Change default to discard temporary local symbols in merge sections.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
289 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
290 }
291
292 bool
293 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
294 section_offset_type *poutput) const {
295 Object_merge_map* object_merge_map = this->object_merge_map_;
296 if (object_merge_map == NULL)
297 return false;
298 return object_merge_map->get_output_offset(shndx, offset, poutput);
299 }
300
301 const Output_section_data*
302 Relobj::find_merge_section(unsigned int shndx) const {
303 Object_merge_map* object_merge_map = this->object_merge_map_;
304 if (object_merge_map == NULL)
305 return NULL;
306 return object_merge_map->find_merge_section(shndx);
307 }
308
309 // To copy the symbols data read from the file to a local data structure.
310 // This function is called from do_layout only while doing garbage
311 // collection.
312
313 void
314 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
315 unsigned int section_header_size)
316 {
317 gc_sd->section_headers_data =
318 new unsigned char[(section_header_size)];
319 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
320 section_header_size);
321 gc_sd->section_names_data =
322 new unsigned char[sd->section_names_size];
323 memcpy(gc_sd->section_names_data, sd->section_names->data(),
324 sd->section_names_size);
325 gc_sd->section_names_size = sd->section_names_size;
326 if (sd->symbols != NULL)
327 {
328 gc_sd->symbols_data =
329 new unsigned char[sd->symbols_size];
330 memcpy(gc_sd->symbols_data, sd->symbols->data(),
331 sd->symbols_size);
332 }
333 else
334 {
335 gc_sd->symbols_data = NULL;
336 }
337 gc_sd->symbols_size = sd->symbols_size;
338 gc_sd->external_symbols_offset = sd->external_symbols_offset;
339 if (sd->symbol_names != NULL)
340 {
341 gc_sd->symbol_names_data =
342 new unsigned char[sd->symbol_names_size];
343 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
344 sd->symbol_names_size);
345 }
346 else
347 {
348 gc_sd->symbol_names_data = NULL;
349 }
350 gc_sd->symbol_names_size = sd->symbol_names_size;
351 }
352
353 // This function determines if a particular section name must be included
354 // in the link. This is used during garbage collection to determine the
355 // roots of the worklist.
356
357 bool
358 Relobj::is_section_name_included(const char* name)
359 {
360 if (is_prefix_of(".ctors", name)
361 || is_prefix_of(".dtors", name)
362 || is_prefix_of(".note", name)
363 || is_prefix_of(".init", name)
364 || is_prefix_of(".fini", name)
365 || is_prefix_of(".gcc_except_table", name)
366 || is_prefix_of(".jcr", name)
367 || is_prefix_of(".preinit_array", name)
368 || (is_prefix_of(".text", name)
369 && strstr(name, "personality"))
370 || (is_prefix_of(".data", name)
371 && strstr(name, "personality"))
372 || (is_prefix_of(".sdata", name)
373 && strstr(name, "personality"))
374 || (is_prefix_of(".gnu.linkonce.d", name)
375 && strstr(name, "personality"))
376 || (is_prefix_of(".rodata", name)
377 && strstr(name, "nptl_version")))
378 {
379 return true;
380 }
381 return false;
382 }
383
384 // Finalize the incremental relocation information. Allocates a block
385 // of relocation entries for each symbol, and sets the reloc_bases_
386 // array to point to the first entry in each block. If CLEAR_COUNTS
387 // is TRUE, also clear the per-symbol relocation counters.
388
389 void
390 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
391 {
392 unsigned int nsyms = this->get_global_symbols()->size();
393 this->reloc_bases_ = new unsigned int[nsyms];
394
395 gold_assert(this->reloc_bases_ != NULL);
396 gold_assert(layout->incremental_inputs() != NULL);
397
398 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
399 for (unsigned int i = 0; i < nsyms; ++i)
400 {
401 this->reloc_bases_[i] = rindex;
402 rindex += this->reloc_counts_[i];
403 if (clear_counts)
404 this->reloc_counts_[i] = 0;
405 }
406 layout->incremental_inputs()->set_reloc_count(rindex);
407 }
408
409 Object_merge_map*
410 Relobj::get_or_create_merge_map()
411 {
412 if (!this->object_merge_map_)
413 this->object_merge_map_ = new Object_merge_map();
414 return this->object_merge_map_;
415 }
416
417 // Class Sized_relobj.
418
419 // Iterate over local symbols, calling a visitor class V for each GOT offset
420 // associated with a local symbol.
421
422 template<int size, bool big_endian>
423 void
424 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
425 Got_offset_list::Visitor* v) const
426 {
427 unsigned int nsyms = this->local_symbol_count();
428 for (unsigned int i = 0; i < nsyms; i++)
429 {
430 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
431 if (p != this->local_got_offsets_.end())
432 {
433 const Got_offset_list* got_offsets = p->second;
434 got_offsets->for_all_got_offsets(v);
435 }
436 }
437 }
438
439 // Get the address of an output section.
440
441 template<int size, bool big_endian>
442 uint64_t
443 Sized_relobj<size, big_endian>::do_output_section_address(
444 unsigned int shndx)
445 {
446 // If the input file is linked as --just-symbols, the output
447 // section address is the input section address.
448 if (this->just_symbols())
449 return this->section_address(shndx);
450
451 const Output_section* os = this->do_output_section(shndx);
452 gold_assert(os != NULL);
453 return os->address();
454 }
455
456 // Class Sized_relobj_file.
457
458 template<int size, bool big_endian>
459 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
460 const std::string& name,
461 Input_file* input_file,
462 off_t offset,
463 const elfcpp::Ehdr<size, big_endian>& ehdr)
464 : Sized_relobj<size, big_endian>(name, input_file, offset),
465 elf_file_(this, ehdr),
466 symtab_shndx_(-1U),
467 local_symbol_count_(0),
468 output_local_symbol_count_(0),
469 output_local_dynsym_count_(0),
470 symbols_(),
471 defined_count_(0),
472 local_symbol_offset_(0),
473 local_dynsym_offset_(0),
474 local_values_(),
475 local_plt_offsets_(),
476 kept_comdat_sections_(),
477 has_eh_frame_(false),
478 discarded_eh_frame_shndx_(-1U),
479 is_deferred_layout_(false),
480 deferred_layout_(),
481 deferred_layout_relocs_()
482 {
483 this->e_type_ = ehdr.get_e_type();
484 }
485
486 template<int size, bool big_endian>
487 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
488 {
489 }
490
491 // Set up an object file based on the file header. This sets up the
492 // section information.
493
494 template<int size, bool big_endian>
495 void
496 Sized_relobj_file<size, big_endian>::do_setup()
497 {
498 const unsigned int shnum = this->elf_file_.shnum();
499 this->set_shnum(shnum);
500 }
501
502 // Find the SHT_SYMTAB section, given the section headers. The ELF
503 // standard says that maybe in the future there can be more than one
504 // SHT_SYMTAB section. Until somebody figures out how that could
505 // work, we assume there is only one.
506
507 template<int size, bool big_endian>
508 void
509 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
510 {
511 const unsigned int shnum = this->shnum();
512 this->symtab_shndx_ = 0;
513 if (shnum > 0)
514 {
515 // Look through the sections in reverse order, since gas tends
516 // to put the symbol table at the end.
517 const unsigned char* p = pshdrs + shnum * This::shdr_size;
518 unsigned int i = shnum;
519 unsigned int xindex_shndx = 0;
520 unsigned int xindex_link = 0;
521 while (i > 0)
522 {
523 --i;
524 p -= This::shdr_size;
525 typename This::Shdr shdr(p);
526 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
527 {
528 this->symtab_shndx_ = i;
529 if (xindex_shndx > 0 && xindex_link == i)
530 {
531 Xindex* xindex =
532 new Xindex(this->elf_file_.large_shndx_offset());
533 xindex->read_symtab_xindex<size, big_endian>(this,
534 xindex_shndx,
535 pshdrs);
536 this->set_xindex(xindex);
537 }
538 break;
539 }
540
541 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
542 // one. This will work if it follows the SHT_SYMTAB
543 // section.
544 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
545 {
546 xindex_shndx = i;
547 xindex_link = this->adjust_shndx(shdr.get_sh_link());
548 }
549 }
550 }
551 }
552
553 // Return the Xindex structure to use for object with lots of
554 // sections.
555
556 template<int size, bool big_endian>
557 Xindex*
558 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
559 {
560 gold_assert(this->symtab_shndx_ != -1U);
561 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
562 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
563 return xindex;
564 }
565
566 // Return whether SHDR has the right type and flags to be a GNU
567 // .eh_frame section.
568
569 template<int size, bool big_endian>
570 bool
571 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
572 const elfcpp::Shdr<size, big_endian>* shdr) const
573 {
574 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
575 return ((sh_type == elfcpp::SHT_PROGBITS
576 || sh_type == elfcpp::SHT_X86_64_UNWIND)
577 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
578 }
579
580 // Find the section header with the given name.
581
582 template<int size, bool big_endian>
583 const unsigned char*
584 Object::find_shdr(
585 const unsigned char* pshdrs,
586 const char* name,
587 const char* names,
588 section_size_type names_size,
589 const unsigned char* hdr) const
590 {
591 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
592 const unsigned int shnum = this->shnum();
593 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
594 size_t sh_name = 0;
595
596 while (1)
597 {
598 if (hdr)
599 {
600 // We found HDR last time we were called, continue looking.
601 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
602 sh_name = shdr.get_sh_name();
603 }
604 else
605 {
606 // Look for the next occurrence of NAME in NAMES.
607 // The fact that .shstrtab produced by current GNU tools is
608 // string merged means we shouldn't have both .not.foo and
609 // .foo in .shstrtab, and multiple .foo sections should all
610 // have the same sh_name. However, this is not guaranteed
611 // by the ELF spec and not all ELF object file producers may
612 // be so clever.
613 size_t len = strlen(name) + 1;
614 const char *p = sh_name ? names + sh_name + len : names;
615 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
616 name, len));
617 if (p == NULL)
618 return NULL;
619 sh_name = p - names;
620 hdr = pshdrs;
621 if (sh_name == 0)
622 return hdr;
623 }
624
625 hdr += shdr_size;
626 while (hdr < hdr_end)
627 {
628 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
629 if (shdr.get_sh_name() == sh_name)
630 return hdr;
631 hdr += shdr_size;
632 }
633 hdr = NULL;
634 if (sh_name == 0)
635 return hdr;
636 }
637 }
638
639 // Return whether there is a GNU .eh_frame section, given the section
640 // headers and the section names.
641
642 template<int size, bool big_endian>
643 bool
644 Sized_relobj_file<size, big_endian>::find_eh_frame(
645 const unsigned char* pshdrs,
646 const char* names,
647 section_size_type names_size) const
648 {
649 const unsigned char* s = NULL;
650
651 while (1)
652 {
653 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
654 names, names_size, s);
655 if (s == NULL)
656 return false;
657
658 typename This::Shdr shdr(s);
659 if (this->check_eh_frame_flags(&shdr))
660 return true;
661 }
662 }
663
664 // Return TRUE if this is a section whose contents will be needed in the
665 // Add_symbols task. This function is only called for sections that have
666 // already passed the test in is_compressed_debug_section(), so we know
667 // that the section name begins with ".zdebug".
668
669 static bool
670 need_decompressed_section(const char* name)
671 {
672 // Skip over the ".zdebug" and a quick check for the "_".
673 name += 7;
674 if (*name++ != '_')
675 return false;
676
677 #ifdef ENABLE_THREADS
678 // Decompressing these sections now will help only if we're
679 // multithreaded.
680 if (parameters->options().threads())
681 {
682 // We will need .zdebug_str if this is not an incremental link
683 // (i.e., we are processing string merge sections) or if we need
684 // to build a gdb index.
685 if ((!parameters->incremental() || parameters->options().gdb_index())
686 && strcmp(name, "str") == 0)
687 return true;
688
689 // We will need these other sections when building a gdb index.
690 if (parameters->options().gdb_index()
691 && (strcmp(name, "info") == 0
692 || strcmp(name, "types") == 0
693 || strcmp(name, "pubnames") == 0
694 || strcmp(name, "pubtypes") == 0
695 || strcmp(name, "ranges") == 0
696 || strcmp(name, "abbrev") == 0))
697 return true;
698 }
699 #endif
700
701 // Even when single-threaded, we will need .zdebug_str if this is
702 // not an incremental link and we are building a gdb index.
703 // Otherwise, we would decompress the section twice: once for
704 // string merge processing, and once for building the gdb index.
705 if (!parameters->incremental()
706 && parameters->options().gdb_index()
707 && strcmp(name, "str") == 0)
708 return true;
709
710 return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719 const unsigned char* pshdrs,
720 unsigned int shnum,
721 const char* names,
722 section_size_type names_size,
723 Object* obj,
724 bool decompress_if_needed)
725 {
726 Compressed_section_map* uncompressed_map = new Compressed_section_map();
727 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
728 const unsigned char* p = pshdrs + shdr_size;
729
730 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
731 {
732 typename elfcpp::Shdr<size, big_endian> shdr(p);
733 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
734 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
735 {
736 if (shdr.get_sh_name() >= names_size)
737 {
738 obj->error(_("bad section name offset for section %u: %lu"),
739 i, static_cast<unsigned long>(shdr.get_sh_name()));
740 continue;
741 }
742
743 const char* name = names + shdr.get_sh_name();
744 if (is_compressed_debug_section(name))
745 {
746 section_size_type len;
747 const unsigned char* contents =
748 obj->section_contents(i, &len, false);
749 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
750 Compressed_section_info info;
751 info.size = convert_to_section_size_type(uncompressed_size);
752 info.contents = NULL;
753 if (uncompressed_size != -1ULL)
754 {
755 unsigned char* uncompressed_data = NULL;
756 if (decompress_if_needed && need_decompressed_section(name))
757 {
758 uncompressed_data = new unsigned char[uncompressed_size];
759 if (decompress_input_section(contents, len,
760 uncompressed_data,
761 uncompressed_size))
762 info.contents = uncompressed_data;
763 else
764 delete[] uncompressed_data;
765 }
766 (*uncompressed_map)[i] = info;
767 }
768 }
769 }
770 }
771 return uncompressed_map;
772 }
773
774 // Stash away info for a number of special sections.
775 // Return true if any of the sections found require local symbols to be read.
776
777 template<int size, bool big_endian>
778 bool
779 Sized_relobj_file<size, big_endian>::do_find_special_sections(
780 Read_symbols_data* sd)
781 {
782 const unsigned char* const pshdrs = sd->section_headers->data();
783 const unsigned char* namesu = sd->section_names->data();
784 const char* names = reinterpret_cast<const char*>(namesu);
785
786 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
787 this->has_eh_frame_ = true;
788
789 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
790 {
791 Compressed_section_map* compressed_sections =
792 build_compressed_section_map<size, big_endian>(
793 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
794 if (compressed_sections != NULL)
795 this->set_compressed_sections(compressed_sections);
796 }
797
798 return (this->has_eh_frame_
799 || (!parameters->options().relocatable()
800 && parameters->options().gdb_index()
801 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
802 || memmem(names, sd->section_names_size, "debug_types",
803 13) == 0)));
804 }
805
806 // Read the sections and symbols from an object file.
807
808 template<int size, bool big_endian>
809 void
810 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
811 {
812 this->base_read_symbols(sd);
813 }
814
815 // Read the sections and symbols from an object file. This is common
816 // code for all target-specific overrides of do_read_symbols().
817
818 template<int size, bool big_endian>
819 void
820 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
821 {
822 this->read_section_data(&this->elf_file_, sd);
823
824 const unsigned char* const pshdrs = sd->section_headers->data();
825
826 this->find_symtab(pshdrs);
827
828 bool need_local_symbols = this->do_find_special_sections(sd);
829
830 sd->symbols = NULL;
831 sd->symbols_size = 0;
832 sd->external_symbols_offset = 0;
833 sd->symbol_names = NULL;
834 sd->symbol_names_size = 0;
835
836 if (this->symtab_shndx_ == 0)
837 {
838 // No symbol table. Weird but legal.
839 return;
840 }
841
842 // Get the symbol table section header.
843 typename This::Shdr symtabshdr(pshdrs
844 + this->symtab_shndx_ * This::shdr_size);
845 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
846
847 // If this object has a .eh_frame section, or if building a .gdb_index
848 // section and there is debug info, we need all the symbols.
849 // Otherwise we only need the external symbols. While it would be
850 // simpler to just always read all the symbols, I've seen object
851 // files with well over 2000 local symbols, which for a 64-bit
852 // object file format is over 5 pages that we don't need to read
853 // now.
854
855 const int sym_size = This::sym_size;
856 const unsigned int loccount = symtabshdr.get_sh_info();
857 this->local_symbol_count_ = loccount;
858 this->local_values_.resize(loccount);
859 section_offset_type locsize = loccount * sym_size;
860 off_t dataoff = symtabshdr.get_sh_offset();
861 section_size_type datasize =
862 convert_to_section_size_type(symtabshdr.get_sh_size());
863 off_t extoff = dataoff + locsize;
864 section_size_type extsize = datasize - locsize;
865
866 off_t readoff = need_local_symbols ? dataoff : extoff;
867 section_size_type readsize = need_local_symbols ? datasize : extsize;
868
869 if (readsize == 0)
870 {
871 // No external symbols. Also weird but also legal.
872 return;
873 }
874
875 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
876
877 // Read the section header for the symbol names.
878 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
879 if (strtab_shndx >= this->shnum())
880 {
881 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
882 return;
883 }
884 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
885 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
886 {
887 this->error(_("symbol table name section has wrong type: %u"),
888 static_cast<unsigned int>(strtabshdr.get_sh_type()));
889 return;
890 }
891
892 // Read the symbol names.
893 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
894 strtabshdr.get_sh_size(),
895 false, true);
896
897 sd->symbols = fvsymtab;
898 sd->symbols_size = readsize;
899 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
900 sd->symbol_names = fvstrtab;
901 sd->symbol_names_size =
902 convert_to_section_size_type(strtabshdr.get_sh_size());
903 }
904
905 // Return the section index of symbol SYM. Set *VALUE to its value in
906 // the object file. Set *IS_ORDINARY if this is an ordinary section
907 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
908 // Note that for a symbol which is not defined in this object file,
909 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
910 // the final value of the symbol in the link.
911
912 template<int size, bool big_endian>
913 unsigned int
914 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
915 Address* value,
916 bool* is_ordinary)
917 {
918 section_size_type symbols_size;
919 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
920 &symbols_size,
921 false);
922
923 const size_t count = symbols_size / This::sym_size;
924 gold_assert(sym < count);
925
926 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
927 *value = elfsym.get_st_value();
928
929 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
930 }
931
932 // Return whether to include a section group in the link. LAYOUT is
933 // used to keep track of which section groups we have already seen.
934 // INDEX is the index of the section group and SHDR is the section
935 // header. If we do not want to include this group, we set bits in
936 // OMIT for each section which should be discarded.
937
938 template<int size, bool big_endian>
939 bool
940 Sized_relobj_file<size, big_endian>::include_section_group(
941 Symbol_table* symtab,
942 Layout* layout,
943 unsigned int index,
944 const char* name,
945 const unsigned char* shdrs,
946 const char* section_names,
947 section_size_type section_names_size,
948 std::vector<bool>* omit)
949 {
950 // Read the section contents.
951 typename This::Shdr shdr(shdrs + index * This::shdr_size);
952 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
953 shdr.get_sh_size(), true, false);
954 const elfcpp::Elf_Word* pword =
955 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
956
957 // The first word contains flags. We only care about COMDAT section
958 // groups. Other section groups are always included in the link
959 // just like ordinary sections.
960 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
961
962 // Look up the group signature, which is the name of a symbol. ELF
963 // uses a symbol name because some group signatures are long, and
964 // the name is generally already in the symbol table, so it makes
965 // sense to put the long string just once in .strtab rather than in
966 // both .strtab and .shstrtab.
967
968 // Get the appropriate symbol table header (this will normally be
969 // the single SHT_SYMTAB section, but in principle it need not be).
970 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
971 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
972
973 // Read the symbol table entry.
974 unsigned int symndx = shdr.get_sh_info();
975 if (symndx >= symshdr.get_sh_size() / This::sym_size)
976 {
977 this->error(_("section group %u info %u out of range"),
978 index, symndx);
979 return false;
980 }
981 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
982 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
983 false);
984 elfcpp::Sym<size, big_endian> sym(psym);
985
986 // Read the symbol table names.
987 section_size_type symnamelen;
988 const unsigned char* psymnamesu;
989 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
990 &symnamelen, true);
991 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
992
993 // Get the section group signature.
994 if (sym.get_st_name() >= symnamelen)
995 {
996 this->error(_("symbol %u name offset %u out of range"),
997 symndx, sym.get_st_name());
998 return false;
999 }
1000
1001 std::string signature(psymnames + sym.get_st_name());
1002
1003 // It seems that some versions of gas will create a section group
1004 // associated with a section symbol, and then fail to give a name to
1005 // the section symbol. In such a case, use the name of the section.
1006 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1007 {
1008 bool is_ordinary;
1009 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1010 sym.get_st_shndx(),
1011 &is_ordinary);
1012 if (!is_ordinary || sym_shndx >= this->shnum())
1013 {
1014 this->error(_("symbol %u invalid section index %u"),
1015 symndx, sym_shndx);
1016 return false;
1017 }
1018 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1019 if (member_shdr.get_sh_name() < section_names_size)
1020 signature = section_names + member_shdr.get_sh_name();
1021 }
1022
1023 // Record this section group in the layout, and see whether we've already
1024 // seen one with the same signature.
1025 bool include_group;
1026 bool is_comdat;
1027 Kept_section* kept_section = NULL;
1028
1029 if ((flags & elfcpp::GRP_COMDAT) == 0)
1030 {
1031 include_group = true;
1032 is_comdat = false;
1033 }
1034 else
1035 {
1036 include_group = layout->find_or_add_kept_section(signature,
1037 this, index, true,
1038 true, &kept_section);
1039 is_comdat = true;
1040 }
1041
1042 if (is_comdat && include_group)
1043 {
1044 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1045 if (incremental_inputs != NULL)
1046 incremental_inputs->report_comdat_group(this, signature.c_str());
1047 }
1048
1049 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1050
1051 std::vector<unsigned int> shndxes;
1052 bool relocate_group = include_group && parameters->options().relocatable();
1053 if (relocate_group)
1054 shndxes.reserve(count - 1);
1055
1056 for (size_t i = 1; i < count; ++i)
1057 {
1058 elfcpp::Elf_Word shndx =
1059 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1060
1061 if (relocate_group)
1062 shndxes.push_back(shndx);
1063
1064 if (shndx >= this->shnum())
1065 {
1066 this->error(_("section %u in section group %u out of range"),
1067 shndx, index);
1068 continue;
1069 }
1070
1071 // Check for an earlier section number, since we're going to get
1072 // it wrong--we may have already decided to include the section.
1073 if (shndx < index)
1074 this->error(_("invalid section group %u refers to earlier section %u"),
1075 index, shndx);
1076
1077 // Get the name of the member section.
1078 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1079 if (member_shdr.get_sh_name() >= section_names_size)
1080 {
1081 // This is an error, but it will be diagnosed eventually
1082 // in do_layout, so we don't need to do anything here but
1083 // ignore it.
1084 continue;
1085 }
1086 std::string mname(section_names + member_shdr.get_sh_name());
1087
1088 if (include_group)
1089 {
1090 if (is_comdat)
1091 kept_section->add_comdat_section(mname, shndx,
1092 member_shdr.get_sh_size());
1093 }
1094 else
1095 {
1096 (*omit)[shndx] = true;
1097
1098 if (is_comdat)
1099 {
1100 Relobj* kept_object = kept_section->object();
1101 if (kept_section->is_comdat())
1102 {
1103 // Find the corresponding kept section, and store
1104 // that info in the discarded section table.
1105 unsigned int kept_shndx;
1106 uint64_t kept_size;
1107 if (kept_section->find_comdat_section(mname, &kept_shndx,
1108 &kept_size))
1109 {
1110 // We don't keep a mapping for this section if
1111 // it has a different size. The mapping is only
1112 // used for relocation processing, and we don't
1113 // want to treat the sections as similar if the
1114 // sizes are different. Checking the section
1115 // size is the approach used by the GNU linker.
1116 if (kept_size == member_shdr.get_sh_size())
1117 this->set_kept_comdat_section(shndx, kept_object,
1118 kept_shndx);
1119 }
1120 }
1121 else
1122 {
1123 // The existing section is a linkonce section. Add
1124 // a mapping if there is exactly one section in the
1125 // group (which is true when COUNT == 2) and if it
1126 // is the same size.
1127 if (count == 2
1128 && (kept_section->linkonce_size()
1129 == member_shdr.get_sh_size()))
1130 this->set_kept_comdat_section(shndx, kept_object,
1131 kept_section->shndx());
1132 }
1133 }
1134 }
1135 }
1136
1137 if (relocate_group)
1138 layout->layout_group(symtab, this, index, name, signature.c_str(),
1139 shdr, flags, &shndxes);
1140
1141 return include_group;
1142 }
1143
1144 // Whether to include a linkonce section in the link. NAME is the
1145 // name of the section and SHDR is the section header.
1146
1147 // Linkonce sections are a GNU extension implemented in the original
1148 // GNU linker before section groups were defined. The semantics are
1149 // that we only include one linkonce section with a given name. The
1150 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1151 // where T is the type of section and SYMNAME is the name of a symbol.
1152 // In an attempt to make linkonce sections interact well with section
1153 // groups, we try to identify SYMNAME and use it like a section group
1154 // signature. We want to block section groups with that signature,
1155 // but not other linkonce sections with that signature. We also use
1156 // the full name of the linkonce section as a normal section group
1157 // signature.
1158
1159 template<int size, bool big_endian>
1160 bool
1161 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1162 Layout* layout,
1163 unsigned int index,
1164 const char* name,
1165 const elfcpp::Shdr<size, big_endian>& shdr)
1166 {
1167 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1168 // In general the symbol name we want will be the string following
1169 // the last '.'. However, we have to handle the case of
1170 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1171 // some versions of gcc. So we use a heuristic: if the name starts
1172 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1173 // we look for the last '.'. We can't always simply skip
1174 // ".gnu.linkonce.X", because we have to deal with cases like
1175 // ".gnu.linkonce.d.rel.ro.local".
1176 const char* const linkonce_t = ".gnu.linkonce.t.";
1177 const char* symname;
1178 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1179 symname = name + strlen(linkonce_t);
1180 else
1181 symname = strrchr(name, '.') + 1;
1182 std::string sig1(symname);
1183 std::string sig2(name);
1184 Kept_section* kept1;
1185 Kept_section* kept2;
1186 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1187 false, &kept1);
1188 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1189 true, &kept2);
1190
1191 if (!include2)
1192 {
1193 // We are not including this section because we already saw the
1194 // name of the section as a signature. This normally implies
1195 // that the kept section is another linkonce section. If it is
1196 // the same size, record it as the section which corresponds to
1197 // this one.
1198 if (kept2->object() != NULL
1199 && !kept2->is_comdat()
1200 && kept2->linkonce_size() == sh_size)
1201 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1202 }
1203 else if (!include1)
1204 {
1205 // The section is being discarded on the basis of its symbol
1206 // name. This means that the corresponding kept section was
1207 // part of a comdat group, and it will be difficult to identify
1208 // the specific section within that group that corresponds to
1209 // this linkonce section. We'll handle the simple case where
1210 // the group has only one member section. Otherwise, it's not
1211 // worth the effort.
1212 unsigned int kept_shndx;
1213 uint64_t kept_size;
1214 if (kept1->object() != NULL
1215 && kept1->is_comdat()
1216 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1217 && kept_size == sh_size)
1218 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1219 }
1220 else
1221 {
1222 kept1->set_linkonce_size(sh_size);
1223 kept2->set_linkonce_size(sh_size);
1224 }
1225
1226 return include1 && include2;
1227 }
1228
1229 // Layout an input section.
1230
1231 template<int size, bool big_endian>
1232 inline void
1233 Sized_relobj_file<size, big_endian>::layout_section(
1234 Layout* layout,
1235 unsigned int shndx,
1236 const char* name,
1237 const typename This::Shdr& shdr,
1238 unsigned int reloc_shndx,
1239 unsigned int reloc_type)
1240 {
1241 off_t offset;
1242 Output_section* os = layout->layout(this, shndx, name, shdr,
1243 reloc_shndx, reloc_type, &offset);
1244
1245 this->output_sections()[shndx] = os;
1246 if (offset == -1)
1247 this->section_offsets()[shndx] = invalid_address;
1248 else
1249 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1250
1251 // If this section requires special handling, and if there are
1252 // relocs that apply to it, then we must do the special handling
1253 // before we apply the relocs.
1254 if (offset == -1 && reloc_shndx != 0)
1255 this->set_relocs_must_follow_section_writes();
1256 }
1257
1258 // Layout an input .eh_frame section.
1259
1260 template<int size, bool big_endian>
1261 void
1262 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1263 Layout* layout,
1264 const unsigned char* symbols_data,
1265 section_size_type symbols_size,
1266 const unsigned char* symbol_names_data,
1267 section_size_type symbol_names_size,
1268 unsigned int shndx,
1269 const typename This::Shdr& shdr,
1270 unsigned int reloc_shndx,
1271 unsigned int reloc_type)
1272 {
1273 gold_assert(this->has_eh_frame_);
1274
1275 off_t offset;
1276 Output_section* os = layout->layout_eh_frame(this,
1277 symbols_data,
1278 symbols_size,
1279 symbol_names_data,
1280 symbol_names_size,
1281 shndx,
1282 shdr,
1283 reloc_shndx,
1284 reloc_type,
1285 &offset);
1286 this->output_sections()[shndx] = os;
1287 if (os == NULL || offset == -1)
1288 {
1289 // An object can contain at most one section holding exception
1290 // frame information.
1291 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1292 this->discarded_eh_frame_shndx_ = shndx;
1293 this->section_offsets()[shndx] = invalid_address;
1294 }
1295 else
1296 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1297
1298 // If this section requires special handling, and if there are
1299 // relocs that aply to it, then we must do the special handling
1300 // before we apply the relocs.
1301 if (os != NULL && offset == -1 && reloc_shndx != 0)
1302 this->set_relocs_must_follow_section_writes();
1303 }
1304
1305 // Lay out the input sections. We walk through the sections and check
1306 // whether they should be included in the link. If they should, we
1307 // pass them to the Layout object, which will return an output section
1308 // and an offset.
1309 // This function is called twice sometimes, two passes, when mapping
1310 // of input sections to output sections must be delayed.
1311 // This is true for the following :
1312 // * Garbage collection (--gc-sections): Some input sections will be
1313 // discarded and hence the assignment must wait until the second pass.
1314 // In the first pass, it is for setting up some sections as roots to
1315 // a work-list for --gc-sections and to do comdat processing.
1316 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1317 // will be folded and hence the assignment must wait.
1318 // * Using plugins to map some sections to unique segments: Mapping
1319 // some sections to unique segments requires mapping them to unique
1320 // output sections too. This can be done via plugins now and this
1321 // information is not available in the first pass.
1322
1323 template<int size, bool big_endian>
1324 void
1325 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1326 Layout* layout,
1327 Read_symbols_data* sd)
1328 {
1329 const unsigned int shnum = this->shnum();
1330
1331 /* Should this function be called twice? */
1332 bool is_two_pass = (parameters->options().gc_sections()
1333 || parameters->options().icf_enabled()
1334 || layout->is_unique_segment_for_sections_specified());
1335
1336 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1337 a two-pass approach is not needed. */
1338 bool is_pass_one = false;
1339 bool is_pass_two = false;
1340
1341 Symbols_data* gc_sd = NULL;
1342
1343 /* Check if do_layout needs to be two-pass. If so, find out which pass
1344 should happen. In the first pass, the data in sd is saved to be used
1345 later in the second pass. */
1346 if (is_two_pass)
1347 {
1348 gc_sd = this->get_symbols_data();
1349 if (gc_sd == NULL)
1350 {
1351 gold_assert(sd != NULL);
1352 is_pass_one = true;
1353 }
1354 else
1355 {
1356 if (parameters->options().gc_sections())
1357 gold_assert(symtab->gc()->is_worklist_ready());
1358 if (parameters->options().icf_enabled())
1359 gold_assert(symtab->icf()->is_icf_ready());
1360 is_pass_two = true;
1361 }
1362 }
1363
1364 if (shnum == 0)
1365 return;
1366
1367 if (is_pass_one)
1368 {
1369 // During garbage collection save the symbols data to use it when
1370 // re-entering this function.
1371 gc_sd = new Symbols_data;
1372 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1373 this->set_symbols_data(gc_sd);
1374 }
1375
1376 const unsigned char* section_headers_data = NULL;
1377 section_size_type section_names_size;
1378 const unsigned char* symbols_data = NULL;
1379 section_size_type symbols_size;
1380 const unsigned char* symbol_names_data = NULL;
1381 section_size_type symbol_names_size;
1382
1383 if (is_two_pass)
1384 {
1385 section_headers_data = gc_sd->section_headers_data;
1386 section_names_size = gc_sd->section_names_size;
1387 symbols_data = gc_sd->symbols_data;
1388 symbols_size = gc_sd->symbols_size;
1389 symbol_names_data = gc_sd->symbol_names_data;
1390 symbol_names_size = gc_sd->symbol_names_size;
1391 }
1392 else
1393 {
1394 section_headers_data = sd->section_headers->data();
1395 section_names_size = sd->section_names_size;
1396 if (sd->symbols != NULL)
1397 symbols_data = sd->symbols->data();
1398 symbols_size = sd->symbols_size;
1399 if (sd->symbol_names != NULL)
1400 symbol_names_data = sd->symbol_names->data();
1401 symbol_names_size = sd->symbol_names_size;
1402 }
1403
1404 // Get the section headers.
1405 const unsigned char* shdrs = section_headers_data;
1406 const unsigned char* pshdrs;
1407
1408 // Get the section names.
1409 const unsigned char* pnamesu = (is_two_pass
1410 ? gc_sd->section_names_data
1411 : sd->section_names->data());
1412
1413 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1414
1415 // If any input files have been claimed by plugins, we need to defer
1416 // actual layout until the replacement files have arrived.
1417 const bool should_defer_layout =
1418 (parameters->options().has_plugins()
1419 && parameters->options().plugins()->should_defer_layout());
1420 unsigned int num_sections_to_defer = 0;
1421
1422 // For each section, record the index of the reloc section if any.
1423 // Use 0 to mean that there is no reloc section, -1U to mean that
1424 // there is more than one.
1425 std::vector<unsigned int> reloc_shndx(shnum, 0);
1426 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1427 // Skip the first, dummy, section.
1428 pshdrs = shdrs + This::shdr_size;
1429 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1430 {
1431 typename This::Shdr shdr(pshdrs);
1432
1433 // Count the number of sections whose layout will be deferred.
1434 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1435 ++num_sections_to_defer;
1436
1437 unsigned int sh_type = shdr.get_sh_type();
1438 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1439 {
1440 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1441 if (target_shndx == 0 || target_shndx >= shnum)
1442 {
1443 this->error(_("relocation section %u has bad info %u"),
1444 i, target_shndx);
1445 continue;
1446 }
1447
1448 if (reloc_shndx[target_shndx] != 0)
1449 reloc_shndx[target_shndx] = -1U;
1450 else
1451 {
1452 reloc_shndx[target_shndx] = i;
1453 reloc_type[target_shndx] = sh_type;
1454 }
1455 }
1456 }
1457
1458 Output_sections& out_sections(this->output_sections());
1459 std::vector<Address>& out_section_offsets(this->section_offsets());
1460
1461 if (!is_pass_two)
1462 {
1463 out_sections.resize(shnum);
1464 out_section_offsets.resize(shnum);
1465 }
1466
1467 // If we are only linking for symbols, then there is nothing else to
1468 // do here.
1469 if (this->input_file()->just_symbols())
1470 {
1471 if (!is_pass_two)
1472 {
1473 delete sd->section_headers;
1474 sd->section_headers = NULL;
1475 delete sd->section_names;
1476 sd->section_names = NULL;
1477 }
1478 return;
1479 }
1480
1481 if (num_sections_to_defer > 0)
1482 {
1483 parameters->options().plugins()->add_deferred_layout_object(this);
1484 this->deferred_layout_.reserve(num_sections_to_defer);
1485 this->is_deferred_layout_ = true;
1486 }
1487
1488 // Whether we've seen a .note.GNU-stack section.
1489 bool seen_gnu_stack = false;
1490 // The flags of a .note.GNU-stack section.
1491 uint64_t gnu_stack_flags = 0;
1492
1493 // Keep track of which sections to omit.
1494 std::vector<bool> omit(shnum, false);
1495
1496 // Keep track of reloc sections when emitting relocations.
1497 const bool relocatable = parameters->options().relocatable();
1498 const bool emit_relocs = (relocatable
1499 || parameters->options().emit_relocs());
1500 std::vector<unsigned int> reloc_sections;
1501
1502 // Keep track of .eh_frame sections.
1503 std::vector<unsigned int> eh_frame_sections;
1504
1505 // Keep track of .debug_info and .debug_types sections.
1506 std::vector<unsigned int> debug_info_sections;
1507 std::vector<unsigned int> debug_types_sections;
1508
1509 // Skip the first, dummy, section.
1510 pshdrs = shdrs + This::shdr_size;
1511 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1512 {
1513 typename This::Shdr shdr(pshdrs);
1514
1515 if (shdr.get_sh_name() >= section_names_size)
1516 {
1517 this->error(_("bad section name offset for section %u: %lu"),
1518 i, static_cast<unsigned long>(shdr.get_sh_name()));
1519 return;
1520 }
1521
1522 const char* name = pnames + shdr.get_sh_name();
1523
1524 if (!is_pass_two)
1525 {
1526 if (this->handle_gnu_warning_section(name, i, symtab))
1527 {
1528 if (!relocatable && !parameters->options().shared())
1529 omit[i] = true;
1530 }
1531
1532 // The .note.GNU-stack section is special. It gives the
1533 // protection flags that this object file requires for the stack
1534 // in memory.
1535 if (strcmp(name, ".note.GNU-stack") == 0)
1536 {
1537 seen_gnu_stack = true;
1538 gnu_stack_flags |= shdr.get_sh_flags();
1539 omit[i] = true;
1540 }
1541
1542 // The .note.GNU-split-stack section is also special. It
1543 // indicates that the object was compiled with
1544 // -fsplit-stack.
1545 if (this->handle_split_stack_section(name))
1546 {
1547 if (!relocatable && !parameters->options().shared())
1548 omit[i] = true;
1549 }
1550
1551 // Skip attributes section.
1552 if (parameters->target().is_attributes_section(name))
1553 {
1554 omit[i] = true;
1555 }
1556
1557 bool discard = omit[i];
1558 if (!discard)
1559 {
1560 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1561 {
1562 if (!this->include_section_group(symtab, layout, i, name,
1563 shdrs, pnames,
1564 section_names_size,
1565 &omit))
1566 discard = true;
1567 }
1568 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1569 && Layout::is_linkonce(name))
1570 {
1571 if (!this->include_linkonce_section(layout, i, name, shdr))
1572 discard = true;
1573 }
1574 }
1575
1576 // Add the section to the incremental inputs layout.
1577 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1578 if (incremental_inputs != NULL
1579 && !discard
1580 && can_incremental_update(shdr.get_sh_type()))
1581 {
1582 off_t sh_size = shdr.get_sh_size();
1583 section_size_type uncompressed_size;
1584 if (this->section_is_compressed(i, &uncompressed_size))
1585 sh_size = uncompressed_size;
1586 incremental_inputs->report_input_section(this, i, name, sh_size);
1587 }
1588
1589 if (discard)
1590 {
1591 // Do not include this section in the link.
1592 out_sections[i] = NULL;
1593 out_section_offsets[i] = invalid_address;
1594 continue;
1595 }
1596 }
1597
1598 if (is_pass_one && parameters->options().gc_sections())
1599 {
1600 if (this->is_section_name_included(name)
1601 || layout->keep_input_section (this, name)
1602 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1603 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1604 {
1605 symtab->gc()->worklist().push_back(Section_id(this, i));
1606 }
1607 // If the section name XXX can be represented as a C identifier
1608 // it cannot be discarded if there are references to
1609 // __start_XXX and __stop_XXX symbols. These need to be
1610 // specially handled.
1611 if (is_cident(name))
1612 {
1613 symtab->gc()->add_cident_section(name, Section_id(this, i));
1614 }
1615 }
1616
1617 // When doing a relocatable link we are going to copy input
1618 // reloc sections into the output. We only want to copy the
1619 // ones associated with sections which are not being discarded.
1620 // However, we don't know that yet for all sections. So save
1621 // reloc sections and process them later. Garbage collection is
1622 // not triggered when relocatable code is desired.
1623 if (emit_relocs
1624 && (shdr.get_sh_type() == elfcpp::SHT_REL
1625 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1626 {
1627 reloc_sections.push_back(i);
1628 continue;
1629 }
1630
1631 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1632 continue;
1633
1634 // The .eh_frame section is special. It holds exception frame
1635 // information that we need to read in order to generate the
1636 // exception frame header. We process these after all the other
1637 // sections so that the exception frame reader can reliably
1638 // determine which sections are being discarded, and discard the
1639 // corresponding information.
1640 if (!relocatable
1641 && strcmp(name, ".eh_frame") == 0
1642 && this->check_eh_frame_flags(&shdr))
1643 {
1644 if (is_pass_one)
1645 {
1646 if (this->is_deferred_layout())
1647 out_sections[i] = reinterpret_cast<Output_section*>(2);
1648 else
1649 out_sections[i] = reinterpret_cast<Output_section*>(1);
1650 out_section_offsets[i] = invalid_address;
1651 }
1652 else if (this->is_deferred_layout())
1653 this->deferred_layout_.push_back(Deferred_layout(i, name,
1654 pshdrs,
1655 reloc_shndx[i],
1656 reloc_type[i]));
1657 else
1658 eh_frame_sections.push_back(i);
1659 continue;
1660 }
1661
1662 if (is_pass_two && parameters->options().gc_sections())
1663 {
1664 // This is executed during the second pass of garbage
1665 // collection. do_layout has been called before and some
1666 // sections have been already discarded. Simply ignore
1667 // such sections this time around.
1668 if (out_sections[i] == NULL)
1669 {
1670 gold_assert(out_section_offsets[i] == invalid_address);
1671 continue;
1672 }
1673 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1674 && symtab->gc()->is_section_garbage(this, i))
1675 {
1676 if (parameters->options().print_gc_sections())
1677 gold_info(_("%s: removing unused section from '%s'"
1678 " in file '%s'"),
1679 program_name, this->section_name(i).c_str(),
1680 this->name().c_str());
1681 out_sections[i] = NULL;
1682 out_section_offsets[i] = invalid_address;
1683 continue;
1684 }
1685 }
1686
1687 if (is_pass_two && parameters->options().icf_enabled())
1688 {
1689 if (out_sections[i] == NULL)
1690 {
1691 gold_assert(out_section_offsets[i] == invalid_address);
1692 continue;
1693 }
1694 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1695 && symtab->icf()->is_section_folded(this, i))
1696 {
1697 if (parameters->options().print_icf_sections())
1698 {
1699 Section_id folded =
1700 symtab->icf()->get_folded_section(this, i);
1701 Relobj* folded_obj =
1702 reinterpret_cast<Relobj*>(folded.first);
1703 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1704 "into '%s' in file '%s'"),
1705 program_name, this->section_name(i).c_str(),
1706 this->name().c_str(),
1707 folded_obj->section_name(folded.second).c_str(),
1708 folded_obj->name().c_str());
1709 }
1710 out_sections[i] = NULL;
1711 out_section_offsets[i] = invalid_address;
1712 continue;
1713 }
1714 }
1715
1716 // Defer layout here if input files are claimed by plugins. When gc
1717 // is turned on this function is called twice; we only want to do this
1718 // on the first pass.
1719 if (!is_pass_two
1720 && this->is_deferred_layout()
1721 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1722 {
1723 this->deferred_layout_.push_back(Deferred_layout(i, name,
1724 pshdrs,
1725 reloc_shndx[i],
1726 reloc_type[i]));
1727 // Put dummy values here; real values will be supplied by
1728 // do_layout_deferred_sections.
1729 out_sections[i] = reinterpret_cast<Output_section*>(2);
1730 out_section_offsets[i] = invalid_address;
1731 continue;
1732 }
1733
1734 // During gc_pass_two if a section that was previously deferred is
1735 // found, do not layout the section as layout_deferred_sections will
1736 // do it later from gold.cc.
1737 if (is_pass_two
1738 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1739 continue;
1740
1741 if (is_pass_one)
1742 {
1743 // This is during garbage collection. The out_sections are
1744 // assigned in the second call to this function.
1745 out_sections[i] = reinterpret_cast<Output_section*>(1);
1746 out_section_offsets[i] = invalid_address;
1747 }
1748 else
1749 {
1750 // When garbage collection is switched on the actual layout
1751 // only happens in the second call.
1752 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1753 reloc_type[i]);
1754
1755 // When generating a .gdb_index section, we do additional
1756 // processing of .debug_info and .debug_types sections after all
1757 // the other sections for the same reason as above.
1758 if (!relocatable
1759 && parameters->options().gdb_index()
1760 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1761 {
1762 if (strcmp(name, ".debug_info") == 0
1763 || strcmp(name, ".zdebug_info") == 0)
1764 debug_info_sections.push_back(i);
1765 else if (strcmp(name, ".debug_types") == 0
1766 || strcmp(name, ".zdebug_types") == 0)
1767 debug_types_sections.push_back(i);
1768 }
1769 }
1770 }
1771
1772 if (!is_pass_two)
1773 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1774
1775 // Handle the .eh_frame sections after the other sections.
1776 gold_assert(!is_pass_one || eh_frame_sections.empty());
1777 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1778 p != eh_frame_sections.end();
1779 ++p)
1780 {
1781 unsigned int i = *p;
1782 const unsigned char* pshdr;
1783 pshdr = section_headers_data + i * This::shdr_size;
1784 typename This::Shdr shdr(pshdr);
1785
1786 this->layout_eh_frame_section(layout,
1787 symbols_data,
1788 symbols_size,
1789 symbol_names_data,
1790 symbol_names_size,
1791 i,
1792 shdr,
1793 reloc_shndx[i],
1794 reloc_type[i]);
1795 }
1796
1797 // When doing a relocatable link handle the reloc sections at the
1798 // end. Garbage collection and Identical Code Folding is not
1799 // turned on for relocatable code.
1800 if (emit_relocs)
1801 this->size_relocatable_relocs();
1802
1803 gold_assert(!is_two_pass || reloc_sections.empty());
1804
1805 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1806 p != reloc_sections.end();
1807 ++p)
1808 {
1809 unsigned int i = *p;
1810 const unsigned char* pshdr;
1811 pshdr = section_headers_data + i * This::shdr_size;
1812 typename This::Shdr shdr(pshdr);
1813
1814 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1815 if (data_shndx >= shnum)
1816 {
1817 // We already warned about this above.
1818 continue;
1819 }
1820
1821 Output_section* data_section = out_sections[data_shndx];
1822 if (data_section == reinterpret_cast<Output_section*>(2))
1823 {
1824 if (is_pass_two)
1825 continue;
1826 // The layout for the data section was deferred, so we need
1827 // to defer the relocation section, too.
1828 const char* name = pnames + shdr.get_sh_name();
1829 this->deferred_layout_relocs_.push_back(
1830 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1831 out_sections[i] = reinterpret_cast<Output_section*>(2);
1832 out_section_offsets[i] = invalid_address;
1833 continue;
1834 }
1835 if (data_section == NULL)
1836 {
1837 out_sections[i] = NULL;
1838 out_section_offsets[i] = invalid_address;
1839 continue;
1840 }
1841
1842 Relocatable_relocs* rr = new Relocatable_relocs();
1843 this->set_relocatable_relocs(i, rr);
1844
1845 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1846 rr);
1847 out_sections[i] = os;
1848 out_section_offsets[i] = invalid_address;
1849 }
1850
1851 // When building a .gdb_index section, scan the .debug_info and
1852 // .debug_types sections.
1853 gold_assert(!is_pass_one
1854 || (debug_info_sections.empty() && debug_types_sections.empty()));
1855 for (std::vector<unsigned int>::const_iterator p
1856 = debug_info_sections.begin();
1857 p != debug_info_sections.end();
1858 ++p)
1859 {
1860 unsigned int i = *p;
1861 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1862 i, reloc_shndx[i], reloc_type[i]);
1863 }
1864 for (std::vector<unsigned int>::const_iterator p
1865 = debug_types_sections.begin();
1866 p != debug_types_sections.end();
1867 ++p)
1868 {
1869 unsigned int i = *p;
1870 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1871 i, reloc_shndx[i], reloc_type[i]);
1872 }
1873
1874 if (is_pass_two)
1875 {
1876 delete[] gc_sd->section_headers_data;
1877 delete[] gc_sd->section_names_data;
1878 delete[] gc_sd->symbols_data;
1879 delete[] gc_sd->symbol_names_data;
1880 this->set_symbols_data(NULL);
1881 }
1882 else
1883 {
1884 delete sd->section_headers;
1885 sd->section_headers = NULL;
1886 delete sd->section_names;
1887 sd->section_names = NULL;
1888 }
1889 }
1890
1891 // Layout sections whose layout was deferred while waiting for
1892 // input files from a plugin.
1893
1894 template<int size, bool big_endian>
1895 void
1896 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1897 {
1898 typename std::vector<Deferred_layout>::iterator deferred;
1899
1900 for (deferred = this->deferred_layout_.begin();
1901 deferred != this->deferred_layout_.end();
1902 ++deferred)
1903 {
1904 typename This::Shdr shdr(deferred->shdr_data_);
1905
1906 if (!parameters->options().relocatable()
1907 && deferred->name_ == ".eh_frame"
1908 && this->check_eh_frame_flags(&shdr))
1909 {
1910 // Checking is_section_included is not reliable for
1911 // .eh_frame sections, because they do not have an output
1912 // section. This is not a problem normally because we call
1913 // layout_eh_frame_section unconditionally, but when
1914 // deferring sections that is not true. We don't want to
1915 // keep all .eh_frame sections because that will cause us to
1916 // keep all sections that they refer to, which is the wrong
1917 // way around. Instead, the eh_frame code will discard
1918 // .eh_frame sections that refer to discarded sections.
1919
1920 // Reading the symbols again here may be slow.
1921 Read_symbols_data sd;
1922 this->base_read_symbols(&sd);
1923 this->layout_eh_frame_section(layout,
1924 sd.symbols->data(),
1925 sd.symbols_size,
1926 sd.symbol_names->data(),
1927 sd.symbol_names_size,
1928 deferred->shndx_,
1929 shdr,
1930 deferred->reloc_shndx_,
1931 deferred->reloc_type_);
1932 continue;
1933 }
1934
1935 // If the section is not included, it is because the garbage collector
1936 // decided it is not needed. Avoid reverting that decision.
1937 if (!this->is_section_included(deferred->shndx_))
1938 continue;
1939
1940 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1941 shdr, deferred->reloc_shndx_,
1942 deferred->reloc_type_);
1943 }
1944
1945 this->deferred_layout_.clear();
1946
1947 // Now handle the deferred relocation sections.
1948
1949 Output_sections& out_sections(this->output_sections());
1950 std::vector<Address>& out_section_offsets(this->section_offsets());
1951
1952 for (deferred = this->deferred_layout_relocs_.begin();
1953 deferred != this->deferred_layout_relocs_.end();
1954 ++deferred)
1955 {
1956 unsigned int shndx = deferred->shndx_;
1957 typename This::Shdr shdr(deferred->shdr_data_);
1958 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1959
1960 Output_section* data_section = out_sections[data_shndx];
1961 if (data_section == NULL)
1962 {
1963 out_sections[shndx] = NULL;
1964 out_section_offsets[shndx] = invalid_address;
1965 continue;
1966 }
1967
1968 Relocatable_relocs* rr = new Relocatable_relocs();
1969 this->set_relocatable_relocs(shndx, rr);
1970
1971 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1972 data_section, rr);
1973 out_sections[shndx] = os;
1974 out_section_offsets[shndx] = invalid_address;
1975 }
1976 }
1977
1978 // Add the symbols to the symbol table.
1979
1980 template<int size, bool big_endian>
1981 void
1982 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1983 Read_symbols_data* sd,
1984 Layout*)
1985 {
1986 if (sd->symbols == NULL)
1987 {
1988 gold_assert(sd->symbol_names == NULL);
1989 return;
1990 }
1991
1992 const int sym_size = This::sym_size;
1993 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1994 / sym_size);
1995 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1996 {
1997 this->error(_("size of symbols is not multiple of symbol size"));
1998 return;
1999 }
2000
2001 this->symbols_.resize(symcount);
2002
2003 const char* sym_names =
2004 reinterpret_cast<const char*>(sd->symbol_names->data());
2005 symtab->add_from_relobj(this,
2006 sd->symbols->data() + sd->external_symbols_offset,
2007 symcount, this->local_symbol_count_,
2008 sym_names, sd->symbol_names_size,
2009 &this->symbols_,
2010 &this->defined_count_);
2011
2012 delete sd->symbols;
2013 sd->symbols = NULL;
2014 delete sd->symbol_names;
2015 sd->symbol_names = NULL;
2016 }
2017
2018 // Find out if this object, that is a member of a lib group, should be included
2019 // in the link. We check every symbol defined by this object. If the symbol
2020 // table has a strong undefined reference to that symbol, we have to include
2021 // the object.
2022
2023 template<int size, bool big_endian>
2024 Archive::Should_include
2025 Sized_relobj_file<size, big_endian>::do_should_include_member(
2026 Symbol_table* symtab,
2027 Layout* layout,
2028 Read_symbols_data* sd,
2029 std::string* why)
2030 {
2031 char* tmpbuf = NULL;
2032 size_t tmpbuflen = 0;
2033 const char* sym_names =
2034 reinterpret_cast<const char*>(sd->symbol_names->data());
2035 const unsigned char* syms =
2036 sd->symbols->data() + sd->external_symbols_offset;
2037 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2038 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2039 / sym_size);
2040
2041 const unsigned char* p = syms;
2042
2043 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2044 {
2045 elfcpp::Sym<size, big_endian> sym(p);
2046 unsigned int st_shndx = sym.get_st_shndx();
2047 if (st_shndx == elfcpp::SHN_UNDEF)
2048 continue;
2049
2050 unsigned int st_name = sym.get_st_name();
2051 const char* name = sym_names + st_name;
2052 Symbol* symbol;
2053 Archive::Should_include t = Archive::should_include_member(symtab,
2054 layout,
2055 name,
2056 &symbol, why,
2057 &tmpbuf,
2058 &tmpbuflen);
2059 if (t == Archive::SHOULD_INCLUDE_YES)
2060 {
2061 if (tmpbuf != NULL)
2062 free(tmpbuf);
2063 return t;
2064 }
2065 }
2066 if (tmpbuf != NULL)
2067 free(tmpbuf);
2068 return Archive::SHOULD_INCLUDE_UNKNOWN;
2069 }
2070
2071 // Iterate over global defined symbols, calling a visitor class V for each.
2072
2073 template<int size, bool big_endian>
2074 void
2075 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2076 Read_symbols_data* sd,
2077 Library_base::Symbol_visitor_base* v)
2078 {
2079 const char* sym_names =
2080 reinterpret_cast<const char*>(sd->symbol_names->data());
2081 const unsigned char* syms =
2082 sd->symbols->data() + sd->external_symbols_offset;
2083 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2084 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2085 / sym_size);
2086 const unsigned char* p = syms;
2087
2088 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2089 {
2090 elfcpp::Sym<size, big_endian> sym(p);
2091 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2092 v->visit(sym_names + sym.get_st_name());
2093 }
2094 }
2095
2096 // Return whether the local symbol SYMNDX has a PLT offset.
2097
2098 template<int size, bool big_endian>
2099 bool
2100 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2101 unsigned int symndx) const
2102 {
2103 typename Local_plt_offsets::const_iterator p =
2104 this->local_plt_offsets_.find(symndx);
2105 return p != this->local_plt_offsets_.end();
2106 }
2107
2108 // Get the PLT offset of a local symbol.
2109
2110 template<int size, bool big_endian>
2111 unsigned int
2112 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2113 unsigned int symndx) const
2114 {
2115 typename Local_plt_offsets::const_iterator p =
2116 this->local_plt_offsets_.find(symndx);
2117 gold_assert(p != this->local_plt_offsets_.end());
2118 return p->second;
2119 }
2120
2121 // Set the PLT offset of a local symbol.
2122
2123 template<int size, bool big_endian>
2124 void
2125 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2126 unsigned int symndx, unsigned int plt_offset)
2127 {
2128 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2129 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2130 gold_assert(ins.second);
2131 }
2132
2133 // First pass over the local symbols. Here we add their names to
2134 // *POOL and *DYNPOOL, and we store the symbol value in
2135 // THIS->LOCAL_VALUES_. This function is always called from a
2136 // singleton thread. This is followed by a call to
2137 // finalize_local_symbols.
2138
2139 template<int size, bool big_endian>
2140 void
2141 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2142 Stringpool* dynpool)
2143 {
2144 gold_assert(this->symtab_shndx_ != -1U);
2145 if (this->symtab_shndx_ == 0)
2146 {
2147 // This object has no symbols. Weird but legal.
2148 return;
2149 }
2150
2151 // Read the symbol table section header.
2152 const unsigned int symtab_shndx = this->symtab_shndx_;
2153 typename This::Shdr symtabshdr(this,
2154 this->elf_file_.section_header(symtab_shndx));
2155 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2156
2157 // Read the local symbols.
2158 const int sym_size = This::sym_size;
2159 const unsigned int loccount = this->local_symbol_count_;
2160 gold_assert(loccount == symtabshdr.get_sh_info());
2161 off_t locsize = loccount * sym_size;
2162 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2163 locsize, true, true);
2164
2165 // Read the symbol names.
2166 const unsigned int strtab_shndx =
2167 this->adjust_shndx(symtabshdr.get_sh_link());
2168 section_size_type strtab_size;
2169 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2170 &strtab_size,
2171 true);
2172 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2173
2174 // Loop over the local symbols.
2175
2176 const Output_sections& out_sections(this->output_sections());
2177 std::vector<Address>& out_section_offsets(this->section_offsets());
2178 unsigned int shnum = this->shnum();
2179 unsigned int count = 0;
2180 unsigned int dyncount = 0;
2181 // Skip the first, dummy, symbol.
2182 psyms += sym_size;
2183 bool strip_all = parameters->options().strip_all();
2184 bool discard_all = parameters->options().discard_all();
2185 bool discard_locals = parameters->options().discard_locals();
2186 bool discard_sec_merge = parameters->options().discard_sec_merge();
2187 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2188 {
2189 elfcpp::Sym<size, big_endian> sym(psyms);
2190
2191 Symbol_value<size>& lv(this->local_values_[i]);
2192
2193 bool is_ordinary;
2194 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2195 &is_ordinary);
2196 lv.set_input_shndx(shndx, is_ordinary);
2197
2198 if (sym.get_st_type() == elfcpp::STT_SECTION)
2199 lv.set_is_section_symbol();
2200 else if (sym.get_st_type() == elfcpp::STT_TLS)
2201 lv.set_is_tls_symbol();
2202 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2203 lv.set_is_ifunc_symbol();
2204
2205 // Save the input symbol value for use in do_finalize_local_symbols().
2206 lv.set_input_value(sym.get_st_value());
2207
2208 // Decide whether this symbol should go into the output file.
2209
2210 if ((shndx < shnum && out_sections[shndx] == NULL)
2211 || shndx == this->discarded_eh_frame_shndx_)
2212 {
2213 lv.set_no_output_symtab_entry();
2214 gold_assert(!lv.needs_output_dynsym_entry());
2215 continue;
2216 }
2217
2218 if (sym.get_st_type() == elfcpp::STT_SECTION
2219 || !this->adjust_local_symbol(&lv))
2220 {
2221 lv.set_no_output_symtab_entry();
2222 gold_assert(!lv.needs_output_dynsym_entry());
2223 continue;
2224 }
2225
2226 if (sym.get_st_name() >= strtab_size)
2227 {
2228 this->error(_("local symbol %u section name out of range: %u >= %u"),
2229 i, sym.get_st_name(),
2230 static_cast<unsigned int>(strtab_size));
2231 lv.set_no_output_symtab_entry();
2232 continue;
2233 }
2234
2235 const char* name = pnames + sym.get_st_name();
2236
2237 // If needed, add the symbol to the dynamic symbol table string pool.
2238 if (lv.needs_output_dynsym_entry())
2239 {
2240 dynpool->add(name, true, NULL);
2241 ++dyncount;
2242 }
2243
2244 if (strip_all
2245 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2246 {
2247 lv.set_no_output_symtab_entry();
2248 continue;
2249 }
2250
2251 // By default, discard temporary local symbols in merge sections.
2252 // If --discard-locals option is used, discard all temporary local
2253 // symbols. These symbols start with system-specific local label
2254 // prefixes, typically .L for ELF system. We want to be compatible
2255 // with GNU ld so here we essentially use the same check in
2256 // bfd_is_local_label(). The code is different because we already
2257 // know that:
2258 //
2259 // - the symbol is local and thus cannot have global or weak binding.
2260 // - the symbol is not a section symbol.
2261 // - the symbol has a name.
2262 //
2263 // We do not discard a symbol if it needs a dynamic symbol entry.
2264 if ((discard_locals
2265 || (discard_sec_merge
2266 && is_ordinary
2267 && out_section_offsets[shndx] == invalid_address))
2268 && sym.get_st_type() != elfcpp::STT_FILE
2269 && !lv.needs_output_dynsym_entry()
2270 && lv.may_be_discarded_from_output_symtab()
2271 && parameters->target().is_local_label_name(name))
2272 {
2273 lv.set_no_output_symtab_entry();
2274 continue;
2275 }
2276
2277 // Discard the local symbol if -retain_symbols_file is specified
2278 // and the local symbol is not in that file.
2279 if (!parameters->options().should_retain_symbol(name))
2280 {
2281 lv.set_no_output_symtab_entry();
2282 continue;
2283 }
2284
2285 // Add the symbol to the symbol table string pool.
2286 pool->add(name, true, NULL);
2287 ++count;
2288 }
2289
2290 this->output_local_symbol_count_ = count;
2291 this->output_local_dynsym_count_ = dyncount;
2292 }
2293
2294 // Compute the final value of a local symbol.
2295
2296 template<int size, bool big_endian>
2297 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2298 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2299 unsigned int r_sym,
2300 const Symbol_value<size>* lv_in,
2301 Symbol_value<size>* lv_out,
2302 bool relocatable,
2303 const Output_sections& out_sections,
2304 const std::vector<Address>& out_offsets,
2305 const Symbol_table* symtab)
2306 {
2307 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2308 // we may have a memory leak.
2309 gold_assert(lv_out->has_output_value());
2310
2311 bool is_ordinary;
2312 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2313
2314 // Set the output symbol value.
2315
2316 if (!is_ordinary)
2317 {
2318 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2319 lv_out->set_output_value(lv_in->input_value());
2320 else
2321 {
2322 this->error(_("unknown section index %u for local symbol %u"),
2323 shndx, r_sym);
2324 lv_out->set_output_value(0);
2325 return This::CFLV_ERROR;
2326 }
2327 }
2328 else
2329 {
2330 if (shndx >= this->shnum())
2331 {
2332 this->error(_("local symbol %u section index %u out of range"),
2333 r_sym, shndx);
2334 lv_out->set_output_value(0);
2335 return This::CFLV_ERROR;
2336 }
2337
2338 Output_section* os = out_sections[shndx];
2339 Address secoffset = out_offsets[shndx];
2340 if (symtab->is_section_folded(this, shndx))
2341 {
2342 gold_assert(os == NULL && secoffset == invalid_address);
2343 // Get the os of the section it is folded onto.
2344 Section_id folded = symtab->icf()->get_folded_section(this,
2345 shndx);
2346 gold_assert(folded.first != NULL);
2347 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2348 <Sized_relobj_file<size, big_endian>*>(folded.first);
2349 os = folded_obj->output_section(folded.second);
2350 gold_assert(os != NULL);
2351 secoffset = folded_obj->get_output_section_offset(folded.second);
2352
2353 // This could be a relaxed input section.
2354 if (secoffset == invalid_address)
2355 {
2356 const Output_relaxed_input_section* relaxed_section =
2357 os->find_relaxed_input_section(folded_obj, folded.second);
2358 gold_assert(relaxed_section != NULL);
2359 secoffset = relaxed_section->address() - os->address();
2360 }
2361 }
2362
2363 if (os == NULL)
2364 {
2365 // This local symbol belongs to a section we are discarding.
2366 // In some cases when applying relocations later, we will
2367 // attempt to match it to the corresponding kept section,
2368 // so we leave the input value unchanged here.
2369 return This::CFLV_DISCARDED;
2370 }
2371 else if (secoffset == invalid_address)
2372 {
2373 uint64_t start;
2374
2375 // This is a SHF_MERGE section or one which otherwise
2376 // requires special handling.
2377 if (shndx == this->discarded_eh_frame_shndx_)
2378 {
2379 // This local symbol belongs to a discarded .eh_frame
2380 // section. Just treat it like the case in which
2381 // os == NULL above.
2382 gold_assert(this->has_eh_frame_);
2383 return This::CFLV_DISCARDED;
2384 }
2385 else if (!lv_in->is_section_symbol())
2386 {
2387 // This is not a section symbol. We can determine
2388 // the final value now.
2389 lv_out->set_output_value(
2390 os->output_address(this, shndx, lv_in->input_value()));
2391 }
2392 else if (!os->find_starting_output_address(this, shndx, &start))
2393 {
2394 // This is a section symbol, but apparently not one in a
2395 // merged section. First check to see if this is a relaxed
2396 // input section. If so, use its address. Otherwise just
2397 // use the start of the output section. This happens with
2398 // relocatable links when the input object has section
2399 // symbols for arbitrary non-merge sections.
2400 const Output_section_data* posd =
2401 os->find_relaxed_input_section(this, shndx);
2402 if (posd != NULL)
2403 {
2404 Address relocatable_link_adjustment =
2405 relocatable ? os->address() : 0;
2406 lv_out->set_output_value(posd->address()
2407 - relocatable_link_adjustment);
2408 }
2409 else
2410 lv_out->set_output_value(os->address());
2411 }
2412 else
2413 {
2414 // We have to consider the addend to determine the
2415 // value to use in a relocation. START is the start
2416 // of this input section. If we are doing a relocatable
2417 // link, use offset from start output section instead of
2418 // address.
2419 Address adjusted_start =
2420 relocatable ? start - os->address() : start;
2421 Merged_symbol_value<size>* msv =
2422 new Merged_symbol_value<size>(lv_in->input_value(),
2423 adjusted_start);
2424 lv_out->set_merged_symbol_value(msv);
2425 }
2426 }
2427 else if (lv_in->is_tls_symbol()
2428 || (lv_in->is_section_symbol()
2429 && (os->flags() & elfcpp::SHF_TLS)))
2430 lv_out->set_output_value(os->tls_offset()
2431 + secoffset
2432 + lv_in->input_value());
2433 else
2434 lv_out->set_output_value((relocatable ? 0 : os->address())
2435 + secoffset
2436 + lv_in->input_value());
2437 }
2438 return This::CFLV_OK;
2439 }
2440
2441 // Compute final local symbol value. R_SYM is the index of a local
2442 // symbol in symbol table. LV points to a symbol value, which is
2443 // expected to hold the input value and to be over-written by the
2444 // final value. SYMTAB points to a symbol table. Some targets may want
2445 // to know would-be-finalized local symbol values in relaxation.
2446 // Hence we provide this method. Since this method updates *LV, a
2447 // callee should make a copy of the original local symbol value and
2448 // use the copy instead of modifying an object's local symbols before
2449 // everything is finalized. The caller should also free up any allocated
2450 // memory in the return value in *LV.
2451 template<int size, bool big_endian>
2452 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2453 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2454 unsigned int r_sym,
2455 const Symbol_value<size>* lv_in,
2456 Symbol_value<size>* lv_out,
2457 const Symbol_table* symtab)
2458 {
2459 // This is just a wrapper of compute_final_local_value_internal.
2460 const bool relocatable = parameters->options().relocatable();
2461 const Output_sections& out_sections(this->output_sections());
2462 const std::vector<Address>& out_offsets(this->section_offsets());
2463 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2464 relocatable, out_sections,
2465 out_offsets, symtab);
2466 }
2467
2468 // Finalize the local symbols. Here we set the final value in
2469 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2470 // This function is always called from a singleton thread. The actual
2471 // output of the local symbols will occur in a separate task.
2472
2473 template<int size, bool big_endian>
2474 unsigned int
2475 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2476 unsigned int index,
2477 off_t off,
2478 Symbol_table* symtab)
2479 {
2480 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2481
2482 const unsigned int loccount = this->local_symbol_count_;
2483 this->local_symbol_offset_ = off;
2484
2485 const bool relocatable = parameters->options().relocatable();
2486 const Output_sections& out_sections(this->output_sections());
2487 const std::vector<Address>& out_offsets(this->section_offsets());
2488
2489 for (unsigned int i = 1; i < loccount; ++i)
2490 {
2491 Symbol_value<size>* lv = &this->local_values_[i];
2492
2493 Compute_final_local_value_status cflv_status =
2494 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2495 out_sections, out_offsets,
2496 symtab);
2497 switch (cflv_status)
2498 {
2499 case CFLV_OK:
2500 if (!lv->is_output_symtab_index_set())
2501 {
2502 lv->set_output_symtab_index(index);
2503 ++index;
2504 }
2505 break;
2506 case CFLV_DISCARDED:
2507 case CFLV_ERROR:
2508 // Do nothing.
2509 break;
2510 default:
2511 gold_unreachable();
2512 }
2513 }
2514 return index;
2515 }
2516
2517 // Set the output dynamic symbol table indexes for the local variables.
2518
2519 template<int size, bool big_endian>
2520 unsigned int
2521 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2522 unsigned int index)
2523 {
2524 const unsigned int loccount = this->local_symbol_count_;
2525 for (unsigned int i = 1; i < loccount; ++i)
2526 {
2527 Symbol_value<size>& lv(this->local_values_[i]);
2528 if (lv.needs_output_dynsym_entry())
2529 {
2530 lv.set_output_dynsym_index(index);
2531 ++index;
2532 }
2533 }
2534 return index;
2535 }
2536
2537 // Set the offset where local dynamic symbol information will be stored.
2538 // Returns the count of local symbols contributed to the symbol table by
2539 // this object.
2540
2541 template<int size, bool big_endian>
2542 unsigned int
2543 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2544 {
2545 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2546 this->local_dynsym_offset_ = off;
2547 return this->output_local_dynsym_count_;
2548 }
2549
2550 // If Symbols_data is not NULL get the section flags from here otherwise
2551 // get it from the file.
2552
2553 template<int size, bool big_endian>
2554 uint64_t
2555 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2556 {
2557 Symbols_data* sd = this->get_symbols_data();
2558 if (sd != NULL)
2559 {
2560 const unsigned char* pshdrs = sd->section_headers_data
2561 + This::shdr_size * shndx;
2562 typename This::Shdr shdr(pshdrs);
2563 return shdr.get_sh_flags();
2564 }
2565 // If sd is NULL, read the section header from the file.
2566 return this->elf_file_.section_flags(shndx);
2567 }
2568
2569 // Get the section's ent size from Symbols_data. Called by get_section_contents
2570 // in icf.cc
2571
2572 template<int size, bool big_endian>
2573 uint64_t
2574 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2575 {
2576 Symbols_data* sd = this->get_symbols_data();
2577 gold_assert(sd != NULL);
2578
2579 const unsigned char* pshdrs = sd->section_headers_data
2580 + This::shdr_size * shndx;
2581 typename This::Shdr shdr(pshdrs);
2582 return shdr.get_sh_entsize();
2583 }
2584
2585 // Write out the local symbols.
2586
2587 template<int size, bool big_endian>
2588 void
2589 Sized_relobj_file<size, big_endian>::write_local_symbols(
2590 Output_file* of,
2591 const Stringpool* sympool,
2592 const Stringpool* dynpool,
2593 Output_symtab_xindex* symtab_xindex,
2594 Output_symtab_xindex* dynsym_xindex,
2595 off_t symtab_off)
2596 {
2597 const bool strip_all = parameters->options().strip_all();
2598 if (strip_all)
2599 {
2600 if (this->output_local_dynsym_count_ == 0)
2601 return;
2602 this->output_local_symbol_count_ = 0;
2603 }
2604
2605 gold_assert(this->symtab_shndx_ != -1U);
2606 if (this->symtab_shndx_ == 0)
2607 {
2608 // This object has no symbols. Weird but legal.
2609 return;
2610 }
2611
2612 // Read the symbol table section header.
2613 const unsigned int symtab_shndx = this->symtab_shndx_;
2614 typename This::Shdr symtabshdr(this,
2615 this->elf_file_.section_header(symtab_shndx));
2616 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2617 const unsigned int loccount = this->local_symbol_count_;
2618 gold_assert(loccount == symtabshdr.get_sh_info());
2619
2620 // Read the local symbols.
2621 const int sym_size = This::sym_size;
2622 off_t locsize = loccount * sym_size;
2623 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2624 locsize, true, false);
2625
2626 // Read the symbol names.
2627 const unsigned int strtab_shndx =
2628 this->adjust_shndx(symtabshdr.get_sh_link());
2629 section_size_type strtab_size;
2630 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2631 &strtab_size,
2632 false);
2633 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2634
2635 // Get views into the output file for the portions of the symbol table
2636 // and the dynamic symbol table that we will be writing.
2637 off_t output_size = this->output_local_symbol_count_ * sym_size;
2638 unsigned char* oview = NULL;
2639 if (output_size > 0)
2640 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2641 output_size);
2642
2643 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2644 unsigned char* dyn_oview = NULL;
2645 if (dyn_output_size > 0)
2646 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2647 dyn_output_size);
2648
2649 const Output_sections& out_sections(this->output_sections());
2650
2651 gold_assert(this->local_values_.size() == loccount);
2652
2653 unsigned char* ov = oview;
2654 unsigned char* dyn_ov = dyn_oview;
2655 psyms += sym_size;
2656 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2657 {
2658 elfcpp::Sym<size, big_endian> isym(psyms);
2659
2660 Symbol_value<size>& lv(this->local_values_[i]);
2661
2662 bool is_ordinary;
2663 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2664 &is_ordinary);
2665 if (is_ordinary)
2666 {
2667 gold_assert(st_shndx < out_sections.size());
2668 if (out_sections[st_shndx] == NULL)
2669 continue;
2670 st_shndx = out_sections[st_shndx]->out_shndx();
2671 if (st_shndx >= elfcpp::SHN_LORESERVE)
2672 {
2673 if (lv.has_output_symtab_entry())
2674 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2675 if (lv.has_output_dynsym_entry())
2676 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2677 st_shndx = elfcpp::SHN_XINDEX;
2678 }
2679 }
2680
2681 // Write the symbol to the output symbol table.
2682 if (lv.has_output_symtab_entry())
2683 {
2684 elfcpp::Sym_write<size, big_endian> osym(ov);
2685
2686 gold_assert(isym.get_st_name() < strtab_size);
2687 const char* name = pnames + isym.get_st_name();
2688 osym.put_st_name(sympool->get_offset(name));
2689 osym.put_st_value(this->local_values_[i].value(this, 0));
2690 osym.put_st_size(isym.get_st_size());
2691 osym.put_st_info(isym.get_st_info());
2692 osym.put_st_other(isym.get_st_other());
2693 osym.put_st_shndx(st_shndx);
2694
2695 ov += sym_size;
2696 }
2697
2698 // Write the symbol to the output dynamic symbol table.
2699 if (lv.has_output_dynsym_entry())
2700 {
2701 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2702 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2703
2704 gold_assert(isym.get_st_name() < strtab_size);
2705 const char* name = pnames + isym.get_st_name();
2706 osym.put_st_name(dynpool->get_offset(name));
2707 osym.put_st_value(this->local_values_[i].value(this, 0));
2708 osym.put_st_size(isym.get_st_size());
2709 osym.put_st_info(isym.get_st_info());
2710 osym.put_st_other(isym.get_st_other());
2711 osym.put_st_shndx(st_shndx);
2712
2713 dyn_ov += sym_size;
2714 }
2715 }
2716
2717
2718 if (output_size > 0)
2719 {
2720 gold_assert(ov - oview == output_size);
2721 of->write_output_view(symtab_off + this->local_symbol_offset_,
2722 output_size, oview);
2723 }
2724
2725 if (dyn_output_size > 0)
2726 {
2727 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2728 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2729 dyn_oview);
2730 }
2731 }
2732
2733 // Set *INFO to symbolic information about the offset OFFSET in the
2734 // section SHNDX. Return true if we found something, false if we
2735 // found nothing.
2736
2737 template<int size, bool big_endian>
2738 bool
2739 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2740 unsigned int shndx,
2741 off_t offset,
2742 Symbol_location_info* info)
2743 {
2744 if (this->symtab_shndx_ == 0)
2745 return false;
2746
2747 section_size_type symbols_size;
2748 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2749 &symbols_size,
2750 false);
2751
2752 unsigned int symbol_names_shndx =
2753 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2754 section_size_type names_size;
2755 const unsigned char* symbol_names_u =
2756 this->section_contents(symbol_names_shndx, &names_size, false);
2757 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2758
2759 const int sym_size = This::sym_size;
2760 const size_t count = symbols_size / sym_size;
2761
2762 const unsigned char* p = symbols;
2763 for (size_t i = 0; i < count; ++i, p += sym_size)
2764 {
2765 elfcpp::Sym<size, big_endian> sym(p);
2766
2767 if (sym.get_st_type() == elfcpp::STT_FILE)
2768 {
2769 if (sym.get_st_name() >= names_size)
2770 info->source_file = "(invalid)";
2771 else
2772 info->source_file = symbol_names + sym.get_st_name();
2773 continue;
2774 }
2775
2776 bool is_ordinary;
2777 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2778 &is_ordinary);
2779 if (is_ordinary
2780 && st_shndx == shndx
2781 && static_cast<off_t>(sym.get_st_value()) <= offset
2782 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2783 > offset))
2784 {
2785 info->enclosing_symbol_type = sym.get_st_type();
2786 if (sym.get_st_name() > names_size)
2787 info->enclosing_symbol_name = "(invalid)";
2788 else
2789 {
2790 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2791 if (parameters->options().do_demangle())
2792 {
2793 char* demangled_name = cplus_demangle(
2794 info->enclosing_symbol_name.c_str(),
2795 DMGL_ANSI | DMGL_PARAMS);
2796 if (demangled_name != NULL)
2797 {
2798 info->enclosing_symbol_name.assign(demangled_name);
2799 free(demangled_name);
2800 }
2801 }
2802 }
2803 return true;
2804 }
2805 }
2806
2807 return false;
2808 }
2809
2810 // Look for a kept section corresponding to the given discarded section,
2811 // and return its output address. This is used only for relocations in
2812 // debugging sections. If we can't find the kept section, return 0.
2813
2814 template<int size, bool big_endian>
2815 typename Sized_relobj_file<size, big_endian>::Address
2816 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2817 unsigned int shndx,
2818 bool* found) const
2819 {
2820 Relobj* kept_object;
2821 unsigned int kept_shndx;
2822 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2823 {
2824 Sized_relobj_file<size, big_endian>* kept_relobj =
2825 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2826 Output_section* os = kept_relobj->output_section(kept_shndx);
2827 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2828 if (os != NULL && offset != invalid_address)
2829 {
2830 *found = true;
2831 return os->address() + offset;
2832 }
2833 }
2834 *found = false;
2835 return 0;
2836 }
2837
2838 // Get symbol counts.
2839
2840 template<int size, bool big_endian>
2841 void
2842 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2843 const Symbol_table*,
2844 size_t* defined,
2845 size_t* used) const
2846 {
2847 *defined = this->defined_count_;
2848 size_t count = 0;
2849 for (typename Symbols::const_iterator p = this->symbols_.begin();
2850 p != this->symbols_.end();
2851 ++p)
2852 if (*p != NULL
2853 && (*p)->source() == Symbol::FROM_OBJECT
2854 && (*p)->object() == this
2855 && (*p)->is_defined())
2856 ++count;
2857 *used = count;
2858 }
2859
2860 // Return a view of the decompressed contents of a section. Set *PLEN
2861 // to the size. Set *IS_NEW to true if the contents need to be freed
2862 // by the caller.
2863
2864 const unsigned char*
2865 Object::decompressed_section_contents(
2866 unsigned int shndx,
2867 section_size_type* plen,
2868 bool* is_new)
2869 {
2870 section_size_type buffer_size;
2871 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2872 false);
2873
2874 if (this->compressed_sections_ == NULL)
2875 {
2876 *plen = buffer_size;
2877 *is_new = false;
2878 return buffer;
2879 }
2880
2881 Compressed_section_map::const_iterator p =
2882 this->compressed_sections_->find(shndx);
2883 if (p == this->compressed_sections_->end())
2884 {
2885 *plen = buffer_size;
2886 *is_new = false;
2887 return buffer;
2888 }
2889
2890 section_size_type uncompressed_size = p->second.size;
2891 if (p->second.contents != NULL)
2892 {
2893 *plen = uncompressed_size;
2894 *is_new = false;
2895 return p->second.contents;
2896 }
2897
2898 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2899 if (!decompress_input_section(buffer,
2900 buffer_size,
2901 uncompressed_data,
2902 uncompressed_size))
2903 this->error(_("could not decompress section %s"),
2904 this->do_section_name(shndx).c_str());
2905
2906 // We could cache the results in p->second.contents and store
2907 // false in *IS_NEW, but build_compressed_section_map() would
2908 // have done so if it had expected it to be profitable. If
2909 // we reach this point, we expect to need the contents only
2910 // once in this pass.
2911 *plen = uncompressed_size;
2912 *is_new = true;
2913 return uncompressed_data;
2914 }
2915
2916 // Discard any buffers of uncompressed sections. This is done
2917 // at the end of the Add_symbols task.
2918
2919 void
2920 Object::discard_decompressed_sections()
2921 {
2922 if (this->compressed_sections_ == NULL)
2923 return;
2924
2925 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2926 p != this->compressed_sections_->end();
2927 ++p)
2928 {
2929 if (p->second.contents != NULL)
2930 {
2931 delete[] p->second.contents;
2932 p->second.contents = NULL;
2933 }
2934 }
2935 }
2936
2937 // Input_objects methods.
2938
2939 // Add a regular relocatable object to the list. Return false if this
2940 // object should be ignored.
2941
2942 bool
2943 Input_objects::add_object(Object* obj)
2944 {
2945 // Print the filename if the -t/--trace option is selected.
2946 if (parameters->options().trace())
2947 gold_info("%s", obj->name().c_str());
2948
2949 if (!obj->is_dynamic())
2950 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2951 else
2952 {
2953 // See if this is a duplicate SONAME.
2954 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2955 const char* soname = dynobj->soname();
2956
2957 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2958 this->sonames_.insert(soname);
2959 if (!ins.second)
2960 {
2961 // We have already seen a dynamic object with this soname.
2962 return false;
2963 }
2964
2965 this->dynobj_list_.push_back(dynobj);
2966 }
2967
2968 // Add this object to the cross-referencer if requested.
2969 if (parameters->options().user_set_print_symbol_counts()
2970 || parameters->options().cref())
2971 {
2972 if (this->cref_ == NULL)
2973 this->cref_ = new Cref();
2974 this->cref_->add_object(obj);
2975 }
2976
2977 return true;
2978 }
2979
2980 // For each dynamic object, record whether we've seen all of its
2981 // explicit dependencies.
2982
2983 void
2984 Input_objects::check_dynamic_dependencies() const
2985 {
2986 bool issued_copy_dt_needed_error = false;
2987 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2988 p != this->dynobj_list_.end();
2989 ++p)
2990 {
2991 const Dynobj::Needed& needed((*p)->needed());
2992 bool found_all = true;
2993 Dynobj::Needed::const_iterator pneeded;
2994 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2995 {
2996 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2997 {
2998 found_all = false;
2999 break;
3000 }
3001 }
3002 (*p)->set_has_unknown_needed_entries(!found_all);
3003
3004 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
3005 // that gold does not support. However, they cause no trouble
3006 // unless there is a DT_NEEDED entry that we don't know about;
3007 // warn only in that case.
3008 if (!found_all
3009 && !issued_copy_dt_needed_error
3010 && (parameters->options().copy_dt_needed_entries()
3011 || parameters->options().add_needed()))
3012 {
3013 const char* optname;
3014 if (parameters->options().copy_dt_needed_entries())
3015 optname = "--copy-dt-needed-entries";
3016 else
3017 optname = "--add-needed";
3018 gold_error(_("%s is not supported but is required for %s in %s"),
3019 optname, (*pneeded).c_str(), (*p)->name().c_str());
3020 issued_copy_dt_needed_error = true;
3021 }
3022 }
3023 }
3024
3025 // Start processing an archive.
3026
3027 void
3028 Input_objects::archive_start(Archive* archive)
3029 {
3030 if (parameters->options().user_set_print_symbol_counts()
3031 || parameters->options().cref())
3032 {
3033 if (this->cref_ == NULL)
3034 this->cref_ = new Cref();
3035 this->cref_->add_archive_start(archive);
3036 }
3037 }
3038
3039 // Stop processing an archive.
3040
3041 void
3042 Input_objects::archive_stop(Archive* archive)
3043 {
3044 if (parameters->options().user_set_print_symbol_counts()
3045 || parameters->options().cref())
3046 this->cref_->add_archive_stop(archive);
3047 }
3048
3049 // Print symbol counts
3050
3051 void
3052 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3053 {
3054 if (parameters->options().user_set_print_symbol_counts()
3055 && this->cref_ != NULL)
3056 this->cref_->print_symbol_counts(symtab);
3057 }
3058
3059 // Print a cross reference table.
3060
3061 void
3062 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3063 {
3064 if (parameters->options().cref() && this->cref_ != NULL)
3065 this->cref_->print_cref(symtab, f);
3066 }
3067
3068 // Relocate_info methods.
3069
3070 // Return a string describing the location of a relocation when file
3071 // and lineno information is not available. This is only used in
3072 // error messages.
3073
3074 template<int size, bool big_endian>
3075 std::string
3076 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3077 {
3078 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3079 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3080 if (!ret.empty())
3081 return ret;
3082
3083 ret = this->object->name();
3084
3085 Symbol_location_info info;
3086 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3087 {
3088 if (!info.source_file.empty())
3089 {
3090 ret += ":";
3091 ret += info.source_file;
3092 }
3093 ret += ":";
3094 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3095 ret += _("function ");
3096 ret += info.enclosing_symbol_name;
3097 return ret;
3098 }
3099
3100 ret += "(";
3101 ret += this->object->section_name(this->data_shndx);
3102 char buf[100];
3103 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3104 ret += buf;
3105 return ret;
3106 }
3107
3108 } // End namespace gold.
3109
3110 namespace
3111 {
3112
3113 using namespace gold;
3114
3115 // Read an ELF file with the header and return the appropriate
3116 // instance of Object.
3117
3118 template<int size, bool big_endian>
3119 Object*
3120 make_elf_sized_object(const std::string& name, Input_file* input_file,
3121 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3122 bool* punconfigured)
3123 {
3124 Target* target = select_target(input_file, offset,
3125 ehdr.get_e_machine(), size, big_endian,
3126 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3127 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3128 if (target == NULL)
3129 gold_fatal(_("%s: unsupported ELF machine number %d"),
3130 name.c_str(), ehdr.get_e_machine());
3131
3132 if (!parameters->target_valid())
3133 set_parameters_target(target);
3134 else if (target != &parameters->target())
3135 {
3136 if (punconfigured != NULL)
3137 *punconfigured = true;
3138 else
3139 gold_error(_("%s: incompatible target"), name.c_str());
3140 return NULL;
3141 }
3142
3143 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3144 ehdr);
3145 }
3146
3147 } // End anonymous namespace.
3148
3149 namespace gold
3150 {
3151
3152 // Return whether INPUT_FILE is an ELF object.
3153
3154 bool
3155 is_elf_object(Input_file* input_file, off_t offset,
3156 const unsigned char** start, int* read_size)
3157 {
3158 off_t filesize = input_file->file().filesize();
3159 int want = elfcpp::Elf_recognizer::max_header_size;
3160 if (filesize - offset < want)
3161 want = filesize - offset;
3162
3163 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3164 true, false);
3165 *start = p;
3166 *read_size = want;
3167
3168 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3169 }
3170
3171 // Read an ELF file and return the appropriate instance of Object.
3172
3173 Object*
3174 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3175 const unsigned char* p, section_offset_type bytes,
3176 bool* punconfigured)
3177 {
3178 if (punconfigured != NULL)
3179 *punconfigured = false;
3180
3181 std::string error;
3182 bool big_endian = false;
3183 int size = 0;
3184 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3185 &big_endian, &error))
3186 {
3187 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3188 return NULL;
3189 }
3190
3191 if (size == 32)
3192 {
3193 if (big_endian)
3194 {
3195 #ifdef HAVE_TARGET_32_BIG
3196 elfcpp::Ehdr<32, true> ehdr(p);
3197 return make_elf_sized_object<32, true>(name, input_file,
3198 offset, ehdr, punconfigured);
3199 #else
3200 if (punconfigured != NULL)
3201 *punconfigured = true;
3202 else
3203 gold_error(_("%s: not configured to support "
3204 "32-bit big-endian object"),
3205 name.c_str());
3206 return NULL;
3207 #endif
3208 }
3209 else
3210 {
3211 #ifdef HAVE_TARGET_32_LITTLE
3212 elfcpp::Ehdr<32, false> ehdr(p);
3213 return make_elf_sized_object<32, false>(name, input_file,
3214 offset, ehdr, punconfigured);
3215 #else
3216 if (punconfigured != NULL)
3217 *punconfigured = true;
3218 else
3219 gold_error(_("%s: not configured to support "
3220 "32-bit little-endian object"),
3221 name.c_str());
3222 return NULL;
3223 #endif
3224 }
3225 }
3226 else if (size == 64)
3227 {
3228 if (big_endian)
3229 {
3230 #ifdef HAVE_TARGET_64_BIG
3231 elfcpp::Ehdr<64, true> ehdr(p);
3232 return make_elf_sized_object<64, true>(name, input_file,
3233 offset, ehdr, punconfigured);
3234 #else
3235 if (punconfigured != NULL)
3236 *punconfigured = true;
3237 else
3238 gold_error(_("%s: not configured to support "
3239 "64-bit big-endian object"),
3240 name.c_str());
3241 return NULL;
3242 #endif
3243 }
3244 else
3245 {
3246 #ifdef HAVE_TARGET_64_LITTLE
3247 elfcpp::Ehdr<64, false> ehdr(p);
3248 return make_elf_sized_object<64, false>(name, input_file,
3249 offset, ehdr, punconfigured);
3250 #else
3251 if (punconfigured != NULL)
3252 *punconfigured = true;
3253 else
3254 gold_error(_("%s: not configured to support "
3255 "64-bit little-endian object"),
3256 name.c_str());
3257 return NULL;
3258 #endif
3259 }
3260 }
3261 else
3262 gold_unreachable();
3263 }
3264
3265 // Instantiate the templates we need.
3266
3267 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3268 template
3269 void
3270 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3271 elfcpp::Elf_types<64>::Elf_Addr starting_address,
3272 Unordered_map<section_offset_type,
3273 elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3274 #endif
3275
3276 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3277 template
3278 void
3279 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3280 elfcpp::Elf_types<32>::Elf_Addr starting_address,
3281 Unordered_map<section_offset_type,
3282 elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3283 #endif
3284
3285 #ifdef HAVE_TARGET_32_LITTLE
3286 template
3287 void
3288 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3289 Read_symbols_data*);
3290 template
3291 const unsigned char*
3292 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3293 section_size_type, const unsigned char*) const;
3294 #endif
3295
3296 #ifdef HAVE_TARGET_32_BIG
3297 template
3298 void
3299 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3300 Read_symbols_data*);
3301 template
3302 const unsigned char*
3303 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3304 section_size_type, const unsigned char*) const;
3305 #endif
3306
3307 #ifdef HAVE_TARGET_64_LITTLE
3308 template
3309 void
3310 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3311 Read_symbols_data*);
3312 template
3313 const unsigned char*
3314 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3315 section_size_type, const unsigned char*) const;
3316 #endif
3317
3318 #ifdef HAVE_TARGET_64_BIG
3319 template
3320 void
3321 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3322 Read_symbols_data*);
3323 template
3324 const unsigned char*
3325 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3326 section_size_type, const unsigned char*) const;
3327 #endif
3328
3329 #ifdef HAVE_TARGET_32_LITTLE
3330 template
3331 class Sized_relobj<32, false>;
3332
3333 template
3334 class Sized_relobj_file<32, false>;
3335 #endif
3336
3337 #ifdef HAVE_TARGET_32_BIG
3338 template
3339 class Sized_relobj<32, true>;
3340
3341 template
3342 class Sized_relobj_file<32, true>;
3343 #endif
3344
3345 #ifdef HAVE_TARGET_64_LITTLE
3346 template
3347 class Sized_relobj<64, false>;
3348
3349 template
3350 class Sized_relobj_file<64, false>;
3351 #endif
3352
3353 #ifdef HAVE_TARGET_64_BIG
3354 template
3355 class Sized_relobj<64, true>;
3356
3357 template
3358 class Sized_relobj_file<64, true>;
3359 #endif
3360
3361 #ifdef HAVE_TARGET_32_LITTLE
3362 template
3363 struct Relocate_info<32, false>;
3364 #endif
3365
3366 #ifdef HAVE_TARGET_32_BIG
3367 template
3368 struct Relocate_info<32, true>;
3369 #endif
3370
3371 #ifdef HAVE_TARGET_64_LITTLE
3372 template
3373 struct Relocate_info<64, false>;
3374 #endif
3375
3376 #ifdef HAVE_TARGET_64_BIG
3377 template
3378 struct Relocate_info<64, true>;
3379 #endif
3380
3381 #ifdef HAVE_TARGET_32_LITTLE
3382 template
3383 void
3384 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3385
3386 template
3387 void
3388 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3389 const unsigned char*);
3390 #endif
3391
3392 #ifdef HAVE_TARGET_32_BIG
3393 template
3394 void
3395 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3396
3397 template
3398 void
3399 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3400 const unsigned char*);
3401 #endif
3402
3403 #ifdef HAVE_TARGET_64_LITTLE
3404 template
3405 void
3406 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3407
3408 template
3409 void
3410 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3411 const unsigned char*);
3412 #endif
3413
3414 #ifdef HAVE_TARGET_64_BIG
3415 template
3416 void
3417 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3418
3419 template
3420 void
3421 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3422 const unsigned char*);
3423 #endif
3424
3425 } // End namespace gold.
This page took 0.095502 seconds and 5 git commands to generate.