ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
60 delete this->symbols;
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
64 delete this->versym;
65 if (this->verdef != NULL)
66 delete this->verdef;
67 if (this->verneed != NULL)
68 delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81 if (!this->symtab_xindex_.empty())
82 return;
83
84 gold_assert(symtab_shndx != 0);
85
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
89 while (i > 0)
90 {
91 --i;
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 {
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 return;
97 }
98 }
99
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
111 {
112 section_size_type bytecount;
113 const unsigned char* contents;
114 if (pshdrs == NULL)
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
116 else
117 {
118 const unsigned char* p = (pshdrs
119 + (xindex_shndx
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124 }
125
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
129 {
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133 }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142 if (symndx >= this->symtab_xindex_.size())
143 {
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 symndx);
146 return elfcpp::SHN_UNDEF;
147 }
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 {
151 object->error(_("extended index for symbol %u out of range: %u"),
152 symndx, shndx);
153 return elfcpp::SHN_UNDEF;
154 }
155 return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167 va_list args;
168 va_start(args, format);
169 char* buf = NULL;
170 if (vasprintf(&buf, format, args) < 0)
171 gold_nomem();
172 va_end(args);
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
174 free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
191 {
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 true, true);
199
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
213 false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
223 {
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227 {
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
233 // simultaneously.
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
236 false);
237 if (len == 0)
238 {
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
242 }
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
245 return true;
246 }
247 return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
257 {
258 this->uses_split_stack_ = true;
259 return true;
260 }
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262 {
263 this->has_no_split_stack_ = true;
264 return true;
265 }
266 return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
278 {
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
289 {
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 sd->symbols_size);
294 }
295 else
296 {
297 gc_sd->symbols_data = NULL;
298 }
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
302 {
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
307 }
308 else
309 {
310 gc_sd->symbol_names_data = NULL;
311 }
312 gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".sdata", name)
335 && strstr(name, "personality"))
336 || (is_prefix_of(".gnu.linkonce.d", name)
337 && strstr(name, "personality"))
338 || (is_prefix_of(".rodata", name)
339 && strstr(name, "nptl_version")))
340 {
341 return true;
342 }
343 return false;
344 }
345
346 // Finalize the incremental relocation information. Allocates a block
347 // of relocation entries for each symbol, and sets the reloc_bases_
348 // array to point to the first entry in each block. If CLEAR_COUNTS
349 // is TRUE, also clear the per-symbol relocation counters.
350
351 void
352 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
353 {
354 unsigned int nsyms = this->get_global_symbols()->size();
355 this->reloc_bases_ = new unsigned int[nsyms];
356
357 gold_assert(this->reloc_bases_ != NULL);
358 gold_assert(layout->incremental_inputs() != NULL);
359
360 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
361 for (unsigned int i = 0; i < nsyms; ++i)
362 {
363 this->reloc_bases_[i] = rindex;
364 rindex += this->reloc_counts_[i];
365 if (clear_counts)
366 this->reloc_counts_[i] = 0;
367 }
368 layout->incremental_inputs()->set_reloc_count(rindex);
369 }
370
371 // Class Sized_relobj.
372
373 // Iterate over local symbols, calling a visitor class V for each GOT offset
374 // associated with a local symbol.
375
376 template<int size, bool big_endian>
377 void
378 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
379 Got_offset_list::Visitor* v) const
380 {
381 unsigned int nsyms = this->local_symbol_count();
382 for (unsigned int i = 0; i < nsyms; i++)
383 {
384 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
385 if (p != this->local_got_offsets_.end())
386 {
387 const Got_offset_list* got_offsets = p->second;
388 got_offsets->for_all_got_offsets(v);
389 }
390 }
391 }
392
393 // Get the address of an output section.
394
395 template<int size, bool big_endian>
396 uint64_t
397 Sized_relobj<size, big_endian>::do_output_section_address(
398 unsigned int shndx)
399 {
400 // If the input file is linked as --just-symbols, the output
401 // section address is the input section address.
402 if (this->just_symbols())
403 return this->section_address(shndx);
404
405 const Output_section* os = this->do_output_section(shndx);
406 gold_assert(os != NULL);
407 return os->address();
408 }
409
410 // Class Sized_relobj_file.
411
412 template<int size, bool big_endian>
413 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
414 const std::string& name,
415 Input_file* input_file,
416 off_t offset,
417 const elfcpp::Ehdr<size, big_endian>& ehdr)
418 : Sized_relobj<size, big_endian>(name, input_file, offset),
419 elf_file_(this, ehdr),
420 symtab_shndx_(-1U),
421 local_symbol_count_(0),
422 output_local_symbol_count_(0),
423 output_local_dynsym_count_(0),
424 symbols_(),
425 defined_count_(0),
426 local_symbol_offset_(0),
427 local_dynsym_offset_(0),
428 local_values_(),
429 local_plt_offsets_(),
430 kept_comdat_sections_(),
431 has_eh_frame_(false),
432 discarded_eh_frame_shndx_(-1U),
433 is_deferred_layout_(false),
434 deferred_layout_(),
435 deferred_layout_relocs_(),
436 compressed_sections_()
437 {
438 this->e_type_ = ehdr.get_e_type();
439 }
440
441 template<int size, bool big_endian>
442 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
443 {
444 }
445
446 // Set up an object file based on the file header. This sets up the
447 // section information.
448
449 template<int size, bool big_endian>
450 void
451 Sized_relobj_file<size, big_endian>::do_setup()
452 {
453 const unsigned int shnum = this->elf_file_.shnum();
454 this->set_shnum(shnum);
455 }
456
457 // Find the SHT_SYMTAB section, given the section headers. The ELF
458 // standard says that maybe in the future there can be more than one
459 // SHT_SYMTAB section. Until somebody figures out how that could
460 // work, we assume there is only one.
461
462 template<int size, bool big_endian>
463 void
464 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
465 {
466 const unsigned int shnum = this->shnum();
467 this->symtab_shndx_ = 0;
468 if (shnum > 0)
469 {
470 // Look through the sections in reverse order, since gas tends
471 // to put the symbol table at the end.
472 const unsigned char* p = pshdrs + shnum * This::shdr_size;
473 unsigned int i = shnum;
474 unsigned int xindex_shndx = 0;
475 unsigned int xindex_link = 0;
476 while (i > 0)
477 {
478 --i;
479 p -= This::shdr_size;
480 typename This::Shdr shdr(p);
481 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
482 {
483 this->symtab_shndx_ = i;
484 if (xindex_shndx > 0 && xindex_link == i)
485 {
486 Xindex* xindex =
487 new Xindex(this->elf_file_.large_shndx_offset());
488 xindex->read_symtab_xindex<size, big_endian>(this,
489 xindex_shndx,
490 pshdrs);
491 this->set_xindex(xindex);
492 }
493 break;
494 }
495
496 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
497 // one. This will work if it follows the SHT_SYMTAB
498 // section.
499 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
500 {
501 xindex_shndx = i;
502 xindex_link = this->adjust_shndx(shdr.get_sh_link());
503 }
504 }
505 }
506 }
507
508 // Return the Xindex structure to use for object with lots of
509 // sections.
510
511 template<int size, bool big_endian>
512 Xindex*
513 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
514 {
515 gold_assert(this->symtab_shndx_ != -1U);
516 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
517 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
518 return xindex;
519 }
520
521 // Return whether SHDR has the right type and flags to be a GNU
522 // .eh_frame section.
523
524 template<int size, bool big_endian>
525 bool
526 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
527 const elfcpp::Shdr<size, big_endian>* shdr) const
528 {
529 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
530 return ((sh_type == elfcpp::SHT_PROGBITS
531 || sh_type == elfcpp::SHT_X86_64_UNWIND)
532 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
533 }
534
535 // Find the section header with the given name.
536
537 template<int size, bool big_endian>
538 const unsigned char*
539 Object::find_shdr(
540 const unsigned char* pshdrs,
541 const char* name,
542 const char* names,
543 section_size_type names_size,
544 const unsigned char* hdr) const
545 {
546 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
547 const unsigned int shnum = this->shnum();
548 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
549 size_t sh_name = 0;
550
551 while (1)
552 {
553 if (hdr)
554 {
555 // We found HDR last time we were called, continue looking.
556 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
557 sh_name = shdr.get_sh_name();
558 }
559 else
560 {
561 // Look for the next occurrence of NAME in NAMES.
562 // The fact that .shstrtab produced by current GNU tools is
563 // string merged means we shouldn't have both .not.foo and
564 // .foo in .shstrtab, and multiple .foo sections should all
565 // have the same sh_name. However, this is not guaranteed
566 // by the ELF spec and not all ELF object file producers may
567 // be so clever.
568 size_t len = strlen(name) + 1;
569 const char *p = sh_name ? names + sh_name + len : names;
570 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
571 name, len));
572 if (p == NULL)
573 return NULL;
574 sh_name = p - names;
575 hdr = pshdrs;
576 if (sh_name == 0)
577 return hdr;
578 }
579
580 hdr += shdr_size;
581 while (hdr < hdr_end)
582 {
583 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
584 if (shdr.get_sh_name() == sh_name)
585 return hdr;
586 hdr += shdr_size;
587 }
588 hdr = NULL;
589 if (sh_name == 0)
590 return hdr;
591 }
592 }
593
594 // Return whether there is a GNU .eh_frame section, given the section
595 // headers and the section names.
596
597 template<int size, bool big_endian>
598 bool
599 Sized_relobj_file<size, big_endian>::find_eh_frame(
600 const unsigned char* pshdrs,
601 const char* names,
602 section_size_type names_size) const
603 {
604 const unsigned char* s = NULL;
605
606 while (1)
607 {
608 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
609 names, names_size, s);
610 if (s == NULL)
611 return false;
612
613 typename This::Shdr shdr(s);
614 if (this->check_eh_frame_flags(&shdr))
615 return true;
616 }
617 }
618
619 // Return TRUE if this is a section whose contents will be needed in the
620 // Add_symbols task. This function is only called for sections that have
621 // already passed the test in is_compressed_debug_section(), so we know
622 // that the section name begins with ".zdebug".
623
624 static bool
625 need_decompressed_section(const char* name)
626 {
627 // Skip over the ".zdebug" and a quick check for the "_".
628 name += 7;
629 if (*name++ != '_')
630 return false;
631
632 #ifdef ENABLE_THREADS
633 // Decompressing these sections now will help only if we're
634 // multithreaded.
635 if (parameters->options().threads())
636 {
637 // We will need .zdebug_str if this is not an incremental link
638 // (i.e., we are processing string merge sections) or if we need
639 // to build a gdb index.
640 if ((!parameters->incremental() || parameters->options().gdb_index())
641 && strcmp(name, "str") == 0)
642 return true;
643
644 // We will need these other sections when building a gdb index.
645 if (parameters->options().gdb_index()
646 && (strcmp(name, "info") == 0
647 || strcmp(name, "types") == 0
648 || strcmp(name, "pubnames") == 0
649 || strcmp(name, "pubtypes") == 0
650 || strcmp(name, "ranges") == 0
651 || strcmp(name, "abbrev") == 0))
652 return true;
653 }
654 #endif
655
656 // Even when single-threaded, we will need .zdebug_str if this is
657 // not an incremental link and we are building a gdb index.
658 // Otherwise, we would decompress the section twice: once for
659 // string merge processing, and once for building the gdb index.
660 if (!parameters->incremental()
661 && parameters->options().gdb_index()
662 && strcmp(name, "str") == 0)
663 return true;
664
665 return false;
666 }
667
668 // Build a table for any compressed debug sections, mapping each section index
669 // to the uncompressed size and (if needed) the decompressed contents.
670
671 template<int size, bool big_endian>
672 Compressed_section_map*
673 build_compressed_section_map(
674 const unsigned char* pshdrs,
675 unsigned int shnum,
676 const char* names,
677 section_size_type names_size,
678 Sized_relobj_file<size, big_endian>* obj)
679 {
680 Compressed_section_map* uncompressed_map = new Compressed_section_map();
681 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
682 const unsigned char* p = pshdrs + shdr_size;
683
684 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
685 {
686 typename elfcpp::Shdr<size, big_endian> shdr(p);
687 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
688 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
689 {
690 if (shdr.get_sh_name() >= names_size)
691 {
692 obj->error(_("bad section name offset for section %u: %lu"),
693 i, static_cast<unsigned long>(shdr.get_sh_name()));
694 continue;
695 }
696
697 const char* name = names + shdr.get_sh_name();
698 if (is_compressed_debug_section(name))
699 {
700 section_size_type len;
701 const unsigned char* contents =
702 obj->section_contents(i, &len, false);
703 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
704 Compressed_section_info info;
705 info.size = convert_to_section_size_type(uncompressed_size);
706 info.contents = NULL;
707 if (uncompressed_size != -1ULL)
708 {
709 unsigned char* uncompressed_data = NULL;
710 if (need_decompressed_section(name))
711 {
712 uncompressed_data = new unsigned char[uncompressed_size];
713 if (decompress_input_section(contents, len,
714 uncompressed_data,
715 uncompressed_size))
716 info.contents = uncompressed_data;
717 else
718 delete[] uncompressed_data;
719 }
720 (*uncompressed_map)[i] = info;
721 }
722 }
723 }
724 }
725 return uncompressed_map;
726 }
727
728 // Stash away info for a number of special sections.
729 // Return true if any of the sections found require local symbols to be read.
730
731 template<int size, bool big_endian>
732 bool
733 Sized_relobj_file<size, big_endian>::do_find_special_sections(
734 Read_symbols_data* sd)
735 {
736 const unsigned char* const pshdrs = sd->section_headers->data();
737 const unsigned char* namesu = sd->section_names->data();
738 const char* names = reinterpret_cast<const char*>(namesu);
739
740 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
741 this->has_eh_frame_ = true;
742
743 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
744 this->compressed_sections_
745 = build_compressed_section_map(pshdrs, this->shnum(), names,
746 sd->section_names_size, this);
747 return (this->has_eh_frame_
748 || (!parameters->options().relocatable()
749 && parameters->options().gdb_index()
750 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
751 || memmem(names, sd->section_names_size, "debug_types",
752 13) == 0)));
753 }
754
755 // Read the sections and symbols from an object file.
756
757 template<int size, bool big_endian>
758 void
759 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
760 {
761 this->base_read_symbols(sd);
762 }
763
764 // Read the sections and symbols from an object file. This is common
765 // code for all target-specific overrides of do_read_symbols().
766
767 template<int size, bool big_endian>
768 void
769 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
770 {
771 this->read_section_data(&this->elf_file_, sd);
772
773 const unsigned char* const pshdrs = sd->section_headers->data();
774
775 this->find_symtab(pshdrs);
776
777 bool need_local_symbols = this->do_find_special_sections(sd);
778
779 sd->symbols = NULL;
780 sd->symbols_size = 0;
781 sd->external_symbols_offset = 0;
782 sd->symbol_names = NULL;
783 sd->symbol_names_size = 0;
784
785 if (this->symtab_shndx_ == 0)
786 {
787 // No symbol table. Weird but legal.
788 return;
789 }
790
791 // Get the symbol table section header.
792 typename This::Shdr symtabshdr(pshdrs
793 + this->symtab_shndx_ * This::shdr_size);
794 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
795
796 // If this object has a .eh_frame section, or if building a .gdb_index
797 // section and there is debug info, we need all the symbols.
798 // Otherwise we only need the external symbols. While it would be
799 // simpler to just always read all the symbols, I've seen object
800 // files with well over 2000 local symbols, which for a 64-bit
801 // object file format is over 5 pages that we don't need to read
802 // now.
803
804 const int sym_size = This::sym_size;
805 const unsigned int loccount = symtabshdr.get_sh_info();
806 this->local_symbol_count_ = loccount;
807 this->local_values_.resize(loccount);
808 section_offset_type locsize = loccount * sym_size;
809 off_t dataoff = symtabshdr.get_sh_offset();
810 section_size_type datasize =
811 convert_to_section_size_type(symtabshdr.get_sh_size());
812 off_t extoff = dataoff + locsize;
813 section_size_type extsize = datasize - locsize;
814
815 off_t readoff = need_local_symbols ? dataoff : extoff;
816 section_size_type readsize = need_local_symbols ? datasize : extsize;
817
818 if (readsize == 0)
819 {
820 // No external symbols. Also weird but also legal.
821 return;
822 }
823
824 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
825
826 // Read the section header for the symbol names.
827 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
828 if (strtab_shndx >= this->shnum())
829 {
830 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
831 return;
832 }
833 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
834 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
835 {
836 this->error(_("symbol table name section has wrong type: %u"),
837 static_cast<unsigned int>(strtabshdr.get_sh_type()));
838 return;
839 }
840
841 // Read the symbol names.
842 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
843 strtabshdr.get_sh_size(),
844 false, true);
845
846 sd->symbols = fvsymtab;
847 sd->symbols_size = readsize;
848 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
849 sd->symbol_names = fvstrtab;
850 sd->symbol_names_size =
851 convert_to_section_size_type(strtabshdr.get_sh_size());
852 }
853
854 // Return the section index of symbol SYM. Set *VALUE to its value in
855 // the object file. Set *IS_ORDINARY if this is an ordinary section
856 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
857 // Note that for a symbol which is not defined in this object file,
858 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
859 // the final value of the symbol in the link.
860
861 template<int size, bool big_endian>
862 unsigned int
863 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
864 Address* value,
865 bool* is_ordinary)
866 {
867 section_size_type symbols_size;
868 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
869 &symbols_size,
870 false);
871
872 const size_t count = symbols_size / This::sym_size;
873 gold_assert(sym < count);
874
875 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
876 *value = elfsym.get_st_value();
877
878 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
879 }
880
881 // Return whether to include a section group in the link. LAYOUT is
882 // used to keep track of which section groups we have already seen.
883 // INDEX is the index of the section group and SHDR is the section
884 // header. If we do not want to include this group, we set bits in
885 // OMIT for each section which should be discarded.
886
887 template<int size, bool big_endian>
888 bool
889 Sized_relobj_file<size, big_endian>::include_section_group(
890 Symbol_table* symtab,
891 Layout* layout,
892 unsigned int index,
893 const char* name,
894 const unsigned char* shdrs,
895 const char* section_names,
896 section_size_type section_names_size,
897 std::vector<bool>* omit)
898 {
899 // Read the section contents.
900 typename This::Shdr shdr(shdrs + index * This::shdr_size);
901 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
902 shdr.get_sh_size(), true, false);
903 const elfcpp::Elf_Word* pword =
904 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
905
906 // The first word contains flags. We only care about COMDAT section
907 // groups. Other section groups are always included in the link
908 // just like ordinary sections.
909 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
910
911 // Look up the group signature, which is the name of a symbol. ELF
912 // uses a symbol name because some group signatures are long, and
913 // the name is generally already in the symbol table, so it makes
914 // sense to put the long string just once in .strtab rather than in
915 // both .strtab and .shstrtab.
916
917 // Get the appropriate symbol table header (this will normally be
918 // the single SHT_SYMTAB section, but in principle it need not be).
919 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
920 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
921
922 // Read the symbol table entry.
923 unsigned int symndx = shdr.get_sh_info();
924 if (symndx >= symshdr.get_sh_size() / This::sym_size)
925 {
926 this->error(_("section group %u info %u out of range"),
927 index, symndx);
928 return false;
929 }
930 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
931 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
932 false);
933 elfcpp::Sym<size, big_endian> sym(psym);
934
935 // Read the symbol table names.
936 section_size_type symnamelen;
937 const unsigned char* psymnamesu;
938 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
939 &symnamelen, true);
940 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
941
942 // Get the section group signature.
943 if (sym.get_st_name() >= symnamelen)
944 {
945 this->error(_("symbol %u name offset %u out of range"),
946 symndx, sym.get_st_name());
947 return false;
948 }
949
950 std::string signature(psymnames + sym.get_st_name());
951
952 // It seems that some versions of gas will create a section group
953 // associated with a section symbol, and then fail to give a name to
954 // the section symbol. In such a case, use the name of the section.
955 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
956 {
957 bool is_ordinary;
958 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
959 sym.get_st_shndx(),
960 &is_ordinary);
961 if (!is_ordinary || sym_shndx >= this->shnum())
962 {
963 this->error(_("symbol %u invalid section index %u"),
964 symndx, sym_shndx);
965 return false;
966 }
967 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
968 if (member_shdr.get_sh_name() < section_names_size)
969 signature = section_names + member_shdr.get_sh_name();
970 }
971
972 // Record this section group in the layout, and see whether we've already
973 // seen one with the same signature.
974 bool include_group;
975 bool is_comdat;
976 Kept_section* kept_section = NULL;
977
978 if ((flags & elfcpp::GRP_COMDAT) == 0)
979 {
980 include_group = true;
981 is_comdat = false;
982 }
983 else
984 {
985 include_group = layout->find_or_add_kept_section(signature,
986 this, index, true,
987 true, &kept_section);
988 is_comdat = true;
989 }
990
991 if (is_comdat && include_group)
992 {
993 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
994 if (incremental_inputs != NULL)
995 incremental_inputs->report_comdat_group(this, signature.c_str());
996 }
997
998 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
999
1000 std::vector<unsigned int> shndxes;
1001 bool relocate_group = include_group && parameters->options().relocatable();
1002 if (relocate_group)
1003 shndxes.reserve(count - 1);
1004
1005 for (size_t i = 1; i < count; ++i)
1006 {
1007 elfcpp::Elf_Word shndx =
1008 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1009
1010 if (relocate_group)
1011 shndxes.push_back(shndx);
1012
1013 if (shndx >= this->shnum())
1014 {
1015 this->error(_("section %u in section group %u out of range"),
1016 shndx, index);
1017 continue;
1018 }
1019
1020 // Check for an earlier section number, since we're going to get
1021 // it wrong--we may have already decided to include the section.
1022 if (shndx < index)
1023 this->error(_("invalid section group %u refers to earlier section %u"),
1024 index, shndx);
1025
1026 // Get the name of the member section.
1027 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1028 if (member_shdr.get_sh_name() >= section_names_size)
1029 {
1030 // This is an error, but it will be diagnosed eventually
1031 // in do_layout, so we don't need to do anything here but
1032 // ignore it.
1033 continue;
1034 }
1035 std::string mname(section_names + member_shdr.get_sh_name());
1036
1037 if (include_group)
1038 {
1039 if (is_comdat)
1040 kept_section->add_comdat_section(mname, shndx,
1041 member_shdr.get_sh_size());
1042 }
1043 else
1044 {
1045 (*omit)[shndx] = true;
1046
1047 if (is_comdat)
1048 {
1049 Relobj* kept_object = kept_section->object();
1050 if (kept_section->is_comdat())
1051 {
1052 // Find the corresponding kept section, and store
1053 // that info in the discarded section table.
1054 unsigned int kept_shndx;
1055 uint64_t kept_size;
1056 if (kept_section->find_comdat_section(mname, &kept_shndx,
1057 &kept_size))
1058 {
1059 // We don't keep a mapping for this section if
1060 // it has a different size. The mapping is only
1061 // used for relocation processing, and we don't
1062 // want to treat the sections as similar if the
1063 // sizes are different. Checking the section
1064 // size is the approach used by the GNU linker.
1065 if (kept_size == member_shdr.get_sh_size())
1066 this->set_kept_comdat_section(shndx, kept_object,
1067 kept_shndx);
1068 }
1069 }
1070 else
1071 {
1072 // The existing section is a linkonce section. Add
1073 // a mapping if there is exactly one section in the
1074 // group (which is true when COUNT == 2) and if it
1075 // is the same size.
1076 if (count == 2
1077 && (kept_section->linkonce_size()
1078 == member_shdr.get_sh_size()))
1079 this->set_kept_comdat_section(shndx, kept_object,
1080 kept_section->shndx());
1081 }
1082 }
1083 }
1084 }
1085
1086 if (relocate_group)
1087 layout->layout_group(symtab, this, index, name, signature.c_str(),
1088 shdr, flags, &shndxes);
1089
1090 return include_group;
1091 }
1092
1093 // Whether to include a linkonce section in the link. NAME is the
1094 // name of the section and SHDR is the section header.
1095
1096 // Linkonce sections are a GNU extension implemented in the original
1097 // GNU linker before section groups were defined. The semantics are
1098 // that we only include one linkonce section with a given name. The
1099 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1100 // where T is the type of section and SYMNAME is the name of a symbol.
1101 // In an attempt to make linkonce sections interact well with section
1102 // groups, we try to identify SYMNAME and use it like a section group
1103 // signature. We want to block section groups with that signature,
1104 // but not other linkonce sections with that signature. We also use
1105 // the full name of the linkonce section as a normal section group
1106 // signature.
1107
1108 template<int size, bool big_endian>
1109 bool
1110 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1111 Layout* layout,
1112 unsigned int index,
1113 const char* name,
1114 const elfcpp::Shdr<size, big_endian>& shdr)
1115 {
1116 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1117 // In general the symbol name we want will be the string following
1118 // the last '.'. However, we have to handle the case of
1119 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1120 // some versions of gcc. So we use a heuristic: if the name starts
1121 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1122 // we look for the last '.'. We can't always simply skip
1123 // ".gnu.linkonce.X", because we have to deal with cases like
1124 // ".gnu.linkonce.d.rel.ro.local".
1125 const char* const linkonce_t = ".gnu.linkonce.t.";
1126 const char* symname;
1127 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1128 symname = name + strlen(linkonce_t);
1129 else
1130 symname = strrchr(name, '.') + 1;
1131 std::string sig1(symname);
1132 std::string sig2(name);
1133 Kept_section* kept1;
1134 Kept_section* kept2;
1135 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1136 false, &kept1);
1137 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1138 true, &kept2);
1139
1140 if (!include2)
1141 {
1142 // We are not including this section because we already saw the
1143 // name of the section as a signature. This normally implies
1144 // that the kept section is another linkonce section. If it is
1145 // the same size, record it as the section which corresponds to
1146 // this one.
1147 if (kept2->object() != NULL
1148 && !kept2->is_comdat()
1149 && kept2->linkonce_size() == sh_size)
1150 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1151 }
1152 else if (!include1)
1153 {
1154 // The section is being discarded on the basis of its symbol
1155 // name. This means that the corresponding kept section was
1156 // part of a comdat group, and it will be difficult to identify
1157 // the specific section within that group that corresponds to
1158 // this linkonce section. We'll handle the simple case where
1159 // the group has only one member section. Otherwise, it's not
1160 // worth the effort.
1161 unsigned int kept_shndx;
1162 uint64_t kept_size;
1163 if (kept1->object() != NULL
1164 && kept1->is_comdat()
1165 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1166 && kept_size == sh_size)
1167 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1168 }
1169 else
1170 {
1171 kept1->set_linkonce_size(sh_size);
1172 kept2->set_linkonce_size(sh_size);
1173 }
1174
1175 return include1 && include2;
1176 }
1177
1178 // Layout an input section.
1179
1180 template<int size, bool big_endian>
1181 inline void
1182 Sized_relobj_file<size, big_endian>::layout_section(
1183 Layout* layout,
1184 unsigned int shndx,
1185 const char* name,
1186 const typename This::Shdr& shdr,
1187 unsigned int reloc_shndx,
1188 unsigned int reloc_type)
1189 {
1190 off_t offset;
1191 Output_section* os = layout->layout(this, shndx, name, shdr,
1192 reloc_shndx, reloc_type, &offset);
1193
1194 this->output_sections()[shndx] = os;
1195 if (offset == -1)
1196 this->section_offsets()[shndx] = invalid_address;
1197 else
1198 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1199
1200 // If this section requires special handling, and if there are
1201 // relocs that apply to it, then we must do the special handling
1202 // before we apply the relocs.
1203 if (offset == -1 && reloc_shndx != 0)
1204 this->set_relocs_must_follow_section_writes();
1205 }
1206
1207 // Layout an input .eh_frame section.
1208
1209 template<int size, bool big_endian>
1210 void
1211 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1212 Layout* layout,
1213 const unsigned char* symbols_data,
1214 section_size_type symbols_size,
1215 const unsigned char* symbol_names_data,
1216 section_size_type symbol_names_size,
1217 unsigned int shndx,
1218 const typename This::Shdr& shdr,
1219 unsigned int reloc_shndx,
1220 unsigned int reloc_type)
1221 {
1222 gold_assert(this->has_eh_frame_);
1223
1224 off_t offset;
1225 Output_section* os = layout->layout_eh_frame(this,
1226 symbols_data,
1227 symbols_size,
1228 symbol_names_data,
1229 symbol_names_size,
1230 shndx,
1231 shdr,
1232 reloc_shndx,
1233 reloc_type,
1234 &offset);
1235 this->output_sections()[shndx] = os;
1236 if (os == NULL || offset == -1)
1237 {
1238 // An object can contain at most one section holding exception
1239 // frame information.
1240 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1241 this->discarded_eh_frame_shndx_ = shndx;
1242 this->section_offsets()[shndx] = invalid_address;
1243 }
1244 else
1245 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1246
1247 // If this section requires special handling, and if there are
1248 // relocs that aply to it, then we must do the special handling
1249 // before we apply the relocs.
1250 if (os != NULL && offset == -1 && reloc_shndx != 0)
1251 this->set_relocs_must_follow_section_writes();
1252 }
1253
1254 // Lay out the input sections. We walk through the sections and check
1255 // whether they should be included in the link. If they should, we
1256 // pass them to the Layout object, which will return an output section
1257 // and an offset.
1258 // This function is called twice sometimes, two passes, when mapping
1259 // of input sections to output sections must be delayed.
1260 // This is true for the following :
1261 // * Garbage collection (--gc-sections): Some input sections will be
1262 // discarded and hence the assignment must wait until the second pass.
1263 // In the first pass, it is for setting up some sections as roots to
1264 // a work-list for --gc-sections and to do comdat processing.
1265 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1266 // will be folded and hence the assignment must wait.
1267 // * Using plugins to map some sections to unique segments: Mapping
1268 // some sections to unique segments requires mapping them to unique
1269 // output sections too. This can be done via plugins now and this
1270 // information is not available in the first pass.
1271
1272 template<int size, bool big_endian>
1273 void
1274 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1275 Layout* layout,
1276 Read_symbols_data* sd)
1277 {
1278 const unsigned int shnum = this->shnum();
1279
1280 /* Should this function be called twice? */
1281 bool is_two_pass = (parameters->options().gc_sections()
1282 || parameters->options().icf_enabled()
1283 || layout->is_unique_segment_for_sections_specified());
1284
1285 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1286 a two-pass approach is not needed. */
1287 bool is_pass_one = false;
1288 bool is_pass_two = false;
1289
1290 Symbols_data* gc_sd = NULL;
1291
1292 /* Check if do_layout needs to be two-pass. If so, find out which pass
1293 should happen. In the first pass, the data in sd is saved to be used
1294 later in the second pass. */
1295 if (is_two_pass)
1296 {
1297 gc_sd = this->get_symbols_data();
1298 if (gc_sd == NULL)
1299 {
1300 gold_assert(sd != NULL);
1301 is_pass_one = true;
1302 }
1303 else
1304 {
1305 if (parameters->options().gc_sections())
1306 gold_assert(symtab->gc()->is_worklist_ready());
1307 if (parameters->options().icf_enabled())
1308 gold_assert(symtab->icf()->is_icf_ready());
1309 is_pass_two = true;
1310 }
1311 }
1312
1313 if (shnum == 0)
1314 return;
1315
1316 if (is_pass_one)
1317 {
1318 // During garbage collection save the symbols data to use it when
1319 // re-entering this function.
1320 gc_sd = new Symbols_data;
1321 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1322 this->set_symbols_data(gc_sd);
1323 }
1324
1325 const unsigned char* section_headers_data = NULL;
1326 section_size_type section_names_size;
1327 const unsigned char* symbols_data = NULL;
1328 section_size_type symbols_size;
1329 const unsigned char* symbol_names_data = NULL;
1330 section_size_type symbol_names_size;
1331
1332 if (is_two_pass)
1333 {
1334 section_headers_data = gc_sd->section_headers_data;
1335 section_names_size = gc_sd->section_names_size;
1336 symbols_data = gc_sd->symbols_data;
1337 symbols_size = gc_sd->symbols_size;
1338 symbol_names_data = gc_sd->symbol_names_data;
1339 symbol_names_size = gc_sd->symbol_names_size;
1340 }
1341 else
1342 {
1343 section_headers_data = sd->section_headers->data();
1344 section_names_size = sd->section_names_size;
1345 if (sd->symbols != NULL)
1346 symbols_data = sd->symbols->data();
1347 symbols_size = sd->symbols_size;
1348 if (sd->symbol_names != NULL)
1349 symbol_names_data = sd->symbol_names->data();
1350 symbol_names_size = sd->symbol_names_size;
1351 }
1352
1353 // Get the section headers.
1354 const unsigned char* shdrs = section_headers_data;
1355 const unsigned char* pshdrs;
1356
1357 // Get the section names.
1358 const unsigned char* pnamesu = (is_two_pass
1359 ? gc_sd->section_names_data
1360 : sd->section_names->data());
1361
1362 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1363
1364 // If any input files have been claimed by plugins, we need to defer
1365 // actual layout until the replacement files have arrived.
1366 const bool should_defer_layout =
1367 (parameters->options().has_plugins()
1368 && parameters->options().plugins()->should_defer_layout());
1369 unsigned int num_sections_to_defer = 0;
1370
1371 // For each section, record the index of the reloc section if any.
1372 // Use 0 to mean that there is no reloc section, -1U to mean that
1373 // there is more than one.
1374 std::vector<unsigned int> reloc_shndx(shnum, 0);
1375 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1376 // Skip the first, dummy, section.
1377 pshdrs = shdrs + This::shdr_size;
1378 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1379 {
1380 typename This::Shdr shdr(pshdrs);
1381
1382 // Count the number of sections whose layout will be deferred.
1383 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1384 ++num_sections_to_defer;
1385
1386 unsigned int sh_type = shdr.get_sh_type();
1387 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1388 {
1389 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1390 if (target_shndx == 0 || target_shndx >= shnum)
1391 {
1392 this->error(_("relocation section %u has bad info %u"),
1393 i, target_shndx);
1394 continue;
1395 }
1396
1397 if (reloc_shndx[target_shndx] != 0)
1398 reloc_shndx[target_shndx] = -1U;
1399 else
1400 {
1401 reloc_shndx[target_shndx] = i;
1402 reloc_type[target_shndx] = sh_type;
1403 }
1404 }
1405 }
1406
1407 Output_sections& out_sections(this->output_sections());
1408 std::vector<Address>& out_section_offsets(this->section_offsets());
1409
1410 if (!is_pass_two)
1411 {
1412 out_sections.resize(shnum);
1413 out_section_offsets.resize(shnum);
1414 }
1415
1416 // If we are only linking for symbols, then there is nothing else to
1417 // do here.
1418 if (this->input_file()->just_symbols())
1419 {
1420 if (!is_pass_two)
1421 {
1422 delete sd->section_headers;
1423 sd->section_headers = NULL;
1424 delete sd->section_names;
1425 sd->section_names = NULL;
1426 }
1427 return;
1428 }
1429
1430 if (num_sections_to_defer > 0)
1431 {
1432 parameters->options().plugins()->add_deferred_layout_object(this);
1433 this->deferred_layout_.reserve(num_sections_to_defer);
1434 this->is_deferred_layout_ = true;
1435 }
1436
1437 // Whether we've seen a .note.GNU-stack section.
1438 bool seen_gnu_stack = false;
1439 // The flags of a .note.GNU-stack section.
1440 uint64_t gnu_stack_flags = 0;
1441
1442 // Keep track of which sections to omit.
1443 std::vector<bool> omit(shnum, false);
1444
1445 // Keep track of reloc sections when emitting relocations.
1446 const bool relocatable = parameters->options().relocatable();
1447 const bool emit_relocs = (relocatable
1448 || parameters->options().emit_relocs());
1449 std::vector<unsigned int> reloc_sections;
1450
1451 // Keep track of .eh_frame sections.
1452 std::vector<unsigned int> eh_frame_sections;
1453
1454 // Keep track of .debug_info and .debug_types sections.
1455 std::vector<unsigned int> debug_info_sections;
1456 std::vector<unsigned int> debug_types_sections;
1457
1458 // Skip the first, dummy, section.
1459 pshdrs = shdrs + This::shdr_size;
1460 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1461 {
1462 typename This::Shdr shdr(pshdrs);
1463
1464 if (shdr.get_sh_name() >= section_names_size)
1465 {
1466 this->error(_("bad section name offset for section %u: %lu"),
1467 i, static_cast<unsigned long>(shdr.get_sh_name()));
1468 return;
1469 }
1470
1471 const char* name = pnames + shdr.get_sh_name();
1472
1473 if (!is_pass_two)
1474 {
1475 if (this->handle_gnu_warning_section(name, i, symtab))
1476 {
1477 if (!relocatable && !parameters->options().shared())
1478 omit[i] = true;
1479 }
1480
1481 // The .note.GNU-stack section is special. It gives the
1482 // protection flags that this object file requires for the stack
1483 // in memory.
1484 if (strcmp(name, ".note.GNU-stack") == 0)
1485 {
1486 seen_gnu_stack = true;
1487 gnu_stack_flags |= shdr.get_sh_flags();
1488 omit[i] = true;
1489 }
1490
1491 // The .note.GNU-split-stack section is also special. It
1492 // indicates that the object was compiled with
1493 // -fsplit-stack.
1494 if (this->handle_split_stack_section(name))
1495 {
1496 if (!relocatable && !parameters->options().shared())
1497 omit[i] = true;
1498 }
1499
1500 // Skip attributes section.
1501 if (parameters->target().is_attributes_section(name))
1502 {
1503 omit[i] = true;
1504 }
1505
1506 bool discard = omit[i];
1507 if (!discard)
1508 {
1509 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1510 {
1511 if (!this->include_section_group(symtab, layout, i, name,
1512 shdrs, pnames,
1513 section_names_size,
1514 &omit))
1515 discard = true;
1516 }
1517 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1518 && Layout::is_linkonce(name))
1519 {
1520 if (!this->include_linkonce_section(layout, i, name, shdr))
1521 discard = true;
1522 }
1523 }
1524
1525 // Add the section to the incremental inputs layout.
1526 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1527 if (incremental_inputs != NULL
1528 && !discard
1529 && can_incremental_update(shdr.get_sh_type()))
1530 {
1531 off_t sh_size = shdr.get_sh_size();
1532 section_size_type uncompressed_size;
1533 if (this->section_is_compressed(i, &uncompressed_size))
1534 sh_size = uncompressed_size;
1535 incremental_inputs->report_input_section(this, i, name, sh_size);
1536 }
1537
1538 if (discard)
1539 {
1540 // Do not include this section in the link.
1541 out_sections[i] = NULL;
1542 out_section_offsets[i] = invalid_address;
1543 continue;
1544 }
1545 }
1546
1547 if (is_pass_one && parameters->options().gc_sections())
1548 {
1549 if (this->is_section_name_included(name)
1550 || layout->keep_input_section (this, name)
1551 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1552 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1553 {
1554 symtab->gc()->worklist().push(Section_id(this, i));
1555 }
1556 // If the section name XXX can be represented as a C identifier
1557 // it cannot be discarded if there are references to
1558 // __start_XXX and __stop_XXX symbols. These need to be
1559 // specially handled.
1560 if (is_cident(name))
1561 {
1562 symtab->gc()->add_cident_section(name, Section_id(this, i));
1563 }
1564 }
1565
1566 // When doing a relocatable link we are going to copy input
1567 // reloc sections into the output. We only want to copy the
1568 // ones associated with sections which are not being discarded.
1569 // However, we don't know that yet for all sections. So save
1570 // reloc sections and process them later. Garbage collection is
1571 // not triggered when relocatable code is desired.
1572 if (emit_relocs
1573 && (shdr.get_sh_type() == elfcpp::SHT_REL
1574 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1575 {
1576 reloc_sections.push_back(i);
1577 continue;
1578 }
1579
1580 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1581 continue;
1582
1583 // The .eh_frame section is special. It holds exception frame
1584 // information that we need to read in order to generate the
1585 // exception frame header. We process these after all the other
1586 // sections so that the exception frame reader can reliably
1587 // determine which sections are being discarded, and discard the
1588 // corresponding information.
1589 if (!relocatable
1590 && strcmp(name, ".eh_frame") == 0
1591 && this->check_eh_frame_flags(&shdr))
1592 {
1593 if (is_pass_one)
1594 {
1595 if (this->is_deferred_layout())
1596 out_sections[i] = reinterpret_cast<Output_section*>(2);
1597 else
1598 out_sections[i] = reinterpret_cast<Output_section*>(1);
1599 out_section_offsets[i] = invalid_address;
1600 }
1601 else if (this->is_deferred_layout())
1602 this->deferred_layout_.push_back(Deferred_layout(i, name,
1603 pshdrs,
1604 reloc_shndx[i],
1605 reloc_type[i]));
1606 else
1607 eh_frame_sections.push_back(i);
1608 continue;
1609 }
1610
1611 if (is_pass_two && parameters->options().gc_sections())
1612 {
1613 // This is executed during the second pass of garbage
1614 // collection. do_layout has been called before and some
1615 // sections have been already discarded. Simply ignore
1616 // such sections this time around.
1617 if (out_sections[i] == NULL)
1618 {
1619 gold_assert(out_section_offsets[i] == invalid_address);
1620 continue;
1621 }
1622 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1623 && symtab->gc()->is_section_garbage(this, i))
1624 {
1625 if (parameters->options().print_gc_sections())
1626 gold_info(_("%s: removing unused section from '%s'"
1627 " in file '%s'"),
1628 program_name, this->section_name(i).c_str(),
1629 this->name().c_str());
1630 out_sections[i] = NULL;
1631 out_section_offsets[i] = invalid_address;
1632 continue;
1633 }
1634 }
1635
1636 if (is_pass_two && parameters->options().icf_enabled())
1637 {
1638 if (out_sections[i] == NULL)
1639 {
1640 gold_assert(out_section_offsets[i] == invalid_address);
1641 continue;
1642 }
1643 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1644 && symtab->icf()->is_section_folded(this, i))
1645 {
1646 if (parameters->options().print_icf_sections())
1647 {
1648 Section_id folded =
1649 symtab->icf()->get_folded_section(this, i);
1650 Relobj* folded_obj =
1651 reinterpret_cast<Relobj*>(folded.first);
1652 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1653 "into '%s' in file '%s'"),
1654 program_name, this->section_name(i).c_str(),
1655 this->name().c_str(),
1656 folded_obj->section_name(folded.second).c_str(),
1657 folded_obj->name().c_str());
1658 }
1659 out_sections[i] = NULL;
1660 out_section_offsets[i] = invalid_address;
1661 continue;
1662 }
1663 }
1664
1665 // Defer layout here if input files are claimed by plugins. When gc
1666 // is turned on this function is called twice; we only want to do this
1667 // on the first pass.
1668 if (!is_pass_two
1669 && this->is_deferred_layout()
1670 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1671 {
1672 this->deferred_layout_.push_back(Deferred_layout(i, name,
1673 pshdrs,
1674 reloc_shndx[i],
1675 reloc_type[i]));
1676 // Put dummy values here; real values will be supplied by
1677 // do_layout_deferred_sections.
1678 out_sections[i] = reinterpret_cast<Output_section*>(2);
1679 out_section_offsets[i] = invalid_address;
1680 continue;
1681 }
1682
1683 // During gc_pass_two if a section that was previously deferred is
1684 // found, do not layout the section as layout_deferred_sections will
1685 // do it later from gold.cc.
1686 if (is_pass_two
1687 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1688 continue;
1689
1690 if (is_pass_one)
1691 {
1692 // This is during garbage collection. The out_sections are
1693 // assigned in the second call to this function.
1694 out_sections[i] = reinterpret_cast<Output_section*>(1);
1695 out_section_offsets[i] = invalid_address;
1696 }
1697 else
1698 {
1699 // When garbage collection is switched on the actual layout
1700 // only happens in the second call.
1701 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1702 reloc_type[i]);
1703
1704 // When generating a .gdb_index section, we do additional
1705 // processing of .debug_info and .debug_types sections after all
1706 // the other sections for the same reason as above.
1707 if (!relocatable
1708 && parameters->options().gdb_index()
1709 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1710 {
1711 if (strcmp(name, ".debug_info") == 0
1712 || strcmp(name, ".zdebug_info") == 0)
1713 debug_info_sections.push_back(i);
1714 else if (strcmp(name, ".debug_types") == 0
1715 || strcmp(name, ".zdebug_types") == 0)
1716 debug_types_sections.push_back(i);
1717 }
1718 }
1719 }
1720
1721 if (!is_pass_two)
1722 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1723
1724 // Handle the .eh_frame sections after the other sections.
1725 gold_assert(!is_pass_one || eh_frame_sections.empty());
1726 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1727 p != eh_frame_sections.end();
1728 ++p)
1729 {
1730 unsigned int i = *p;
1731 const unsigned char* pshdr;
1732 pshdr = section_headers_data + i * This::shdr_size;
1733 typename This::Shdr shdr(pshdr);
1734
1735 this->layout_eh_frame_section(layout,
1736 symbols_data,
1737 symbols_size,
1738 symbol_names_data,
1739 symbol_names_size,
1740 i,
1741 shdr,
1742 reloc_shndx[i],
1743 reloc_type[i]);
1744 }
1745
1746 // When doing a relocatable link handle the reloc sections at the
1747 // end. Garbage collection and Identical Code Folding is not
1748 // turned on for relocatable code.
1749 if (emit_relocs)
1750 this->size_relocatable_relocs();
1751
1752 gold_assert(!is_two_pass || reloc_sections.empty());
1753
1754 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1755 p != reloc_sections.end();
1756 ++p)
1757 {
1758 unsigned int i = *p;
1759 const unsigned char* pshdr;
1760 pshdr = section_headers_data + i * This::shdr_size;
1761 typename This::Shdr shdr(pshdr);
1762
1763 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1764 if (data_shndx >= shnum)
1765 {
1766 // We already warned about this above.
1767 continue;
1768 }
1769
1770 Output_section* data_section = out_sections[data_shndx];
1771 if (data_section == reinterpret_cast<Output_section*>(2))
1772 {
1773 if (is_pass_two)
1774 continue;
1775 // The layout for the data section was deferred, so we need
1776 // to defer the relocation section, too.
1777 const char* name = pnames + shdr.get_sh_name();
1778 this->deferred_layout_relocs_.push_back(
1779 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1780 out_sections[i] = reinterpret_cast<Output_section*>(2);
1781 out_section_offsets[i] = invalid_address;
1782 continue;
1783 }
1784 if (data_section == NULL)
1785 {
1786 out_sections[i] = NULL;
1787 out_section_offsets[i] = invalid_address;
1788 continue;
1789 }
1790
1791 Relocatable_relocs* rr = new Relocatable_relocs();
1792 this->set_relocatable_relocs(i, rr);
1793
1794 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1795 rr);
1796 out_sections[i] = os;
1797 out_section_offsets[i] = invalid_address;
1798 }
1799
1800 // When building a .gdb_index section, scan the .debug_info and
1801 // .debug_types sections.
1802 gold_assert(!is_pass_one
1803 || (debug_info_sections.empty() && debug_types_sections.empty()));
1804 for (std::vector<unsigned int>::const_iterator p
1805 = debug_info_sections.begin();
1806 p != debug_info_sections.end();
1807 ++p)
1808 {
1809 unsigned int i = *p;
1810 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1811 i, reloc_shndx[i], reloc_type[i]);
1812 }
1813 for (std::vector<unsigned int>::const_iterator p
1814 = debug_types_sections.begin();
1815 p != debug_types_sections.end();
1816 ++p)
1817 {
1818 unsigned int i = *p;
1819 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1820 i, reloc_shndx[i], reloc_type[i]);
1821 }
1822
1823 if (is_pass_two)
1824 {
1825 delete[] gc_sd->section_headers_data;
1826 delete[] gc_sd->section_names_data;
1827 delete[] gc_sd->symbols_data;
1828 delete[] gc_sd->symbol_names_data;
1829 this->set_symbols_data(NULL);
1830 }
1831 else
1832 {
1833 delete sd->section_headers;
1834 sd->section_headers = NULL;
1835 delete sd->section_names;
1836 sd->section_names = NULL;
1837 }
1838 }
1839
1840 // Layout sections whose layout was deferred while waiting for
1841 // input files from a plugin.
1842
1843 template<int size, bool big_endian>
1844 void
1845 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1846 {
1847 typename std::vector<Deferred_layout>::iterator deferred;
1848
1849 for (deferred = this->deferred_layout_.begin();
1850 deferred != this->deferred_layout_.end();
1851 ++deferred)
1852 {
1853 typename This::Shdr shdr(deferred->shdr_data_);
1854
1855 if (!parameters->options().relocatable()
1856 && deferred->name_ == ".eh_frame"
1857 && this->check_eh_frame_flags(&shdr))
1858 {
1859 // Checking is_section_included is not reliable for
1860 // .eh_frame sections, because they do not have an output
1861 // section. This is not a problem normally because we call
1862 // layout_eh_frame_section unconditionally, but when
1863 // deferring sections that is not true. We don't want to
1864 // keep all .eh_frame sections because that will cause us to
1865 // keep all sections that they refer to, which is the wrong
1866 // way around. Instead, the eh_frame code will discard
1867 // .eh_frame sections that refer to discarded sections.
1868
1869 // Reading the symbols again here may be slow.
1870 Read_symbols_data sd;
1871 this->base_read_symbols(&sd);
1872 this->layout_eh_frame_section(layout,
1873 sd.symbols->data(),
1874 sd.symbols_size,
1875 sd.symbol_names->data(),
1876 sd.symbol_names_size,
1877 deferred->shndx_,
1878 shdr,
1879 deferred->reloc_shndx_,
1880 deferred->reloc_type_);
1881 continue;
1882 }
1883
1884 // If the section is not included, it is because the garbage collector
1885 // decided it is not needed. Avoid reverting that decision.
1886 if (!this->is_section_included(deferred->shndx_))
1887 continue;
1888
1889 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1890 shdr, deferred->reloc_shndx_,
1891 deferred->reloc_type_);
1892 }
1893
1894 this->deferred_layout_.clear();
1895
1896 // Now handle the deferred relocation sections.
1897
1898 Output_sections& out_sections(this->output_sections());
1899 std::vector<Address>& out_section_offsets(this->section_offsets());
1900
1901 for (deferred = this->deferred_layout_relocs_.begin();
1902 deferred != this->deferred_layout_relocs_.end();
1903 ++deferred)
1904 {
1905 unsigned int shndx = deferred->shndx_;
1906 typename This::Shdr shdr(deferred->shdr_data_);
1907 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1908
1909 Output_section* data_section = out_sections[data_shndx];
1910 if (data_section == NULL)
1911 {
1912 out_sections[shndx] = NULL;
1913 out_section_offsets[shndx] = invalid_address;
1914 continue;
1915 }
1916
1917 Relocatable_relocs* rr = new Relocatable_relocs();
1918 this->set_relocatable_relocs(shndx, rr);
1919
1920 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1921 data_section, rr);
1922 out_sections[shndx] = os;
1923 out_section_offsets[shndx] = invalid_address;
1924 }
1925 }
1926
1927 // Add the symbols to the symbol table.
1928
1929 template<int size, bool big_endian>
1930 void
1931 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1932 Read_symbols_data* sd,
1933 Layout*)
1934 {
1935 if (sd->symbols == NULL)
1936 {
1937 gold_assert(sd->symbol_names == NULL);
1938 return;
1939 }
1940
1941 const int sym_size = This::sym_size;
1942 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1943 / sym_size);
1944 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1945 {
1946 this->error(_("size of symbols is not multiple of symbol size"));
1947 return;
1948 }
1949
1950 this->symbols_.resize(symcount);
1951
1952 const char* sym_names =
1953 reinterpret_cast<const char*>(sd->symbol_names->data());
1954 symtab->add_from_relobj(this,
1955 sd->symbols->data() + sd->external_symbols_offset,
1956 symcount, this->local_symbol_count_,
1957 sym_names, sd->symbol_names_size,
1958 &this->symbols_,
1959 &this->defined_count_);
1960
1961 delete sd->symbols;
1962 sd->symbols = NULL;
1963 delete sd->symbol_names;
1964 sd->symbol_names = NULL;
1965 }
1966
1967 // Find out if this object, that is a member of a lib group, should be included
1968 // in the link. We check every symbol defined by this object. If the symbol
1969 // table has a strong undefined reference to that symbol, we have to include
1970 // the object.
1971
1972 template<int size, bool big_endian>
1973 Archive::Should_include
1974 Sized_relobj_file<size, big_endian>::do_should_include_member(
1975 Symbol_table* symtab,
1976 Layout* layout,
1977 Read_symbols_data* sd,
1978 std::string* why)
1979 {
1980 char* tmpbuf = NULL;
1981 size_t tmpbuflen = 0;
1982 const char* sym_names =
1983 reinterpret_cast<const char*>(sd->symbol_names->data());
1984 const unsigned char* syms =
1985 sd->symbols->data() + sd->external_symbols_offset;
1986 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1987 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1988 / sym_size);
1989
1990 const unsigned char* p = syms;
1991
1992 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1993 {
1994 elfcpp::Sym<size, big_endian> sym(p);
1995 unsigned int st_shndx = sym.get_st_shndx();
1996 if (st_shndx == elfcpp::SHN_UNDEF)
1997 continue;
1998
1999 unsigned int st_name = sym.get_st_name();
2000 const char* name = sym_names + st_name;
2001 Symbol* symbol;
2002 Archive::Should_include t = Archive::should_include_member(symtab,
2003 layout,
2004 name,
2005 &symbol, why,
2006 &tmpbuf,
2007 &tmpbuflen);
2008 if (t == Archive::SHOULD_INCLUDE_YES)
2009 {
2010 if (tmpbuf != NULL)
2011 free(tmpbuf);
2012 return t;
2013 }
2014 }
2015 if (tmpbuf != NULL)
2016 free(tmpbuf);
2017 return Archive::SHOULD_INCLUDE_UNKNOWN;
2018 }
2019
2020 // Iterate over global defined symbols, calling a visitor class V for each.
2021
2022 template<int size, bool big_endian>
2023 void
2024 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2025 Read_symbols_data* sd,
2026 Library_base::Symbol_visitor_base* v)
2027 {
2028 const char* sym_names =
2029 reinterpret_cast<const char*>(sd->symbol_names->data());
2030 const unsigned char* syms =
2031 sd->symbols->data() + sd->external_symbols_offset;
2032 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2033 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2034 / sym_size);
2035 const unsigned char* p = syms;
2036
2037 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2038 {
2039 elfcpp::Sym<size, big_endian> sym(p);
2040 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2041 v->visit(sym_names + sym.get_st_name());
2042 }
2043 }
2044
2045 // Return whether the local symbol SYMNDX has a PLT offset.
2046
2047 template<int size, bool big_endian>
2048 bool
2049 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2050 unsigned int symndx) const
2051 {
2052 typename Local_plt_offsets::const_iterator p =
2053 this->local_plt_offsets_.find(symndx);
2054 return p != this->local_plt_offsets_.end();
2055 }
2056
2057 // Get the PLT offset of a local symbol.
2058
2059 template<int size, bool big_endian>
2060 unsigned int
2061 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2062 unsigned int symndx) const
2063 {
2064 typename Local_plt_offsets::const_iterator p =
2065 this->local_plt_offsets_.find(symndx);
2066 gold_assert(p != this->local_plt_offsets_.end());
2067 return p->second;
2068 }
2069
2070 // Set the PLT offset of a local symbol.
2071
2072 template<int size, bool big_endian>
2073 void
2074 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2075 unsigned int symndx, unsigned int plt_offset)
2076 {
2077 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2078 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2079 gold_assert(ins.second);
2080 }
2081
2082 // First pass over the local symbols. Here we add their names to
2083 // *POOL and *DYNPOOL, and we store the symbol value in
2084 // THIS->LOCAL_VALUES_. This function is always called from a
2085 // singleton thread. This is followed by a call to
2086 // finalize_local_symbols.
2087
2088 template<int size, bool big_endian>
2089 void
2090 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2091 Stringpool* dynpool)
2092 {
2093 gold_assert(this->symtab_shndx_ != -1U);
2094 if (this->symtab_shndx_ == 0)
2095 {
2096 // This object has no symbols. Weird but legal.
2097 return;
2098 }
2099
2100 // Read the symbol table section header.
2101 const unsigned int symtab_shndx = this->symtab_shndx_;
2102 typename This::Shdr symtabshdr(this,
2103 this->elf_file_.section_header(symtab_shndx));
2104 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2105
2106 // Read the local symbols.
2107 const int sym_size = This::sym_size;
2108 const unsigned int loccount = this->local_symbol_count_;
2109 gold_assert(loccount == symtabshdr.get_sh_info());
2110 off_t locsize = loccount * sym_size;
2111 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2112 locsize, true, true);
2113
2114 // Read the symbol names.
2115 const unsigned int strtab_shndx =
2116 this->adjust_shndx(symtabshdr.get_sh_link());
2117 section_size_type strtab_size;
2118 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2119 &strtab_size,
2120 true);
2121 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2122
2123 // Loop over the local symbols.
2124
2125 const Output_sections& out_sections(this->output_sections());
2126 unsigned int shnum = this->shnum();
2127 unsigned int count = 0;
2128 unsigned int dyncount = 0;
2129 // Skip the first, dummy, symbol.
2130 psyms += sym_size;
2131 bool strip_all = parameters->options().strip_all();
2132 bool discard_all = parameters->options().discard_all();
2133 bool discard_locals = parameters->options().discard_locals();
2134 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2135 {
2136 elfcpp::Sym<size, big_endian> sym(psyms);
2137
2138 Symbol_value<size>& lv(this->local_values_[i]);
2139
2140 bool is_ordinary;
2141 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2142 &is_ordinary);
2143 lv.set_input_shndx(shndx, is_ordinary);
2144
2145 if (sym.get_st_type() == elfcpp::STT_SECTION)
2146 lv.set_is_section_symbol();
2147 else if (sym.get_st_type() == elfcpp::STT_TLS)
2148 lv.set_is_tls_symbol();
2149 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2150 lv.set_is_ifunc_symbol();
2151
2152 // Save the input symbol value for use in do_finalize_local_symbols().
2153 lv.set_input_value(sym.get_st_value());
2154
2155 // Decide whether this symbol should go into the output file.
2156
2157 if ((shndx < shnum && out_sections[shndx] == NULL)
2158 || shndx == this->discarded_eh_frame_shndx_)
2159 {
2160 lv.set_no_output_symtab_entry();
2161 gold_assert(!lv.needs_output_dynsym_entry());
2162 continue;
2163 }
2164
2165 if (sym.get_st_type() == elfcpp::STT_SECTION
2166 || !this->adjust_local_symbol(&lv))
2167 {
2168 lv.set_no_output_symtab_entry();
2169 gold_assert(!lv.needs_output_dynsym_entry());
2170 continue;
2171 }
2172
2173 if (sym.get_st_name() >= strtab_size)
2174 {
2175 this->error(_("local symbol %u section name out of range: %u >= %u"),
2176 i, sym.get_st_name(),
2177 static_cast<unsigned int>(strtab_size));
2178 lv.set_no_output_symtab_entry();
2179 continue;
2180 }
2181
2182 const char* name = pnames + sym.get_st_name();
2183
2184 // If needed, add the symbol to the dynamic symbol table string pool.
2185 if (lv.needs_output_dynsym_entry())
2186 {
2187 dynpool->add(name, true, NULL);
2188 ++dyncount;
2189 }
2190
2191 if (strip_all
2192 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2193 {
2194 lv.set_no_output_symtab_entry();
2195 continue;
2196 }
2197
2198 // If --discard-locals option is used, discard all temporary local
2199 // symbols. These symbols start with system-specific local label
2200 // prefixes, typically .L for ELF system. We want to be compatible
2201 // with GNU ld so here we essentially use the same check in
2202 // bfd_is_local_label(). The code is different because we already
2203 // know that:
2204 //
2205 // - the symbol is local and thus cannot have global or weak binding.
2206 // - the symbol is not a section symbol.
2207 // - the symbol has a name.
2208 //
2209 // We do not discard a symbol if it needs a dynamic symbol entry.
2210 if (discard_locals
2211 && sym.get_st_type() != elfcpp::STT_FILE
2212 && !lv.needs_output_dynsym_entry()
2213 && lv.may_be_discarded_from_output_symtab()
2214 && parameters->target().is_local_label_name(name))
2215 {
2216 lv.set_no_output_symtab_entry();
2217 continue;
2218 }
2219
2220 // Discard the local symbol if -retain_symbols_file is specified
2221 // and the local symbol is not in that file.
2222 if (!parameters->options().should_retain_symbol(name))
2223 {
2224 lv.set_no_output_symtab_entry();
2225 continue;
2226 }
2227
2228 // Add the symbol to the symbol table string pool.
2229 pool->add(name, true, NULL);
2230 ++count;
2231 }
2232
2233 this->output_local_symbol_count_ = count;
2234 this->output_local_dynsym_count_ = dyncount;
2235 }
2236
2237 // Compute the final value of a local symbol.
2238
2239 template<int size, bool big_endian>
2240 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2241 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2242 unsigned int r_sym,
2243 const Symbol_value<size>* lv_in,
2244 Symbol_value<size>* lv_out,
2245 bool relocatable,
2246 const Output_sections& out_sections,
2247 const std::vector<Address>& out_offsets,
2248 const Symbol_table* symtab)
2249 {
2250 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2251 // we may have a memory leak.
2252 gold_assert(lv_out->has_output_value());
2253
2254 bool is_ordinary;
2255 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2256
2257 // Set the output symbol value.
2258
2259 if (!is_ordinary)
2260 {
2261 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2262 lv_out->set_output_value(lv_in->input_value());
2263 else
2264 {
2265 this->error(_("unknown section index %u for local symbol %u"),
2266 shndx, r_sym);
2267 lv_out->set_output_value(0);
2268 return This::CFLV_ERROR;
2269 }
2270 }
2271 else
2272 {
2273 if (shndx >= this->shnum())
2274 {
2275 this->error(_("local symbol %u section index %u out of range"),
2276 r_sym, shndx);
2277 lv_out->set_output_value(0);
2278 return This::CFLV_ERROR;
2279 }
2280
2281 Output_section* os = out_sections[shndx];
2282 Address secoffset = out_offsets[shndx];
2283 if (symtab->is_section_folded(this, shndx))
2284 {
2285 gold_assert(os == NULL && secoffset == invalid_address);
2286 // Get the os of the section it is folded onto.
2287 Section_id folded = symtab->icf()->get_folded_section(this,
2288 shndx);
2289 gold_assert(folded.first != NULL);
2290 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2291 <Sized_relobj_file<size, big_endian>*>(folded.first);
2292 os = folded_obj->output_section(folded.second);
2293 gold_assert(os != NULL);
2294 secoffset = folded_obj->get_output_section_offset(folded.second);
2295
2296 // This could be a relaxed input section.
2297 if (secoffset == invalid_address)
2298 {
2299 const Output_relaxed_input_section* relaxed_section =
2300 os->find_relaxed_input_section(folded_obj, folded.second);
2301 gold_assert(relaxed_section != NULL);
2302 secoffset = relaxed_section->address() - os->address();
2303 }
2304 }
2305
2306 if (os == NULL)
2307 {
2308 // This local symbol belongs to a section we are discarding.
2309 // In some cases when applying relocations later, we will
2310 // attempt to match it to the corresponding kept section,
2311 // so we leave the input value unchanged here.
2312 return This::CFLV_DISCARDED;
2313 }
2314 else if (secoffset == invalid_address)
2315 {
2316 uint64_t start;
2317
2318 // This is a SHF_MERGE section or one which otherwise
2319 // requires special handling.
2320 if (shndx == this->discarded_eh_frame_shndx_)
2321 {
2322 // This local symbol belongs to a discarded .eh_frame
2323 // section. Just treat it like the case in which
2324 // os == NULL above.
2325 gold_assert(this->has_eh_frame_);
2326 return This::CFLV_DISCARDED;
2327 }
2328 else if (!lv_in->is_section_symbol())
2329 {
2330 // This is not a section symbol. We can determine
2331 // the final value now.
2332 lv_out->set_output_value(
2333 os->output_address(this, shndx, lv_in->input_value()));
2334 }
2335 else if (!os->find_starting_output_address(this, shndx, &start))
2336 {
2337 // This is a section symbol, but apparently not one in a
2338 // merged section. First check to see if this is a relaxed
2339 // input section. If so, use its address. Otherwise just
2340 // use the start of the output section. This happens with
2341 // relocatable links when the input object has section
2342 // symbols for arbitrary non-merge sections.
2343 const Output_section_data* posd =
2344 os->find_relaxed_input_section(this, shndx);
2345 if (posd != NULL)
2346 {
2347 Address relocatable_link_adjustment =
2348 relocatable ? os->address() : 0;
2349 lv_out->set_output_value(posd->address()
2350 - relocatable_link_adjustment);
2351 }
2352 else
2353 lv_out->set_output_value(os->address());
2354 }
2355 else
2356 {
2357 // We have to consider the addend to determine the
2358 // value to use in a relocation. START is the start
2359 // of this input section. If we are doing a relocatable
2360 // link, use offset from start output section instead of
2361 // address.
2362 Address adjusted_start =
2363 relocatable ? start - os->address() : start;
2364 Merged_symbol_value<size>* msv =
2365 new Merged_symbol_value<size>(lv_in->input_value(),
2366 adjusted_start);
2367 lv_out->set_merged_symbol_value(msv);
2368 }
2369 }
2370 else if (lv_in->is_tls_symbol()
2371 || (lv_in->is_section_symbol()
2372 && (os->flags() & elfcpp::SHF_TLS)))
2373 lv_out->set_output_value(os->tls_offset()
2374 + secoffset
2375 + lv_in->input_value());
2376 else
2377 lv_out->set_output_value((relocatable ? 0 : os->address())
2378 + secoffset
2379 + lv_in->input_value());
2380 }
2381 return This::CFLV_OK;
2382 }
2383
2384 // Compute final local symbol value. R_SYM is the index of a local
2385 // symbol in symbol table. LV points to a symbol value, which is
2386 // expected to hold the input value and to be over-written by the
2387 // final value. SYMTAB points to a symbol table. Some targets may want
2388 // to know would-be-finalized local symbol values in relaxation.
2389 // Hence we provide this method. Since this method updates *LV, a
2390 // callee should make a copy of the original local symbol value and
2391 // use the copy instead of modifying an object's local symbols before
2392 // everything is finalized. The caller should also free up any allocated
2393 // memory in the return value in *LV.
2394 template<int size, bool big_endian>
2395 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2396 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2397 unsigned int r_sym,
2398 const Symbol_value<size>* lv_in,
2399 Symbol_value<size>* lv_out,
2400 const Symbol_table* symtab)
2401 {
2402 // This is just a wrapper of compute_final_local_value_internal.
2403 const bool relocatable = parameters->options().relocatable();
2404 const Output_sections& out_sections(this->output_sections());
2405 const std::vector<Address>& out_offsets(this->section_offsets());
2406 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2407 relocatable, out_sections,
2408 out_offsets, symtab);
2409 }
2410
2411 // Finalize the local symbols. Here we set the final value in
2412 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2413 // This function is always called from a singleton thread. The actual
2414 // output of the local symbols will occur in a separate task.
2415
2416 template<int size, bool big_endian>
2417 unsigned int
2418 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2419 unsigned int index,
2420 off_t off,
2421 Symbol_table* symtab)
2422 {
2423 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2424
2425 const unsigned int loccount = this->local_symbol_count_;
2426 this->local_symbol_offset_ = off;
2427
2428 const bool relocatable = parameters->options().relocatable();
2429 const Output_sections& out_sections(this->output_sections());
2430 const std::vector<Address>& out_offsets(this->section_offsets());
2431
2432 for (unsigned int i = 1; i < loccount; ++i)
2433 {
2434 Symbol_value<size>* lv = &this->local_values_[i];
2435
2436 Compute_final_local_value_status cflv_status =
2437 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2438 out_sections, out_offsets,
2439 symtab);
2440 switch (cflv_status)
2441 {
2442 case CFLV_OK:
2443 if (!lv->is_output_symtab_index_set())
2444 {
2445 lv->set_output_symtab_index(index);
2446 ++index;
2447 }
2448 break;
2449 case CFLV_DISCARDED:
2450 case CFLV_ERROR:
2451 // Do nothing.
2452 break;
2453 default:
2454 gold_unreachable();
2455 }
2456 }
2457 return index;
2458 }
2459
2460 // Set the output dynamic symbol table indexes for the local variables.
2461
2462 template<int size, bool big_endian>
2463 unsigned int
2464 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2465 unsigned int index)
2466 {
2467 const unsigned int loccount = this->local_symbol_count_;
2468 for (unsigned int i = 1; i < loccount; ++i)
2469 {
2470 Symbol_value<size>& lv(this->local_values_[i]);
2471 if (lv.needs_output_dynsym_entry())
2472 {
2473 lv.set_output_dynsym_index(index);
2474 ++index;
2475 }
2476 }
2477 return index;
2478 }
2479
2480 // Set the offset where local dynamic symbol information will be stored.
2481 // Returns the count of local symbols contributed to the symbol table by
2482 // this object.
2483
2484 template<int size, bool big_endian>
2485 unsigned int
2486 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2487 {
2488 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2489 this->local_dynsym_offset_ = off;
2490 return this->output_local_dynsym_count_;
2491 }
2492
2493 // If Symbols_data is not NULL get the section flags from here otherwise
2494 // get it from the file.
2495
2496 template<int size, bool big_endian>
2497 uint64_t
2498 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2499 {
2500 Symbols_data* sd = this->get_symbols_data();
2501 if (sd != NULL)
2502 {
2503 const unsigned char* pshdrs = sd->section_headers_data
2504 + This::shdr_size * shndx;
2505 typename This::Shdr shdr(pshdrs);
2506 return shdr.get_sh_flags();
2507 }
2508 // If sd is NULL, read the section header from the file.
2509 return this->elf_file_.section_flags(shndx);
2510 }
2511
2512 // Get the section's ent size from Symbols_data. Called by get_section_contents
2513 // in icf.cc
2514
2515 template<int size, bool big_endian>
2516 uint64_t
2517 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2518 {
2519 Symbols_data* sd = this->get_symbols_data();
2520 gold_assert(sd != NULL);
2521
2522 const unsigned char* pshdrs = sd->section_headers_data
2523 + This::shdr_size * shndx;
2524 typename This::Shdr shdr(pshdrs);
2525 return shdr.get_sh_entsize();
2526 }
2527
2528 // Write out the local symbols.
2529
2530 template<int size, bool big_endian>
2531 void
2532 Sized_relobj_file<size, big_endian>::write_local_symbols(
2533 Output_file* of,
2534 const Stringpool* sympool,
2535 const Stringpool* dynpool,
2536 Output_symtab_xindex* symtab_xindex,
2537 Output_symtab_xindex* dynsym_xindex,
2538 off_t symtab_off)
2539 {
2540 const bool strip_all = parameters->options().strip_all();
2541 if (strip_all)
2542 {
2543 if (this->output_local_dynsym_count_ == 0)
2544 return;
2545 this->output_local_symbol_count_ = 0;
2546 }
2547
2548 gold_assert(this->symtab_shndx_ != -1U);
2549 if (this->symtab_shndx_ == 0)
2550 {
2551 // This object has no symbols. Weird but legal.
2552 return;
2553 }
2554
2555 // Read the symbol table section header.
2556 const unsigned int symtab_shndx = this->symtab_shndx_;
2557 typename This::Shdr symtabshdr(this,
2558 this->elf_file_.section_header(symtab_shndx));
2559 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2560 const unsigned int loccount = this->local_symbol_count_;
2561 gold_assert(loccount == symtabshdr.get_sh_info());
2562
2563 // Read the local symbols.
2564 const int sym_size = This::sym_size;
2565 off_t locsize = loccount * sym_size;
2566 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2567 locsize, true, false);
2568
2569 // Read the symbol names.
2570 const unsigned int strtab_shndx =
2571 this->adjust_shndx(symtabshdr.get_sh_link());
2572 section_size_type strtab_size;
2573 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2574 &strtab_size,
2575 false);
2576 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2577
2578 // Get views into the output file for the portions of the symbol table
2579 // and the dynamic symbol table that we will be writing.
2580 off_t output_size = this->output_local_symbol_count_ * sym_size;
2581 unsigned char* oview = NULL;
2582 if (output_size > 0)
2583 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2584 output_size);
2585
2586 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2587 unsigned char* dyn_oview = NULL;
2588 if (dyn_output_size > 0)
2589 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2590 dyn_output_size);
2591
2592 const Output_sections out_sections(this->output_sections());
2593
2594 gold_assert(this->local_values_.size() == loccount);
2595
2596 unsigned char* ov = oview;
2597 unsigned char* dyn_ov = dyn_oview;
2598 psyms += sym_size;
2599 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2600 {
2601 elfcpp::Sym<size, big_endian> isym(psyms);
2602
2603 Symbol_value<size>& lv(this->local_values_[i]);
2604
2605 bool is_ordinary;
2606 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2607 &is_ordinary);
2608 if (is_ordinary)
2609 {
2610 gold_assert(st_shndx < out_sections.size());
2611 if (out_sections[st_shndx] == NULL)
2612 continue;
2613 st_shndx = out_sections[st_shndx]->out_shndx();
2614 if (st_shndx >= elfcpp::SHN_LORESERVE)
2615 {
2616 if (lv.has_output_symtab_entry())
2617 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2618 if (lv.has_output_dynsym_entry())
2619 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2620 st_shndx = elfcpp::SHN_XINDEX;
2621 }
2622 }
2623
2624 // Write the symbol to the output symbol table.
2625 if (lv.has_output_symtab_entry())
2626 {
2627 elfcpp::Sym_write<size, big_endian> osym(ov);
2628
2629 gold_assert(isym.get_st_name() < strtab_size);
2630 const char* name = pnames + isym.get_st_name();
2631 osym.put_st_name(sympool->get_offset(name));
2632 osym.put_st_value(this->local_values_[i].value(this, 0));
2633 osym.put_st_size(isym.get_st_size());
2634 osym.put_st_info(isym.get_st_info());
2635 osym.put_st_other(isym.get_st_other());
2636 osym.put_st_shndx(st_shndx);
2637
2638 ov += sym_size;
2639 }
2640
2641 // Write the symbol to the output dynamic symbol table.
2642 if (lv.has_output_dynsym_entry())
2643 {
2644 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2645 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2646
2647 gold_assert(isym.get_st_name() < strtab_size);
2648 const char* name = pnames + isym.get_st_name();
2649 osym.put_st_name(dynpool->get_offset(name));
2650 osym.put_st_value(this->local_values_[i].value(this, 0));
2651 osym.put_st_size(isym.get_st_size());
2652 osym.put_st_info(isym.get_st_info());
2653 osym.put_st_other(isym.get_st_other());
2654 osym.put_st_shndx(st_shndx);
2655
2656 dyn_ov += sym_size;
2657 }
2658 }
2659
2660
2661 if (output_size > 0)
2662 {
2663 gold_assert(ov - oview == output_size);
2664 of->write_output_view(symtab_off + this->local_symbol_offset_,
2665 output_size, oview);
2666 }
2667
2668 if (dyn_output_size > 0)
2669 {
2670 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2671 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2672 dyn_oview);
2673 }
2674 }
2675
2676 // Set *INFO to symbolic information about the offset OFFSET in the
2677 // section SHNDX. Return true if we found something, false if we
2678 // found nothing.
2679
2680 template<int size, bool big_endian>
2681 bool
2682 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2683 unsigned int shndx,
2684 off_t offset,
2685 Symbol_location_info* info)
2686 {
2687 if (this->symtab_shndx_ == 0)
2688 return false;
2689
2690 section_size_type symbols_size;
2691 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2692 &symbols_size,
2693 false);
2694
2695 unsigned int symbol_names_shndx =
2696 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2697 section_size_type names_size;
2698 const unsigned char* symbol_names_u =
2699 this->section_contents(symbol_names_shndx, &names_size, false);
2700 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2701
2702 const int sym_size = This::sym_size;
2703 const size_t count = symbols_size / sym_size;
2704
2705 const unsigned char* p = symbols;
2706 for (size_t i = 0; i < count; ++i, p += sym_size)
2707 {
2708 elfcpp::Sym<size, big_endian> sym(p);
2709
2710 if (sym.get_st_type() == elfcpp::STT_FILE)
2711 {
2712 if (sym.get_st_name() >= names_size)
2713 info->source_file = "(invalid)";
2714 else
2715 info->source_file = symbol_names + sym.get_st_name();
2716 continue;
2717 }
2718
2719 bool is_ordinary;
2720 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2721 &is_ordinary);
2722 if (is_ordinary
2723 && st_shndx == shndx
2724 && static_cast<off_t>(sym.get_st_value()) <= offset
2725 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2726 > offset))
2727 {
2728 info->enclosing_symbol_type = sym.get_st_type();
2729 if (sym.get_st_name() > names_size)
2730 info->enclosing_symbol_name = "(invalid)";
2731 else
2732 {
2733 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2734 if (parameters->options().do_demangle())
2735 {
2736 char* demangled_name = cplus_demangle(
2737 info->enclosing_symbol_name.c_str(),
2738 DMGL_ANSI | DMGL_PARAMS);
2739 if (demangled_name != NULL)
2740 {
2741 info->enclosing_symbol_name.assign(demangled_name);
2742 free(demangled_name);
2743 }
2744 }
2745 }
2746 return true;
2747 }
2748 }
2749
2750 return false;
2751 }
2752
2753 // Look for a kept section corresponding to the given discarded section,
2754 // and return its output address. This is used only for relocations in
2755 // debugging sections. If we can't find the kept section, return 0.
2756
2757 template<int size, bool big_endian>
2758 typename Sized_relobj_file<size, big_endian>::Address
2759 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2760 unsigned int shndx,
2761 bool* found) const
2762 {
2763 Relobj* kept_object;
2764 unsigned int kept_shndx;
2765 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2766 {
2767 Sized_relobj_file<size, big_endian>* kept_relobj =
2768 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2769 Output_section* os = kept_relobj->output_section(kept_shndx);
2770 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2771 if (os != NULL && offset != invalid_address)
2772 {
2773 *found = true;
2774 return os->address() + offset;
2775 }
2776 }
2777 *found = false;
2778 return 0;
2779 }
2780
2781 // Get symbol counts.
2782
2783 template<int size, bool big_endian>
2784 void
2785 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2786 const Symbol_table*,
2787 size_t* defined,
2788 size_t* used) const
2789 {
2790 *defined = this->defined_count_;
2791 size_t count = 0;
2792 for (typename Symbols::const_iterator p = this->symbols_.begin();
2793 p != this->symbols_.end();
2794 ++p)
2795 if (*p != NULL
2796 && (*p)->source() == Symbol::FROM_OBJECT
2797 && (*p)->object() == this
2798 && (*p)->is_defined())
2799 ++count;
2800 *used = count;
2801 }
2802
2803 // Return a view of the decompressed contents of a section. Set *PLEN
2804 // to the size. Set *IS_NEW to true if the contents need to be freed
2805 // by the caller.
2806
2807 template<int size, bool big_endian>
2808 const unsigned char*
2809 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2810 unsigned int shndx,
2811 section_size_type* plen,
2812 bool* is_new)
2813 {
2814 section_size_type buffer_size;
2815 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2816 false);
2817
2818 if (this->compressed_sections_ == NULL)
2819 {
2820 *plen = buffer_size;
2821 *is_new = false;
2822 return buffer;
2823 }
2824
2825 Compressed_section_map::const_iterator p =
2826 this->compressed_sections_->find(shndx);
2827 if (p == this->compressed_sections_->end())
2828 {
2829 *plen = buffer_size;
2830 *is_new = false;
2831 return buffer;
2832 }
2833
2834 section_size_type uncompressed_size = p->second.size;
2835 if (p->second.contents != NULL)
2836 {
2837 *plen = uncompressed_size;
2838 *is_new = false;
2839 return p->second.contents;
2840 }
2841
2842 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2843 if (!decompress_input_section(buffer,
2844 buffer_size,
2845 uncompressed_data,
2846 uncompressed_size))
2847 this->error(_("could not decompress section %s"),
2848 this->do_section_name(shndx).c_str());
2849
2850 // We could cache the results in p->second.contents and store
2851 // false in *IS_NEW, but build_compressed_section_map() would
2852 // have done so if it had expected it to be profitable. If
2853 // we reach this point, we expect to need the contents only
2854 // once in this pass.
2855 *plen = uncompressed_size;
2856 *is_new = true;
2857 return uncompressed_data;
2858 }
2859
2860 // Discard any buffers of uncompressed sections. This is done
2861 // at the end of the Add_symbols task.
2862
2863 template<int size, bool big_endian>
2864 void
2865 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2866 {
2867 if (this->compressed_sections_ == NULL)
2868 return;
2869
2870 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2871 p != this->compressed_sections_->end();
2872 ++p)
2873 {
2874 if (p->second.contents != NULL)
2875 {
2876 delete[] p->second.contents;
2877 p->second.contents = NULL;
2878 }
2879 }
2880 }
2881
2882 // Input_objects methods.
2883
2884 // Add a regular relocatable object to the list. Return false if this
2885 // object should be ignored.
2886
2887 bool
2888 Input_objects::add_object(Object* obj)
2889 {
2890 // Print the filename if the -t/--trace option is selected.
2891 if (parameters->options().trace())
2892 gold_info("%s", obj->name().c_str());
2893
2894 if (!obj->is_dynamic())
2895 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2896 else
2897 {
2898 // See if this is a duplicate SONAME.
2899 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2900 const char* soname = dynobj->soname();
2901
2902 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2903 this->sonames_.insert(soname);
2904 if (!ins.second)
2905 {
2906 // We have already seen a dynamic object with this soname.
2907 return false;
2908 }
2909
2910 this->dynobj_list_.push_back(dynobj);
2911 }
2912
2913 // Add this object to the cross-referencer if requested.
2914 if (parameters->options().user_set_print_symbol_counts()
2915 || parameters->options().cref())
2916 {
2917 if (this->cref_ == NULL)
2918 this->cref_ = new Cref();
2919 this->cref_->add_object(obj);
2920 }
2921
2922 return true;
2923 }
2924
2925 // For each dynamic object, record whether we've seen all of its
2926 // explicit dependencies.
2927
2928 void
2929 Input_objects::check_dynamic_dependencies() const
2930 {
2931 bool issued_copy_dt_needed_error = false;
2932 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2933 p != this->dynobj_list_.end();
2934 ++p)
2935 {
2936 const Dynobj::Needed& needed((*p)->needed());
2937 bool found_all = true;
2938 Dynobj::Needed::const_iterator pneeded;
2939 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2940 {
2941 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2942 {
2943 found_all = false;
2944 break;
2945 }
2946 }
2947 (*p)->set_has_unknown_needed_entries(!found_all);
2948
2949 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2950 // that gold does not support. However, they cause no trouble
2951 // unless there is a DT_NEEDED entry that we don't know about;
2952 // warn only in that case.
2953 if (!found_all
2954 && !issued_copy_dt_needed_error
2955 && (parameters->options().copy_dt_needed_entries()
2956 || parameters->options().add_needed()))
2957 {
2958 const char* optname;
2959 if (parameters->options().copy_dt_needed_entries())
2960 optname = "--copy-dt-needed-entries";
2961 else
2962 optname = "--add-needed";
2963 gold_error(_("%s is not supported but is required for %s in %s"),
2964 optname, (*pneeded).c_str(), (*p)->name().c_str());
2965 issued_copy_dt_needed_error = true;
2966 }
2967 }
2968 }
2969
2970 // Start processing an archive.
2971
2972 void
2973 Input_objects::archive_start(Archive* archive)
2974 {
2975 if (parameters->options().user_set_print_symbol_counts()
2976 || parameters->options().cref())
2977 {
2978 if (this->cref_ == NULL)
2979 this->cref_ = new Cref();
2980 this->cref_->add_archive_start(archive);
2981 }
2982 }
2983
2984 // Stop processing an archive.
2985
2986 void
2987 Input_objects::archive_stop(Archive* archive)
2988 {
2989 if (parameters->options().user_set_print_symbol_counts()
2990 || parameters->options().cref())
2991 this->cref_->add_archive_stop(archive);
2992 }
2993
2994 // Print symbol counts
2995
2996 void
2997 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2998 {
2999 if (parameters->options().user_set_print_symbol_counts()
3000 && this->cref_ != NULL)
3001 this->cref_->print_symbol_counts(symtab);
3002 }
3003
3004 // Print a cross reference table.
3005
3006 void
3007 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3008 {
3009 if (parameters->options().cref() && this->cref_ != NULL)
3010 this->cref_->print_cref(symtab, f);
3011 }
3012
3013 // Relocate_info methods.
3014
3015 // Return a string describing the location of a relocation when file
3016 // and lineno information is not available. This is only used in
3017 // error messages.
3018
3019 template<int size, bool big_endian>
3020 std::string
3021 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3022 {
3023 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3024 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3025 if (!ret.empty())
3026 return ret;
3027
3028 ret = this->object->name();
3029
3030 Symbol_location_info info;
3031 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3032 {
3033 if (!info.source_file.empty())
3034 {
3035 ret += ":";
3036 ret += info.source_file;
3037 }
3038 ret += ":";
3039 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3040 ret += _("function ");
3041 ret += info.enclosing_symbol_name;
3042 return ret;
3043 }
3044
3045 ret += "(";
3046 ret += this->object->section_name(this->data_shndx);
3047 char buf[100];
3048 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3049 ret += buf;
3050 return ret;
3051 }
3052
3053 } // End namespace gold.
3054
3055 namespace
3056 {
3057
3058 using namespace gold;
3059
3060 // Read an ELF file with the header and return the appropriate
3061 // instance of Object.
3062
3063 template<int size, bool big_endian>
3064 Object*
3065 make_elf_sized_object(const std::string& name, Input_file* input_file,
3066 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3067 bool* punconfigured)
3068 {
3069 Target* target = select_target(input_file, offset,
3070 ehdr.get_e_machine(), size, big_endian,
3071 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3072 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3073 if (target == NULL)
3074 gold_fatal(_("%s: unsupported ELF machine number %d"),
3075 name.c_str(), ehdr.get_e_machine());
3076
3077 if (!parameters->target_valid())
3078 set_parameters_target(target);
3079 else if (target != &parameters->target())
3080 {
3081 if (punconfigured != NULL)
3082 *punconfigured = true;
3083 else
3084 gold_error(_("%s: incompatible target"), name.c_str());
3085 return NULL;
3086 }
3087
3088 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3089 ehdr);
3090 }
3091
3092 } // End anonymous namespace.
3093
3094 namespace gold
3095 {
3096
3097 // Return whether INPUT_FILE is an ELF object.
3098
3099 bool
3100 is_elf_object(Input_file* input_file, off_t offset,
3101 const unsigned char** start, int* read_size)
3102 {
3103 off_t filesize = input_file->file().filesize();
3104 int want = elfcpp::Elf_recognizer::max_header_size;
3105 if (filesize - offset < want)
3106 want = filesize - offset;
3107
3108 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3109 true, false);
3110 *start = p;
3111 *read_size = want;
3112
3113 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3114 }
3115
3116 // Read an ELF file and return the appropriate instance of Object.
3117
3118 Object*
3119 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3120 const unsigned char* p, section_offset_type bytes,
3121 bool* punconfigured)
3122 {
3123 if (punconfigured != NULL)
3124 *punconfigured = false;
3125
3126 std::string error;
3127 bool big_endian = false;
3128 int size = 0;
3129 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3130 &big_endian, &error))
3131 {
3132 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3133 return NULL;
3134 }
3135
3136 if (size == 32)
3137 {
3138 if (big_endian)
3139 {
3140 #ifdef HAVE_TARGET_32_BIG
3141 elfcpp::Ehdr<32, true> ehdr(p);
3142 return make_elf_sized_object<32, true>(name, input_file,
3143 offset, ehdr, punconfigured);
3144 #else
3145 if (punconfigured != NULL)
3146 *punconfigured = true;
3147 else
3148 gold_error(_("%s: not configured to support "
3149 "32-bit big-endian object"),
3150 name.c_str());
3151 return NULL;
3152 #endif
3153 }
3154 else
3155 {
3156 #ifdef HAVE_TARGET_32_LITTLE
3157 elfcpp::Ehdr<32, false> ehdr(p);
3158 return make_elf_sized_object<32, false>(name, input_file,
3159 offset, ehdr, punconfigured);
3160 #else
3161 if (punconfigured != NULL)
3162 *punconfigured = true;
3163 else
3164 gold_error(_("%s: not configured to support "
3165 "32-bit little-endian object"),
3166 name.c_str());
3167 return NULL;
3168 #endif
3169 }
3170 }
3171 else if (size == 64)
3172 {
3173 if (big_endian)
3174 {
3175 #ifdef HAVE_TARGET_64_BIG
3176 elfcpp::Ehdr<64, true> ehdr(p);
3177 return make_elf_sized_object<64, true>(name, input_file,
3178 offset, ehdr, punconfigured);
3179 #else
3180 if (punconfigured != NULL)
3181 *punconfigured = true;
3182 else
3183 gold_error(_("%s: not configured to support "
3184 "64-bit big-endian object"),
3185 name.c_str());
3186 return NULL;
3187 #endif
3188 }
3189 else
3190 {
3191 #ifdef HAVE_TARGET_64_LITTLE
3192 elfcpp::Ehdr<64, false> ehdr(p);
3193 return make_elf_sized_object<64, false>(name, input_file,
3194 offset, ehdr, punconfigured);
3195 #else
3196 if (punconfigured != NULL)
3197 *punconfigured = true;
3198 else
3199 gold_error(_("%s: not configured to support "
3200 "64-bit little-endian object"),
3201 name.c_str());
3202 return NULL;
3203 #endif
3204 }
3205 }
3206 else
3207 gold_unreachable();
3208 }
3209
3210 // Instantiate the templates we need.
3211
3212 #ifdef HAVE_TARGET_32_LITTLE
3213 template
3214 void
3215 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3216 Read_symbols_data*);
3217 template
3218 const unsigned char*
3219 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3220 section_size_type, const unsigned char*) const;
3221 #endif
3222
3223 #ifdef HAVE_TARGET_32_BIG
3224 template
3225 void
3226 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3227 Read_symbols_data*);
3228 template
3229 const unsigned char*
3230 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3231 section_size_type, const unsigned char*) const;
3232 #endif
3233
3234 #ifdef HAVE_TARGET_64_LITTLE
3235 template
3236 void
3237 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3238 Read_symbols_data*);
3239 template
3240 const unsigned char*
3241 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3242 section_size_type, const unsigned char*) const;
3243 #endif
3244
3245 #ifdef HAVE_TARGET_64_BIG
3246 template
3247 void
3248 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3249 Read_symbols_data*);
3250 template
3251 const unsigned char*
3252 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3253 section_size_type, const unsigned char*) const;
3254 #endif
3255
3256 #ifdef HAVE_TARGET_32_LITTLE
3257 template
3258 class Sized_relobj<32, false>;
3259
3260 template
3261 class Sized_relobj_file<32, false>;
3262 #endif
3263
3264 #ifdef HAVE_TARGET_32_BIG
3265 template
3266 class Sized_relobj<32, true>;
3267
3268 template
3269 class Sized_relobj_file<32, true>;
3270 #endif
3271
3272 #ifdef HAVE_TARGET_64_LITTLE
3273 template
3274 class Sized_relobj<64, false>;
3275
3276 template
3277 class Sized_relobj_file<64, false>;
3278 #endif
3279
3280 #ifdef HAVE_TARGET_64_BIG
3281 template
3282 class Sized_relobj<64, true>;
3283
3284 template
3285 class Sized_relobj_file<64, true>;
3286 #endif
3287
3288 #ifdef HAVE_TARGET_32_LITTLE
3289 template
3290 struct Relocate_info<32, false>;
3291 #endif
3292
3293 #ifdef HAVE_TARGET_32_BIG
3294 template
3295 struct Relocate_info<32, true>;
3296 #endif
3297
3298 #ifdef HAVE_TARGET_64_LITTLE
3299 template
3300 struct Relocate_info<64, false>;
3301 #endif
3302
3303 #ifdef HAVE_TARGET_64_BIG
3304 template
3305 struct Relocate_info<64, true>;
3306 #endif
3307
3308 #ifdef HAVE_TARGET_32_LITTLE
3309 template
3310 void
3311 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3312
3313 template
3314 void
3315 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3316 const unsigned char*);
3317 #endif
3318
3319 #ifdef HAVE_TARGET_32_BIG
3320 template
3321 void
3322 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3323
3324 template
3325 void
3326 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3327 const unsigned char*);
3328 #endif
3329
3330 #ifdef HAVE_TARGET_64_LITTLE
3331 template
3332 void
3333 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3334
3335 template
3336 void
3337 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3338 const unsigned char*);
3339 #endif
3340
3341 #ifdef HAVE_TARGET_64_BIG
3342 template
3343 void
3344 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3345
3346 template
3347 void
3348 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3349 const unsigned char*);
3350 #endif
3351
3352 } // End namespace gold.
This page took 0.098302 seconds and 5 git commands to generate.