* object.cc (need_decompressed_section): Add #ifdef ENABLE_THREADS.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header. This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439 const unsigned int shnum = this->elf_file_.shnum();
440 this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers. The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section. Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452 const unsigned int shnum = this->shnum();
453 this->symtab_shndx_ = 0;
454 if (shnum > 0)
455 {
456 // Look through the sections in reverse order, since gas tends
457 // to put the symbol table at the end.
458 const unsigned char* p = pshdrs + shnum * This::shdr_size;
459 unsigned int i = shnum;
460 unsigned int xindex_shndx = 0;
461 unsigned int xindex_link = 0;
462 while (i > 0)
463 {
464 --i;
465 p -= This::shdr_size;
466 typename This::Shdr shdr(p);
467 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468 {
469 this->symtab_shndx_ = i;
470 if (xindex_shndx > 0 && xindex_link == i)
471 {
472 Xindex* xindex =
473 new Xindex(this->elf_file_.large_shndx_offset());
474 xindex->read_symtab_xindex<size, big_endian>(this,
475 xindex_shndx,
476 pshdrs);
477 this->set_xindex(xindex);
478 }
479 break;
480 }
481
482 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483 // one. This will work if it follows the SHT_SYMTAB
484 // section.
485 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486 {
487 xindex_shndx = i;
488 xindex_link = this->adjust_shndx(shdr.get_sh_link());
489 }
490 }
491 }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501 gold_assert(this->symtab_shndx_ != -1U);
502 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504 return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513 const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516 return ((sh_type == elfcpp::SHT_PROGBITS
517 || sh_type == elfcpp::SHT_X86_64_UNWIND)
518 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527 const unsigned char* pshdrs,
528 const char* names,
529 section_size_type names_size) const
530 {
531 const unsigned int shnum = this->shnum();
532 const unsigned char* p = pshdrs + This::shdr_size;
533 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534 {
535 typename This::Shdr shdr(p);
536 if (this->check_eh_frame_flags(&shdr))
537 {
538 if (shdr.get_sh_name() >= names_size)
539 {
540 this->error(_("bad section name offset for section %u: %lu"),
541 i, static_cast<unsigned long>(shdr.get_sh_name()));
542 continue;
543 }
544
545 const char* name = names + shdr.get_sh_name();
546 if (strcmp(name, ".eh_frame") == 0)
547 return true;
548 }
549 }
550 return false;
551 }
552
553 #ifdef ENABLE_THREADS
554
555 // Return TRUE if this is a section whose contents will be needed in the
556 // Add_symbols task.
557
558 static bool
559 need_decompressed_section(const char* name)
560 {
561 // We will need .zdebug_str if this is not an incremental link
562 // (i.e., we are processing string merge sections).
563 if (!parameters->incremental() && strcmp(name, ".zdebug_str") == 0)
564 return true;
565
566 return false;
567 }
568
569 #endif
570
571 // Build a table for any compressed debug sections, mapping each section index
572 // to the uncompressed size and (if needed) the decompressed contents.
573
574 template<int size, bool big_endian>
575 Compressed_section_map*
576 build_compressed_section_map(
577 const unsigned char* pshdrs,
578 unsigned int shnum,
579 const char* names,
580 section_size_type names_size,
581 Sized_relobj_file<size, big_endian>* obj)
582 {
583 Compressed_section_map* uncompressed_map = new Compressed_section_map();
584 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
585 const unsigned char* p = pshdrs + shdr_size;
586
587 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
588 {
589 typename elfcpp::Shdr<size, big_endian> shdr(p);
590 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
591 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
592 {
593 if (shdr.get_sh_name() >= names_size)
594 {
595 obj->error(_("bad section name offset for section %u: %lu"),
596 i, static_cast<unsigned long>(shdr.get_sh_name()));
597 continue;
598 }
599
600 const char* name = names + shdr.get_sh_name();
601 if (is_compressed_debug_section(name))
602 {
603 section_size_type len;
604 const unsigned char* contents =
605 obj->section_contents(i, &len, false);
606 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
607 if (uncompressed_size != -1ULL)
608 {
609 Compressed_section_info info;
610 info.size = convert_to_section_size_type(uncompressed_size);
611 info.contents = NULL;
612
613 #ifdef ENABLE_THREADS
614 // If we're multi-threaded, it will help to decompress
615 // any sections that will be needed during the Add_symbols
616 // task, so that several decompressions can run in
617 // parallel.
618 if (parameters->options().threads())
619 {
620 unsigned char* uncompressed_data = NULL;
621 if (need_decompressed_section(name))
622 {
623 uncompressed_data = new unsigned char[uncompressed_size];
624 if (decompress_input_section(contents, len,
625 uncompressed_data,
626 uncompressed_size))
627 info.contents = uncompressed_data;
628 else
629 delete[] uncompressed_data;
630 }
631 }
632 #endif
633
634 (*uncompressed_map)[i] = info;
635 }
636 }
637 }
638 }
639 return uncompressed_map;
640 }
641
642 // Read the sections and symbols from an object file.
643
644 template<int size, bool big_endian>
645 void
646 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
647 {
648 this->read_section_data(&this->elf_file_, sd);
649
650 const unsigned char* const pshdrs = sd->section_headers->data();
651
652 this->find_symtab(pshdrs);
653
654 const unsigned char* namesu = sd->section_names->data();
655 const char* names = reinterpret_cast<const char*>(namesu);
656 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
657 {
658 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
659 this->has_eh_frame_ = true;
660 }
661 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
662 this->compressed_sections_ =
663 build_compressed_section_map(pshdrs, this->shnum(), names,
664 sd->section_names_size, this);
665
666 sd->symbols = NULL;
667 sd->symbols_size = 0;
668 sd->external_symbols_offset = 0;
669 sd->symbol_names = NULL;
670 sd->symbol_names_size = 0;
671
672 if (this->symtab_shndx_ == 0)
673 {
674 // No symbol table. Weird but legal.
675 return;
676 }
677
678 // Get the symbol table section header.
679 typename This::Shdr symtabshdr(pshdrs
680 + this->symtab_shndx_ * This::shdr_size);
681 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
682
683 // If this object has a .eh_frame section, we need all the symbols.
684 // Otherwise we only need the external symbols. While it would be
685 // simpler to just always read all the symbols, I've seen object
686 // files with well over 2000 local symbols, which for a 64-bit
687 // object file format is over 5 pages that we don't need to read
688 // now.
689
690 const int sym_size = This::sym_size;
691 const unsigned int loccount = symtabshdr.get_sh_info();
692 this->local_symbol_count_ = loccount;
693 this->local_values_.resize(loccount);
694 section_offset_type locsize = loccount * sym_size;
695 off_t dataoff = symtabshdr.get_sh_offset();
696 section_size_type datasize =
697 convert_to_section_size_type(symtabshdr.get_sh_size());
698 off_t extoff = dataoff + locsize;
699 section_size_type extsize = datasize - locsize;
700
701 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
702 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
703
704 if (readsize == 0)
705 {
706 // No external symbols. Also weird but also legal.
707 return;
708 }
709
710 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
711
712 // Read the section header for the symbol names.
713 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
714 if (strtab_shndx >= this->shnum())
715 {
716 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
717 return;
718 }
719 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
720 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
721 {
722 this->error(_("symbol table name section has wrong type: %u"),
723 static_cast<unsigned int>(strtabshdr.get_sh_type()));
724 return;
725 }
726
727 // Read the symbol names.
728 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
729 strtabshdr.get_sh_size(),
730 false, true);
731
732 sd->symbols = fvsymtab;
733 sd->symbols_size = readsize;
734 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
735 sd->symbol_names = fvstrtab;
736 sd->symbol_names_size =
737 convert_to_section_size_type(strtabshdr.get_sh_size());
738 }
739
740 // Return the section index of symbol SYM. Set *VALUE to its value in
741 // the object file. Set *IS_ORDINARY if this is an ordinary section
742 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
743 // Note that for a symbol which is not defined in this object file,
744 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
745 // the final value of the symbol in the link.
746
747 template<int size, bool big_endian>
748 unsigned int
749 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
750 Address* value,
751 bool* is_ordinary)
752 {
753 section_size_type symbols_size;
754 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
755 &symbols_size,
756 false);
757
758 const size_t count = symbols_size / This::sym_size;
759 gold_assert(sym < count);
760
761 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
762 *value = elfsym.get_st_value();
763
764 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
765 }
766
767 // Return whether to include a section group in the link. LAYOUT is
768 // used to keep track of which section groups we have already seen.
769 // INDEX is the index of the section group and SHDR is the section
770 // header. If we do not want to include this group, we set bits in
771 // OMIT for each section which should be discarded.
772
773 template<int size, bool big_endian>
774 bool
775 Sized_relobj_file<size, big_endian>::include_section_group(
776 Symbol_table* symtab,
777 Layout* layout,
778 unsigned int index,
779 const char* name,
780 const unsigned char* shdrs,
781 const char* section_names,
782 section_size_type section_names_size,
783 std::vector<bool>* omit)
784 {
785 // Read the section contents.
786 typename This::Shdr shdr(shdrs + index * This::shdr_size);
787 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
788 shdr.get_sh_size(), true, false);
789 const elfcpp::Elf_Word* pword =
790 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
791
792 // The first word contains flags. We only care about COMDAT section
793 // groups. Other section groups are always included in the link
794 // just like ordinary sections.
795 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
796
797 // Look up the group signature, which is the name of a symbol. ELF
798 // uses a symbol name because some group signatures are long, and
799 // the name is generally already in the symbol table, so it makes
800 // sense to put the long string just once in .strtab rather than in
801 // both .strtab and .shstrtab.
802
803 // Get the appropriate symbol table header (this will normally be
804 // the single SHT_SYMTAB section, but in principle it need not be).
805 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
806 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
807
808 // Read the symbol table entry.
809 unsigned int symndx = shdr.get_sh_info();
810 if (symndx >= symshdr.get_sh_size() / This::sym_size)
811 {
812 this->error(_("section group %u info %u out of range"),
813 index, symndx);
814 return false;
815 }
816 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
817 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
818 false);
819 elfcpp::Sym<size, big_endian> sym(psym);
820
821 // Read the symbol table names.
822 section_size_type symnamelen;
823 const unsigned char* psymnamesu;
824 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
825 &symnamelen, true);
826 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
827
828 // Get the section group signature.
829 if (sym.get_st_name() >= symnamelen)
830 {
831 this->error(_("symbol %u name offset %u out of range"),
832 symndx, sym.get_st_name());
833 return false;
834 }
835
836 std::string signature(psymnames + sym.get_st_name());
837
838 // It seems that some versions of gas will create a section group
839 // associated with a section symbol, and then fail to give a name to
840 // the section symbol. In such a case, use the name of the section.
841 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
842 {
843 bool is_ordinary;
844 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
845 sym.get_st_shndx(),
846 &is_ordinary);
847 if (!is_ordinary || sym_shndx >= this->shnum())
848 {
849 this->error(_("symbol %u invalid section index %u"),
850 symndx, sym_shndx);
851 return false;
852 }
853 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
854 if (member_shdr.get_sh_name() < section_names_size)
855 signature = section_names + member_shdr.get_sh_name();
856 }
857
858 // Record this section group in the layout, and see whether we've already
859 // seen one with the same signature.
860 bool include_group;
861 bool is_comdat;
862 Kept_section* kept_section = NULL;
863
864 if ((flags & elfcpp::GRP_COMDAT) == 0)
865 {
866 include_group = true;
867 is_comdat = false;
868 }
869 else
870 {
871 include_group = layout->find_or_add_kept_section(signature,
872 this, index, true,
873 true, &kept_section);
874 is_comdat = true;
875 }
876
877 if (is_comdat && include_group)
878 {
879 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
880 if (incremental_inputs != NULL)
881 incremental_inputs->report_comdat_group(this, signature.c_str());
882 }
883
884 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
885
886 std::vector<unsigned int> shndxes;
887 bool relocate_group = include_group && parameters->options().relocatable();
888 if (relocate_group)
889 shndxes.reserve(count - 1);
890
891 for (size_t i = 1; i < count; ++i)
892 {
893 elfcpp::Elf_Word shndx =
894 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
895
896 if (relocate_group)
897 shndxes.push_back(shndx);
898
899 if (shndx >= this->shnum())
900 {
901 this->error(_("section %u in section group %u out of range"),
902 shndx, index);
903 continue;
904 }
905
906 // Check for an earlier section number, since we're going to get
907 // it wrong--we may have already decided to include the section.
908 if (shndx < index)
909 this->error(_("invalid section group %u refers to earlier section %u"),
910 index, shndx);
911
912 // Get the name of the member section.
913 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
914 if (member_shdr.get_sh_name() >= section_names_size)
915 {
916 // This is an error, but it will be diagnosed eventually
917 // in do_layout, so we don't need to do anything here but
918 // ignore it.
919 continue;
920 }
921 std::string mname(section_names + member_shdr.get_sh_name());
922
923 if (include_group)
924 {
925 if (is_comdat)
926 kept_section->add_comdat_section(mname, shndx,
927 member_shdr.get_sh_size());
928 }
929 else
930 {
931 (*omit)[shndx] = true;
932
933 if (is_comdat)
934 {
935 Relobj* kept_object = kept_section->object();
936 if (kept_section->is_comdat())
937 {
938 // Find the corresponding kept section, and store
939 // that info in the discarded section table.
940 unsigned int kept_shndx;
941 uint64_t kept_size;
942 if (kept_section->find_comdat_section(mname, &kept_shndx,
943 &kept_size))
944 {
945 // We don't keep a mapping for this section if
946 // it has a different size. The mapping is only
947 // used for relocation processing, and we don't
948 // want to treat the sections as similar if the
949 // sizes are different. Checking the section
950 // size is the approach used by the GNU linker.
951 if (kept_size == member_shdr.get_sh_size())
952 this->set_kept_comdat_section(shndx, kept_object,
953 kept_shndx);
954 }
955 }
956 else
957 {
958 // The existing section is a linkonce section. Add
959 // a mapping if there is exactly one section in the
960 // group (which is true when COUNT == 2) and if it
961 // is the same size.
962 if (count == 2
963 && (kept_section->linkonce_size()
964 == member_shdr.get_sh_size()))
965 this->set_kept_comdat_section(shndx, kept_object,
966 kept_section->shndx());
967 }
968 }
969 }
970 }
971
972 if (relocate_group)
973 layout->layout_group(symtab, this, index, name, signature.c_str(),
974 shdr, flags, &shndxes);
975
976 return include_group;
977 }
978
979 // Whether to include a linkonce section in the link. NAME is the
980 // name of the section and SHDR is the section header.
981
982 // Linkonce sections are a GNU extension implemented in the original
983 // GNU linker before section groups were defined. The semantics are
984 // that we only include one linkonce section with a given name. The
985 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
986 // where T is the type of section and SYMNAME is the name of a symbol.
987 // In an attempt to make linkonce sections interact well with section
988 // groups, we try to identify SYMNAME and use it like a section group
989 // signature. We want to block section groups with that signature,
990 // but not other linkonce sections with that signature. We also use
991 // the full name of the linkonce section as a normal section group
992 // signature.
993
994 template<int size, bool big_endian>
995 bool
996 Sized_relobj_file<size, big_endian>::include_linkonce_section(
997 Layout* layout,
998 unsigned int index,
999 const char* name,
1000 const elfcpp::Shdr<size, big_endian>& shdr)
1001 {
1002 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1003 // In general the symbol name we want will be the string following
1004 // the last '.'. However, we have to handle the case of
1005 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1006 // some versions of gcc. So we use a heuristic: if the name starts
1007 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1008 // we look for the last '.'. We can't always simply skip
1009 // ".gnu.linkonce.X", because we have to deal with cases like
1010 // ".gnu.linkonce.d.rel.ro.local".
1011 const char* const linkonce_t = ".gnu.linkonce.t.";
1012 const char* symname;
1013 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1014 symname = name + strlen(linkonce_t);
1015 else
1016 symname = strrchr(name, '.') + 1;
1017 std::string sig1(symname);
1018 std::string sig2(name);
1019 Kept_section* kept1;
1020 Kept_section* kept2;
1021 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1022 false, &kept1);
1023 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1024 true, &kept2);
1025
1026 if (!include2)
1027 {
1028 // We are not including this section because we already saw the
1029 // name of the section as a signature. This normally implies
1030 // that the kept section is another linkonce section. If it is
1031 // the same size, record it as the section which corresponds to
1032 // this one.
1033 if (kept2->object() != NULL
1034 && !kept2->is_comdat()
1035 && kept2->linkonce_size() == sh_size)
1036 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1037 }
1038 else if (!include1)
1039 {
1040 // The section is being discarded on the basis of its symbol
1041 // name. This means that the corresponding kept section was
1042 // part of a comdat group, and it will be difficult to identify
1043 // the specific section within that group that corresponds to
1044 // this linkonce section. We'll handle the simple case where
1045 // the group has only one member section. Otherwise, it's not
1046 // worth the effort.
1047 unsigned int kept_shndx;
1048 uint64_t kept_size;
1049 if (kept1->object() != NULL
1050 && kept1->is_comdat()
1051 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1052 && kept_size == sh_size)
1053 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1054 }
1055 else
1056 {
1057 kept1->set_linkonce_size(sh_size);
1058 kept2->set_linkonce_size(sh_size);
1059 }
1060
1061 return include1 && include2;
1062 }
1063
1064 // Layout an input section.
1065
1066 template<int size, bool big_endian>
1067 inline void
1068 Sized_relobj_file<size, big_endian>::layout_section(
1069 Layout* layout,
1070 unsigned int shndx,
1071 const char* name,
1072 const typename This::Shdr& shdr,
1073 unsigned int reloc_shndx,
1074 unsigned int reloc_type)
1075 {
1076 off_t offset;
1077 Output_section* os = layout->layout(this, shndx, name, shdr,
1078 reloc_shndx, reloc_type, &offset);
1079
1080 this->output_sections()[shndx] = os;
1081 if (offset == -1)
1082 this->section_offsets()[shndx] = invalid_address;
1083 else
1084 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1085
1086 // If this section requires special handling, and if there are
1087 // relocs that apply to it, then we must do the special handling
1088 // before we apply the relocs.
1089 if (offset == -1 && reloc_shndx != 0)
1090 this->set_relocs_must_follow_section_writes();
1091 }
1092
1093 // Layout an input .eh_frame section.
1094
1095 template<int size, bool big_endian>
1096 void
1097 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1098 Layout* layout,
1099 const unsigned char* symbols_data,
1100 section_size_type symbols_size,
1101 const unsigned char* symbol_names_data,
1102 section_size_type symbol_names_size,
1103 unsigned int shndx,
1104 const typename This::Shdr& shdr,
1105 unsigned int reloc_shndx,
1106 unsigned int reloc_type)
1107 {
1108 gold_assert(this->has_eh_frame_);
1109
1110 off_t offset;
1111 Output_section* os = layout->layout_eh_frame(this,
1112 symbols_data,
1113 symbols_size,
1114 symbol_names_data,
1115 symbol_names_size,
1116 shndx,
1117 shdr,
1118 reloc_shndx,
1119 reloc_type,
1120 &offset);
1121 this->output_sections()[shndx] = os;
1122 if (os == NULL || offset == -1)
1123 {
1124 // An object can contain at most one section holding exception
1125 // frame information.
1126 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1127 this->discarded_eh_frame_shndx_ = shndx;
1128 this->section_offsets()[shndx] = invalid_address;
1129 }
1130 else
1131 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1132
1133 // If this section requires special handling, and if there are
1134 // relocs that aply to it, then we must do the special handling
1135 // before we apply the relocs.
1136 if (os != NULL && offset == -1 && reloc_shndx != 0)
1137 this->set_relocs_must_follow_section_writes();
1138 }
1139
1140 // Lay out the input sections. We walk through the sections and check
1141 // whether they should be included in the link. If they should, we
1142 // pass them to the Layout object, which will return an output section
1143 // and an offset.
1144 // During garbage collection (--gc-sections) and identical code folding
1145 // (--icf), this function is called twice. When it is called the first
1146 // time, it is for setting up some sections as roots to a work-list for
1147 // --gc-sections and to do comdat processing. Actual layout happens the
1148 // second time around after all the relevant sections have been determined.
1149 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1150 // set to true after the garbage collection worklist or identical code
1151 // folding is processed and the relevant sections to be kept are
1152 // determined. Then, this function is called again to layout the sections.
1153
1154 template<int size, bool big_endian>
1155 void
1156 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1157 Layout* layout,
1158 Read_symbols_data* sd)
1159 {
1160 const unsigned int shnum = this->shnum();
1161 bool is_gc_pass_one = ((parameters->options().gc_sections()
1162 && !symtab->gc()->is_worklist_ready())
1163 || (parameters->options().icf_enabled()
1164 && !symtab->icf()->is_icf_ready()));
1165
1166 bool is_gc_pass_two = ((parameters->options().gc_sections()
1167 && symtab->gc()->is_worklist_ready())
1168 || (parameters->options().icf_enabled()
1169 && symtab->icf()->is_icf_ready()));
1170
1171 bool is_gc_or_icf = (parameters->options().gc_sections()
1172 || parameters->options().icf_enabled());
1173
1174 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1175 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1176
1177 if (shnum == 0)
1178 return;
1179 Symbols_data* gc_sd = NULL;
1180 if (is_gc_pass_one)
1181 {
1182 // During garbage collection save the symbols data to use it when
1183 // re-entering this function.
1184 gc_sd = new Symbols_data;
1185 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1186 this->set_symbols_data(gc_sd);
1187 }
1188 else if (is_gc_pass_two)
1189 {
1190 gc_sd = this->get_symbols_data();
1191 }
1192
1193 const unsigned char* section_headers_data = NULL;
1194 section_size_type section_names_size;
1195 const unsigned char* symbols_data = NULL;
1196 section_size_type symbols_size;
1197 const unsigned char* symbol_names_data = NULL;
1198 section_size_type symbol_names_size;
1199
1200 if (is_gc_or_icf)
1201 {
1202 section_headers_data = gc_sd->section_headers_data;
1203 section_names_size = gc_sd->section_names_size;
1204 symbols_data = gc_sd->symbols_data;
1205 symbols_size = gc_sd->symbols_size;
1206 symbol_names_data = gc_sd->symbol_names_data;
1207 symbol_names_size = gc_sd->symbol_names_size;
1208 }
1209 else
1210 {
1211 section_headers_data = sd->section_headers->data();
1212 section_names_size = sd->section_names_size;
1213 if (sd->symbols != NULL)
1214 symbols_data = sd->symbols->data();
1215 symbols_size = sd->symbols_size;
1216 if (sd->symbol_names != NULL)
1217 symbol_names_data = sd->symbol_names->data();
1218 symbol_names_size = sd->symbol_names_size;
1219 }
1220
1221 // Get the section headers.
1222 const unsigned char* shdrs = section_headers_data;
1223 const unsigned char* pshdrs;
1224
1225 // Get the section names.
1226 const unsigned char* pnamesu = (is_gc_or_icf)
1227 ? gc_sd->section_names_data
1228 : sd->section_names->data();
1229
1230 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1231
1232 // If any input files have been claimed by plugins, we need to defer
1233 // actual layout until the replacement files have arrived.
1234 const bool should_defer_layout =
1235 (parameters->options().has_plugins()
1236 && parameters->options().plugins()->should_defer_layout());
1237 unsigned int num_sections_to_defer = 0;
1238
1239 // For each section, record the index of the reloc section if any.
1240 // Use 0 to mean that there is no reloc section, -1U to mean that
1241 // there is more than one.
1242 std::vector<unsigned int> reloc_shndx(shnum, 0);
1243 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1244 // Skip the first, dummy, section.
1245 pshdrs = shdrs + This::shdr_size;
1246 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1247 {
1248 typename This::Shdr shdr(pshdrs);
1249
1250 // Count the number of sections whose layout will be deferred.
1251 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1252 ++num_sections_to_defer;
1253
1254 unsigned int sh_type = shdr.get_sh_type();
1255 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1256 {
1257 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1258 if (target_shndx == 0 || target_shndx >= shnum)
1259 {
1260 this->error(_("relocation section %u has bad info %u"),
1261 i, target_shndx);
1262 continue;
1263 }
1264
1265 if (reloc_shndx[target_shndx] != 0)
1266 reloc_shndx[target_shndx] = -1U;
1267 else
1268 {
1269 reloc_shndx[target_shndx] = i;
1270 reloc_type[target_shndx] = sh_type;
1271 }
1272 }
1273 }
1274
1275 Output_sections& out_sections(this->output_sections());
1276 std::vector<Address>& out_section_offsets(this->section_offsets());
1277
1278 if (!is_gc_pass_two)
1279 {
1280 out_sections.resize(shnum);
1281 out_section_offsets.resize(shnum);
1282 }
1283
1284 // If we are only linking for symbols, then there is nothing else to
1285 // do here.
1286 if (this->input_file()->just_symbols())
1287 {
1288 if (!is_gc_pass_two)
1289 {
1290 delete sd->section_headers;
1291 sd->section_headers = NULL;
1292 delete sd->section_names;
1293 sd->section_names = NULL;
1294 }
1295 return;
1296 }
1297
1298 if (num_sections_to_defer > 0)
1299 {
1300 parameters->options().plugins()->add_deferred_layout_object(this);
1301 this->deferred_layout_.reserve(num_sections_to_defer);
1302 }
1303
1304 // Whether we've seen a .note.GNU-stack section.
1305 bool seen_gnu_stack = false;
1306 // The flags of a .note.GNU-stack section.
1307 uint64_t gnu_stack_flags = 0;
1308
1309 // Keep track of which sections to omit.
1310 std::vector<bool> omit(shnum, false);
1311
1312 // Keep track of reloc sections when emitting relocations.
1313 const bool relocatable = parameters->options().relocatable();
1314 const bool emit_relocs = (relocatable
1315 || parameters->options().emit_relocs());
1316 std::vector<unsigned int> reloc_sections;
1317
1318 // Keep track of .eh_frame sections.
1319 std::vector<unsigned int> eh_frame_sections;
1320
1321 // Skip the first, dummy, section.
1322 pshdrs = shdrs + This::shdr_size;
1323 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1324 {
1325 typename This::Shdr shdr(pshdrs);
1326
1327 if (shdr.get_sh_name() >= section_names_size)
1328 {
1329 this->error(_("bad section name offset for section %u: %lu"),
1330 i, static_cast<unsigned long>(shdr.get_sh_name()));
1331 return;
1332 }
1333
1334 const char* name = pnames + shdr.get_sh_name();
1335
1336 if (!is_gc_pass_two)
1337 {
1338 if (this->handle_gnu_warning_section(name, i, symtab))
1339 {
1340 if (!relocatable && !parameters->options().shared())
1341 omit[i] = true;
1342 }
1343
1344 // The .note.GNU-stack section is special. It gives the
1345 // protection flags that this object file requires for the stack
1346 // in memory.
1347 if (strcmp(name, ".note.GNU-stack") == 0)
1348 {
1349 seen_gnu_stack = true;
1350 gnu_stack_flags |= shdr.get_sh_flags();
1351 omit[i] = true;
1352 }
1353
1354 // The .note.GNU-split-stack section is also special. It
1355 // indicates that the object was compiled with
1356 // -fsplit-stack.
1357 if (this->handle_split_stack_section(name))
1358 {
1359 if (!relocatable && !parameters->options().shared())
1360 omit[i] = true;
1361 }
1362
1363 // Skip attributes section.
1364 if (parameters->target().is_attributes_section(name))
1365 {
1366 omit[i] = true;
1367 }
1368
1369 bool discard = omit[i];
1370 if (!discard)
1371 {
1372 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1373 {
1374 if (!this->include_section_group(symtab, layout, i, name,
1375 shdrs, pnames,
1376 section_names_size,
1377 &omit))
1378 discard = true;
1379 }
1380 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1381 && Layout::is_linkonce(name))
1382 {
1383 if (!this->include_linkonce_section(layout, i, name, shdr))
1384 discard = true;
1385 }
1386 }
1387
1388 // Add the section to the incremental inputs layout.
1389 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1390 if (incremental_inputs != NULL
1391 && !discard
1392 && can_incremental_update(shdr.get_sh_type()))
1393 {
1394 off_t sh_size = shdr.get_sh_size();
1395 section_size_type uncompressed_size;
1396 if (this->section_is_compressed(i, &uncompressed_size))
1397 sh_size = uncompressed_size;
1398 incremental_inputs->report_input_section(this, i, name, sh_size);
1399 }
1400
1401 if (discard)
1402 {
1403 // Do not include this section in the link.
1404 out_sections[i] = NULL;
1405 out_section_offsets[i] = invalid_address;
1406 continue;
1407 }
1408 }
1409
1410 if (is_gc_pass_one && parameters->options().gc_sections())
1411 {
1412 if (this->is_section_name_included(name)
1413 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1414 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1415 {
1416 symtab->gc()->worklist().push(Section_id(this, i));
1417 }
1418 // If the section name XXX can be represented as a C identifier
1419 // it cannot be discarded if there are references to
1420 // __start_XXX and __stop_XXX symbols. These need to be
1421 // specially handled.
1422 if (is_cident(name))
1423 {
1424 symtab->gc()->add_cident_section(name, Section_id(this, i));
1425 }
1426 }
1427
1428 // When doing a relocatable link we are going to copy input
1429 // reloc sections into the output. We only want to copy the
1430 // ones associated with sections which are not being discarded.
1431 // However, we don't know that yet for all sections. So save
1432 // reloc sections and process them later. Garbage collection is
1433 // not triggered when relocatable code is desired.
1434 if (emit_relocs
1435 && (shdr.get_sh_type() == elfcpp::SHT_REL
1436 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1437 {
1438 reloc_sections.push_back(i);
1439 continue;
1440 }
1441
1442 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1443 continue;
1444
1445 // The .eh_frame section is special. It holds exception frame
1446 // information that we need to read in order to generate the
1447 // exception frame header. We process these after all the other
1448 // sections so that the exception frame reader can reliably
1449 // determine which sections are being discarded, and discard the
1450 // corresponding information.
1451 if (!relocatable
1452 && strcmp(name, ".eh_frame") == 0
1453 && this->check_eh_frame_flags(&shdr))
1454 {
1455 if (is_gc_pass_one)
1456 {
1457 out_sections[i] = reinterpret_cast<Output_section*>(1);
1458 out_section_offsets[i] = invalid_address;
1459 }
1460 else if (should_defer_layout)
1461 this->deferred_layout_.push_back(Deferred_layout(i, name,
1462 pshdrs,
1463 reloc_shndx[i],
1464 reloc_type[i]));
1465 else
1466 eh_frame_sections.push_back(i);
1467 continue;
1468 }
1469
1470 if (is_gc_pass_two && parameters->options().gc_sections())
1471 {
1472 // This is executed during the second pass of garbage
1473 // collection. do_layout has been called before and some
1474 // sections have been already discarded. Simply ignore
1475 // such sections this time around.
1476 if (out_sections[i] == NULL)
1477 {
1478 gold_assert(out_section_offsets[i] == invalid_address);
1479 continue;
1480 }
1481 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1482 && symtab->gc()->is_section_garbage(this, i))
1483 {
1484 if (parameters->options().print_gc_sections())
1485 gold_info(_("%s: removing unused section from '%s'"
1486 " in file '%s'"),
1487 program_name, this->section_name(i).c_str(),
1488 this->name().c_str());
1489 out_sections[i] = NULL;
1490 out_section_offsets[i] = invalid_address;
1491 continue;
1492 }
1493 }
1494
1495 if (is_gc_pass_two && parameters->options().icf_enabled())
1496 {
1497 if (out_sections[i] == NULL)
1498 {
1499 gold_assert(out_section_offsets[i] == invalid_address);
1500 continue;
1501 }
1502 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1503 && symtab->icf()->is_section_folded(this, i))
1504 {
1505 if (parameters->options().print_icf_sections())
1506 {
1507 Section_id folded =
1508 symtab->icf()->get_folded_section(this, i);
1509 Relobj* folded_obj =
1510 reinterpret_cast<Relobj*>(folded.first);
1511 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1512 "into '%s' in file '%s'"),
1513 program_name, this->section_name(i).c_str(),
1514 this->name().c_str(),
1515 folded_obj->section_name(folded.second).c_str(),
1516 folded_obj->name().c_str());
1517 }
1518 out_sections[i] = NULL;
1519 out_section_offsets[i] = invalid_address;
1520 continue;
1521 }
1522 }
1523
1524 // Defer layout here if input files are claimed by plugins. When gc
1525 // is turned on this function is called twice. For the second call
1526 // should_defer_layout should be false.
1527 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1528 {
1529 gold_assert(!is_gc_pass_two);
1530 this->deferred_layout_.push_back(Deferred_layout(i, name,
1531 pshdrs,
1532 reloc_shndx[i],
1533 reloc_type[i]));
1534 // Put dummy values here; real values will be supplied by
1535 // do_layout_deferred_sections.
1536 out_sections[i] = reinterpret_cast<Output_section*>(2);
1537 out_section_offsets[i] = invalid_address;
1538 continue;
1539 }
1540
1541 // During gc_pass_two if a section that was previously deferred is
1542 // found, do not layout the section as layout_deferred_sections will
1543 // do it later from gold.cc.
1544 if (is_gc_pass_two
1545 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1546 continue;
1547
1548 if (is_gc_pass_one)
1549 {
1550 // This is during garbage collection. The out_sections are
1551 // assigned in the second call to this function.
1552 out_sections[i] = reinterpret_cast<Output_section*>(1);
1553 out_section_offsets[i] = invalid_address;
1554 }
1555 else
1556 {
1557 // When garbage collection is switched on the actual layout
1558 // only happens in the second call.
1559 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1560 reloc_type[i]);
1561 }
1562 }
1563
1564 if (!is_gc_pass_two)
1565 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1566
1567 // When doing a relocatable link handle the reloc sections at the
1568 // end. Garbage collection and Identical Code Folding is not
1569 // turned on for relocatable code.
1570 if (emit_relocs)
1571 this->size_relocatable_relocs();
1572
1573 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1574
1575 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1576 p != reloc_sections.end();
1577 ++p)
1578 {
1579 unsigned int i = *p;
1580 const unsigned char* pshdr;
1581 pshdr = section_headers_data + i * This::shdr_size;
1582 typename This::Shdr shdr(pshdr);
1583
1584 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1585 if (data_shndx >= shnum)
1586 {
1587 // We already warned about this above.
1588 continue;
1589 }
1590
1591 Output_section* data_section = out_sections[data_shndx];
1592 if (data_section == reinterpret_cast<Output_section*>(2))
1593 {
1594 // The layout for the data section was deferred, so we need
1595 // to defer the relocation section, too.
1596 const char* name = pnames + shdr.get_sh_name();
1597 this->deferred_layout_relocs_.push_back(
1598 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1599 out_sections[i] = reinterpret_cast<Output_section*>(2);
1600 out_section_offsets[i] = invalid_address;
1601 continue;
1602 }
1603 if (data_section == NULL)
1604 {
1605 out_sections[i] = NULL;
1606 out_section_offsets[i] = invalid_address;
1607 continue;
1608 }
1609
1610 Relocatable_relocs* rr = new Relocatable_relocs();
1611 this->set_relocatable_relocs(i, rr);
1612
1613 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1614 rr);
1615 out_sections[i] = os;
1616 out_section_offsets[i] = invalid_address;
1617 }
1618
1619 // Handle the .eh_frame sections at the end.
1620 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1621 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1622 p != eh_frame_sections.end();
1623 ++p)
1624 {
1625 unsigned int i = *p;
1626 const unsigned char* pshdr;
1627 pshdr = section_headers_data + i * This::shdr_size;
1628 typename This::Shdr shdr(pshdr);
1629
1630 this->layout_eh_frame_section(layout,
1631 symbols_data,
1632 symbols_size,
1633 symbol_names_data,
1634 symbol_names_size,
1635 i,
1636 shdr,
1637 reloc_shndx[i],
1638 reloc_type[i]);
1639 }
1640
1641 if (is_gc_pass_two)
1642 {
1643 delete[] gc_sd->section_headers_data;
1644 delete[] gc_sd->section_names_data;
1645 delete[] gc_sd->symbols_data;
1646 delete[] gc_sd->symbol_names_data;
1647 this->set_symbols_data(NULL);
1648 }
1649 else
1650 {
1651 delete sd->section_headers;
1652 sd->section_headers = NULL;
1653 delete sd->section_names;
1654 sd->section_names = NULL;
1655 }
1656 }
1657
1658 // Layout sections whose layout was deferred while waiting for
1659 // input files from a plugin.
1660
1661 template<int size, bool big_endian>
1662 void
1663 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1664 {
1665 typename std::vector<Deferred_layout>::iterator deferred;
1666
1667 for (deferred = this->deferred_layout_.begin();
1668 deferred != this->deferred_layout_.end();
1669 ++deferred)
1670 {
1671 typename This::Shdr shdr(deferred->shdr_data_);
1672 // If the section is not included, it is because the garbage collector
1673 // decided it is not needed. Avoid reverting that decision.
1674 if (!this->is_section_included(deferred->shndx_))
1675 continue;
1676
1677 if (parameters->options().relocatable()
1678 || deferred->name_ != ".eh_frame"
1679 || !this->check_eh_frame_flags(&shdr))
1680 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1681 shdr, deferred->reloc_shndx_,
1682 deferred->reloc_type_);
1683 else
1684 {
1685 // Reading the symbols again here may be slow.
1686 Read_symbols_data sd;
1687 this->read_symbols(&sd);
1688 this->layout_eh_frame_section(layout,
1689 sd.symbols->data(),
1690 sd.symbols_size,
1691 sd.symbol_names->data(),
1692 sd.symbol_names_size,
1693 deferred->shndx_,
1694 shdr,
1695 deferred->reloc_shndx_,
1696 deferred->reloc_type_);
1697 }
1698 }
1699
1700 this->deferred_layout_.clear();
1701
1702 // Now handle the deferred relocation sections.
1703
1704 Output_sections& out_sections(this->output_sections());
1705 std::vector<Address>& out_section_offsets(this->section_offsets());
1706
1707 for (deferred = this->deferred_layout_relocs_.begin();
1708 deferred != this->deferred_layout_relocs_.end();
1709 ++deferred)
1710 {
1711 unsigned int shndx = deferred->shndx_;
1712 typename This::Shdr shdr(deferred->shdr_data_);
1713 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1714
1715 Output_section* data_section = out_sections[data_shndx];
1716 if (data_section == NULL)
1717 {
1718 out_sections[shndx] = NULL;
1719 out_section_offsets[shndx] = invalid_address;
1720 continue;
1721 }
1722
1723 Relocatable_relocs* rr = new Relocatable_relocs();
1724 this->set_relocatable_relocs(shndx, rr);
1725
1726 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1727 data_section, rr);
1728 out_sections[shndx] = os;
1729 out_section_offsets[shndx] = invalid_address;
1730 }
1731 }
1732
1733 // Add the symbols to the symbol table.
1734
1735 template<int size, bool big_endian>
1736 void
1737 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1738 Read_symbols_data* sd,
1739 Layout*)
1740 {
1741 if (sd->symbols == NULL)
1742 {
1743 gold_assert(sd->symbol_names == NULL);
1744 return;
1745 }
1746
1747 const int sym_size = This::sym_size;
1748 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1749 / sym_size);
1750 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1751 {
1752 this->error(_("size of symbols is not multiple of symbol size"));
1753 return;
1754 }
1755
1756 this->symbols_.resize(symcount);
1757
1758 const char* sym_names =
1759 reinterpret_cast<const char*>(sd->symbol_names->data());
1760 symtab->add_from_relobj(this,
1761 sd->symbols->data() + sd->external_symbols_offset,
1762 symcount, this->local_symbol_count_,
1763 sym_names, sd->symbol_names_size,
1764 &this->symbols_,
1765 &this->defined_count_);
1766
1767 delete sd->symbols;
1768 sd->symbols = NULL;
1769 delete sd->symbol_names;
1770 sd->symbol_names = NULL;
1771 }
1772
1773 // Find out if this object, that is a member of a lib group, should be included
1774 // in the link. We check every symbol defined by this object. If the symbol
1775 // table has a strong undefined reference to that symbol, we have to include
1776 // the object.
1777
1778 template<int size, bool big_endian>
1779 Archive::Should_include
1780 Sized_relobj_file<size, big_endian>::do_should_include_member(
1781 Symbol_table* symtab,
1782 Layout* layout,
1783 Read_symbols_data* sd,
1784 std::string* why)
1785 {
1786 char* tmpbuf = NULL;
1787 size_t tmpbuflen = 0;
1788 const char* sym_names =
1789 reinterpret_cast<const char*>(sd->symbol_names->data());
1790 const unsigned char* syms =
1791 sd->symbols->data() + sd->external_symbols_offset;
1792 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1793 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1794 / sym_size);
1795
1796 const unsigned char* p = syms;
1797
1798 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1799 {
1800 elfcpp::Sym<size, big_endian> sym(p);
1801 unsigned int st_shndx = sym.get_st_shndx();
1802 if (st_shndx == elfcpp::SHN_UNDEF)
1803 continue;
1804
1805 unsigned int st_name = sym.get_st_name();
1806 const char* name = sym_names + st_name;
1807 Symbol* symbol;
1808 Archive::Should_include t = Archive::should_include_member(symtab,
1809 layout,
1810 name,
1811 &symbol, why,
1812 &tmpbuf,
1813 &tmpbuflen);
1814 if (t == Archive::SHOULD_INCLUDE_YES)
1815 {
1816 if (tmpbuf != NULL)
1817 free(tmpbuf);
1818 return t;
1819 }
1820 }
1821 if (tmpbuf != NULL)
1822 free(tmpbuf);
1823 return Archive::SHOULD_INCLUDE_UNKNOWN;
1824 }
1825
1826 // Iterate over global defined symbols, calling a visitor class V for each.
1827
1828 template<int size, bool big_endian>
1829 void
1830 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1831 Read_symbols_data* sd,
1832 Library_base::Symbol_visitor_base* v)
1833 {
1834 const char* sym_names =
1835 reinterpret_cast<const char*>(sd->symbol_names->data());
1836 const unsigned char* syms =
1837 sd->symbols->data() + sd->external_symbols_offset;
1838 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1839 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1840 / sym_size);
1841 const unsigned char* p = syms;
1842
1843 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1844 {
1845 elfcpp::Sym<size, big_endian> sym(p);
1846 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1847 v->visit(sym_names + sym.get_st_name());
1848 }
1849 }
1850
1851 // Return whether the local symbol SYMNDX has a PLT offset.
1852
1853 template<int size, bool big_endian>
1854 bool
1855 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1856 unsigned int symndx) const
1857 {
1858 typename Local_plt_offsets::const_iterator p =
1859 this->local_plt_offsets_.find(symndx);
1860 return p != this->local_plt_offsets_.end();
1861 }
1862
1863 // Get the PLT offset of a local symbol.
1864
1865 template<int size, bool big_endian>
1866 unsigned int
1867 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
1868 unsigned int symndx) const
1869 {
1870 typename Local_plt_offsets::const_iterator p =
1871 this->local_plt_offsets_.find(symndx);
1872 gold_assert(p != this->local_plt_offsets_.end());
1873 return p->second;
1874 }
1875
1876 // Set the PLT offset of a local symbol.
1877
1878 template<int size, bool big_endian>
1879 void
1880 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1881 unsigned int symndx, unsigned int plt_offset)
1882 {
1883 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1884 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1885 gold_assert(ins.second);
1886 }
1887
1888 // First pass over the local symbols. Here we add their names to
1889 // *POOL and *DYNPOOL, and we store the symbol value in
1890 // THIS->LOCAL_VALUES_. This function is always called from a
1891 // singleton thread. This is followed by a call to
1892 // finalize_local_symbols.
1893
1894 template<int size, bool big_endian>
1895 void
1896 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1897 Stringpool* dynpool)
1898 {
1899 gold_assert(this->symtab_shndx_ != -1U);
1900 if (this->symtab_shndx_ == 0)
1901 {
1902 // This object has no symbols. Weird but legal.
1903 return;
1904 }
1905
1906 // Read the symbol table section header.
1907 const unsigned int symtab_shndx = this->symtab_shndx_;
1908 typename This::Shdr symtabshdr(this,
1909 this->elf_file_.section_header(symtab_shndx));
1910 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1911
1912 // Read the local symbols.
1913 const int sym_size = This::sym_size;
1914 const unsigned int loccount = this->local_symbol_count_;
1915 gold_assert(loccount == symtabshdr.get_sh_info());
1916 off_t locsize = loccount * sym_size;
1917 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1918 locsize, true, true);
1919
1920 // Read the symbol names.
1921 const unsigned int strtab_shndx =
1922 this->adjust_shndx(symtabshdr.get_sh_link());
1923 section_size_type strtab_size;
1924 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1925 &strtab_size,
1926 true);
1927 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1928
1929 // Loop over the local symbols.
1930
1931 const Output_sections& out_sections(this->output_sections());
1932 unsigned int shnum = this->shnum();
1933 unsigned int count = 0;
1934 unsigned int dyncount = 0;
1935 // Skip the first, dummy, symbol.
1936 psyms += sym_size;
1937 bool strip_all = parameters->options().strip_all();
1938 bool discard_all = parameters->options().discard_all();
1939 bool discard_locals = parameters->options().discard_locals();
1940 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1941 {
1942 elfcpp::Sym<size, big_endian> sym(psyms);
1943
1944 Symbol_value<size>& lv(this->local_values_[i]);
1945
1946 bool is_ordinary;
1947 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1948 &is_ordinary);
1949 lv.set_input_shndx(shndx, is_ordinary);
1950
1951 if (sym.get_st_type() == elfcpp::STT_SECTION)
1952 lv.set_is_section_symbol();
1953 else if (sym.get_st_type() == elfcpp::STT_TLS)
1954 lv.set_is_tls_symbol();
1955 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1956 lv.set_is_ifunc_symbol();
1957
1958 // Save the input symbol value for use in do_finalize_local_symbols().
1959 lv.set_input_value(sym.get_st_value());
1960
1961 // Decide whether this symbol should go into the output file.
1962
1963 if ((shndx < shnum && out_sections[shndx] == NULL)
1964 || shndx == this->discarded_eh_frame_shndx_)
1965 {
1966 lv.set_no_output_symtab_entry();
1967 gold_assert(!lv.needs_output_dynsym_entry());
1968 continue;
1969 }
1970
1971 if (sym.get_st_type() == elfcpp::STT_SECTION)
1972 {
1973 lv.set_no_output_symtab_entry();
1974 gold_assert(!lv.needs_output_dynsym_entry());
1975 continue;
1976 }
1977
1978 if (sym.get_st_name() >= strtab_size)
1979 {
1980 this->error(_("local symbol %u section name out of range: %u >= %u"),
1981 i, sym.get_st_name(),
1982 static_cast<unsigned int>(strtab_size));
1983 lv.set_no_output_symtab_entry();
1984 continue;
1985 }
1986
1987 const char* name = pnames + sym.get_st_name();
1988
1989 // If needed, add the symbol to the dynamic symbol table string pool.
1990 if (lv.needs_output_dynsym_entry())
1991 {
1992 dynpool->add(name, true, NULL);
1993 ++dyncount;
1994 }
1995
1996 if (strip_all
1997 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1998 {
1999 lv.set_no_output_symtab_entry();
2000 continue;
2001 }
2002
2003 // If --discard-locals option is used, discard all temporary local
2004 // symbols. These symbols start with system-specific local label
2005 // prefixes, typically .L for ELF system. We want to be compatible
2006 // with GNU ld so here we essentially use the same check in
2007 // bfd_is_local_label(). The code is different because we already
2008 // know that:
2009 //
2010 // - the symbol is local and thus cannot have global or weak binding.
2011 // - the symbol is not a section symbol.
2012 // - the symbol has a name.
2013 //
2014 // We do not discard a symbol if it needs a dynamic symbol entry.
2015 if (discard_locals
2016 && sym.get_st_type() != elfcpp::STT_FILE
2017 && !lv.needs_output_dynsym_entry()
2018 && lv.may_be_discarded_from_output_symtab()
2019 && parameters->target().is_local_label_name(name))
2020 {
2021 lv.set_no_output_symtab_entry();
2022 continue;
2023 }
2024
2025 // Discard the local symbol if -retain_symbols_file is specified
2026 // and the local symbol is not in that file.
2027 if (!parameters->options().should_retain_symbol(name))
2028 {
2029 lv.set_no_output_symtab_entry();
2030 continue;
2031 }
2032
2033 // Add the symbol to the symbol table string pool.
2034 pool->add(name, true, NULL);
2035 ++count;
2036 }
2037
2038 this->output_local_symbol_count_ = count;
2039 this->output_local_dynsym_count_ = dyncount;
2040 }
2041
2042 // Compute the final value of a local symbol.
2043
2044 template<int size, bool big_endian>
2045 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2046 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2047 unsigned int r_sym,
2048 const Symbol_value<size>* lv_in,
2049 Symbol_value<size>* lv_out,
2050 bool relocatable,
2051 const Output_sections& out_sections,
2052 const std::vector<Address>& out_offsets,
2053 const Symbol_table* symtab)
2054 {
2055 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2056 // we may have a memory leak.
2057 gold_assert(lv_out->has_output_value());
2058
2059 bool is_ordinary;
2060 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2061
2062 // Set the output symbol value.
2063
2064 if (!is_ordinary)
2065 {
2066 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2067 lv_out->set_output_value(lv_in->input_value());
2068 else
2069 {
2070 this->error(_("unknown section index %u for local symbol %u"),
2071 shndx, r_sym);
2072 lv_out->set_output_value(0);
2073 return This::CFLV_ERROR;
2074 }
2075 }
2076 else
2077 {
2078 if (shndx >= this->shnum())
2079 {
2080 this->error(_("local symbol %u section index %u out of range"),
2081 r_sym, shndx);
2082 lv_out->set_output_value(0);
2083 return This::CFLV_ERROR;
2084 }
2085
2086 Output_section* os = out_sections[shndx];
2087 Address secoffset = out_offsets[shndx];
2088 if (symtab->is_section_folded(this, shndx))
2089 {
2090 gold_assert(os == NULL && secoffset == invalid_address);
2091 // Get the os of the section it is folded onto.
2092 Section_id folded = symtab->icf()->get_folded_section(this,
2093 shndx);
2094 gold_assert(folded.first != NULL);
2095 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2096 <Sized_relobj_file<size, big_endian>*>(folded.first);
2097 os = folded_obj->output_section(folded.second);
2098 gold_assert(os != NULL);
2099 secoffset = folded_obj->get_output_section_offset(folded.second);
2100
2101 // This could be a relaxed input section.
2102 if (secoffset == invalid_address)
2103 {
2104 const Output_relaxed_input_section* relaxed_section =
2105 os->find_relaxed_input_section(folded_obj, folded.second);
2106 gold_assert(relaxed_section != NULL);
2107 secoffset = relaxed_section->address() - os->address();
2108 }
2109 }
2110
2111 if (os == NULL)
2112 {
2113 // This local symbol belongs to a section we are discarding.
2114 // In some cases when applying relocations later, we will
2115 // attempt to match it to the corresponding kept section,
2116 // so we leave the input value unchanged here.
2117 return This::CFLV_DISCARDED;
2118 }
2119 else if (secoffset == invalid_address)
2120 {
2121 uint64_t start;
2122
2123 // This is a SHF_MERGE section or one which otherwise
2124 // requires special handling.
2125 if (shndx == this->discarded_eh_frame_shndx_)
2126 {
2127 // This local symbol belongs to a discarded .eh_frame
2128 // section. Just treat it like the case in which
2129 // os == NULL above.
2130 gold_assert(this->has_eh_frame_);
2131 return This::CFLV_DISCARDED;
2132 }
2133 else if (!lv_in->is_section_symbol())
2134 {
2135 // This is not a section symbol. We can determine
2136 // the final value now.
2137 lv_out->set_output_value(
2138 os->output_address(this, shndx, lv_in->input_value()));
2139 }
2140 else if (!os->find_starting_output_address(this, shndx, &start))
2141 {
2142 // This is a section symbol, but apparently not one in a
2143 // merged section. First check to see if this is a relaxed
2144 // input section. If so, use its address. Otherwise just
2145 // use the start of the output section. This happens with
2146 // relocatable links when the input object has section
2147 // symbols for arbitrary non-merge sections.
2148 const Output_section_data* posd =
2149 os->find_relaxed_input_section(this, shndx);
2150 if (posd != NULL)
2151 {
2152 Address relocatable_link_adjustment =
2153 relocatable ? os->address() : 0;
2154 lv_out->set_output_value(posd->address()
2155 - relocatable_link_adjustment);
2156 }
2157 else
2158 lv_out->set_output_value(os->address());
2159 }
2160 else
2161 {
2162 // We have to consider the addend to determine the
2163 // value to use in a relocation. START is the start
2164 // of this input section. If we are doing a relocatable
2165 // link, use offset from start output section instead of
2166 // address.
2167 Address adjusted_start =
2168 relocatable ? start - os->address() : start;
2169 Merged_symbol_value<size>* msv =
2170 new Merged_symbol_value<size>(lv_in->input_value(),
2171 adjusted_start);
2172 lv_out->set_merged_symbol_value(msv);
2173 }
2174 }
2175 else if (lv_in->is_tls_symbol())
2176 lv_out->set_output_value(os->tls_offset()
2177 + secoffset
2178 + lv_in->input_value());
2179 else
2180 lv_out->set_output_value((relocatable ? 0 : os->address())
2181 + secoffset
2182 + lv_in->input_value());
2183 }
2184 return This::CFLV_OK;
2185 }
2186
2187 // Compute final local symbol value. R_SYM is the index of a local
2188 // symbol in symbol table. LV points to a symbol value, which is
2189 // expected to hold the input value and to be over-written by the
2190 // final value. SYMTAB points to a symbol table. Some targets may want
2191 // to know would-be-finalized local symbol values in relaxation.
2192 // Hence we provide this method. Since this method updates *LV, a
2193 // callee should make a copy of the original local symbol value and
2194 // use the copy instead of modifying an object's local symbols before
2195 // everything is finalized. The caller should also free up any allocated
2196 // memory in the return value in *LV.
2197 template<int size, bool big_endian>
2198 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2199 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2200 unsigned int r_sym,
2201 const Symbol_value<size>* lv_in,
2202 Symbol_value<size>* lv_out,
2203 const Symbol_table* symtab)
2204 {
2205 // This is just a wrapper of compute_final_local_value_internal.
2206 const bool relocatable = parameters->options().relocatable();
2207 const Output_sections& out_sections(this->output_sections());
2208 const std::vector<Address>& out_offsets(this->section_offsets());
2209 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2210 relocatable, out_sections,
2211 out_offsets, symtab);
2212 }
2213
2214 // Finalize the local symbols. Here we set the final value in
2215 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2216 // This function is always called from a singleton thread. The actual
2217 // output of the local symbols will occur in a separate task.
2218
2219 template<int size, bool big_endian>
2220 unsigned int
2221 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2222 unsigned int index,
2223 off_t off,
2224 Symbol_table* symtab)
2225 {
2226 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2227
2228 const unsigned int loccount = this->local_symbol_count_;
2229 this->local_symbol_offset_ = off;
2230
2231 const bool relocatable = parameters->options().relocatable();
2232 const Output_sections& out_sections(this->output_sections());
2233 const std::vector<Address>& out_offsets(this->section_offsets());
2234
2235 for (unsigned int i = 1; i < loccount; ++i)
2236 {
2237 Symbol_value<size>* lv = &this->local_values_[i];
2238
2239 Compute_final_local_value_status cflv_status =
2240 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2241 out_sections, out_offsets,
2242 symtab);
2243 switch (cflv_status)
2244 {
2245 case CFLV_OK:
2246 if (!lv->is_output_symtab_index_set())
2247 {
2248 lv->set_output_symtab_index(index);
2249 ++index;
2250 }
2251 break;
2252 case CFLV_DISCARDED:
2253 case CFLV_ERROR:
2254 // Do nothing.
2255 break;
2256 default:
2257 gold_unreachable();
2258 }
2259 }
2260 return index;
2261 }
2262
2263 // Set the output dynamic symbol table indexes for the local variables.
2264
2265 template<int size, bool big_endian>
2266 unsigned int
2267 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2268 unsigned int index)
2269 {
2270 const unsigned int loccount = this->local_symbol_count_;
2271 for (unsigned int i = 1; i < loccount; ++i)
2272 {
2273 Symbol_value<size>& lv(this->local_values_[i]);
2274 if (lv.needs_output_dynsym_entry())
2275 {
2276 lv.set_output_dynsym_index(index);
2277 ++index;
2278 }
2279 }
2280 return index;
2281 }
2282
2283 // Set the offset where local dynamic symbol information will be stored.
2284 // Returns the count of local symbols contributed to the symbol table by
2285 // this object.
2286
2287 template<int size, bool big_endian>
2288 unsigned int
2289 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2290 {
2291 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2292 this->local_dynsym_offset_ = off;
2293 return this->output_local_dynsym_count_;
2294 }
2295
2296 // If Symbols_data is not NULL get the section flags from here otherwise
2297 // get it from the file.
2298
2299 template<int size, bool big_endian>
2300 uint64_t
2301 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2302 {
2303 Symbols_data* sd = this->get_symbols_data();
2304 if (sd != NULL)
2305 {
2306 const unsigned char* pshdrs = sd->section_headers_data
2307 + This::shdr_size * shndx;
2308 typename This::Shdr shdr(pshdrs);
2309 return shdr.get_sh_flags();
2310 }
2311 // If sd is NULL, read the section header from the file.
2312 return this->elf_file_.section_flags(shndx);
2313 }
2314
2315 // Get the section's ent size from Symbols_data. Called by get_section_contents
2316 // in icf.cc
2317
2318 template<int size, bool big_endian>
2319 uint64_t
2320 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2321 {
2322 Symbols_data* sd = this->get_symbols_data();
2323 gold_assert(sd != NULL);
2324
2325 const unsigned char* pshdrs = sd->section_headers_data
2326 + This::shdr_size * shndx;
2327 typename This::Shdr shdr(pshdrs);
2328 return shdr.get_sh_entsize();
2329 }
2330
2331 // Write out the local symbols.
2332
2333 template<int size, bool big_endian>
2334 void
2335 Sized_relobj_file<size, big_endian>::write_local_symbols(
2336 Output_file* of,
2337 const Stringpool* sympool,
2338 const Stringpool* dynpool,
2339 Output_symtab_xindex* symtab_xindex,
2340 Output_symtab_xindex* dynsym_xindex,
2341 off_t symtab_off)
2342 {
2343 const bool strip_all = parameters->options().strip_all();
2344 if (strip_all)
2345 {
2346 if (this->output_local_dynsym_count_ == 0)
2347 return;
2348 this->output_local_symbol_count_ = 0;
2349 }
2350
2351 gold_assert(this->symtab_shndx_ != -1U);
2352 if (this->symtab_shndx_ == 0)
2353 {
2354 // This object has no symbols. Weird but legal.
2355 return;
2356 }
2357
2358 // Read the symbol table section header.
2359 const unsigned int symtab_shndx = this->symtab_shndx_;
2360 typename This::Shdr symtabshdr(this,
2361 this->elf_file_.section_header(symtab_shndx));
2362 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2363 const unsigned int loccount = this->local_symbol_count_;
2364 gold_assert(loccount == symtabshdr.get_sh_info());
2365
2366 // Read the local symbols.
2367 const int sym_size = This::sym_size;
2368 off_t locsize = loccount * sym_size;
2369 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2370 locsize, true, false);
2371
2372 // Read the symbol names.
2373 const unsigned int strtab_shndx =
2374 this->adjust_shndx(symtabshdr.get_sh_link());
2375 section_size_type strtab_size;
2376 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2377 &strtab_size,
2378 false);
2379 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2380
2381 // Get views into the output file for the portions of the symbol table
2382 // and the dynamic symbol table that we will be writing.
2383 off_t output_size = this->output_local_symbol_count_ * sym_size;
2384 unsigned char* oview = NULL;
2385 if (output_size > 0)
2386 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2387 output_size);
2388
2389 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2390 unsigned char* dyn_oview = NULL;
2391 if (dyn_output_size > 0)
2392 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2393 dyn_output_size);
2394
2395 const Output_sections out_sections(this->output_sections());
2396
2397 gold_assert(this->local_values_.size() == loccount);
2398
2399 unsigned char* ov = oview;
2400 unsigned char* dyn_ov = dyn_oview;
2401 psyms += sym_size;
2402 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2403 {
2404 elfcpp::Sym<size, big_endian> isym(psyms);
2405
2406 Symbol_value<size>& lv(this->local_values_[i]);
2407
2408 bool is_ordinary;
2409 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2410 &is_ordinary);
2411 if (is_ordinary)
2412 {
2413 gold_assert(st_shndx < out_sections.size());
2414 if (out_sections[st_shndx] == NULL)
2415 continue;
2416 st_shndx = out_sections[st_shndx]->out_shndx();
2417 if (st_shndx >= elfcpp::SHN_LORESERVE)
2418 {
2419 if (lv.has_output_symtab_entry())
2420 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2421 if (lv.has_output_dynsym_entry())
2422 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2423 st_shndx = elfcpp::SHN_XINDEX;
2424 }
2425 }
2426
2427 // Write the symbol to the output symbol table.
2428 if (lv.has_output_symtab_entry())
2429 {
2430 elfcpp::Sym_write<size, big_endian> osym(ov);
2431
2432 gold_assert(isym.get_st_name() < strtab_size);
2433 const char* name = pnames + isym.get_st_name();
2434 osym.put_st_name(sympool->get_offset(name));
2435 osym.put_st_value(this->local_values_[i].value(this, 0));
2436 osym.put_st_size(isym.get_st_size());
2437 osym.put_st_info(isym.get_st_info());
2438 osym.put_st_other(isym.get_st_other());
2439 osym.put_st_shndx(st_shndx);
2440
2441 ov += sym_size;
2442 }
2443
2444 // Write the symbol to the output dynamic symbol table.
2445 if (lv.has_output_dynsym_entry())
2446 {
2447 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2448 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2449
2450 gold_assert(isym.get_st_name() < strtab_size);
2451 const char* name = pnames + isym.get_st_name();
2452 osym.put_st_name(dynpool->get_offset(name));
2453 osym.put_st_value(this->local_values_[i].value(this, 0));
2454 osym.put_st_size(isym.get_st_size());
2455 osym.put_st_info(isym.get_st_info());
2456 osym.put_st_other(isym.get_st_other());
2457 osym.put_st_shndx(st_shndx);
2458
2459 dyn_ov += sym_size;
2460 }
2461 }
2462
2463
2464 if (output_size > 0)
2465 {
2466 gold_assert(ov - oview == output_size);
2467 of->write_output_view(symtab_off + this->local_symbol_offset_,
2468 output_size, oview);
2469 }
2470
2471 if (dyn_output_size > 0)
2472 {
2473 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2474 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2475 dyn_oview);
2476 }
2477 }
2478
2479 // Set *INFO to symbolic information about the offset OFFSET in the
2480 // section SHNDX. Return true if we found something, false if we
2481 // found nothing.
2482
2483 template<int size, bool big_endian>
2484 bool
2485 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2486 unsigned int shndx,
2487 off_t offset,
2488 Symbol_location_info* info)
2489 {
2490 if (this->symtab_shndx_ == 0)
2491 return false;
2492
2493 section_size_type symbols_size;
2494 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2495 &symbols_size,
2496 false);
2497
2498 unsigned int symbol_names_shndx =
2499 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2500 section_size_type names_size;
2501 const unsigned char* symbol_names_u =
2502 this->section_contents(symbol_names_shndx, &names_size, false);
2503 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2504
2505 const int sym_size = This::sym_size;
2506 const size_t count = symbols_size / sym_size;
2507
2508 const unsigned char* p = symbols;
2509 for (size_t i = 0; i < count; ++i, p += sym_size)
2510 {
2511 elfcpp::Sym<size, big_endian> sym(p);
2512
2513 if (sym.get_st_type() == elfcpp::STT_FILE)
2514 {
2515 if (sym.get_st_name() >= names_size)
2516 info->source_file = "(invalid)";
2517 else
2518 info->source_file = symbol_names + sym.get_st_name();
2519 continue;
2520 }
2521
2522 bool is_ordinary;
2523 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2524 &is_ordinary);
2525 if (is_ordinary
2526 && st_shndx == shndx
2527 && static_cast<off_t>(sym.get_st_value()) <= offset
2528 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2529 > offset))
2530 {
2531 if (sym.get_st_name() > names_size)
2532 info->enclosing_symbol_name = "(invalid)";
2533 else
2534 {
2535 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2536 if (parameters->options().do_demangle())
2537 {
2538 char* demangled_name = cplus_demangle(
2539 info->enclosing_symbol_name.c_str(),
2540 DMGL_ANSI | DMGL_PARAMS);
2541 if (demangled_name != NULL)
2542 {
2543 info->enclosing_symbol_name.assign(demangled_name);
2544 free(demangled_name);
2545 }
2546 }
2547 }
2548 return true;
2549 }
2550 }
2551
2552 return false;
2553 }
2554
2555 // Look for a kept section corresponding to the given discarded section,
2556 // and return its output address. This is used only for relocations in
2557 // debugging sections. If we can't find the kept section, return 0.
2558
2559 template<int size, bool big_endian>
2560 typename Sized_relobj_file<size, big_endian>::Address
2561 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2562 unsigned int shndx,
2563 bool* found) const
2564 {
2565 Relobj* kept_object;
2566 unsigned int kept_shndx;
2567 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2568 {
2569 Sized_relobj_file<size, big_endian>* kept_relobj =
2570 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2571 Output_section* os = kept_relobj->output_section(kept_shndx);
2572 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2573 if (os != NULL && offset != invalid_address)
2574 {
2575 *found = true;
2576 return os->address() + offset;
2577 }
2578 }
2579 *found = false;
2580 return 0;
2581 }
2582
2583 // Get symbol counts.
2584
2585 template<int size, bool big_endian>
2586 void
2587 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2588 const Symbol_table*,
2589 size_t* defined,
2590 size_t* used) const
2591 {
2592 *defined = this->defined_count_;
2593 size_t count = 0;
2594 for (typename Symbols::const_iterator p = this->symbols_.begin();
2595 p != this->symbols_.end();
2596 ++p)
2597 if (*p != NULL
2598 && (*p)->source() == Symbol::FROM_OBJECT
2599 && (*p)->object() == this
2600 && (*p)->is_defined())
2601 ++count;
2602 *used = count;
2603 }
2604
2605 // Return a view of the decompressed contents of a section. Set *PLEN
2606 // to the size. Set *IS_NEW to true if the contents need to be freed
2607 // by the caller.
2608
2609 template<int size, bool big_endian>
2610 const unsigned char*
2611 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2612 unsigned int shndx,
2613 section_size_type* plen,
2614 bool* is_new)
2615 {
2616 section_size_type buffer_size;
2617 const unsigned char* buffer = this->section_contents(shndx, &buffer_size,
2618 false);
2619
2620 if (this->compressed_sections_ == NULL)
2621 {
2622 *plen = buffer_size;
2623 *is_new = false;
2624 return buffer;
2625 }
2626
2627 Compressed_section_map::const_iterator p =
2628 this->compressed_sections_->find(shndx);
2629 if (p == this->compressed_sections_->end())
2630 {
2631 *plen = buffer_size;
2632 *is_new = false;
2633 return buffer;
2634 }
2635
2636 section_size_type uncompressed_size = p->second.size;
2637 if (p->second.contents != NULL)
2638 {
2639 *plen = uncompressed_size;
2640 *is_new = false;
2641 return p->second.contents;
2642 }
2643
2644 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2645 if (!decompress_input_section(buffer,
2646 buffer_size,
2647 uncompressed_data,
2648 uncompressed_size))
2649 this->error(_("could not decompress section %s"),
2650 this->do_section_name(shndx).c_str());
2651
2652 // We could cache the results in p->second.contents and store
2653 // false in *IS_NEW, but build_compressed_section_map() would
2654 // have done so if it had expected it to be profitable. If
2655 // we reach this point, we expect to need the contents only
2656 // once in this pass.
2657 *plen = uncompressed_size;
2658 *is_new = true;
2659 return uncompressed_data;
2660 }
2661
2662 // Discard any buffers of uncompressed sections. This is done
2663 // at the end of the Add_symbols task.
2664
2665 template<int size, bool big_endian>
2666 void
2667 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2668 {
2669 if (this->compressed_sections_ == NULL)
2670 return;
2671
2672 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2673 p != this->compressed_sections_->end();
2674 ++p)
2675 {
2676 if (p->second.contents != NULL)
2677 {
2678 delete[] p->second.contents;
2679 p->second.contents = NULL;
2680 }
2681 }
2682 }
2683
2684 // Input_objects methods.
2685
2686 // Add a regular relocatable object to the list. Return false if this
2687 // object should be ignored.
2688
2689 bool
2690 Input_objects::add_object(Object* obj)
2691 {
2692 // Print the filename if the -t/--trace option is selected.
2693 if (parameters->options().trace())
2694 gold_info("%s", obj->name().c_str());
2695
2696 if (!obj->is_dynamic())
2697 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2698 else
2699 {
2700 // See if this is a duplicate SONAME.
2701 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2702 const char* soname = dynobj->soname();
2703
2704 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2705 this->sonames_.insert(soname);
2706 if (!ins.second)
2707 {
2708 // We have already seen a dynamic object with this soname.
2709 return false;
2710 }
2711
2712 this->dynobj_list_.push_back(dynobj);
2713 }
2714
2715 // Add this object to the cross-referencer if requested.
2716 if (parameters->options().user_set_print_symbol_counts()
2717 || parameters->options().cref())
2718 {
2719 if (this->cref_ == NULL)
2720 this->cref_ = new Cref();
2721 this->cref_->add_object(obj);
2722 }
2723
2724 return true;
2725 }
2726
2727 // For each dynamic object, record whether we've seen all of its
2728 // explicit dependencies.
2729
2730 void
2731 Input_objects::check_dynamic_dependencies() const
2732 {
2733 bool issued_copy_dt_needed_error = false;
2734 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2735 p != this->dynobj_list_.end();
2736 ++p)
2737 {
2738 const Dynobj::Needed& needed((*p)->needed());
2739 bool found_all = true;
2740 Dynobj::Needed::const_iterator pneeded;
2741 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2742 {
2743 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2744 {
2745 found_all = false;
2746 break;
2747 }
2748 }
2749 (*p)->set_has_unknown_needed_entries(!found_all);
2750
2751 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2752 // that gold does not support. However, they cause no trouble
2753 // unless there is a DT_NEEDED entry that we don't know about;
2754 // warn only in that case.
2755 if (!found_all
2756 && !issued_copy_dt_needed_error
2757 && (parameters->options().copy_dt_needed_entries()
2758 || parameters->options().add_needed()))
2759 {
2760 const char* optname;
2761 if (parameters->options().copy_dt_needed_entries())
2762 optname = "--copy-dt-needed-entries";
2763 else
2764 optname = "--add-needed";
2765 gold_error(_("%s is not supported but is required for %s in %s"),
2766 optname, (*pneeded).c_str(), (*p)->name().c_str());
2767 issued_copy_dt_needed_error = true;
2768 }
2769 }
2770 }
2771
2772 // Start processing an archive.
2773
2774 void
2775 Input_objects::archive_start(Archive* archive)
2776 {
2777 if (parameters->options().user_set_print_symbol_counts()
2778 || parameters->options().cref())
2779 {
2780 if (this->cref_ == NULL)
2781 this->cref_ = new Cref();
2782 this->cref_->add_archive_start(archive);
2783 }
2784 }
2785
2786 // Stop processing an archive.
2787
2788 void
2789 Input_objects::archive_stop(Archive* archive)
2790 {
2791 if (parameters->options().user_set_print_symbol_counts()
2792 || parameters->options().cref())
2793 this->cref_->add_archive_stop(archive);
2794 }
2795
2796 // Print symbol counts
2797
2798 void
2799 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2800 {
2801 if (parameters->options().user_set_print_symbol_counts()
2802 && this->cref_ != NULL)
2803 this->cref_->print_symbol_counts(symtab);
2804 }
2805
2806 // Print a cross reference table.
2807
2808 void
2809 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2810 {
2811 if (parameters->options().cref() && this->cref_ != NULL)
2812 this->cref_->print_cref(symtab, f);
2813 }
2814
2815 // Relocate_info methods.
2816
2817 // Return a string describing the location of a relocation when file
2818 // and lineno information is not available. This is only used in
2819 // error messages.
2820
2821 template<int size, bool big_endian>
2822 std::string
2823 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2824 {
2825 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2826 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2827 if (!ret.empty())
2828 return ret;
2829
2830 ret = this->object->name();
2831
2832 Symbol_location_info info;
2833 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2834 {
2835 if (!info.source_file.empty())
2836 {
2837 ret += ":";
2838 ret += info.source_file;
2839 }
2840 size_t len = info.enclosing_symbol_name.length() + 100;
2841 char* buf = new char[len];
2842 snprintf(buf, len, _(":function %s"),
2843 info.enclosing_symbol_name.c_str());
2844 ret += buf;
2845 delete[] buf;
2846 return ret;
2847 }
2848
2849 ret += "(";
2850 ret += this->object->section_name(this->data_shndx);
2851 char buf[100];
2852 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2853 ret += buf;
2854 return ret;
2855 }
2856
2857 } // End namespace gold.
2858
2859 namespace
2860 {
2861
2862 using namespace gold;
2863
2864 // Read an ELF file with the header and return the appropriate
2865 // instance of Object.
2866
2867 template<int size, bool big_endian>
2868 Object*
2869 make_elf_sized_object(const std::string& name, Input_file* input_file,
2870 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2871 bool* punconfigured)
2872 {
2873 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2874 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2875 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2876 if (target == NULL)
2877 gold_fatal(_("%s: unsupported ELF machine number %d"),
2878 name.c_str(), ehdr.get_e_machine());
2879
2880 if (!parameters->target_valid())
2881 set_parameters_target(target);
2882 else if (target != &parameters->target())
2883 {
2884 if (punconfigured != NULL)
2885 *punconfigured = true;
2886 else
2887 gold_error(_("%s: incompatible target"), name.c_str());
2888 return NULL;
2889 }
2890
2891 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2892 ehdr);
2893 }
2894
2895 } // End anonymous namespace.
2896
2897 namespace gold
2898 {
2899
2900 // Return whether INPUT_FILE is an ELF object.
2901
2902 bool
2903 is_elf_object(Input_file* input_file, off_t offset,
2904 const unsigned char** start, int* read_size)
2905 {
2906 off_t filesize = input_file->file().filesize();
2907 int want = elfcpp::Elf_recognizer::max_header_size;
2908 if (filesize - offset < want)
2909 want = filesize - offset;
2910
2911 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2912 true, false);
2913 *start = p;
2914 *read_size = want;
2915
2916 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2917 }
2918
2919 // Read an ELF file and return the appropriate instance of Object.
2920
2921 Object*
2922 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2923 const unsigned char* p, section_offset_type bytes,
2924 bool* punconfigured)
2925 {
2926 if (punconfigured != NULL)
2927 *punconfigured = false;
2928
2929 std::string error;
2930 bool big_endian = false;
2931 int size = 0;
2932 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2933 &big_endian, &error))
2934 {
2935 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2936 return NULL;
2937 }
2938
2939 if (size == 32)
2940 {
2941 if (big_endian)
2942 {
2943 #ifdef HAVE_TARGET_32_BIG
2944 elfcpp::Ehdr<32, true> ehdr(p);
2945 return make_elf_sized_object<32, true>(name, input_file,
2946 offset, ehdr, punconfigured);
2947 #else
2948 if (punconfigured != NULL)
2949 *punconfigured = true;
2950 else
2951 gold_error(_("%s: not configured to support "
2952 "32-bit big-endian object"),
2953 name.c_str());
2954 return NULL;
2955 #endif
2956 }
2957 else
2958 {
2959 #ifdef HAVE_TARGET_32_LITTLE
2960 elfcpp::Ehdr<32, false> ehdr(p);
2961 return make_elf_sized_object<32, false>(name, input_file,
2962 offset, ehdr, punconfigured);
2963 #else
2964 if (punconfigured != NULL)
2965 *punconfigured = true;
2966 else
2967 gold_error(_("%s: not configured to support "
2968 "32-bit little-endian object"),
2969 name.c_str());
2970 return NULL;
2971 #endif
2972 }
2973 }
2974 else if (size == 64)
2975 {
2976 if (big_endian)
2977 {
2978 #ifdef HAVE_TARGET_64_BIG
2979 elfcpp::Ehdr<64, true> ehdr(p);
2980 return make_elf_sized_object<64, true>(name, input_file,
2981 offset, ehdr, punconfigured);
2982 #else
2983 if (punconfigured != NULL)
2984 *punconfigured = true;
2985 else
2986 gold_error(_("%s: not configured to support "
2987 "64-bit big-endian object"),
2988 name.c_str());
2989 return NULL;
2990 #endif
2991 }
2992 else
2993 {
2994 #ifdef HAVE_TARGET_64_LITTLE
2995 elfcpp::Ehdr<64, false> ehdr(p);
2996 return make_elf_sized_object<64, false>(name, input_file,
2997 offset, ehdr, punconfigured);
2998 #else
2999 if (punconfigured != NULL)
3000 *punconfigured = true;
3001 else
3002 gold_error(_("%s: not configured to support "
3003 "64-bit little-endian object"),
3004 name.c_str());
3005 return NULL;
3006 #endif
3007 }
3008 }
3009 else
3010 gold_unreachable();
3011 }
3012
3013 // Instantiate the templates we need.
3014
3015 #ifdef HAVE_TARGET_32_LITTLE
3016 template
3017 void
3018 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3019 Read_symbols_data*);
3020 #endif
3021
3022 #ifdef HAVE_TARGET_32_BIG
3023 template
3024 void
3025 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3026 Read_symbols_data*);
3027 #endif
3028
3029 #ifdef HAVE_TARGET_64_LITTLE
3030 template
3031 void
3032 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3033 Read_symbols_data*);
3034 #endif
3035
3036 #ifdef HAVE_TARGET_64_BIG
3037 template
3038 void
3039 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3040 Read_symbols_data*);
3041 #endif
3042
3043 #ifdef HAVE_TARGET_32_LITTLE
3044 template
3045 class Sized_relobj_file<32, false>;
3046 #endif
3047
3048 #ifdef HAVE_TARGET_32_BIG
3049 template
3050 class Sized_relobj_file<32, true>;
3051 #endif
3052
3053 #ifdef HAVE_TARGET_64_LITTLE
3054 template
3055 class Sized_relobj_file<64, false>;
3056 #endif
3057
3058 #ifdef HAVE_TARGET_64_BIG
3059 template
3060 class Sized_relobj_file<64, true>;
3061 #endif
3062
3063 #ifdef HAVE_TARGET_32_LITTLE
3064 template
3065 struct Relocate_info<32, false>;
3066 #endif
3067
3068 #ifdef HAVE_TARGET_32_BIG
3069 template
3070 struct Relocate_info<32, true>;
3071 #endif
3072
3073 #ifdef HAVE_TARGET_64_LITTLE
3074 template
3075 struct Relocate_info<64, false>;
3076 #endif
3077
3078 #ifdef HAVE_TARGET_64_BIG
3079 template
3080 struct Relocate_info<64, true>;
3081 #endif
3082
3083 #ifdef HAVE_TARGET_32_LITTLE
3084 template
3085 void
3086 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3087
3088 template
3089 void
3090 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3091 const unsigned char*);
3092 #endif
3093
3094 #ifdef HAVE_TARGET_32_BIG
3095 template
3096 void
3097 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3098
3099 template
3100 void
3101 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3102 const unsigned char*);
3103 #endif
3104
3105 #ifdef HAVE_TARGET_64_LITTLE
3106 template
3107 void
3108 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3109
3110 template
3111 void
3112 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3113 const unsigned char*);
3114 #endif
3115
3116 #ifdef HAVE_TARGET_64_BIG
3117 template
3118 void
3119 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3120
3121 template
3122 void
3123 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3124 const unsigned char*);
3125 #endif
3126
3127 } // End namespace gold.
This page took 0.109321 seconds and 5 git commands to generate.