1372 // collection. do_layout has been called before and some
1373 // sections have been already discarded. Simply ignore
1374 // such sections this time around.
1375 if (out_sections[i] == NULL)
1376 {
1377 gold_assert(out_section_offsets[i] == invalid_address);
1378 continue;
1379 }
1380 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1381 && symtab->gc()->is_section_garbage(this, i))
1382 {
1383 if (parameters->options().print_gc_sections())
1384 gold_info(_("%s: removing unused section from '%s'"
1385 " in file '%s'"),
1386 program_name, this->section_name(i).c_str(),
1387 this->name().c_str());
1388 out_sections[i] = NULL;
1389 out_section_offsets[i] = invalid_address;
1390 continue;
1391 }
1392 }
1393
1394 if (is_gc_pass_two && parameters->options().icf_enabled())
1395 {
1396 if (out_sections[i] == NULL)
1397 {
1398 gold_assert(out_section_offsets[i] == invalid_address);
1399 continue;
1400 }
1401 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1402 && symtab->icf()->is_section_folded(this, i))
1403 {
1404 if (parameters->options().print_icf_sections())
1405 {
1406 Section_id folded =
1407 symtab->icf()->get_folded_section(this, i);
1408 Relobj* folded_obj =
1409 reinterpret_cast<Relobj*>(folded.first);
1410 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1411 "into '%s' in file '%s'"),
1412 program_name, this->section_name(i).c_str(),
1413 this->name().c_str(),
1414 folded_obj->section_name(folded.second).c_str(),
1415 folded_obj->name().c_str());
1416 }
1417 out_sections[i] = NULL;
1418 out_section_offsets[i] = invalid_address;
1419 continue;
1420 }
1421 }
1422
1423 // Defer layout here if input files are claimed by plugins. When gc
1424 // is turned on this function is called twice. For the second call
1425 // should_defer_layout should be false.
1426 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1427 {
1428 gold_assert(!is_gc_pass_two);
1429 this->deferred_layout_.push_back(Deferred_layout(i, name,
1430 pshdrs,
1431 reloc_shndx[i],
1432 reloc_type[i]));
1433 // Put dummy values here; real values will be supplied by
1434 // do_layout_deferred_sections.
1435 out_sections[i] = reinterpret_cast<Output_section*>(2);
1436 out_section_offsets[i] = invalid_address;
1437 continue;
1438 }
1439
1440 // During gc_pass_two if a section that was previously deferred is
1441 // found, do not layout the section as layout_deferred_sections will
1442 // do it later from gold.cc.
1443 if (is_gc_pass_two
1444 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1445 continue;
1446
1447 if (is_gc_pass_one)
1448 {
1449 // This is during garbage collection. The out_sections are
1450 // assigned in the second call to this function.
1451 out_sections[i] = reinterpret_cast<Output_section*>(1);
1452 out_section_offsets[i] = invalid_address;
1453 }
1454 else
1455 {
1456 // When garbage collection is switched on the actual layout
1457 // only happens in the second call.
1458 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1459 reloc_type[i]);
1460 }
1461 }
1462
1463 if (!is_gc_pass_two)
1464 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1465
1466 // When doing a relocatable link handle the reloc sections at the
1467 // end. Garbage collection and Identical Code Folding is not
1468 // turned on for relocatable code.
1469 if (emit_relocs)
1470 this->size_relocatable_relocs();
1471
1472 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1473
1474 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1475 p != reloc_sections.end();
1476 ++p)
1477 {
1478 unsigned int i = *p;
1479 const unsigned char* pshdr;
1480 pshdr = section_headers_data + i * This::shdr_size;
1481 typename This::Shdr shdr(pshdr);
1482
1483 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1484 if (data_shndx >= shnum)
1485 {
1486 // We already warned about this above.
1487 continue;
1488 }
1489
1490 Output_section* data_section = out_sections[data_shndx];
1491 if (data_section == reinterpret_cast<Output_section*>(2))
1492 {
1493 // The layout for the data section was deferred, so we need
1494 // to defer the relocation section, too.
1495 const char* name = pnames + shdr.get_sh_name();
1496 this->deferred_layout_relocs_.push_back(
1497 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1498 out_sections[i] = reinterpret_cast<Output_section*>(2);
1499 out_section_offsets[i] = invalid_address;
1500 continue;
1501 }
1502 if (data_section == NULL)
1503 {
1504 out_sections[i] = NULL;
1505 out_section_offsets[i] = invalid_address;
1506 continue;
1507 }
1508
1509 Relocatable_relocs* rr = new Relocatable_relocs();
1510 this->set_relocatable_relocs(i, rr);
1511
1512 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1513 rr);
1514 out_sections[i] = os;
1515 out_section_offsets[i] = invalid_address;
1516 }
1517
1518 // Handle the .eh_frame sections at the end.
1519 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1520 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1521 p != eh_frame_sections.end();
1522 ++p)
1523 {
1524 gold_assert(this->has_eh_frame_);
1525 gold_assert(external_symbols_offset != 0);
1526
1527 unsigned int i = *p;
1528 const unsigned char* pshdr;
1529 pshdr = section_headers_data + i * This::shdr_size;
1530 typename This::Shdr shdr(pshdr);
1531
1532 off_t offset;
1533 Output_section* os = layout->layout_eh_frame(this,
1534 symbols_data,
1535 symbols_size,
1536 symbol_names_data,
1537 symbol_names_size,
1538 i, shdr,
1539 reloc_shndx[i],
1540 reloc_type[i],
1541 &offset);
1542 out_sections[i] = os;
1543 if (os == NULL || offset == -1)
1544 {
1545 // An object can contain at most one section holding exception
1546 // frame information.
1547 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1548 this->discarded_eh_frame_shndx_ = i;
1549 out_section_offsets[i] = invalid_address;
1550 }
1551 else
1552 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1553
1554 // If this section requires special handling, and if there are
1555 // relocs that apply to it, then we must do the special handling
1556 // before we apply the relocs.
1557 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1558 this->set_relocs_must_follow_section_writes();
1559 }
1560
1561 if (is_gc_pass_two)
1562 {
1563 delete[] gc_sd->section_headers_data;
1564 delete[] gc_sd->section_names_data;
1565 delete[] gc_sd->symbols_data;
1566 delete[] gc_sd->symbol_names_data;
1567 this->set_symbols_data(NULL);
1568 }
1569 else
1570 {
1571 delete sd->section_headers;
1572 sd->section_headers = NULL;
1573 delete sd->section_names;
1574 sd->section_names = NULL;
1575 }
1576 }
1577
1578 // Layout sections whose layout was deferred while waiting for
1579 // input files from a plugin.
1580
1581 template<int size, bool big_endian>
1582 void
1583 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1584 {
1585 typename std::vector<Deferred_layout>::iterator deferred;
1586
1587 for (deferred = this->deferred_layout_.begin();
1588 deferred != this->deferred_layout_.end();
1589 ++deferred)
1590 {
1591 typename This::Shdr shdr(deferred->shdr_data_);
1592 // If the section is not included, it is because the garbage collector
1593 // decided it is not needed. Avoid reverting that decision.
1594 if (!this->is_section_included(deferred->shndx_))
1595 continue;
1596
1597 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1598 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1599 }
1600
1601 this->deferred_layout_.clear();
1602
1603 // Now handle the deferred relocation sections.
1604
1605 Output_sections& out_sections(this->output_sections());
1606 std::vector<Address>& out_section_offsets(this->section_offsets());
1607
1608 for (deferred = this->deferred_layout_relocs_.begin();
1609 deferred != this->deferred_layout_relocs_.end();
1610 ++deferred)
1611 {
1612 unsigned int shndx = deferred->shndx_;
1613 typename This::Shdr shdr(deferred->shdr_data_);
1614 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1615
1616 Output_section* data_section = out_sections[data_shndx];
1617 if (data_section == NULL)
1618 {
1619 out_sections[shndx] = NULL;
1620 out_section_offsets[shndx] = invalid_address;
1621 continue;
1622 }
1623
1624 Relocatable_relocs* rr = new Relocatable_relocs();
1625 this->set_relocatable_relocs(shndx, rr);
1626
1627 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1628 data_section, rr);
1629 out_sections[shndx] = os;
1630 out_section_offsets[shndx] = invalid_address;
1631 }
1632 }
1633
1634 // Add the symbols to the symbol table.
1635
1636 template<int size, bool big_endian>
1637 void
1638 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1639 Read_symbols_data* sd,
1640 Layout*)
1641 {
1642 if (sd->symbols == NULL)
1643 {
1644 gold_assert(sd->symbol_names == NULL);
1645 return;
1646 }
1647
1648 const int sym_size = This::sym_size;
1649 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1650 / sym_size);
1651 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1652 {
1653 this->error(_("size of symbols is not multiple of symbol size"));
1654 return;
1655 }
1656
1657 this->symbols_.resize(symcount);
1658
1659 const char* sym_names =
1660 reinterpret_cast<const char*>(sd->symbol_names->data());
1661 symtab->add_from_relobj(this,
1662 sd->symbols->data() + sd->external_symbols_offset,
1663 symcount, this->local_symbol_count_,
1664 sym_names, sd->symbol_names_size,
1665 &this->symbols_,
1666 &this->defined_count_);
1667
1668 delete sd->symbols;
1669 sd->symbols = NULL;
1670 delete sd->symbol_names;
1671 sd->symbol_names = NULL;
1672 }
1673
1674 // Find out if this object, that is a member of a lib group, should be included
1675 // in the link. We check every symbol defined by this object. If the symbol
1676 // table has a strong undefined reference to that symbol, we have to include
1677 // the object.
1678
1679 template<int size, bool big_endian>
1680 Archive::Should_include
1681 Sized_relobj_file<size, big_endian>::do_should_include_member(
1682 Symbol_table* symtab,
1683 Layout* layout,
1684 Read_symbols_data* sd,
1685 std::string* why)
1686 {
1687 char* tmpbuf = NULL;
1688 size_t tmpbuflen = 0;
1689 const char* sym_names =
1690 reinterpret_cast<const char*>(sd->symbol_names->data());
1691 const unsigned char* syms =
1692 sd->symbols->data() + sd->external_symbols_offset;
1693 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1694 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1695 / sym_size);
1696
1697 const unsigned char* p = syms;
1698
1699 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1700 {
1701 elfcpp::Sym<size, big_endian> sym(p);
1702 unsigned int st_shndx = sym.get_st_shndx();
1703 if (st_shndx == elfcpp::SHN_UNDEF)
1704 continue;
1705
1706 unsigned int st_name = sym.get_st_name();
1707 const char* name = sym_names + st_name;
1708 Symbol* symbol;
1709 Archive::Should_include t = Archive::should_include_member(symtab,
1710 layout,
1711 name,
1712 &symbol, why,
1713 &tmpbuf,
1714 &tmpbuflen);
1715 if (t == Archive::SHOULD_INCLUDE_YES)
1716 {
1717 if (tmpbuf != NULL)
1718 free(tmpbuf);
1719 return t;
1720 }
1721 }
1722 if (tmpbuf != NULL)
1723 free(tmpbuf);
1724 return Archive::SHOULD_INCLUDE_UNKNOWN;
1725 }
1726
1727 // Iterate over global defined symbols, calling a visitor class V for each.
1728
1729 template<int size, bool big_endian>
1730 void
1731 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1732 Read_symbols_data* sd,
1733 Library_base::Symbol_visitor_base* v)
1734 {
1735 const char* sym_names =
1736 reinterpret_cast<const char*>(sd->symbol_names->data());
1737 const unsigned char* syms =
1738 sd->symbols->data() + sd->external_symbols_offset;
1739 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1740 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1741 / sym_size);
1742 const unsigned char* p = syms;
1743
1744 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1745 {
1746 elfcpp::Sym<size, big_endian> sym(p);
1747 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1748 v->visit(sym_names + sym.get_st_name());
1749 }
1750 }
1751
1752 // Return whether the local symbol SYMNDX has a PLT offset.
1753
1754 template<int size, bool big_endian>
1755 bool
1756 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1757 unsigned int symndx) const
1758 {
1759 typename Local_plt_offsets::const_iterator p =
1760 this->local_plt_offsets_.find(symndx);
1761 return p != this->local_plt_offsets_.end();
1762 }
1763
1764 // Get the PLT offset of a local symbol.
1765
1766 template<int size, bool big_endian>
1767 unsigned int
1768 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1769 {
1770 typename Local_plt_offsets::const_iterator p =
1771 this->local_plt_offsets_.find(symndx);
1772 gold_assert(p != this->local_plt_offsets_.end());
1773 return p->second;
1774 }
1775
1776 // Set the PLT offset of a local symbol.
1777
1778 template<int size, bool big_endian>
1779 void
1780 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1781 unsigned int symndx, unsigned int plt_offset)
1782 {
1783 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1784 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1785 gold_assert(ins.second);
1786 }
1787
1788 // First pass over the local symbols. Here we add their names to
1789 // *POOL and *DYNPOOL, and we store the symbol value in
1790 // THIS->LOCAL_VALUES_. This function is always called from a
1791 // singleton thread. This is followed by a call to
1792 // finalize_local_symbols.
1793
1794 template<int size, bool big_endian>
1795 void
1796 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1797 Stringpool* dynpool)
1798 {
1799 gold_assert(this->symtab_shndx_ != -1U);
1800 if (this->symtab_shndx_ == 0)
1801 {
1802 // This object has no symbols. Weird but legal.
1803 return;
1804 }
1805
1806 // Read the symbol table section header.
1807 const unsigned int symtab_shndx = this->symtab_shndx_;
1808 typename This::Shdr symtabshdr(this,
1809 this->elf_file_.section_header(symtab_shndx));
1810 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1811
1812 // Read the local symbols.
1813 const int sym_size = This::sym_size;
1814 const unsigned int loccount = this->local_symbol_count_;
1815 gold_assert(loccount == symtabshdr.get_sh_info());
1816 off_t locsize = loccount * sym_size;
1817 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1818 locsize, true, true);
1819
1820 // Read the symbol names.
1821 const unsigned int strtab_shndx =
1822 this->adjust_shndx(symtabshdr.get_sh_link());
1823 section_size_type strtab_size;
1824 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1825 &strtab_size,
1826 true);
1827 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1828
1829 // Loop over the local symbols.
1830
1831 const Output_sections& out_sections(this->output_sections());
1832 unsigned int shnum = this->shnum();
1833 unsigned int count = 0;
1834 unsigned int dyncount = 0;
1835 // Skip the first, dummy, symbol.
1836 psyms += sym_size;
1837 bool strip_all = parameters->options().strip_all();
1838 bool discard_all = parameters->options().discard_all();
1839 bool discard_locals = parameters->options().discard_locals();
1840 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1841 {
1842 elfcpp::Sym<size, big_endian> sym(psyms);
1843
1844 Symbol_value<size>& lv(this->local_values_[i]);
1845
1846 bool is_ordinary;
1847 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1848 &is_ordinary);
1849 lv.set_input_shndx(shndx, is_ordinary);
1850
1851 if (sym.get_st_type() == elfcpp::STT_SECTION)
1852 lv.set_is_section_symbol();
1853 else if (sym.get_st_type() == elfcpp::STT_TLS)
1854 lv.set_is_tls_symbol();
1855 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1856 lv.set_is_ifunc_symbol();
1857
1858 // Save the input symbol value for use in do_finalize_local_symbols().
1859 lv.set_input_value(sym.get_st_value());
1860
1861 // Decide whether this symbol should go into the output file.
1862
1863 if ((shndx < shnum && out_sections[shndx] == NULL)
1864 || shndx == this->discarded_eh_frame_shndx_)
1865 {
1866 lv.set_no_output_symtab_entry();
1867 gold_assert(!lv.needs_output_dynsym_entry());
1868 continue;
1869 }
1870
1871 if (sym.get_st_type() == elfcpp::STT_SECTION)
1872 {
1873 lv.set_no_output_symtab_entry();
1874 gold_assert(!lv.needs_output_dynsym_entry());
1875 continue;
1876 }
1877
1878 if (sym.get_st_name() >= strtab_size)
1879 {
1880 this->error(_("local symbol %u section name out of range: %u >= %u"),
1881 i, sym.get_st_name(),
1882 static_cast<unsigned int>(strtab_size));
1883 lv.set_no_output_symtab_entry();
1884 continue;
1885 }
1886
1887 const char* name = pnames + sym.get_st_name();
1888
1889 // If needed, add the symbol to the dynamic symbol table string pool.
1890 if (lv.needs_output_dynsym_entry())
1891 {
1892 dynpool->add(name, true, NULL);
1893 ++dyncount;
1894 }
1895
1896 if (strip_all
1897 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1898 {
1899 lv.set_no_output_symtab_entry();
1900 continue;
1901 }
1902
1903 // If --discard-locals option is used, discard all temporary local
1904 // symbols. These symbols start with system-specific local label
1905 // prefixes, typically .L for ELF system. We want to be compatible
1906 // with GNU ld so here we essentially use the same check in
1907 // bfd_is_local_label(). The code is different because we already
1908 // know that:
1909 //
1910 // - the symbol is local and thus cannot have global or weak binding.
1911 // - the symbol is not a section symbol.
1912 // - the symbol has a name.
1913 //
1914 // We do not discard a symbol if it needs a dynamic symbol entry.
1915 if (discard_locals
1916 && sym.get_st_type() != elfcpp::STT_FILE
1917 && !lv.needs_output_dynsym_entry()
1918 && lv.may_be_discarded_from_output_symtab()
1919 && parameters->target().is_local_label_name(name))
1920 {
1921 lv.set_no_output_symtab_entry();
1922 continue;
1923 }
1924
1925 // Discard the local symbol if -retain_symbols_file is specified
1926 // and the local symbol is not in that file.
1927 if (!parameters->options().should_retain_symbol(name))
1928 {
1929 lv.set_no_output_symtab_entry();
1930 continue;
1931 }
1932
1933 // Add the symbol to the symbol table string pool.
1934 pool->add(name, true, NULL);
1935 ++count;
1936 }
1937
1938 this->output_local_symbol_count_ = count;
1939 this->output_local_dynsym_count_ = dyncount;
1940 }
1941
1942 // Compute the final value of a local symbol.
1943
1944 template<int size, bool big_endian>
1945 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1946 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1947 unsigned int r_sym,
1948 const Symbol_value<size>* lv_in,
1949 Symbol_value<size>* lv_out,
1950 bool relocatable,
1951 const Output_sections& out_sections,
1952 const std::vector<Address>& out_offsets,
1953 const Symbol_table* symtab)
1954 {
1955 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1956 // we may have a memory leak.
1957 gold_assert(lv_out->has_output_value());
1958
1959 bool is_ordinary;
1960 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1961
1962 // Set the output symbol value.
1963
1964 if (!is_ordinary)
1965 {
1966 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1967 lv_out->set_output_value(lv_in->input_value());
1968 else
1969 {
1970 this->error(_("unknown section index %u for local symbol %u"),
1971 shndx, r_sym);
1972 lv_out->set_output_value(0);
1973 return This::CFLV_ERROR;
1974 }
1975 }
1976 else
1977 {
1978 if (shndx >= this->shnum())
1979 {
1980 this->error(_("local symbol %u section index %u out of range"),
1981 r_sym, shndx);
1982 lv_out->set_output_value(0);
1983 return This::CFLV_ERROR;
1984 }
1985
1986 Output_section* os = out_sections[shndx];
1987 Address secoffset = out_offsets[shndx];
1988 if (symtab->is_section_folded(this, shndx))
1989 {
1990 gold_assert(os == NULL && secoffset == invalid_address);
1991 // Get the os of the section it is folded onto.
1992 Section_id folded = symtab->icf()->get_folded_section(this,
1993 shndx);
1994 gold_assert(folded.first != NULL);
1995 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
1996 <Sized_relobj_file<size, big_endian>*>(folded.first);
1997 os = folded_obj->output_section(folded.second);
1998 gold_assert(os != NULL);
1999 secoffset = folded_obj->get_output_section_offset(folded.second);
2000
2001 // This could be a relaxed input section.
2002 if (secoffset == invalid_address)
2003 {
2004 const Output_relaxed_input_section* relaxed_section =
2005 os->find_relaxed_input_section(folded_obj, folded.second);
2006 gold_assert(relaxed_section != NULL);
2007 secoffset = relaxed_section->address() - os->address();
2008 }
2009 }
2010
2011 if (os == NULL)
2012 {
2013 // This local symbol belongs to a section we are discarding.
2014 // In some cases when applying relocations later, we will
2015 // attempt to match it to the corresponding kept section,
2016 // so we leave the input value unchanged here.
2017 return This::CFLV_DISCARDED;
2018 }
2019 else if (secoffset == invalid_address)
2020 {
2021 uint64_t start;
2022
2023 // This is a SHF_MERGE section or one which otherwise
2024 // requires special handling.
2025 if (shndx == this->discarded_eh_frame_shndx_)
2026 {
2027 // This local symbol belongs to a discarded .eh_frame
2028 // section. Just treat it like the case in which
2029 // os == NULL above.
2030 gold_assert(this->has_eh_frame_);
2031 return This::CFLV_DISCARDED;
2032 }
2033 else if (!lv_in->is_section_symbol())
2034 {
2035 // This is not a section symbol. We can determine
2036 // the final value now.
2037 lv_out->set_output_value(
2038 os->output_address(this, shndx, lv_in->input_value()));
2039 }
2040 else if (!os->find_starting_output_address(this, shndx, &start))
2041 {
2042 // This is a section symbol, but apparently not one in a
2043 // merged section. First check to see if this is a relaxed
2044 // input section. If so, use its address. Otherwise just
2045 // use the start of the output section. This happens with
2046 // relocatable links when the input object has section
2047 // symbols for arbitrary non-merge sections.
2048 const Output_section_data* posd =
2049 os->find_relaxed_input_section(this, shndx);
2050 if (posd != NULL)
2051 {
2052 Address relocatable_link_adjustment =
2053 relocatable ? os->address() : 0;
2054 lv_out->set_output_value(posd->address()
2055 - relocatable_link_adjustment);
2056 }
2057 else
2058 lv_out->set_output_value(os->address());
2059 }
2060 else
2061 {
2062 // We have to consider the addend to determine the
2063 // value to use in a relocation. START is the start
2064 // of this input section. If we are doing a relocatable
2065 // link, use offset from start output section instead of
2066 // address.
2067 Address adjusted_start =
2068 relocatable ? start - os->address() : start;
2069 Merged_symbol_value<size>* msv =
2070 new Merged_symbol_value<size>(lv_in->input_value(),
2071 adjusted_start);
2072 lv_out->set_merged_symbol_value(msv);
2073 }
2074 }
2075 else if (lv_in->is_tls_symbol())
2076 lv_out->set_output_value(os->tls_offset()
2077 + secoffset
2078 + lv_in->input_value());
2079 else
2080 lv_out->set_output_value((relocatable ? 0 : os->address())
2081 + secoffset
2082 + lv_in->input_value());
2083 }
2084 return This::CFLV_OK;
2085 }
2086
2087 // Compute final local symbol value. R_SYM is the index of a local
2088 // symbol in symbol table. LV points to a symbol value, which is
2089 // expected to hold the input value and to be over-written by the
2090 // final value. SYMTAB points to a symbol table. Some targets may want
2091 // to know would-be-finalized local symbol values in relaxation.
2092 // Hence we provide this method. Since this method updates *LV, a
2093 // callee should make a copy of the original local symbol value and
2094 // use the copy instead of modifying an object's local symbols before
2095 // everything is finalized. The caller should also free up any allocated
2096 // memory in the return value in *LV.
2097 template<int size, bool big_endian>
2098 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2099 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2100 unsigned int r_sym,
2101 const Symbol_value<size>* lv_in,
2102 Symbol_value<size>* lv_out,
2103 const Symbol_table* symtab)
2104 {
2105 // This is just a wrapper of compute_final_local_value_internal.
2106 const bool relocatable = parameters->options().relocatable();
2107 const Output_sections& out_sections(this->output_sections());
2108 const std::vector<Address>& out_offsets(this->section_offsets());
2109 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2110 relocatable, out_sections,
2111 out_offsets, symtab);
2112 }
2113
2114 // Finalize the local symbols. Here we set the final value in
2115 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2116 // This function is always called from a singleton thread. The actual
2117 // output of the local symbols will occur in a separate task.
2118
2119 template<int size, bool big_endian>
2120 unsigned int
2121 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2122 unsigned int index,
2123 off_t off,
2124 Symbol_table* symtab)
2125 {
2126 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2127
2128 const unsigned int loccount = this->local_symbol_count_;
2129 this->local_symbol_offset_ = off;
2130
2131 const bool relocatable = parameters->options().relocatable();
2132 const Output_sections& out_sections(this->output_sections());
2133 const std::vector<Address>& out_offsets(this->section_offsets());
2134
2135 for (unsigned int i = 1; i < loccount; ++i)
2136 {
2137 Symbol_value<size>* lv = &this->local_values_[i];
2138
2139 Compute_final_local_value_status cflv_status =
2140 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2141 out_sections, out_offsets,
2142 symtab);
2143 switch (cflv_status)
2144 {
2145 case CFLV_OK:
2146 if (!lv->is_output_symtab_index_set())
2147 {
2148 lv->set_output_symtab_index(index);
2149 ++index;
2150 }
2151 break;
2152 case CFLV_DISCARDED:
2153 case CFLV_ERROR:
2154 // Do nothing.
2155 break;
2156 default:
2157 gold_unreachable();
2158 }
2159 }
2160 return index;
2161 }
2162
2163 // Set the output dynamic symbol table indexes for the local variables.
2164
2165 template<int size, bool big_endian>
2166 unsigned int
2167 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2168 unsigned int index)
2169 {
2170 const unsigned int loccount = this->local_symbol_count_;
2171 for (unsigned int i = 1; i < loccount; ++i)
2172 {
2173 Symbol_value<size>& lv(this->local_values_[i]);
2174 if (lv.needs_output_dynsym_entry())
2175 {
2176 lv.set_output_dynsym_index(index);
2177 ++index;
2178 }
2179 }
2180 return index;
2181 }
2182
2183 // Set the offset where local dynamic symbol information will be stored.
2184 // Returns the count of local symbols contributed to the symbol table by
2185 // this object.
2186
2187 template<int size, bool big_endian>
2188 unsigned int
2189 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2190 {
2191 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2192 this->local_dynsym_offset_ = off;
2193 return this->output_local_dynsym_count_;
2194 }
2195
2196 // If Symbols_data is not NULL get the section flags from here otherwise
2197 // get it from the file.
2198
2199 template<int size, bool big_endian>
2200 uint64_t
2201 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2202 {
2203 Symbols_data* sd = this->get_symbols_data();
2204 if (sd != NULL)
2205 {
2206 const unsigned char* pshdrs = sd->section_headers_data
2207 + This::shdr_size * shndx;
2208 typename This::Shdr shdr(pshdrs);
2209 return shdr.get_sh_flags();
2210 }
2211 // If sd is NULL, read the section header from the file.
2212 return this->elf_file_.section_flags(shndx);
2213 }
2214
2215 // Get the section's ent size from Symbols_data. Called by get_section_contents
2216 // in icf.cc
2217
2218 template<int size, bool big_endian>
2219 uint64_t
2220 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2221 {
2222 Symbols_data* sd = this->get_symbols_data();
2223 gold_assert(sd != NULL);
2224
2225 const unsigned char* pshdrs = sd->section_headers_data
2226 + This::shdr_size * shndx;
2227 typename This::Shdr shdr(pshdrs);
2228 return shdr.get_sh_entsize();
2229 }
2230
2231 // Write out the local symbols.
2232
2233 template<int size, bool big_endian>
2234 void
2235 Sized_relobj_file<size, big_endian>::write_local_symbols(
2236 Output_file* of,
2237 const Stringpool* sympool,
2238 const Stringpool* dynpool,
2239 Output_symtab_xindex* symtab_xindex,
2240 Output_symtab_xindex* dynsym_xindex,
2241 off_t symtab_off)
2242 {
2243 const bool strip_all = parameters->options().strip_all();
2244 if (strip_all)
2245 {
2246 if (this->output_local_dynsym_count_ == 0)
2247 return;
2248 this->output_local_symbol_count_ = 0;
2249 }
2250
2251 gold_assert(this->symtab_shndx_ != -1U);
2252 if (this->symtab_shndx_ == 0)
2253 {
2254 // This object has no symbols. Weird but legal.
2255 return;
2256 }
2257
2258 // Read the symbol table section header.
2259 const unsigned int symtab_shndx = this->symtab_shndx_;
2260 typename This::Shdr symtabshdr(this,
2261 this->elf_file_.section_header(symtab_shndx));
2262 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2263 const unsigned int loccount = this->local_symbol_count_;
2264 gold_assert(loccount == symtabshdr.get_sh_info());
2265
2266 // Read the local symbols.
2267 const int sym_size = This::sym_size;
2268 off_t locsize = loccount * sym_size;
2269 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2270 locsize, true, false);
2271
2272 // Read the symbol names.
2273 const unsigned int strtab_shndx =
2274 this->adjust_shndx(symtabshdr.get_sh_link());
2275 section_size_type strtab_size;
2276 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2277 &strtab_size,
2278 false);
2279 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2280
2281 // Get views into the output file for the portions of the symbol table
2282 // and the dynamic symbol table that we will be writing.
2283 off_t output_size = this->output_local_symbol_count_ * sym_size;
2284 unsigned char* oview = NULL;
2285 if (output_size > 0)
2286 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2287 output_size);
2288
2289 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2290 unsigned char* dyn_oview = NULL;
2291 if (dyn_output_size > 0)
2292 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2293 dyn_output_size);
2294
2295 const Output_sections out_sections(this->output_sections());
2296
2297 gold_assert(this->local_values_.size() == loccount);
2298
2299 unsigned char* ov = oview;
2300 unsigned char* dyn_ov = dyn_oview;
2301 psyms += sym_size;
2302 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2303 {
2304 elfcpp::Sym<size, big_endian> isym(psyms);
2305
2306 Symbol_value<size>& lv(this->local_values_[i]);
2307
2308 bool is_ordinary;
2309 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2310 &is_ordinary);
2311 if (is_ordinary)
2312 {
2313 gold_assert(st_shndx < out_sections.size());
2314 if (out_sections[st_shndx] == NULL)
2315 continue;
2316 st_shndx = out_sections[st_shndx]->out_shndx();
2317 if (st_shndx >= elfcpp::SHN_LORESERVE)
2318 {
2319 if (lv.has_output_symtab_entry())
2320 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2321 if (lv.has_output_dynsym_entry())
2322 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2323 st_shndx = elfcpp::SHN_XINDEX;
2324 }
2325 }
2326
2327 // Write the symbol to the output symbol table.
2328 if (lv.has_output_symtab_entry())
2329 {
2330 elfcpp::Sym_write<size, big_endian> osym(ov);
2331
2332 gold_assert(isym.get_st_name() < strtab_size);
2333 const char* name = pnames + isym.get_st_name();
2334 osym.put_st_name(sympool->get_offset(name));
2335 osym.put_st_value(this->local_values_[i].value(this, 0));
2336 osym.put_st_size(isym.get_st_size());
2337 osym.put_st_info(isym.get_st_info());
2338 osym.put_st_other(isym.get_st_other());
2339 osym.put_st_shndx(st_shndx);
2340
2341 ov += sym_size;
2342 }
2343
2344 // Write the symbol to the output dynamic symbol table.
2345 if (lv.has_output_dynsym_entry())
2346 {
2347 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2348 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2349
2350 gold_assert(isym.get_st_name() < strtab_size);
2351 const char* name = pnames + isym.get_st_name();
2352 osym.put_st_name(dynpool->get_offset(name));
2353 osym.put_st_value(this->local_values_[i].value(this, 0));
2354 osym.put_st_size(isym.get_st_size());
2355 osym.put_st_info(isym.get_st_info());
2356 osym.put_st_other(isym.get_st_other());
2357 osym.put_st_shndx(st_shndx);
2358
2359 dyn_ov += sym_size;
2360 }
2361 }
2362
2363
2364 if (output_size > 0)
2365 {
2366 gold_assert(ov - oview == output_size);
2367 of->write_output_view(symtab_off + this->local_symbol_offset_,
2368 output_size, oview);
2369 }
2370
2371 if (dyn_output_size > 0)
2372 {
2373 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2374 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2375 dyn_oview);
2376 }
2377 }
2378
2379 // Set *INFO to symbolic information about the offset OFFSET in the
2380 // section SHNDX. Return true if we found something, false if we
2381 // found nothing.
2382
2383 template<int size, bool big_endian>
2384 bool
2385 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2386 unsigned int shndx,
2387 off_t offset,
2388 Symbol_location_info* info)
2389 {
2390 if (this->symtab_shndx_ == 0)
2391 return false;
2392
2393 section_size_type symbols_size;
2394 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2395 &symbols_size,
2396 false);
2397
2398 unsigned int symbol_names_shndx =
2399 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2400 section_size_type names_size;
2401 const unsigned char* symbol_names_u =
2402 this->section_contents(symbol_names_shndx, &names_size, false);
2403 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2404
2405 const int sym_size = This::sym_size;
2406 const size_t count = symbols_size / sym_size;
2407
2408 const unsigned char* p = symbols;
2409 for (size_t i = 0; i < count; ++i, p += sym_size)
2410 {
2411 elfcpp::Sym<size, big_endian> sym(p);
2412
2413 if (sym.get_st_type() == elfcpp::STT_FILE)
2414 {
2415 if (sym.get_st_name() >= names_size)
2416 info->source_file = "(invalid)";
2417 else
2418 info->source_file = symbol_names + sym.get_st_name();
2419 continue;
2420 }
2421
2422 bool is_ordinary;
2423 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2424 &is_ordinary);
2425 if (is_ordinary
2426 && st_shndx == shndx
2427 && static_cast<off_t>(sym.get_st_value()) <= offset
2428 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2429 > offset))
2430 {
2431 if (sym.get_st_name() > names_size)
2432 info->enclosing_symbol_name = "(invalid)";
2433 else
2434 {
2435 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2436 if (parameters->options().do_demangle())
2437 {
2438 char* demangled_name = cplus_demangle(
2439 info->enclosing_symbol_name.c_str(),
2440 DMGL_ANSI | DMGL_PARAMS);
2441 if (demangled_name != NULL)
2442 {
2443 info->enclosing_symbol_name.assign(demangled_name);
2444 free(demangled_name);
2445 }
2446 }
2447 }
2448 return true;
2449 }
2450 }
2451
2452 return false;
2453 }
2454
2455 // Look for a kept section corresponding to the given discarded section,
2456 // and return its output address. This is used only for relocations in
2457 // debugging sections. If we can't find the kept section, return 0.
2458
2459 template<int size, bool big_endian>
2460 typename Sized_relobj_file<size, big_endian>::Address
2461 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2462 unsigned int shndx,
2463 bool* found) const
2464 {
2465 Relobj* kept_object;
2466 unsigned int kept_shndx;
2467 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2468 {
2469 Sized_relobj_file<size, big_endian>* kept_relobj =
2470 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2471 Output_section* os = kept_relobj->output_section(kept_shndx);
2472 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2473 if (os != NULL && offset != invalid_address)
2474 {
2475 *found = true;
2476 return os->address() + offset;
2477 }
2478 }
2479 *found = false;
2480 return 0;
2481 }
2482
2483 // Get symbol counts.
2484
2485 template<int size, bool big_endian>
2486 void
2487 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2488 const Symbol_table*,
2489 size_t* defined,
2490 size_t* used) const
2491 {
2492 *defined = this->defined_count_;
2493 size_t count = 0;
2494 for (typename Symbols::const_iterator p = this->symbols_.begin();
2495 p != this->symbols_.end();
2496 ++p)
2497 if (*p != NULL
2498 && (*p)->source() == Symbol::FROM_OBJECT
2499 && (*p)->object() == this
2500 && (*p)->is_defined())
2501 ++count;
2502 *used = count;
2503 }
2504
2505 // Input_objects methods.
2506
2507 // Add a regular relocatable object to the list. Return false if this
2508 // object should be ignored.
2509
2510 bool
2511 Input_objects::add_object(Object* obj)
2512 {
2513 // Print the filename if the -t/--trace option is selected.
2514 if (parameters->options().trace())
2515 gold_info("%s", obj->name().c_str());
2516
2517 if (!obj->is_dynamic())
2518 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2519 else
2520 {
2521 // See if this is a duplicate SONAME.
2522 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2523 const char* soname = dynobj->soname();
2524
2525 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2526 this->sonames_.insert(soname);
2527 if (!ins.second)
2528 {
2529 // We have already seen a dynamic object with this soname.
2530 return false;
2531 }
2532
2533 this->dynobj_list_.push_back(dynobj);
2534 }
2535
2536 // Add this object to the cross-referencer if requested.
2537 if (parameters->options().user_set_print_symbol_counts()
2538 || parameters->options().cref())
2539 {
2540 if (this->cref_ == NULL)
2541 this->cref_ = new Cref();
2542 this->cref_->add_object(obj);
2543 }
2544
2545 return true;
2546 }
2547
2548 // For each dynamic object, record whether we've seen all of its
2549 // explicit dependencies.
2550
2551 void
2552 Input_objects::check_dynamic_dependencies() const
2553 {
2554 bool issued_copy_dt_needed_error = false;
2555 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2556 p != this->dynobj_list_.end();
2557 ++p)
2558 {
2559 const Dynobj::Needed& needed((*p)->needed());
2560 bool found_all = true;
2561 Dynobj::Needed::const_iterator pneeded;
2562 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2563 {
2564 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2565 {
2566 found_all = false;
2567 break;
2568 }
2569 }
2570 (*p)->set_has_unknown_needed_entries(!found_all);
2571
2572 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2573 // that gold does not support. However, they cause no trouble
2574 // unless there is a DT_NEEDED entry that we don't know about;
2575 // warn only in that case.
2576 if (!found_all
2577 && !issued_copy_dt_needed_error
2578 && (parameters->options().copy_dt_needed_entries()
2579 || parameters->options().add_needed()))
2580 {
2581 const char* optname;
2582 if (parameters->options().copy_dt_needed_entries())
2583 optname = "--copy-dt-needed-entries";
2584 else
2585 optname = "--add-needed";
2586 gold_error(_("%s is not supported but is required for %s in %s"),
2587 optname, (*pneeded).c_str(), (*p)->name().c_str());
2588 issued_copy_dt_needed_error = true;
2589 }
2590 }
2591 }
2592
2593 // Start processing an archive.
2594
2595 void
2596 Input_objects::archive_start(Archive* archive)
2597 {
2598 if (parameters->options().user_set_print_symbol_counts()
2599 || parameters->options().cref())
2600 {
2601 if (this->cref_ == NULL)
2602 this->cref_ = new Cref();
2603 this->cref_->add_archive_start(archive);
2604 }
2605 }
2606
2607 // Stop processing an archive.
2608
2609 void
2610 Input_objects::archive_stop(Archive* archive)
2611 {
2612 if (parameters->options().user_set_print_symbol_counts()
2613 || parameters->options().cref())
2614 this->cref_->add_archive_stop(archive);
2615 }
2616
2617 // Print symbol counts
2618
2619 void
2620 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2621 {
2622 if (parameters->options().user_set_print_symbol_counts()
2623 && this->cref_ != NULL)
2624 this->cref_->print_symbol_counts(symtab);
2625 }
2626
2627 // Print a cross reference table.
2628
2629 void
2630 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2631 {
2632 if (parameters->options().cref() && this->cref_ != NULL)
2633 this->cref_->print_cref(symtab, f);
2634 }
2635
2636 // Relocate_info methods.
2637
2638 // Return a string describing the location of a relocation when file
2639 // and lineno information is not available. This is only used in
2640 // error messages.
2641
2642 template<int size, bool big_endian>
2643 std::string
2644 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2645 {
2646 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2647 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2648 if (!ret.empty())
2649 return ret;
2650
2651 ret = this->object->name();
2652
2653 Symbol_location_info info;
2654 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2655 {
2656 if (!info.source_file.empty())
2657 {
2658 ret += ":";
2659 ret += info.source_file;
2660 }
2661 size_t len = info.enclosing_symbol_name.length() + 100;
2662 char* buf = new char[len];
2663 snprintf(buf, len, _(":function %s"),
2664 info.enclosing_symbol_name.c_str());
2665 ret += buf;
2666 delete[] buf;
2667 return ret;
2668 }
2669
2670 ret += "(";
2671 ret += this->object->section_name(this->data_shndx);
2672 char buf[100];
2673 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2674 ret += buf;
2675 return ret;
2676 }
2677
2678 } // End namespace gold.
2679
2680 namespace
2681 {
2682
2683 using namespace gold;
2684
2685 // Read an ELF file with the header and return the appropriate
2686 // instance of Object.
2687
2688 template<int size, bool big_endian>
2689 Object*
2690 make_elf_sized_object(const std::string& name, Input_file* input_file,
2691 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2692 bool* punconfigured)
2693 {
2694 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2695 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2696 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2697 if (target == NULL)
2698 gold_fatal(_("%s: unsupported ELF machine number %d"),
2699 name.c_str(), ehdr.get_e_machine());
2700
2701 if (!parameters->target_valid())
2702 set_parameters_target(target);
2703 else if (target != &parameters->target())
2704 {
2705 if (punconfigured != NULL)
2706 *punconfigured = true;
2707 else
2708 gold_error(_("%s: incompatible target"), name.c_str());
2709 return NULL;
2710 }
2711
2712 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2713 ehdr);
2714 }
2715
2716 } // End anonymous namespace.
2717
2718 namespace gold
2719 {
2720
2721 // Return whether INPUT_FILE is an ELF object.
2722
2723 bool
2724 is_elf_object(Input_file* input_file, off_t offset,
2725 const unsigned char** start, int* read_size)
2726 {
2727 off_t filesize = input_file->file().filesize();
2728 int want = elfcpp::Elf_recognizer::max_header_size;
2729 if (filesize - offset < want)
2730 want = filesize - offset;
2731
2732 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2733 true, false);
2734 *start = p;
2735 *read_size = want;
2736
2737 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2738 }
2739
2740 // Read an ELF file and return the appropriate instance of Object.
2741
2742 Object*
2743 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2744 const unsigned char* p, section_offset_type bytes,
2745 bool* punconfigured)
2746 {
2747 if (punconfigured != NULL)
2748 *punconfigured = false;
2749
2750 std::string error;
2751 bool big_endian = false;
2752 int size = 0;
2753 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2754 &big_endian, &error))
2755 {
2756 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2757 return NULL;
2758 }
2759
2760 if (size == 32)
2761 {
2762 if (big_endian)
2763 {
2764 #ifdef HAVE_TARGET_32_BIG
2765 elfcpp::Ehdr<32, true> ehdr(p);
2766 return make_elf_sized_object<32, true>(name, input_file,
2767 offset, ehdr, punconfigured);
2768 #else
2769 if (punconfigured != NULL)
2770 *punconfigured = true;
2771 else
2772 gold_error(_("%s: not configured to support "
2773 "32-bit big-endian object"),
2774 name.c_str());
2775 return NULL;
2776 #endif
2777 }
2778 else
2779 {
2780 #ifdef HAVE_TARGET_32_LITTLE
2781 elfcpp::Ehdr<32, false> ehdr(p);
2782 return make_elf_sized_object<32, false>(name, input_file,
2783 offset, ehdr, punconfigured);
2784 #else
2785 if (punconfigured != NULL)
2786 *punconfigured = true;
2787 else
2788 gold_error(_("%s: not configured to support "
2789 "32-bit little-endian object"),
2790 name.c_str());
2791 return NULL;
2792 #endif
2793 }
2794 }
2795 else if (size == 64)
2796 {
2797 if (big_endian)
2798 {
2799 #ifdef HAVE_TARGET_64_BIG
2800 elfcpp::Ehdr<64, true> ehdr(p);
2801 return make_elf_sized_object<64, true>(name, input_file,
2802 offset, ehdr, punconfigured);
2803 #else
2804 if (punconfigured != NULL)
2805 *punconfigured = true;
2806 else
2807 gold_error(_("%s: not configured to support "
2808 "64-bit big-endian object"),
2809 name.c_str());
2810 return NULL;
2811 #endif
2812 }
2813 else
2814 {
2815 #ifdef HAVE_TARGET_64_LITTLE
2816 elfcpp::Ehdr<64, false> ehdr(p);
2817 return make_elf_sized_object<64, false>(name, input_file,
2818 offset, ehdr, punconfigured);
2819 #else
2820 if (punconfigured != NULL)
2821 *punconfigured = true;
2822 else
2823 gold_error(_("%s: not configured to support "
2824 "64-bit little-endian object"),
2825 name.c_str());
2826 return NULL;
2827 #endif
2828 }
2829 }
2830 else
2831 gold_unreachable();
2832 }
2833
2834 // Instantiate the templates we need.
2835
2836 #ifdef HAVE_TARGET_32_LITTLE
2837 template
2838 void
2839 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2840 Read_symbols_data*);
2841 #endif
2842
2843 #ifdef HAVE_TARGET_32_BIG
2844 template
2845 void
2846 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2847 Read_symbols_data*);
2848 #endif
2849
2850 #ifdef HAVE_TARGET_64_LITTLE
2851 template
2852 void
2853 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2854 Read_symbols_data*);
2855 #endif
2856
2857 #ifdef HAVE_TARGET_64_BIG
2858 template
2859 void
2860 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2861 Read_symbols_data*);
2862 #endif
2863
2864 #ifdef HAVE_TARGET_32_LITTLE
2865 template
2866 class Sized_relobj_file<32, false>;
2867 #endif
2868
2869 #ifdef HAVE_TARGET_32_BIG
2870 template
2871 class Sized_relobj_file<32, true>;
2872 #endif
2873
2874 #ifdef HAVE_TARGET_64_LITTLE
2875 template
2876 class Sized_relobj_file<64, false>;
2877 #endif
2878
2879 #ifdef HAVE_TARGET_64_BIG
2880 template
2881 class Sized_relobj_file<64, true>;
2882 #endif
2883
2884 #ifdef HAVE_TARGET_32_LITTLE
2885 template
2886 struct Relocate_info<32, false>;
2887 #endif
2888
2889 #ifdef HAVE_TARGET_32_BIG
2890 template
2891 struct Relocate_info<32, true>;
2892 #endif
2893
2894 #ifdef HAVE_TARGET_64_LITTLE
2895 template
2896 struct Relocate_info<64, false>;
2897 #endif
2898
2899 #ifdef HAVE_TARGET_64_BIG
2900 template
2901 struct Relocate_info<64, true>;
2902 #endif
2903
2904 #ifdef HAVE_TARGET_32_LITTLE
2905 template
2906 void
2907 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2908
2909 template
2910 void
2911 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2912 const unsigned char*);
2913 #endif
2914
2915 #ifdef HAVE_TARGET_32_BIG
2916 template
2917 void
2918 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2919
2920 template
2921 void
2922 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2923 const unsigned char*);
2924 #endif
2925
2926 #ifdef HAVE_TARGET_64_LITTLE
2927 template
2928 void
2929 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2930
2931 template
2932 void
2933 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2934 const unsigned char*);
2935 #endif
2936
2937 #ifdef HAVE_TARGET_64_BIG
2938 template
2939 void
2940 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2941
2942 template
2943 void
2944 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2945 const unsigned char*);
2946 #endif
2947
2948 } // End namespace gold.
This page took 0.097764 seconds and 5 git commands to generate.