Fix problem where mixed section types can cause internal error during a -r link.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_(),
482 output_views_(NULL)
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == parameters->target().unwind_section_type())
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 if (is_zcompressed)
755 {
756 // Skip over the ".zdebug" prefix.
757 name += 7;
758 uncompressed_size = get_uncompressed_size(contents, len);
759 }
760 else
761 {
762 // Skip over the ".debug" prefix.
763 name += 6;
764 elfcpp::Chdr<size, big_endian> chdr(contents);
765 uncompressed_size = chdr.get_ch_size();
766 }
767 Compressed_section_info info;
768 info.size = convert_to_section_size_type(uncompressed_size);
769 info.flag = shdr.get_sh_flags();
770 info.contents = NULL;
771 if (uncompressed_size != -1ULL)
772 {
773 unsigned char* uncompressed_data = NULL;
774 if (decompress_if_needed && need_decompressed_section(name))
775 {
776 uncompressed_data = new unsigned char[uncompressed_size];
777 if (decompress_input_section(contents, len,
778 uncompressed_data,
779 uncompressed_size,
780 size, big_endian,
781 shdr.get_sh_flags()))
782 info.contents = uncompressed_data;
783 else
784 delete[] uncompressed_data;
785 }
786 (*uncompressed_map)[i] = info;
787 }
788 }
789 }
790 }
791 return uncompressed_map;
792 }
793
794 // Stash away info for a number of special sections.
795 // Return true if any of the sections found require local symbols to be read.
796
797 template<int size, bool big_endian>
798 bool
799 Sized_relobj_file<size, big_endian>::do_find_special_sections(
800 Read_symbols_data* sd)
801 {
802 const unsigned char* const pshdrs = sd->section_headers->data();
803 const unsigned char* namesu = sd->section_names->data();
804 const char* names = reinterpret_cast<const char*>(namesu);
805
806 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
807 this->has_eh_frame_ = true;
808
809 Compressed_section_map* compressed_sections =
810 build_compressed_section_map<size, big_endian>(
811 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
812 if (compressed_sections != NULL)
813 this->set_compressed_sections(compressed_sections);
814
815 return (this->has_eh_frame_
816 || (!parameters->options().relocatable()
817 && parameters->options().gdb_index()
818 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
819 || memmem(names, sd->section_names_size,
820 "debug_types", 12) != NULL)));
821 }
822
823 // Read the sections and symbols from an object file.
824
825 template<int size, bool big_endian>
826 void
827 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
828 {
829 this->base_read_symbols(sd);
830 }
831
832 // Read the sections and symbols from an object file. This is common
833 // code for all target-specific overrides of do_read_symbols().
834
835 template<int size, bool big_endian>
836 void
837 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
838 {
839 this->read_section_data(&this->elf_file_, sd);
840
841 const unsigned char* const pshdrs = sd->section_headers->data();
842
843 this->find_symtab(pshdrs);
844
845 bool need_local_symbols = this->do_find_special_sections(sd);
846
847 sd->symbols = NULL;
848 sd->symbols_size = 0;
849 sd->external_symbols_offset = 0;
850 sd->symbol_names = NULL;
851 sd->symbol_names_size = 0;
852
853 if (this->symtab_shndx_ == 0)
854 {
855 // No symbol table. Weird but legal.
856 return;
857 }
858
859 // Get the symbol table section header.
860 typename This::Shdr symtabshdr(pshdrs
861 + this->symtab_shndx_ * This::shdr_size);
862 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
863
864 // If this object has a .eh_frame section, or if building a .gdb_index
865 // section and there is debug info, we need all the symbols.
866 // Otherwise we only need the external symbols. While it would be
867 // simpler to just always read all the symbols, I've seen object
868 // files with well over 2000 local symbols, which for a 64-bit
869 // object file format is over 5 pages that we don't need to read
870 // now.
871
872 const int sym_size = This::sym_size;
873 const unsigned int loccount = symtabshdr.get_sh_info();
874 this->local_symbol_count_ = loccount;
875 this->local_values_.resize(loccount);
876 section_offset_type locsize = loccount * sym_size;
877 off_t dataoff = symtabshdr.get_sh_offset();
878 section_size_type datasize =
879 convert_to_section_size_type(symtabshdr.get_sh_size());
880 off_t extoff = dataoff + locsize;
881 section_size_type extsize = datasize - locsize;
882
883 off_t readoff = need_local_symbols ? dataoff : extoff;
884 section_size_type readsize = need_local_symbols ? datasize : extsize;
885
886 if (readsize == 0)
887 {
888 // No external symbols. Also weird but also legal.
889 return;
890 }
891
892 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
893
894 // Read the section header for the symbol names.
895 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
896 if (strtab_shndx >= this->shnum())
897 {
898 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
899 return;
900 }
901 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
902 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
903 {
904 this->error(_("symbol table name section has wrong type: %u"),
905 static_cast<unsigned int>(strtabshdr.get_sh_type()));
906 return;
907 }
908
909 // Read the symbol names.
910 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
911 strtabshdr.get_sh_size(),
912 false, true);
913
914 sd->symbols = fvsymtab;
915 sd->symbols_size = readsize;
916 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
917 sd->symbol_names = fvstrtab;
918 sd->symbol_names_size =
919 convert_to_section_size_type(strtabshdr.get_sh_size());
920 }
921
922 // Return the section index of symbol SYM. Set *VALUE to its value in
923 // the object file. Set *IS_ORDINARY if this is an ordinary section
924 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
925 // Note that for a symbol which is not defined in this object file,
926 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
927 // the final value of the symbol in the link.
928
929 template<int size, bool big_endian>
930 unsigned int
931 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
932 Address* value,
933 bool* is_ordinary)
934 {
935 section_size_type symbols_size;
936 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
937 &symbols_size,
938 false);
939
940 const size_t count = symbols_size / This::sym_size;
941 gold_assert(sym < count);
942
943 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
944 *value = elfsym.get_st_value();
945
946 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
947 }
948
949 // Return whether to include a section group in the link. LAYOUT is
950 // used to keep track of which section groups we have already seen.
951 // INDEX is the index of the section group and SHDR is the section
952 // header. If we do not want to include this group, we set bits in
953 // OMIT for each section which should be discarded.
954
955 template<int size, bool big_endian>
956 bool
957 Sized_relobj_file<size, big_endian>::include_section_group(
958 Symbol_table* symtab,
959 Layout* layout,
960 unsigned int index,
961 const char* name,
962 const unsigned char* shdrs,
963 const char* section_names,
964 section_size_type section_names_size,
965 std::vector<bool>* omit)
966 {
967 // Read the section contents.
968 typename This::Shdr shdr(shdrs + index * This::shdr_size);
969 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
970 shdr.get_sh_size(), true, false);
971 const elfcpp::Elf_Word* pword =
972 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
973
974 // The first word contains flags. We only care about COMDAT section
975 // groups. Other section groups are always included in the link
976 // just like ordinary sections.
977 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
978
979 // Look up the group signature, which is the name of a symbol. ELF
980 // uses a symbol name because some group signatures are long, and
981 // the name is generally already in the symbol table, so it makes
982 // sense to put the long string just once in .strtab rather than in
983 // both .strtab and .shstrtab.
984
985 // Get the appropriate symbol table header (this will normally be
986 // the single SHT_SYMTAB section, but in principle it need not be).
987 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
988 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
989
990 // Read the symbol table entry.
991 unsigned int symndx = shdr.get_sh_info();
992 if (symndx >= symshdr.get_sh_size() / This::sym_size)
993 {
994 this->error(_("section group %u info %u out of range"),
995 index, symndx);
996 return false;
997 }
998 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
999 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1000 false);
1001 elfcpp::Sym<size, big_endian> sym(psym);
1002
1003 // Read the symbol table names.
1004 section_size_type symnamelen;
1005 const unsigned char* psymnamesu;
1006 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1007 &symnamelen, true);
1008 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1009
1010 // Get the section group signature.
1011 if (sym.get_st_name() >= symnamelen)
1012 {
1013 this->error(_("symbol %u name offset %u out of range"),
1014 symndx, sym.get_st_name());
1015 return false;
1016 }
1017
1018 std::string signature(psymnames + sym.get_st_name());
1019
1020 // It seems that some versions of gas will create a section group
1021 // associated with a section symbol, and then fail to give a name to
1022 // the section symbol. In such a case, use the name of the section.
1023 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1024 {
1025 bool is_ordinary;
1026 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1027 sym.get_st_shndx(),
1028 &is_ordinary);
1029 if (!is_ordinary || sym_shndx >= this->shnum())
1030 {
1031 this->error(_("symbol %u invalid section index %u"),
1032 symndx, sym_shndx);
1033 return false;
1034 }
1035 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1036 if (member_shdr.get_sh_name() < section_names_size)
1037 signature = section_names + member_shdr.get_sh_name();
1038 }
1039
1040 // Record this section group in the layout, and see whether we've already
1041 // seen one with the same signature.
1042 bool include_group;
1043 bool is_comdat;
1044 Kept_section* kept_section = NULL;
1045
1046 if ((flags & elfcpp::GRP_COMDAT) == 0)
1047 {
1048 include_group = true;
1049 is_comdat = false;
1050 }
1051 else
1052 {
1053 include_group = layout->find_or_add_kept_section(signature,
1054 this, index, true,
1055 true, &kept_section);
1056 is_comdat = true;
1057 }
1058
1059 if (is_comdat && include_group)
1060 {
1061 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1062 if (incremental_inputs != NULL)
1063 incremental_inputs->report_comdat_group(this, signature.c_str());
1064 }
1065
1066 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1067
1068 std::vector<unsigned int> shndxes;
1069 bool relocate_group = include_group && parameters->options().relocatable();
1070 if (relocate_group)
1071 shndxes.reserve(count - 1);
1072
1073 for (size_t i = 1; i < count; ++i)
1074 {
1075 elfcpp::Elf_Word shndx =
1076 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1077
1078 if (relocate_group)
1079 shndxes.push_back(shndx);
1080
1081 if (shndx >= this->shnum())
1082 {
1083 this->error(_("section %u in section group %u out of range"),
1084 shndx, index);
1085 continue;
1086 }
1087
1088 // Check for an earlier section number, since we're going to get
1089 // it wrong--we may have already decided to include the section.
1090 if (shndx < index)
1091 this->error(_("invalid section group %u refers to earlier section %u"),
1092 index, shndx);
1093
1094 // Get the name of the member section.
1095 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1096 if (member_shdr.get_sh_name() >= section_names_size)
1097 {
1098 // This is an error, but it will be diagnosed eventually
1099 // in do_layout, so we don't need to do anything here but
1100 // ignore it.
1101 continue;
1102 }
1103 std::string mname(section_names + member_shdr.get_sh_name());
1104
1105 if (include_group)
1106 {
1107 if (is_comdat)
1108 kept_section->add_comdat_section(mname, shndx,
1109 member_shdr.get_sh_size());
1110 }
1111 else
1112 {
1113 (*omit)[shndx] = true;
1114
1115 if (is_comdat)
1116 {
1117 Relobj* kept_object = kept_section->object();
1118 if (kept_section->is_comdat())
1119 {
1120 // Find the corresponding kept section, and store
1121 // that info in the discarded section table.
1122 unsigned int kept_shndx;
1123 uint64_t kept_size;
1124 if (kept_section->find_comdat_section(mname, &kept_shndx,
1125 &kept_size))
1126 {
1127 // We don't keep a mapping for this section if
1128 // it has a different size. The mapping is only
1129 // used for relocation processing, and we don't
1130 // want to treat the sections as similar if the
1131 // sizes are different. Checking the section
1132 // size is the approach used by the GNU linker.
1133 if (kept_size == member_shdr.get_sh_size())
1134 this->set_kept_comdat_section(shndx, kept_object,
1135 kept_shndx);
1136 }
1137 }
1138 else
1139 {
1140 // The existing section is a linkonce section. Add
1141 // a mapping if there is exactly one section in the
1142 // group (which is true when COUNT == 2) and if it
1143 // is the same size.
1144 if (count == 2
1145 && (kept_section->linkonce_size()
1146 == member_shdr.get_sh_size()))
1147 this->set_kept_comdat_section(shndx, kept_object,
1148 kept_section->shndx());
1149 }
1150 }
1151 }
1152 }
1153
1154 if (relocate_group)
1155 layout->layout_group(symtab, this, index, name, signature.c_str(),
1156 shdr, flags, &shndxes);
1157
1158 return include_group;
1159 }
1160
1161 // Whether to include a linkonce section in the link. NAME is the
1162 // name of the section and SHDR is the section header.
1163
1164 // Linkonce sections are a GNU extension implemented in the original
1165 // GNU linker before section groups were defined. The semantics are
1166 // that we only include one linkonce section with a given name. The
1167 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1168 // where T is the type of section and SYMNAME is the name of a symbol.
1169 // In an attempt to make linkonce sections interact well with section
1170 // groups, we try to identify SYMNAME and use it like a section group
1171 // signature. We want to block section groups with that signature,
1172 // but not other linkonce sections with that signature. We also use
1173 // the full name of the linkonce section as a normal section group
1174 // signature.
1175
1176 template<int size, bool big_endian>
1177 bool
1178 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1179 Layout* layout,
1180 unsigned int index,
1181 const char* name,
1182 const elfcpp::Shdr<size, big_endian>& shdr)
1183 {
1184 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1185 // In general the symbol name we want will be the string following
1186 // the last '.'. However, we have to handle the case of
1187 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1188 // some versions of gcc. So we use a heuristic: if the name starts
1189 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1190 // we look for the last '.'. We can't always simply skip
1191 // ".gnu.linkonce.X", because we have to deal with cases like
1192 // ".gnu.linkonce.d.rel.ro.local".
1193 const char* const linkonce_t = ".gnu.linkonce.t.";
1194 const char* symname;
1195 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1196 symname = name + strlen(linkonce_t);
1197 else
1198 symname = strrchr(name, '.') + 1;
1199 std::string sig1(symname);
1200 std::string sig2(name);
1201 Kept_section* kept1;
1202 Kept_section* kept2;
1203 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1204 false, &kept1);
1205 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1206 true, &kept2);
1207
1208 if (!include2)
1209 {
1210 // We are not including this section because we already saw the
1211 // name of the section as a signature. This normally implies
1212 // that the kept section is another linkonce section. If it is
1213 // the same size, record it as the section which corresponds to
1214 // this one.
1215 if (kept2->object() != NULL
1216 && !kept2->is_comdat()
1217 && kept2->linkonce_size() == sh_size)
1218 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1219 }
1220 else if (!include1)
1221 {
1222 // The section is being discarded on the basis of its symbol
1223 // name. This means that the corresponding kept section was
1224 // part of a comdat group, and it will be difficult to identify
1225 // the specific section within that group that corresponds to
1226 // this linkonce section. We'll handle the simple case where
1227 // the group has only one member section. Otherwise, it's not
1228 // worth the effort.
1229 unsigned int kept_shndx;
1230 uint64_t kept_size;
1231 if (kept1->object() != NULL
1232 && kept1->is_comdat()
1233 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1234 && kept_size == sh_size)
1235 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1236 }
1237 else
1238 {
1239 kept1->set_linkonce_size(sh_size);
1240 kept2->set_linkonce_size(sh_size);
1241 }
1242
1243 return include1 && include2;
1244 }
1245
1246 // Layout an input section.
1247
1248 template<int size, bool big_endian>
1249 inline void
1250 Sized_relobj_file<size, big_endian>::layout_section(
1251 Layout* layout,
1252 unsigned int shndx,
1253 const char* name,
1254 const typename This::Shdr& shdr,
1255 unsigned int sh_type,
1256 unsigned int reloc_shndx,
1257 unsigned int reloc_type)
1258 {
1259 off_t offset;
1260 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1261 reloc_shndx, reloc_type, &offset);
1262
1263 this->output_sections()[shndx] = os;
1264 if (offset == -1)
1265 this->section_offsets()[shndx] = invalid_address;
1266 else
1267 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1268
1269 // If this section requires special handling, and if there are
1270 // relocs that apply to it, then we must do the special handling
1271 // before we apply the relocs.
1272 if (offset == -1 && reloc_shndx != 0)
1273 this->set_relocs_must_follow_section_writes();
1274 }
1275
1276 // Layout an input .eh_frame section.
1277
1278 template<int size, bool big_endian>
1279 void
1280 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1281 Layout* layout,
1282 const unsigned char* symbols_data,
1283 section_size_type symbols_size,
1284 const unsigned char* symbol_names_data,
1285 section_size_type symbol_names_size,
1286 unsigned int shndx,
1287 const typename This::Shdr& shdr,
1288 unsigned int reloc_shndx,
1289 unsigned int reloc_type)
1290 {
1291 gold_assert(this->has_eh_frame_);
1292
1293 off_t offset;
1294 Output_section* os = layout->layout_eh_frame(this,
1295 symbols_data,
1296 symbols_size,
1297 symbol_names_data,
1298 symbol_names_size,
1299 shndx,
1300 shdr,
1301 reloc_shndx,
1302 reloc_type,
1303 &offset);
1304 this->output_sections()[shndx] = os;
1305 if (os == NULL || offset == -1)
1306 this->section_offsets()[shndx] = invalid_address;
1307 else
1308 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1309
1310 // If this section requires special handling, and if there are
1311 // relocs that aply to it, then we must do the special handling
1312 // before we apply the relocs.
1313 if (os != NULL && offset == -1 && reloc_shndx != 0)
1314 this->set_relocs_must_follow_section_writes();
1315 }
1316
1317 // Lay out the input sections. We walk through the sections and check
1318 // whether they should be included in the link. If they should, we
1319 // pass them to the Layout object, which will return an output section
1320 // and an offset.
1321 // This function is called twice sometimes, two passes, when mapping
1322 // of input sections to output sections must be delayed.
1323 // This is true for the following :
1324 // * Garbage collection (--gc-sections): Some input sections will be
1325 // discarded and hence the assignment must wait until the second pass.
1326 // In the first pass, it is for setting up some sections as roots to
1327 // a work-list for --gc-sections and to do comdat processing.
1328 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1329 // will be folded and hence the assignment must wait.
1330 // * Using plugins to map some sections to unique segments: Mapping
1331 // some sections to unique segments requires mapping them to unique
1332 // output sections too. This can be done via plugins now and this
1333 // information is not available in the first pass.
1334
1335 template<int size, bool big_endian>
1336 void
1337 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1338 Layout* layout,
1339 Read_symbols_data* sd)
1340 {
1341 const unsigned int unwind_section_type =
1342 parameters->target().unwind_section_type();
1343 const unsigned int shnum = this->shnum();
1344
1345 /* Should this function be called twice? */
1346 bool is_two_pass = (parameters->options().gc_sections()
1347 || parameters->options().icf_enabled()
1348 || layout->is_unique_segment_for_sections_specified());
1349
1350 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1351 a two-pass approach is not needed. */
1352 bool is_pass_one = false;
1353 bool is_pass_two = false;
1354
1355 Symbols_data* gc_sd = NULL;
1356
1357 /* Check if do_layout needs to be two-pass. If so, find out which pass
1358 should happen. In the first pass, the data in sd is saved to be used
1359 later in the second pass. */
1360 if (is_two_pass)
1361 {
1362 gc_sd = this->get_symbols_data();
1363 if (gc_sd == NULL)
1364 {
1365 gold_assert(sd != NULL);
1366 is_pass_one = true;
1367 }
1368 else
1369 {
1370 if (parameters->options().gc_sections())
1371 gold_assert(symtab->gc()->is_worklist_ready());
1372 if (parameters->options().icf_enabled())
1373 gold_assert(symtab->icf()->is_icf_ready());
1374 is_pass_two = true;
1375 }
1376 }
1377
1378 if (shnum == 0)
1379 return;
1380
1381 if (is_pass_one)
1382 {
1383 // During garbage collection save the symbols data to use it when
1384 // re-entering this function.
1385 gc_sd = new Symbols_data;
1386 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1387 this->set_symbols_data(gc_sd);
1388 }
1389
1390 const unsigned char* section_headers_data = NULL;
1391 section_size_type section_names_size;
1392 const unsigned char* symbols_data = NULL;
1393 section_size_type symbols_size;
1394 const unsigned char* symbol_names_data = NULL;
1395 section_size_type symbol_names_size;
1396
1397 if (is_two_pass)
1398 {
1399 section_headers_data = gc_sd->section_headers_data;
1400 section_names_size = gc_sd->section_names_size;
1401 symbols_data = gc_sd->symbols_data;
1402 symbols_size = gc_sd->symbols_size;
1403 symbol_names_data = gc_sd->symbol_names_data;
1404 symbol_names_size = gc_sd->symbol_names_size;
1405 }
1406 else
1407 {
1408 section_headers_data = sd->section_headers->data();
1409 section_names_size = sd->section_names_size;
1410 if (sd->symbols != NULL)
1411 symbols_data = sd->symbols->data();
1412 symbols_size = sd->symbols_size;
1413 if (sd->symbol_names != NULL)
1414 symbol_names_data = sd->symbol_names->data();
1415 symbol_names_size = sd->symbol_names_size;
1416 }
1417
1418 // Get the section headers.
1419 const unsigned char* shdrs = section_headers_data;
1420 const unsigned char* pshdrs;
1421
1422 // Get the section names.
1423 const unsigned char* pnamesu = (is_two_pass
1424 ? gc_sd->section_names_data
1425 : sd->section_names->data());
1426
1427 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1428
1429 // If any input files have been claimed by plugins, we need to defer
1430 // actual layout until the replacement files have arrived.
1431 const bool should_defer_layout =
1432 (parameters->options().has_plugins()
1433 && parameters->options().plugins()->should_defer_layout());
1434 unsigned int num_sections_to_defer = 0;
1435
1436 // For each section, record the index of the reloc section if any.
1437 // Use 0 to mean that there is no reloc section, -1U to mean that
1438 // there is more than one.
1439 std::vector<unsigned int> reloc_shndx(shnum, 0);
1440 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1441 // Skip the first, dummy, section.
1442 pshdrs = shdrs + This::shdr_size;
1443 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1444 {
1445 typename This::Shdr shdr(pshdrs);
1446
1447 // Count the number of sections whose layout will be deferred.
1448 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1449 ++num_sections_to_defer;
1450
1451 unsigned int sh_type = shdr.get_sh_type();
1452 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1453 {
1454 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1455 if (target_shndx == 0 || target_shndx >= shnum)
1456 {
1457 this->error(_("relocation section %u has bad info %u"),
1458 i, target_shndx);
1459 continue;
1460 }
1461
1462 if (reloc_shndx[target_shndx] != 0)
1463 reloc_shndx[target_shndx] = -1U;
1464 else
1465 {
1466 reloc_shndx[target_shndx] = i;
1467 reloc_type[target_shndx] = sh_type;
1468 }
1469 }
1470 }
1471
1472 Output_sections& out_sections(this->output_sections());
1473 std::vector<Address>& out_section_offsets(this->section_offsets());
1474
1475 if (!is_pass_two)
1476 {
1477 out_sections.resize(shnum);
1478 out_section_offsets.resize(shnum);
1479 }
1480
1481 // If we are only linking for symbols, then there is nothing else to
1482 // do here.
1483 if (this->input_file()->just_symbols())
1484 {
1485 if (!is_pass_two)
1486 {
1487 delete sd->section_headers;
1488 sd->section_headers = NULL;
1489 delete sd->section_names;
1490 sd->section_names = NULL;
1491 }
1492 return;
1493 }
1494
1495 if (num_sections_to_defer > 0)
1496 {
1497 parameters->options().plugins()->add_deferred_layout_object(this);
1498 this->deferred_layout_.reserve(num_sections_to_defer);
1499 this->is_deferred_layout_ = true;
1500 }
1501
1502 // Whether we've seen a .note.GNU-stack section.
1503 bool seen_gnu_stack = false;
1504 // The flags of a .note.GNU-stack section.
1505 uint64_t gnu_stack_flags = 0;
1506
1507 // Keep track of which sections to omit.
1508 std::vector<bool> omit(shnum, false);
1509
1510 // Keep track of reloc sections when emitting relocations.
1511 const bool relocatable = parameters->options().relocatable();
1512 const bool emit_relocs = (relocatable
1513 || parameters->options().emit_relocs());
1514 std::vector<unsigned int> reloc_sections;
1515
1516 // Keep track of .eh_frame sections.
1517 std::vector<unsigned int> eh_frame_sections;
1518
1519 // Keep track of .debug_info and .debug_types sections.
1520 std::vector<unsigned int> debug_info_sections;
1521 std::vector<unsigned int> debug_types_sections;
1522
1523 // Skip the first, dummy, section.
1524 pshdrs = shdrs + This::shdr_size;
1525 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1526 {
1527 typename This::Shdr shdr(pshdrs);
1528 const unsigned int sh_name = shdr.get_sh_name();
1529 unsigned int sh_type = shdr.get_sh_type();
1530
1531 if (sh_name >= section_names_size)
1532 {
1533 this->error(_("bad section name offset for section %u: %lu"),
1534 i, static_cast<unsigned long>(sh_name));
1535 return;
1536 }
1537
1538 const char* name = pnames + sh_name;
1539
1540 if (!is_pass_two)
1541 {
1542 if (this->handle_gnu_warning_section(name, i, symtab))
1543 {
1544 if (!relocatable && !parameters->options().shared())
1545 omit[i] = true;
1546 }
1547
1548 // The .note.GNU-stack section is special. It gives the
1549 // protection flags that this object file requires for the stack
1550 // in memory.
1551 if (strcmp(name, ".note.GNU-stack") == 0)
1552 {
1553 seen_gnu_stack = true;
1554 gnu_stack_flags |= shdr.get_sh_flags();
1555 omit[i] = true;
1556 }
1557
1558 // The .note.GNU-split-stack section is also special. It
1559 // indicates that the object was compiled with
1560 // -fsplit-stack.
1561 if (this->handle_split_stack_section(name))
1562 {
1563 if (!relocatable && !parameters->options().shared())
1564 omit[i] = true;
1565 }
1566
1567 // Skip attributes section.
1568 if (parameters->target().is_attributes_section(name))
1569 {
1570 omit[i] = true;
1571 }
1572
1573 bool discard = omit[i];
1574 if (!discard)
1575 {
1576 if (sh_type == elfcpp::SHT_GROUP)
1577 {
1578 if (!this->include_section_group(symtab, layout, i, name,
1579 shdrs, pnames,
1580 section_names_size,
1581 &omit))
1582 discard = true;
1583 }
1584 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1585 && Layout::is_linkonce(name))
1586 {
1587 if (!this->include_linkonce_section(layout, i, name, shdr))
1588 discard = true;
1589 }
1590 }
1591
1592 // Add the section to the incremental inputs layout.
1593 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1594 if (incremental_inputs != NULL
1595 && !discard
1596 && can_incremental_update(sh_type))
1597 {
1598 off_t sh_size = shdr.get_sh_size();
1599 section_size_type uncompressed_size;
1600 if (this->section_is_compressed(i, &uncompressed_size))
1601 sh_size = uncompressed_size;
1602 incremental_inputs->report_input_section(this, i, name, sh_size);
1603 }
1604
1605 if (discard)
1606 {
1607 // Do not include this section in the link.
1608 out_sections[i] = NULL;
1609 out_section_offsets[i] = invalid_address;
1610 continue;
1611 }
1612 }
1613
1614 if (is_pass_one && parameters->options().gc_sections())
1615 {
1616 if (this->is_section_name_included(name)
1617 || layout->keep_input_section (this, name)
1618 || sh_type == elfcpp::SHT_INIT_ARRAY
1619 || sh_type == elfcpp::SHT_FINI_ARRAY)
1620 {
1621 symtab->gc()->worklist().push_back(Section_id(this, i));
1622 }
1623 // If the section name XXX can be represented as a C identifier
1624 // it cannot be discarded if there are references to
1625 // __start_XXX and __stop_XXX symbols. These need to be
1626 // specially handled.
1627 if (is_cident(name))
1628 {
1629 symtab->gc()->add_cident_section(name, Section_id(this, i));
1630 }
1631 }
1632
1633 // When doing a relocatable link we are going to copy input
1634 // reloc sections into the output. We only want to copy the
1635 // ones associated with sections which are not being discarded.
1636 // However, we don't know that yet for all sections. So save
1637 // reloc sections and process them later. Garbage collection is
1638 // not triggered when relocatable code is desired.
1639 if (emit_relocs
1640 && (sh_type == elfcpp::SHT_REL
1641 || sh_type == elfcpp::SHT_RELA))
1642 {
1643 reloc_sections.push_back(i);
1644 continue;
1645 }
1646
1647 if (relocatable && sh_type == elfcpp::SHT_GROUP)
1648 continue;
1649
1650 // The .eh_frame section is special. It holds exception frame
1651 // information that we need to read in order to generate the
1652 // exception frame header. We process these after all the other
1653 // sections so that the exception frame reader can reliably
1654 // determine which sections are being discarded, and discard the
1655 // corresponding information.
1656 if (this->check_eh_frame_flags(&shdr)
1657 && strcmp(name, ".eh_frame") == 0)
1658 {
1659 // If the target has a special unwind section type, let's
1660 // canonicalize it here.
1661 sh_type = unwind_section_type;
1662 if (!relocatable)
1663 {
1664 if (is_pass_one)
1665 {
1666 if (this->is_deferred_layout())
1667 out_sections[i] = reinterpret_cast<Output_section*>(2);
1668 else
1669 out_sections[i] = reinterpret_cast<Output_section*>(1);
1670 out_section_offsets[i] = invalid_address;
1671 }
1672 else if (this->is_deferred_layout())
1673 this->deferred_layout_.push_back(
1674 Deferred_layout(i, name, sh_type, pshdrs,
1675 reloc_shndx[i], reloc_type[i]));
1676 else
1677 eh_frame_sections.push_back(i);
1678 continue;
1679 }
1680 }
1681
1682 if (is_pass_two && parameters->options().gc_sections())
1683 {
1684 // This is executed during the second pass of garbage
1685 // collection. do_layout has been called before and some
1686 // sections have been already discarded. Simply ignore
1687 // such sections this time around.
1688 if (out_sections[i] == NULL)
1689 {
1690 gold_assert(out_section_offsets[i] == invalid_address);
1691 continue;
1692 }
1693 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1694 && symtab->gc()->is_section_garbage(this, i))
1695 {
1696 if (parameters->options().print_gc_sections())
1697 gold_info(_("%s: removing unused section from '%s'"
1698 " in file '%s'"),
1699 program_name, this->section_name(i).c_str(),
1700 this->name().c_str());
1701 out_sections[i] = NULL;
1702 out_section_offsets[i] = invalid_address;
1703 continue;
1704 }
1705 }
1706
1707 if (is_pass_two && parameters->options().icf_enabled())
1708 {
1709 if (out_sections[i] == NULL)
1710 {
1711 gold_assert(out_section_offsets[i] == invalid_address);
1712 continue;
1713 }
1714 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1715 && symtab->icf()->is_section_folded(this, i))
1716 {
1717 if (parameters->options().print_icf_sections())
1718 {
1719 Section_id folded =
1720 symtab->icf()->get_folded_section(this, i);
1721 Relobj* folded_obj =
1722 reinterpret_cast<Relobj*>(folded.first);
1723 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1724 "into '%s' in file '%s'"),
1725 program_name, this->section_name(i).c_str(),
1726 this->name().c_str(),
1727 folded_obj->section_name(folded.second).c_str(),
1728 folded_obj->name().c_str());
1729 }
1730 out_sections[i] = NULL;
1731 out_section_offsets[i] = invalid_address;
1732 continue;
1733 }
1734 }
1735
1736 // Defer layout here if input files are claimed by plugins. When gc
1737 // is turned on this function is called twice; we only want to do this
1738 // on the first pass.
1739 if (!is_pass_two
1740 && this->is_deferred_layout()
1741 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1742 {
1743 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1744 pshdrs,
1745 reloc_shndx[i],
1746 reloc_type[i]));
1747 // Put dummy values here; real values will be supplied by
1748 // do_layout_deferred_sections.
1749 out_sections[i] = reinterpret_cast<Output_section*>(2);
1750 out_section_offsets[i] = invalid_address;
1751 continue;
1752 }
1753
1754 // During gc_pass_two if a section that was previously deferred is
1755 // found, do not layout the section as layout_deferred_sections will
1756 // do it later from gold.cc.
1757 if (is_pass_two
1758 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1759 continue;
1760
1761 if (is_pass_one)
1762 {
1763 // This is during garbage collection. The out_sections are
1764 // assigned in the second call to this function.
1765 out_sections[i] = reinterpret_cast<Output_section*>(1);
1766 out_section_offsets[i] = invalid_address;
1767 }
1768 else
1769 {
1770 // When garbage collection is switched on the actual layout
1771 // only happens in the second call.
1772 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1773 reloc_type[i]);
1774
1775 // When generating a .gdb_index section, we do additional
1776 // processing of .debug_info and .debug_types sections after all
1777 // the other sections for the same reason as above.
1778 if (!relocatable
1779 && parameters->options().gdb_index()
1780 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1781 {
1782 if (strcmp(name, ".debug_info") == 0
1783 || strcmp(name, ".zdebug_info") == 0)
1784 debug_info_sections.push_back(i);
1785 else if (strcmp(name, ".debug_types") == 0
1786 || strcmp(name, ".zdebug_types") == 0)
1787 debug_types_sections.push_back(i);
1788 }
1789 }
1790 }
1791
1792 if (!is_pass_two)
1793 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1794
1795 // Handle the .eh_frame sections after the other sections.
1796 gold_assert(!is_pass_one || eh_frame_sections.empty());
1797 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1798 p != eh_frame_sections.end();
1799 ++p)
1800 {
1801 unsigned int i = *p;
1802 const unsigned char* pshdr;
1803 pshdr = section_headers_data + i * This::shdr_size;
1804 typename This::Shdr shdr(pshdr);
1805
1806 this->layout_eh_frame_section(layout,
1807 symbols_data,
1808 symbols_size,
1809 symbol_names_data,
1810 symbol_names_size,
1811 i,
1812 shdr,
1813 reloc_shndx[i],
1814 reloc_type[i]);
1815 }
1816
1817 // When doing a relocatable link handle the reloc sections at the
1818 // end. Garbage collection and Identical Code Folding is not
1819 // turned on for relocatable code.
1820 if (emit_relocs)
1821 this->size_relocatable_relocs();
1822
1823 gold_assert(!is_two_pass || reloc_sections.empty());
1824
1825 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1826 p != reloc_sections.end();
1827 ++p)
1828 {
1829 unsigned int i = *p;
1830 const unsigned char* pshdr;
1831 pshdr = section_headers_data + i * This::shdr_size;
1832 typename This::Shdr shdr(pshdr);
1833
1834 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1835 if (data_shndx >= shnum)
1836 {
1837 // We already warned about this above.
1838 continue;
1839 }
1840
1841 Output_section* data_section = out_sections[data_shndx];
1842 if (data_section == reinterpret_cast<Output_section*>(2))
1843 {
1844 if (is_pass_two)
1845 continue;
1846 // The layout for the data section was deferred, so we need
1847 // to defer the relocation section, too.
1848 const char* name = pnames + shdr.get_sh_name();
1849 this->deferred_layout_relocs_.push_back(
1850 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1851 elfcpp::SHT_NULL));
1852 out_sections[i] = reinterpret_cast<Output_section*>(2);
1853 out_section_offsets[i] = invalid_address;
1854 continue;
1855 }
1856 if (data_section == NULL)
1857 {
1858 out_sections[i] = NULL;
1859 out_section_offsets[i] = invalid_address;
1860 continue;
1861 }
1862
1863 Relocatable_relocs* rr = new Relocatable_relocs();
1864 this->set_relocatable_relocs(i, rr);
1865
1866 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1867 rr);
1868 out_sections[i] = os;
1869 out_section_offsets[i] = invalid_address;
1870 }
1871
1872 // When building a .gdb_index section, scan the .debug_info and
1873 // .debug_types sections.
1874 gold_assert(!is_pass_one
1875 || (debug_info_sections.empty() && debug_types_sections.empty()));
1876 for (std::vector<unsigned int>::const_iterator p
1877 = debug_info_sections.begin();
1878 p != debug_info_sections.end();
1879 ++p)
1880 {
1881 unsigned int i = *p;
1882 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1883 i, reloc_shndx[i], reloc_type[i]);
1884 }
1885 for (std::vector<unsigned int>::const_iterator p
1886 = debug_types_sections.begin();
1887 p != debug_types_sections.end();
1888 ++p)
1889 {
1890 unsigned int i = *p;
1891 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1892 i, reloc_shndx[i], reloc_type[i]);
1893 }
1894
1895 if (is_pass_two)
1896 {
1897 delete[] gc_sd->section_headers_data;
1898 delete[] gc_sd->section_names_data;
1899 delete[] gc_sd->symbols_data;
1900 delete[] gc_sd->symbol_names_data;
1901 this->set_symbols_data(NULL);
1902 }
1903 else
1904 {
1905 delete sd->section_headers;
1906 sd->section_headers = NULL;
1907 delete sd->section_names;
1908 sd->section_names = NULL;
1909 }
1910 }
1911
1912 // Layout sections whose layout was deferred while waiting for
1913 // input files from a plugin.
1914
1915 template<int size, bool big_endian>
1916 void
1917 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1918 {
1919 typename std::vector<Deferred_layout>::iterator deferred;
1920
1921 for (deferred = this->deferred_layout_.begin();
1922 deferred != this->deferred_layout_.end();
1923 ++deferred)
1924 {
1925 typename This::Shdr shdr(deferred->shdr_data_);
1926
1927 if (!parameters->options().relocatable()
1928 && deferred->name_ == ".eh_frame"
1929 && this->check_eh_frame_flags(&shdr))
1930 {
1931 // Checking is_section_included is not reliable for
1932 // .eh_frame sections, because they do not have an output
1933 // section. This is not a problem normally because we call
1934 // layout_eh_frame_section unconditionally, but when
1935 // deferring sections that is not true. We don't want to
1936 // keep all .eh_frame sections because that will cause us to
1937 // keep all sections that they refer to, which is the wrong
1938 // way around. Instead, the eh_frame code will discard
1939 // .eh_frame sections that refer to discarded sections.
1940
1941 // Reading the symbols again here may be slow.
1942 Read_symbols_data sd;
1943 this->base_read_symbols(&sd);
1944 this->layout_eh_frame_section(layout,
1945 sd.symbols->data(),
1946 sd.symbols_size,
1947 sd.symbol_names->data(),
1948 sd.symbol_names_size,
1949 deferred->shndx_,
1950 shdr,
1951 deferred->reloc_shndx_,
1952 deferred->reloc_type_);
1953 continue;
1954 }
1955
1956 // If the section is not included, it is because the garbage collector
1957 // decided it is not needed. Avoid reverting that decision.
1958 if (!this->is_section_included(deferred->shndx_))
1959 continue;
1960
1961 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1962 shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
1963 deferred->reloc_type_);
1964 }
1965
1966 this->deferred_layout_.clear();
1967
1968 // Now handle the deferred relocation sections.
1969
1970 Output_sections& out_sections(this->output_sections());
1971 std::vector<Address>& out_section_offsets(this->section_offsets());
1972
1973 for (deferred = this->deferred_layout_relocs_.begin();
1974 deferred != this->deferred_layout_relocs_.end();
1975 ++deferred)
1976 {
1977 unsigned int shndx = deferred->shndx_;
1978 typename This::Shdr shdr(deferred->shdr_data_);
1979 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1980
1981 Output_section* data_section = out_sections[data_shndx];
1982 if (data_section == NULL)
1983 {
1984 out_sections[shndx] = NULL;
1985 out_section_offsets[shndx] = invalid_address;
1986 continue;
1987 }
1988
1989 Relocatable_relocs* rr = new Relocatable_relocs();
1990 this->set_relocatable_relocs(shndx, rr);
1991
1992 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1993 data_section, rr);
1994 out_sections[shndx] = os;
1995 out_section_offsets[shndx] = invalid_address;
1996 }
1997 }
1998
1999 // Add the symbols to the symbol table.
2000
2001 template<int size, bool big_endian>
2002 void
2003 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2004 Read_symbols_data* sd,
2005 Layout*)
2006 {
2007 if (sd->symbols == NULL)
2008 {
2009 gold_assert(sd->symbol_names == NULL);
2010 return;
2011 }
2012
2013 const int sym_size = This::sym_size;
2014 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2015 / sym_size);
2016 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2017 {
2018 this->error(_("size of symbols is not multiple of symbol size"));
2019 return;
2020 }
2021
2022 this->symbols_.resize(symcount);
2023
2024 const char* sym_names =
2025 reinterpret_cast<const char*>(sd->symbol_names->data());
2026 symtab->add_from_relobj(this,
2027 sd->symbols->data() + sd->external_symbols_offset,
2028 symcount, this->local_symbol_count_,
2029 sym_names, sd->symbol_names_size,
2030 &this->symbols_,
2031 &this->defined_count_);
2032
2033 delete sd->symbols;
2034 sd->symbols = NULL;
2035 delete sd->symbol_names;
2036 sd->symbol_names = NULL;
2037 }
2038
2039 // Find out if this object, that is a member of a lib group, should be included
2040 // in the link. We check every symbol defined by this object. If the symbol
2041 // table has a strong undefined reference to that symbol, we have to include
2042 // the object.
2043
2044 template<int size, bool big_endian>
2045 Archive::Should_include
2046 Sized_relobj_file<size, big_endian>::do_should_include_member(
2047 Symbol_table* symtab,
2048 Layout* layout,
2049 Read_symbols_data* sd,
2050 std::string* why)
2051 {
2052 char* tmpbuf = NULL;
2053 size_t tmpbuflen = 0;
2054 const char* sym_names =
2055 reinterpret_cast<const char*>(sd->symbol_names->data());
2056 const unsigned char* syms =
2057 sd->symbols->data() + sd->external_symbols_offset;
2058 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2059 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2060 / sym_size);
2061
2062 const unsigned char* p = syms;
2063
2064 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2065 {
2066 elfcpp::Sym<size, big_endian> sym(p);
2067 unsigned int st_shndx = sym.get_st_shndx();
2068 if (st_shndx == elfcpp::SHN_UNDEF)
2069 continue;
2070
2071 unsigned int st_name = sym.get_st_name();
2072 const char* name = sym_names + st_name;
2073 Symbol* symbol;
2074 Archive::Should_include t = Archive::should_include_member(symtab,
2075 layout,
2076 name,
2077 &symbol, why,
2078 &tmpbuf,
2079 &tmpbuflen);
2080 if (t == Archive::SHOULD_INCLUDE_YES)
2081 {
2082 if (tmpbuf != NULL)
2083 free(tmpbuf);
2084 return t;
2085 }
2086 }
2087 if (tmpbuf != NULL)
2088 free(tmpbuf);
2089 return Archive::SHOULD_INCLUDE_UNKNOWN;
2090 }
2091
2092 // Iterate over global defined symbols, calling a visitor class V for each.
2093
2094 template<int size, bool big_endian>
2095 void
2096 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2097 Read_symbols_data* sd,
2098 Library_base::Symbol_visitor_base* v)
2099 {
2100 const char* sym_names =
2101 reinterpret_cast<const char*>(sd->symbol_names->data());
2102 const unsigned char* syms =
2103 sd->symbols->data() + sd->external_symbols_offset;
2104 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2105 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2106 / sym_size);
2107 const unsigned char* p = syms;
2108
2109 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2110 {
2111 elfcpp::Sym<size, big_endian> sym(p);
2112 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2113 v->visit(sym_names + sym.get_st_name());
2114 }
2115 }
2116
2117 // Return whether the local symbol SYMNDX has a PLT offset.
2118
2119 template<int size, bool big_endian>
2120 bool
2121 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2122 unsigned int symndx) const
2123 {
2124 typename Local_plt_offsets::const_iterator p =
2125 this->local_plt_offsets_.find(symndx);
2126 return p != this->local_plt_offsets_.end();
2127 }
2128
2129 // Get the PLT offset of a local symbol.
2130
2131 template<int size, bool big_endian>
2132 unsigned int
2133 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2134 unsigned int symndx) const
2135 {
2136 typename Local_plt_offsets::const_iterator p =
2137 this->local_plt_offsets_.find(symndx);
2138 gold_assert(p != this->local_plt_offsets_.end());
2139 return p->second;
2140 }
2141
2142 // Set the PLT offset of a local symbol.
2143
2144 template<int size, bool big_endian>
2145 void
2146 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2147 unsigned int symndx, unsigned int plt_offset)
2148 {
2149 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2150 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2151 gold_assert(ins.second);
2152 }
2153
2154 // First pass over the local symbols. Here we add their names to
2155 // *POOL and *DYNPOOL, and we store the symbol value in
2156 // THIS->LOCAL_VALUES_. This function is always called from a
2157 // singleton thread. This is followed by a call to
2158 // finalize_local_symbols.
2159
2160 template<int size, bool big_endian>
2161 void
2162 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2163 Stringpool* dynpool)
2164 {
2165 gold_assert(this->symtab_shndx_ != -1U);
2166 if (this->symtab_shndx_ == 0)
2167 {
2168 // This object has no symbols. Weird but legal.
2169 return;
2170 }
2171
2172 // Read the symbol table section header.
2173 const unsigned int symtab_shndx = this->symtab_shndx_;
2174 typename This::Shdr symtabshdr(this,
2175 this->elf_file_.section_header(symtab_shndx));
2176 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2177
2178 // Read the local symbols.
2179 const int sym_size = This::sym_size;
2180 const unsigned int loccount = this->local_symbol_count_;
2181 gold_assert(loccount == symtabshdr.get_sh_info());
2182 off_t locsize = loccount * sym_size;
2183 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2184 locsize, true, true);
2185
2186 // Read the symbol names.
2187 const unsigned int strtab_shndx =
2188 this->adjust_shndx(symtabshdr.get_sh_link());
2189 section_size_type strtab_size;
2190 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2191 &strtab_size,
2192 true);
2193 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2194
2195 // Loop over the local symbols.
2196
2197 const Output_sections& out_sections(this->output_sections());
2198 std::vector<Address>& out_section_offsets(this->section_offsets());
2199 unsigned int shnum = this->shnum();
2200 unsigned int count = 0;
2201 unsigned int dyncount = 0;
2202 // Skip the first, dummy, symbol.
2203 psyms += sym_size;
2204 bool strip_all = parameters->options().strip_all();
2205 bool discard_all = parameters->options().discard_all();
2206 bool discard_locals = parameters->options().discard_locals();
2207 bool discard_sec_merge = parameters->options().discard_sec_merge();
2208 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2209 {
2210 elfcpp::Sym<size, big_endian> sym(psyms);
2211
2212 Symbol_value<size>& lv(this->local_values_[i]);
2213
2214 bool is_ordinary;
2215 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2216 &is_ordinary);
2217 lv.set_input_shndx(shndx, is_ordinary);
2218
2219 if (sym.get_st_type() == elfcpp::STT_SECTION)
2220 lv.set_is_section_symbol();
2221 else if (sym.get_st_type() == elfcpp::STT_TLS)
2222 lv.set_is_tls_symbol();
2223 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2224 lv.set_is_ifunc_symbol();
2225
2226 // Save the input symbol value for use in do_finalize_local_symbols().
2227 lv.set_input_value(sym.get_st_value());
2228
2229 // Decide whether this symbol should go into the output file.
2230
2231 if (is_ordinary
2232 && shndx < shnum
2233 && (out_sections[shndx] == NULL
2234 || (out_sections[shndx]->order() == ORDER_EHFRAME
2235 && out_section_offsets[shndx] == invalid_address)))
2236 {
2237 // This is either a discarded section or an optimized .eh_frame
2238 // section.
2239 lv.set_no_output_symtab_entry();
2240 gold_assert(!lv.needs_output_dynsym_entry());
2241 continue;
2242 }
2243
2244 if (sym.get_st_type() == elfcpp::STT_SECTION
2245 || !this->adjust_local_symbol(&lv))
2246 {
2247 lv.set_no_output_symtab_entry();
2248 gold_assert(!lv.needs_output_dynsym_entry());
2249 continue;
2250 }
2251
2252 if (sym.get_st_name() >= strtab_size)
2253 {
2254 this->error(_("local symbol %u section name out of range: %u >= %u"),
2255 i, sym.get_st_name(),
2256 static_cast<unsigned int>(strtab_size));
2257 lv.set_no_output_symtab_entry();
2258 continue;
2259 }
2260
2261 const char* name = pnames + sym.get_st_name();
2262
2263 // If needed, add the symbol to the dynamic symbol table string pool.
2264 if (lv.needs_output_dynsym_entry())
2265 {
2266 dynpool->add(name, true, NULL);
2267 ++dyncount;
2268 }
2269
2270 if (strip_all
2271 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2272 {
2273 lv.set_no_output_symtab_entry();
2274 continue;
2275 }
2276
2277 // By default, discard temporary local symbols in merge sections.
2278 // If --discard-locals option is used, discard all temporary local
2279 // symbols. These symbols start with system-specific local label
2280 // prefixes, typically .L for ELF system. We want to be compatible
2281 // with GNU ld so here we essentially use the same check in
2282 // bfd_is_local_label(). The code is different because we already
2283 // know that:
2284 //
2285 // - the symbol is local and thus cannot have global or weak binding.
2286 // - the symbol is not a section symbol.
2287 // - the symbol has a name.
2288 //
2289 // We do not discard a symbol if it needs a dynamic symbol entry.
2290 if ((discard_locals
2291 || (discard_sec_merge
2292 && is_ordinary
2293 && out_section_offsets[shndx] == invalid_address))
2294 && sym.get_st_type() != elfcpp::STT_FILE
2295 && !lv.needs_output_dynsym_entry()
2296 && lv.may_be_discarded_from_output_symtab()
2297 && parameters->target().is_local_label_name(name))
2298 {
2299 lv.set_no_output_symtab_entry();
2300 continue;
2301 }
2302
2303 // Discard the local symbol if -retain_symbols_file is specified
2304 // and the local symbol is not in that file.
2305 if (!parameters->options().should_retain_symbol(name))
2306 {
2307 lv.set_no_output_symtab_entry();
2308 continue;
2309 }
2310
2311 // Add the symbol to the symbol table string pool.
2312 pool->add(name, true, NULL);
2313 ++count;
2314 }
2315
2316 this->output_local_symbol_count_ = count;
2317 this->output_local_dynsym_count_ = dyncount;
2318 }
2319
2320 // Compute the final value of a local symbol.
2321
2322 template<int size, bool big_endian>
2323 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2324 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2325 unsigned int r_sym,
2326 const Symbol_value<size>* lv_in,
2327 Symbol_value<size>* lv_out,
2328 bool relocatable,
2329 const Output_sections& out_sections,
2330 const std::vector<Address>& out_offsets,
2331 const Symbol_table* symtab)
2332 {
2333 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2334 // we may have a memory leak.
2335 gold_assert(lv_out->has_output_value());
2336
2337 bool is_ordinary;
2338 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2339
2340 // Set the output symbol value.
2341
2342 if (!is_ordinary)
2343 {
2344 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2345 lv_out->set_output_value(lv_in->input_value());
2346 else
2347 {
2348 this->error(_("unknown section index %u for local symbol %u"),
2349 shndx, r_sym);
2350 lv_out->set_output_value(0);
2351 return This::CFLV_ERROR;
2352 }
2353 }
2354 else
2355 {
2356 if (shndx >= this->shnum())
2357 {
2358 this->error(_("local symbol %u section index %u out of range"),
2359 r_sym, shndx);
2360 lv_out->set_output_value(0);
2361 return This::CFLV_ERROR;
2362 }
2363
2364 Output_section* os = out_sections[shndx];
2365 Address secoffset = out_offsets[shndx];
2366 if (symtab->is_section_folded(this, shndx))
2367 {
2368 gold_assert(os == NULL && secoffset == invalid_address);
2369 // Get the os of the section it is folded onto.
2370 Section_id folded = symtab->icf()->get_folded_section(this,
2371 shndx);
2372 gold_assert(folded.first != NULL);
2373 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2374 <Sized_relobj_file<size, big_endian>*>(folded.first);
2375 os = folded_obj->output_section(folded.second);
2376 gold_assert(os != NULL);
2377 secoffset = folded_obj->get_output_section_offset(folded.second);
2378
2379 // This could be a relaxed input section.
2380 if (secoffset == invalid_address)
2381 {
2382 const Output_relaxed_input_section* relaxed_section =
2383 os->find_relaxed_input_section(folded_obj, folded.second);
2384 gold_assert(relaxed_section != NULL);
2385 secoffset = relaxed_section->address() - os->address();
2386 }
2387 }
2388
2389 if (os == NULL)
2390 {
2391 // This local symbol belongs to a section we are discarding.
2392 // In some cases when applying relocations later, we will
2393 // attempt to match it to the corresponding kept section,
2394 // so we leave the input value unchanged here.
2395 return This::CFLV_DISCARDED;
2396 }
2397 else if (secoffset == invalid_address)
2398 {
2399 uint64_t start;
2400
2401 // This is a SHF_MERGE section or one which otherwise
2402 // requires special handling.
2403 if (os->order() == ORDER_EHFRAME)
2404 {
2405 // This local symbol belongs to a discarded or optimized
2406 // .eh_frame section. Just treat it like the case in which
2407 // os == NULL above.
2408 gold_assert(this->has_eh_frame_);
2409 return This::CFLV_DISCARDED;
2410 }
2411 else if (!lv_in->is_section_symbol())
2412 {
2413 // This is not a section symbol. We can determine
2414 // the final value now.
2415 uint64_t value =
2416 os->output_address(this, shndx, lv_in->input_value());
2417 if (relocatable)
2418 value -= os->address();
2419 lv_out->set_output_value(value);
2420 }
2421 else if (!os->find_starting_output_address(this, shndx, &start))
2422 {
2423 // This is a section symbol, but apparently not one in a
2424 // merged section. First check to see if this is a relaxed
2425 // input section. If so, use its address. Otherwise just
2426 // use the start of the output section. This happens with
2427 // relocatable links when the input object has section
2428 // symbols for arbitrary non-merge sections.
2429 const Output_section_data* posd =
2430 os->find_relaxed_input_section(this, shndx);
2431 if (posd != NULL)
2432 {
2433 uint64_t value = posd->address();
2434 if (relocatable)
2435 value -= os->address();
2436 lv_out->set_output_value(value);
2437 }
2438 else
2439 lv_out->set_output_value(os->address());
2440 }
2441 else
2442 {
2443 // We have to consider the addend to determine the
2444 // value to use in a relocation. START is the start
2445 // of this input section. If we are doing a relocatable
2446 // link, use offset from start output section instead of
2447 // address.
2448 Address adjusted_start =
2449 relocatable ? start - os->address() : start;
2450 Merged_symbol_value<size>* msv =
2451 new Merged_symbol_value<size>(lv_in->input_value(),
2452 adjusted_start);
2453 lv_out->set_merged_symbol_value(msv);
2454 }
2455 }
2456 else if (lv_in->is_tls_symbol()
2457 || (lv_in->is_section_symbol()
2458 && (os->flags() & elfcpp::SHF_TLS)))
2459 lv_out->set_output_value(os->tls_offset()
2460 + secoffset
2461 + lv_in->input_value());
2462 else
2463 lv_out->set_output_value((relocatable ? 0 : os->address())
2464 + secoffset
2465 + lv_in->input_value());
2466 }
2467 return This::CFLV_OK;
2468 }
2469
2470 // Compute final local symbol value. R_SYM is the index of a local
2471 // symbol in symbol table. LV points to a symbol value, which is
2472 // expected to hold the input value and to be over-written by the
2473 // final value. SYMTAB points to a symbol table. Some targets may want
2474 // to know would-be-finalized local symbol values in relaxation.
2475 // Hence we provide this method. Since this method updates *LV, a
2476 // callee should make a copy of the original local symbol value and
2477 // use the copy instead of modifying an object's local symbols before
2478 // everything is finalized. The caller should also free up any allocated
2479 // memory in the return value in *LV.
2480 template<int size, bool big_endian>
2481 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2482 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2483 unsigned int r_sym,
2484 const Symbol_value<size>* lv_in,
2485 Symbol_value<size>* lv_out,
2486 const Symbol_table* symtab)
2487 {
2488 // This is just a wrapper of compute_final_local_value_internal.
2489 const bool relocatable = parameters->options().relocatable();
2490 const Output_sections& out_sections(this->output_sections());
2491 const std::vector<Address>& out_offsets(this->section_offsets());
2492 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2493 relocatable, out_sections,
2494 out_offsets, symtab);
2495 }
2496
2497 // Finalize the local symbols. Here we set the final value in
2498 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2499 // This function is always called from a singleton thread. The actual
2500 // output of the local symbols will occur in a separate task.
2501
2502 template<int size, bool big_endian>
2503 unsigned int
2504 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2505 unsigned int index,
2506 off_t off,
2507 Symbol_table* symtab)
2508 {
2509 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2510
2511 const unsigned int loccount = this->local_symbol_count_;
2512 this->local_symbol_offset_ = off;
2513
2514 const bool relocatable = parameters->options().relocatable();
2515 const Output_sections& out_sections(this->output_sections());
2516 const std::vector<Address>& out_offsets(this->section_offsets());
2517
2518 for (unsigned int i = 1; i < loccount; ++i)
2519 {
2520 Symbol_value<size>* lv = &this->local_values_[i];
2521
2522 Compute_final_local_value_status cflv_status =
2523 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2524 out_sections, out_offsets,
2525 symtab);
2526 switch (cflv_status)
2527 {
2528 case CFLV_OK:
2529 if (!lv->is_output_symtab_index_set())
2530 {
2531 lv->set_output_symtab_index(index);
2532 ++index;
2533 }
2534 break;
2535 case CFLV_DISCARDED:
2536 case CFLV_ERROR:
2537 // Do nothing.
2538 break;
2539 default:
2540 gold_unreachable();
2541 }
2542 }
2543 return index;
2544 }
2545
2546 // Set the output dynamic symbol table indexes for the local variables.
2547
2548 template<int size, bool big_endian>
2549 unsigned int
2550 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2551 unsigned int index)
2552 {
2553 const unsigned int loccount = this->local_symbol_count_;
2554 for (unsigned int i = 1; i < loccount; ++i)
2555 {
2556 Symbol_value<size>& lv(this->local_values_[i]);
2557 if (lv.needs_output_dynsym_entry())
2558 {
2559 lv.set_output_dynsym_index(index);
2560 ++index;
2561 }
2562 }
2563 return index;
2564 }
2565
2566 // Set the offset where local dynamic symbol information will be stored.
2567 // Returns the count of local symbols contributed to the symbol table by
2568 // this object.
2569
2570 template<int size, bool big_endian>
2571 unsigned int
2572 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2573 {
2574 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2575 this->local_dynsym_offset_ = off;
2576 return this->output_local_dynsym_count_;
2577 }
2578
2579 // If Symbols_data is not NULL get the section flags from here otherwise
2580 // get it from the file.
2581
2582 template<int size, bool big_endian>
2583 uint64_t
2584 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2585 {
2586 Symbols_data* sd = this->get_symbols_data();
2587 if (sd != NULL)
2588 {
2589 const unsigned char* pshdrs = sd->section_headers_data
2590 + This::shdr_size * shndx;
2591 typename This::Shdr shdr(pshdrs);
2592 return shdr.get_sh_flags();
2593 }
2594 // If sd is NULL, read the section header from the file.
2595 return this->elf_file_.section_flags(shndx);
2596 }
2597
2598 // Get the section's ent size from Symbols_data. Called by get_section_contents
2599 // in icf.cc
2600
2601 template<int size, bool big_endian>
2602 uint64_t
2603 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2604 {
2605 Symbols_data* sd = this->get_symbols_data();
2606 gold_assert(sd != NULL);
2607
2608 const unsigned char* pshdrs = sd->section_headers_data
2609 + This::shdr_size * shndx;
2610 typename This::Shdr shdr(pshdrs);
2611 return shdr.get_sh_entsize();
2612 }
2613
2614 // Write out the local symbols.
2615
2616 template<int size, bool big_endian>
2617 void
2618 Sized_relobj_file<size, big_endian>::write_local_symbols(
2619 Output_file* of,
2620 const Stringpool* sympool,
2621 const Stringpool* dynpool,
2622 Output_symtab_xindex* symtab_xindex,
2623 Output_symtab_xindex* dynsym_xindex,
2624 off_t symtab_off)
2625 {
2626 const bool strip_all = parameters->options().strip_all();
2627 if (strip_all)
2628 {
2629 if (this->output_local_dynsym_count_ == 0)
2630 return;
2631 this->output_local_symbol_count_ = 0;
2632 }
2633
2634 gold_assert(this->symtab_shndx_ != -1U);
2635 if (this->symtab_shndx_ == 0)
2636 {
2637 // This object has no symbols. Weird but legal.
2638 return;
2639 }
2640
2641 // Read the symbol table section header.
2642 const unsigned int symtab_shndx = this->symtab_shndx_;
2643 typename This::Shdr symtabshdr(this,
2644 this->elf_file_.section_header(symtab_shndx));
2645 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2646 const unsigned int loccount = this->local_symbol_count_;
2647 gold_assert(loccount == symtabshdr.get_sh_info());
2648
2649 // Read the local symbols.
2650 const int sym_size = This::sym_size;
2651 off_t locsize = loccount * sym_size;
2652 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2653 locsize, true, false);
2654
2655 // Read the symbol names.
2656 const unsigned int strtab_shndx =
2657 this->adjust_shndx(symtabshdr.get_sh_link());
2658 section_size_type strtab_size;
2659 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2660 &strtab_size,
2661 false);
2662 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2663
2664 // Get views into the output file for the portions of the symbol table
2665 // and the dynamic symbol table that we will be writing.
2666 off_t output_size = this->output_local_symbol_count_ * sym_size;
2667 unsigned char* oview = NULL;
2668 if (output_size > 0)
2669 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2670 output_size);
2671
2672 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2673 unsigned char* dyn_oview = NULL;
2674 if (dyn_output_size > 0)
2675 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2676 dyn_output_size);
2677
2678 const Output_sections& out_sections(this->output_sections());
2679
2680 gold_assert(this->local_values_.size() == loccount);
2681
2682 unsigned char* ov = oview;
2683 unsigned char* dyn_ov = dyn_oview;
2684 psyms += sym_size;
2685 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2686 {
2687 elfcpp::Sym<size, big_endian> isym(psyms);
2688
2689 Symbol_value<size>& lv(this->local_values_[i]);
2690
2691 bool is_ordinary;
2692 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2693 &is_ordinary);
2694 if (is_ordinary)
2695 {
2696 gold_assert(st_shndx < out_sections.size());
2697 if (out_sections[st_shndx] == NULL)
2698 continue;
2699 st_shndx = out_sections[st_shndx]->out_shndx();
2700 if (st_shndx >= elfcpp::SHN_LORESERVE)
2701 {
2702 if (lv.has_output_symtab_entry())
2703 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2704 if (lv.has_output_dynsym_entry())
2705 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2706 st_shndx = elfcpp::SHN_XINDEX;
2707 }
2708 }
2709
2710 // Write the symbol to the output symbol table.
2711 if (lv.has_output_symtab_entry())
2712 {
2713 elfcpp::Sym_write<size, big_endian> osym(ov);
2714
2715 gold_assert(isym.get_st_name() < strtab_size);
2716 const char* name = pnames + isym.get_st_name();
2717 osym.put_st_name(sympool->get_offset(name));
2718 osym.put_st_value(lv.value(this, 0));
2719 osym.put_st_size(isym.get_st_size());
2720 osym.put_st_info(isym.get_st_info());
2721 osym.put_st_other(isym.get_st_other());
2722 osym.put_st_shndx(st_shndx);
2723
2724 ov += sym_size;
2725 }
2726
2727 // Write the symbol to the output dynamic symbol table.
2728 if (lv.has_output_dynsym_entry())
2729 {
2730 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2731 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2732
2733 gold_assert(isym.get_st_name() < strtab_size);
2734 const char* name = pnames + isym.get_st_name();
2735 osym.put_st_name(dynpool->get_offset(name));
2736 osym.put_st_value(lv.value(this, 0));
2737 osym.put_st_size(isym.get_st_size());
2738 osym.put_st_info(isym.get_st_info());
2739 osym.put_st_other(isym.get_st_other());
2740 osym.put_st_shndx(st_shndx);
2741
2742 dyn_ov += sym_size;
2743 }
2744 }
2745
2746
2747 if (output_size > 0)
2748 {
2749 gold_assert(ov - oview == output_size);
2750 of->write_output_view(symtab_off + this->local_symbol_offset_,
2751 output_size, oview);
2752 }
2753
2754 if (dyn_output_size > 0)
2755 {
2756 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2757 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2758 dyn_oview);
2759 }
2760 }
2761
2762 // Set *INFO to symbolic information about the offset OFFSET in the
2763 // section SHNDX. Return true if we found something, false if we
2764 // found nothing.
2765
2766 template<int size, bool big_endian>
2767 bool
2768 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2769 unsigned int shndx,
2770 off_t offset,
2771 Symbol_location_info* info)
2772 {
2773 if (this->symtab_shndx_ == 0)
2774 return false;
2775
2776 section_size_type symbols_size;
2777 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2778 &symbols_size,
2779 false);
2780
2781 unsigned int symbol_names_shndx =
2782 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2783 section_size_type names_size;
2784 const unsigned char* symbol_names_u =
2785 this->section_contents(symbol_names_shndx, &names_size, false);
2786 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2787
2788 const int sym_size = This::sym_size;
2789 const size_t count = symbols_size / sym_size;
2790
2791 const unsigned char* p = symbols;
2792 for (size_t i = 0; i < count; ++i, p += sym_size)
2793 {
2794 elfcpp::Sym<size, big_endian> sym(p);
2795
2796 if (sym.get_st_type() == elfcpp::STT_FILE)
2797 {
2798 if (sym.get_st_name() >= names_size)
2799 info->source_file = "(invalid)";
2800 else
2801 info->source_file = symbol_names + sym.get_st_name();
2802 continue;
2803 }
2804
2805 bool is_ordinary;
2806 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2807 &is_ordinary);
2808 if (is_ordinary
2809 && st_shndx == shndx
2810 && static_cast<off_t>(sym.get_st_value()) <= offset
2811 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2812 > offset))
2813 {
2814 info->enclosing_symbol_type = sym.get_st_type();
2815 if (sym.get_st_name() > names_size)
2816 info->enclosing_symbol_name = "(invalid)";
2817 else
2818 {
2819 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2820 if (parameters->options().do_demangle())
2821 {
2822 char* demangled_name = cplus_demangle(
2823 info->enclosing_symbol_name.c_str(),
2824 DMGL_ANSI | DMGL_PARAMS);
2825 if (demangled_name != NULL)
2826 {
2827 info->enclosing_symbol_name.assign(demangled_name);
2828 free(demangled_name);
2829 }
2830 }
2831 }
2832 return true;
2833 }
2834 }
2835
2836 return false;
2837 }
2838
2839 // Look for a kept section corresponding to the given discarded section,
2840 // and return its output address. This is used only for relocations in
2841 // debugging sections. If we can't find the kept section, return 0.
2842
2843 template<int size, bool big_endian>
2844 typename Sized_relobj_file<size, big_endian>::Address
2845 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2846 unsigned int shndx,
2847 bool* found) const
2848 {
2849 Relobj* kept_object;
2850 unsigned int kept_shndx;
2851 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2852 {
2853 Sized_relobj_file<size, big_endian>* kept_relobj =
2854 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2855 Output_section* os = kept_relobj->output_section(kept_shndx);
2856 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2857 if (os != NULL && offset != invalid_address)
2858 {
2859 *found = true;
2860 return os->address() + offset;
2861 }
2862 }
2863 *found = false;
2864 return 0;
2865 }
2866
2867 // Get symbol counts.
2868
2869 template<int size, bool big_endian>
2870 void
2871 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2872 const Symbol_table*,
2873 size_t* defined,
2874 size_t* used) const
2875 {
2876 *defined = this->defined_count_;
2877 size_t count = 0;
2878 for (typename Symbols::const_iterator p = this->symbols_.begin();
2879 p != this->symbols_.end();
2880 ++p)
2881 if (*p != NULL
2882 && (*p)->source() == Symbol::FROM_OBJECT
2883 && (*p)->object() == this
2884 && (*p)->is_defined())
2885 ++count;
2886 *used = count;
2887 }
2888
2889 // Return a view of the decompressed contents of a section. Set *PLEN
2890 // to the size. Set *IS_NEW to true if the contents need to be freed
2891 // by the caller.
2892
2893 const unsigned char*
2894 Object::decompressed_section_contents(
2895 unsigned int shndx,
2896 section_size_type* plen,
2897 bool* is_new)
2898 {
2899 section_size_type buffer_size;
2900 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2901 false);
2902
2903 if (this->compressed_sections_ == NULL)
2904 {
2905 *plen = buffer_size;
2906 *is_new = false;
2907 return buffer;
2908 }
2909
2910 Compressed_section_map::const_iterator p =
2911 this->compressed_sections_->find(shndx);
2912 if (p == this->compressed_sections_->end())
2913 {
2914 *plen = buffer_size;
2915 *is_new = false;
2916 return buffer;
2917 }
2918
2919 section_size_type uncompressed_size = p->second.size;
2920 if (p->second.contents != NULL)
2921 {
2922 *plen = uncompressed_size;
2923 *is_new = false;
2924 return p->second.contents;
2925 }
2926
2927 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2928 if (!decompress_input_section(buffer,
2929 buffer_size,
2930 uncompressed_data,
2931 uncompressed_size,
2932 elfsize(),
2933 is_big_endian(),
2934 p->second.flag))
2935 this->error(_("could not decompress section %s"),
2936 this->do_section_name(shndx).c_str());
2937
2938 // We could cache the results in p->second.contents and store
2939 // false in *IS_NEW, but build_compressed_section_map() would
2940 // have done so if it had expected it to be profitable. If
2941 // we reach this point, we expect to need the contents only
2942 // once in this pass.
2943 *plen = uncompressed_size;
2944 *is_new = true;
2945 return uncompressed_data;
2946 }
2947
2948 // Discard any buffers of uncompressed sections. This is done
2949 // at the end of the Add_symbols task.
2950
2951 void
2952 Object::discard_decompressed_sections()
2953 {
2954 if (this->compressed_sections_ == NULL)
2955 return;
2956
2957 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2958 p != this->compressed_sections_->end();
2959 ++p)
2960 {
2961 if (p->second.contents != NULL)
2962 {
2963 delete[] p->second.contents;
2964 p->second.contents = NULL;
2965 }
2966 }
2967 }
2968
2969 // Input_objects methods.
2970
2971 // Add a regular relocatable object to the list. Return false if this
2972 // object should be ignored.
2973
2974 bool
2975 Input_objects::add_object(Object* obj)
2976 {
2977 // Print the filename if the -t/--trace option is selected.
2978 if (parameters->options().trace())
2979 gold_info("%s", obj->name().c_str());
2980
2981 if (!obj->is_dynamic())
2982 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2983 else
2984 {
2985 // See if this is a duplicate SONAME.
2986 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2987 const char* soname = dynobj->soname();
2988
2989 Unordered_map<std::string, Object*>::value_type val(soname, obj);
2990 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
2991 this->sonames_.insert(val);
2992 if (!ins.second)
2993 {
2994 // We have already seen a dynamic object with this soname.
2995 // If any instances of this object on the command line have
2996 // the --no-as-needed flag, make sure the one we keep is
2997 // marked so.
2998 if (!obj->as_needed())
2999 {
3000 gold_assert(ins.first->second != NULL);
3001 ins.first->second->clear_as_needed();
3002 }
3003 return false;
3004 }
3005
3006 this->dynobj_list_.push_back(dynobj);
3007 }
3008
3009 // Add this object to the cross-referencer if requested.
3010 if (parameters->options().user_set_print_symbol_counts()
3011 || parameters->options().cref())
3012 {
3013 if (this->cref_ == NULL)
3014 this->cref_ = new Cref();
3015 this->cref_->add_object(obj);
3016 }
3017
3018 return true;
3019 }
3020
3021 // For each dynamic object, record whether we've seen all of its
3022 // explicit dependencies.
3023
3024 void
3025 Input_objects::check_dynamic_dependencies() const
3026 {
3027 bool issued_copy_dt_needed_error = false;
3028 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3029 p != this->dynobj_list_.end();
3030 ++p)
3031 {
3032 const Dynobj::Needed& needed((*p)->needed());
3033 bool found_all = true;
3034 Dynobj::Needed::const_iterator pneeded;
3035 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3036 {
3037 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3038 {
3039 found_all = false;
3040 break;
3041 }
3042 }
3043 (*p)->set_has_unknown_needed_entries(!found_all);
3044
3045 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3046 // that gold does not support. However, they cause no trouble
3047 // unless there is a DT_NEEDED entry that we don't know about;
3048 // warn only in that case.
3049 if (!found_all
3050 && !issued_copy_dt_needed_error
3051 && (parameters->options().copy_dt_needed_entries()
3052 || parameters->options().add_needed()))
3053 {
3054 const char* optname;
3055 if (parameters->options().copy_dt_needed_entries())
3056 optname = "--copy-dt-needed-entries";
3057 else
3058 optname = "--add-needed";
3059 gold_error(_("%s is not supported but is required for %s in %s"),
3060 optname, (*pneeded).c_str(), (*p)->name().c_str());
3061 issued_copy_dt_needed_error = true;
3062 }
3063 }
3064 }
3065
3066 // Start processing an archive.
3067
3068 void
3069 Input_objects::archive_start(Archive* archive)
3070 {
3071 if (parameters->options().user_set_print_symbol_counts()
3072 || parameters->options().cref())
3073 {
3074 if (this->cref_ == NULL)
3075 this->cref_ = new Cref();
3076 this->cref_->add_archive_start(archive);
3077 }
3078 }
3079
3080 // Stop processing an archive.
3081
3082 void
3083 Input_objects::archive_stop(Archive* archive)
3084 {
3085 if (parameters->options().user_set_print_symbol_counts()
3086 || parameters->options().cref())
3087 this->cref_->add_archive_stop(archive);
3088 }
3089
3090 // Print symbol counts
3091
3092 void
3093 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3094 {
3095 if (parameters->options().user_set_print_symbol_counts()
3096 && this->cref_ != NULL)
3097 this->cref_->print_symbol_counts(symtab);
3098 }
3099
3100 // Print a cross reference table.
3101
3102 void
3103 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3104 {
3105 if (parameters->options().cref() && this->cref_ != NULL)
3106 this->cref_->print_cref(symtab, f);
3107 }
3108
3109 // Relocate_info methods.
3110
3111 // Return a string describing the location of a relocation when file
3112 // and lineno information is not available. This is only used in
3113 // error messages.
3114
3115 template<int size, bool big_endian>
3116 std::string
3117 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3118 {
3119 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3120 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3121 if (!ret.empty())
3122 return ret;
3123
3124 ret = this->object->name();
3125
3126 Symbol_location_info info;
3127 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3128 {
3129 if (!info.source_file.empty())
3130 {
3131 ret += ":";
3132 ret += info.source_file;
3133 }
3134 ret += ":";
3135 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3136 ret += _("function ");
3137 ret += info.enclosing_symbol_name;
3138 return ret;
3139 }
3140
3141 ret += "(";
3142 ret += this->object->section_name(this->data_shndx);
3143 char buf[100];
3144 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3145 ret += buf;
3146 return ret;
3147 }
3148
3149 } // End namespace gold.
3150
3151 namespace
3152 {
3153
3154 using namespace gold;
3155
3156 // Read an ELF file with the header and return the appropriate
3157 // instance of Object.
3158
3159 template<int size, bool big_endian>
3160 Object*
3161 make_elf_sized_object(const std::string& name, Input_file* input_file,
3162 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3163 bool* punconfigured)
3164 {
3165 Target* target = select_target(input_file, offset,
3166 ehdr.get_e_machine(), size, big_endian,
3167 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3168 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3169 if (target == NULL)
3170 gold_fatal(_("%s: unsupported ELF machine number %d"),
3171 name.c_str(), ehdr.get_e_machine());
3172
3173 if (!parameters->target_valid())
3174 set_parameters_target(target);
3175 else if (target != &parameters->target())
3176 {
3177 if (punconfigured != NULL)
3178 *punconfigured = true;
3179 else
3180 gold_error(_("%s: incompatible target"), name.c_str());
3181 return NULL;
3182 }
3183
3184 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3185 ehdr);
3186 }
3187
3188 } // End anonymous namespace.
3189
3190 namespace gold
3191 {
3192
3193 // Return whether INPUT_FILE is an ELF object.
3194
3195 bool
3196 is_elf_object(Input_file* input_file, off_t offset,
3197 const unsigned char** start, int* read_size)
3198 {
3199 off_t filesize = input_file->file().filesize();
3200 int want = elfcpp::Elf_recognizer::max_header_size;
3201 if (filesize - offset < want)
3202 want = filesize - offset;
3203
3204 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3205 true, false);
3206 *start = p;
3207 *read_size = want;
3208
3209 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3210 }
3211
3212 // Read an ELF file and return the appropriate instance of Object.
3213
3214 Object*
3215 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3216 const unsigned char* p, section_offset_type bytes,
3217 bool* punconfigured)
3218 {
3219 if (punconfigured != NULL)
3220 *punconfigured = false;
3221
3222 std::string error;
3223 bool big_endian = false;
3224 int size = 0;
3225 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3226 &big_endian, &error))
3227 {
3228 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3229 return NULL;
3230 }
3231
3232 if (size == 32)
3233 {
3234 if (big_endian)
3235 {
3236 #ifdef HAVE_TARGET_32_BIG
3237 elfcpp::Ehdr<32, true> ehdr(p);
3238 return make_elf_sized_object<32, true>(name, input_file,
3239 offset, ehdr, punconfigured);
3240 #else
3241 if (punconfigured != NULL)
3242 *punconfigured = true;
3243 else
3244 gold_error(_("%s: not configured to support "
3245 "32-bit big-endian object"),
3246 name.c_str());
3247 return NULL;
3248 #endif
3249 }
3250 else
3251 {
3252 #ifdef HAVE_TARGET_32_LITTLE
3253 elfcpp::Ehdr<32, false> ehdr(p);
3254 return make_elf_sized_object<32, false>(name, input_file,
3255 offset, ehdr, punconfigured);
3256 #else
3257 if (punconfigured != NULL)
3258 *punconfigured = true;
3259 else
3260 gold_error(_("%s: not configured to support "
3261 "32-bit little-endian object"),
3262 name.c_str());
3263 return NULL;
3264 #endif
3265 }
3266 }
3267 else if (size == 64)
3268 {
3269 if (big_endian)
3270 {
3271 #ifdef HAVE_TARGET_64_BIG
3272 elfcpp::Ehdr<64, true> ehdr(p);
3273 return make_elf_sized_object<64, true>(name, input_file,
3274 offset, ehdr, punconfigured);
3275 #else
3276 if (punconfigured != NULL)
3277 *punconfigured = true;
3278 else
3279 gold_error(_("%s: not configured to support "
3280 "64-bit big-endian object"),
3281 name.c_str());
3282 return NULL;
3283 #endif
3284 }
3285 else
3286 {
3287 #ifdef HAVE_TARGET_64_LITTLE
3288 elfcpp::Ehdr<64, false> ehdr(p);
3289 return make_elf_sized_object<64, false>(name, input_file,
3290 offset, ehdr, punconfigured);
3291 #else
3292 if (punconfigured != NULL)
3293 *punconfigured = true;
3294 else
3295 gold_error(_("%s: not configured to support "
3296 "64-bit little-endian object"),
3297 name.c_str());
3298 return NULL;
3299 #endif
3300 }
3301 }
3302 else
3303 gold_unreachable();
3304 }
3305
3306 // Instantiate the templates we need.
3307
3308 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3309 template
3310 void
3311 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3312 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3313 Unordered_map<section_offset_type,
3314 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3315 #endif
3316
3317 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3318 template
3319 void
3320 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3321 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3322 Unordered_map<section_offset_type,
3323 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3324 #endif
3325
3326 #ifdef HAVE_TARGET_32_LITTLE
3327 template
3328 void
3329 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3330 Read_symbols_data*);
3331 template
3332 const unsigned char*
3333 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3334 section_size_type, const unsigned char*) const;
3335 #endif
3336
3337 #ifdef HAVE_TARGET_32_BIG
3338 template
3339 void
3340 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3341 Read_symbols_data*);
3342 template
3343 const unsigned char*
3344 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3345 section_size_type, const unsigned char*) const;
3346 #endif
3347
3348 #ifdef HAVE_TARGET_64_LITTLE
3349 template
3350 void
3351 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3352 Read_symbols_data*);
3353 template
3354 const unsigned char*
3355 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3356 section_size_type, const unsigned char*) const;
3357 #endif
3358
3359 #ifdef HAVE_TARGET_64_BIG
3360 template
3361 void
3362 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3363 Read_symbols_data*);
3364 template
3365 const unsigned char*
3366 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3367 section_size_type, const unsigned char*) const;
3368 #endif
3369
3370 #ifdef HAVE_TARGET_32_LITTLE
3371 template
3372 class Sized_relobj<32, false>;
3373
3374 template
3375 class Sized_relobj_file<32, false>;
3376 #endif
3377
3378 #ifdef HAVE_TARGET_32_BIG
3379 template
3380 class Sized_relobj<32, true>;
3381
3382 template
3383 class Sized_relobj_file<32, true>;
3384 #endif
3385
3386 #ifdef HAVE_TARGET_64_LITTLE
3387 template
3388 class Sized_relobj<64, false>;
3389
3390 template
3391 class Sized_relobj_file<64, false>;
3392 #endif
3393
3394 #ifdef HAVE_TARGET_64_BIG
3395 template
3396 class Sized_relobj<64, true>;
3397
3398 template
3399 class Sized_relobj_file<64, true>;
3400 #endif
3401
3402 #ifdef HAVE_TARGET_32_LITTLE
3403 template
3404 struct Relocate_info<32, false>;
3405 #endif
3406
3407 #ifdef HAVE_TARGET_32_BIG
3408 template
3409 struct Relocate_info<32, true>;
3410 #endif
3411
3412 #ifdef HAVE_TARGET_64_LITTLE
3413 template
3414 struct Relocate_info<64, false>;
3415 #endif
3416
3417 #ifdef HAVE_TARGET_64_BIG
3418 template
3419 struct Relocate_info<64, true>;
3420 #endif
3421
3422 #ifdef HAVE_TARGET_32_LITTLE
3423 template
3424 void
3425 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3426
3427 template
3428 void
3429 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3430 const unsigned char*);
3431 #endif
3432
3433 #ifdef HAVE_TARGET_32_BIG
3434 template
3435 void
3436 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3437
3438 template
3439 void
3440 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3441 const unsigned char*);
3442 #endif
3443
3444 #ifdef HAVE_TARGET_64_LITTLE
3445 template
3446 void
3447 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3448
3449 template
3450 void
3451 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3452 const unsigned char*);
3453 #endif
3454
3455 #ifdef HAVE_TARGET_64_BIG
3456 template
3457 void
3458 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3459
3460 template
3461 void
3462 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3463 const unsigned char*);
3464 #endif
3465
3466 #ifdef HAVE_TARGET_32_LITTLE
3467 template
3468 Compressed_section_map*
3469 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3470 const char*, section_size_type,
3471 Object*, bool);
3472 #endif
3473
3474 #ifdef HAVE_TARGET_32_BIG
3475 template
3476 Compressed_section_map*
3477 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3478 const char*, section_size_type,
3479 Object*, bool);
3480 #endif
3481
3482 #ifdef HAVE_TARGET_64_LITTLE
3483 template
3484 Compressed_section_map*
3485 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3486 const char*, section_size_type,
3487 Object*, bool);
3488 #endif
3489
3490 #ifdef HAVE_TARGET_64_BIG
3491 template
3492 Compressed_section_map*
3493 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3494 const char*, section_size_type,
3495 Object*, bool);
3496 #endif
3497
3498 } // End namespace gold.
This page took 0.103137 seconds and 5 git commands to generate.