* incremental.cc (can_incremental_update): New function.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 this->e_type_ = ehdr.get_e_type();
425 }
426
427 template<int size, bool big_endian>
428 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
429 {
430 }
431
432 // Set up an object file based on the file header. This sets up the
433 // section information.
434
435 template<int size, bool big_endian>
436 void
437 Sized_relobj_file<size, big_endian>::do_setup()
438 {
439 const unsigned int shnum = this->elf_file_.shnum();
440 this->set_shnum(shnum);
441 }
442
443 // Find the SHT_SYMTAB section, given the section headers. The ELF
444 // standard says that maybe in the future there can be more than one
445 // SHT_SYMTAB section. Until somebody figures out how that could
446 // work, we assume there is only one.
447
448 template<int size, bool big_endian>
449 void
450 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
451 {
452 const unsigned int shnum = this->shnum();
453 this->symtab_shndx_ = 0;
454 if (shnum > 0)
455 {
456 // Look through the sections in reverse order, since gas tends
457 // to put the symbol table at the end.
458 const unsigned char* p = pshdrs + shnum * This::shdr_size;
459 unsigned int i = shnum;
460 unsigned int xindex_shndx = 0;
461 unsigned int xindex_link = 0;
462 while (i > 0)
463 {
464 --i;
465 p -= This::shdr_size;
466 typename This::Shdr shdr(p);
467 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
468 {
469 this->symtab_shndx_ = i;
470 if (xindex_shndx > 0 && xindex_link == i)
471 {
472 Xindex* xindex =
473 new Xindex(this->elf_file_.large_shndx_offset());
474 xindex->read_symtab_xindex<size, big_endian>(this,
475 xindex_shndx,
476 pshdrs);
477 this->set_xindex(xindex);
478 }
479 break;
480 }
481
482 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
483 // one. This will work if it follows the SHT_SYMTAB
484 // section.
485 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
486 {
487 xindex_shndx = i;
488 xindex_link = this->adjust_shndx(shdr.get_sh_link());
489 }
490 }
491 }
492 }
493
494 // Return the Xindex structure to use for object with lots of
495 // sections.
496
497 template<int size, bool big_endian>
498 Xindex*
499 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
500 {
501 gold_assert(this->symtab_shndx_ != -1U);
502 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
503 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
504 return xindex;
505 }
506
507 // Return whether SHDR has the right type and flags to be a GNU
508 // .eh_frame section.
509
510 template<int size, bool big_endian>
511 bool
512 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
513 const elfcpp::Shdr<size, big_endian>* shdr) const
514 {
515 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
516 return ((sh_type == elfcpp::SHT_PROGBITS
517 || sh_type == elfcpp::SHT_X86_64_UNWIND)
518 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
519 }
520
521 // Return whether there is a GNU .eh_frame section, given the section
522 // headers and the section names.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::find_eh_frame(
527 const unsigned char* pshdrs,
528 const char* names,
529 section_size_type names_size) const
530 {
531 const unsigned int shnum = this->shnum();
532 const unsigned char* p = pshdrs + This::shdr_size;
533 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
534 {
535 typename This::Shdr shdr(p);
536 if (this->check_eh_frame_flags(&shdr))
537 {
538 if (shdr.get_sh_name() >= names_size)
539 {
540 this->error(_("bad section name offset for section %u: %lu"),
541 i, static_cast<unsigned long>(shdr.get_sh_name()));
542 continue;
543 }
544
545 const char* name = names + shdr.get_sh_name();
546 if (strcmp(name, ".eh_frame") == 0)
547 return true;
548 }
549 }
550 return false;
551 }
552
553 // Build a table for any compressed debug sections, mapping each section index
554 // to the uncompressed size.
555
556 template<int size, bool big_endian>
557 Compressed_section_map*
558 build_compressed_section_map(
559 const unsigned char* pshdrs,
560 unsigned int shnum,
561 const char* names,
562 section_size_type names_size,
563 Sized_relobj_file<size, big_endian>* obj)
564 {
565 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
566 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
567 const unsigned char* p = pshdrs + shdr_size;
568 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
569 {
570 typename elfcpp::Shdr<size, big_endian> shdr(p);
571 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
572 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573 {
574 if (shdr.get_sh_name() >= names_size)
575 {
576 obj->error(_("bad section name offset for section %u: %lu"),
577 i, static_cast<unsigned long>(shdr.get_sh_name()));
578 continue;
579 }
580
581 const char* name = names + shdr.get_sh_name();
582 if (is_compressed_debug_section(name))
583 {
584 section_size_type len;
585 const unsigned char* contents =
586 obj->section_contents(i, &len, false);
587 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
588 if (uncompressed_size != -1ULL)
589 (*uncompressed_sizes)[i] =
590 convert_to_section_size_type(uncompressed_size);
591 }
592 }
593 }
594 return uncompressed_sizes;
595 }
596
597 // Read the sections and symbols from an object file.
598
599 template<int size, bool big_endian>
600 void
601 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
602 {
603 this->read_section_data(&this->elf_file_, sd);
604
605 const unsigned char* const pshdrs = sd->section_headers->data();
606
607 this->find_symtab(pshdrs);
608
609 const unsigned char* namesu = sd->section_names->data();
610 const char* names = reinterpret_cast<const char*>(namesu);
611 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
612 {
613 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
614 this->has_eh_frame_ = true;
615 }
616 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
617 this->compressed_sections_ =
618 build_compressed_section_map(pshdrs, this->shnum(), names,
619 sd->section_names_size, this);
620
621 sd->symbols = NULL;
622 sd->symbols_size = 0;
623 sd->external_symbols_offset = 0;
624 sd->symbol_names = NULL;
625 sd->symbol_names_size = 0;
626
627 if (this->symtab_shndx_ == 0)
628 {
629 // No symbol table. Weird but legal.
630 return;
631 }
632
633 // Get the symbol table section header.
634 typename This::Shdr symtabshdr(pshdrs
635 + this->symtab_shndx_ * This::shdr_size);
636 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
637
638 // If this object has a .eh_frame section, we need all the symbols.
639 // Otherwise we only need the external symbols. While it would be
640 // simpler to just always read all the symbols, I've seen object
641 // files with well over 2000 local symbols, which for a 64-bit
642 // object file format is over 5 pages that we don't need to read
643 // now.
644
645 const int sym_size = This::sym_size;
646 const unsigned int loccount = symtabshdr.get_sh_info();
647 this->local_symbol_count_ = loccount;
648 this->local_values_.resize(loccount);
649 section_offset_type locsize = loccount * sym_size;
650 off_t dataoff = symtabshdr.get_sh_offset();
651 section_size_type datasize =
652 convert_to_section_size_type(symtabshdr.get_sh_size());
653 off_t extoff = dataoff + locsize;
654 section_size_type extsize = datasize - locsize;
655
656 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
657 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
658
659 if (readsize == 0)
660 {
661 // No external symbols. Also weird but also legal.
662 return;
663 }
664
665 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
666
667 // Read the section header for the symbol names.
668 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
669 if (strtab_shndx >= this->shnum())
670 {
671 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
672 return;
673 }
674 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
675 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
676 {
677 this->error(_("symbol table name section has wrong type: %u"),
678 static_cast<unsigned int>(strtabshdr.get_sh_type()));
679 return;
680 }
681
682 // Read the symbol names.
683 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
684 strtabshdr.get_sh_size(),
685 false, true);
686
687 sd->symbols = fvsymtab;
688 sd->symbols_size = readsize;
689 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
690 sd->symbol_names = fvstrtab;
691 sd->symbol_names_size =
692 convert_to_section_size_type(strtabshdr.get_sh_size());
693 }
694
695 // Return the section index of symbol SYM. Set *VALUE to its value in
696 // the object file. Set *IS_ORDINARY if this is an ordinary section
697 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
698 // Note that for a symbol which is not defined in this object file,
699 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
700 // the final value of the symbol in the link.
701
702 template<int size, bool big_endian>
703 unsigned int
704 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
705 Address* value,
706 bool* is_ordinary)
707 {
708 section_size_type symbols_size;
709 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
710 &symbols_size,
711 false);
712
713 const size_t count = symbols_size / This::sym_size;
714 gold_assert(sym < count);
715
716 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
717 *value = elfsym.get_st_value();
718
719 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
720 }
721
722 // Return whether to include a section group in the link. LAYOUT is
723 // used to keep track of which section groups we have already seen.
724 // INDEX is the index of the section group and SHDR is the section
725 // header. If we do not want to include this group, we set bits in
726 // OMIT for each section which should be discarded.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::include_section_group(
731 Symbol_table* symtab,
732 Layout* layout,
733 unsigned int index,
734 const char* name,
735 const unsigned char* shdrs,
736 const char* section_names,
737 section_size_type section_names_size,
738 std::vector<bool>* omit)
739 {
740 // Read the section contents.
741 typename This::Shdr shdr(shdrs + index * This::shdr_size);
742 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
743 shdr.get_sh_size(), true, false);
744 const elfcpp::Elf_Word* pword =
745 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
746
747 // The first word contains flags. We only care about COMDAT section
748 // groups. Other section groups are always included in the link
749 // just like ordinary sections.
750 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
751
752 // Look up the group signature, which is the name of a symbol. ELF
753 // uses a symbol name because some group signatures are long, and
754 // the name is generally already in the symbol table, so it makes
755 // sense to put the long string just once in .strtab rather than in
756 // both .strtab and .shstrtab.
757
758 // Get the appropriate symbol table header (this will normally be
759 // the single SHT_SYMTAB section, but in principle it need not be).
760 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
761 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
762
763 // Read the symbol table entry.
764 unsigned int symndx = shdr.get_sh_info();
765 if (symndx >= symshdr.get_sh_size() / This::sym_size)
766 {
767 this->error(_("section group %u info %u out of range"),
768 index, symndx);
769 return false;
770 }
771 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
772 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
773 false);
774 elfcpp::Sym<size, big_endian> sym(psym);
775
776 // Read the symbol table names.
777 section_size_type symnamelen;
778 const unsigned char* psymnamesu;
779 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
780 &symnamelen, true);
781 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
782
783 // Get the section group signature.
784 if (sym.get_st_name() >= symnamelen)
785 {
786 this->error(_("symbol %u name offset %u out of range"),
787 symndx, sym.get_st_name());
788 return false;
789 }
790
791 std::string signature(psymnames + sym.get_st_name());
792
793 // It seems that some versions of gas will create a section group
794 // associated with a section symbol, and then fail to give a name to
795 // the section symbol. In such a case, use the name of the section.
796 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
797 {
798 bool is_ordinary;
799 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
800 sym.get_st_shndx(),
801 &is_ordinary);
802 if (!is_ordinary || sym_shndx >= this->shnum())
803 {
804 this->error(_("symbol %u invalid section index %u"),
805 symndx, sym_shndx);
806 return false;
807 }
808 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
809 if (member_shdr.get_sh_name() < section_names_size)
810 signature = section_names + member_shdr.get_sh_name();
811 }
812
813 // Record this section group in the layout, and see whether we've already
814 // seen one with the same signature.
815 bool include_group;
816 bool is_comdat;
817 Kept_section* kept_section = NULL;
818
819 if ((flags & elfcpp::GRP_COMDAT) == 0)
820 {
821 include_group = true;
822 is_comdat = false;
823 }
824 else
825 {
826 include_group = layout->find_or_add_kept_section(signature,
827 this, index, true,
828 true, &kept_section);
829 is_comdat = true;
830 }
831
832 if (is_comdat && include_group)
833 {
834 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
835 if (incremental_inputs != NULL)
836 incremental_inputs->report_comdat_group(this, signature.c_str());
837 }
838
839 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
840
841 std::vector<unsigned int> shndxes;
842 bool relocate_group = include_group && parameters->options().relocatable();
843 if (relocate_group)
844 shndxes.reserve(count - 1);
845
846 for (size_t i = 1; i < count; ++i)
847 {
848 elfcpp::Elf_Word shndx =
849 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
850
851 if (relocate_group)
852 shndxes.push_back(shndx);
853
854 if (shndx >= this->shnum())
855 {
856 this->error(_("section %u in section group %u out of range"),
857 shndx, index);
858 continue;
859 }
860
861 // Check for an earlier section number, since we're going to get
862 // it wrong--we may have already decided to include the section.
863 if (shndx < index)
864 this->error(_("invalid section group %u refers to earlier section %u"),
865 index, shndx);
866
867 // Get the name of the member section.
868 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
869 if (member_shdr.get_sh_name() >= section_names_size)
870 {
871 // This is an error, but it will be diagnosed eventually
872 // in do_layout, so we don't need to do anything here but
873 // ignore it.
874 continue;
875 }
876 std::string mname(section_names + member_shdr.get_sh_name());
877
878 if (include_group)
879 {
880 if (is_comdat)
881 kept_section->add_comdat_section(mname, shndx,
882 member_shdr.get_sh_size());
883 }
884 else
885 {
886 (*omit)[shndx] = true;
887
888 if (is_comdat)
889 {
890 Relobj* kept_object = kept_section->object();
891 if (kept_section->is_comdat())
892 {
893 // Find the corresponding kept section, and store
894 // that info in the discarded section table.
895 unsigned int kept_shndx;
896 uint64_t kept_size;
897 if (kept_section->find_comdat_section(mname, &kept_shndx,
898 &kept_size))
899 {
900 // We don't keep a mapping for this section if
901 // it has a different size. The mapping is only
902 // used for relocation processing, and we don't
903 // want to treat the sections as similar if the
904 // sizes are different. Checking the section
905 // size is the approach used by the GNU linker.
906 if (kept_size == member_shdr.get_sh_size())
907 this->set_kept_comdat_section(shndx, kept_object,
908 kept_shndx);
909 }
910 }
911 else
912 {
913 // The existing section is a linkonce section. Add
914 // a mapping if there is exactly one section in the
915 // group (which is true when COUNT == 2) and if it
916 // is the same size.
917 if (count == 2
918 && (kept_section->linkonce_size()
919 == member_shdr.get_sh_size()))
920 this->set_kept_comdat_section(shndx, kept_object,
921 kept_section->shndx());
922 }
923 }
924 }
925 }
926
927 if (relocate_group)
928 layout->layout_group(symtab, this, index, name, signature.c_str(),
929 shdr, flags, &shndxes);
930
931 return include_group;
932 }
933
934 // Whether to include a linkonce section in the link. NAME is the
935 // name of the section and SHDR is the section header.
936
937 // Linkonce sections are a GNU extension implemented in the original
938 // GNU linker before section groups were defined. The semantics are
939 // that we only include one linkonce section with a given name. The
940 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
941 // where T is the type of section and SYMNAME is the name of a symbol.
942 // In an attempt to make linkonce sections interact well with section
943 // groups, we try to identify SYMNAME and use it like a section group
944 // signature. We want to block section groups with that signature,
945 // but not other linkonce sections with that signature. We also use
946 // the full name of the linkonce section as a normal section group
947 // signature.
948
949 template<int size, bool big_endian>
950 bool
951 Sized_relobj_file<size, big_endian>::include_linkonce_section(
952 Layout* layout,
953 unsigned int index,
954 const char* name,
955 const elfcpp::Shdr<size, big_endian>& shdr)
956 {
957 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
958 // In general the symbol name we want will be the string following
959 // the last '.'. However, we have to handle the case of
960 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
961 // some versions of gcc. So we use a heuristic: if the name starts
962 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
963 // we look for the last '.'. We can't always simply skip
964 // ".gnu.linkonce.X", because we have to deal with cases like
965 // ".gnu.linkonce.d.rel.ro.local".
966 const char* const linkonce_t = ".gnu.linkonce.t.";
967 const char* symname;
968 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
969 symname = name + strlen(linkonce_t);
970 else
971 symname = strrchr(name, '.') + 1;
972 std::string sig1(symname);
973 std::string sig2(name);
974 Kept_section* kept1;
975 Kept_section* kept2;
976 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
977 false, &kept1);
978 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
979 true, &kept2);
980
981 if (!include2)
982 {
983 // We are not including this section because we already saw the
984 // name of the section as a signature. This normally implies
985 // that the kept section is another linkonce section. If it is
986 // the same size, record it as the section which corresponds to
987 // this one.
988 if (kept2->object() != NULL
989 && !kept2->is_comdat()
990 && kept2->linkonce_size() == sh_size)
991 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
992 }
993 else if (!include1)
994 {
995 // The section is being discarded on the basis of its symbol
996 // name. This means that the corresponding kept section was
997 // part of a comdat group, and it will be difficult to identify
998 // the specific section within that group that corresponds to
999 // this linkonce section. We'll handle the simple case where
1000 // the group has only one member section. Otherwise, it's not
1001 // worth the effort.
1002 unsigned int kept_shndx;
1003 uint64_t kept_size;
1004 if (kept1->object() != NULL
1005 && kept1->is_comdat()
1006 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1007 && kept_size == sh_size)
1008 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1009 }
1010 else
1011 {
1012 kept1->set_linkonce_size(sh_size);
1013 kept2->set_linkonce_size(sh_size);
1014 }
1015
1016 return include1 && include2;
1017 }
1018
1019 // Layout an input section.
1020
1021 template<int size, bool big_endian>
1022 inline void
1023 Sized_relobj_file<size, big_endian>::layout_section(
1024 Layout* layout,
1025 unsigned int shndx,
1026 const char* name,
1027 const typename This::Shdr& shdr,
1028 unsigned int reloc_shndx,
1029 unsigned int reloc_type)
1030 {
1031 off_t offset;
1032 Output_section* os = layout->layout(this, shndx, name, shdr,
1033 reloc_shndx, reloc_type, &offset);
1034
1035 this->output_sections()[shndx] = os;
1036 if (offset == -1)
1037 this->section_offsets()[shndx] = invalid_address;
1038 else
1039 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1040
1041 // If this section requires special handling, and if there are
1042 // relocs that apply to it, then we must do the special handling
1043 // before we apply the relocs.
1044 if (offset == -1 && reloc_shndx != 0)
1045 this->set_relocs_must_follow_section_writes();
1046 }
1047
1048 // Layout an input .eh_frame section.
1049
1050 template<int size, bool big_endian>
1051 void
1052 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1053 Layout* layout,
1054 const unsigned char* symbols_data,
1055 section_size_type symbols_size,
1056 const unsigned char* symbol_names_data,
1057 section_size_type symbol_names_size,
1058 unsigned int shndx,
1059 const typename This::Shdr& shdr,
1060 unsigned int reloc_shndx,
1061 unsigned int reloc_type)
1062 {
1063 gold_assert(this->has_eh_frame_);
1064
1065 off_t offset;
1066 Output_section* os = layout->layout_eh_frame(this,
1067 symbols_data,
1068 symbols_size,
1069 symbol_names_data,
1070 symbol_names_size,
1071 shndx,
1072 shdr,
1073 reloc_shndx,
1074 reloc_type,
1075 &offset);
1076 this->output_sections()[shndx] = os;
1077 if (os == NULL || offset == -1)
1078 {
1079 // An object can contain at most one section holding exception
1080 // frame information.
1081 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1082 this->discarded_eh_frame_shndx_ = shndx;
1083 this->section_offsets()[shndx] = invalid_address;
1084 }
1085 else
1086 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1087
1088 // If this section requires special handling, and if there are
1089 // relocs that aply to it, then we must do the special handling
1090 // before we apply the relocs.
1091 if (os != NULL && offset == -1 && reloc_shndx != 0)
1092 this->set_relocs_must_follow_section_writes();
1093 }
1094
1095 // Lay out the input sections. We walk through the sections and check
1096 // whether they should be included in the link. If they should, we
1097 // pass them to the Layout object, which will return an output section
1098 // and an offset.
1099 // During garbage collection (--gc-sections) and identical code folding
1100 // (--icf), this function is called twice. When it is called the first
1101 // time, it is for setting up some sections as roots to a work-list for
1102 // --gc-sections and to do comdat processing. Actual layout happens the
1103 // second time around after all the relevant sections have been determined.
1104 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1105 // set to true after the garbage collection worklist or identical code
1106 // folding is processed and the relevant sections to be kept are
1107 // determined. Then, this function is called again to layout the sections.
1108
1109 template<int size, bool big_endian>
1110 void
1111 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1112 Layout* layout,
1113 Read_symbols_data* sd)
1114 {
1115 const unsigned int shnum = this->shnum();
1116 bool is_gc_pass_one = ((parameters->options().gc_sections()
1117 && !symtab->gc()->is_worklist_ready())
1118 || (parameters->options().icf_enabled()
1119 && !symtab->icf()->is_icf_ready()));
1120
1121 bool is_gc_pass_two = ((parameters->options().gc_sections()
1122 && symtab->gc()->is_worklist_ready())
1123 || (parameters->options().icf_enabled()
1124 && symtab->icf()->is_icf_ready()));
1125
1126 bool is_gc_or_icf = (parameters->options().gc_sections()
1127 || parameters->options().icf_enabled());
1128
1129 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1130 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1131
1132 if (shnum == 0)
1133 return;
1134 Symbols_data* gc_sd = NULL;
1135 if (is_gc_pass_one)
1136 {
1137 // During garbage collection save the symbols data to use it when
1138 // re-entering this function.
1139 gc_sd = new Symbols_data;
1140 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1141 this->set_symbols_data(gc_sd);
1142 }
1143 else if (is_gc_pass_two)
1144 {
1145 gc_sd = this->get_symbols_data();
1146 }
1147
1148 const unsigned char* section_headers_data = NULL;
1149 section_size_type section_names_size;
1150 const unsigned char* symbols_data = NULL;
1151 section_size_type symbols_size;
1152 const unsigned char* symbol_names_data = NULL;
1153 section_size_type symbol_names_size;
1154
1155 if (is_gc_or_icf)
1156 {
1157 section_headers_data = gc_sd->section_headers_data;
1158 section_names_size = gc_sd->section_names_size;
1159 symbols_data = gc_sd->symbols_data;
1160 symbols_size = gc_sd->symbols_size;
1161 symbol_names_data = gc_sd->symbol_names_data;
1162 symbol_names_size = gc_sd->symbol_names_size;
1163 }
1164 else
1165 {
1166 section_headers_data = sd->section_headers->data();
1167 section_names_size = sd->section_names_size;
1168 if (sd->symbols != NULL)
1169 symbols_data = sd->symbols->data();
1170 symbols_size = sd->symbols_size;
1171 if (sd->symbol_names != NULL)
1172 symbol_names_data = sd->symbol_names->data();
1173 symbol_names_size = sd->symbol_names_size;
1174 }
1175
1176 // Get the section headers.
1177 const unsigned char* shdrs = section_headers_data;
1178 const unsigned char* pshdrs;
1179
1180 // Get the section names.
1181 const unsigned char* pnamesu = (is_gc_or_icf)
1182 ? gc_sd->section_names_data
1183 : sd->section_names->data();
1184
1185 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1186
1187 // If any input files have been claimed by plugins, we need to defer
1188 // actual layout until the replacement files have arrived.
1189 const bool should_defer_layout =
1190 (parameters->options().has_plugins()
1191 && parameters->options().plugins()->should_defer_layout());
1192 unsigned int num_sections_to_defer = 0;
1193
1194 // For each section, record the index of the reloc section if any.
1195 // Use 0 to mean that there is no reloc section, -1U to mean that
1196 // there is more than one.
1197 std::vector<unsigned int> reloc_shndx(shnum, 0);
1198 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1199 // Skip the first, dummy, section.
1200 pshdrs = shdrs + This::shdr_size;
1201 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1202 {
1203 typename This::Shdr shdr(pshdrs);
1204
1205 // Count the number of sections whose layout will be deferred.
1206 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1207 ++num_sections_to_defer;
1208
1209 unsigned int sh_type = shdr.get_sh_type();
1210 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1211 {
1212 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1213 if (target_shndx == 0 || target_shndx >= shnum)
1214 {
1215 this->error(_("relocation section %u has bad info %u"),
1216 i, target_shndx);
1217 continue;
1218 }
1219
1220 if (reloc_shndx[target_shndx] != 0)
1221 reloc_shndx[target_shndx] = -1U;
1222 else
1223 {
1224 reloc_shndx[target_shndx] = i;
1225 reloc_type[target_shndx] = sh_type;
1226 }
1227 }
1228 }
1229
1230 Output_sections& out_sections(this->output_sections());
1231 std::vector<Address>& out_section_offsets(this->section_offsets());
1232
1233 if (!is_gc_pass_two)
1234 {
1235 out_sections.resize(shnum);
1236 out_section_offsets.resize(shnum);
1237 }
1238
1239 // If we are only linking for symbols, then there is nothing else to
1240 // do here.
1241 if (this->input_file()->just_symbols())
1242 {
1243 if (!is_gc_pass_two)
1244 {
1245 delete sd->section_headers;
1246 sd->section_headers = NULL;
1247 delete sd->section_names;
1248 sd->section_names = NULL;
1249 }
1250 return;
1251 }
1252
1253 if (num_sections_to_defer > 0)
1254 {
1255 parameters->options().plugins()->add_deferred_layout_object(this);
1256 this->deferred_layout_.reserve(num_sections_to_defer);
1257 }
1258
1259 // Whether we've seen a .note.GNU-stack section.
1260 bool seen_gnu_stack = false;
1261 // The flags of a .note.GNU-stack section.
1262 uint64_t gnu_stack_flags = 0;
1263
1264 // Keep track of which sections to omit.
1265 std::vector<bool> omit(shnum, false);
1266
1267 // Keep track of reloc sections when emitting relocations.
1268 const bool relocatable = parameters->options().relocatable();
1269 const bool emit_relocs = (relocatable
1270 || parameters->options().emit_relocs());
1271 std::vector<unsigned int> reloc_sections;
1272
1273 // Keep track of .eh_frame sections.
1274 std::vector<unsigned int> eh_frame_sections;
1275
1276 // Skip the first, dummy, section.
1277 pshdrs = shdrs + This::shdr_size;
1278 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1279 {
1280 typename This::Shdr shdr(pshdrs);
1281
1282 if (shdr.get_sh_name() >= section_names_size)
1283 {
1284 this->error(_("bad section name offset for section %u: %lu"),
1285 i, static_cast<unsigned long>(shdr.get_sh_name()));
1286 return;
1287 }
1288
1289 const char* name = pnames + shdr.get_sh_name();
1290
1291 if (!is_gc_pass_two)
1292 {
1293 if (this->handle_gnu_warning_section(name, i, symtab))
1294 {
1295 if (!relocatable && !parameters->options().shared())
1296 omit[i] = true;
1297 }
1298
1299 // The .note.GNU-stack section is special. It gives the
1300 // protection flags that this object file requires for the stack
1301 // in memory.
1302 if (strcmp(name, ".note.GNU-stack") == 0)
1303 {
1304 seen_gnu_stack = true;
1305 gnu_stack_flags |= shdr.get_sh_flags();
1306 omit[i] = true;
1307 }
1308
1309 // The .note.GNU-split-stack section is also special. It
1310 // indicates that the object was compiled with
1311 // -fsplit-stack.
1312 if (this->handle_split_stack_section(name))
1313 {
1314 if (!relocatable && !parameters->options().shared())
1315 omit[i] = true;
1316 }
1317
1318 // Skip attributes section.
1319 if (parameters->target().is_attributes_section(name))
1320 {
1321 omit[i] = true;
1322 }
1323
1324 bool discard = omit[i];
1325 if (!discard)
1326 {
1327 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1328 {
1329 if (!this->include_section_group(symtab, layout, i, name,
1330 shdrs, pnames,
1331 section_names_size,
1332 &omit))
1333 discard = true;
1334 }
1335 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1336 && Layout::is_linkonce(name))
1337 {
1338 if (!this->include_linkonce_section(layout, i, name, shdr))
1339 discard = true;
1340 }
1341 }
1342
1343 // Add the section to the incremental inputs layout.
1344 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1345 if (incremental_inputs != NULL
1346 && !discard
1347 && can_incremental_update(shdr.get_sh_type()))
1348 {
1349 off_t sh_size = shdr.get_sh_size();
1350 section_size_type uncompressed_size;
1351 if (this->section_is_compressed(i, &uncompressed_size))
1352 sh_size = uncompressed_size;
1353 incremental_inputs->report_input_section(this, i, name, sh_size);
1354 }
1355
1356 if (discard)
1357 {
1358 // Do not include this section in the link.
1359 out_sections[i] = NULL;
1360 out_section_offsets[i] = invalid_address;
1361 continue;
1362 }
1363 }
1364
1365 if (is_gc_pass_one && parameters->options().gc_sections())
1366 {
1367 if (this->is_section_name_included(name)
1368 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1369 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1370 {
1371 symtab->gc()->worklist().push(Section_id(this, i));
1372 }
1373 // If the section name XXX can be represented as a C identifier
1374 // it cannot be discarded if there are references to
1375 // __start_XXX and __stop_XXX symbols. These need to be
1376 // specially handled.
1377 if (is_cident(name))
1378 {
1379 symtab->gc()->add_cident_section(name, Section_id(this, i));
1380 }
1381 }
1382
1383 // When doing a relocatable link we are going to copy input
1384 // reloc sections into the output. We only want to copy the
1385 // ones associated with sections which are not being discarded.
1386 // However, we don't know that yet for all sections. So save
1387 // reloc sections and process them later. Garbage collection is
1388 // not triggered when relocatable code is desired.
1389 if (emit_relocs
1390 && (shdr.get_sh_type() == elfcpp::SHT_REL
1391 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1392 {
1393 reloc_sections.push_back(i);
1394 continue;
1395 }
1396
1397 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1398 continue;
1399
1400 // The .eh_frame section is special. It holds exception frame
1401 // information that we need to read in order to generate the
1402 // exception frame header. We process these after all the other
1403 // sections so that the exception frame reader can reliably
1404 // determine which sections are being discarded, and discard the
1405 // corresponding information.
1406 if (!relocatable
1407 && strcmp(name, ".eh_frame") == 0
1408 && this->check_eh_frame_flags(&shdr))
1409 {
1410 if (is_gc_pass_one)
1411 {
1412 out_sections[i] = reinterpret_cast<Output_section*>(1);
1413 out_section_offsets[i] = invalid_address;
1414 }
1415 else if (should_defer_layout)
1416 this->deferred_layout_.push_back(Deferred_layout(i, name,
1417 pshdrs,
1418 reloc_shndx[i],
1419 reloc_type[i]));
1420 else
1421 eh_frame_sections.push_back(i);
1422 continue;
1423 }
1424
1425 if (is_gc_pass_two && parameters->options().gc_sections())
1426 {
1427 // This is executed during the second pass of garbage
1428 // collection. do_layout has been called before and some
1429 // sections have been already discarded. Simply ignore
1430 // such sections this time around.
1431 if (out_sections[i] == NULL)
1432 {
1433 gold_assert(out_section_offsets[i] == invalid_address);
1434 continue;
1435 }
1436 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1437 && symtab->gc()->is_section_garbage(this, i))
1438 {
1439 if (parameters->options().print_gc_sections())
1440 gold_info(_("%s: removing unused section from '%s'"
1441 " in file '%s'"),
1442 program_name, this->section_name(i).c_str(),
1443 this->name().c_str());
1444 out_sections[i] = NULL;
1445 out_section_offsets[i] = invalid_address;
1446 continue;
1447 }
1448 }
1449
1450 if (is_gc_pass_two && parameters->options().icf_enabled())
1451 {
1452 if (out_sections[i] == NULL)
1453 {
1454 gold_assert(out_section_offsets[i] == invalid_address);
1455 continue;
1456 }
1457 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1458 && symtab->icf()->is_section_folded(this, i))
1459 {
1460 if (parameters->options().print_icf_sections())
1461 {
1462 Section_id folded =
1463 symtab->icf()->get_folded_section(this, i);
1464 Relobj* folded_obj =
1465 reinterpret_cast<Relobj*>(folded.first);
1466 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1467 "into '%s' in file '%s'"),
1468 program_name, this->section_name(i).c_str(),
1469 this->name().c_str(),
1470 folded_obj->section_name(folded.second).c_str(),
1471 folded_obj->name().c_str());
1472 }
1473 out_sections[i] = NULL;
1474 out_section_offsets[i] = invalid_address;
1475 continue;
1476 }
1477 }
1478
1479 // Defer layout here if input files are claimed by plugins. When gc
1480 // is turned on this function is called twice. For the second call
1481 // should_defer_layout should be false.
1482 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1483 {
1484 gold_assert(!is_gc_pass_two);
1485 this->deferred_layout_.push_back(Deferred_layout(i, name,
1486 pshdrs,
1487 reloc_shndx[i],
1488 reloc_type[i]));
1489 // Put dummy values here; real values will be supplied by
1490 // do_layout_deferred_sections.
1491 out_sections[i] = reinterpret_cast<Output_section*>(2);
1492 out_section_offsets[i] = invalid_address;
1493 continue;
1494 }
1495
1496 // During gc_pass_two if a section that was previously deferred is
1497 // found, do not layout the section as layout_deferred_sections will
1498 // do it later from gold.cc.
1499 if (is_gc_pass_two
1500 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1501 continue;
1502
1503 if (is_gc_pass_one)
1504 {
1505 // This is during garbage collection. The out_sections are
1506 // assigned in the second call to this function.
1507 out_sections[i] = reinterpret_cast<Output_section*>(1);
1508 out_section_offsets[i] = invalid_address;
1509 }
1510 else
1511 {
1512 // When garbage collection is switched on the actual layout
1513 // only happens in the second call.
1514 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1515 reloc_type[i]);
1516 }
1517 }
1518
1519 if (!is_gc_pass_two)
1520 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1521
1522 // When doing a relocatable link handle the reloc sections at the
1523 // end. Garbage collection and Identical Code Folding is not
1524 // turned on for relocatable code.
1525 if (emit_relocs)
1526 this->size_relocatable_relocs();
1527
1528 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1529
1530 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1531 p != reloc_sections.end();
1532 ++p)
1533 {
1534 unsigned int i = *p;
1535 const unsigned char* pshdr;
1536 pshdr = section_headers_data + i * This::shdr_size;
1537 typename This::Shdr shdr(pshdr);
1538
1539 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1540 if (data_shndx >= shnum)
1541 {
1542 // We already warned about this above.
1543 continue;
1544 }
1545
1546 Output_section* data_section = out_sections[data_shndx];
1547 if (data_section == reinterpret_cast<Output_section*>(2))
1548 {
1549 // The layout for the data section was deferred, so we need
1550 // to defer the relocation section, too.
1551 const char* name = pnames + shdr.get_sh_name();
1552 this->deferred_layout_relocs_.push_back(
1553 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1554 out_sections[i] = reinterpret_cast<Output_section*>(2);
1555 out_section_offsets[i] = invalid_address;
1556 continue;
1557 }
1558 if (data_section == NULL)
1559 {
1560 out_sections[i] = NULL;
1561 out_section_offsets[i] = invalid_address;
1562 continue;
1563 }
1564
1565 Relocatable_relocs* rr = new Relocatable_relocs();
1566 this->set_relocatable_relocs(i, rr);
1567
1568 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1569 rr);
1570 out_sections[i] = os;
1571 out_section_offsets[i] = invalid_address;
1572 }
1573
1574 // Handle the .eh_frame sections at the end.
1575 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1576 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1577 p != eh_frame_sections.end();
1578 ++p)
1579 {
1580 unsigned int i = *p;
1581 const unsigned char* pshdr;
1582 pshdr = section_headers_data + i * This::shdr_size;
1583 typename This::Shdr shdr(pshdr);
1584
1585 this->layout_eh_frame_section(layout,
1586 symbols_data,
1587 symbols_size,
1588 symbol_names_data,
1589 symbol_names_size,
1590 i,
1591 shdr,
1592 reloc_shndx[i],
1593 reloc_type[i]);
1594 }
1595
1596 if (is_gc_pass_two)
1597 {
1598 delete[] gc_sd->section_headers_data;
1599 delete[] gc_sd->section_names_data;
1600 delete[] gc_sd->symbols_data;
1601 delete[] gc_sd->symbol_names_data;
1602 this->set_symbols_data(NULL);
1603 }
1604 else
1605 {
1606 delete sd->section_headers;
1607 sd->section_headers = NULL;
1608 delete sd->section_names;
1609 sd->section_names = NULL;
1610 }
1611 }
1612
1613 // Layout sections whose layout was deferred while waiting for
1614 // input files from a plugin.
1615
1616 template<int size, bool big_endian>
1617 void
1618 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1619 {
1620 typename std::vector<Deferred_layout>::iterator deferred;
1621
1622 for (deferred = this->deferred_layout_.begin();
1623 deferred != this->deferred_layout_.end();
1624 ++deferred)
1625 {
1626 typename This::Shdr shdr(deferred->shdr_data_);
1627 // If the section is not included, it is because the garbage collector
1628 // decided it is not needed. Avoid reverting that decision.
1629 if (!this->is_section_included(deferred->shndx_))
1630 continue;
1631
1632 if (parameters->options().relocatable()
1633 || deferred->name_ != ".eh_frame"
1634 || !this->check_eh_frame_flags(&shdr))
1635 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1636 shdr, deferred->reloc_shndx_,
1637 deferred->reloc_type_);
1638 else
1639 {
1640 // Reading the symbols again here may be slow.
1641 Read_symbols_data sd;
1642 this->read_symbols(&sd);
1643 this->layout_eh_frame_section(layout,
1644 sd.symbols->data(),
1645 sd.symbols_size,
1646 sd.symbol_names->data(),
1647 sd.symbol_names_size,
1648 deferred->shndx_,
1649 shdr,
1650 deferred->reloc_shndx_,
1651 deferred->reloc_type_);
1652 }
1653 }
1654
1655 this->deferred_layout_.clear();
1656
1657 // Now handle the deferred relocation sections.
1658
1659 Output_sections& out_sections(this->output_sections());
1660 std::vector<Address>& out_section_offsets(this->section_offsets());
1661
1662 for (deferred = this->deferred_layout_relocs_.begin();
1663 deferred != this->deferred_layout_relocs_.end();
1664 ++deferred)
1665 {
1666 unsigned int shndx = deferred->shndx_;
1667 typename This::Shdr shdr(deferred->shdr_data_);
1668 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1669
1670 Output_section* data_section = out_sections[data_shndx];
1671 if (data_section == NULL)
1672 {
1673 out_sections[shndx] = NULL;
1674 out_section_offsets[shndx] = invalid_address;
1675 continue;
1676 }
1677
1678 Relocatable_relocs* rr = new Relocatable_relocs();
1679 this->set_relocatable_relocs(shndx, rr);
1680
1681 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1682 data_section, rr);
1683 out_sections[shndx] = os;
1684 out_section_offsets[shndx] = invalid_address;
1685 }
1686 }
1687
1688 // Add the symbols to the symbol table.
1689
1690 template<int size, bool big_endian>
1691 void
1692 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1693 Read_symbols_data* sd,
1694 Layout*)
1695 {
1696 if (sd->symbols == NULL)
1697 {
1698 gold_assert(sd->symbol_names == NULL);
1699 return;
1700 }
1701
1702 const int sym_size = This::sym_size;
1703 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1704 / sym_size);
1705 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1706 {
1707 this->error(_("size of symbols is not multiple of symbol size"));
1708 return;
1709 }
1710
1711 this->symbols_.resize(symcount);
1712
1713 const char* sym_names =
1714 reinterpret_cast<const char*>(sd->symbol_names->data());
1715 symtab->add_from_relobj(this,
1716 sd->symbols->data() + sd->external_symbols_offset,
1717 symcount, this->local_symbol_count_,
1718 sym_names, sd->symbol_names_size,
1719 &this->symbols_,
1720 &this->defined_count_);
1721
1722 delete sd->symbols;
1723 sd->symbols = NULL;
1724 delete sd->symbol_names;
1725 sd->symbol_names = NULL;
1726 }
1727
1728 // Find out if this object, that is a member of a lib group, should be included
1729 // in the link. We check every symbol defined by this object. If the symbol
1730 // table has a strong undefined reference to that symbol, we have to include
1731 // the object.
1732
1733 template<int size, bool big_endian>
1734 Archive::Should_include
1735 Sized_relobj_file<size, big_endian>::do_should_include_member(
1736 Symbol_table* symtab,
1737 Layout* layout,
1738 Read_symbols_data* sd,
1739 std::string* why)
1740 {
1741 char* tmpbuf = NULL;
1742 size_t tmpbuflen = 0;
1743 const char* sym_names =
1744 reinterpret_cast<const char*>(sd->symbol_names->data());
1745 const unsigned char* syms =
1746 sd->symbols->data() + sd->external_symbols_offset;
1747 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1748 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1749 / sym_size);
1750
1751 const unsigned char* p = syms;
1752
1753 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1754 {
1755 elfcpp::Sym<size, big_endian> sym(p);
1756 unsigned int st_shndx = sym.get_st_shndx();
1757 if (st_shndx == elfcpp::SHN_UNDEF)
1758 continue;
1759
1760 unsigned int st_name = sym.get_st_name();
1761 const char* name = sym_names + st_name;
1762 Symbol* symbol;
1763 Archive::Should_include t = Archive::should_include_member(symtab,
1764 layout,
1765 name,
1766 &symbol, why,
1767 &tmpbuf,
1768 &tmpbuflen);
1769 if (t == Archive::SHOULD_INCLUDE_YES)
1770 {
1771 if (tmpbuf != NULL)
1772 free(tmpbuf);
1773 return t;
1774 }
1775 }
1776 if (tmpbuf != NULL)
1777 free(tmpbuf);
1778 return Archive::SHOULD_INCLUDE_UNKNOWN;
1779 }
1780
1781 // Iterate over global defined symbols, calling a visitor class V for each.
1782
1783 template<int size, bool big_endian>
1784 void
1785 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1786 Read_symbols_data* sd,
1787 Library_base::Symbol_visitor_base* v)
1788 {
1789 const char* sym_names =
1790 reinterpret_cast<const char*>(sd->symbol_names->data());
1791 const unsigned char* syms =
1792 sd->symbols->data() + sd->external_symbols_offset;
1793 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1794 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1795 / sym_size);
1796 const unsigned char* p = syms;
1797
1798 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1799 {
1800 elfcpp::Sym<size, big_endian> sym(p);
1801 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1802 v->visit(sym_names + sym.get_st_name());
1803 }
1804 }
1805
1806 // Return whether the local symbol SYMNDX has a PLT offset.
1807
1808 template<int size, bool big_endian>
1809 bool
1810 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1811 unsigned int symndx) const
1812 {
1813 typename Local_plt_offsets::const_iterator p =
1814 this->local_plt_offsets_.find(symndx);
1815 return p != this->local_plt_offsets_.end();
1816 }
1817
1818 // Get the PLT offset of a local symbol.
1819
1820 template<int size, bool big_endian>
1821 unsigned int
1822 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1823 {
1824 typename Local_plt_offsets::const_iterator p =
1825 this->local_plt_offsets_.find(symndx);
1826 gold_assert(p != this->local_plt_offsets_.end());
1827 return p->second;
1828 }
1829
1830 // Set the PLT offset of a local symbol.
1831
1832 template<int size, bool big_endian>
1833 void
1834 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1835 unsigned int symndx, unsigned int plt_offset)
1836 {
1837 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1838 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1839 gold_assert(ins.second);
1840 }
1841
1842 // First pass over the local symbols. Here we add their names to
1843 // *POOL and *DYNPOOL, and we store the symbol value in
1844 // THIS->LOCAL_VALUES_. This function is always called from a
1845 // singleton thread. This is followed by a call to
1846 // finalize_local_symbols.
1847
1848 template<int size, bool big_endian>
1849 void
1850 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1851 Stringpool* dynpool)
1852 {
1853 gold_assert(this->symtab_shndx_ != -1U);
1854 if (this->symtab_shndx_ == 0)
1855 {
1856 // This object has no symbols. Weird but legal.
1857 return;
1858 }
1859
1860 // Read the symbol table section header.
1861 const unsigned int symtab_shndx = this->symtab_shndx_;
1862 typename This::Shdr symtabshdr(this,
1863 this->elf_file_.section_header(symtab_shndx));
1864 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1865
1866 // Read the local symbols.
1867 const int sym_size = This::sym_size;
1868 const unsigned int loccount = this->local_symbol_count_;
1869 gold_assert(loccount == symtabshdr.get_sh_info());
1870 off_t locsize = loccount * sym_size;
1871 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1872 locsize, true, true);
1873
1874 // Read the symbol names.
1875 const unsigned int strtab_shndx =
1876 this->adjust_shndx(symtabshdr.get_sh_link());
1877 section_size_type strtab_size;
1878 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1879 &strtab_size,
1880 true);
1881 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1882
1883 // Loop over the local symbols.
1884
1885 const Output_sections& out_sections(this->output_sections());
1886 unsigned int shnum = this->shnum();
1887 unsigned int count = 0;
1888 unsigned int dyncount = 0;
1889 // Skip the first, dummy, symbol.
1890 psyms += sym_size;
1891 bool strip_all = parameters->options().strip_all();
1892 bool discard_all = parameters->options().discard_all();
1893 bool discard_locals = parameters->options().discard_locals();
1894 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1895 {
1896 elfcpp::Sym<size, big_endian> sym(psyms);
1897
1898 Symbol_value<size>& lv(this->local_values_[i]);
1899
1900 bool is_ordinary;
1901 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1902 &is_ordinary);
1903 lv.set_input_shndx(shndx, is_ordinary);
1904
1905 if (sym.get_st_type() == elfcpp::STT_SECTION)
1906 lv.set_is_section_symbol();
1907 else if (sym.get_st_type() == elfcpp::STT_TLS)
1908 lv.set_is_tls_symbol();
1909 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1910 lv.set_is_ifunc_symbol();
1911
1912 // Save the input symbol value for use in do_finalize_local_symbols().
1913 lv.set_input_value(sym.get_st_value());
1914
1915 // Decide whether this symbol should go into the output file.
1916
1917 if ((shndx < shnum && out_sections[shndx] == NULL)
1918 || shndx == this->discarded_eh_frame_shndx_)
1919 {
1920 lv.set_no_output_symtab_entry();
1921 gold_assert(!lv.needs_output_dynsym_entry());
1922 continue;
1923 }
1924
1925 if (sym.get_st_type() == elfcpp::STT_SECTION)
1926 {
1927 lv.set_no_output_symtab_entry();
1928 gold_assert(!lv.needs_output_dynsym_entry());
1929 continue;
1930 }
1931
1932 if (sym.get_st_name() >= strtab_size)
1933 {
1934 this->error(_("local symbol %u section name out of range: %u >= %u"),
1935 i, sym.get_st_name(),
1936 static_cast<unsigned int>(strtab_size));
1937 lv.set_no_output_symtab_entry();
1938 continue;
1939 }
1940
1941 const char* name = pnames + sym.get_st_name();
1942
1943 // If needed, add the symbol to the dynamic symbol table string pool.
1944 if (lv.needs_output_dynsym_entry())
1945 {
1946 dynpool->add(name, true, NULL);
1947 ++dyncount;
1948 }
1949
1950 if (strip_all
1951 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1952 {
1953 lv.set_no_output_symtab_entry();
1954 continue;
1955 }
1956
1957 // If --discard-locals option is used, discard all temporary local
1958 // symbols. These symbols start with system-specific local label
1959 // prefixes, typically .L for ELF system. We want to be compatible
1960 // with GNU ld so here we essentially use the same check in
1961 // bfd_is_local_label(). The code is different because we already
1962 // know that:
1963 //
1964 // - the symbol is local and thus cannot have global or weak binding.
1965 // - the symbol is not a section symbol.
1966 // - the symbol has a name.
1967 //
1968 // We do not discard a symbol if it needs a dynamic symbol entry.
1969 if (discard_locals
1970 && sym.get_st_type() != elfcpp::STT_FILE
1971 && !lv.needs_output_dynsym_entry()
1972 && lv.may_be_discarded_from_output_symtab()
1973 && parameters->target().is_local_label_name(name))
1974 {
1975 lv.set_no_output_symtab_entry();
1976 continue;
1977 }
1978
1979 // Discard the local symbol if -retain_symbols_file is specified
1980 // and the local symbol is not in that file.
1981 if (!parameters->options().should_retain_symbol(name))
1982 {
1983 lv.set_no_output_symtab_entry();
1984 continue;
1985 }
1986
1987 // Add the symbol to the symbol table string pool.
1988 pool->add(name, true, NULL);
1989 ++count;
1990 }
1991
1992 this->output_local_symbol_count_ = count;
1993 this->output_local_dynsym_count_ = dyncount;
1994 }
1995
1996 // Compute the final value of a local symbol.
1997
1998 template<int size, bool big_endian>
1999 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2000 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2001 unsigned int r_sym,
2002 const Symbol_value<size>* lv_in,
2003 Symbol_value<size>* lv_out,
2004 bool relocatable,
2005 const Output_sections& out_sections,
2006 const std::vector<Address>& out_offsets,
2007 const Symbol_table* symtab)
2008 {
2009 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2010 // we may have a memory leak.
2011 gold_assert(lv_out->has_output_value());
2012
2013 bool is_ordinary;
2014 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2015
2016 // Set the output symbol value.
2017
2018 if (!is_ordinary)
2019 {
2020 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2021 lv_out->set_output_value(lv_in->input_value());
2022 else
2023 {
2024 this->error(_("unknown section index %u for local symbol %u"),
2025 shndx, r_sym);
2026 lv_out->set_output_value(0);
2027 return This::CFLV_ERROR;
2028 }
2029 }
2030 else
2031 {
2032 if (shndx >= this->shnum())
2033 {
2034 this->error(_("local symbol %u section index %u out of range"),
2035 r_sym, shndx);
2036 lv_out->set_output_value(0);
2037 return This::CFLV_ERROR;
2038 }
2039
2040 Output_section* os = out_sections[shndx];
2041 Address secoffset = out_offsets[shndx];
2042 if (symtab->is_section_folded(this, shndx))
2043 {
2044 gold_assert(os == NULL && secoffset == invalid_address);
2045 // Get the os of the section it is folded onto.
2046 Section_id folded = symtab->icf()->get_folded_section(this,
2047 shndx);
2048 gold_assert(folded.first != NULL);
2049 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2050 <Sized_relobj_file<size, big_endian>*>(folded.first);
2051 os = folded_obj->output_section(folded.second);
2052 gold_assert(os != NULL);
2053 secoffset = folded_obj->get_output_section_offset(folded.second);
2054
2055 // This could be a relaxed input section.
2056 if (secoffset == invalid_address)
2057 {
2058 const Output_relaxed_input_section* relaxed_section =
2059 os->find_relaxed_input_section(folded_obj, folded.second);
2060 gold_assert(relaxed_section != NULL);
2061 secoffset = relaxed_section->address() - os->address();
2062 }
2063 }
2064
2065 if (os == NULL)
2066 {
2067 // This local symbol belongs to a section we are discarding.
2068 // In some cases when applying relocations later, we will
2069 // attempt to match it to the corresponding kept section,
2070 // so we leave the input value unchanged here.
2071 return This::CFLV_DISCARDED;
2072 }
2073 else if (secoffset == invalid_address)
2074 {
2075 uint64_t start;
2076
2077 // This is a SHF_MERGE section or one which otherwise
2078 // requires special handling.
2079 if (shndx == this->discarded_eh_frame_shndx_)
2080 {
2081 // This local symbol belongs to a discarded .eh_frame
2082 // section. Just treat it like the case in which
2083 // os == NULL above.
2084 gold_assert(this->has_eh_frame_);
2085 return This::CFLV_DISCARDED;
2086 }
2087 else if (!lv_in->is_section_symbol())
2088 {
2089 // This is not a section symbol. We can determine
2090 // the final value now.
2091 lv_out->set_output_value(
2092 os->output_address(this, shndx, lv_in->input_value()));
2093 }
2094 else if (!os->find_starting_output_address(this, shndx, &start))
2095 {
2096 // This is a section symbol, but apparently not one in a
2097 // merged section. First check to see if this is a relaxed
2098 // input section. If so, use its address. Otherwise just
2099 // use the start of the output section. This happens with
2100 // relocatable links when the input object has section
2101 // symbols for arbitrary non-merge sections.
2102 const Output_section_data* posd =
2103 os->find_relaxed_input_section(this, shndx);
2104 if (posd != NULL)
2105 {
2106 Address relocatable_link_adjustment =
2107 relocatable ? os->address() : 0;
2108 lv_out->set_output_value(posd->address()
2109 - relocatable_link_adjustment);
2110 }
2111 else
2112 lv_out->set_output_value(os->address());
2113 }
2114 else
2115 {
2116 // We have to consider the addend to determine the
2117 // value to use in a relocation. START is the start
2118 // of this input section. If we are doing a relocatable
2119 // link, use offset from start output section instead of
2120 // address.
2121 Address adjusted_start =
2122 relocatable ? start - os->address() : start;
2123 Merged_symbol_value<size>* msv =
2124 new Merged_symbol_value<size>(lv_in->input_value(),
2125 adjusted_start);
2126 lv_out->set_merged_symbol_value(msv);
2127 }
2128 }
2129 else if (lv_in->is_tls_symbol())
2130 lv_out->set_output_value(os->tls_offset()
2131 + secoffset
2132 + lv_in->input_value());
2133 else
2134 lv_out->set_output_value((relocatable ? 0 : os->address())
2135 + secoffset
2136 + lv_in->input_value());
2137 }
2138 return This::CFLV_OK;
2139 }
2140
2141 // Compute final local symbol value. R_SYM is the index of a local
2142 // symbol in symbol table. LV points to a symbol value, which is
2143 // expected to hold the input value and to be over-written by the
2144 // final value. SYMTAB points to a symbol table. Some targets may want
2145 // to know would-be-finalized local symbol values in relaxation.
2146 // Hence we provide this method. Since this method updates *LV, a
2147 // callee should make a copy of the original local symbol value and
2148 // use the copy instead of modifying an object's local symbols before
2149 // everything is finalized. The caller should also free up any allocated
2150 // memory in the return value in *LV.
2151 template<int size, bool big_endian>
2152 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2153 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2154 unsigned int r_sym,
2155 const Symbol_value<size>* lv_in,
2156 Symbol_value<size>* lv_out,
2157 const Symbol_table* symtab)
2158 {
2159 // This is just a wrapper of compute_final_local_value_internal.
2160 const bool relocatable = parameters->options().relocatable();
2161 const Output_sections& out_sections(this->output_sections());
2162 const std::vector<Address>& out_offsets(this->section_offsets());
2163 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2164 relocatable, out_sections,
2165 out_offsets, symtab);
2166 }
2167
2168 // Finalize the local symbols. Here we set the final value in
2169 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2170 // This function is always called from a singleton thread. The actual
2171 // output of the local symbols will occur in a separate task.
2172
2173 template<int size, bool big_endian>
2174 unsigned int
2175 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2176 unsigned int index,
2177 off_t off,
2178 Symbol_table* symtab)
2179 {
2180 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2181
2182 const unsigned int loccount = this->local_symbol_count_;
2183 this->local_symbol_offset_ = off;
2184
2185 const bool relocatable = parameters->options().relocatable();
2186 const Output_sections& out_sections(this->output_sections());
2187 const std::vector<Address>& out_offsets(this->section_offsets());
2188
2189 for (unsigned int i = 1; i < loccount; ++i)
2190 {
2191 Symbol_value<size>* lv = &this->local_values_[i];
2192
2193 Compute_final_local_value_status cflv_status =
2194 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2195 out_sections, out_offsets,
2196 symtab);
2197 switch (cflv_status)
2198 {
2199 case CFLV_OK:
2200 if (!lv->is_output_symtab_index_set())
2201 {
2202 lv->set_output_symtab_index(index);
2203 ++index;
2204 }
2205 break;
2206 case CFLV_DISCARDED:
2207 case CFLV_ERROR:
2208 // Do nothing.
2209 break;
2210 default:
2211 gold_unreachable();
2212 }
2213 }
2214 return index;
2215 }
2216
2217 // Set the output dynamic symbol table indexes for the local variables.
2218
2219 template<int size, bool big_endian>
2220 unsigned int
2221 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2222 unsigned int index)
2223 {
2224 const unsigned int loccount = this->local_symbol_count_;
2225 for (unsigned int i = 1; i < loccount; ++i)
2226 {
2227 Symbol_value<size>& lv(this->local_values_[i]);
2228 if (lv.needs_output_dynsym_entry())
2229 {
2230 lv.set_output_dynsym_index(index);
2231 ++index;
2232 }
2233 }
2234 return index;
2235 }
2236
2237 // Set the offset where local dynamic symbol information will be stored.
2238 // Returns the count of local symbols contributed to the symbol table by
2239 // this object.
2240
2241 template<int size, bool big_endian>
2242 unsigned int
2243 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2244 {
2245 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2246 this->local_dynsym_offset_ = off;
2247 return this->output_local_dynsym_count_;
2248 }
2249
2250 // If Symbols_data is not NULL get the section flags from here otherwise
2251 // get it from the file.
2252
2253 template<int size, bool big_endian>
2254 uint64_t
2255 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2256 {
2257 Symbols_data* sd = this->get_symbols_data();
2258 if (sd != NULL)
2259 {
2260 const unsigned char* pshdrs = sd->section_headers_data
2261 + This::shdr_size * shndx;
2262 typename This::Shdr shdr(pshdrs);
2263 return shdr.get_sh_flags();
2264 }
2265 // If sd is NULL, read the section header from the file.
2266 return this->elf_file_.section_flags(shndx);
2267 }
2268
2269 // Get the section's ent size from Symbols_data. Called by get_section_contents
2270 // in icf.cc
2271
2272 template<int size, bool big_endian>
2273 uint64_t
2274 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2275 {
2276 Symbols_data* sd = this->get_symbols_data();
2277 gold_assert(sd != NULL);
2278
2279 const unsigned char* pshdrs = sd->section_headers_data
2280 + This::shdr_size * shndx;
2281 typename This::Shdr shdr(pshdrs);
2282 return shdr.get_sh_entsize();
2283 }
2284
2285 // Write out the local symbols.
2286
2287 template<int size, bool big_endian>
2288 void
2289 Sized_relobj_file<size, big_endian>::write_local_symbols(
2290 Output_file* of,
2291 const Stringpool* sympool,
2292 const Stringpool* dynpool,
2293 Output_symtab_xindex* symtab_xindex,
2294 Output_symtab_xindex* dynsym_xindex,
2295 off_t symtab_off)
2296 {
2297 const bool strip_all = parameters->options().strip_all();
2298 if (strip_all)
2299 {
2300 if (this->output_local_dynsym_count_ == 0)
2301 return;
2302 this->output_local_symbol_count_ = 0;
2303 }
2304
2305 gold_assert(this->symtab_shndx_ != -1U);
2306 if (this->symtab_shndx_ == 0)
2307 {
2308 // This object has no symbols. Weird but legal.
2309 return;
2310 }
2311
2312 // Read the symbol table section header.
2313 const unsigned int symtab_shndx = this->symtab_shndx_;
2314 typename This::Shdr symtabshdr(this,
2315 this->elf_file_.section_header(symtab_shndx));
2316 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2317 const unsigned int loccount = this->local_symbol_count_;
2318 gold_assert(loccount == symtabshdr.get_sh_info());
2319
2320 // Read the local symbols.
2321 const int sym_size = This::sym_size;
2322 off_t locsize = loccount * sym_size;
2323 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2324 locsize, true, false);
2325
2326 // Read the symbol names.
2327 const unsigned int strtab_shndx =
2328 this->adjust_shndx(symtabshdr.get_sh_link());
2329 section_size_type strtab_size;
2330 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2331 &strtab_size,
2332 false);
2333 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2334
2335 // Get views into the output file for the portions of the symbol table
2336 // and the dynamic symbol table that we will be writing.
2337 off_t output_size = this->output_local_symbol_count_ * sym_size;
2338 unsigned char* oview = NULL;
2339 if (output_size > 0)
2340 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2341 output_size);
2342
2343 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2344 unsigned char* dyn_oview = NULL;
2345 if (dyn_output_size > 0)
2346 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2347 dyn_output_size);
2348
2349 const Output_sections out_sections(this->output_sections());
2350
2351 gold_assert(this->local_values_.size() == loccount);
2352
2353 unsigned char* ov = oview;
2354 unsigned char* dyn_ov = dyn_oview;
2355 psyms += sym_size;
2356 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2357 {
2358 elfcpp::Sym<size, big_endian> isym(psyms);
2359
2360 Symbol_value<size>& lv(this->local_values_[i]);
2361
2362 bool is_ordinary;
2363 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2364 &is_ordinary);
2365 if (is_ordinary)
2366 {
2367 gold_assert(st_shndx < out_sections.size());
2368 if (out_sections[st_shndx] == NULL)
2369 continue;
2370 st_shndx = out_sections[st_shndx]->out_shndx();
2371 if (st_shndx >= elfcpp::SHN_LORESERVE)
2372 {
2373 if (lv.has_output_symtab_entry())
2374 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2375 if (lv.has_output_dynsym_entry())
2376 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2377 st_shndx = elfcpp::SHN_XINDEX;
2378 }
2379 }
2380
2381 // Write the symbol to the output symbol table.
2382 if (lv.has_output_symtab_entry())
2383 {
2384 elfcpp::Sym_write<size, big_endian> osym(ov);
2385
2386 gold_assert(isym.get_st_name() < strtab_size);
2387 const char* name = pnames + isym.get_st_name();
2388 osym.put_st_name(sympool->get_offset(name));
2389 osym.put_st_value(this->local_values_[i].value(this, 0));
2390 osym.put_st_size(isym.get_st_size());
2391 osym.put_st_info(isym.get_st_info());
2392 osym.put_st_other(isym.get_st_other());
2393 osym.put_st_shndx(st_shndx);
2394
2395 ov += sym_size;
2396 }
2397
2398 // Write the symbol to the output dynamic symbol table.
2399 if (lv.has_output_dynsym_entry())
2400 {
2401 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2402 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2403
2404 gold_assert(isym.get_st_name() < strtab_size);
2405 const char* name = pnames + isym.get_st_name();
2406 osym.put_st_name(dynpool->get_offset(name));
2407 osym.put_st_value(this->local_values_[i].value(this, 0));
2408 osym.put_st_size(isym.get_st_size());
2409 osym.put_st_info(isym.get_st_info());
2410 osym.put_st_other(isym.get_st_other());
2411 osym.put_st_shndx(st_shndx);
2412
2413 dyn_ov += sym_size;
2414 }
2415 }
2416
2417
2418 if (output_size > 0)
2419 {
2420 gold_assert(ov - oview == output_size);
2421 of->write_output_view(symtab_off + this->local_symbol_offset_,
2422 output_size, oview);
2423 }
2424
2425 if (dyn_output_size > 0)
2426 {
2427 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2428 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2429 dyn_oview);
2430 }
2431 }
2432
2433 // Set *INFO to symbolic information about the offset OFFSET in the
2434 // section SHNDX. Return true if we found something, false if we
2435 // found nothing.
2436
2437 template<int size, bool big_endian>
2438 bool
2439 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2440 unsigned int shndx,
2441 off_t offset,
2442 Symbol_location_info* info)
2443 {
2444 if (this->symtab_shndx_ == 0)
2445 return false;
2446
2447 section_size_type symbols_size;
2448 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2449 &symbols_size,
2450 false);
2451
2452 unsigned int symbol_names_shndx =
2453 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2454 section_size_type names_size;
2455 const unsigned char* symbol_names_u =
2456 this->section_contents(symbol_names_shndx, &names_size, false);
2457 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2458
2459 const int sym_size = This::sym_size;
2460 const size_t count = symbols_size / sym_size;
2461
2462 const unsigned char* p = symbols;
2463 for (size_t i = 0; i < count; ++i, p += sym_size)
2464 {
2465 elfcpp::Sym<size, big_endian> sym(p);
2466
2467 if (sym.get_st_type() == elfcpp::STT_FILE)
2468 {
2469 if (sym.get_st_name() >= names_size)
2470 info->source_file = "(invalid)";
2471 else
2472 info->source_file = symbol_names + sym.get_st_name();
2473 continue;
2474 }
2475
2476 bool is_ordinary;
2477 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2478 &is_ordinary);
2479 if (is_ordinary
2480 && st_shndx == shndx
2481 && static_cast<off_t>(sym.get_st_value()) <= offset
2482 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2483 > offset))
2484 {
2485 if (sym.get_st_name() > names_size)
2486 info->enclosing_symbol_name = "(invalid)";
2487 else
2488 {
2489 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2490 if (parameters->options().do_demangle())
2491 {
2492 char* demangled_name = cplus_demangle(
2493 info->enclosing_symbol_name.c_str(),
2494 DMGL_ANSI | DMGL_PARAMS);
2495 if (demangled_name != NULL)
2496 {
2497 info->enclosing_symbol_name.assign(demangled_name);
2498 free(demangled_name);
2499 }
2500 }
2501 }
2502 return true;
2503 }
2504 }
2505
2506 return false;
2507 }
2508
2509 // Look for a kept section corresponding to the given discarded section,
2510 // and return its output address. This is used only for relocations in
2511 // debugging sections. If we can't find the kept section, return 0.
2512
2513 template<int size, bool big_endian>
2514 typename Sized_relobj_file<size, big_endian>::Address
2515 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2516 unsigned int shndx,
2517 bool* found) const
2518 {
2519 Relobj* kept_object;
2520 unsigned int kept_shndx;
2521 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2522 {
2523 Sized_relobj_file<size, big_endian>* kept_relobj =
2524 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2525 Output_section* os = kept_relobj->output_section(kept_shndx);
2526 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2527 if (os != NULL && offset != invalid_address)
2528 {
2529 *found = true;
2530 return os->address() + offset;
2531 }
2532 }
2533 *found = false;
2534 return 0;
2535 }
2536
2537 // Get symbol counts.
2538
2539 template<int size, bool big_endian>
2540 void
2541 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2542 const Symbol_table*,
2543 size_t* defined,
2544 size_t* used) const
2545 {
2546 *defined = this->defined_count_;
2547 size_t count = 0;
2548 for (typename Symbols::const_iterator p = this->symbols_.begin();
2549 p != this->symbols_.end();
2550 ++p)
2551 if (*p != NULL
2552 && (*p)->source() == Symbol::FROM_OBJECT
2553 && (*p)->object() == this
2554 && (*p)->is_defined())
2555 ++count;
2556 *used = count;
2557 }
2558
2559 // Input_objects methods.
2560
2561 // Add a regular relocatable object to the list. Return false if this
2562 // object should be ignored.
2563
2564 bool
2565 Input_objects::add_object(Object* obj)
2566 {
2567 // Print the filename if the -t/--trace option is selected.
2568 if (parameters->options().trace())
2569 gold_info("%s", obj->name().c_str());
2570
2571 if (!obj->is_dynamic())
2572 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2573 else
2574 {
2575 // See if this is a duplicate SONAME.
2576 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2577 const char* soname = dynobj->soname();
2578
2579 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2580 this->sonames_.insert(soname);
2581 if (!ins.second)
2582 {
2583 // We have already seen a dynamic object with this soname.
2584 return false;
2585 }
2586
2587 this->dynobj_list_.push_back(dynobj);
2588 }
2589
2590 // Add this object to the cross-referencer if requested.
2591 if (parameters->options().user_set_print_symbol_counts()
2592 || parameters->options().cref())
2593 {
2594 if (this->cref_ == NULL)
2595 this->cref_ = new Cref();
2596 this->cref_->add_object(obj);
2597 }
2598
2599 return true;
2600 }
2601
2602 // For each dynamic object, record whether we've seen all of its
2603 // explicit dependencies.
2604
2605 void
2606 Input_objects::check_dynamic_dependencies() const
2607 {
2608 bool issued_copy_dt_needed_error = false;
2609 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2610 p != this->dynobj_list_.end();
2611 ++p)
2612 {
2613 const Dynobj::Needed& needed((*p)->needed());
2614 bool found_all = true;
2615 Dynobj::Needed::const_iterator pneeded;
2616 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2617 {
2618 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2619 {
2620 found_all = false;
2621 break;
2622 }
2623 }
2624 (*p)->set_has_unknown_needed_entries(!found_all);
2625
2626 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2627 // that gold does not support. However, they cause no trouble
2628 // unless there is a DT_NEEDED entry that we don't know about;
2629 // warn only in that case.
2630 if (!found_all
2631 && !issued_copy_dt_needed_error
2632 && (parameters->options().copy_dt_needed_entries()
2633 || parameters->options().add_needed()))
2634 {
2635 const char* optname;
2636 if (parameters->options().copy_dt_needed_entries())
2637 optname = "--copy-dt-needed-entries";
2638 else
2639 optname = "--add-needed";
2640 gold_error(_("%s is not supported but is required for %s in %s"),
2641 optname, (*pneeded).c_str(), (*p)->name().c_str());
2642 issued_copy_dt_needed_error = true;
2643 }
2644 }
2645 }
2646
2647 // Start processing an archive.
2648
2649 void
2650 Input_objects::archive_start(Archive* archive)
2651 {
2652 if (parameters->options().user_set_print_symbol_counts()
2653 || parameters->options().cref())
2654 {
2655 if (this->cref_ == NULL)
2656 this->cref_ = new Cref();
2657 this->cref_->add_archive_start(archive);
2658 }
2659 }
2660
2661 // Stop processing an archive.
2662
2663 void
2664 Input_objects::archive_stop(Archive* archive)
2665 {
2666 if (parameters->options().user_set_print_symbol_counts()
2667 || parameters->options().cref())
2668 this->cref_->add_archive_stop(archive);
2669 }
2670
2671 // Print symbol counts
2672
2673 void
2674 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2675 {
2676 if (parameters->options().user_set_print_symbol_counts()
2677 && this->cref_ != NULL)
2678 this->cref_->print_symbol_counts(symtab);
2679 }
2680
2681 // Print a cross reference table.
2682
2683 void
2684 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2685 {
2686 if (parameters->options().cref() && this->cref_ != NULL)
2687 this->cref_->print_cref(symtab, f);
2688 }
2689
2690 // Relocate_info methods.
2691
2692 // Return a string describing the location of a relocation when file
2693 // and lineno information is not available. This is only used in
2694 // error messages.
2695
2696 template<int size, bool big_endian>
2697 std::string
2698 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2699 {
2700 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2701 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2702 if (!ret.empty())
2703 return ret;
2704
2705 ret = this->object->name();
2706
2707 Symbol_location_info info;
2708 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2709 {
2710 if (!info.source_file.empty())
2711 {
2712 ret += ":";
2713 ret += info.source_file;
2714 }
2715 size_t len = info.enclosing_symbol_name.length() + 100;
2716 char* buf = new char[len];
2717 snprintf(buf, len, _(":function %s"),
2718 info.enclosing_symbol_name.c_str());
2719 ret += buf;
2720 delete[] buf;
2721 return ret;
2722 }
2723
2724 ret += "(";
2725 ret += this->object->section_name(this->data_shndx);
2726 char buf[100];
2727 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2728 ret += buf;
2729 return ret;
2730 }
2731
2732 } // End namespace gold.
2733
2734 namespace
2735 {
2736
2737 using namespace gold;
2738
2739 // Read an ELF file with the header and return the appropriate
2740 // instance of Object.
2741
2742 template<int size, bool big_endian>
2743 Object*
2744 make_elf_sized_object(const std::string& name, Input_file* input_file,
2745 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2746 bool* punconfigured)
2747 {
2748 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2749 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2750 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2751 if (target == NULL)
2752 gold_fatal(_("%s: unsupported ELF machine number %d"),
2753 name.c_str(), ehdr.get_e_machine());
2754
2755 if (!parameters->target_valid())
2756 set_parameters_target(target);
2757 else if (target != &parameters->target())
2758 {
2759 if (punconfigured != NULL)
2760 *punconfigured = true;
2761 else
2762 gold_error(_("%s: incompatible target"), name.c_str());
2763 return NULL;
2764 }
2765
2766 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2767 ehdr);
2768 }
2769
2770 } // End anonymous namespace.
2771
2772 namespace gold
2773 {
2774
2775 // Return whether INPUT_FILE is an ELF object.
2776
2777 bool
2778 is_elf_object(Input_file* input_file, off_t offset,
2779 const unsigned char** start, int* read_size)
2780 {
2781 off_t filesize = input_file->file().filesize();
2782 int want = elfcpp::Elf_recognizer::max_header_size;
2783 if (filesize - offset < want)
2784 want = filesize - offset;
2785
2786 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2787 true, false);
2788 *start = p;
2789 *read_size = want;
2790
2791 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2792 }
2793
2794 // Read an ELF file and return the appropriate instance of Object.
2795
2796 Object*
2797 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2798 const unsigned char* p, section_offset_type bytes,
2799 bool* punconfigured)
2800 {
2801 if (punconfigured != NULL)
2802 *punconfigured = false;
2803
2804 std::string error;
2805 bool big_endian = false;
2806 int size = 0;
2807 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2808 &big_endian, &error))
2809 {
2810 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2811 return NULL;
2812 }
2813
2814 if (size == 32)
2815 {
2816 if (big_endian)
2817 {
2818 #ifdef HAVE_TARGET_32_BIG
2819 elfcpp::Ehdr<32, true> ehdr(p);
2820 return make_elf_sized_object<32, true>(name, input_file,
2821 offset, ehdr, punconfigured);
2822 #else
2823 if (punconfigured != NULL)
2824 *punconfigured = true;
2825 else
2826 gold_error(_("%s: not configured to support "
2827 "32-bit big-endian object"),
2828 name.c_str());
2829 return NULL;
2830 #endif
2831 }
2832 else
2833 {
2834 #ifdef HAVE_TARGET_32_LITTLE
2835 elfcpp::Ehdr<32, false> ehdr(p);
2836 return make_elf_sized_object<32, false>(name, input_file,
2837 offset, ehdr, punconfigured);
2838 #else
2839 if (punconfigured != NULL)
2840 *punconfigured = true;
2841 else
2842 gold_error(_("%s: not configured to support "
2843 "32-bit little-endian object"),
2844 name.c_str());
2845 return NULL;
2846 #endif
2847 }
2848 }
2849 else if (size == 64)
2850 {
2851 if (big_endian)
2852 {
2853 #ifdef HAVE_TARGET_64_BIG
2854 elfcpp::Ehdr<64, true> ehdr(p);
2855 return make_elf_sized_object<64, true>(name, input_file,
2856 offset, ehdr, punconfigured);
2857 #else
2858 if (punconfigured != NULL)
2859 *punconfigured = true;
2860 else
2861 gold_error(_("%s: not configured to support "
2862 "64-bit big-endian object"),
2863 name.c_str());
2864 return NULL;
2865 #endif
2866 }
2867 else
2868 {
2869 #ifdef HAVE_TARGET_64_LITTLE
2870 elfcpp::Ehdr<64, false> ehdr(p);
2871 return make_elf_sized_object<64, false>(name, input_file,
2872 offset, ehdr, punconfigured);
2873 #else
2874 if (punconfigured != NULL)
2875 *punconfigured = true;
2876 else
2877 gold_error(_("%s: not configured to support "
2878 "64-bit little-endian object"),
2879 name.c_str());
2880 return NULL;
2881 #endif
2882 }
2883 }
2884 else
2885 gold_unreachable();
2886 }
2887
2888 // Instantiate the templates we need.
2889
2890 #ifdef HAVE_TARGET_32_LITTLE
2891 template
2892 void
2893 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2894 Read_symbols_data*);
2895 #endif
2896
2897 #ifdef HAVE_TARGET_32_BIG
2898 template
2899 void
2900 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2901 Read_symbols_data*);
2902 #endif
2903
2904 #ifdef HAVE_TARGET_64_LITTLE
2905 template
2906 void
2907 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2908 Read_symbols_data*);
2909 #endif
2910
2911 #ifdef HAVE_TARGET_64_BIG
2912 template
2913 void
2914 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2915 Read_symbols_data*);
2916 #endif
2917
2918 #ifdef HAVE_TARGET_32_LITTLE
2919 template
2920 class Sized_relobj_file<32, false>;
2921 #endif
2922
2923 #ifdef HAVE_TARGET_32_BIG
2924 template
2925 class Sized_relobj_file<32, true>;
2926 #endif
2927
2928 #ifdef HAVE_TARGET_64_LITTLE
2929 template
2930 class Sized_relobj_file<64, false>;
2931 #endif
2932
2933 #ifdef HAVE_TARGET_64_BIG
2934 template
2935 class Sized_relobj_file<64, true>;
2936 #endif
2937
2938 #ifdef HAVE_TARGET_32_LITTLE
2939 template
2940 struct Relocate_info<32, false>;
2941 #endif
2942
2943 #ifdef HAVE_TARGET_32_BIG
2944 template
2945 struct Relocate_info<32, true>;
2946 #endif
2947
2948 #ifdef HAVE_TARGET_64_LITTLE
2949 template
2950 struct Relocate_info<64, false>;
2951 #endif
2952
2953 #ifdef HAVE_TARGET_64_BIG
2954 template
2955 struct Relocate_info<64, true>;
2956 #endif
2957
2958 #ifdef HAVE_TARGET_32_LITTLE
2959 template
2960 void
2961 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2962
2963 template
2964 void
2965 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2966 const unsigned char*);
2967 #endif
2968
2969 #ifdef HAVE_TARGET_32_BIG
2970 template
2971 void
2972 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2973
2974 template
2975 void
2976 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2977 const unsigned char*);
2978 #endif
2979
2980 #ifdef HAVE_TARGET_64_LITTLE
2981 template
2982 void
2983 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2984
2985 template
2986 void
2987 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2988 const unsigned char*);
2989 #endif
2990
2991 #ifdef HAVE_TARGET_64_BIG
2992 template
2993 void
2994 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2995
2996 template
2997 void
2998 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2999 const unsigned char*);
3000 #endif
3001
3002 } // End namespace gold.
This page took 0.088352 seconds and 5 git commands to generate.