Support .gnu.lto_.lto section in ELF files (PR 24768).
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2019 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_entry_key key(i, 0);
431 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
432 if (p != this->local_got_offsets_.end())
433 {
434 const Got_offset_list* got_offsets = p->second;
435 got_offsets->for_all_got_offsets(v);
436 }
437 }
438 }
439
440 // Get the address of an output section.
441
442 template<int size, bool big_endian>
443 uint64_t
444 Sized_relobj<size, big_endian>::do_output_section_address(
445 unsigned int shndx)
446 {
447 // If the input file is linked as --just-symbols, the output
448 // section address is the input section address.
449 if (this->just_symbols())
450 return this->section_address(shndx);
451
452 const Output_section* os = this->do_output_section(shndx);
453 gold_assert(os != NULL);
454 return os->address();
455 }
456
457 // Class Sized_relobj_file.
458
459 template<int size, bool big_endian>
460 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
461 const std::string& name,
462 Input_file* input_file,
463 off_t offset,
464 const elfcpp::Ehdr<size, big_endian>& ehdr)
465 : Sized_relobj<size, big_endian>(name, input_file, offset),
466 elf_file_(this, ehdr),
467 symtab_shndx_(-1U),
468 local_symbol_count_(0),
469 output_local_symbol_count_(0),
470 output_local_dynsym_count_(0),
471 symbols_(),
472 defined_count_(0),
473 local_symbol_offset_(0),
474 local_dynsym_offset_(0),
475 local_values_(),
476 local_plt_offsets_(),
477 kept_comdat_sections_(),
478 has_eh_frame_(false),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_(),
482 output_views_(NULL)
483 {
484 this->e_type_ = ehdr.get_e_type();
485 }
486
487 template<int size, bool big_endian>
488 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
489 {
490 }
491
492 // Set up an object file based on the file header. This sets up the
493 // section information.
494
495 template<int size, bool big_endian>
496 void
497 Sized_relobj_file<size, big_endian>::do_setup()
498 {
499 const unsigned int shnum = this->elf_file_.shnum();
500 this->set_shnum(shnum);
501 }
502
503 // Find the SHT_SYMTAB section, given the section headers. The ELF
504 // standard says that maybe in the future there can be more than one
505 // SHT_SYMTAB section. Until somebody figures out how that could
506 // work, we assume there is only one.
507
508 template<int size, bool big_endian>
509 void
510 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
511 {
512 const unsigned int shnum = this->shnum();
513 this->symtab_shndx_ = 0;
514 if (shnum > 0)
515 {
516 // Look through the sections in reverse order, since gas tends
517 // to put the symbol table at the end.
518 const unsigned char* p = pshdrs + shnum * This::shdr_size;
519 unsigned int i = shnum;
520 unsigned int xindex_shndx = 0;
521 unsigned int xindex_link = 0;
522 while (i > 0)
523 {
524 --i;
525 p -= This::shdr_size;
526 typename This::Shdr shdr(p);
527 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
528 {
529 this->symtab_shndx_ = i;
530 if (xindex_shndx > 0 && xindex_link == i)
531 {
532 Xindex* xindex =
533 new Xindex(this->elf_file_.large_shndx_offset());
534 xindex->read_symtab_xindex<size, big_endian>(this,
535 xindex_shndx,
536 pshdrs);
537 this->set_xindex(xindex);
538 }
539 break;
540 }
541
542 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
543 // one. This will work if it follows the SHT_SYMTAB
544 // section.
545 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
546 {
547 xindex_shndx = i;
548 xindex_link = this->adjust_shndx(shdr.get_sh_link());
549 }
550 }
551 }
552 }
553
554 // Return the Xindex structure to use for object with lots of
555 // sections.
556
557 template<int size, bool big_endian>
558 Xindex*
559 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
560 {
561 gold_assert(this->symtab_shndx_ != -1U);
562 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
563 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
564 return xindex;
565 }
566
567 // Return whether SHDR has the right type and flags to be a GNU
568 // .eh_frame section.
569
570 template<int size, bool big_endian>
571 bool
572 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
573 const elfcpp::Shdr<size, big_endian>* shdr) const
574 {
575 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
576 return ((sh_type == elfcpp::SHT_PROGBITS
577 || sh_type == parameters->target().unwind_section_type())
578 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
579 }
580
581 // Find the section header with the given name.
582
583 template<int size, bool big_endian>
584 const unsigned char*
585 Object::find_shdr(
586 const unsigned char* pshdrs,
587 const char* name,
588 const char* names,
589 section_size_type names_size,
590 const unsigned char* hdr) const
591 {
592 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
593 const unsigned int shnum = this->shnum();
594 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
595 size_t sh_name = 0;
596
597 while (1)
598 {
599 if (hdr)
600 {
601 // We found HDR last time we were called, continue looking.
602 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
603 sh_name = shdr.get_sh_name();
604 }
605 else
606 {
607 // Look for the next occurrence of NAME in NAMES.
608 // The fact that .shstrtab produced by current GNU tools is
609 // string merged means we shouldn't have both .not.foo and
610 // .foo in .shstrtab, and multiple .foo sections should all
611 // have the same sh_name. However, this is not guaranteed
612 // by the ELF spec and not all ELF object file producers may
613 // be so clever.
614 size_t len = strlen(name) + 1;
615 const char *p = sh_name ? names + sh_name + len : names;
616 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
617 name, len));
618 if (p == NULL)
619 return NULL;
620 sh_name = p - names;
621 hdr = pshdrs;
622 if (sh_name == 0)
623 return hdr;
624 }
625
626 hdr += shdr_size;
627 while (hdr < hdr_end)
628 {
629 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
630 if (shdr.get_sh_name() == sh_name)
631 return hdr;
632 hdr += shdr_size;
633 }
634 hdr = NULL;
635 if (sh_name == 0)
636 return hdr;
637 }
638 }
639
640 // Return whether there is a GNU .eh_frame section, given the section
641 // headers and the section names.
642
643 template<int size, bool big_endian>
644 bool
645 Sized_relobj_file<size, big_endian>::find_eh_frame(
646 const unsigned char* pshdrs,
647 const char* names,
648 section_size_type names_size) const
649 {
650 const unsigned char* s = NULL;
651
652 while (1)
653 {
654 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
655 names, names_size, s);
656 if (s == NULL)
657 return false;
658
659 typename This::Shdr shdr(s);
660 if (this->check_eh_frame_flags(&shdr))
661 return true;
662 }
663 }
664
665 // Return TRUE if this is a section whose contents will be needed in the
666 // Add_symbols task. This function is only called for sections that have
667 // already passed the test in is_compressed_debug_section() and the debug
668 // section name prefix, ".debug"/".zdebug", has been skipped.
669
670 static bool
671 need_decompressed_section(const char* name)
672 {
673 if (*name++ != '_')
674 return false;
675
676 #ifdef ENABLE_THREADS
677 // Decompressing these sections now will help only if we're
678 // multithreaded.
679 if (parameters->options().threads())
680 {
681 // We will need .zdebug_str if this is not an incremental link
682 // (i.e., we are processing string merge sections) or if we need
683 // to build a gdb index.
684 if ((!parameters->incremental() || parameters->options().gdb_index())
685 && strcmp(name, "str") == 0)
686 return true;
687
688 // We will need these other sections when building a gdb index.
689 if (parameters->options().gdb_index()
690 && (strcmp(name, "info") == 0
691 || strcmp(name, "types") == 0
692 || strcmp(name, "pubnames") == 0
693 || strcmp(name, "pubtypes") == 0
694 || strcmp(name, "ranges") == 0
695 || strcmp(name, "abbrev") == 0))
696 return true;
697 }
698 #endif
699
700 // Even when single-threaded, we will need .zdebug_str if this is
701 // not an incremental link and we are building a gdb index.
702 // Otherwise, we would decompress the section twice: once for
703 // string merge processing, and once for building the gdb index.
704 if (!parameters->incremental()
705 && parameters->options().gdb_index()
706 && strcmp(name, "str") == 0)
707 return true;
708
709 return false;
710 }
711
712 // Build a table for any compressed debug sections, mapping each section index
713 // to the uncompressed size and (if needed) the decompressed contents.
714
715 template<int size, bool big_endian>
716 Compressed_section_map*
717 build_compressed_section_map(
718 const unsigned char* pshdrs,
719 unsigned int shnum,
720 const char* names,
721 section_size_type names_size,
722 Object* obj,
723 bool decompress_if_needed)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 bool is_compressed = ((shdr.get_sh_flags()
744 & elfcpp::SHF_COMPRESSED) != 0);
745 bool is_zcompressed = (!is_compressed
746 && is_compressed_debug_section(name));
747
748 if (is_zcompressed || is_compressed)
749 {
750 section_size_type len;
751 const unsigned char* contents =
752 obj->section_contents(i, &len, false);
753 uint64_t uncompressed_size;
754 Compressed_section_info info;
755 if (is_zcompressed)
756 {
757 // Skip over the ".zdebug" prefix.
758 name += 7;
759 uncompressed_size = get_uncompressed_size(contents, len);
760 info.addralign = shdr.get_sh_addralign();
761 }
762 else
763 {
764 // Skip over the ".debug" prefix.
765 name += 6;
766 elfcpp::Chdr<size, big_endian> chdr(contents);
767 uncompressed_size = chdr.get_ch_size();
768 info.addralign = chdr.get_ch_addralign();
769 }
770 info.size = convert_to_section_size_type(uncompressed_size);
771 info.flag = shdr.get_sh_flags();
772 info.contents = NULL;
773 if (uncompressed_size != -1ULL)
774 {
775 unsigned char* uncompressed_data = NULL;
776 if (decompress_if_needed && need_decompressed_section(name))
777 {
778 uncompressed_data = new unsigned char[uncompressed_size];
779 if (decompress_input_section(contents, len,
780 uncompressed_data,
781 uncompressed_size,
782 size, big_endian,
783 shdr.get_sh_flags()))
784 info.contents = uncompressed_data;
785 else
786 delete[] uncompressed_data;
787 }
788 (*uncompressed_map)[i] = info;
789 }
790 }
791 }
792 }
793 return uncompressed_map;
794 }
795
796 // Stash away info for a number of special sections.
797 // Return true if any of the sections found require local symbols to be read.
798
799 template<int size, bool big_endian>
800 bool
801 Sized_relobj_file<size, big_endian>::do_find_special_sections(
802 Read_symbols_data* sd)
803 {
804 const unsigned char* const pshdrs = sd->section_headers->data();
805 const unsigned char* namesu = sd->section_names->data();
806 const char* names = reinterpret_cast<const char*>(namesu);
807
808 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
809 this->has_eh_frame_ = true;
810
811 Compressed_section_map* compressed_sections =
812 build_compressed_section_map<size, big_endian>(
813 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
814 if (compressed_sections != NULL)
815 this->set_compressed_sections(compressed_sections);
816
817 return (this->has_eh_frame_
818 || (!parameters->options().relocatable()
819 && parameters->options().gdb_index()
820 && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
821 || memmem(names, sd->section_names_size,
822 "debug_types", 12) != NULL)));
823 }
824
825 // Read the sections and symbols from an object file.
826
827 template<int size, bool big_endian>
828 void
829 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
830 {
831 this->base_read_symbols(sd);
832 }
833
834 // Read the sections and symbols from an object file. This is common
835 // code for all target-specific overrides of do_read_symbols().
836
837 template<int size, bool big_endian>
838 void
839 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
840 {
841 this->read_section_data(&this->elf_file_, sd);
842
843 const unsigned char* const pshdrs = sd->section_headers->data();
844
845 this->find_symtab(pshdrs);
846
847 bool need_local_symbols = this->do_find_special_sections(sd);
848
849 sd->symbols = NULL;
850 sd->symbols_size = 0;
851 sd->external_symbols_offset = 0;
852 sd->symbol_names = NULL;
853 sd->symbol_names_size = 0;
854
855 if (this->symtab_shndx_ == 0)
856 {
857 // No symbol table. Weird but legal.
858 return;
859 }
860
861 // Get the symbol table section header.
862 typename This::Shdr symtabshdr(pshdrs
863 + this->symtab_shndx_ * This::shdr_size);
864 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
865
866 // If this object has a .eh_frame section, or if building a .gdb_index
867 // section and there is debug info, we need all the symbols.
868 // Otherwise we only need the external symbols. While it would be
869 // simpler to just always read all the symbols, I've seen object
870 // files with well over 2000 local symbols, which for a 64-bit
871 // object file format is over 5 pages that we don't need to read
872 // now.
873
874 const int sym_size = This::sym_size;
875 const unsigned int loccount = symtabshdr.get_sh_info();
876 this->local_symbol_count_ = loccount;
877 this->local_values_.resize(loccount);
878 section_offset_type locsize = loccount * sym_size;
879 off_t dataoff = symtabshdr.get_sh_offset();
880 section_size_type datasize =
881 convert_to_section_size_type(symtabshdr.get_sh_size());
882 off_t extoff = dataoff + locsize;
883 section_size_type extsize = datasize - locsize;
884
885 off_t readoff = need_local_symbols ? dataoff : extoff;
886 section_size_type readsize = need_local_symbols ? datasize : extsize;
887
888 if (readsize == 0)
889 {
890 // No external symbols. Also weird but also legal.
891 return;
892 }
893
894 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
895
896 // Read the section header for the symbol names.
897 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
898 if (strtab_shndx >= this->shnum())
899 {
900 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
901 return;
902 }
903 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
904 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
905 {
906 this->error(_("symbol table name section has wrong type: %u"),
907 static_cast<unsigned int>(strtabshdr.get_sh_type()));
908 return;
909 }
910
911 // Read the symbol names.
912 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
913 strtabshdr.get_sh_size(),
914 false, true);
915
916 sd->symbols = fvsymtab;
917 sd->symbols_size = readsize;
918 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
919 sd->symbol_names = fvstrtab;
920 sd->symbol_names_size =
921 convert_to_section_size_type(strtabshdr.get_sh_size());
922 }
923
924 // Return the section index of symbol SYM. Set *VALUE to its value in
925 // the object file. Set *IS_ORDINARY if this is an ordinary section
926 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
927 // Note that for a symbol which is not defined in this object file,
928 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
929 // the final value of the symbol in the link.
930
931 template<int size, bool big_endian>
932 unsigned int
933 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
934 Address* value,
935 bool* is_ordinary)
936 {
937 section_size_type symbols_size;
938 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
939 &symbols_size,
940 false);
941
942 const size_t count = symbols_size / This::sym_size;
943 gold_assert(sym < count);
944
945 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
946 *value = elfsym.get_st_value();
947
948 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
949 }
950
951 // Return whether to include a section group in the link. LAYOUT is
952 // used to keep track of which section groups we have already seen.
953 // INDEX is the index of the section group and SHDR is the section
954 // header. If we do not want to include this group, we set bits in
955 // OMIT for each section which should be discarded.
956
957 template<int size, bool big_endian>
958 bool
959 Sized_relobj_file<size, big_endian>::include_section_group(
960 Symbol_table* symtab,
961 Layout* layout,
962 unsigned int index,
963 const char* name,
964 const unsigned char* shdrs,
965 const char* section_names,
966 section_size_type section_names_size,
967 std::vector<bool>* omit)
968 {
969 // Read the section contents.
970 typename This::Shdr shdr(shdrs + index * This::shdr_size);
971 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
972 shdr.get_sh_size(), true, false);
973 const elfcpp::Elf_Word* pword =
974 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
975
976 // The first word contains flags. We only care about COMDAT section
977 // groups. Other section groups are always included in the link
978 // just like ordinary sections.
979 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
980
981 // Look up the group signature, which is the name of a symbol. ELF
982 // uses a symbol name because some group signatures are long, and
983 // the name is generally already in the symbol table, so it makes
984 // sense to put the long string just once in .strtab rather than in
985 // both .strtab and .shstrtab.
986
987 // Get the appropriate symbol table header (this will normally be
988 // the single SHT_SYMTAB section, but in principle it need not be).
989 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
990 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
991
992 // Read the symbol table entry.
993 unsigned int symndx = shdr.get_sh_info();
994 if (symndx >= symshdr.get_sh_size() / This::sym_size)
995 {
996 this->error(_("section group %u info %u out of range"),
997 index, symndx);
998 return false;
999 }
1000 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
1001 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
1002 false);
1003 elfcpp::Sym<size, big_endian> sym(psym);
1004
1005 // Read the symbol table names.
1006 section_size_type symnamelen;
1007 const unsigned char* psymnamesu;
1008 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
1009 &symnamelen, true);
1010 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
1011
1012 // Get the section group signature.
1013 if (sym.get_st_name() >= symnamelen)
1014 {
1015 this->error(_("symbol %u name offset %u out of range"),
1016 symndx, sym.get_st_name());
1017 return false;
1018 }
1019
1020 std::string signature(psymnames + sym.get_st_name());
1021
1022 // It seems that some versions of gas will create a section group
1023 // associated with a section symbol, and then fail to give a name to
1024 // the section symbol. In such a case, use the name of the section.
1025 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1026 {
1027 bool is_ordinary;
1028 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1029 sym.get_st_shndx(),
1030 &is_ordinary);
1031 if (!is_ordinary || sym_shndx >= this->shnum())
1032 {
1033 this->error(_("symbol %u invalid section index %u"),
1034 symndx, sym_shndx);
1035 return false;
1036 }
1037 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1038 if (member_shdr.get_sh_name() < section_names_size)
1039 signature = section_names + member_shdr.get_sh_name();
1040 }
1041
1042 // Record this section group in the layout, and see whether we've already
1043 // seen one with the same signature.
1044 bool include_group;
1045 bool is_comdat;
1046 Kept_section* kept_section = NULL;
1047
1048 if ((flags & elfcpp::GRP_COMDAT) == 0)
1049 {
1050 include_group = true;
1051 is_comdat = false;
1052 }
1053 else
1054 {
1055 include_group = layout->find_or_add_kept_section(signature,
1056 this, index, true,
1057 true, &kept_section);
1058 is_comdat = true;
1059 }
1060
1061 if (is_comdat && include_group)
1062 {
1063 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1064 if (incremental_inputs != NULL)
1065 incremental_inputs->report_comdat_group(this, signature.c_str());
1066 }
1067
1068 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1069
1070 std::vector<unsigned int> shndxes;
1071 bool relocate_group = include_group && parameters->options().relocatable();
1072 if (relocate_group)
1073 shndxes.reserve(count - 1);
1074
1075 for (size_t i = 1; i < count; ++i)
1076 {
1077 elfcpp::Elf_Word shndx =
1078 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1079
1080 if (relocate_group)
1081 shndxes.push_back(shndx);
1082
1083 if (shndx >= this->shnum())
1084 {
1085 this->error(_("section %u in section group %u out of range"),
1086 shndx, index);
1087 continue;
1088 }
1089
1090 // Check for an earlier section number, since we're going to get
1091 // it wrong--we may have already decided to include the section.
1092 if (shndx < index)
1093 this->error(_("invalid section group %u refers to earlier section %u"),
1094 index, shndx);
1095
1096 // Get the name of the member section.
1097 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1098 if (member_shdr.get_sh_name() >= section_names_size)
1099 {
1100 // This is an error, but it will be diagnosed eventually
1101 // in do_layout, so we don't need to do anything here but
1102 // ignore it.
1103 continue;
1104 }
1105 std::string mname(section_names + member_shdr.get_sh_name());
1106
1107 if (include_group)
1108 {
1109 if (is_comdat)
1110 kept_section->add_comdat_section(mname, shndx,
1111 member_shdr.get_sh_size());
1112 }
1113 else
1114 {
1115 (*omit)[shndx] = true;
1116
1117 // Store a mapping from this section to the Kept_section
1118 // information for the group. This mapping is used for
1119 // relocation processing and diagnostics.
1120 // If the kept section is a linkonce section, we don't
1121 // bother with it unless the comdat group contains just
1122 // a single section, making it easy to match up.
1123 if (is_comdat
1124 && (kept_section->is_comdat() || count == 2))
1125 this->set_kept_comdat_section(shndx, true, symndx,
1126 member_shdr.get_sh_size(),
1127 kept_section);
1128 }
1129 }
1130
1131 if (relocate_group)
1132 layout->layout_group(symtab, this, index, name, signature.c_str(),
1133 shdr, flags, &shndxes);
1134
1135 return include_group;
1136 }
1137
1138 // Whether to include a linkonce section in the link. NAME is the
1139 // name of the section and SHDR is the section header.
1140
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined. The semantics are
1143 // that we only include one linkonce section with a given name. The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature. We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature. We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152
1153 template<int size, bool big_endian>
1154 bool
1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156 Layout* layout,
1157 unsigned int index,
1158 const char* name,
1159 const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162 // In general the symbol name we want will be the string following
1163 // the last '.'. However, we have to handle the case of
1164 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165 // some versions of gcc. So we use a heuristic: if the name starts
1166 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1167 // we look for the last '.'. We can't always simply skip
1168 // ".gnu.linkonce.X", because we have to deal with cases like
1169 // ".gnu.linkonce.d.rel.ro.local".
1170 const char* const linkonce_t = ".gnu.linkonce.t.";
1171 const char* symname;
1172 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173 symname = name + strlen(linkonce_t);
1174 else
1175 symname = strrchr(name, '.') + 1;
1176 std::string sig1(symname);
1177 std::string sig2(name);
1178 Kept_section* kept1;
1179 Kept_section* kept2;
1180 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181 false, &kept1);
1182 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183 true, &kept2);
1184
1185 if (!include2)
1186 {
1187 // We are not including this section because we already saw the
1188 // name of the section as a signature. This normally implies
1189 // that the kept section is another linkonce section. If it is
1190 // the same size, record it as the section which corresponds to
1191 // this one.
1192 if (kept2->object() != NULL && !kept2->is_comdat())
1193 this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
1194 }
1195 else if (!include1)
1196 {
1197 // The section is being discarded on the basis of its symbol
1198 // name. This means that the corresponding kept section was
1199 // part of a comdat group, and it will be difficult to identify
1200 // the specific section within that group that corresponds to
1201 // this linkonce section. We'll handle the simple case where
1202 // the group has only one member section. Otherwise, it's not
1203 // worth the effort.
1204 if (kept1->object() != NULL && kept1->is_comdat())
1205 this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
1206 }
1207 else
1208 {
1209 kept1->set_linkonce_size(sh_size);
1210 kept2->set_linkonce_size(sh_size);
1211 }
1212
1213 return include1 && include2;
1214 }
1215
1216 // Layout an input section.
1217
1218 template<int size, bool big_endian>
1219 inline void
1220 Sized_relobj_file<size, big_endian>::layout_section(
1221 Layout* layout,
1222 unsigned int shndx,
1223 const char* name,
1224 const typename This::Shdr& shdr,
1225 unsigned int sh_type,
1226 unsigned int reloc_shndx,
1227 unsigned int reloc_type)
1228 {
1229 off_t offset;
1230 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
1231 reloc_shndx, reloc_type, &offset);
1232
1233 this->output_sections()[shndx] = os;
1234 if (offset == -1)
1235 this->section_offsets()[shndx] = invalid_address;
1236 else
1237 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1238
1239 // If this section requires special handling, and if there are
1240 // relocs that apply to it, then we must do the special handling
1241 // before we apply the relocs.
1242 if (offset == -1 && reloc_shndx != 0)
1243 this->set_relocs_must_follow_section_writes();
1244 }
1245
1246 // Layout an input .eh_frame section.
1247
1248 template<int size, bool big_endian>
1249 void
1250 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1251 Layout* layout,
1252 const unsigned char* symbols_data,
1253 section_size_type symbols_size,
1254 const unsigned char* symbol_names_data,
1255 section_size_type symbol_names_size,
1256 unsigned int shndx,
1257 const typename This::Shdr& shdr,
1258 unsigned int reloc_shndx,
1259 unsigned int reloc_type)
1260 {
1261 gold_assert(this->has_eh_frame_);
1262
1263 off_t offset;
1264 Output_section* os = layout->layout_eh_frame(this,
1265 symbols_data,
1266 symbols_size,
1267 symbol_names_data,
1268 symbol_names_size,
1269 shndx,
1270 shdr,
1271 reloc_shndx,
1272 reloc_type,
1273 &offset);
1274 this->output_sections()[shndx] = os;
1275 if (os == NULL || offset == -1)
1276 this->section_offsets()[shndx] = invalid_address;
1277 else
1278 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1279
1280 // If this section requires special handling, and if there are
1281 // relocs that aply to it, then we must do the special handling
1282 // before we apply the relocs.
1283 if (os != NULL && offset == -1 && reloc_shndx != 0)
1284 this->set_relocs_must_follow_section_writes();
1285 }
1286
1287 // Layout an input .note.gnu.property section.
1288
1289 // This note section has an *extremely* non-standard layout.
1290 // The gABI spec says that ELF-64 files should have 8-byte fields and
1291 // 8-byte alignment in the note section, but the Gnu tools generally
1292 // use 4-byte fields and 4-byte alignment (see the comment for
1293 // Layout::create_note). This section uses 4-byte fields (i.e.,
1294 // namesz, descsz, and type are always 4 bytes), the name field is
1295 // padded to a multiple of 4 bytes, but the desc field is padded
1296 // to a multiple of 4 or 8 bytes, depending on the ELF class.
1297 // The individual properties within the desc field always use
1298 // 4-byte pr_type and pr_datasz fields, but pr_data is padded to
1299 // a multiple of 4 or 8 bytes, depending on the ELF class.
1300
1301 template<int size, bool big_endian>
1302 void
1303 Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
1304 Layout* layout,
1305 unsigned int shndx)
1306 {
1307 section_size_type contents_len;
1308 const unsigned char* pcontents = this->section_contents(shndx,
1309 &contents_len,
1310 false);
1311 const unsigned char* pcontents_end = pcontents + contents_len;
1312
1313 // Loop over all the notes in this section.
1314 while (pcontents < pcontents_end)
1315 {
1316 if (pcontents + 16 > pcontents_end)
1317 {
1318 gold_warning(_("%s: corrupt .note.gnu.property section "
1319 "(note too short)"),
1320 this->name().c_str());
1321 return;
1322 }
1323
1324 size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
1325 size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
1326 unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
1327 const unsigned char* pname = pcontents + 12;
1328
1329 if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
1330 {
1331 gold_warning(_("%s: corrupt .note.gnu.property section "
1332 "(name is not 'GNU')"),
1333 this->name().c_str());
1334 return;
1335 }
1336
1337 if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
1338 {
1339 gold_warning(_("%s: unsupported note type %d "
1340 "in .note.gnu.property section"),
1341 this->name().c_str(), ntype);
1342 return;
1343 }
1344
1345 size_t aligned_namesz = align_address(namesz, 4);
1346 const unsigned char* pdesc = pname + aligned_namesz;
1347
1348 if (pdesc + descsz > pcontents + contents_len)
1349 {
1350 gold_warning(_("%s: corrupt .note.gnu.property section"),
1351 this->name().c_str());
1352 return;
1353 }
1354
1355 const unsigned char* pprop = pdesc;
1356
1357 // Loop over the program properties in this note.
1358 while (pprop < pdesc + descsz)
1359 {
1360 if (pprop + 8 > pdesc + descsz)
1361 {
1362 gold_warning(_("%s: corrupt .note.gnu.property section"),
1363 this->name().c_str());
1364 return;
1365 }
1366 unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
1367 size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
1368 pprop += 8;
1369 if (pprop + pr_datasz > pdesc + descsz)
1370 {
1371 gold_warning(_("%s: corrupt .note.gnu.property section"),
1372 this->name().c_str());
1373 return;
1374 }
1375 layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
1376 pprop += align_address(pr_datasz, size / 8);
1377 }
1378
1379 pcontents = pdesc + align_address(descsz, size / 8);
1380 }
1381 }
1382
1383 // This a copy of lto_section defined in GCC (lto-streamer.h)
1384
1385 struct lto_section
1386 {
1387 int16_t major_version;
1388 int16_t minor_version;
1389 unsigned char slim_object;
1390
1391 /* Flags is a private field that is not defined publicly. */
1392 uint16_t flags;
1393 };
1394
1395 // Lay out the input sections. We walk through the sections and check
1396 // whether they should be included in the link. If they should, we
1397 // pass them to the Layout object, which will return an output section
1398 // and an offset.
1399 // This function is called twice sometimes, two passes, when mapping
1400 // of input sections to output sections must be delayed.
1401 // This is true for the following :
1402 // * Garbage collection (--gc-sections): Some input sections will be
1403 // discarded and hence the assignment must wait until the second pass.
1404 // In the first pass, it is for setting up some sections as roots to
1405 // a work-list for --gc-sections and to do comdat processing.
1406 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1407 // will be folded and hence the assignment must wait.
1408 // * Using plugins to map some sections to unique segments: Mapping
1409 // some sections to unique segments requires mapping them to unique
1410 // output sections too. This can be done via plugins now and this
1411 // information is not available in the first pass.
1412
1413 template<int size, bool big_endian>
1414 void
1415 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1416 Layout* layout,
1417 Read_symbols_data* sd)
1418 {
1419 const unsigned int unwind_section_type =
1420 parameters->target().unwind_section_type();
1421 const unsigned int shnum = this->shnum();
1422
1423 /* Should this function be called twice? */
1424 bool is_two_pass = (parameters->options().gc_sections()
1425 || parameters->options().icf_enabled()
1426 || layout->is_unique_segment_for_sections_specified());
1427
1428 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1429 a two-pass approach is not needed. */
1430 bool is_pass_one = false;
1431 bool is_pass_two = false;
1432
1433 Symbols_data* gc_sd = NULL;
1434
1435 /* Check if do_layout needs to be two-pass. If so, find out which pass
1436 should happen. In the first pass, the data in sd is saved to be used
1437 later in the second pass. */
1438 if (is_two_pass)
1439 {
1440 gc_sd = this->get_symbols_data();
1441 if (gc_sd == NULL)
1442 {
1443 gold_assert(sd != NULL);
1444 is_pass_one = true;
1445 }
1446 else
1447 {
1448 if (parameters->options().gc_sections())
1449 gold_assert(symtab->gc()->is_worklist_ready());
1450 if (parameters->options().icf_enabled())
1451 gold_assert(symtab->icf()->is_icf_ready());
1452 is_pass_two = true;
1453 }
1454 }
1455
1456 if (shnum == 0)
1457 return;
1458
1459 if (is_pass_one)
1460 {
1461 // During garbage collection save the symbols data to use it when
1462 // re-entering this function.
1463 gc_sd = new Symbols_data;
1464 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1465 this->set_symbols_data(gc_sd);
1466 }
1467
1468 const unsigned char* section_headers_data = NULL;
1469 section_size_type section_names_size;
1470 const unsigned char* symbols_data = NULL;
1471 section_size_type symbols_size;
1472 const unsigned char* symbol_names_data = NULL;
1473 section_size_type symbol_names_size;
1474
1475 if (is_two_pass)
1476 {
1477 section_headers_data = gc_sd->section_headers_data;
1478 section_names_size = gc_sd->section_names_size;
1479 symbols_data = gc_sd->symbols_data;
1480 symbols_size = gc_sd->symbols_size;
1481 symbol_names_data = gc_sd->symbol_names_data;
1482 symbol_names_size = gc_sd->symbol_names_size;
1483 }
1484 else
1485 {
1486 section_headers_data = sd->section_headers->data();
1487 section_names_size = sd->section_names_size;
1488 if (sd->symbols != NULL)
1489 symbols_data = sd->symbols->data();
1490 symbols_size = sd->symbols_size;
1491 if (sd->symbol_names != NULL)
1492 symbol_names_data = sd->symbol_names->data();
1493 symbol_names_size = sd->symbol_names_size;
1494 }
1495
1496 // Get the section headers.
1497 const unsigned char* shdrs = section_headers_data;
1498 const unsigned char* pshdrs;
1499
1500 // Get the section names.
1501 const unsigned char* pnamesu = (is_two_pass
1502 ? gc_sd->section_names_data
1503 : sd->section_names->data());
1504
1505 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1506
1507 // If any input files have been claimed by plugins, we need to defer
1508 // actual layout until the replacement files have arrived.
1509 const bool should_defer_layout =
1510 (parameters->options().has_plugins()
1511 && parameters->options().plugins()->should_defer_layout());
1512 unsigned int num_sections_to_defer = 0;
1513
1514 // For each section, record the index of the reloc section if any.
1515 // Use 0 to mean that there is no reloc section, -1U to mean that
1516 // there is more than one.
1517 std::vector<unsigned int> reloc_shndx(shnum, 0);
1518 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1519 // Skip the first, dummy, section.
1520 pshdrs = shdrs + This::shdr_size;
1521 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1522 {
1523 typename This::Shdr shdr(pshdrs);
1524
1525 // Count the number of sections whose layout will be deferred.
1526 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1527 ++num_sections_to_defer;
1528
1529 unsigned int sh_type = shdr.get_sh_type();
1530 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1531 {
1532 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1533 if (target_shndx == 0 || target_shndx >= shnum)
1534 {
1535 this->error(_("relocation section %u has bad info %u"),
1536 i, target_shndx);
1537 continue;
1538 }
1539
1540 if (reloc_shndx[target_shndx] != 0)
1541 reloc_shndx[target_shndx] = -1U;
1542 else
1543 {
1544 reloc_shndx[target_shndx] = i;
1545 reloc_type[target_shndx] = sh_type;
1546 }
1547 }
1548 }
1549
1550 Output_sections& out_sections(this->output_sections());
1551 std::vector<Address>& out_section_offsets(this->section_offsets());
1552
1553 if (!is_pass_two)
1554 {
1555 out_sections.resize(shnum);
1556 out_section_offsets.resize(shnum);
1557 }
1558
1559 // If we are only linking for symbols, then there is nothing else to
1560 // do here.
1561 if (this->input_file()->just_symbols())
1562 {
1563 if (!is_pass_two)
1564 {
1565 delete sd->section_headers;
1566 sd->section_headers = NULL;
1567 delete sd->section_names;
1568 sd->section_names = NULL;
1569 }
1570 return;
1571 }
1572
1573 if (num_sections_to_defer > 0)
1574 {
1575 parameters->options().plugins()->add_deferred_layout_object(this);
1576 this->deferred_layout_.reserve(num_sections_to_defer);
1577 this->is_deferred_layout_ = true;
1578 }
1579
1580 // Whether we've seen a .note.GNU-stack section.
1581 bool seen_gnu_stack = false;
1582 // The flags of a .note.GNU-stack section.
1583 uint64_t gnu_stack_flags = 0;
1584
1585 // Keep track of which sections to omit.
1586 std::vector<bool> omit(shnum, false);
1587
1588 // Keep track of reloc sections when emitting relocations.
1589 const bool relocatable = parameters->options().relocatable();
1590 const bool emit_relocs = (relocatable
1591 || parameters->options().emit_relocs());
1592 std::vector<unsigned int> reloc_sections;
1593
1594 // Keep track of .eh_frame sections.
1595 std::vector<unsigned int> eh_frame_sections;
1596
1597 // Keep track of .debug_info and .debug_types sections.
1598 std::vector<unsigned int> debug_info_sections;
1599 std::vector<unsigned int> debug_types_sections;
1600
1601 // Skip the first, dummy, section.
1602 pshdrs = shdrs + This::shdr_size;
1603 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1604 {
1605 typename This::Shdr shdr(pshdrs);
1606 const unsigned int sh_name = shdr.get_sh_name();
1607 unsigned int sh_type = shdr.get_sh_type();
1608
1609 if (sh_name >= section_names_size)
1610 {
1611 this->error(_("bad section name offset for section %u: %lu"),
1612 i, static_cast<unsigned long>(sh_name));
1613 return;
1614 }
1615
1616 const char* name = pnames + sh_name;
1617
1618 if (!is_pass_two)
1619 {
1620 if (this->handle_gnu_warning_section(name, i, symtab))
1621 {
1622 if (!relocatable && !parameters->options().shared())
1623 omit[i] = true;
1624 }
1625
1626 // The .note.GNU-stack section is special. It gives the
1627 // protection flags that this object file requires for the stack
1628 // in memory.
1629 if (strcmp(name, ".note.GNU-stack") == 0)
1630 {
1631 seen_gnu_stack = true;
1632 gnu_stack_flags |= shdr.get_sh_flags();
1633 omit[i] = true;
1634 }
1635
1636 // The .note.GNU-split-stack section is also special. It
1637 // indicates that the object was compiled with
1638 // -fsplit-stack.
1639 if (this->handle_split_stack_section(name))
1640 {
1641 if (!relocatable && !parameters->options().shared())
1642 omit[i] = true;
1643 }
1644
1645 // Skip attributes section.
1646 if (parameters->target().is_attributes_section(name))
1647 {
1648 omit[i] = true;
1649 }
1650
1651 // Handle .note.gnu.property sections.
1652 if (sh_type == elfcpp::SHT_NOTE
1653 && strcmp(name, ".note.gnu.property") == 0)
1654 {
1655 this->layout_gnu_property_section(layout, i);
1656 omit[i] = true;
1657 }
1658
1659 bool discard = omit[i];
1660 if (!discard)
1661 {
1662 if (sh_type == elfcpp::SHT_GROUP)
1663 {
1664 if (!this->include_section_group(symtab, layout, i, name,
1665 shdrs, pnames,
1666 section_names_size,
1667 &omit))
1668 discard = true;
1669 }
1670 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1671 && Layout::is_linkonce(name))
1672 {
1673 if (!this->include_linkonce_section(layout, i, name, shdr))
1674 discard = true;
1675 }
1676 }
1677
1678 // Add the section to the incremental inputs layout.
1679 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1680 if (incremental_inputs != NULL
1681 && !discard
1682 && can_incremental_update(sh_type))
1683 {
1684 off_t sh_size = shdr.get_sh_size();
1685 section_size_type uncompressed_size;
1686 if (this->section_is_compressed(i, &uncompressed_size))
1687 sh_size = uncompressed_size;
1688 incremental_inputs->report_input_section(this, i, name, sh_size);
1689 }
1690
1691 if (discard)
1692 {
1693 // Do not include this section in the link.
1694 out_sections[i] = NULL;
1695 out_section_offsets[i] = invalid_address;
1696 continue;
1697 }
1698 }
1699
1700 if (is_pass_one && parameters->options().gc_sections())
1701 {
1702 if (this->is_section_name_included(name)
1703 || layout->keep_input_section (this, name)
1704 || sh_type == elfcpp::SHT_INIT_ARRAY
1705 || sh_type == elfcpp::SHT_FINI_ARRAY)
1706 {
1707 symtab->gc()->worklist().push_back(Section_id(this, i));
1708 }
1709 // If the section name XXX can be represented as a C identifier
1710 // it cannot be discarded if there are references to
1711 // __start_XXX and __stop_XXX symbols. These need to be
1712 // specially handled.
1713 if (is_cident(name))
1714 {
1715 symtab->gc()->add_cident_section(name, Section_id(this, i));
1716 }
1717 }
1718
1719 // When doing a relocatable link we are going to copy input
1720 // reloc sections into the output. We only want to copy the
1721 // ones associated with sections which are not being discarded.
1722 // However, we don't know that yet for all sections. So save
1723 // reloc sections and process them later. Garbage collection is
1724 // not triggered when relocatable code is desired.
1725 if (emit_relocs
1726 && (sh_type == elfcpp::SHT_REL
1727 || sh_type == elfcpp::SHT_RELA))
1728 {
1729 reloc_sections.push_back(i);
1730 continue;
1731 }
1732
1733 if (relocatable && sh_type == elfcpp::SHT_GROUP)
1734 continue;
1735
1736 // The .eh_frame section is special. It holds exception frame
1737 // information that we need to read in order to generate the
1738 // exception frame header. We process these after all the other
1739 // sections so that the exception frame reader can reliably
1740 // determine which sections are being discarded, and discard the
1741 // corresponding information.
1742 if (this->check_eh_frame_flags(&shdr)
1743 && strcmp(name, ".eh_frame") == 0)
1744 {
1745 // If the target has a special unwind section type, let's
1746 // canonicalize it here.
1747 sh_type = unwind_section_type;
1748 if (!relocatable)
1749 {
1750 if (is_pass_one)
1751 {
1752 if (this->is_deferred_layout())
1753 out_sections[i] = reinterpret_cast<Output_section*>(2);
1754 else
1755 out_sections[i] = reinterpret_cast<Output_section*>(1);
1756 out_section_offsets[i] = invalid_address;
1757 }
1758 else if (this->is_deferred_layout())
1759 {
1760 out_sections[i] = reinterpret_cast<Output_section*>(2);
1761 out_section_offsets[i] = invalid_address;
1762 this->deferred_layout_.push_back(
1763 Deferred_layout(i, name, sh_type, pshdrs,
1764 reloc_shndx[i], reloc_type[i]));
1765 }
1766 else
1767 eh_frame_sections.push_back(i);
1768 continue;
1769 }
1770 }
1771
1772 if (is_pass_two && parameters->options().gc_sections())
1773 {
1774 // This is executed during the second pass of garbage
1775 // collection. do_layout has been called before and some
1776 // sections have been already discarded. Simply ignore
1777 // such sections this time around.
1778 if (out_sections[i] == NULL)
1779 {
1780 gold_assert(out_section_offsets[i] == invalid_address);
1781 continue;
1782 }
1783 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1784 && symtab->gc()->is_section_garbage(this, i))
1785 {
1786 if (parameters->options().print_gc_sections())
1787 gold_info(_("%s: removing unused section from '%s'"
1788 " in file '%s'"),
1789 program_name, this->section_name(i).c_str(),
1790 this->name().c_str());
1791 out_sections[i] = NULL;
1792 out_section_offsets[i] = invalid_address;
1793 continue;
1794 }
1795 }
1796
1797 if (is_pass_two && parameters->options().icf_enabled())
1798 {
1799 if (out_sections[i] == NULL)
1800 {
1801 gold_assert(out_section_offsets[i] == invalid_address);
1802 continue;
1803 }
1804 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1805 && symtab->icf()->is_section_folded(this, i))
1806 {
1807 if (parameters->options().print_icf_sections())
1808 {
1809 Section_id folded =
1810 symtab->icf()->get_folded_section(this, i);
1811 Relobj* folded_obj =
1812 reinterpret_cast<Relobj*>(folded.first);
1813 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1814 "into '%s' in file '%s'"),
1815 program_name, this->section_name(i).c_str(),
1816 this->name().c_str(),
1817 folded_obj->section_name(folded.second).c_str(),
1818 folded_obj->name().c_str());
1819 }
1820 out_sections[i] = NULL;
1821 out_section_offsets[i] = invalid_address;
1822 continue;
1823 }
1824 }
1825
1826 // Defer layout here if input files are claimed by plugins. When gc
1827 // is turned on this function is called twice; we only want to do this
1828 // on the first pass.
1829 if (!is_pass_two
1830 && this->is_deferred_layout()
1831 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1832 {
1833 this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
1834 pshdrs,
1835 reloc_shndx[i],
1836 reloc_type[i]));
1837 // Put dummy values here; real values will be supplied by
1838 // do_layout_deferred_sections.
1839 out_sections[i] = reinterpret_cast<Output_section*>(2);
1840 out_section_offsets[i] = invalid_address;
1841 continue;
1842 }
1843
1844 // During gc_pass_two if a section that was previously deferred is
1845 // found, do not layout the section as layout_deferred_sections will
1846 // do it later from gold.cc.
1847 if (is_pass_two
1848 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1849 continue;
1850
1851 if (is_pass_one)
1852 {
1853 // This is during garbage collection. The out_sections are
1854 // assigned in the second call to this function.
1855 out_sections[i] = reinterpret_cast<Output_section*>(1);
1856 out_section_offsets[i] = invalid_address;
1857 }
1858 else
1859 {
1860 // When garbage collection is switched on the actual layout
1861 // only happens in the second call.
1862 this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
1863 reloc_type[i]);
1864
1865 // When generating a .gdb_index section, we do additional
1866 // processing of .debug_info and .debug_types sections after all
1867 // the other sections for the same reason as above.
1868 if (!relocatable
1869 && parameters->options().gdb_index()
1870 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1871 {
1872 if (strcmp(name, ".debug_info") == 0
1873 || strcmp(name, ".zdebug_info") == 0)
1874 debug_info_sections.push_back(i);
1875 else if (strcmp(name, ".debug_types") == 0
1876 || strcmp(name, ".zdebug_types") == 0)
1877 debug_types_sections.push_back(i);
1878 }
1879 }
1880
1881 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1882 section. */
1883 const char *lto_section_name = ".gnu.lto_.lto.";
1884 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1885 {
1886 section_size_type contents_len;
1887 const unsigned char* pcontents = this->section_contents(i, &contents_len, false);
1888 struct lto_section lsection = *(const lto_section*)pcontents;
1889 if (lsection.slim_object)
1890 gold_info(_("%s: plugin needed to handle lto object"),
1891 this->name().c_str());
1892 }
1893 }
1894
1895 if (!is_pass_two)
1896 {
1897 layout->merge_gnu_properties(this);
1898 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1899 }
1900
1901 // Handle the .eh_frame sections after the other sections.
1902 gold_assert(!is_pass_one || eh_frame_sections.empty());
1903 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1904 p != eh_frame_sections.end();
1905 ++p)
1906 {
1907 unsigned int i = *p;
1908 const unsigned char* pshdr;
1909 pshdr = section_headers_data + i * This::shdr_size;
1910 typename This::Shdr shdr(pshdr);
1911
1912 this->layout_eh_frame_section(layout,
1913 symbols_data,
1914 symbols_size,
1915 symbol_names_data,
1916 symbol_names_size,
1917 i,
1918 shdr,
1919 reloc_shndx[i],
1920 reloc_type[i]);
1921 }
1922
1923 // When doing a relocatable link handle the reloc sections at the
1924 // end. Garbage collection and Identical Code Folding is not
1925 // turned on for relocatable code.
1926 if (emit_relocs)
1927 this->size_relocatable_relocs();
1928
1929 gold_assert(!is_two_pass || reloc_sections.empty());
1930
1931 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1932 p != reloc_sections.end();
1933 ++p)
1934 {
1935 unsigned int i = *p;
1936 const unsigned char* pshdr;
1937 pshdr = section_headers_data + i * This::shdr_size;
1938 typename This::Shdr shdr(pshdr);
1939
1940 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1941 if (data_shndx >= shnum)
1942 {
1943 // We already warned about this above.
1944 continue;
1945 }
1946
1947 Output_section* data_section = out_sections[data_shndx];
1948 if (data_section == reinterpret_cast<Output_section*>(2))
1949 {
1950 if (is_pass_two)
1951 continue;
1952 // The layout for the data section was deferred, so we need
1953 // to defer the relocation section, too.
1954 const char* name = pnames + shdr.get_sh_name();
1955 this->deferred_layout_relocs_.push_back(
1956 Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
1957 elfcpp::SHT_NULL));
1958 out_sections[i] = reinterpret_cast<Output_section*>(2);
1959 out_section_offsets[i] = invalid_address;
1960 continue;
1961 }
1962 if (data_section == NULL)
1963 {
1964 out_sections[i] = NULL;
1965 out_section_offsets[i] = invalid_address;
1966 continue;
1967 }
1968
1969 Relocatable_relocs* rr = new Relocatable_relocs();
1970 this->set_relocatable_relocs(i, rr);
1971
1972 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1973 rr);
1974 out_sections[i] = os;
1975 out_section_offsets[i] = invalid_address;
1976 }
1977
1978 // When building a .gdb_index section, scan the .debug_info and
1979 // .debug_types sections.
1980 gold_assert(!is_pass_one
1981 || (debug_info_sections.empty() && debug_types_sections.empty()));
1982 for (std::vector<unsigned int>::const_iterator p
1983 = debug_info_sections.begin();
1984 p != debug_info_sections.end();
1985 ++p)
1986 {
1987 unsigned int i = *p;
1988 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1989 i, reloc_shndx[i], reloc_type[i]);
1990 }
1991 for (std::vector<unsigned int>::const_iterator p
1992 = debug_types_sections.begin();
1993 p != debug_types_sections.end();
1994 ++p)
1995 {
1996 unsigned int i = *p;
1997 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1998 i, reloc_shndx[i], reloc_type[i]);
1999 }
2000
2001 if (is_pass_two)
2002 {
2003 delete[] gc_sd->section_headers_data;
2004 delete[] gc_sd->section_names_data;
2005 delete[] gc_sd->symbols_data;
2006 delete[] gc_sd->symbol_names_data;
2007 this->set_symbols_data(NULL);
2008 }
2009 else
2010 {
2011 delete sd->section_headers;
2012 sd->section_headers = NULL;
2013 delete sd->section_names;
2014 sd->section_names = NULL;
2015 }
2016 }
2017
2018 // Layout sections whose layout was deferred while waiting for
2019 // input files from a plugin.
2020
2021 template<int size, bool big_endian>
2022 void
2023 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
2024 {
2025 typename std::vector<Deferred_layout>::iterator deferred;
2026
2027 for (deferred = this->deferred_layout_.begin();
2028 deferred != this->deferred_layout_.end();
2029 ++deferred)
2030 {
2031 typename This::Shdr shdr(deferred->shdr_data_);
2032
2033 if (!parameters->options().relocatable()
2034 && deferred->name_ == ".eh_frame"
2035 && this->check_eh_frame_flags(&shdr))
2036 {
2037 // Checking is_section_included is not reliable for
2038 // .eh_frame sections, because they do not have an output
2039 // section. This is not a problem normally because we call
2040 // layout_eh_frame_section unconditionally, but when
2041 // deferring sections that is not true. We don't want to
2042 // keep all .eh_frame sections because that will cause us to
2043 // keep all sections that they refer to, which is the wrong
2044 // way around. Instead, the eh_frame code will discard
2045 // .eh_frame sections that refer to discarded sections.
2046
2047 // Reading the symbols again here may be slow.
2048 Read_symbols_data sd;
2049 this->base_read_symbols(&sd);
2050 this->layout_eh_frame_section(layout,
2051 sd.symbols->data(),
2052 sd.symbols_size,
2053 sd.symbol_names->data(),
2054 sd.symbol_names_size,
2055 deferred->shndx_,
2056 shdr,
2057 deferred->reloc_shndx_,
2058 deferred->reloc_type_);
2059 continue;
2060 }
2061
2062 // If the section is not included, it is because the garbage collector
2063 // decided it is not needed. Avoid reverting that decision.
2064 if (!this->is_section_included(deferred->shndx_))
2065 continue;
2066
2067 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
2068 shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
2069 deferred->reloc_type_);
2070 }
2071
2072 this->deferred_layout_.clear();
2073
2074 // Now handle the deferred relocation sections.
2075
2076 Output_sections& out_sections(this->output_sections());
2077 std::vector<Address>& out_section_offsets(this->section_offsets());
2078
2079 for (deferred = this->deferred_layout_relocs_.begin();
2080 deferred != this->deferred_layout_relocs_.end();
2081 ++deferred)
2082 {
2083 unsigned int shndx = deferred->shndx_;
2084 typename This::Shdr shdr(deferred->shdr_data_);
2085 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
2086
2087 Output_section* data_section = out_sections[data_shndx];
2088 if (data_section == NULL)
2089 {
2090 out_sections[shndx] = NULL;
2091 out_section_offsets[shndx] = invalid_address;
2092 continue;
2093 }
2094
2095 Relocatable_relocs* rr = new Relocatable_relocs();
2096 this->set_relocatable_relocs(shndx, rr);
2097
2098 Output_section* os = layout->layout_reloc(this, shndx, shdr,
2099 data_section, rr);
2100 out_sections[shndx] = os;
2101 out_section_offsets[shndx] = invalid_address;
2102 }
2103 }
2104
2105 // Add the symbols to the symbol table.
2106
2107 template<int size, bool big_endian>
2108 void
2109 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
2110 Read_symbols_data* sd,
2111 Layout* layout)
2112 {
2113 if (sd->symbols == NULL)
2114 {
2115 gold_assert(sd->symbol_names == NULL);
2116 return;
2117 }
2118
2119 const int sym_size = This::sym_size;
2120 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2121 / sym_size);
2122 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
2123 {
2124 this->error(_("size of symbols is not multiple of symbol size"));
2125 return;
2126 }
2127
2128 this->symbols_.resize(symcount);
2129
2130 if (layout->is_lto_slim_object ())
2131 gold_info(_("%s: plugin needed to handle lto object"),
2132 this->name().c_str());
2133
2134 const char* sym_names =
2135 reinterpret_cast<const char*>(sd->symbol_names->data());
2136 symtab->add_from_relobj(this,
2137 sd->symbols->data() + sd->external_symbols_offset,
2138 symcount, this->local_symbol_count_,
2139 sym_names, sd->symbol_names_size,
2140 &this->symbols_,
2141 &this->defined_count_);
2142
2143 delete sd->symbols;
2144 sd->symbols = NULL;
2145 delete sd->symbol_names;
2146 sd->symbol_names = NULL;
2147 }
2148
2149 // Find out if this object, that is a member of a lib group, should be included
2150 // in the link. We check every symbol defined by this object. If the symbol
2151 // table has a strong undefined reference to that symbol, we have to include
2152 // the object.
2153
2154 template<int size, bool big_endian>
2155 Archive::Should_include
2156 Sized_relobj_file<size, big_endian>::do_should_include_member(
2157 Symbol_table* symtab,
2158 Layout* layout,
2159 Read_symbols_data* sd,
2160 std::string* why)
2161 {
2162 char* tmpbuf = NULL;
2163 size_t tmpbuflen = 0;
2164 const char* sym_names =
2165 reinterpret_cast<const char*>(sd->symbol_names->data());
2166 const unsigned char* syms =
2167 sd->symbols->data() + sd->external_symbols_offset;
2168 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2169 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2170 / sym_size);
2171
2172 const unsigned char* p = syms;
2173
2174 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2175 {
2176 elfcpp::Sym<size, big_endian> sym(p);
2177 unsigned int st_shndx = sym.get_st_shndx();
2178 if (st_shndx == elfcpp::SHN_UNDEF)
2179 continue;
2180
2181 unsigned int st_name = sym.get_st_name();
2182 const char* name = sym_names + st_name;
2183 Symbol* symbol;
2184 Archive::Should_include t = Archive::should_include_member(symtab,
2185 layout,
2186 name,
2187 &symbol, why,
2188 &tmpbuf,
2189 &tmpbuflen);
2190 if (t == Archive::SHOULD_INCLUDE_YES)
2191 {
2192 if (tmpbuf != NULL)
2193 free(tmpbuf);
2194 return t;
2195 }
2196 }
2197 if (tmpbuf != NULL)
2198 free(tmpbuf);
2199 return Archive::SHOULD_INCLUDE_UNKNOWN;
2200 }
2201
2202 // Iterate over global defined symbols, calling a visitor class V for each.
2203
2204 template<int size, bool big_endian>
2205 void
2206 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2207 Read_symbols_data* sd,
2208 Library_base::Symbol_visitor_base* v)
2209 {
2210 const char* sym_names =
2211 reinterpret_cast<const char*>(sd->symbol_names->data());
2212 const unsigned char* syms =
2213 sd->symbols->data() + sd->external_symbols_offset;
2214 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2215 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2216 / sym_size);
2217 const unsigned char* p = syms;
2218
2219 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2220 {
2221 elfcpp::Sym<size, big_endian> sym(p);
2222 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2223 v->visit(sym_names + sym.get_st_name());
2224 }
2225 }
2226
2227 // Return whether the local symbol SYMNDX has a PLT offset.
2228
2229 template<int size, bool big_endian>
2230 bool
2231 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2232 unsigned int symndx) const
2233 {
2234 typename Local_plt_offsets::const_iterator p =
2235 this->local_plt_offsets_.find(symndx);
2236 return p != this->local_plt_offsets_.end();
2237 }
2238
2239 // Get the PLT offset of a local symbol.
2240
2241 template<int size, bool big_endian>
2242 unsigned int
2243 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2244 unsigned int symndx) const
2245 {
2246 typename Local_plt_offsets::const_iterator p =
2247 this->local_plt_offsets_.find(symndx);
2248 gold_assert(p != this->local_plt_offsets_.end());
2249 return p->second;
2250 }
2251
2252 // Set the PLT offset of a local symbol.
2253
2254 template<int size, bool big_endian>
2255 void
2256 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2257 unsigned int symndx, unsigned int plt_offset)
2258 {
2259 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2260 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2261 gold_assert(ins.second);
2262 }
2263
2264 // First pass over the local symbols. Here we add their names to
2265 // *POOL and *DYNPOOL, and we store the symbol value in
2266 // THIS->LOCAL_VALUES_. This function is always called from a
2267 // singleton thread. This is followed by a call to
2268 // finalize_local_symbols.
2269
2270 template<int size, bool big_endian>
2271 void
2272 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2273 Stringpool* dynpool)
2274 {
2275 gold_assert(this->symtab_shndx_ != -1U);
2276 if (this->symtab_shndx_ == 0)
2277 {
2278 // This object has no symbols. Weird but legal.
2279 return;
2280 }
2281
2282 // Read the symbol table section header.
2283 const unsigned int symtab_shndx = this->symtab_shndx_;
2284 typename This::Shdr symtabshdr(this,
2285 this->elf_file_.section_header(symtab_shndx));
2286 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2287
2288 // Read the local symbols.
2289 const int sym_size = This::sym_size;
2290 const unsigned int loccount = this->local_symbol_count_;
2291 gold_assert(loccount == symtabshdr.get_sh_info());
2292 off_t locsize = loccount * sym_size;
2293 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2294 locsize, true, true);
2295
2296 // Read the symbol names.
2297 const unsigned int strtab_shndx =
2298 this->adjust_shndx(symtabshdr.get_sh_link());
2299 section_size_type strtab_size;
2300 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2301 &strtab_size,
2302 true);
2303 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2304
2305 // Loop over the local symbols.
2306
2307 const Output_sections& out_sections(this->output_sections());
2308 std::vector<Address>& out_section_offsets(this->section_offsets());
2309 unsigned int shnum = this->shnum();
2310 unsigned int count = 0;
2311 unsigned int dyncount = 0;
2312 // Skip the first, dummy, symbol.
2313 psyms += sym_size;
2314 bool strip_all = parameters->options().strip_all();
2315 bool discard_all = parameters->options().discard_all();
2316 bool discard_locals = parameters->options().discard_locals();
2317 bool discard_sec_merge = parameters->options().discard_sec_merge();
2318 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2319 {
2320 elfcpp::Sym<size, big_endian> sym(psyms);
2321
2322 Symbol_value<size>& lv(this->local_values_[i]);
2323
2324 bool is_ordinary;
2325 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2326 &is_ordinary);
2327 lv.set_input_shndx(shndx, is_ordinary);
2328
2329 if (sym.get_st_type() == elfcpp::STT_SECTION)
2330 lv.set_is_section_symbol();
2331 else if (sym.get_st_type() == elfcpp::STT_TLS)
2332 lv.set_is_tls_symbol();
2333 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2334 lv.set_is_ifunc_symbol();
2335
2336 // Save the input symbol value for use in do_finalize_local_symbols().
2337 lv.set_input_value(sym.get_st_value());
2338
2339 // Decide whether this symbol should go into the output file.
2340
2341 if (is_ordinary
2342 && shndx < shnum
2343 && (out_sections[shndx] == NULL
2344 || (out_sections[shndx]->order() == ORDER_EHFRAME
2345 && out_section_offsets[shndx] == invalid_address)))
2346 {
2347 // This is either a discarded section or an optimized .eh_frame
2348 // section.
2349 lv.set_no_output_symtab_entry();
2350 gold_assert(!lv.needs_output_dynsym_entry());
2351 continue;
2352 }
2353
2354 if (sym.get_st_type() == elfcpp::STT_SECTION
2355 || !this->adjust_local_symbol(&lv))
2356 {
2357 lv.set_no_output_symtab_entry();
2358 gold_assert(!lv.needs_output_dynsym_entry());
2359 continue;
2360 }
2361
2362 if (sym.get_st_name() >= strtab_size)
2363 {
2364 this->error(_("local symbol %u section name out of range: %u >= %u"),
2365 i, sym.get_st_name(),
2366 static_cast<unsigned int>(strtab_size));
2367 lv.set_no_output_symtab_entry();
2368 continue;
2369 }
2370
2371 const char* name = pnames + sym.get_st_name();
2372
2373 // If needed, add the symbol to the dynamic symbol table string pool.
2374 if (lv.needs_output_dynsym_entry())
2375 {
2376 dynpool->add(name, true, NULL);
2377 ++dyncount;
2378 }
2379
2380 if (strip_all
2381 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2382 {
2383 lv.set_no_output_symtab_entry();
2384 continue;
2385 }
2386
2387 // By default, discard temporary local symbols in merge sections.
2388 // If --discard-locals option is used, discard all temporary local
2389 // symbols. These symbols start with system-specific local label
2390 // prefixes, typically .L for ELF system. We want to be compatible
2391 // with GNU ld so here we essentially use the same check in
2392 // bfd_is_local_label(). The code is different because we already
2393 // know that:
2394 //
2395 // - the symbol is local and thus cannot have global or weak binding.
2396 // - the symbol is not a section symbol.
2397 // - the symbol has a name.
2398 //
2399 // We do not discard a symbol if it needs a dynamic symbol entry.
2400 if ((discard_locals
2401 || (discard_sec_merge
2402 && is_ordinary
2403 && out_section_offsets[shndx] == invalid_address))
2404 && sym.get_st_type() != elfcpp::STT_FILE
2405 && !lv.needs_output_dynsym_entry()
2406 && lv.may_be_discarded_from_output_symtab()
2407 && parameters->target().is_local_label_name(name))
2408 {
2409 lv.set_no_output_symtab_entry();
2410 continue;
2411 }
2412
2413 // Discard the local symbol if -retain_symbols_file is specified
2414 // and the local symbol is not in that file.
2415 if (!parameters->options().should_retain_symbol(name))
2416 {
2417 lv.set_no_output_symtab_entry();
2418 continue;
2419 }
2420
2421 // Add the symbol to the symbol table string pool.
2422 pool->add(name, true, NULL);
2423 ++count;
2424 }
2425
2426 this->output_local_symbol_count_ = count;
2427 this->output_local_dynsym_count_ = dyncount;
2428 }
2429
2430 // Compute the final value of a local symbol.
2431
2432 template<int size, bool big_endian>
2433 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2434 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2435 unsigned int r_sym,
2436 const Symbol_value<size>* lv_in,
2437 Symbol_value<size>* lv_out,
2438 bool relocatable,
2439 const Output_sections& out_sections,
2440 const std::vector<Address>& out_offsets,
2441 const Symbol_table* symtab)
2442 {
2443 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2444 // we may have a memory leak.
2445 gold_assert(lv_out->has_output_value());
2446
2447 bool is_ordinary;
2448 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2449
2450 // Set the output symbol value.
2451
2452 if (!is_ordinary)
2453 {
2454 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2455 lv_out->set_output_value(lv_in->input_value());
2456 else
2457 {
2458 this->error(_("unknown section index %u for local symbol %u"),
2459 shndx, r_sym);
2460 lv_out->set_output_value(0);
2461 return This::CFLV_ERROR;
2462 }
2463 }
2464 else
2465 {
2466 if (shndx >= this->shnum())
2467 {
2468 this->error(_("local symbol %u section index %u out of range"),
2469 r_sym, shndx);
2470 lv_out->set_output_value(0);
2471 return This::CFLV_ERROR;
2472 }
2473
2474 Output_section* os = out_sections[shndx];
2475 Address secoffset = out_offsets[shndx];
2476 if (symtab->is_section_folded(this, shndx))
2477 {
2478 gold_assert(os == NULL && secoffset == invalid_address);
2479 // Get the os of the section it is folded onto.
2480 Section_id folded = symtab->icf()->get_folded_section(this,
2481 shndx);
2482 gold_assert(folded.first != NULL);
2483 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2484 <Sized_relobj_file<size, big_endian>*>(folded.first);
2485 os = folded_obj->output_section(folded.second);
2486 gold_assert(os != NULL);
2487 secoffset = folded_obj->get_output_section_offset(folded.second);
2488
2489 // This could be a relaxed input section.
2490 if (secoffset == invalid_address)
2491 {
2492 const Output_relaxed_input_section* relaxed_section =
2493 os->find_relaxed_input_section(folded_obj, folded.second);
2494 gold_assert(relaxed_section != NULL);
2495 secoffset = relaxed_section->address() - os->address();
2496 }
2497 }
2498
2499 if (os == NULL)
2500 {
2501 // This local symbol belongs to a section we are discarding.
2502 // In some cases when applying relocations later, we will
2503 // attempt to match it to the corresponding kept section,
2504 // so we leave the input value unchanged here.
2505 return This::CFLV_DISCARDED;
2506 }
2507 else if (secoffset == invalid_address)
2508 {
2509 uint64_t start;
2510
2511 // This is a SHF_MERGE section or one which otherwise
2512 // requires special handling.
2513 if (os->order() == ORDER_EHFRAME)
2514 {
2515 // This local symbol belongs to a discarded or optimized
2516 // .eh_frame section. Just treat it like the case in which
2517 // os == NULL above.
2518 gold_assert(this->has_eh_frame_);
2519 return This::CFLV_DISCARDED;
2520 }
2521 else if (!lv_in->is_section_symbol())
2522 {
2523 // This is not a section symbol. We can determine
2524 // the final value now.
2525 uint64_t value =
2526 os->output_address(this, shndx, lv_in->input_value());
2527 if (relocatable)
2528 value -= os->address();
2529 lv_out->set_output_value(value);
2530 }
2531 else if (!os->find_starting_output_address(this, shndx, &start))
2532 {
2533 // This is a section symbol, but apparently not one in a
2534 // merged section. First check to see if this is a relaxed
2535 // input section. If so, use its address. Otherwise just
2536 // use the start of the output section. This happens with
2537 // relocatable links when the input object has section
2538 // symbols for arbitrary non-merge sections.
2539 const Output_section_data* posd =
2540 os->find_relaxed_input_section(this, shndx);
2541 if (posd != NULL)
2542 {
2543 uint64_t value = posd->address();
2544 if (relocatable)
2545 value -= os->address();
2546 lv_out->set_output_value(value);
2547 }
2548 else
2549 lv_out->set_output_value(os->address());
2550 }
2551 else
2552 {
2553 // We have to consider the addend to determine the
2554 // value to use in a relocation. START is the start
2555 // of this input section. If we are doing a relocatable
2556 // link, use offset from start output section instead of
2557 // address.
2558 Address adjusted_start =
2559 relocatable ? start - os->address() : start;
2560 Merged_symbol_value<size>* msv =
2561 new Merged_symbol_value<size>(lv_in->input_value(),
2562 adjusted_start);
2563 lv_out->set_merged_symbol_value(msv);
2564 }
2565 }
2566 else if (lv_in->is_tls_symbol()
2567 || (lv_in->is_section_symbol()
2568 && (os->flags() & elfcpp::SHF_TLS)))
2569 lv_out->set_output_value(os->tls_offset()
2570 + secoffset
2571 + lv_in->input_value());
2572 else
2573 lv_out->set_output_value((relocatable ? 0 : os->address())
2574 + secoffset
2575 + lv_in->input_value());
2576 }
2577 return This::CFLV_OK;
2578 }
2579
2580 // Compute final local symbol value. R_SYM is the index of a local
2581 // symbol in symbol table. LV points to a symbol value, which is
2582 // expected to hold the input value and to be over-written by the
2583 // final value. SYMTAB points to a symbol table. Some targets may want
2584 // to know would-be-finalized local symbol values in relaxation.
2585 // Hence we provide this method. Since this method updates *LV, a
2586 // callee should make a copy of the original local symbol value and
2587 // use the copy instead of modifying an object's local symbols before
2588 // everything is finalized. The caller should also free up any allocated
2589 // memory in the return value in *LV.
2590 template<int size, bool big_endian>
2591 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2592 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2593 unsigned int r_sym,
2594 const Symbol_value<size>* lv_in,
2595 Symbol_value<size>* lv_out,
2596 const Symbol_table* symtab)
2597 {
2598 // This is just a wrapper of compute_final_local_value_internal.
2599 const bool relocatable = parameters->options().relocatable();
2600 const Output_sections& out_sections(this->output_sections());
2601 const std::vector<Address>& out_offsets(this->section_offsets());
2602 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2603 relocatable, out_sections,
2604 out_offsets, symtab);
2605 }
2606
2607 // Finalize the local symbols. Here we set the final value in
2608 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2609 // This function is always called from a singleton thread. The actual
2610 // output of the local symbols will occur in a separate task.
2611
2612 template<int size, bool big_endian>
2613 unsigned int
2614 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2615 unsigned int index,
2616 off_t off,
2617 Symbol_table* symtab)
2618 {
2619 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2620
2621 const unsigned int loccount = this->local_symbol_count_;
2622 this->local_symbol_offset_ = off;
2623
2624 const bool relocatable = parameters->options().relocatable();
2625 const Output_sections& out_sections(this->output_sections());
2626 const std::vector<Address>& out_offsets(this->section_offsets());
2627
2628 for (unsigned int i = 1; i < loccount; ++i)
2629 {
2630 Symbol_value<size>* lv = &this->local_values_[i];
2631
2632 Compute_final_local_value_status cflv_status =
2633 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2634 out_sections, out_offsets,
2635 symtab);
2636 switch (cflv_status)
2637 {
2638 case CFLV_OK:
2639 if (!lv->is_output_symtab_index_set())
2640 {
2641 lv->set_output_symtab_index(index);
2642 ++index;
2643 }
2644 break;
2645 case CFLV_DISCARDED:
2646 case CFLV_ERROR:
2647 // Do nothing.
2648 break;
2649 default:
2650 gold_unreachable();
2651 }
2652 }
2653 return index;
2654 }
2655
2656 // Set the output dynamic symbol table indexes for the local variables.
2657
2658 template<int size, bool big_endian>
2659 unsigned int
2660 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2661 unsigned int index)
2662 {
2663 const unsigned int loccount = this->local_symbol_count_;
2664 for (unsigned int i = 1; i < loccount; ++i)
2665 {
2666 Symbol_value<size>& lv(this->local_values_[i]);
2667 if (lv.needs_output_dynsym_entry())
2668 {
2669 lv.set_output_dynsym_index(index);
2670 ++index;
2671 }
2672 }
2673 return index;
2674 }
2675
2676 // Set the offset where local dynamic symbol information will be stored.
2677 // Returns the count of local symbols contributed to the symbol table by
2678 // this object.
2679
2680 template<int size, bool big_endian>
2681 unsigned int
2682 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2683 {
2684 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2685 this->local_dynsym_offset_ = off;
2686 return this->output_local_dynsym_count_;
2687 }
2688
2689 // If Symbols_data is not NULL get the section flags from here otherwise
2690 // get it from the file.
2691
2692 template<int size, bool big_endian>
2693 uint64_t
2694 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2695 {
2696 Symbols_data* sd = this->get_symbols_data();
2697 if (sd != NULL)
2698 {
2699 const unsigned char* pshdrs = sd->section_headers_data
2700 + This::shdr_size * shndx;
2701 typename This::Shdr shdr(pshdrs);
2702 return shdr.get_sh_flags();
2703 }
2704 // If sd is NULL, read the section header from the file.
2705 return this->elf_file_.section_flags(shndx);
2706 }
2707
2708 // Get the section's ent size from Symbols_data. Called by get_section_contents
2709 // in icf.cc
2710
2711 template<int size, bool big_endian>
2712 uint64_t
2713 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2714 {
2715 Symbols_data* sd = this->get_symbols_data();
2716 gold_assert(sd != NULL);
2717
2718 const unsigned char* pshdrs = sd->section_headers_data
2719 + This::shdr_size * shndx;
2720 typename This::Shdr shdr(pshdrs);
2721 return shdr.get_sh_entsize();
2722 }
2723
2724 // Write out the local symbols.
2725
2726 template<int size, bool big_endian>
2727 void
2728 Sized_relobj_file<size, big_endian>::write_local_symbols(
2729 Output_file* of,
2730 const Stringpool* sympool,
2731 const Stringpool* dynpool,
2732 Output_symtab_xindex* symtab_xindex,
2733 Output_symtab_xindex* dynsym_xindex,
2734 off_t symtab_off)
2735 {
2736 const bool strip_all = parameters->options().strip_all();
2737 if (strip_all)
2738 {
2739 if (this->output_local_dynsym_count_ == 0)
2740 return;
2741 this->output_local_symbol_count_ = 0;
2742 }
2743
2744 gold_assert(this->symtab_shndx_ != -1U);
2745 if (this->symtab_shndx_ == 0)
2746 {
2747 // This object has no symbols. Weird but legal.
2748 return;
2749 }
2750
2751 // Read the symbol table section header.
2752 const unsigned int symtab_shndx = this->symtab_shndx_;
2753 typename This::Shdr symtabshdr(this,
2754 this->elf_file_.section_header(symtab_shndx));
2755 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2756 const unsigned int loccount = this->local_symbol_count_;
2757 gold_assert(loccount == symtabshdr.get_sh_info());
2758
2759 // Read the local symbols.
2760 const int sym_size = This::sym_size;
2761 off_t locsize = loccount * sym_size;
2762 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2763 locsize, true, false);
2764
2765 // Read the symbol names.
2766 const unsigned int strtab_shndx =
2767 this->adjust_shndx(symtabshdr.get_sh_link());
2768 section_size_type strtab_size;
2769 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2770 &strtab_size,
2771 false);
2772 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2773
2774 // Get views into the output file for the portions of the symbol table
2775 // and the dynamic symbol table that we will be writing.
2776 off_t output_size = this->output_local_symbol_count_ * sym_size;
2777 unsigned char* oview = NULL;
2778 if (output_size > 0)
2779 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2780 output_size);
2781
2782 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2783 unsigned char* dyn_oview = NULL;
2784 if (dyn_output_size > 0)
2785 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2786 dyn_output_size);
2787
2788 const Output_sections& out_sections(this->output_sections());
2789
2790 gold_assert(this->local_values_.size() == loccount);
2791
2792 unsigned char* ov = oview;
2793 unsigned char* dyn_ov = dyn_oview;
2794 psyms += sym_size;
2795 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2796 {
2797 elfcpp::Sym<size, big_endian> isym(psyms);
2798
2799 Symbol_value<size>& lv(this->local_values_[i]);
2800
2801 bool is_ordinary;
2802 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2803 &is_ordinary);
2804 if (is_ordinary)
2805 {
2806 gold_assert(st_shndx < out_sections.size());
2807 if (out_sections[st_shndx] == NULL)
2808 continue;
2809 st_shndx = out_sections[st_shndx]->out_shndx();
2810 if (st_shndx >= elfcpp::SHN_LORESERVE)
2811 {
2812 if (lv.has_output_symtab_entry())
2813 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2814 if (lv.has_output_dynsym_entry())
2815 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2816 st_shndx = elfcpp::SHN_XINDEX;
2817 }
2818 }
2819
2820 // Write the symbol to the output symbol table.
2821 if (lv.has_output_symtab_entry())
2822 {
2823 elfcpp::Sym_write<size, big_endian> osym(ov);
2824
2825 gold_assert(isym.get_st_name() < strtab_size);
2826 const char* name = pnames + isym.get_st_name();
2827 osym.put_st_name(sympool->get_offset(name));
2828 osym.put_st_value(lv.value(this, 0));
2829 osym.put_st_size(isym.get_st_size());
2830 osym.put_st_info(isym.get_st_info());
2831 osym.put_st_other(isym.get_st_other());
2832 osym.put_st_shndx(st_shndx);
2833
2834 ov += sym_size;
2835 }
2836
2837 // Write the symbol to the output dynamic symbol table.
2838 if (lv.has_output_dynsym_entry())
2839 {
2840 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2841 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2842
2843 gold_assert(isym.get_st_name() < strtab_size);
2844 const char* name = pnames + isym.get_st_name();
2845 osym.put_st_name(dynpool->get_offset(name));
2846 osym.put_st_value(lv.value(this, 0));
2847 osym.put_st_size(isym.get_st_size());
2848 osym.put_st_info(isym.get_st_info());
2849 osym.put_st_other(isym.get_st_other());
2850 osym.put_st_shndx(st_shndx);
2851
2852 dyn_ov += sym_size;
2853 }
2854 }
2855
2856
2857 if (output_size > 0)
2858 {
2859 gold_assert(ov - oview == output_size);
2860 of->write_output_view(symtab_off + this->local_symbol_offset_,
2861 output_size, oview);
2862 }
2863
2864 if (dyn_output_size > 0)
2865 {
2866 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2867 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2868 dyn_oview);
2869 }
2870 }
2871
2872 // Set *INFO to symbolic information about the offset OFFSET in the
2873 // section SHNDX. Return true if we found something, false if we
2874 // found nothing.
2875
2876 template<int size, bool big_endian>
2877 bool
2878 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2879 unsigned int shndx,
2880 off_t offset,
2881 Symbol_location_info* info)
2882 {
2883 if (this->symtab_shndx_ == 0)
2884 return false;
2885
2886 section_size_type symbols_size;
2887 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2888 &symbols_size,
2889 false);
2890
2891 unsigned int symbol_names_shndx =
2892 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2893 section_size_type names_size;
2894 const unsigned char* symbol_names_u =
2895 this->section_contents(symbol_names_shndx, &names_size, false);
2896 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2897
2898 const int sym_size = This::sym_size;
2899 const size_t count = symbols_size / sym_size;
2900
2901 const unsigned char* p = symbols;
2902 for (size_t i = 0; i < count; ++i, p += sym_size)
2903 {
2904 elfcpp::Sym<size, big_endian> sym(p);
2905
2906 if (sym.get_st_type() == elfcpp::STT_FILE)
2907 {
2908 if (sym.get_st_name() >= names_size)
2909 info->source_file = "(invalid)";
2910 else
2911 info->source_file = symbol_names + sym.get_st_name();
2912 continue;
2913 }
2914
2915 bool is_ordinary;
2916 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2917 &is_ordinary);
2918 if (is_ordinary
2919 && st_shndx == shndx
2920 && static_cast<off_t>(sym.get_st_value()) <= offset
2921 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2922 > offset))
2923 {
2924 info->enclosing_symbol_type = sym.get_st_type();
2925 if (sym.get_st_name() > names_size)
2926 info->enclosing_symbol_name = "(invalid)";
2927 else
2928 {
2929 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2930 if (parameters->options().do_demangle())
2931 {
2932 char* demangled_name = cplus_demangle(
2933 info->enclosing_symbol_name.c_str(),
2934 DMGL_ANSI | DMGL_PARAMS);
2935 if (demangled_name != NULL)
2936 {
2937 info->enclosing_symbol_name.assign(demangled_name);
2938 free(demangled_name);
2939 }
2940 }
2941 }
2942 return true;
2943 }
2944 }
2945
2946 return false;
2947 }
2948
2949 // Look for a kept section corresponding to the given discarded section,
2950 // and return its output address. This is used only for relocations in
2951 // debugging sections. If we can't find the kept section, return 0.
2952
2953 template<int size, bool big_endian>
2954 typename Sized_relobj_file<size, big_endian>::Address
2955 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2956 unsigned int shndx,
2957 std::string& section_name,
2958 bool* pfound) const
2959 {
2960 Kept_section* kept_section;
2961 bool is_comdat;
2962 uint64_t sh_size;
2963 unsigned int symndx;
2964 bool found = false;
2965
2966 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
2967 &kept_section))
2968 {
2969 Relobj* kept_object = kept_section->object();
2970 unsigned int kept_shndx = 0;
2971 if (!kept_section->is_comdat())
2972 {
2973 // The kept section is a linkonce section.
2974 if (sh_size == kept_section->linkonce_size())
2975 found = true;
2976 }
2977 else
2978 {
2979 if (is_comdat)
2980 {
2981 // Find the corresponding kept section.
2982 // Since we're using this mapping for relocation processing,
2983 // we don't want to match sections unless they have the same
2984 // size.
2985 uint64_t kept_size = 0;
2986 if (kept_section->find_comdat_section(section_name, &kept_shndx,
2987 &kept_size))
2988 {
2989 if (sh_size == kept_size)
2990 found = true;
2991 }
2992 }
2993 else
2994 {
2995 uint64_t kept_size = 0;
2996 if (kept_section->find_single_comdat_section(&kept_shndx,
2997 &kept_size)
2998 && sh_size == kept_size)
2999 found = true;
3000 }
3001 }
3002
3003 if (found)
3004 {
3005 Sized_relobj_file<size, big_endian>* kept_relobj =
3006 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
3007 Output_section* os = kept_relobj->output_section(kept_shndx);
3008 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
3009 if (os != NULL && offset != invalid_address)
3010 {
3011 *pfound = true;
3012 return os->address() + offset;
3013 }
3014 }
3015 }
3016 *pfound = false;
3017 return 0;
3018 }
3019
3020 // Look for a kept section corresponding to the given discarded section,
3021 // and return its object file.
3022
3023 template<int size, bool big_endian>
3024 Relobj*
3025 Sized_relobj_file<size, big_endian>::find_kept_section_object(
3026 unsigned int shndx, unsigned int *symndx_p) const
3027 {
3028 Kept_section* kept_section;
3029 bool is_comdat;
3030 uint64_t sh_size;
3031 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
3032 &kept_section))
3033 return kept_section->object();
3034 return NULL;
3035 }
3036
3037 // Return the name of symbol SYMNDX.
3038
3039 template<int size, bool big_endian>
3040 const char*
3041 Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
3042 {
3043 if (this->symtab_shndx_ == 0)
3044 return NULL;
3045
3046 section_size_type symbols_size;
3047 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
3048 &symbols_size,
3049 false);
3050
3051 unsigned int symbol_names_shndx =
3052 this->adjust_shndx(this->section_link(this->symtab_shndx_));
3053 section_size_type names_size;
3054 const unsigned char* symbol_names_u =
3055 this->section_contents(symbol_names_shndx, &names_size, false);
3056 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
3057
3058 const unsigned char* p = symbols + symndx * This::sym_size;
3059
3060 if (p >= symbols + symbols_size)
3061 return NULL;
3062
3063 elfcpp::Sym<size, big_endian> sym(p);
3064
3065 return symbol_names + sym.get_st_name();
3066 }
3067
3068 // Get symbol counts.
3069
3070 template<int size, bool big_endian>
3071 void
3072 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
3073 const Symbol_table*,
3074 size_t* defined,
3075 size_t* used) const
3076 {
3077 *defined = this->defined_count_;
3078 size_t count = 0;
3079 for (typename Symbols::const_iterator p = this->symbols_.begin();
3080 p != this->symbols_.end();
3081 ++p)
3082 if (*p != NULL
3083 && (*p)->source() == Symbol::FROM_OBJECT
3084 && (*p)->object() == this
3085 && (*p)->is_defined())
3086 ++count;
3087 *used = count;
3088 }
3089
3090 // Return a view of the decompressed contents of a section. Set *PLEN
3091 // to the size. Set *IS_NEW to true if the contents need to be freed
3092 // by the caller.
3093
3094 const unsigned char*
3095 Object::decompressed_section_contents(
3096 unsigned int shndx,
3097 section_size_type* plen,
3098 bool* is_new,
3099 uint64_t* palign)
3100 {
3101 section_size_type buffer_size;
3102 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
3103 false);
3104
3105 if (this->compressed_sections_ == NULL)
3106 {
3107 *plen = buffer_size;
3108 *is_new = false;
3109 return buffer;
3110 }
3111
3112 Compressed_section_map::const_iterator p =
3113 this->compressed_sections_->find(shndx);
3114 if (p == this->compressed_sections_->end())
3115 {
3116 *plen = buffer_size;
3117 *is_new = false;
3118 return buffer;
3119 }
3120
3121 section_size_type uncompressed_size = p->second.size;
3122 if (p->second.contents != NULL)
3123 {
3124 *plen = uncompressed_size;
3125 *is_new = false;
3126 if (palign != NULL)
3127 *palign = p->second.addralign;
3128 return p->second.contents;
3129 }
3130
3131 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
3132 if (!decompress_input_section(buffer,
3133 buffer_size,
3134 uncompressed_data,
3135 uncompressed_size,
3136 elfsize(),
3137 is_big_endian(),
3138 p->second.flag))
3139 this->error(_("could not decompress section %s"),
3140 this->do_section_name(shndx).c_str());
3141
3142 // We could cache the results in p->second.contents and store
3143 // false in *IS_NEW, but build_compressed_section_map() would
3144 // have done so if it had expected it to be profitable. If
3145 // we reach this point, we expect to need the contents only
3146 // once in this pass.
3147 *plen = uncompressed_size;
3148 *is_new = true;
3149 if (palign != NULL)
3150 *palign = p->second.addralign;
3151 return uncompressed_data;
3152 }
3153
3154 // Discard any buffers of uncompressed sections. This is done
3155 // at the end of the Add_symbols task.
3156
3157 void
3158 Object::discard_decompressed_sections()
3159 {
3160 if (this->compressed_sections_ == NULL)
3161 return;
3162
3163 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
3164 p != this->compressed_sections_->end();
3165 ++p)
3166 {
3167 if (p->second.contents != NULL)
3168 {
3169 delete[] p->second.contents;
3170 p->second.contents = NULL;
3171 }
3172 }
3173 }
3174
3175 // Input_objects methods.
3176
3177 // Add a regular relocatable object to the list. Return false if this
3178 // object should be ignored.
3179
3180 bool
3181 Input_objects::add_object(Object* obj)
3182 {
3183 // Print the filename if the -t/--trace option is selected.
3184 if (parameters->options().trace())
3185 gold_info("%s", obj->name().c_str());
3186
3187 if (!obj->is_dynamic())
3188 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
3189 else
3190 {
3191 // See if this is a duplicate SONAME.
3192 Dynobj* dynobj = static_cast<Dynobj*>(obj);
3193 const char* soname = dynobj->soname();
3194
3195 Unordered_map<std::string, Object*>::value_type val(soname, obj);
3196 std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
3197 this->sonames_.insert(val);
3198 if (!ins.second)
3199 {
3200 // We have already seen a dynamic object with this soname.
3201 // If any instances of this object on the command line have
3202 // the --no-as-needed flag, make sure the one we keep is
3203 // marked so.
3204 if (!obj->as_needed())
3205 {
3206 gold_assert(ins.first->second != NULL);
3207 ins.first->second->clear_as_needed();
3208 }
3209 return false;
3210 }
3211
3212 this->dynobj_list_.push_back(dynobj);
3213 }
3214
3215 // Add this object to the cross-referencer if requested.
3216 if (parameters->options().user_set_print_symbol_counts()
3217 || parameters->options().cref())
3218 {
3219 if (this->cref_ == NULL)
3220 this->cref_ = new Cref();
3221 this->cref_->add_object(obj);
3222 }
3223
3224 return true;
3225 }
3226
3227 // For each dynamic object, record whether we've seen all of its
3228 // explicit dependencies.
3229
3230 void
3231 Input_objects::check_dynamic_dependencies() const
3232 {
3233 bool issued_copy_dt_needed_error = false;
3234 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
3235 p != this->dynobj_list_.end();
3236 ++p)
3237 {
3238 const Dynobj::Needed& needed((*p)->needed());
3239 bool found_all = true;
3240 Dynobj::Needed::const_iterator pneeded;
3241 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
3242 {
3243 if (this->sonames_.find(*pneeded) == this->sonames_.end())
3244 {
3245 found_all = false;
3246 break;
3247 }
3248 }
3249 (*p)->set_has_unknown_needed_entries(!found_all);
3250
3251 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3252 // that gold does not support. However, they cause no trouble
3253 // unless there is a DT_NEEDED entry that we don't know about;
3254 // warn only in that case.
3255 if (!found_all
3256 && !issued_copy_dt_needed_error
3257 && (parameters->options().copy_dt_needed_entries()
3258 || parameters->options().add_needed()))
3259 {
3260 const char* optname;
3261 if (parameters->options().copy_dt_needed_entries())
3262 optname = "--copy-dt-needed-entries";
3263 else
3264 optname = "--add-needed";
3265 gold_error(_("%s is not supported but is required for %s in %s"),
3266 optname, (*pneeded).c_str(), (*p)->name().c_str());
3267 issued_copy_dt_needed_error = true;
3268 }
3269 }
3270 }
3271
3272 // Start processing an archive.
3273
3274 void
3275 Input_objects::archive_start(Archive* archive)
3276 {
3277 if (parameters->options().user_set_print_symbol_counts()
3278 || parameters->options().cref())
3279 {
3280 if (this->cref_ == NULL)
3281 this->cref_ = new Cref();
3282 this->cref_->add_archive_start(archive);
3283 }
3284 }
3285
3286 // Stop processing an archive.
3287
3288 void
3289 Input_objects::archive_stop(Archive* archive)
3290 {
3291 if (parameters->options().user_set_print_symbol_counts()
3292 || parameters->options().cref())
3293 this->cref_->add_archive_stop(archive);
3294 }
3295
3296 // Print symbol counts
3297
3298 void
3299 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3300 {
3301 if (parameters->options().user_set_print_symbol_counts()
3302 && this->cref_ != NULL)
3303 this->cref_->print_symbol_counts(symtab);
3304 }
3305
3306 // Print a cross reference table.
3307
3308 void
3309 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3310 {
3311 if (parameters->options().cref() && this->cref_ != NULL)
3312 this->cref_->print_cref(symtab, f);
3313 }
3314
3315 // Relocate_info methods.
3316
3317 // Return a string describing the location of a relocation when file
3318 // and lineno information is not available. This is only used in
3319 // error messages.
3320
3321 template<int size, bool big_endian>
3322 std::string
3323 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3324 {
3325 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3326 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3327 if (!ret.empty())
3328 return ret;
3329
3330 ret = this->object->name();
3331
3332 Symbol_location_info info;
3333 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3334 {
3335 if (!info.source_file.empty())
3336 {
3337 ret += ":";
3338 ret += info.source_file;
3339 }
3340 ret += ":";
3341 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3342 ret += _("function ");
3343 ret += info.enclosing_symbol_name;
3344 return ret;
3345 }
3346
3347 ret += "(";
3348 ret += this->object->section_name(this->data_shndx);
3349 char buf[100];
3350 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3351 ret += buf;
3352 return ret;
3353 }
3354
3355 } // End namespace gold.
3356
3357 namespace
3358 {
3359
3360 using namespace gold;
3361
3362 // Read an ELF file with the header and return the appropriate
3363 // instance of Object.
3364
3365 template<int size, bool big_endian>
3366 Object*
3367 make_elf_sized_object(const std::string& name, Input_file* input_file,
3368 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3369 bool* punconfigured)
3370 {
3371 Target* target = select_target(input_file, offset,
3372 ehdr.get_e_machine(), size, big_endian,
3373 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3374 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3375 if (target == NULL)
3376 gold_fatal(_("%s: unsupported ELF machine number %d"),
3377 name.c_str(), ehdr.get_e_machine());
3378
3379 if (!parameters->target_valid())
3380 set_parameters_target(target);
3381 else if (target != &parameters->target())
3382 {
3383 if (punconfigured != NULL)
3384 *punconfigured = true;
3385 else
3386 gold_error(_("%s: incompatible target"), name.c_str());
3387 return NULL;
3388 }
3389
3390 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3391 ehdr);
3392 }
3393
3394 } // End anonymous namespace.
3395
3396 namespace gold
3397 {
3398
3399 // Return whether INPUT_FILE is an ELF object.
3400
3401 bool
3402 is_elf_object(Input_file* input_file, off_t offset,
3403 const unsigned char** start, int* read_size)
3404 {
3405 off_t filesize = input_file->file().filesize();
3406 int want = elfcpp::Elf_recognizer::max_header_size;
3407 if (filesize - offset < want)
3408 want = filesize - offset;
3409
3410 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3411 true, false);
3412 *start = p;
3413 *read_size = want;
3414
3415 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3416 }
3417
3418 // Read an ELF file and return the appropriate instance of Object.
3419
3420 Object*
3421 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3422 const unsigned char* p, section_offset_type bytes,
3423 bool* punconfigured)
3424 {
3425 if (punconfigured != NULL)
3426 *punconfigured = false;
3427
3428 std::string error;
3429 bool big_endian = false;
3430 int size = 0;
3431 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3432 &big_endian, &error))
3433 {
3434 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3435 return NULL;
3436 }
3437
3438 if (size == 32)
3439 {
3440 if (big_endian)
3441 {
3442 #ifdef HAVE_TARGET_32_BIG
3443 elfcpp::Ehdr<32, true> ehdr(p);
3444 return make_elf_sized_object<32, true>(name, input_file,
3445 offset, ehdr, punconfigured);
3446 #else
3447 if (punconfigured != NULL)
3448 *punconfigured = true;
3449 else
3450 gold_error(_("%s: not configured to support "
3451 "32-bit big-endian object"),
3452 name.c_str());
3453 return NULL;
3454 #endif
3455 }
3456 else
3457 {
3458 #ifdef HAVE_TARGET_32_LITTLE
3459 elfcpp::Ehdr<32, false> ehdr(p);
3460 return make_elf_sized_object<32, false>(name, input_file,
3461 offset, ehdr, punconfigured);
3462 #else
3463 if (punconfigured != NULL)
3464 *punconfigured = true;
3465 else
3466 gold_error(_("%s: not configured to support "
3467 "32-bit little-endian object"),
3468 name.c_str());
3469 return NULL;
3470 #endif
3471 }
3472 }
3473 else if (size == 64)
3474 {
3475 if (big_endian)
3476 {
3477 #ifdef HAVE_TARGET_64_BIG
3478 elfcpp::Ehdr<64, true> ehdr(p);
3479 return make_elf_sized_object<64, true>(name, input_file,
3480 offset, ehdr, punconfigured);
3481 #else
3482 if (punconfigured != NULL)
3483 *punconfigured = true;
3484 else
3485 gold_error(_("%s: not configured to support "
3486 "64-bit big-endian object"),
3487 name.c_str());
3488 return NULL;
3489 #endif
3490 }
3491 else
3492 {
3493 #ifdef HAVE_TARGET_64_LITTLE
3494 elfcpp::Ehdr<64, false> ehdr(p);
3495 return make_elf_sized_object<64, false>(name, input_file,
3496 offset, ehdr, punconfigured);
3497 #else
3498 if (punconfigured != NULL)
3499 *punconfigured = true;
3500 else
3501 gold_error(_("%s: not configured to support "
3502 "64-bit little-endian object"),
3503 name.c_str());
3504 return NULL;
3505 #endif
3506 }
3507 }
3508 else
3509 gold_unreachable();
3510 }
3511
3512 // Instantiate the templates we need.
3513
3514 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3515 template
3516 void
3517 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3518 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3519 Unordered_map<section_offset_type,
3520 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3521 #endif
3522
3523 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3524 template
3525 void
3526 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3527 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3528 Unordered_map<section_offset_type,
3529 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3530 #endif
3531
3532 #ifdef HAVE_TARGET_32_LITTLE
3533 template
3534 void
3535 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3536 Read_symbols_data*);
3537 template
3538 const unsigned char*
3539 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3540 section_size_type, const unsigned char*) const;
3541 #endif
3542
3543 #ifdef HAVE_TARGET_32_BIG
3544 template
3545 void
3546 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3547 Read_symbols_data*);
3548 template
3549 const unsigned char*
3550 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3551 section_size_type, const unsigned char*) const;
3552 #endif
3553
3554 #ifdef HAVE_TARGET_64_LITTLE
3555 template
3556 void
3557 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3558 Read_symbols_data*);
3559 template
3560 const unsigned char*
3561 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3562 section_size_type, const unsigned char*) const;
3563 #endif
3564
3565 #ifdef HAVE_TARGET_64_BIG
3566 template
3567 void
3568 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3569 Read_symbols_data*);
3570 template
3571 const unsigned char*
3572 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3573 section_size_type, const unsigned char*) const;
3574 #endif
3575
3576 #ifdef HAVE_TARGET_32_LITTLE
3577 template
3578 class Sized_relobj<32, false>;
3579
3580 template
3581 class Sized_relobj_file<32, false>;
3582 #endif
3583
3584 #ifdef HAVE_TARGET_32_BIG
3585 template
3586 class Sized_relobj<32, true>;
3587
3588 template
3589 class Sized_relobj_file<32, true>;
3590 #endif
3591
3592 #ifdef HAVE_TARGET_64_LITTLE
3593 template
3594 class Sized_relobj<64, false>;
3595
3596 template
3597 class Sized_relobj_file<64, false>;
3598 #endif
3599
3600 #ifdef HAVE_TARGET_64_BIG
3601 template
3602 class Sized_relobj<64, true>;
3603
3604 template
3605 class Sized_relobj_file<64, true>;
3606 #endif
3607
3608 #ifdef HAVE_TARGET_32_LITTLE
3609 template
3610 struct Relocate_info<32, false>;
3611 #endif
3612
3613 #ifdef HAVE_TARGET_32_BIG
3614 template
3615 struct Relocate_info<32, true>;
3616 #endif
3617
3618 #ifdef HAVE_TARGET_64_LITTLE
3619 template
3620 struct Relocate_info<64, false>;
3621 #endif
3622
3623 #ifdef HAVE_TARGET_64_BIG
3624 template
3625 struct Relocate_info<64, true>;
3626 #endif
3627
3628 #ifdef HAVE_TARGET_32_LITTLE
3629 template
3630 void
3631 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3632
3633 template
3634 void
3635 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3636 const unsigned char*);
3637 #endif
3638
3639 #ifdef HAVE_TARGET_32_BIG
3640 template
3641 void
3642 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3643
3644 template
3645 void
3646 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3647 const unsigned char*);
3648 #endif
3649
3650 #ifdef HAVE_TARGET_64_LITTLE
3651 template
3652 void
3653 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3654
3655 template
3656 void
3657 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3658 const unsigned char*);
3659 #endif
3660
3661 #ifdef HAVE_TARGET_64_BIG
3662 template
3663 void
3664 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3665
3666 template
3667 void
3668 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3669 const unsigned char*);
3670 #endif
3671
3672 #ifdef HAVE_TARGET_32_LITTLE
3673 template
3674 Compressed_section_map*
3675 build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
3676 const char*, section_size_type,
3677 Object*, bool);
3678 #endif
3679
3680 #ifdef HAVE_TARGET_32_BIG
3681 template
3682 Compressed_section_map*
3683 build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
3684 const char*, section_size_type,
3685 Object*, bool);
3686 #endif
3687
3688 #ifdef HAVE_TARGET_64_LITTLE
3689 template
3690 Compressed_section_map*
3691 build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
3692 const char*, section_size_type,
3693 Object*, bool);
3694 #endif
3695
3696 #ifdef HAVE_TARGET_64_BIG
3697 template
3698 Compressed_section_map*
3699 build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
3700 const char*, section_size_type,
3701 Object*, bool);
3702 #endif
3703
3704 } // End namespace gold.
This page took 0.101569 seconds and 5 git commands to generate.