2012-09-06 Cary Coutant <ccoutant@google.com>
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cerrno>
27 #include <cstring>
28 #include <cstdarg>
29 #include "demangle.h"
30 #include "libiberty.h"
31
32 #include "gc.h"
33 #include "target-select.h"
34 #include "dwarf_reader.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "symtab.h"
38 #include "cref.h"
39 #include "reloc.h"
40 #include "object.h"
41 #include "dynobj.h"
42 #include "plugin.h"
43 #include "compressed_output.h"
44 #include "incremental.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 // To copy the symbols data read from the file to a local data structure.
273 // This function is called from do_layout only while doing garbage
274 // collection.
275
276 void
277 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
278 unsigned int section_header_size)
279 {
280 gc_sd->section_headers_data =
281 new unsigned char[(section_header_size)];
282 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
283 section_header_size);
284 gc_sd->section_names_data =
285 new unsigned char[sd->section_names_size];
286 memcpy(gc_sd->section_names_data, sd->section_names->data(),
287 sd->section_names_size);
288 gc_sd->section_names_size = sd->section_names_size;
289 if (sd->symbols != NULL)
290 {
291 gc_sd->symbols_data =
292 new unsigned char[sd->symbols_size];
293 memcpy(gc_sd->symbols_data, sd->symbols->data(),
294 sd->symbols_size);
295 }
296 else
297 {
298 gc_sd->symbols_data = NULL;
299 }
300 gc_sd->symbols_size = sd->symbols_size;
301 gc_sd->external_symbols_offset = sd->external_symbols_offset;
302 if (sd->symbol_names != NULL)
303 {
304 gc_sd->symbol_names_data =
305 new unsigned char[sd->symbol_names_size];
306 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
307 sd->symbol_names_size);
308 }
309 else
310 {
311 gc_sd->symbol_names_data = NULL;
312 }
313 gc_sd->symbol_names_size = sd->symbol_names_size;
314 }
315
316 // This function determines if a particular section name must be included
317 // in the link. This is used during garbage collection to determine the
318 // roots of the worklist.
319
320 bool
321 Relobj::is_section_name_included(const char* name)
322 {
323 if (is_prefix_of(".ctors", name)
324 || is_prefix_of(".dtors", name)
325 || is_prefix_of(".note", name)
326 || is_prefix_of(".init", name)
327 || is_prefix_of(".fini", name)
328 || is_prefix_of(".gcc_except_table", name)
329 || is_prefix_of(".jcr", name)
330 || is_prefix_of(".preinit_array", name)
331 || (is_prefix_of(".text", name)
332 && strstr(name, "personality"))
333 || (is_prefix_of(".data", name)
334 && strstr(name, "personality"))
335 || (is_prefix_of(".gnu.linkonce.d", name)
336 && strstr(name, "personality")))
337 {
338 return true;
339 }
340 return false;
341 }
342
343 // Finalize the incremental relocation information. Allocates a block
344 // of relocation entries for each symbol, and sets the reloc_bases_
345 // array to point to the first entry in each block. If CLEAR_COUNTS
346 // is TRUE, also clear the per-symbol relocation counters.
347
348 void
349 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
350 {
351 unsigned int nsyms = this->get_global_symbols()->size();
352 this->reloc_bases_ = new unsigned int[nsyms];
353
354 gold_assert(this->reloc_bases_ != NULL);
355 gold_assert(layout->incremental_inputs() != NULL);
356
357 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
358 for (unsigned int i = 0; i < nsyms; ++i)
359 {
360 this->reloc_bases_[i] = rindex;
361 rindex += this->reloc_counts_[i];
362 if (clear_counts)
363 this->reloc_counts_[i] = 0;
364 }
365 layout->incremental_inputs()->set_reloc_count(rindex);
366 }
367
368 // Class Sized_relobj.
369
370 // Iterate over local symbols, calling a visitor class V for each GOT offset
371 // associated with a local symbol.
372
373 template<int size, bool big_endian>
374 void
375 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
376 Got_offset_list::Visitor* v) const
377 {
378 unsigned int nsyms = this->local_symbol_count();
379 for (unsigned int i = 0; i < nsyms; i++)
380 {
381 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
382 if (p != this->local_got_offsets_.end())
383 {
384 const Got_offset_list* got_offsets = p->second;
385 got_offsets->for_all_got_offsets(v);
386 }
387 }
388 }
389
390 // Class Sized_relobj_file.
391
392 template<int size, bool big_endian>
393 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
394 const std::string& name,
395 Input_file* input_file,
396 off_t offset,
397 const elfcpp::Ehdr<size, big_endian>& ehdr)
398 : Sized_relobj<size, big_endian>(name, input_file, offset),
399 elf_file_(this, ehdr),
400 symtab_shndx_(-1U),
401 local_symbol_count_(0),
402 output_local_symbol_count_(0),
403 output_local_dynsym_count_(0),
404 symbols_(),
405 defined_count_(0),
406 local_symbol_offset_(0),
407 local_dynsym_offset_(0),
408 local_values_(),
409 local_plt_offsets_(),
410 kept_comdat_sections_(),
411 has_eh_frame_(false),
412 discarded_eh_frame_shndx_(-1U),
413 deferred_layout_(),
414 deferred_layout_relocs_(),
415 compressed_sections_()
416 {
417 this->e_type_ = ehdr.get_e_type();
418 }
419
420 template<int size, bool big_endian>
421 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
422 {
423 }
424
425 // Set up an object file based on the file header. This sets up the
426 // section information.
427
428 template<int size, bool big_endian>
429 void
430 Sized_relobj_file<size, big_endian>::do_setup()
431 {
432 const unsigned int shnum = this->elf_file_.shnum();
433 this->set_shnum(shnum);
434 }
435
436 // Find the SHT_SYMTAB section, given the section headers. The ELF
437 // standard says that maybe in the future there can be more than one
438 // SHT_SYMTAB section. Until somebody figures out how that could
439 // work, we assume there is only one.
440
441 template<int size, bool big_endian>
442 void
443 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
444 {
445 const unsigned int shnum = this->shnum();
446 this->symtab_shndx_ = 0;
447 if (shnum > 0)
448 {
449 // Look through the sections in reverse order, since gas tends
450 // to put the symbol table at the end.
451 const unsigned char* p = pshdrs + shnum * This::shdr_size;
452 unsigned int i = shnum;
453 unsigned int xindex_shndx = 0;
454 unsigned int xindex_link = 0;
455 while (i > 0)
456 {
457 --i;
458 p -= This::shdr_size;
459 typename This::Shdr shdr(p);
460 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
461 {
462 this->symtab_shndx_ = i;
463 if (xindex_shndx > 0 && xindex_link == i)
464 {
465 Xindex* xindex =
466 new Xindex(this->elf_file_.large_shndx_offset());
467 xindex->read_symtab_xindex<size, big_endian>(this,
468 xindex_shndx,
469 pshdrs);
470 this->set_xindex(xindex);
471 }
472 break;
473 }
474
475 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
476 // one. This will work if it follows the SHT_SYMTAB
477 // section.
478 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
479 {
480 xindex_shndx = i;
481 xindex_link = this->adjust_shndx(shdr.get_sh_link());
482 }
483 }
484 }
485 }
486
487 // Return the Xindex structure to use for object with lots of
488 // sections.
489
490 template<int size, bool big_endian>
491 Xindex*
492 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
493 {
494 gold_assert(this->symtab_shndx_ != -1U);
495 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
496 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
497 return xindex;
498 }
499
500 // Return whether SHDR has the right type and flags to be a GNU
501 // .eh_frame section.
502
503 template<int size, bool big_endian>
504 bool
505 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
506 const elfcpp::Shdr<size, big_endian>* shdr) const
507 {
508 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
509 return ((sh_type == elfcpp::SHT_PROGBITS
510 || sh_type == elfcpp::SHT_X86_64_UNWIND)
511 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
512 }
513
514 // Find the section header with the given name.
515
516 template<int size, bool big_endian>
517 const unsigned char*
518 Sized_relobj_file<size, big_endian>::find_shdr(
519 const unsigned char* pshdrs,
520 const char* name,
521 const char* names,
522 section_size_type names_size,
523 const unsigned char* hdr) const
524 {
525 const unsigned int shnum = this->shnum();
526 const unsigned char* hdr_end = pshdrs + This::shdr_size * shnum;
527 size_t sh_name = 0;
528
529 while (1)
530 {
531 if (hdr)
532 {
533 // We found HDR last time we were called, continue looking.
534 typename This::Shdr shdr(hdr);
535 sh_name = shdr.get_sh_name();
536 }
537 else
538 {
539 // Look for the next occurrence of NAME in NAMES.
540 // The fact that .shstrtab produced by current GNU tools is
541 // string merged means we shouldn't have both .not.foo and
542 // .foo in .shstrtab, and multiple .foo sections should all
543 // have the same sh_name. However, this is not guaranteed
544 // by the ELF spec and not all ELF object file producers may
545 // be so clever.
546 size_t len = strlen(name) + 1;
547 const char *p = sh_name ? names + sh_name + len : names;
548 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
549 name, len));
550 if (p == NULL)
551 return NULL;
552 sh_name = p - names;
553 hdr = pshdrs;
554 if (sh_name == 0)
555 return hdr;
556 }
557
558 hdr += This::shdr_size;
559 while (hdr < hdr_end)
560 {
561 typename This::Shdr shdr(hdr);
562 if (shdr.get_sh_name() == sh_name)
563 return hdr;
564 hdr += This::shdr_size;
565 }
566 hdr = NULL;
567 if (sh_name == 0)
568 return hdr;
569 }
570 }
571
572 // Return whether there is a GNU .eh_frame section, given the section
573 // headers and the section names.
574
575 template<int size, bool big_endian>
576 bool
577 Sized_relobj_file<size, big_endian>::find_eh_frame(
578 const unsigned char* pshdrs,
579 const char* names,
580 section_size_type names_size) const
581 {
582 const unsigned char* s = NULL;
583
584 while (1)
585 {
586 s = this->find_shdr(pshdrs, ".eh_frame", names, names_size, s);
587 if (s == NULL)
588 return false;
589
590 typename This::Shdr shdr(s);
591 if (this->check_eh_frame_flags(&shdr))
592 return true;
593 }
594 }
595
596 // Return TRUE if this is a section whose contents will be needed in the
597 // Add_symbols task. This function is only called for sections that have
598 // already passed the test in is_compressed_debug_section(), so we know
599 // that the section name begins with ".zdebug".
600
601 static bool
602 need_decompressed_section(const char* name)
603 {
604 // Skip over the ".zdebug" and a quick check for the "_".
605 name += 7;
606 if (*name++ != '_')
607 return false;
608
609 #ifdef ENABLE_THREADS
610 // Decompressing these sections now will help only if we're
611 // multithreaded.
612 if (parameters->options().threads())
613 {
614 // We will need .zdebug_str if this is not an incremental link
615 // (i.e., we are processing string merge sections) or if we need
616 // to build a gdb index.
617 if ((!parameters->incremental() || parameters->options().gdb_index())
618 && strcmp(name, "str") == 0)
619 return true;
620
621 // We will need these other sections when building a gdb index.
622 if (parameters->options().gdb_index()
623 && (strcmp(name, "info") == 0
624 || strcmp(name, "types") == 0
625 || strcmp(name, "pubnames") == 0
626 || strcmp(name, "pubtypes") == 0
627 || strcmp(name, "ranges") == 0
628 || strcmp(name, "abbrev") == 0))
629 return true;
630 }
631 #endif
632
633 // Even when single-threaded, we will need .zdebug_str if this is
634 // not an incremental link and we are building a gdb index.
635 // Otherwise, we would decompress the section twice: once for
636 // string merge processing, and once for building the gdb index.
637 if (!parameters->incremental()
638 && parameters->options().gdb_index()
639 && strcmp(name, "str") == 0)
640 return true;
641
642 return false;
643 }
644
645 // Build a table for any compressed debug sections, mapping each section index
646 // to the uncompressed size and (if needed) the decompressed contents.
647
648 template<int size, bool big_endian>
649 Compressed_section_map*
650 build_compressed_section_map(
651 const unsigned char* pshdrs,
652 unsigned int shnum,
653 const char* names,
654 section_size_type names_size,
655 Sized_relobj_file<size, big_endian>* obj)
656 {
657 Compressed_section_map* uncompressed_map = new Compressed_section_map();
658 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
659 const unsigned char* p = pshdrs + shdr_size;
660
661 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
662 {
663 typename elfcpp::Shdr<size, big_endian> shdr(p);
664 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
665 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
666 {
667 if (shdr.get_sh_name() >= names_size)
668 {
669 obj->error(_("bad section name offset for section %u: %lu"),
670 i, static_cast<unsigned long>(shdr.get_sh_name()));
671 continue;
672 }
673
674 const char* name = names + shdr.get_sh_name();
675 if (is_compressed_debug_section(name))
676 {
677 section_size_type len;
678 const unsigned char* contents =
679 obj->section_contents(i, &len, false);
680 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
681 Compressed_section_info info;
682 info.size = convert_to_section_size_type(uncompressed_size);
683 info.contents = NULL;
684 if (uncompressed_size != -1ULL)
685 {
686 unsigned char* uncompressed_data = NULL;
687 if (need_decompressed_section(name))
688 {
689 uncompressed_data = new unsigned char[uncompressed_size];
690 if (decompress_input_section(contents, len,
691 uncompressed_data,
692 uncompressed_size))
693 info.contents = uncompressed_data;
694 else
695 delete[] uncompressed_data;
696 }
697 (*uncompressed_map)[i] = info;
698 }
699 }
700 }
701 }
702 return uncompressed_map;
703 }
704
705 // Stash away info for a number of special sections.
706 // Return true if any of the sections found require local symbols to be read.
707
708 template<int size, bool big_endian>
709 bool
710 Sized_relobj_file<size, big_endian>::do_find_special_sections(
711 Read_symbols_data* sd)
712 {
713 const unsigned char* const pshdrs = sd->section_headers->data();
714 const unsigned char* namesu = sd->section_names->data();
715 const char* names = reinterpret_cast<const char*>(namesu);
716
717 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
718 this->has_eh_frame_ = true;
719
720 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
721 this->compressed_sections_
722 = build_compressed_section_map(pshdrs, this->shnum(), names,
723 sd->section_names_size, this);
724 return (this->has_eh_frame_
725 || (!parameters->options().relocatable()
726 && parameters->options().gdb_index()
727 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
728 || memmem(names, sd->section_names_size, "debug_types",
729 13) == 0)));
730 }
731
732 // Read the sections and symbols from an object file.
733
734 template<int size, bool big_endian>
735 void
736 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
737 {
738 this->read_section_data(&this->elf_file_, sd);
739
740 const unsigned char* const pshdrs = sd->section_headers->data();
741
742 this->find_symtab(pshdrs);
743
744 bool need_local_symbols = this->do_find_special_sections(sd);
745
746 sd->symbols = NULL;
747 sd->symbols_size = 0;
748 sd->external_symbols_offset = 0;
749 sd->symbol_names = NULL;
750 sd->symbol_names_size = 0;
751
752 if (this->symtab_shndx_ == 0)
753 {
754 // No symbol table. Weird but legal.
755 return;
756 }
757
758 // Get the symbol table section header.
759 typename This::Shdr symtabshdr(pshdrs
760 + this->symtab_shndx_ * This::shdr_size);
761 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
762
763 // If this object has a .eh_frame section, or if building a .gdb_index
764 // section and there is debug info, we need all the symbols.
765 // Otherwise we only need the external symbols. While it would be
766 // simpler to just always read all the symbols, I've seen object
767 // files with well over 2000 local symbols, which for a 64-bit
768 // object file format is over 5 pages that we don't need to read
769 // now.
770
771 const int sym_size = This::sym_size;
772 const unsigned int loccount = symtabshdr.get_sh_info();
773 this->local_symbol_count_ = loccount;
774 this->local_values_.resize(loccount);
775 section_offset_type locsize = loccount * sym_size;
776 off_t dataoff = symtabshdr.get_sh_offset();
777 section_size_type datasize =
778 convert_to_section_size_type(symtabshdr.get_sh_size());
779 off_t extoff = dataoff + locsize;
780 section_size_type extsize = datasize - locsize;
781
782 off_t readoff = need_local_symbols ? dataoff : extoff;
783 section_size_type readsize = need_local_symbols ? datasize : extsize;
784
785 if (readsize == 0)
786 {
787 // No external symbols. Also weird but also legal.
788 return;
789 }
790
791 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
792
793 // Read the section header for the symbol names.
794 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
795 if (strtab_shndx >= this->shnum())
796 {
797 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
798 return;
799 }
800 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
801 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
802 {
803 this->error(_("symbol table name section has wrong type: %u"),
804 static_cast<unsigned int>(strtabshdr.get_sh_type()));
805 return;
806 }
807
808 // Read the symbol names.
809 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
810 strtabshdr.get_sh_size(),
811 false, true);
812
813 sd->symbols = fvsymtab;
814 sd->symbols_size = readsize;
815 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
816 sd->symbol_names = fvstrtab;
817 sd->symbol_names_size =
818 convert_to_section_size_type(strtabshdr.get_sh_size());
819 }
820
821 // Return the section index of symbol SYM. Set *VALUE to its value in
822 // the object file. Set *IS_ORDINARY if this is an ordinary section
823 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
824 // Note that for a symbol which is not defined in this object file,
825 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
826 // the final value of the symbol in the link.
827
828 template<int size, bool big_endian>
829 unsigned int
830 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
831 Address* value,
832 bool* is_ordinary)
833 {
834 section_size_type symbols_size;
835 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
836 &symbols_size,
837 false);
838
839 const size_t count = symbols_size / This::sym_size;
840 gold_assert(sym < count);
841
842 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
843 *value = elfsym.get_st_value();
844
845 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
846 }
847
848 // Return whether to include a section group in the link. LAYOUT is
849 // used to keep track of which section groups we have already seen.
850 // INDEX is the index of the section group and SHDR is the section
851 // header. If we do not want to include this group, we set bits in
852 // OMIT for each section which should be discarded.
853
854 template<int size, bool big_endian>
855 bool
856 Sized_relobj_file<size, big_endian>::include_section_group(
857 Symbol_table* symtab,
858 Layout* layout,
859 unsigned int index,
860 const char* name,
861 const unsigned char* shdrs,
862 const char* section_names,
863 section_size_type section_names_size,
864 std::vector<bool>* omit)
865 {
866 // Read the section contents.
867 typename This::Shdr shdr(shdrs + index * This::shdr_size);
868 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
869 shdr.get_sh_size(), true, false);
870 const elfcpp::Elf_Word* pword =
871 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
872
873 // The first word contains flags. We only care about COMDAT section
874 // groups. Other section groups are always included in the link
875 // just like ordinary sections.
876 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
877
878 // Look up the group signature, which is the name of a symbol. ELF
879 // uses a symbol name because some group signatures are long, and
880 // the name is generally already in the symbol table, so it makes
881 // sense to put the long string just once in .strtab rather than in
882 // both .strtab and .shstrtab.
883
884 // Get the appropriate symbol table header (this will normally be
885 // the single SHT_SYMTAB section, but in principle it need not be).
886 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
887 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
888
889 // Read the symbol table entry.
890 unsigned int symndx = shdr.get_sh_info();
891 if (symndx >= symshdr.get_sh_size() / This::sym_size)
892 {
893 this->error(_("section group %u info %u out of range"),
894 index, symndx);
895 return false;
896 }
897 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
898 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
899 false);
900 elfcpp::Sym<size, big_endian> sym(psym);
901
902 // Read the symbol table names.
903 section_size_type symnamelen;
904 const unsigned char* psymnamesu;
905 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
906 &symnamelen, true);
907 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
908
909 // Get the section group signature.
910 if (sym.get_st_name() >= symnamelen)
911 {
912 this->error(_("symbol %u name offset %u out of range"),
913 symndx, sym.get_st_name());
914 return false;
915 }
916
917 std::string signature(psymnames + sym.get_st_name());
918
919 // It seems that some versions of gas will create a section group
920 // associated with a section symbol, and then fail to give a name to
921 // the section symbol. In such a case, use the name of the section.
922 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
923 {
924 bool is_ordinary;
925 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
926 sym.get_st_shndx(),
927 &is_ordinary);
928 if (!is_ordinary || sym_shndx >= this->shnum())
929 {
930 this->error(_("symbol %u invalid section index %u"),
931 symndx, sym_shndx);
932 return false;
933 }
934 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
935 if (member_shdr.get_sh_name() < section_names_size)
936 signature = section_names + member_shdr.get_sh_name();
937 }
938
939 // Record this section group in the layout, and see whether we've already
940 // seen one with the same signature.
941 bool include_group;
942 bool is_comdat;
943 Kept_section* kept_section = NULL;
944
945 if ((flags & elfcpp::GRP_COMDAT) == 0)
946 {
947 include_group = true;
948 is_comdat = false;
949 }
950 else
951 {
952 include_group = layout->find_or_add_kept_section(signature,
953 this, index, true,
954 true, &kept_section);
955 is_comdat = true;
956 }
957
958 if (is_comdat && include_group)
959 {
960 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
961 if (incremental_inputs != NULL)
962 incremental_inputs->report_comdat_group(this, signature.c_str());
963 }
964
965 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
966
967 std::vector<unsigned int> shndxes;
968 bool relocate_group = include_group && parameters->options().relocatable();
969 if (relocate_group)
970 shndxes.reserve(count - 1);
971
972 for (size_t i = 1; i < count; ++i)
973 {
974 elfcpp::Elf_Word shndx =
975 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
976
977 if (relocate_group)
978 shndxes.push_back(shndx);
979
980 if (shndx >= this->shnum())
981 {
982 this->error(_("section %u in section group %u out of range"),
983 shndx, index);
984 continue;
985 }
986
987 // Check for an earlier section number, since we're going to get
988 // it wrong--we may have already decided to include the section.
989 if (shndx < index)
990 this->error(_("invalid section group %u refers to earlier section %u"),
991 index, shndx);
992
993 // Get the name of the member section.
994 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
995 if (member_shdr.get_sh_name() >= section_names_size)
996 {
997 // This is an error, but it will be diagnosed eventually
998 // in do_layout, so we don't need to do anything here but
999 // ignore it.
1000 continue;
1001 }
1002 std::string mname(section_names + member_shdr.get_sh_name());
1003
1004 if (include_group)
1005 {
1006 if (is_comdat)
1007 kept_section->add_comdat_section(mname, shndx,
1008 member_shdr.get_sh_size());
1009 }
1010 else
1011 {
1012 (*omit)[shndx] = true;
1013
1014 if (is_comdat)
1015 {
1016 Relobj* kept_object = kept_section->object();
1017 if (kept_section->is_comdat())
1018 {
1019 // Find the corresponding kept section, and store
1020 // that info in the discarded section table.
1021 unsigned int kept_shndx;
1022 uint64_t kept_size;
1023 if (kept_section->find_comdat_section(mname, &kept_shndx,
1024 &kept_size))
1025 {
1026 // We don't keep a mapping for this section if
1027 // it has a different size. The mapping is only
1028 // used for relocation processing, and we don't
1029 // want to treat the sections as similar if the
1030 // sizes are different. Checking the section
1031 // size is the approach used by the GNU linker.
1032 if (kept_size == member_shdr.get_sh_size())
1033 this->set_kept_comdat_section(shndx, kept_object,
1034 kept_shndx);
1035 }
1036 }
1037 else
1038 {
1039 // The existing section is a linkonce section. Add
1040 // a mapping if there is exactly one section in the
1041 // group (which is true when COUNT == 2) and if it
1042 // is the same size.
1043 if (count == 2
1044 && (kept_section->linkonce_size()
1045 == member_shdr.get_sh_size()))
1046 this->set_kept_comdat_section(shndx, kept_object,
1047 kept_section->shndx());
1048 }
1049 }
1050 }
1051 }
1052
1053 if (relocate_group)
1054 layout->layout_group(symtab, this, index, name, signature.c_str(),
1055 shdr, flags, &shndxes);
1056
1057 return include_group;
1058 }
1059
1060 // Whether to include a linkonce section in the link. NAME is the
1061 // name of the section and SHDR is the section header.
1062
1063 // Linkonce sections are a GNU extension implemented in the original
1064 // GNU linker before section groups were defined. The semantics are
1065 // that we only include one linkonce section with a given name. The
1066 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1067 // where T is the type of section and SYMNAME is the name of a symbol.
1068 // In an attempt to make linkonce sections interact well with section
1069 // groups, we try to identify SYMNAME and use it like a section group
1070 // signature. We want to block section groups with that signature,
1071 // but not other linkonce sections with that signature. We also use
1072 // the full name of the linkonce section as a normal section group
1073 // signature.
1074
1075 template<int size, bool big_endian>
1076 bool
1077 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1078 Layout* layout,
1079 unsigned int index,
1080 const char* name,
1081 const elfcpp::Shdr<size, big_endian>& shdr)
1082 {
1083 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1084 // In general the symbol name we want will be the string following
1085 // the last '.'. However, we have to handle the case of
1086 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1087 // some versions of gcc. So we use a heuristic: if the name starts
1088 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1089 // we look for the last '.'. We can't always simply skip
1090 // ".gnu.linkonce.X", because we have to deal with cases like
1091 // ".gnu.linkonce.d.rel.ro.local".
1092 const char* const linkonce_t = ".gnu.linkonce.t.";
1093 const char* symname;
1094 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1095 symname = name + strlen(linkonce_t);
1096 else
1097 symname = strrchr(name, '.') + 1;
1098 std::string sig1(symname);
1099 std::string sig2(name);
1100 Kept_section* kept1;
1101 Kept_section* kept2;
1102 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1103 false, &kept1);
1104 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1105 true, &kept2);
1106
1107 if (!include2)
1108 {
1109 // We are not including this section because we already saw the
1110 // name of the section as a signature. This normally implies
1111 // that the kept section is another linkonce section. If it is
1112 // the same size, record it as the section which corresponds to
1113 // this one.
1114 if (kept2->object() != NULL
1115 && !kept2->is_comdat()
1116 && kept2->linkonce_size() == sh_size)
1117 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1118 }
1119 else if (!include1)
1120 {
1121 // The section is being discarded on the basis of its symbol
1122 // name. This means that the corresponding kept section was
1123 // part of a comdat group, and it will be difficult to identify
1124 // the specific section within that group that corresponds to
1125 // this linkonce section. We'll handle the simple case where
1126 // the group has only one member section. Otherwise, it's not
1127 // worth the effort.
1128 unsigned int kept_shndx;
1129 uint64_t kept_size;
1130 if (kept1->object() != NULL
1131 && kept1->is_comdat()
1132 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1133 && kept_size == sh_size)
1134 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1135 }
1136 else
1137 {
1138 kept1->set_linkonce_size(sh_size);
1139 kept2->set_linkonce_size(sh_size);
1140 }
1141
1142 return include1 && include2;
1143 }
1144
1145 // Layout an input section.
1146
1147 template<int size, bool big_endian>
1148 inline void
1149 Sized_relobj_file<size, big_endian>::layout_section(
1150 Layout* layout,
1151 unsigned int shndx,
1152 const char* name,
1153 const typename This::Shdr& shdr,
1154 unsigned int reloc_shndx,
1155 unsigned int reloc_type)
1156 {
1157 off_t offset;
1158 Output_section* os = layout->layout(this, shndx, name, shdr,
1159 reloc_shndx, reloc_type, &offset);
1160
1161 this->output_sections()[shndx] = os;
1162 if (offset == -1)
1163 this->section_offsets()[shndx] = invalid_address;
1164 else
1165 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1166
1167 // If this section requires special handling, and if there are
1168 // relocs that apply to it, then we must do the special handling
1169 // before we apply the relocs.
1170 if (offset == -1 && reloc_shndx != 0)
1171 this->set_relocs_must_follow_section_writes();
1172 }
1173
1174 // Layout an input .eh_frame section.
1175
1176 template<int size, bool big_endian>
1177 void
1178 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1179 Layout* layout,
1180 const unsigned char* symbols_data,
1181 section_size_type symbols_size,
1182 const unsigned char* symbol_names_data,
1183 section_size_type symbol_names_size,
1184 unsigned int shndx,
1185 const typename This::Shdr& shdr,
1186 unsigned int reloc_shndx,
1187 unsigned int reloc_type)
1188 {
1189 gold_assert(this->has_eh_frame_);
1190
1191 off_t offset;
1192 Output_section* os = layout->layout_eh_frame(this,
1193 symbols_data,
1194 symbols_size,
1195 symbol_names_data,
1196 symbol_names_size,
1197 shndx,
1198 shdr,
1199 reloc_shndx,
1200 reloc_type,
1201 &offset);
1202 this->output_sections()[shndx] = os;
1203 if (os == NULL || offset == -1)
1204 {
1205 // An object can contain at most one section holding exception
1206 // frame information.
1207 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1208 this->discarded_eh_frame_shndx_ = shndx;
1209 this->section_offsets()[shndx] = invalid_address;
1210 }
1211 else
1212 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1213
1214 // If this section requires special handling, and if there are
1215 // relocs that aply to it, then we must do the special handling
1216 // before we apply the relocs.
1217 if (os != NULL && offset == -1 && reloc_shndx != 0)
1218 this->set_relocs_must_follow_section_writes();
1219 }
1220
1221 // Lay out the input sections. We walk through the sections and check
1222 // whether they should be included in the link. If they should, we
1223 // pass them to the Layout object, which will return an output section
1224 // and an offset.
1225 // This function is called twice sometimes, two passes, when mapping
1226 // of input sections to output sections must be delayed.
1227 // This is true for the following :
1228 // * Garbage collection (--gc-sections): Some input sections will be
1229 // discarded and hence the assignment must wait until the second pass.
1230 // In the first pass, it is for setting up some sections as roots to
1231 // a work-list for --gc-sections and to do comdat processing.
1232 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1233 // will be folded and hence the assignment must wait.
1234 // * Using plugins to map some sections to unique segments: Mapping
1235 // some sections to unique segments requires mapping them to unique
1236 // output sections too. This can be done via plugins now and this
1237 // information is not available in the first pass.
1238
1239 template<int size, bool big_endian>
1240 void
1241 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1242 Layout* layout,
1243 Read_symbols_data* sd)
1244 {
1245 const unsigned int shnum = this->shnum();
1246
1247 /* Should this function be called twice? */
1248 bool is_two_pass = (parameters->options().gc_sections()
1249 || parameters->options().icf_enabled()
1250 || layout->is_unique_segment_for_sections_specified());
1251
1252 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1253 a two-pass approach is not needed. */
1254 bool is_pass_one = false;
1255 bool is_pass_two = false;
1256
1257 Symbols_data* gc_sd = NULL;
1258
1259 /* Check if do_layout needs to be two-pass. If so, find out which pass
1260 should happen. In the first pass, the data in sd is saved to be used
1261 later in the second pass. */
1262 if (is_two_pass)
1263 {
1264 gc_sd = this->get_symbols_data();
1265 if (gc_sd == NULL)
1266 {
1267 gold_assert(sd != NULL);
1268 is_pass_one = true;
1269 }
1270 else
1271 {
1272 if (parameters->options().gc_sections())
1273 gold_assert(symtab->gc()->is_worklist_ready());
1274 if (parameters->options().icf_enabled())
1275 gold_assert(symtab->icf()->is_icf_ready());
1276 is_pass_two = true;
1277 }
1278 }
1279
1280 if (shnum == 0)
1281 return;
1282
1283 if (is_pass_one)
1284 {
1285 // During garbage collection save the symbols data to use it when
1286 // re-entering this function.
1287 gc_sd = new Symbols_data;
1288 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1289 this->set_symbols_data(gc_sd);
1290 }
1291
1292 const unsigned char* section_headers_data = NULL;
1293 section_size_type section_names_size;
1294 const unsigned char* symbols_data = NULL;
1295 section_size_type symbols_size;
1296 const unsigned char* symbol_names_data = NULL;
1297 section_size_type symbol_names_size;
1298
1299 if (is_two_pass)
1300 {
1301 section_headers_data = gc_sd->section_headers_data;
1302 section_names_size = gc_sd->section_names_size;
1303 symbols_data = gc_sd->symbols_data;
1304 symbols_size = gc_sd->symbols_size;
1305 symbol_names_data = gc_sd->symbol_names_data;
1306 symbol_names_size = gc_sd->symbol_names_size;
1307 }
1308 else
1309 {
1310 section_headers_data = sd->section_headers->data();
1311 section_names_size = sd->section_names_size;
1312 if (sd->symbols != NULL)
1313 symbols_data = sd->symbols->data();
1314 symbols_size = sd->symbols_size;
1315 if (sd->symbol_names != NULL)
1316 symbol_names_data = sd->symbol_names->data();
1317 symbol_names_size = sd->symbol_names_size;
1318 }
1319
1320 // Get the section headers.
1321 const unsigned char* shdrs = section_headers_data;
1322 const unsigned char* pshdrs;
1323
1324 // Get the section names.
1325 const unsigned char* pnamesu = (is_two_pass
1326 ? gc_sd->section_names_data
1327 : sd->section_names->data());
1328
1329 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1330
1331 // If any input files have been claimed by plugins, we need to defer
1332 // actual layout until the replacement files have arrived.
1333 const bool should_defer_layout =
1334 (parameters->options().has_plugins()
1335 && parameters->options().plugins()->should_defer_layout());
1336 unsigned int num_sections_to_defer = 0;
1337
1338 // For each section, record the index of the reloc section if any.
1339 // Use 0 to mean that there is no reloc section, -1U to mean that
1340 // there is more than one.
1341 std::vector<unsigned int> reloc_shndx(shnum, 0);
1342 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1343 // Skip the first, dummy, section.
1344 pshdrs = shdrs + This::shdr_size;
1345 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1346 {
1347 typename This::Shdr shdr(pshdrs);
1348
1349 // Count the number of sections whose layout will be deferred.
1350 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1351 ++num_sections_to_defer;
1352
1353 unsigned int sh_type = shdr.get_sh_type();
1354 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1355 {
1356 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1357 if (target_shndx == 0 || target_shndx >= shnum)
1358 {
1359 this->error(_("relocation section %u has bad info %u"),
1360 i, target_shndx);
1361 continue;
1362 }
1363
1364 if (reloc_shndx[target_shndx] != 0)
1365 reloc_shndx[target_shndx] = -1U;
1366 else
1367 {
1368 reloc_shndx[target_shndx] = i;
1369 reloc_type[target_shndx] = sh_type;
1370 }
1371 }
1372 }
1373
1374 Output_sections& out_sections(this->output_sections());
1375 std::vector<Address>& out_section_offsets(this->section_offsets());
1376
1377 if (!is_pass_two)
1378 {
1379 out_sections.resize(shnum);
1380 out_section_offsets.resize(shnum);
1381 }
1382
1383 // If we are only linking for symbols, then there is nothing else to
1384 // do here.
1385 if (this->input_file()->just_symbols())
1386 {
1387 if (!is_pass_two)
1388 {
1389 delete sd->section_headers;
1390 sd->section_headers = NULL;
1391 delete sd->section_names;
1392 sd->section_names = NULL;
1393 }
1394 return;
1395 }
1396
1397 if (num_sections_to_defer > 0)
1398 {
1399 parameters->options().plugins()->add_deferred_layout_object(this);
1400 this->deferred_layout_.reserve(num_sections_to_defer);
1401 }
1402
1403 // Whether we've seen a .note.GNU-stack section.
1404 bool seen_gnu_stack = false;
1405 // The flags of a .note.GNU-stack section.
1406 uint64_t gnu_stack_flags = 0;
1407
1408 // Keep track of which sections to omit.
1409 std::vector<bool> omit(shnum, false);
1410
1411 // Keep track of reloc sections when emitting relocations.
1412 const bool relocatable = parameters->options().relocatable();
1413 const bool emit_relocs = (relocatable
1414 || parameters->options().emit_relocs());
1415 std::vector<unsigned int> reloc_sections;
1416
1417 // Keep track of .eh_frame sections.
1418 std::vector<unsigned int> eh_frame_sections;
1419
1420 // Keep track of .debug_info and .debug_types sections.
1421 std::vector<unsigned int> debug_info_sections;
1422 std::vector<unsigned int> debug_types_sections;
1423
1424 // Skip the first, dummy, section.
1425 pshdrs = shdrs + This::shdr_size;
1426 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1427 {
1428 typename This::Shdr shdr(pshdrs);
1429
1430 if (shdr.get_sh_name() >= section_names_size)
1431 {
1432 this->error(_("bad section name offset for section %u: %lu"),
1433 i, static_cast<unsigned long>(shdr.get_sh_name()));
1434 return;
1435 }
1436
1437 const char* name = pnames + shdr.get_sh_name();
1438
1439 if (!is_pass_two)
1440 {
1441 if (this->handle_gnu_warning_section(name, i, symtab))
1442 {
1443 if (!relocatable && !parameters->options().shared())
1444 omit[i] = true;
1445 }
1446
1447 // The .note.GNU-stack section is special. It gives the
1448 // protection flags that this object file requires for the stack
1449 // in memory.
1450 if (strcmp(name, ".note.GNU-stack") == 0)
1451 {
1452 seen_gnu_stack = true;
1453 gnu_stack_flags |= shdr.get_sh_flags();
1454 omit[i] = true;
1455 }
1456
1457 // The .note.GNU-split-stack section is also special. It
1458 // indicates that the object was compiled with
1459 // -fsplit-stack.
1460 if (this->handle_split_stack_section(name))
1461 {
1462 if (!relocatable && !parameters->options().shared())
1463 omit[i] = true;
1464 }
1465
1466 // Skip attributes section.
1467 if (parameters->target().is_attributes_section(name))
1468 {
1469 omit[i] = true;
1470 }
1471
1472 bool discard = omit[i];
1473 if (!discard)
1474 {
1475 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1476 {
1477 if (!this->include_section_group(symtab, layout, i, name,
1478 shdrs, pnames,
1479 section_names_size,
1480 &omit))
1481 discard = true;
1482 }
1483 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1484 && Layout::is_linkonce(name))
1485 {
1486 if (!this->include_linkonce_section(layout, i, name, shdr))
1487 discard = true;
1488 }
1489 }
1490
1491 // Add the section to the incremental inputs layout.
1492 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1493 if (incremental_inputs != NULL
1494 && !discard
1495 && can_incremental_update(shdr.get_sh_type()))
1496 {
1497 off_t sh_size = shdr.get_sh_size();
1498 section_size_type uncompressed_size;
1499 if (this->section_is_compressed(i, &uncompressed_size))
1500 sh_size = uncompressed_size;
1501 incremental_inputs->report_input_section(this, i, name, sh_size);
1502 }
1503
1504 if (discard)
1505 {
1506 // Do not include this section in the link.
1507 out_sections[i] = NULL;
1508 out_section_offsets[i] = invalid_address;
1509 continue;
1510 }
1511 }
1512
1513 if (is_pass_one && parameters->options().gc_sections())
1514 {
1515 if (this->is_section_name_included(name)
1516 || layout->keep_input_section (this, name)
1517 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1518 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1519 {
1520 symtab->gc()->worklist().push(Section_id(this, i));
1521 }
1522 // If the section name XXX can be represented as a C identifier
1523 // it cannot be discarded if there are references to
1524 // __start_XXX and __stop_XXX symbols. These need to be
1525 // specially handled.
1526 if (is_cident(name))
1527 {
1528 symtab->gc()->add_cident_section(name, Section_id(this, i));
1529 }
1530 }
1531
1532 // When doing a relocatable link we are going to copy input
1533 // reloc sections into the output. We only want to copy the
1534 // ones associated with sections which are not being discarded.
1535 // However, we don't know that yet for all sections. So save
1536 // reloc sections and process them later. Garbage collection is
1537 // not triggered when relocatable code is desired.
1538 if (emit_relocs
1539 && (shdr.get_sh_type() == elfcpp::SHT_REL
1540 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1541 {
1542 reloc_sections.push_back(i);
1543 continue;
1544 }
1545
1546 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1547 continue;
1548
1549 // The .eh_frame section is special. It holds exception frame
1550 // information that we need to read in order to generate the
1551 // exception frame header. We process these after all the other
1552 // sections so that the exception frame reader can reliably
1553 // determine which sections are being discarded, and discard the
1554 // corresponding information.
1555 if (!relocatable
1556 && strcmp(name, ".eh_frame") == 0
1557 && this->check_eh_frame_flags(&shdr))
1558 {
1559 if (is_pass_one)
1560 {
1561 out_sections[i] = reinterpret_cast<Output_section*>(1);
1562 out_section_offsets[i] = invalid_address;
1563 }
1564 else if (should_defer_layout)
1565 this->deferred_layout_.push_back(Deferred_layout(i, name,
1566 pshdrs,
1567 reloc_shndx[i],
1568 reloc_type[i]));
1569 else
1570 eh_frame_sections.push_back(i);
1571 continue;
1572 }
1573
1574 if (is_pass_two && parameters->options().gc_sections())
1575 {
1576 // This is executed during the second pass of garbage
1577 // collection. do_layout has been called before and some
1578 // sections have been already discarded. Simply ignore
1579 // such sections this time around.
1580 if (out_sections[i] == NULL)
1581 {
1582 gold_assert(out_section_offsets[i] == invalid_address);
1583 continue;
1584 }
1585 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1586 && symtab->gc()->is_section_garbage(this, i))
1587 {
1588 if (parameters->options().print_gc_sections())
1589 gold_info(_("%s: removing unused section from '%s'"
1590 " in file '%s'"),
1591 program_name, this->section_name(i).c_str(),
1592 this->name().c_str());
1593 out_sections[i] = NULL;
1594 out_section_offsets[i] = invalid_address;
1595 continue;
1596 }
1597 }
1598
1599 if (is_pass_two && parameters->options().icf_enabled())
1600 {
1601 if (out_sections[i] == NULL)
1602 {
1603 gold_assert(out_section_offsets[i] == invalid_address);
1604 continue;
1605 }
1606 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1607 && symtab->icf()->is_section_folded(this, i))
1608 {
1609 if (parameters->options().print_icf_sections())
1610 {
1611 Section_id folded =
1612 symtab->icf()->get_folded_section(this, i);
1613 Relobj* folded_obj =
1614 reinterpret_cast<Relobj*>(folded.first);
1615 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1616 "into '%s' in file '%s'"),
1617 program_name, this->section_name(i).c_str(),
1618 this->name().c_str(),
1619 folded_obj->section_name(folded.second).c_str(),
1620 folded_obj->name().c_str());
1621 }
1622 out_sections[i] = NULL;
1623 out_section_offsets[i] = invalid_address;
1624 continue;
1625 }
1626 }
1627
1628 // Defer layout here if input files are claimed by plugins. When gc
1629 // is turned on this function is called twice. For the second call
1630 // should_defer_layout should be false.
1631 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1632 {
1633 gold_assert(!is_pass_two);
1634 this->deferred_layout_.push_back(Deferred_layout(i, name,
1635 pshdrs,
1636 reloc_shndx[i],
1637 reloc_type[i]));
1638 // Put dummy values here; real values will be supplied by
1639 // do_layout_deferred_sections.
1640 out_sections[i] = reinterpret_cast<Output_section*>(2);
1641 out_section_offsets[i] = invalid_address;
1642 continue;
1643 }
1644
1645 // During gc_pass_two if a section that was previously deferred is
1646 // found, do not layout the section as layout_deferred_sections will
1647 // do it later from gold.cc.
1648 if (is_pass_two
1649 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1650 continue;
1651
1652 if (is_pass_one)
1653 {
1654 // This is during garbage collection. The out_sections are
1655 // assigned in the second call to this function.
1656 out_sections[i] = reinterpret_cast<Output_section*>(1);
1657 out_section_offsets[i] = invalid_address;
1658 }
1659 else
1660 {
1661 // When garbage collection is switched on the actual layout
1662 // only happens in the second call.
1663 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1664 reloc_type[i]);
1665
1666 // When generating a .gdb_index section, we do additional
1667 // processing of .debug_info and .debug_types sections after all
1668 // the other sections for the same reason as above.
1669 if (!relocatable
1670 && parameters->options().gdb_index()
1671 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1672 {
1673 if (strcmp(name, ".debug_info") == 0
1674 || strcmp(name, ".zdebug_info") == 0)
1675 debug_info_sections.push_back(i);
1676 else if (strcmp(name, ".debug_types") == 0
1677 || strcmp(name, ".zdebug_types") == 0)
1678 debug_types_sections.push_back(i);
1679 }
1680 }
1681 }
1682
1683 if (!is_pass_two)
1684 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1685
1686 // When doing a relocatable link handle the reloc sections at the
1687 // end. Garbage collection and Identical Code Folding is not
1688 // turned on for relocatable code.
1689 if (emit_relocs)
1690 this->size_relocatable_relocs();
1691
1692 gold_assert(!is_two_pass || reloc_sections.empty());
1693
1694 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1695 p != reloc_sections.end();
1696 ++p)
1697 {
1698 unsigned int i = *p;
1699 const unsigned char* pshdr;
1700 pshdr = section_headers_data + i * This::shdr_size;
1701 typename This::Shdr shdr(pshdr);
1702
1703 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1704 if (data_shndx >= shnum)
1705 {
1706 // We already warned about this above.
1707 continue;
1708 }
1709
1710 Output_section* data_section = out_sections[data_shndx];
1711 if (data_section == reinterpret_cast<Output_section*>(2))
1712 {
1713 // The layout for the data section was deferred, so we need
1714 // to defer the relocation section, too.
1715 const char* name = pnames + shdr.get_sh_name();
1716 this->deferred_layout_relocs_.push_back(
1717 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1718 out_sections[i] = reinterpret_cast<Output_section*>(2);
1719 out_section_offsets[i] = invalid_address;
1720 continue;
1721 }
1722 if (data_section == NULL)
1723 {
1724 out_sections[i] = NULL;
1725 out_section_offsets[i] = invalid_address;
1726 continue;
1727 }
1728
1729 Relocatable_relocs* rr = new Relocatable_relocs();
1730 this->set_relocatable_relocs(i, rr);
1731
1732 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1733 rr);
1734 out_sections[i] = os;
1735 out_section_offsets[i] = invalid_address;
1736 }
1737
1738 // Handle the .eh_frame sections at the end.
1739 gold_assert(!is_pass_one || eh_frame_sections.empty());
1740 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1741 p != eh_frame_sections.end();
1742 ++p)
1743 {
1744 unsigned int i = *p;
1745 const unsigned char* pshdr;
1746 pshdr = section_headers_data + i * This::shdr_size;
1747 typename This::Shdr shdr(pshdr);
1748
1749 this->layout_eh_frame_section(layout,
1750 symbols_data,
1751 symbols_size,
1752 symbol_names_data,
1753 symbol_names_size,
1754 i,
1755 shdr,
1756 reloc_shndx[i],
1757 reloc_type[i]);
1758 }
1759
1760 // When building a .gdb_index section, scan the .debug_info and
1761 // .debug_types sections.
1762 gold_assert(!is_pass_one
1763 || (debug_info_sections.empty() && debug_types_sections.empty()));
1764 for (std::vector<unsigned int>::const_iterator p
1765 = debug_info_sections.begin();
1766 p != debug_info_sections.end();
1767 ++p)
1768 {
1769 unsigned int i = *p;
1770 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1771 i, reloc_shndx[i], reloc_type[i]);
1772 }
1773 for (std::vector<unsigned int>::const_iterator p
1774 = debug_types_sections.begin();
1775 p != debug_types_sections.end();
1776 ++p)
1777 {
1778 unsigned int i = *p;
1779 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1780 i, reloc_shndx[i], reloc_type[i]);
1781 }
1782
1783 if (is_pass_two)
1784 {
1785 delete[] gc_sd->section_headers_data;
1786 delete[] gc_sd->section_names_data;
1787 delete[] gc_sd->symbols_data;
1788 delete[] gc_sd->symbol_names_data;
1789 this->set_symbols_data(NULL);
1790 }
1791 else
1792 {
1793 delete sd->section_headers;
1794 sd->section_headers = NULL;
1795 delete sd->section_names;
1796 sd->section_names = NULL;
1797 }
1798 }
1799
1800 // Layout sections whose layout was deferred while waiting for
1801 // input files from a plugin.
1802
1803 template<int size, bool big_endian>
1804 void
1805 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1806 {
1807 typename std::vector<Deferred_layout>::iterator deferred;
1808
1809 for (deferred = this->deferred_layout_.begin();
1810 deferred != this->deferred_layout_.end();
1811 ++deferred)
1812 {
1813 typename This::Shdr shdr(deferred->shdr_data_);
1814 // If the section is not included, it is because the garbage collector
1815 // decided it is not needed. Avoid reverting that decision.
1816 if (!this->is_section_included(deferred->shndx_))
1817 continue;
1818
1819 if (parameters->options().relocatable()
1820 || deferred->name_ != ".eh_frame"
1821 || !this->check_eh_frame_flags(&shdr))
1822 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1823 shdr, deferred->reloc_shndx_,
1824 deferred->reloc_type_);
1825 else
1826 {
1827 // Reading the symbols again here may be slow.
1828 Read_symbols_data sd;
1829 this->read_symbols(&sd);
1830 this->layout_eh_frame_section(layout,
1831 sd.symbols->data(),
1832 sd.symbols_size,
1833 sd.symbol_names->data(),
1834 sd.symbol_names_size,
1835 deferred->shndx_,
1836 shdr,
1837 deferred->reloc_shndx_,
1838 deferred->reloc_type_);
1839 }
1840 }
1841
1842 this->deferred_layout_.clear();
1843
1844 // Now handle the deferred relocation sections.
1845
1846 Output_sections& out_sections(this->output_sections());
1847 std::vector<Address>& out_section_offsets(this->section_offsets());
1848
1849 for (deferred = this->deferred_layout_relocs_.begin();
1850 deferred != this->deferred_layout_relocs_.end();
1851 ++deferred)
1852 {
1853 unsigned int shndx = deferred->shndx_;
1854 typename This::Shdr shdr(deferred->shdr_data_);
1855 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1856
1857 Output_section* data_section = out_sections[data_shndx];
1858 if (data_section == NULL)
1859 {
1860 out_sections[shndx] = NULL;
1861 out_section_offsets[shndx] = invalid_address;
1862 continue;
1863 }
1864
1865 Relocatable_relocs* rr = new Relocatable_relocs();
1866 this->set_relocatable_relocs(shndx, rr);
1867
1868 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1869 data_section, rr);
1870 out_sections[shndx] = os;
1871 out_section_offsets[shndx] = invalid_address;
1872 }
1873 }
1874
1875 // Add the symbols to the symbol table.
1876
1877 template<int size, bool big_endian>
1878 void
1879 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1880 Read_symbols_data* sd,
1881 Layout*)
1882 {
1883 if (sd->symbols == NULL)
1884 {
1885 gold_assert(sd->symbol_names == NULL);
1886 return;
1887 }
1888
1889 const int sym_size = This::sym_size;
1890 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1891 / sym_size);
1892 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1893 {
1894 this->error(_("size of symbols is not multiple of symbol size"));
1895 return;
1896 }
1897
1898 this->symbols_.resize(symcount);
1899
1900 const char* sym_names =
1901 reinterpret_cast<const char*>(sd->symbol_names->data());
1902 symtab->add_from_relobj(this,
1903 sd->symbols->data() + sd->external_symbols_offset,
1904 symcount, this->local_symbol_count_,
1905 sym_names, sd->symbol_names_size,
1906 &this->symbols_,
1907 &this->defined_count_);
1908
1909 delete sd->symbols;
1910 sd->symbols = NULL;
1911 delete sd->symbol_names;
1912 sd->symbol_names = NULL;
1913 }
1914
1915 // Find out if this object, that is a member of a lib group, should be included
1916 // in the link. We check every symbol defined by this object. If the symbol
1917 // table has a strong undefined reference to that symbol, we have to include
1918 // the object.
1919
1920 template<int size, bool big_endian>
1921 Archive::Should_include
1922 Sized_relobj_file<size, big_endian>::do_should_include_member(
1923 Symbol_table* symtab,
1924 Layout* layout,
1925 Read_symbols_data* sd,
1926 std::string* why)
1927 {
1928 char* tmpbuf = NULL;
1929 size_t tmpbuflen = 0;
1930 const char* sym_names =
1931 reinterpret_cast<const char*>(sd->symbol_names->data());
1932 const unsigned char* syms =
1933 sd->symbols->data() + sd->external_symbols_offset;
1934 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1935 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1936 / sym_size);
1937
1938 const unsigned char* p = syms;
1939
1940 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1941 {
1942 elfcpp::Sym<size, big_endian> sym(p);
1943 unsigned int st_shndx = sym.get_st_shndx();
1944 if (st_shndx == elfcpp::SHN_UNDEF)
1945 continue;
1946
1947 unsigned int st_name = sym.get_st_name();
1948 const char* name = sym_names + st_name;
1949 Symbol* symbol;
1950 Archive::Should_include t = Archive::should_include_member(symtab,
1951 layout,
1952 name,
1953 &symbol, why,
1954 &tmpbuf,
1955 &tmpbuflen);
1956 if (t == Archive::SHOULD_INCLUDE_YES)
1957 {
1958 if (tmpbuf != NULL)
1959 free(tmpbuf);
1960 return t;
1961 }
1962 }
1963 if (tmpbuf != NULL)
1964 free(tmpbuf);
1965 return Archive::SHOULD_INCLUDE_UNKNOWN;
1966 }
1967
1968 // Iterate over global defined symbols, calling a visitor class V for each.
1969
1970 template<int size, bool big_endian>
1971 void
1972 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1973 Read_symbols_data* sd,
1974 Library_base::Symbol_visitor_base* v)
1975 {
1976 const char* sym_names =
1977 reinterpret_cast<const char*>(sd->symbol_names->data());
1978 const unsigned char* syms =
1979 sd->symbols->data() + sd->external_symbols_offset;
1980 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1981 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1982 / sym_size);
1983 const unsigned char* p = syms;
1984
1985 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1986 {
1987 elfcpp::Sym<size, big_endian> sym(p);
1988 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1989 v->visit(sym_names + sym.get_st_name());
1990 }
1991 }
1992
1993 // Return whether the local symbol SYMNDX has a PLT offset.
1994
1995 template<int size, bool big_endian>
1996 bool
1997 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1998 unsigned int symndx) const
1999 {
2000 typename Local_plt_offsets::const_iterator p =
2001 this->local_plt_offsets_.find(symndx);
2002 return p != this->local_plt_offsets_.end();
2003 }
2004
2005 // Get the PLT offset of a local symbol.
2006
2007 template<int size, bool big_endian>
2008 unsigned int
2009 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2010 unsigned int symndx) const
2011 {
2012 typename Local_plt_offsets::const_iterator p =
2013 this->local_plt_offsets_.find(symndx);
2014 gold_assert(p != this->local_plt_offsets_.end());
2015 return p->second;
2016 }
2017
2018 // Set the PLT offset of a local symbol.
2019
2020 template<int size, bool big_endian>
2021 void
2022 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2023 unsigned int symndx, unsigned int plt_offset)
2024 {
2025 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2026 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2027 gold_assert(ins.second);
2028 }
2029
2030 // First pass over the local symbols. Here we add their names to
2031 // *POOL and *DYNPOOL, and we store the symbol value in
2032 // THIS->LOCAL_VALUES_. This function is always called from a
2033 // singleton thread. This is followed by a call to
2034 // finalize_local_symbols.
2035
2036 template<int size, bool big_endian>
2037 void
2038 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2039 Stringpool* dynpool)
2040 {
2041 gold_assert(this->symtab_shndx_ != -1U);
2042 if (this->symtab_shndx_ == 0)
2043 {
2044 // This object has no symbols. Weird but legal.
2045 return;
2046 }
2047
2048 // Read the symbol table section header.
2049 const unsigned int symtab_shndx = this->symtab_shndx_;
2050 typename This::Shdr symtabshdr(this,
2051 this->elf_file_.section_header(symtab_shndx));
2052 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2053
2054 // Read the local symbols.
2055 const int sym_size = This::sym_size;
2056 const unsigned int loccount = this->local_symbol_count_;
2057 gold_assert(loccount == symtabshdr.get_sh_info());
2058 off_t locsize = loccount * sym_size;
2059 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2060 locsize, true, true);
2061
2062 // Read the symbol names.
2063 const unsigned int strtab_shndx =
2064 this->adjust_shndx(symtabshdr.get_sh_link());
2065 section_size_type strtab_size;
2066 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2067 &strtab_size,
2068 true);
2069 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2070
2071 // Loop over the local symbols.
2072
2073 const Output_sections& out_sections(this->output_sections());
2074 unsigned int shnum = this->shnum();
2075 unsigned int count = 0;
2076 unsigned int dyncount = 0;
2077 // Skip the first, dummy, symbol.
2078 psyms += sym_size;
2079 bool strip_all = parameters->options().strip_all();
2080 bool discard_all = parameters->options().discard_all();
2081 bool discard_locals = parameters->options().discard_locals();
2082 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2083 {
2084 elfcpp::Sym<size, big_endian> sym(psyms);
2085
2086 Symbol_value<size>& lv(this->local_values_[i]);
2087
2088 bool is_ordinary;
2089 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2090 &is_ordinary);
2091 lv.set_input_shndx(shndx, is_ordinary);
2092
2093 if (sym.get_st_type() == elfcpp::STT_SECTION)
2094 lv.set_is_section_symbol();
2095 else if (sym.get_st_type() == elfcpp::STT_TLS)
2096 lv.set_is_tls_symbol();
2097 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2098 lv.set_is_ifunc_symbol();
2099
2100 // Save the input symbol value for use in do_finalize_local_symbols().
2101 lv.set_input_value(sym.get_st_value());
2102
2103 // Decide whether this symbol should go into the output file.
2104
2105 if ((shndx < shnum && out_sections[shndx] == NULL)
2106 || shndx == this->discarded_eh_frame_shndx_)
2107 {
2108 lv.set_no_output_symtab_entry();
2109 gold_assert(!lv.needs_output_dynsym_entry());
2110 continue;
2111 }
2112
2113 if (sym.get_st_type() == elfcpp::STT_SECTION)
2114 {
2115 lv.set_no_output_symtab_entry();
2116 gold_assert(!lv.needs_output_dynsym_entry());
2117 continue;
2118 }
2119
2120 if (sym.get_st_name() >= strtab_size)
2121 {
2122 this->error(_("local symbol %u section name out of range: %u >= %u"),
2123 i, sym.get_st_name(),
2124 static_cast<unsigned int>(strtab_size));
2125 lv.set_no_output_symtab_entry();
2126 continue;
2127 }
2128
2129 const char* name = pnames + sym.get_st_name();
2130
2131 // If needed, add the symbol to the dynamic symbol table string pool.
2132 if (lv.needs_output_dynsym_entry())
2133 {
2134 dynpool->add(name, true, NULL);
2135 ++dyncount;
2136 }
2137
2138 if (strip_all
2139 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2140 {
2141 lv.set_no_output_symtab_entry();
2142 continue;
2143 }
2144
2145 // If --discard-locals option is used, discard all temporary local
2146 // symbols. These symbols start with system-specific local label
2147 // prefixes, typically .L for ELF system. We want to be compatible
2148 // with GNU ld so here we essentially use the same check in
2149 // bfd_is_local_label(). The code is different because we already
2150 // know that:
2151 //
2152 // - the symbol is local and thus cannot have global or weak binding.
2153 // - the symbol is not a section symbol.
2154 // - the symbol has a name.
2155 //
2156 // We do not discard a symbol if it needs a dynamic symbol entry.
2157 if (discard_locals
2158 && sym.get_st_type() != elfcpp::STT_FILE
2159 && !lv.needs_output_dynsym_entry()
2160 && lv.may_be_discarded_from_output_symtab()
2161 && parameters->target().is_local_label_name(name))
2162 {
2163 lv.set_no_output_symtab_entry();
2164 continue;
2165 }
2166
2167 // Discard the local symbol if -retain_symbols_file is specified
2168 // and the local symbol is not in that file.
2169 if (!parameters->options().should_retain_symbol(name))
2170 {
2171 lv.set_no_output_symtab_entry();
2172 continue;
2173 }
2174
2175 // Add the symbol to the symbol table string pool.
2176 pool->add(name, true, NULL);
2177 ++count;
2178 }
2179
2180 this->output_local_symbol_count_ = count;
2181 this->output_local_dynsym_count_ = dyncount;
2182 }
2183
2184 // Compute the final value of a local symbol.
2185
2186 template<int size, bool big_endian>
2187 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2188 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2189 unsigned int r_sym,
2190 const Symbol_value<size>* lv_in,
2191 Symbol_value<size>* lv_out,
2192 bool relocatable,
2193 const Output_sections& out_sections,
2194 const std::vector<Address>& out_offsets,
2195 const Symbol_table* symtab)
2196 {
2197 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2198 // we may have a memory leak.
2199 gold_assert(lv_out->has_output_value());
2200
2201 bool is_ordinary;
2202 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2203
2204 // Set the output symbol value.
2205
2206 if (!is_ordinary)
2207 {
2208 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2209 lv_out->set_output_value(lv_in->input_value());
2210 else
2211 {
2212 this->error(_("unknown section index %u for local symbol %u"),
2213 shndx, r_sym);
2214 lv_out->set_output_value(0);
2215 return This::CFLV_ERROR;
2216 }
2217 }
2218 else
2219 {
2220 if (shndx >= this->shnum())
2221 {
2222 this->error(_("local symbol %u section index %u out of range"),
2223 r_sym, shndx);
2224 lv_out->set_output_value(0);
2225 return This::CFLV_ERROR;
2226 }
2227
2228 Output_section* os = out_sections[shndx];
2229 Address secoffset = out_offsets[shndx];
2230 if (symtab->is_section_folded(this, shndx))
2231 {
2232 gold_assert(os == NULL && secoffset == invalid_address);
2233 // Get the os of the section it is folded onto.
2234 Section_id folded = symtab->icf()->get_folded_section(this,
2235 shndx);
2236 gold_assert(folded.first != NULL);
2237 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2238 <Sized_relobj_file<size, big_endian>*>(folded.first);
2239 os = folded_obj->output_section(folded.second);
2240 gold_assert(os != NULL);
2241 secoffset = folded_obj->get_output_section_offset(folded.second);
2242
2243 // This could be a relaxed input section.
2244 if (secoffset == invalid_address)
2245 {
2246 const Output_relaxed_input_section* relaxed_section =
2247 os->find_relaxed_input_section(folded_obj, folded.second);
2248 gold_assert(relaxed_section != NULL);
2249 secoffset = relaxed_section->address() - os->address();
2250 }
2251 }
2252
2253 if (os == NULL)
2254 {
2255 // This local symbol belongs to a section we are discarding.
2256 // In some cases when applying relocations later, we will
2257 // attempt to match it to the corresponding kept section,
2258 // so we leave the input value unchanged here.
2259 return This::CFLV_DISCARDED;
2260 }
2261 else if (secoffset == invalid_address)
2262 {
2263 uint64_t start;
2264
2265 // This is a SHF_MERGE section or one which otherwise
2266 // requires special handling.
2267 if (shndx == this->discarded_eh_frame_shndx_)
2268 {
2269 // This local symbol belongs to a discarded .eh_frame
2270 // section. Just treat it like the case in which
2271 // os == NULL above.
2272 gold_assert(this->has_eh_frame_);
2273 return This::CFLV_DISCARDED;
2274 }
2275 else if (!lv_in->is_section_symbol())
2276 {
2277 // This is not a section symbol. We can determine
2278 // the final value now.
2279 lv_out->set_output_value(
2280 os->output_address(this, shndx, lv_in->input_value()));
2281 }
2282 else if (!os->find_starting_output_address(this, shndx, &start))
2283 {
2284 // This is a section symbol, but apparently not one in a
2285 // merged section. First check to see if this is a relaxed
2286 // input section. If so, use its address. Otherwise just
2287 // use the start of the output section. This happens with
2288 // relocatable links when the input object has section
2289 // symbols for arbitrary non-merge sections.
2290 const Output_section_data* posd =
2291 os->find_relaxed_input_section(this, shndx);
2292 if (posd != NULL)
2293 {
2294 Address relocatable_link_adjustment =
2295 relocatable ? os->address() : 0;
2296 lv_out->set_output_value(posd->address()
2297 - relocatable_link_adjustment);
2298 }
2299 else
2300 lv_out->set_output_value(os->address());
2301 }
2302 else
2303 {
2304 // We have to consider the addend to determine the
2305 // value to use in a relocation. START is the start
2306 // of this input section. If we are doing a relocatable
2307 // link, use offset from start output section instead of
2308 // address.
2309 Address adjusted_start =
2310 relocatable ? start - os->address() : start;
2311 Merged_symbol_value<size>* msv =
2312 new Merged_symbol_value<size>(lv_in->input_value(),
2313 adjusted_start);
2314 lv_out->set_merged_symbol_value(msv);
2315 }
2316 }
2317 else if (lv_in->is_tls_symbol())
2318 lv_out->set_output_value(os->tls_offset()
2319 + secoffset
2320 + lv_in->input_value());
2321 else
2322 lv_out->set_output_value((relocatable ? 0 : os->address())
2323 + secoffset
2324 + lv_in->input_value());
2325 }
2326 return This::CFLV_OK;
2327 }
2328
2329 // Compute final local symbol value. R_SYM is the index of a local
2330 // symbol in symbol table. LV points to a symbol value, which is
2331 // expected to hold the input value and to be over-written by the
2332 // final value. SYMTAB points to a symbol table. Some targets may want
2333 // to know would-be-finalized local symbol values in relaxation.
2334 // Hence we provide this method. Since this method updates *LV, a
2335 // callee should make a copy of the original local symbol value and
2336 // use the copy instead of modifying an object's local symbols before
2337 // everything is finalized. The caller should also free up any allocated
2338 // memory in the return value in *LV.
2339 template<int size, bool big_endian>
2340 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2341 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2342 unsigned int r_sym,
2343 const Symbol_value<size>* lv_in,
2344 Symbol_value<size>* lv_out,
2345 const Symbol_table* symtab)
2346 {
2347 // This is just a wrapper of compute_final_local_value_internal.
2348 const bool relocatable = parameters->options().relocatable();
2349 const Output_sections& out_sections(this->output_sections());
2350 const std::vector<Address>& out_offsets(this->section_offsets());
2351 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2352 relocatable, out_sections,
2353 out_offsets, symtab);
2354 }
2355
2356 // Finalize the local symbols. Here we set the final value in
2357 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2358 // This function is always called from a singleton thread. The actual
2359 // output of the local symbols will occur in a separate task.
2360
2361 template<int size, bool big_endian>
2362 unsigned int
2363 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2364 unsigned int index,
2365 off_t off,
2366 Symbol_table* symtab)
2367 {
2368 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2369
2370 const unsigned int loccount = this->local_symbol_count_;
2371 this->local_symbol_offset_ = off;
2372
2373 const bool relocatable = parameters->options().relocatable();
2374 const Output_sections& out_sections(this->output_sections());
2375 const std::vector<Address>& out_offsets(this->section_offsets());
2376
2377 for (unsigned int i = 1; i < loccount; ++i)
2378 {
2379 Symbol_value<size>* lv = &this->local_values_[i];
2380
2381 Compute_final_local_value_status cflv_status =
2382 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2383 out_sections, out_offsets,
2384 symtab);
2385 switch (cflv_status)
2386 {
2387 case CFLV_OK:
2388 if (!lv->is_output_symtab_index_set())
2389 {
2390 lv->set_output_symtab_index(index);
2391 ++index;
2392 }
2393 break;
2394 case CFLV_DISCARDED:
2395 case CFLV_ERROR:
2396 // Do nothing.
2397 break;
2398 default:
2399 gold_unreachable();
2400 }
2401 }
2402 return index;
2403 }
2404
2405 // Set the output dynamic symbol table indexes for the local variables.
2406
2407 template<int size, bool big_endian>
2408 unsigned int
2409 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2410 unsigned int index)
2411 {
2412 const unsigned int loccount = this->local_symbol_count_;
2413 for (unsigned int i = 1; i < loccount; ++i)
2414 {
2415 Symbol_value<size>& lv(this->local_values_[i]);
2416 if (lv.needs_output_dynsym_entry())
2417 {
2418 lv.set_output_dynsym_index(index);
2419 ++index;
2420 }
2421 }
2422 return index;
2423 }
2424
2425 // Set the offset where local dynamic symbol information will be stored.
2426 // Returns the count of local symbols contributed to the symbol table by
2427 // this object.
2428
2429 template<int size, bool big_endian>
2430 unsigned int
2431 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2432 {
2433 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2434 this->local_dynsym_offset_ = off;
2435 return this->output_local_dynsym_count_;
2436 }
2437
2438 // If Symbols_data is not NULL get the section flags from here otherwise
2439 // get it from the file.
2440
2441 template<int size, bool big_endian>
2442 uint64_t
2443 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2444 {
2445 Symbols_data* sd = this->get_symbols_data();
2446 if (sd != NULL)
2447 {
2448 const unsigned char* pshdrs = sd->section_headers_data
2449 + This::shdr_size * shndx;
2450 typename This::Shdr shdr(pshdrs);
2451 return shdr.get_sh_flags();
2452 }
2453 // If sd is NULL, read the section header from the file.
2454 return this->elf_file_.section_flags(shndx);
2455 }
2456
2457 // Get the section's ent size from Symbols_data. Called by get_section_contents
2458 // in icf.cc
2459
2460 template<int size, bool big_endian>
2461 uint64_t
2462 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2463 {
2464 Symbols_data* sd = this->get_symbols_data();
2465 gold_assert(sd != NULL);
2466
2467 const unsigned char* pshdrs = sd->section_headers_data
2468 + This::shdr_size * shndx;
2469 typename This::Shdr shdr(pshdrs);
2470 return shdr.get_sh_entsize();
2471 }
2472
2473 // Write out the local symbols.
2474
2475 template<int size, bool big_endian>
2476 void
2477 Sized_relobj_file<size, big_endian>::write_local_symbols(
2478 Output_file* of,
2479 const Stringpool* sympool,
2480 const Stringpool* dynpool,
2481 Output_symtab_xindex* symtab_xindex,
2482 Output_symtab_xindex* dynsym_xindex,
2483 off_t symtab_off)
2484 {
2485 const bool strip_all = parameters->options().strip_all();
2486 if (strip_all)
2487 {
2488 if (this->output_local_dynsym_count_ == 0)
2489 return;
2490 this->output_local_symbol_count_ = 0;
2491 }
2492
2493 gold_assert(this->symtab_shndx_ != -1U);
2494 if (this->symtab_shndx_ == 0)
2495 {
2496 // This object has no symbols. Weird but legal.
2497 return;
2498 }
2499
2500 // Read the symbol table section header.
2501 const unsigned int symtab_shndx = this->symtab_shndx_;
2502 typename This::Shdr symtabshdr(this,
2503 this->elf_file_.section_header(symtab_shndx));
2504 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2505 const unsigned int loccount = this->local_symbol_count_;
2506 gold_assert(loccount == symtabshdr.get_sh_info());
2507
2508 // Read the local symbols.
2509 const int sym_size = This::sym_size;
2510 off_t locsize = loccount * sym_size;
2511 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2512 locsize, true, false);
2513
2514 // Read the symbol names.
2515 const unsigned int strtab_shndx =
2516 this->adjust_shndx(symtabshdr.get_sh_link());
2517 section_size_type strtab_size;
2518 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2519 &strtab_size,
2520 false);
2521 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2522
2523 // Get views into the output file for the portions of the symbol table
2524 // and the dynamic symbol table that we will be writing.
2525 off_t output_size = this->output_local_symbol_count_ * sym_size;
2526 unsigned char* oview = NULL;
2527 if (output_size > 0)
2528 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2529 output_size);
2530
2531 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2532 unsigned char* dyn_oview = NULL;
2533 if (dyn_output_size > 0)
2534 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2535 dyn_output_size);
2536
2537 const Output_sections out_sections(this->output_sections());
2538
2539 gold_assert(this->local_values_.size() == loccount);
2540
2541 unsigned char* ov = oview;
2542 unsigned char* dyn_ov = dyn_oview;
2543 psyms += sym_size;
2544 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2545 {
2546 elfcpp::Sym<size, big_endian> isym(psyms);
2547
2548 Symbol_value<size>& lv(this->local_values_[i]);
2549
2550 bool is_ordinary;
2551 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2552 &is_ordinary);
2553 if (is_ordinary)
2554 {
2555 gold_assert(st_shndx < out_sections.size());
2556 if (out_sections[st_shndx] == NULL)
2557 continue;
2558 st_shndx = out_sections[st_shndx]->out_shndx();
2559 if (st_shndx >= elfcpp::SHN_LORESERVE)
2560 {
2561 if (lv.has_output_symtab_entry())
2562 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2563 if (lv.has_output_dynsym_entry())
2564 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2565 st_shndx = elfcpp::SHN_XINDEX;
2566 }
2567 }
2568
2569 // Write the symbol to the output symbol table.
2570 if (lv.has_output_symtab_entry())
2571 {
2572 elfcpp::Sym_write<size, big_endian> osym(ov);
2573
2574 gold_assert(isym.get_st_name() < strtab_size);
2575 const char* name = pnames + isym.get_st_name();
2576 osym.put_st_name(sympool->get_offset(name));
2577 osym.put_st_value(this->local_values_[i].value(this, 0));
2578 osym.put_st_size(isym.get_st_size());
2579 osym.put_st_info(isym.get_st_info());
2580 osym.put_st_other(isym.get_st_other());
2581 osym.put_st_shndx(st_shndx);
2582
2583 ov += sym_size;
2584 }
2585
2586 // Write the symbol to the output dynamic symbol table.
2587 if (lv.has_output_dynsym_entry())
2588 {
2589 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2590 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2591
2592 gold_assert(isym.get_st_name() < strtab_size);
2593 const char* name = pnames + isym.get_st_name();
2594 osym.put_st_name(dynpool->get_offset(name));
2595 osym.put_st_value(this->local_values_[i].value(this, 0));
2596 osym.put_st_size(isym.get_st_size());
2597 osym.put_st_info(isym.get_st_info());
2598 osym.put_st_other(isym.get_st_other());
2599 osym.put_st_shndx(st_shndx);
2600
2601 dyn_ov += sym_size;
2602 }
2603 }
2604
2605
2606 if (output_size > 0)
2607 {
2608 gold_assert(ov - oview == output_size);
2609 of->write_output_view(symtab_off + this->local_symbol_offset_,
2610 output_size, oview);
2611 }
2612
2613 if (dyn_output_size > 0)
2614 {
2615 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2616 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2617 dyn_oview);
2618 }
2619 }
2620
2621 // Set *INFO to symbolic information about the offset OFFSET in the
2622 // section SHNDX. Return true if we found something, false if we
2623 // found nothing.
2624
2625 template<int size, bool big_endian>
2626 bool
2627 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2628 unsigned int shndx,
2629 off_t offset,
2630 Symbol_location_info* info)
2631 {
2632 if (this->symtab_shndx_ == 0)
2633 return false;
2634
2635 section_size_type symbols_size;
2636 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2637 &symbols_size,
2638 false);
2639
2640 unsigned int symbol_names_shndx =
2641 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2642 section_size_type names_size;
2643 const unsigned char* symbol_names_u =
2644 this->section_contents(symbol_names_shndx, &names_size, false);
2645 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2646
2647 const int sym_size = This::sym_size;
2648 const size_t count = symbols_size / sym_size;
2649
2650 const unsigned char* p = symbols;
2651 for (size_t i = 0; i < count; ++i, p += sym_size)
2652 {
2653 elfcpp::Sym<size, big_endian> sym(p);
2654
2655 if (sym.get_st_type() == elfcpp::STT_FILE)
2656 {
2657 if (sym.get_st_name() >= names_size)
2658 info->source_file = "(invalid)";
2659 else
2660 info->source_file = symbol_names + sym.get_st_name();
2661 continue;
2662 }
2663
2664 bool is_ordinary;
2665 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2666 &is_ordinary);
2667 if (is_ordinary
2668 && st_shndx == shndx
2669 && static_cast<off_t>(sym.get_st_value()) <= offset
2670 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2671 > offset))
2672 {
2673 if (sym.get_st_name() > names_size)
2674 info->enclosing_symbol_name = "(invalid)";
2675 else
2676 {
2677 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2678 if (parameters->options().do_demangle())
2679 {
2680 char* demangled_name = cplus_demangle(
2681 info->enclosing_symbol_name.c_str(),
2682 DMGL_ANSI | DMGL_PARAMS);
2683 if (demangled_name != NULL)
2684 {
2685 info->enclosing_symbol_name.assign(demangled_name);
2686 free(demangled_name);
2687 }
2688 }
2689 }
2690 return true;
2691 }
2692 }
2693
2694 return false;
2695 }
2696
2697 // Look for a kept section corresponding to the given discarded section,
2698 // and return its output address. This is used only for relocations in
2699 // debugging sections. If we can't find the kept section, return 0.
2700
2701 template<int size, bool big_endian>
2702 typename Sized_relobj_file<size, big_endian>::Address
2703 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2704 unsigned int shndx,
2705 bool* found) const
2706 {
2707 Relobj* kept_object;
2708 unsigned int kept_shndx;
2709 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2710 {
2711 Sized_relobj_file<size, big_endian>* kept_relobj =
2712 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2713 Output_section* os = kept_relobj->output_section(kept_shndx);
2714 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2715 if (os != NULL && offset != invalid_address)
2716 {
2717 *found = true;
2718 return os->address() + offset;
2719 }
2720 }
2721 *found = false;
2722 return 0;
2723 }
2724
2725 // Get symbol counts.
2726
2727 template<int size, bool big_endian>
2728 void
2729 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2730 const Symbol_table*,
2731 size_t* defined,
2732 size_t* used) const
2733 {
2734 *defined = this->defined_count_;
2735 size_t count = 0;
2736 for (typename Symbols::const_iterator p = this->symbols_.begin();
2737 p != this->symbols_.end();
2738 ++p)
2739 if (*p != NULL
2740 && (*p)->source() == Symbol::FROM_OBJECT
2741 && (*p)->object() == this
2742 && (*p)->is_defined())
2743 ++count;
2744 *used = count;
2745 }
2746
2747 // Return a view of the decompressed contents of a section. Set *PLEN
2748 // to the size. Set *IS_NEW to true if the contents need to be freed
2749 // by the caller.
2750
2751 template<int size, bool big_endian>
2752 const unsigned char*
2753 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2754 unsigned int shndx,
2755 section_size_type* plen,
2756 bool* is_new)
2757 {
2758 section_size_type buffer_size;
2759 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2760 false);
2761
2762 if (this->compressed_sections_ == NULL)
2763 {
2764 *plen = buffer_size;
2765 *is_new = false;
2766 return buffer;
2767 }
2768
2769 Compressed_section_map::const_iterator p =
2770 this->compressed_sections_->find(shndx);
2771 if (p == this->compressed_sections_->end())
2772 {
2773 *plen = buffer_size;
2774 *is_new = false;
2775 return buffer;
2776 }
2777
2778 section_size_type uncompressed_size = p->second.size;
2779 if (p->second.contents != NULL)
2780 {
2781 *plen = uncompressed_size;
2782 *is_new = false;
2783 return p->second.contents;
2784 }
2785
2786 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2787 if (!decompress_input_section(buffer,
2788 buffer_size,
2789 uncompressed_data,
2790 uncompressed_size))
2791 this->error(_("could not decompress section %s"),
2792 this->do_section_name(shndx).c_str());
2793
2794 // We could cache the results in p->second.contents and store
2795 // false in *IS_NEW, but build_compressed_section_map() would
2796 // have done so if it had expected it to be profitable. If
2797 // we reach this point, we expect to need the contents only
2798 // once in this pass.
2799 *plen = uncompressed_size;
2800 *is_new = true;
2801 return uncompressed_data;
2802 }
2803
2804 // Discard any buffers of uncompressed sections. This is done
2805 // at the end of the Add_symbols task.
2806
2807 template<int size, bool big_endian>
2808 void
2809 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2810 {
2811 if (this->compressed_sections_ == NULL)
2812 return;
2813
2814 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2815 p != this->compressed_sections_->end();
2816 ++p)
2817 {
2818 if (p->second.contents != NULL)
2819 {
2820 delete[] p->second.contents;
2821 p->second.contents = NULL;
2822 }
2823 }
2824 }
2825
2826 // Input_objects methods.
2827
2828 // Add a regular relocatable object to the list. Return false if this
2829 // object should be ignored.
2830
2831 bool
2832 Input_objects::add_object(Object* obj)
2833 {
2834 // Print the filename if the -t/--trace option is selected.
2835 if (parameters->options().trace())
2836 gold_info("%s", obj->name().c_str());
2837
2838 if (!obj->is_dynamic())
2839 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2840 else
2841 {
2842 // See if this is a duplicate SONAME.
2843 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2844 const char* soname = dynobj->soname();
2845
2846 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2847 this->sonames_.insert(soname);
2848 if (!ins.second)
2849 {
2850 // We have already seen a dynamic object with this soname.
2851 return false;
2852 }
2853
2854 this->dynobj_list_.push_back(dynobj);
2855 }
2856
2857 // Add this object to the cross-referencer if requested.
2858 if (parameters->options().user_set_print_symbol_counts()
2859 || parameters->options().cref())
2860 {
2861 if (this->cref_ == NULL)
2862 this->cref_ = new Cref();
2863 this->cref_->add_object(obj);
2864 }
2865
2866 return true;
2867 }
2868
2869 // For each dynamic object, record whether we've seen all of its
2870 // explicit dependencies.
2871
2872 void
2873 Input_objects::check_dynamic_dependencies() const
2874 {
2875 bool issued_copy_dt_needed_error = false;
2876 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2877 p != this->dynobj_list_.end();
2878 ++p)
2879 {
2880 const Dynobj::Needed& needed((*p)->needed());
2881 bool found_all = true;
2882 Dynobj::Needed::const_iterator pneeded;
2883 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2884 {
2885 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2886 {
2887 found_all = false;
2888 break;
2889 }
2890 }
2891 (*p)->set_has_unknown_needed_entries(!found_all);
2892
2893 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2894 // that gold does not support. However, they cause no trouble
2895 // unless there is a DT_NEEDED entry that we don't know about;
2896 // warn only in that case.
2897 if (!found_all
2898 && !issued_copy_dt_needed_error
2899 && (parameters->options().copy_dt_needed_entries()
2900 || parameters->options().add_needed()))
2901 {
2902 const char* optname;
2903 if (parameters->options().copy_dt_needed_entries())
2904 optname = "--copy-dt-needed-entries";
2905 else
2906 optname = "--add-needed";
2907 gold_error(_("%s is not supported but is required for %s in %s"),
2908 optname, (*pneeded).c_str(), (*p)->name().c_str());
2909 issued_copy_dt_needed_error = true;
2910 }
2911 }
2912 }
2913
2914 // Start processing an archive.
2915
2916 void
2917 Input_objects::archive_start(Archive* archive)
2918 {
2919 if (parameters->options().user_set_print_symbol_counts()
2920 || parameters->options().cref())
2921 {
2922 if (this->cref_ == NULL)
2923 this->cref_ = new Cref();
2924 this->cref_->add_archive_start(archive);
2925 }
2926 }
2927
2928 // Stop processing an archive.
2929
2930 void
2931 Input_objects::archive_stop(Archive* archive)
2932 {
2933 if (parameters->options().user_set_print_symbol_counts()
2934 || parameters->options().cref())
2935 this->cref_->add_archive_stop(archive);
2936 }
2937
2938 // Print symbol counts
2939
2940 void
2941 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2942 {
2943 if (parameters->options().user_set_print_symbol_counts()
2944 && this->cref_ != NULL)
2945 this->cref_->print_symbol_counts(symtab);
2946 }
2947
2948 // Print a cross reference table.
2949
2950 void
2951 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2952 {
2953 if (parameters->options().cref() && this->cref_ != NULL)
2954 this->cref_->print_cref(symtab, f);
2955 }
2956
2957 // Relocate_info methods.
2958
2959 // Return a string describing the location of a relocation when file
2960 // and lineno information is not available. This is only used in
2961 // error messages.
2962
2963 template<int size, bool big_endian>
2964 std::string
2965 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2966 {
2967 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2968 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2969 if (!ret.empty())
2970 return ret;
2971
2972 ret = this->object->name();
2973
2974 Symbol_location_info info;
2975 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2976 {
2977 if (!info.source_file.empty())
2978 {
2979 ret += ":";
2980 ret += info.source_file;
2981 }
2982 size_t len = info.enclosing_symbol_name.length() + 100;
2983 char* buf = new char[len];
2984 snprintf(buf, len, _(":function %s"),
2985 info.enclosing_symbol_name.c_str());
2986 ret += buf;
2987 delete[] buf;
2988 return ret;
2989 }
2990
2991 ret += "(";
2992 ret += this->object->section_name(this->data_shndx);
2993 char buf[100];
2994 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2995 ret += buf;
2996 return ret;
2997 }
2998
2999 } // End namespace gold.
3000
3001 namespace
3002 {
3003
3004 using namespace gold;
3005
3006 // Read an ELF file with the header and return the appropriate
3007 // instance of Object.
3008
3009 template<int size, bool big_endian>
3010 Object*
3011 make_elf_sized_object(const std::string& name, Input_file* input_file,
3012 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3013 bool* punconfigured)
3014 {
3015 Target* target = select_target(input_file, offset,
3016 ehdr.get_e_machine(), size, big_endian,
3017 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3018 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3019 if (target == NULL)
3020 gold_fatal(_("%s: unsupported ELF machine number %d"),
3021 name.c_str(), ehdr.get_e_machine());
3022
3023 if (!parameters->target_valid())
3024 set_parameters_target(target);
3025 else if (target != &parameters->target())
3026 {
3027 if (punconfigured != NULL)
3028 *punconfigured = true;
3029 else
3030 gold_error(_("%s: incompatible target"), name.c_str());
3031 return NULL;
3032 }
3033
3034 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3035 ehdr);
3036 }
3037
3038 } // End anonymous namespace.
3039
3040 namespace gold
3041 {
3042
3043 // Return whether INPUT_FILE is an ELF object.
3044
3045 bool
3046 is_elf_object(Input_file* input_file, off_t offset,
3047 const unsigned char** start, int* read_size)
3048 {
3049 off_t filesize = input_file->file().filesize();
3050 int want = elfcpp::Elf_recognizer::max_header_size;
3051 if (filesize - offset < want)
3052 want = filesize - offset;
3053
3054 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3055 true, false);
3056 *start = p;
3057 *read_size = want;
3058
3059 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3060 }
3061
3062 // Read an ELF file and return the appropriate instance of Object.
3063
3064 Object*
3065 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3066 const unsigned char* p, section_offset_type bytes,
3067 bool* punconfigured)
3068 {
3069 if (punconfigured != NULL)
3070 *punconfigured = false;
3071
3072 std::string error;
3073 bool big_endian = false;
3074 int size = 0;
3075 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3076 &big_endian, &error))
3077 {
3078 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3079 return NULL;
3080 }
3081
3082 if (size == 32)
3083 {
3084 if (big_endian)
3085 {
3086 #ifdef HAVE_TARGET_32_BIG
3087 elfcpp::Ehdr<32, true> ehdr(p);
3088 return make_elf_sized_object<32, true>(name, input_file,
3089 offset, ehdr, punconfigured);
3090 #else
3091 if (punconfigured != NULL)
3092 *punconfigured = true;
3093 else
3094 gold_error(_("%s: not configured to support "
3095 "32-bit big-endian object"),
3096 name.c_str());
3097 return NULL;
3098 #endif
3099 }
3100 else
3101 {
3102 #ifdef HAVE_TARGET_32_LITTLE
3103 elfcpp::Ehdr<32, false> ehdr(p);
3104 return make_elf_sized_object<32, false>(name, input_file,
3105 offset, ehdr, punconfigured);
3106 #else
3107 if (punconfigured != NULL)
3108 *punconfigured = true;
3109 else
3110 gold_error(_("%s: not configured to support "
3111 "32-bit little-endian object"),
3112 name.c_str());
3113 return NULL;
3114 #endif
3115 }
3116 }
3117 else if (size == 64)
3118 {
3119 if (big_endian)
3120 {
3121 #ifdef HAVE_TARGET_64_BIG
3122 elfcpp::Ehdr<64, true> ehdr(p);
3123 return make_elf_sized_object<64, true>(name, input_file,
3124 offset, ehdr, punconfigured);
3125 #else
3126 if (punconfigured != NULL)
3127 *punconfigured = true;
3128 else
3129 gold_error(_("%s: not configured to support "
3130 "64-bit big-endian object"),
3131 name.c_str());
3132 return NULL;
3133 #endif
3134 }
3135 else
3136 {
3137 #ifdef HAVE_TARGET_64_LITTLE
3138 elfcpp::Ehdr<64, false> ehdr(p);
3139 return make_elf_sized_object<64, false>(name, input_file,
3140 offset, ehdr, punconfigured);
3141 #else
3142 if (punconfigured != NULL)
3143 *punconfigured = true;
3144 else
3145 gold_error(_("%s: not configured to support "
3146 "64-bit little-endian object"),
3147 name.c_str());
3148 return NULL;
3149 #endif
3150 }
3151 }
3152 else
3153 gold_unreachable();
3154 }
3155
3156 // Instantiate the templates we need.
3157
3158 #ifdef HAVE_TARGET_32_LITTLE
3159 template
3160 void
3161 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3162 Read_symbols_data*);
3163 #endif
3164
3165 #ifdef HAVE_TARGET_32_BIG
3166 template
3167 void
3168 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3169 Read_symbols_data*);
3170 #endif
3171
3172 #ifdef HAVE_TARGET_64_LITTLE
3173 template
3174 void
3175 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3176 Read_symbols_data*);
3177 #endif
3178
3179 #ifdef HAVE_TARGET_64_BIG
3180 template
3181 void
3182 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3183 Read_symbols_data*);
3184 #endif
3185
3186 #ifdef HAVE_TARGET_32_LITTLE
3187 template
3188 class Sized_relobj_file<32, false>;
3189 #endif
3190
3191 #ifdef HAVE_TARGET_32_BIG
3192 template
3193 class Sized_relobj_file<32, true>;
3194 #endif
3195
3196 #ifdef HAVE_TARGET_64_LITTLE
3197 template
3198 class Sized_relobj_file<64, false>;
3199 #endif
3200
3201 #ifdef HAVE_TARGET_64_BIG
3202 template
3203 class Sized_relobj_file<64, true>;
3204 #endif
3205
3206 #ifdef HAVE_TARGET_32_LITTLE
3207 template
3208 struct Relocate_info<32, false>;
3209 #endif
3210
3211 #ifdef HAVE_TARGET_32_BIG
3212 template
3213 struct Relocate_info<32, true>;
3214 #endif
3215
3216 #ifdef HAVE_TARGET_64_LITTLE
3217 template
3218 struct Relocate_info<64, false>;
3219 #endif
3220
3221 #ifdef HAVE_TARGET_64_BIG
3222 template
3223 struct Relocate_info<64, true>;
3224 #endif
3225
3226 #ifdef HAVE_TARGET_32_LITTLE
3227 template
3228 void
3229 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3230
3231 template
3232 void
3233 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3234 const unsigned char*);
3235 #endif
3236
3237 #ifdef HAVE_TARGET_32_BIG
3238 template
3239 void
3240 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3241
3242 template
3243 void
3244 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3245 const unsigned char*);
3246 #endif
3247
3248 #ifdef HAVE_TARGET_64_LITTLE
3249 template
3250 void
3251 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3252
3253 template
3254 void
3255 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3256 const unsigned char*);
3257 #endif
3258
3259 #ifdef HAVE_TARGET_64_BIG
3260 template
3261 void
3262 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3263
3264 template
3265 void
3266 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3267 const unsigned char*);
3268 #endif
3269
3270 } // End namespace gold.
This page took 0.104732 seconds and 5 git commands to generate.