Remove empty class Merge_map.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44 #include "merge.h"
45
46 namespace gold
47 {
48
49 // Struct Read_symbols_data.
50
51 // Destroy any remaining File_view objects and buffers of decompressed
52 // sections.
53
54 Read_symbols_data::~Read_symbols_data()
55 {
56 if (this->section_headers != NULL)
57 delete this->section_headers;
58 if (this->section_names != NULL)
59 delete this->section_names;
60 if (this->symbols != NULL)
61 delete this->symbols;
62 if (this->symbol_names != NULL)
63 delete this->symbol_names;
64 if (this->versym != NULL)
65 delete this->versym;
66 if (this->verdef != NULL)
67 delete this->verdef;
68 if (this->verneed != NULL)
69 delete this->verneed;
70 }
71
72 // Class Xindex.
73
74 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
75 // section and read it in. SYMTAB_SHNDX is the index of the symbol
76 // table we care about.
77
78 template<int size, bool big_endian>
79 void
80 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
81 {
82 if (!this->symtab_xindex_.empty())
83 return;
84
85 gold_assert(symtab_shndx != 0);
86
87 // Look through the sections in reverse order, on the theory that it
88 // is more likely to be near the end than the beginning.
89 unsigned int i = object->shnum();
90 while (i > 0)
91 {
92 --i;
93 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
94 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
95 {
96 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
97 return;
98 }
99 }
100
101 object->error(_("missing SHT_SYMTAB_SHNDX section"));
102 }
103
104 // Read in the symtab_xindex_ array, given the section index of the
105 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
106 // section headers.
107
108 template<int size, bool big_endian>
109 void
110 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
111 const unsigned char* pshdrs)
112 {
113 section_size_type bytecount;
114 const unsigned char* contents;
115 if (pshdrs == NULL)
116 contents = object->section_contents(xindex_shndx, &bytecount, false);
117 else
118 {
119 const unsigned char* p = (pshdrs
120 + (xindex_shndx
121 * elfcpp::Elf_sizes<size>::shdr_size));
122 typename elfcpp::Shdr<size, big_endian> shdr(p);
123 bytecount = convert_to_section_size_type(shdr.get_sh_size());
124 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
125 }
126
127 gold_assert(this->symtab_xindex_.empty());
128 this->symtab_xindex_.reserve(bytecount / 4);
129 for (section_size_type i = 0; i < bytecount; i += 4)
130 {
131 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
132 // We preadjust the section indexes we save.
133 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
134 }
135 }
136
137 // Symbol symndx has a section of SHN_XINDEX; return the real section
138 // index.
139
140 unsigned int
141 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
142 {
143 if (symndx >= this->symtab_xindex_.size())
144 {
145 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
146 symndx);
147 return elfcpp::SHN_UNDEF;
148 }
149 unsigned int shndx = this->symtab_xindex_[symndx];
150 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
151 {
152 object->error(_("extended index for symbol %u out of range: %u"),
153 symndx, shndx);
154 return elfcpp::SHN_UNDEF;
155 }
156 return shndx;
157 }
158
159 // Class Object.
160
161 // Report an error for this object file. This is used by the
162 // elfcpp::Elf_file interface, and also called by the Object code
163 // itself.
164
165 void
166 Object::error(const char* format, ...) const
167 {
168 va_list args;
169 va_start(args, format);
170 char* buf = NULL;
171 if (vasprintf(&buf, format, args) < 0)
172 gold_nomem();
173 va_end(args);
174 gold_error(_("%s: %s"), this->name().c_str(), buf);
175 free(buf);
176 }
177
178 // Return a view of the contents of a section.
179
180 const unsigned char*
181 Object::section_contents(unsigned int shndx, section_size_type* plen,
182 bool cache)
183 { return this->do_section_contents(shndx, plen, cache); }
184
185 // Read the section data into SD. This is code common to Sized_relobj_file
186 // and Sized_dynobj, so we put it into Object.
187
188 template<int size, bool big_endian>
189 void
190 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
191 Read_symbols_data* sd)
192 {
193 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
194
195 // Read the section headers.
196 const off_t shoff = elf_file->shoff();
197 const unsigned int shnum = this->shnum();
198 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
199 true, true);
200
201 // Read the section names.
202 const unsigned char* pshdrs = sd->section_headers->data();
203 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
204 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
205
206 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
207 this->error(_("section name section has wrong type: %u"),
208 static_cast<unsigned int>(shdrnames.get_sh_type()));
209
210 sd->section_names_size =
211 convert_to_section_size_type(shdrnames.get_sh_size());
212 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
213 sd->section_names_size, false,
214 false);
215 }
216
217 // If NAME is the name of a special .gnu.warning section, arrange for
218 // the warning to be issued. SHNDX is the section index. Return
219 // whether it is a warning section.
220
221 bool
222 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
223 Symbol_table* symtab)
224 {
225 const char warn_prefix[] = ".gnu.warning.";
226 const int warn_prefix_len = sizeof warn_prefix - 1;
227 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
228 {
229 // Read the section contents to get the warning text. It would
230 // be nicer if we only did this if we have to actually issue a
231 // warning. Unfortunately, warnings are issued as we relocate
232 // sections. That means that we can not lock the object then,
233 // as we might try to issue the same warning multiple times
234 // simultaneously.
235 section_size_type len;
236 const unsigned char* contents = this->section_contents(shndx, &len,
237 false);
238 if (len == 0)
239 {
240 const char* warning = name + warn_prefix_len;
241 contents = reinterpret_cast<const unsigned char*>(warning);
242 len = strlen(warning);
243 }
244 std::string warning(reinterpret_cast<const char*>(contents), len);
245 symtab->add_warning(name + warn_prefix_len, this, warning);
246 return true;
247 }
248 return false;
249 }
250
251 // If NAME is the name of the special section which indicates that
252 // this object was compiled with -fsplit-stack, mark it accordingly.
253
254 bool
255 Object::handle_split_stack_section(const char* name)
256 {
257 if (strcmp(name, ".note.GNU-split-stack") == 0)
258 {
259 this->uses_split_stack_ = true;
260 return true;
261 }
262 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
263 {
264 this->has_no_split_stack_ = true;
265 return true;
266 }
267 return false;
268 }
269
270 // Class Relobj
271
272 template<int size>
273 void
274 Relobj::initialize_input_to_output_map(unsigned int shndx,
275 typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
276 Unordered_map<section_offset_type,
277 typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
278 Object_merge_map *map = this->object_merge_map_;
279 map->initialize_input_to_output_map<size>(shndx, starting_address,
280 output_addresses);
281 }
282
283 void
284 Relobj::add_merge_mapping(Output_section_data *output_data,
285 unsigned int shndx, section_offset_type offset,
286 section_size_type length,
287 section_offset_type output_offset) {
288 if (this->object_merge_map_ == NULL)
289 {
290 this->object_merge_map_ = new Object_merge_map();
291 }
292
293 this->object_merge_map_->add_mapping(output_data, shndx, offset, length,
294 output_offset);
295 }
296
297 bool
298 Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
299 section_offset_type *poutput) const {
300 Object_merge_map* object_merge_map = this->object_merge_map_;
301 if (object_merge_map == NULL)
302 return false;
303 return object_merge_map->get_output_offset(shndx, offset, poutput);
304 }
305
306 bool
307 Relobj::is_merge_section_for(const Output_section_data* output_data,
308 unsigned int shndx) const {
309 Object_merge_map* object_merge_map = this->object_merge_map_;
310 if (object_merge_map == NULL)
311 return false;
312 return object_merge_map->is_merge_section_for(output_data, shndx);
313
314 }
315
316 // To copy the symbols data read from the file to a local data structure.
317 // This function is called from do_layout only while doing garbage
318 // collection.
319
320 void
321 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
322 unsigned int section_header_size)
323 {
324 gc_sd->section_headers_data =
325 new unsigned char[(section_header_size)];
326 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
327 section_header_size);
328 gc_sd->section_names_data =
329 new unsigned char[sd->section_names_size];
330 memcpy(gc_sd->section_names_data, sd->section_names->data(),
331 sd->section_names_size);
332 gc_sd->section_names_size = sd->section_names_size;
333 if (sd->symbols != NULL)
334 {
335 gc_sd->symbols_data =
336 new unsigned char[sd->symbols_size];
337 memcpy(gc_sd->symbols_data, sd->symbols->data(),
338 sd->symbols_size);
339 }
340 else
341 {
342 gc_sd->symbols_data = NULL;
343 }
344 gc_sd->symbols_size = sd->symbols_size;
345 gc_sd->external_symbols_offset = sd->external_symbols_offset;
346 if (sd->symbol_names != NULL)
347 {
348 gc_sd->symbol_names_data =
349 new unsigned char[sd->symbol_names_size];
350 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
351 sd->symbol_names_size);
352 }
353 else
354 {
355 gc_sd->symbol_names_data = NULL;
356 }
357 gc_sd->symbol_names_size = sd->symbol_names_size;
358 }
359
360 // This function determines if a particular section name must be included
361 // in the link. This is used during garbage collection to determine the
362 // roots of the worklist.
363
364 bool
365 Relobj::is_section_name_included(const char* name)
366 {
367 if (is_prefix_of(".ctors", name)
368 || is_prefix_of(".dtors", name)
369 || is_prefix_of(".note", name)
370 || is_prefix_of(".init", name)
371 || is_prefix_of(".fini", name)
372 || is_prefix_of(".gcc_except_table", name)
373 || is_prefix_of(".jcr", name)
374 || is_prefix_of(".preinit_array", name)
375 || (is_prefix_of(".text", name)
376 && strstr(name, "personality"))
377 || (is_prefix_of(".data", name)
378 && strstr(name, "personality"))
379 || (is_prefix_of(".sdata", name)
380 && strstr(name, "personality"))
381 || (is_prefix_of(".gnu.linkonce.d", name)
382 && strstr(name, "personality"))
383 || (is_prefix_of(".rodata", name)
384 && strstr(name, "nptl_version")))
385 {
386 return true;
387 }
388 return false;
389 }
390
391 // Finalize the incremental relocation information. Allocates a block
392 // of relocation entries for each symbol, and sets the reloc_bases_
393 // array to point to the first entry in each block. If CLEAR_COUNTS
394 // is TRUE, also clear the per-symbol relocation counters.
395
396 void
397 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
398 {
399 unsigned int nsyms = this->get_global_symbols()->size();
400 this->reloc_bases_ = new unsigned int[nsyms];
401
402 gold_assert(this->reloc_bases_ != NULL);
403 gold_assert(layout->incremental_inputs() != NULL);
404
405 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
406 for (unsigned int i = 0; i < nsyms; ++i)
407 {
408 this->reloc_bases_[i] = rindex;
409 rindex += this->reloc_counts_[i];
410 if (clear_counts)
411 this->reloc_counts_[i] = 0;
412 }
413 layout->incremental_inputs()->set_reloc_count(rindex);
414 }
415
416 // Class Sized_relobj.
417
418 // Iterate over local symbols, calling a visitor class V for each GOT offset
419 // associated with a local symbol.
420
421 template<int size, bool big_endian>
422 void
423 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
424 Got_offset_list::Visitor* v) const
425 {
426 unsigned int nsyms = this->local_symbol_count();
427 for (unsigned int i = 0; i < nsyms; i++)
428 {
429 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
430 if (p != this->local_got_offsets_.end())
431 {
432 const Got_offset_list* got_offsets = p->second;
433 got_offsets->for_all_got_offsets(v);
434 }
435 }
436 }
437
438 // Get the address of an output section.
439
440 template<int size, bool big_endian>
441 uint64_t
442 Sized_relobj<size, big_endian>::do_output_section_address(
443 unsigned int shndx)
444 {
445 // If the input file is linked as --just-symbols, the output
446 // section address is the input section address.
447 if (this->just_symbols())
448 return this->section_address(shndx);
449
450 const Output_section* os = this->do_output_section(shndx);
451 gold_assert(os != NULL);
452 return os->address();
453 }
454
455 // Class Sized_relobj_file.
456
457 template<int size, bool big_endian>
458 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
459 const std::string& name,
460 Input_file* input_file,
461 off_t offset,
462 const elfcpp::Ehdr<size, big_endian>& ehdr)
463 : Sized_relobj<size, big_endian>(name, input_file, offset),
464 elf_file_(this, ehdr),
465 symtab_shndx_(-1U),
466 local_symbol_count_(0),
467 output_local_symbol_count_(0),
468 output_local_dynsym_count_(0),
469 symbols_(),
470 defined_count_(0),
471 local_symbol_offset_(0),
472 local_dynsym_offset_(0),
473 local_values_(),
474 local_plt_offsets_(),
475 kept_comdat_sections_(),
476 has_eh_frame_(false),
477 discarded_eh_frame_shndx_(-1U),
478 is_deferred_layout_(false),
479 deferred_layout_(),
480 deferred_layout_relocs_(),
481 compressed_sections_()
482 {
483 this->e_type_ = ehdr.get_e_type();
484 }
485
486 template<int size, bool big_endian>
487 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
488 {
489 }
490
491 // Set up an object file based on the file header. This sets up the
492 // section information.
493
494 template<int size, bool big_endian>
495 void
496 Sized_relobj_file<size, big_endian>::do_setup()
497 {
498 const unsigned int shnum = this->elf_file_.shnum();
499 this->set_shnum(shnum);
500 }
501
502 // Find the SHT_SYMTAB section, given the section headers. The ELF
503 // standard says that maybe in the future there can be more than one
504 // SHT_SYMTAB section. Until somebody figures out how that could
505 // work, we assume there is only one.
506
507 template<int size, bool big_endian>
508 void
509 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
510 {
511 const unsigned int shnum = this->shnum();
512 this->symtab_shndx_ = 0;
513 if (shnum > 0)
514 {
515 // Look through the sections in reverse order, since gas tends
516 // to put the symbol table at the end.
517 const unsigned char* p = pshdrs + shnum * This::shdr_size;
518 unsigned int i = shnum;
519 unsigned int xindex_shndx = 0;
520 unsigned int xindex_link = 0;
521 while (i > 0)
522 {
523 --i;
524 p -= This::shdr_size;
525 typename This::Shdr shdr(p);
526 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
527 {
528 this->symtab_shndx_ = i;
529 if (xindex_shndx > 0 && xindex_link == i)
530 {
531 Xindex* xindex =
532 new Xindex(this->elf_file_.large_shndx_offset());
533 xindex->read_symtab_xindex<size, big_endian>(this,
534 xindex_shndx,
535 pshdrs);
536 this->set_xindex(xindex);
537 }
538 break;
539 }
540
541 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
542 // one. This will work if it follows the SHT_SYMTAB
543 // section.
544 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
545 {
546 xindex_shndx = i;
547 xindex_link = this->adjust_shndx(shdr.get_sh_link());
548 }
549 }
550 }
551 }
552
553 // Return the Xindex structure to use for object with lots of
554 // sections.
555
556 template<int size, bool big_endian>
557 Xindex*
558 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
559 {
560 gold_assert(this->symtab_shndx_ != -1U);
561 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
562 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
563 return xindex;
564 }
565
566 // Return whether SHDR has the right type and flags to be a GNU
567 // .eh_frame section.
568
569 template<int size, bool big_endian>
570 bool
571 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
572 const elfcpp::Shdr<size, big_endian>* shdr) const
573 {
574 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
575 return ((sh_type == elfcpp::SHT_PROGBITS
576 || sh_type == elfcpp::SHT_X86_64_UNWIND)
577 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
578 }
579
580 // Find the section header with the given name.
581
582 template<int size, bool big_endian>
583 const unsigned char*
584 Object::find_shdr(
585 const unsigned char* pshdrs,
586 const char* name,
587 const char* names,
588 section_size_type names_size,
589 const unsigned char* hdr) const
590 {
591 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
592 const unsigned int shnum = this->shnum();
593 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
594 size_t sh_name = 0;
595
596 while (1)
597 {
598 if (hdr)
599 {
600 // We found HDR last time we were called, continue looking.
601 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
602 sh_name = shdr.get_sh_name();
603 }
604 else
605 {
606 // Look for the next occurrence of NAME in NAMES.
607 // The fact that .shstrtab produced by current GNU tools is
608 // string merged means we shouldn't have both .not.foo and
609 // .foo in .shstrtab, and multiple .foo sections should all
610 // have the same sh_name. However, this is not guaranteed
611 // by the ELF spec and not all ELF object file producers may
612 // be so clever.
613 size_t len = strlen(name) + 1;
614 const char *p = sh_name ? names + sh_name + len : names;
615 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
616 name, len));
617 if (p == NULL)
618 return NULL;
619 sh_name = p - names;
620 hdr = pshdrs;
621 if (sh_name == 0)
622 return hdr;
623 }
624
625 hdr += shdr_size;
626 while (hdr < hdr_end)
627 {
628 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
629 if (shdr.get_sh_name() == sh_name)
630 return hdr;
631 hdr += shdr_size;
632 }
633 hdr = NULL;
634 if (sh_name == 0)
635 return hdr;
636 }
637 }
638
639 // Return whether there is a GNU .eh_frame section, given the section
640 // headers and the section names.
641
642 template<int size, bool big_endian>
643 bool
644 Sized_relobj_file<size, big_endian>::find_eh_frame(
645 const unsigned char* pshdrs,
646 const char* names,
647 section_size_type names_size) const
648 {
649 const unsigned char* s = NULL;
650
651 while (1)
652 {
653 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
654 names, names_size, s);
655 if (s == NULL)
656 return false;
657
658 typename This::Shdr shdr(s);
659 if (this->check_eh_frame_flags(&shdr))
660 return true;
661 }
662 }
663
664 // Return TRUE if this is a section whose contents will be needed in the
665 // Add_symbols task. This function is only called for sections that have
666 // already passed the test in is_compressed_debug_section(), so we know
667 // that the section name begins with ".zdebug".
668
669 static bool
670 need_decompressed_section(const char* name)
671 {
672 // Skip over the ".zdebug" and a quick check for the "_".
673 name += 7;
674 if (*name++ != '_')
675 return false;
676
677 #ifdef ENABLE_THREADS
678 // Decompressing these sections now will help only if we're
679 // multithreaded.
680 if (parameters->options().threads())
681 {
682 // We will need .zdebug_str if this is not an incremental link
683 // (i.e., we are processing string merge sections) or if we need
684 // to build a gdb index.
685 if ((!parameters->incremental() || parameters->options().gdb_index())
686 && strcmp(name, "str") == 0)
687 return true;
688
689 // We will need these other sections when building a gdb index.
690 if (parameters->options().gdb_index()
691 && (strcmp(name, "info") == 0
692 || strcmp(name, "types") == 0
693 || strcmp(name, "pubnames") == 0
694 || strcmp(name, "pubtypes") == 0
695 || strcmp(name, "ranges") == 0
696 || strcmp(name, "abbrev") == 0))
697 return true;
698 }
699 #endif
700
701 // Even when single-threaded, we will need .zdebug_str if this is
702 // not an incremental link and we are building a gdb index.
703 // Otherwise, we would decompress the section twice: once for
704 // string merge processing, and once for building the gdb index.
705 if (!parameters->incremental()
706 && parameters->options().gdb_index()
707 && strcmp(name, "str") == 0)
708 return true;
709
710 return false;
711 }
712
713 // Build a table for any compressed debug sections, mapping each section index
714 // to the uncompressed size and (if needed) the decompressed contents.
715
716 template<int size, bool big_endian>
717 Compressed_section_map*
718 build_compressed_section_map(
719 const unsigned char* pshdrs,
720 unsigned int shnum,
721 const char* names,
722 section_size_type names_size,
723 Sized_relobj_file<size, big_endian>* obj)
724 {
725 Compressed_section_map* uncompressed_map = new Compressed_section_map();
726 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
727 const unsigned char* p = pshdrs + shdr_size;
728
729 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
730 {
731 typename elfcpp::Shdr<size, big_endian> shdr(p);
732 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
733 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
734 {
735 if (shdr.get_sh_name() >= names_size)
736 {
737 obj->error(_("bad section name offset for section %u: %lu"),
738 i, static_cast<unsigned long>(shdr.get_sh_name()));
739 continue;
740 }
741
742 const char* name = names + shdr.get_sh_name();
743 if (is_compressed_debug_section(name))
744 {
745 section_size_type len;
746 const unsigned char* contents =
747 obj->section_contents(i, &len, false);
748 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
749 Compressed_section_info info;
750 info.size = convert_to_section_size_type(uncompressed_size);
751 info.contents = NULL;
752 if (uncompressed_size != -1ULL)
753 {
754 unsigned char* uncompressed_data = NULL;
755 if (need_decompressed_section(name))
756 {
757 uncompressed_data = new unsigned char[uncompressed_size];
758 if (decompress_input_section(contents, len,
759 uncompressed_data,
760 uncompressed_size))
761 info.contents = uncompressed_data;
762 else
763 delete[] uncompressed_data;
764 }
765 (*uncompressed_map)[i] = info;
766 }
767 }
768 }
769 }
770 return uncompressed_map;
771 }
772
773 // Stash away info for a number of special sections.
774 // Return true if any of the sections found require local symbols to be read.
775
776 template<int size, bool big_endian>
777 bool
778 Sized_relobj_file<size, big_endian>::do_find_special_sections(
779 Read_symbols_data* sd)
780 {
781 const unsigned char* const pshdrs = sd->section_headers->data();
782 const unsigned char* namesu = sd->section_names->data();
783 const char* names = reinterpret_cast<const char*>(namesu);
784
785 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
786 this->has_eh_frame_ = true;
787
788 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
789 this->compressed_sections_
790 = build_compressed_section_map(pshdrs, this->shnum(), names,
791 sd->section_names_size, this);
792 return (this->has_eh_frame_
793 || (!parameters->options().relocatable()
794 && parameters->options().gdb_index()
795 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
796 || memmem(names, sd->section_names_size, "debug_types",
797 13) == 0)));
798 }
799
800 // Read the sections and symbols from an object file.
801
802 template<int size, bool big_endian>
803 void
804 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
805 {
806 this->base_read_symbols(sd);
807 }
808
809 // Read the sections and symbols from an object file. This is common
810 // code for all target-specific overrides of do_read_symbols().
811
812 template<int size, bool big_endian>
813 void
814 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
815 {
816 this->read_section_data(&this->elf_file_, sd);
817
818 const unsigned char* const pshdrs = sd->section_headers->data();
819
820 this->find_symtab(pshdrs);
821
822 bool need_local_symbols = this->do_find_special_sections(sd);
823
824 sd->symbols = NULL;
825 sd->symbols_size = 0;
826 sd->external_symbols_offset = 0;
827 sd->symbol_names = NULL;
828 sd->symbol_names_size = 0;
829
830 if (this->symtab_shndx_ == 0)
831 {
832 // No symbol table. Weird but legal.
833 return;
834 }
835
836 // Get the symbol table section header.
837 typename This::Shdr symtabshdr(pshdrs
838 + this->symtab_shndx_ * This::shdr_size);
839 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
840
841 // If this object has a .eh_frame section, or if building a .gdb_index
842 // section and there is debug info, we need all the symbols.
843 // Otherwise we only need the external symbols. While it would be
844 // simpler to just always read all the symbols, I've seen object
845 // files with well over 2000 local symbols, which for a 64-bit
846 // object file format is over 5 pages that we don't need to read
847 // now.
848
849 const int sym_size = This::sym_size;
850 const unsigned int loccount = symtabshdr.get_sh_info();
851 this->local_symbol_count_ = loccount;
852 this->local_values_.resize(loccount);
853 section_offset_type locsize = loccount * sym_size;
854 off_t dataoff = symtabshdr.get_sh_offset();
855 section_size_type datasize =
856 convert_to_section_size_type(symtabshdr.get_sh_size());
857 off_t extoff = dataoff + locsize;
858 section_size_type extsize = datasize - locsize;
859
860 off_t readoff = need_local_symbols ? dataoff : extoff;
861 section_size_type readsize = need_local_symbols ? datasize : extsize;
862
863 if (readsize == 0)
864 {
865 // No external symbols. Also weird but also legal.
866 return;
867 }
868
869 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
870
871 // Read the section header for the symbol names.
872 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
873 if (strtab_shndx >= this->shnum())
874 {
875 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
876 return;
877 }
878 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
879 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
880 {
881 this->error(_("symbol table name section has wrong type: %u"),
882 static_cast<unsigned int>(strtabshdr.get_sh_type()));
883 return;
884 }
885
886 // Read the symbol names.
887 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
888 strtabshdr.get_sh_size(),
889 false, true);
890
891 sd->symbols = fvsymtab;
892 sd->symbols_size = readsize;
893 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
894 sd->symbol_names = fvstrtab;
895 sd->symbol_names_size =
896 convert_to_section_size_type(strtabshdr.get_sh_size());
897 }
898
899 // Return the section index of symbol SYM. Set *VALUE to its value in
900 // the object file. Set *IS_ORDINARY if this is an ordinary section
901 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
902 // Note that for a symbol which is not defined in this object file,
903 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
904 // the final value of the symbol in the link.
905
906 template<int size, bool big_endian>
907 unsigned int
908 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
909 Address* value,
910 bool* is_ordinary)
911 {
912 section_size_type symbols_size;
913 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
914 &symbols_size,
915 false);
916
917 const size_t count = symbols_size / This::sym_size;
918 gold_assert(sym < count);
919
920 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
921 *value = elfsym.get_st_value();
922
923 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
924 }
925
926 // Return whether to include a section group in the link. LAYOUT is
927 // used to keep track of which section groups we have already seen.
928 // INDEX is the index of the section group and SHDR is the section
929 // header. If we do not want to include this group, we set bits in
930 // OMIT for each section which should be discarded.
931
932 template<int size, bool big_endian>
933 bool
934 Sized_relobj_file<size, big_endian>::include_section_group(
935 Symbol_table* symtab,
936 Layout* layout,
937 unsigned int index,
938 const char* name,
939 const unsigned char* shdrs,
940 const char* section_names,
941 section_size_type section_names_size,
942 std::vector<bool>* omit)
943 {
944 // Read the section contents.
945 typename This::Shdr shdr(shdrs + index * This::shdr_size);
946 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
947 shdr.get_sh_size(), true, false);
948 const elfcpp::Elf_Word* pword =
949 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
950
951 // The first word contains flags. We only care about COMDAT section
952 // groups. Other section groups are always included in the link
953 // just like ordinary sections.
954 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
955
956 // Look up the group signature, which is the name of a symbol. ELF
957 // uses a symbol name because some group signatures are long, and
958 // the name is generally already in the symbol table, so it makes
959 // sense to put the long string just once in .strtab rather than in
960 // both .strtab and .shstrtab.
961
962 // Get the appropriate symbol table header (this will normally be
963 // the single SHT_SYMTAB section, but in principle it need not be).
964 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
965 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
966
967 // Read the symbol table entry.
968 unsigned int symndx = shdr.get_sh_info();
969 if (symndx >= symshdr.get_sh_size() / This::sym_size)
970 {
971 this->error(_("section group %u info %u out of range"),
972 index, symndx);
973 return false;
974 }
975 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
976 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
977 false);
978 elfcpp::Sym<size, big_endian> sym(psym);
979
980 // Read the symbol table names.
981 section_size_type symnamelen;
982 const unsigned char* psymnamesu;
983 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
984 &symnamelen, true);
985 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
986
987 // Get the section group signature.
988 if (sym.get_st_name() >= symnamelen)
989 {
990 this->error(_("symbol %u name offset %u out of range"),
991 symndx, sym.get_st_name());
992 return false;
993 }
994
995 std::string signature(psymnames + sym.get_st_name());
996
997 // It seems that some versions of gas will create a section group
998 // associated with a section symbol, and then fail to give a name to
999 // the section symbol. In such a case, use the name of the section.
1000 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
1001 {
1002 bool is_ordinary;
1003 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
1004 sym.get_st_shndx(),
1005 &is_ordinary);
1006 if (!is_ordinary || sym_shndx >= this->shnum())
1007 {
1008 this->error(_("symbol %u invalid section index %u"),
1009 symndx, sym_shndx);
1010 return false;
1011 }
1012 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
1013 if (member_shdr.get_sh_name() < section_names_size)
1014 signature = section_names + member_shdr.get_sh_name();
1015 }
1016
1017 // Record this section group in the layout, and see whether we've already
1018 // seen one with the same signature.
1019 bool include_group;
1020 bool is_comdat;
1021 Kept_section* kept_section = NULL;
1022
1023 if ((flags & elfcpp::GRP_COMDAT) == 0)
1024 {
1025 include_group = true;
1026 is_comdat = false;
1027 }
1028 else
1029 {
1030 include_group = layout->find_or_add_kept_section(signature,
1031 this, index, true,
1032 true, &kept_section);
1033 is_comdat = true;
1034 }
1035
1036 if (is_comdat && include_group)
1037 {
1038 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1039 if (incremental_inputs != NULL)
1040 incremental_inputs->report_comdat_group(this, signature.c_str());
1041 }
1042
1043 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1044
1045 std::vector<unsigned int> shndxes;
1046 bool relocate_group = include_group && parameters->options().relocatable();
1047 if (relocate_group)
1048 shndxes.reserve(count - 1);
1049
1050 for (size_t i = 1; i < count; ++i)
1051 {
1052 elfcpp::Elf_Word shndx =
1053 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1054
1055 if (relocate_group)
1056 shndxes.push_back(shndx);
1057
1058 if (shndx >= this->shnum())
1059 {
1060 this->error(_("section %u in section group %u out of range"),
1061 shndx, index);
1062 continue;
1063 }
1064
1065 // Check for an earlier section number, since we're going to get
1066 // it wrong--we may have already decided to include the section.
1067 if (shndx < index)
1068 this->error(_("invalid section group %u refers to earlier section %u"),
1069 index, shndx);
1070
1071 // Get the name of the member section.
1072 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1073 if (member_shdr.get_sh_name() >= section_names_size)
1074 {
1075 // This is an error, but it will be diagnosed eventually
1076 // in do_layout, so we don't need to do anything here but
1077 // ignore it.
1078 continue;
1079 }
1080 std::string mname(section_names + member_shdr.get_sh_name());
1081
1082 if (include_group)
1083 {
1084 if (is_comdat)
1085 kept_section->add_comdat_section(mname, shndx,
1086 member_shdr.get_sh_size());
1087 }
1088 else
1089 {
1090 (*omit)[shndx] = true;
1091
1092 if (is_comdat)
1093 {
1094 Relobj* kept_object = kept_section->object();
1095 if (kept_section->is_comdat())
1096 {
1097 // Find the corresponding kept section, and store
1098 // that info in the discarded section table.
1099 unsigned int kept_shndx;
1100 uint64_t kept_size;
1101 if (kept_section->find_comdat_section(mname, &kept_shndx,
1102 &kept_size))
1103 {
1104 // We don't keep a mapping for this section if
1105 // it has a different size. The mapping is only
1106 // used for relocation processing, and we don't
1107 // want to treat the sections as similar if the
1108 // sizes are different. Checking the section
1109 // size is the approach used by the GNU linker.
1110 if (kept_size == member_shdr.get_sh_size())
1111 this->set_kept_comdat_section(shndx, kept_object,
1112 kept_shndx);
1113 }
1114 }
1115 else
1116 {
1117 // The existing section is a linkonce section. Add
1118 // a mapping if there is exactly one section in the
1119 // group (which is true when COUNT == 2) and if it
1120 // is the same size.
1121 if (count == 2
1122 && (kept_section->linkonce_size()
1123 == member_shdr.get_sh_size()))
1124 this->set_kept_comdat_section(shndx, kept_object,
1125 kept_section->shndx());
1126 }
1127 }
1128 }
1129 }
1130
1131 if (relocate_group)
1132 layout->layout_group(symtab, this, index, name, signature.c_str(),
1133 shdr, flags, &shndxes);
1134
1135 return include_group;
1136 }
1137
1138 // Whether to include a linkonce section in the link. NAME is the
1139 // name of the section and SHDR is the section header.
1140
1141 // Linkonce sections are a GNU extension implemented in the original
1142 // GNU linker before section groups were defined. The semantics are
1143 // that we only include one linkonce section with a given name. The
1144 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1145 // where T is the type of section and SYMNAME is the name of a symbol.
1146 // In an attempt to make linkonce sections interact well with section
1147 // groups, we try to identify SYMNAME and use it like a section group
1148 // signature. We want to block section groups with that signature,
1149 // but not other linkonce sections with that signature. We also use
1150 // the full name of the linkonce section as a normal section group
1151 // signature.
1152
1153 template<int size, bool big_endian>
1154 bool
1155 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1156 Layout* layout,
1157 unsigned int index,
1158 const char* name,
1159 const elfcpp::Shdr<size, big_endian>& shdr)
1160 {
1161 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1162 // In general the symbol name we want will be the string following
1163 // the last '.'. However, we have to handle the case of
1164 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1165 // some versions of gcc. So we use a heuristic: if the name starts
1166 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1167 // we look for the last '.'. We can't always simply skip
1168 // ".gnu.linkonce.X", because we have to deal with cases like
1169 // ".gnu.linkonce.d.rel.ro.local".
1170 const char* const linkonce_t = ".gnu.linkonce.t.";
1171 const char* symname;
1172 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1173 symname = name + strlen(linkonce_t);
1174 else
1175 symname = strrchr(name, '.') + 1;
1176 std::string sig1(symname);
1177 std::string sig2(name);
1178 Kept_section* kept1;
1179 Kept_section* kept2;
1180 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1181 false, &kept1);
1182 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1183 true, &kept2);
1184
1185 if (!include2)
1186 {
1187 // We are not including this section because we already saw the
1188 // name of the section as a signature. This normally implies
1189 // that the kept section is another linkonce section. If it is
1190 // the same size, record it as the section which corresponds to
1191 // this one.
1192 if (kept2->object() != NULL
1193 && !kept2->is_comdat()
1194 && kept2->linkonce_size() == sh_size)
1195 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1196 }
1197 else if (!include1)
1198 {
1199 // The section is being discarded on the basis of its symbol
1200 // name. This means that the corresponding kept section was
1201 // part of a comdat group, and it will be difficult to identify
1202 // the specific section within that group that corresponds to
1203 // this linkonce section. We'll handle the simple case where
1204 // the group has only one member section. Otherwise, it's not
1205 // worth the effort.
1206 unsigned int kept_shndx;
1207 uint64_t kept_size;
1208 if (kept1->object() != NULL
1209 && kept1->is_comdat()
1210 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1211 && kept_size == sh_size)
1212 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1213 }
1214 else
1215 {
1216 kept1->set_linkonce_size(sh_size);
1217 kept2->set_linkonce_size(sh_size);
1218 }
1219
1220 return include1 && include2;
1221 }
1222
1223 // Layout an input section.
1224
1225 template<int size, bool big_endian>
1226 inline void
1227 Sized_relobj_file<size, big_endian>::layout_section(
1228 Layout* layout,
1229 unsigned int shndx,
1230 const char* name,
1231 const typename This::Shdr& shdr,
1232 unsigned int reloc_shndx,
1233 unsigned int reloc_type)
1234 {
1235 off_t offset;
1236 Output_section* os = layout->layout(this, shndx, name, shdr,
1237 reloc_shndx, reloc_type, &offset);
1238
1239 this->output_sections()[shndx] = os;
1240 if (offset == -1)
1241 this->section_offsets()[shndx] = invalid_address;
1242 else
1243 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1244
1245 // If this section requires special handling, and if there are
1246 // relocs that apply to it, then we must do the special handling
1247 // before we apply the relocs.
1248 if (offset == -1 && reloc_shndx != 0)
1249 this->set_relocs_must_follow_section_writes();
1250 }
1251
1252 // Layout an input .eh_frame section.
1253
1254 template<int size, bool big_endian>
1255 void
1256 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1257 Layout* layout,
1258 const unsigned char* symbols_data,
1259 section_size_type symbols_size,
1260 const unsigned char* symbol_names_data,
1261 section_size_type symbol_names_size,
1262 unsigned int shndx,
1263 const typename This::Shdr& shdr,
1264 unsigned int reloc_shndx,
1265 unsigned int reloc_type)
1266 {
1267 gold_assert(this->has_eh_frame_);
1268
1269 off_t offset;
1270 Output_section* os = layout->layout_eh_frame(this,
1271 symbols_data,
1272 symbols_size,
1273 symbol_names_data,
1274 symbol_names_size,
1275 shndx,
1276 shdr,
1277 reloc_shndx,
1278 reloc_type,
1279 &offset);
1280 this->output_sections()[shndx] = os;
1281 if (os == NULL || offset == -1)
1282 {
1283 // An object can contain at most one section holding exception
1284 // frame information.
1285 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1286 this->discarded_eh_frame_shndx_ = shndx;
1287 this->section_offsets()[shndx] = invalid_address;
1288 }
1289 else
1290 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1291
1292 // If this section requires special handling, and if there are
1293 // relocs that aply to it, then we must do the special handling
1294 // before we apply the relocs.
1295 if (os != NULL && offset == -1 && reloc_shndx != 0)
1296 this->set_relocs_must_follow_section_writes();
1297 }
1298
1299 // Lay out the input sections. We walk through the sections and check
1300 // whether they should be included in the link. If they should, we
1301 // pass them to the Layout object, which will return an output section
1302 // and an offset.
1303 // This function is called twice sometimes, two passes, when mapping
1304 // of input sections to output sections must be delayed.
1305 // This is true for the following :
1306 // * Garbage collection (--gc-sections): Some input sections will be
1307 // discarded and hence the assignment must wait until the second pass.
1308 // In the first pass, it is for setting up some sections as roots to
1309 // a work-list for --gc-sections and to do comdat processing.
1310 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1311 // will be folded and hence the assignment must wait.
1312 // * Using plugins to map some sections to unique segments: Mapping
1313 // some sections to unique segments requires mapping them to unique
1314 // output sections too. This can be done via plugins now and this
1315 // information is not available in the first pass.
1316
1317 template<int size, bool big_endian>
1318 void
1319 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1320 Layout* layout,
1321 Read_symbols_data* sd)
1322 {
1323 const unsigned int shnum = this->shnum();
1324
1325 /* Should this function be called twice? */
1326 bool is_two_pass = (parameters->options().gc_sections()
1327 || parameters->options().icf_enabled()
1328 || layout->is_unique_segment_for_sections_specified());
1329
1330 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1331 a two-pass approach is not needed. */
1332 bool is_pass_one = false;
1333 bool is_pass_two = false;
1334
1335 Symbols_data* gc_sd = NULL;
1336
1337 /* Check if do_layout needs to be two-pass. If so, find out which pass
1338 should happen. In the first pass, the data in sd is saved to be used
1339 later in the second pass. */
1340 if (is_two_pass)
1341 {
1342 gc_sd = this->get_symbols_data();
1343 if (gc_sd == NULL)
1344 {
1345 gold_assert(sd != NULL);
1346 is_pass_one = true;
1347 }
1348 else
1349 {
1350 if (parameters->options().gc_sections())
1351 gold_assert(symtab->gc()->is_worklist_ready());
1352 if (parameters->options().icf_enabled())
1353 gold_assert(symtab->icf()->is_icf_ready());
1354 is_pass_two = true;
1355 }
1356 }
1357
1358 if (shnum == 0)
1359 return;
1360
1361 if (is_pass_one)
1362 {
1363 // During garbage collection save the symbols data to use it when
1364 // re-entering this function.
1365 gc_sd = new Symbols_data;
1366 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1367 this->set_symbols_data(gc_sd);
1368 }
1369
1370 const unsigned char* section_headers_data = NULL;
1371 section_size_type section_names_size;
1372 const unsigned char* symbols_data = NULL;
1373 section_size_type symbols_size;
1374 const unsigned char* symbol_names_data = NULL;
1375 section_size_type symbol_names_size;
1376
1377 if (is_two_pass)
1378 {
1379 section_headers_data = gc_sd->section_headers_data;
1380 section_names_size = gc_sd->section_names_size;
1381 symbols_data = gc_sd->symbols_data;
1382 symbols_size = gc_sd->symbols_size;
1383 symbol_names_data = gc_sd->symbol_names_data;
1384 symbol_names_size = gc_sd->symbol_names_size;
1385 }
1386 else
1387 {
1388 section_headers_data = sd->section_headers->data();
1389 section_names_size = sd->section_names_size;
1390 if (sd->symbols != NULL)
1391 symbols_data = sd->symbols->data();
1392 symbols_size = sd->symbols_size;
1393 if (sd->symbol_names != NULL)
1394 symbol_names_data = sd->symbol_names->data();
1395 symbol_names_size = sd->symbol_names_size;
1396 }
1397
1398 // Get the section headers.
1399 const unsigned char* shdrs = section_headers_data;
1400 const unsigned char* pshdrs;
1401
1402 // Get the section names.
1403 const unsigned char* pnamesu = (is_two_pass
1404 ? gc_sd->section_names_data
1405 : sd->section_names->data());
1406
1407 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1408
1409 // If any input files have been claimed by plugins, we need to defer
1410 // actual layout until the replacement files have arrived.
1411 const bool should_defer_layout =
1412 (parameters->options().has_plugins()
1413 && parameters->options().plugins()->should_defer_layout());
1414 unsigned int num_sections_to_defer = 0;
1415
1416 // For each section, record the index of the reloc section if any.
1417 // Use 0 to mean that there is no reloc section, -1U to mean that
1418 // there is more than one.
1419 std::vector<unsigned int> reloc_shndx(shnum, 0);
1420 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1421 // Skip the first, dummy, section.
1422 pshdrs = shdrs + This::shdr_size;
1423 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1424 {
1425 typename This::Shdr shdr(pshdrs);
1426
1427 // Count the number of sections whose layout will be deferred.
1428 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1429 ++num_sections_to_defer;
1430
1431 unsigned int sh_type = shdr.get_sh_type();
1432 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1433 {
1434 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1435 if (target_shndx == 0 || target_shndx >= shnum)
1436 {
1437 this->error(_("relocation section %u has bad info %u"),
1438 i, target_shndx);
1439 continue;
1440 }
1441
1442 if (reloc_shndx[target_shndx] != 0)
1443 reloc_shndx[target_shndx] = -1U;
1444 else
1445 {
1446 reloc_shndx[target_shndx] = i;
1447 reloc_type[target_shndx] = sh_type;
1448 }
1449 }
1450 }
1451
1452 Output_sections& out_sections(this->output_sections());
1453 std::vector<Address>& out_section_offsets(this->section_offsets());
1454
1455 if (!is_pass_two)
1456 {
1457 out_sections.resize(shnum);
1458 out_section_offsets.resize(shnum);
1459 }
1460
1461 // If we are only linking for symbols, then there is nothing else to
1462 // do here.
1463 if (this->input_file()->just_symbols())
1464 {
1465 if (!is_pass_two)
1466 {
1467 delete sd->section_headers;
1468 sd->section_headers = NULL;
1469 delete sd->section_names;
1470 sd->section_names = NULL;
1471 }
1472 return;
1473 }
1474
1475 if (num_sections_to_defer > 0)
1476 {
1477 parameters->options().plugins()->add_deferred_layout_object(this);
1478 this->deferred_layout_.reserve(num_sections_to_defer);
1479 this->is_deferred_layout_ = true;
1480 }
1481
1482 // Whether we've seen a .note.GNU-stack section.
1483 bool seen_gnu_stack = false;
1484 // The flags of a .note.GNU-stack section.
1485 uint64_t gnu_stack_flags = 0;
1486
1487 // Keep track of which sections to omit.
1488 std::vector<bool> omit(shnum, false);
1489
1490 // Keep track of reloc sections when emitting relocations.
1491 const bool relocatable = parameters->options().relocatable();
1492 const bool emit_relocs = (relocatable
1493 || parameters->options().emit_relocs());
1494 std::vector<unsigned int> reloc_sections;
1495
1496 // Keep track of .eh_frame sections.
1497 std::vector<unsigned int> eh_frame_sections;
1498
1499 // Keep track of .debug_info and .debug_types sections.
1500 std::vector<unsigned int> debug_info_sections;
1501 std::vector<unsigned int> debug_types_sections;
1502
1503 // Skip the first, dummy, section.
1504 pshdrs = shdrs + This::shdr_size;
1505 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1506 {
1507 typename This::Shdr shdr(pshdrs);
1508
1509 if (shdr.get_sh_name() >= section_names_size)
1510 {
1511 this->error(_("bad section name offset for section %u: %lu"),
1512 i, static_cast<unsigned long>(shdr.get_sh_name()));
1513 return;
1514 }
1515
1516 const char* name = pnames + shdr.get_sh_name();
1517
1518 if (!is_pass_two)
1519 {
1520 if (this->handle_gnu_warning_section(name, i, symtab))
1521 {
1522 if (!relocatable && !parameters->options().shared())
1523 omit[i] = true;
1524 }
1525
1526 // The .note.GNU-stack section is special. It gives the
1527 // protection flags that this object file requires for the stack
1528 // in memory.
1529 if (strcmp(name, ".note.GNU-stack") == 0)
1530 {
1531 seen_gnu_stack = true;
1532 gnu_stack_flags |= shdr.get_sh_flags();
1533 omit[i] = true;
1534 }
1535
1536 // The .note.GNU-split-stack section is also special. It
1537 // indicates that the object was compiled with
1538 // -fsplit-stack.
1539 if (this->handle_split_stack_section(name))
1540 {
1541 if (!relocatable && !parameters->options().shared())
1542 omit[i] = true;
1543 }
1544
1545 // Skip attributes section.
1546 if (parameters->target().is_attributes_section(name))
1547 {
1548 omit[i] = true;
1549 }
1550
1551 bool discard = omit[i];
1552 if (!discard)
1553 {
1554 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1555 {
1556 if (!this->include_section_group(symtab, layout, i, name,
1557 shdrs, pnames,
1558 section_names_size,
1559 &omit))
1560 discard = true;
1561 }
1562 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1563 && Layout::is_linkonce(name))
1564 {
1565 if (!this->include_linkonce_section(layout, i, name, shdr))
1566 discard = true;
1567 }
1568 }
1569
1570 // Add the section to the incremental inputs layout.
1571 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1572 if (incremental_inputs != NULL
1573 && !discard
1574 && can_incremental_update(shdr.get_sh_type()))
1575 {
1576 off_t sh_size = shdr.get_sh_size();
1577 section_size_type uncompressed_size;
1578 if (this->section_is_compressed(i, &uncompressed_size))
1579 sh_size = uncompressed_size;
1580 incremental_inputs->report_input_section(this, i, name, sh_size);
1581 }
1582
1583 if (discard)
1584 {
1585 // Do not include this section in the link.
1586 out_sections[i] = NULL;
1587 out_section_offsets[i] = invalid_address;
1588 continue;
1589 }
1590 }
1591
1592 if (is_pass_one && parameters->options().gc_sections())
1593 {
1594 if (this->is_section_name_included(name)
1595 || layout->keep_input_section (this, name)
1596 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1597 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1598 {
1599 symtab->gc()->worklist().push(Section_id(this, i));
1600 }
1601 // If the section name XXX can be represented as a C identifier
1602 // it cannot be discarded if there are references to
1603 // __start_XXX and __stop_XXX symbols. These need to be
1604 // specially handled.
1605 if (is_cident(name))
1606 {
1607 symtab->gc()->add_cident_section(name, Section_id(this, i));
1608 }
1609 }
1610
1611 // When doing a relocatable link we are going to copy input
1612 // reloc sections into the output. We only want to copy the
1613 // ones associated with sections which are not being discarded.
1614 // However, we don't know that yet for all sections. So save
1615 // reloc sections and process them later. Garbage collection is
1616 // not triggered when relocatable code is desired.
1617 if (emit_relocs
1618 && (shdr.get_sh_type() == elfcpp::SHT_REL
1619 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1620 {
1621 reloc_sections.push_back(i);
1622 continue;
1623 }
1624
1625 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1626 continue;
1627
1628 // The .eh_frame section is special. It holds exception frame
1629 // information that we need to read in order to generate the
1630 // exception frame header. We process these after all the other
1631 // sections so that the exception frame reader can reliably
1632 // determine which sections are being discarded, and discard the
1633 // corresponding information.
1634 if (!relocatable
1635 && strcmp(name, ".eh_frame") == 0
1636 && this->check_eh_frame_flags(&shdr))
1637 {
1638 if (is_pass_one)
1639 {
1640 if (this->is_deferred_layout())
1641 out_sections[i] = reinterpret_cast<Output_section*>(2);
1642 else
1643 out_sections[i] = reinterpret_cast<Output_section*>(1);
1644 out_section_offsets[i] = invalid_address;
1645 }
1646 else if (this->is_deferred_layout())
1647 this->deferred_layout_.push_back(Deferred_layout(i, name,
1648 pshdrs,
1649 reloc_shndx[i],
1650 reloc_type[i]));
1651 else
1652 eh_frame_sections.push_back(i);
1653 continue;
1654 }
1655
1656 if (is_pass_two && parameters->options().gc_sections())
1657 {
1658 // This is executed during the second pass of garbage
1659 // collection. do_layout has been called before and some
1660 // sections have been already discarded. Simply ignore
1661 // such sections this time around.
1662 if (out_sections[i] == NULL)
1663 {
1664 gold_assert(out_section_offsets[i] == invalid_address);
1665 continue;
1666 }
1667 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1668 && symtab->gc()->is_section_garbage(this, i))
1669 {
1670 if (parameters->options().print_gc_sections())
1671 gold_info(_("%s: removing unused section from '%s'"
1672 " in file '%s'"),
1673 program_name, this->section_name(i).c_str(),
1674 this->name().c_str());
1675 out_sections[i] = NULL;
1676 out_section_offsets[i] = invalid_address;
1677 continue;
1678 }
1679 }
1680
1681 if (is_pass_two && parameters->options().icf_enabled())
1682 {
1683 if (out_sections[i] == NULL)
1684 {
1685 gold_assert(out_section_offsets[i] == invalid_address);
1686 continue;
1687 }
1688 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1689 && symtab->icf()->is_section_folded(this, i))
1690 {
1691 if (parameters->options().print_icf_sections())
1692 {
1693 Section_id folded =
1694 symtab->icf()->get_folded_section(this, i);
1695 Relobj* folded_obj =
1696 reinterpret_cast<Relobj*>(folded.first);
1697 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1698 "into '%s' in file '%s'"),
1699 program_name, this->section_name(i).c_str(),
1700 this->name().c_str(),
1701 folded_obj->section_name(folded.second).c_str(),
1702 folded_obj->name().c_str());
1703 }
1704 out_sections[i] = NULL;
1705 out_section_offsets[i] = invalid_address;
1706 continue;
1707 }
1708 }
1709
1710 // Defer layout here if input files are claimed by plugins. When gc
1711 // is turned on this function is called twice; we only want to do this
1712 // on the first pass.
1713 if (!is_pass_two
1714 && this->is_deferred_layout()
1715 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1716 {
1717 this->deferred_layout_.push_back(Deferred_layout(i, name,
1718 pshdrs,
1719 reloc_shndx[i],
1720 reloc_type[i]));
1721 // Put dummy values here; real values will be supplied by
1722 // do_layout_deferred_sections.
1723 out_sections[i] = reinterpret_cast<Output_section*>(2);
1724 out_section_offsets[i] = invalid_address;
1725 continue;
1726 }
1727
1728 // During gc_pass_two if a section that was previously deferred is
1729 // found, do not layout the section as layout_deferred_sections will
1730 // do it later from gold.cc.
1731 if (is_pass_two
1732 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1733 continue;
1734
1735 if (is_pass_one)
1736 {
1737 // This is during garbage collection. The out_sections are
1738 // assigned in the second call to this function.
1739 out_sections[i] = reinterpret_cast<Output_section*>(1);
1740 out_section_offsets[i] = invalid_address;
1741 }
1742 else
1743 {
1744 // When garbage collection is switched on the actual layout
1745 // only happens in the second call.
1746 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1747 reloc_type[i]);
1748
1749 // When generating a .gdb_index section, we do additional
1750 // processing of .debug_info and .debug_types sections after all
1751 // the other sections for the same reason as above.
1752 if (!relocatable
1753 && parameters->options().gdb_index()
1754 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1755 {
1756 if (strcmp(name, ".debug_info") == 0
1757 || strcmp(name, ".zdebug_info") == 0)
1758 debug_info_sections.push_back(i);
1759 else if (strcmp(name, ".debug_types") == 0
1760 || strcmp(name, ".zdebug_types") == 0)
1761 debug_types_sections.push_back(i);
1762 }
1763 }
1764 }
1765
1766 if (!is_pass_two)
1767 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1768
1769 // Handle the .eh_frame sections after the other sections.
1770 gold_assert(!is_pass_one || eh_frame_sections.empty());
1771 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1772 p != eh_frame_sections.end();
1773 ++p)
1774 {
1775 unsigned int i = *p;
1776 const unsigned char* pshdr;
1777 pshdr = section_headers_data + i * This::shdr_size;
1778 typename This::Shdr shdr(pshdr);
1779
1780 this->layout_eh_frame_section(layout,
1781 symbols_data,
1782 symbols_size,
1783 symbol_names_data,
1784 symbol_names_size,
1785 i,
1786 shdr,
1787 reloc_shndx[i],
1788 reloc_type[i]);
1789 }
1790
1791 // When doing a relocatable link handle the reloc sections at the
1792 // end. Garbage collection and Identical Code Folding is not
1793 // turned on for relocatable code.
1794 if (emit_relocs)
1795 this->size_relocatable_relocs();
1796
1797 gold_assert(!is_two_pass || reloc_sections.empty());
1798
1799 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1800 p != reloc_sections.end();
1801 ++p)
1802 {
1803 unsigned int i = *p;
1804 const unsigned char* pshdr;
1805 pshdr = section_headers_data + i * This::shdr_size;
1806 typename This::Shdr shdr(pshdr);
1807
1808 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1809 if (data_shndx >= shnum)
1810 {
1811 // We already warned about this above.
1812 continue;
1813 }
1814
1815 Output_section* data_section = out_sections[data_shndx];
1816 if (data_section == reinterpret_cast<Output_section*>(2))
1817 {
1818 if (is_pass_two)
1819 continue;
1820 // The layout for the data section was deferred, so we need
1821 // to defer the relocation section, too.
1822 const char* name = pnames + shdr.get_sh_name();
1823 this->deferred_layout_relocs_.push_back(
1824 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1825 out_sections[i] = reinterpret_cast<Output_section*>(2);
1826 out_section_offsets[i] = invalid_address;
1827 continue;
1828 }
1829 if (data_section == NULL)
1830 {
1831 out_sections[i] = NULL;
1832 out_section_offsets[i] = invalid_address;
1833 continue;
1834 }
1835
1836 Relocatable_relocs* rr = new Relocatable_relocs();
1837 this->set_relocatable_relocs(i, rr);
1838
1839 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1840 rr);
1841 out_sections[i] = os;
1842 out_section_offsets[i] = invalid_address;
1843 }
1844
1845 // When building a .gdb_index section, scan the .debug_info and
1846 // .debug_types sections.
1847 gold_assert(!is_pass_one
1848 || (debug_info_sections.empty() && debug_types_sections.empty()));
1849 for (std::vector<unsigned int>::const_iterator p
1850 = debug_info_sections.begin();
1851 p != debug_info_sections.end();
1852 ++p)
1853 {
1854 unsigned int i = *p;
1855 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1856 i, reloc_shndx[i], reloc_type[i]);
1857 }
1858 for (std::vector<unsigned int>::const_iterator p
1859 = debug_types_sections.begin();
1860 p != debug_types_sections.end();
1861 ++p)
1862 {
1863 unsigned int i = *p;
1864 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1865 i, reloc_shndx[i], reloc_type[i]);
1866 }
1867
1868 if (is_pass_two)
1869 {
1870 delete[] gc_sd->section_headers_data;
1871 delete[] gc_sd->section_names_data;
1872 delete[] gc_sd->symbols_data;
1873 delete[] gc_sd->symbol_names_data;
1874 this->set_symbols_data(NULL);
1875 }
1876 else
1877 {
1878 delete sd->section_headers;
1879 sd->section_headers = NULL;
1880 delete sd->section_names;
1881 sd->section_names = NULL;
1882 }
1883 }
1884
1885 // Layout sections whose layout was deferred while waiting for
1886 // input files from a plugin.
1887
1888 template<int size, bool big_endian>
1889 void
1890 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1891 {
1892 typename std::vector<Deferred_layout>::iterator deferred;
1893
1894 for (deferred = this->deferred_layout_.begin();
1895 deferred != this->deferred_layout_.end();
1896 ++deferred)
1897 {
1898 typename This::Shdr shdr(deferred->shdr_data_);
1899
1900 if (!parameters->options().relocatable()
1901 && deferred->name_ == ".eh_frame"
1902 && this->check_eh_frame_flags(&shdr))
1903 {
1904 // Checking is_section_included is not reliable for
1905 // .eh_frame sections, because they do not have an output
1906 // section. This is not a problem normally because we call
1907 // layout_eh_frame_section unconditionally, but when
1908 // deferring sections that is not true. We don't want to
1909 // keep all .eh_frame sections because that will cause us to
1910 // keep all sections that they refer to, which is the wrong
1911 // way around. Instead, the eh_frame code will discard
1912 // .eh_frame sections that refer to discarded sections.
1913
1914 // Reading the symbols again here may be slow.
1915 Read_symbols_data sd;
1916 this->base_read_symbols(&sd);
1917 this->layout_eh_frame_section(layout,
1918 sd.symbols->data(),
1919 sd.symbols_size,
1920 sd.symbol_names->data(),
1921 sd.symbol_names_size,
1922 deferred->shndx_,
1923 shdr,
1924 deferred->reloc_shndx_,
1925 deferred->reloc_type_);
1926 continue;
1927 }
1928
1929 // If the section is not included, it is because the garbage collector
1930 // decided it is not needed. Avoid reverting that decision.
1931 if (!this->is_section_included(deferred->shndx_))
1932 continue;
1933
1934 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1935 shdr, deferred->reloc_shndx_,
1936 deferred->reloc_type_);
1937 }
1938
1939 this->deferred_layout_.clear();
1940
1941 // Now handle the deferred relocation sections.
1942
1943 Output_sections& out_sections(this->output_sections());
1944 std::vector<Address>& out_section_offsets(this->section_offsets());
1945
1946 for (deferred = this->deferred_layout_relocs_.begin();
1947 deferred != this->deferred_layout_relocs_.end();
1948 ++deferred)
1949 {
1950 unsigned int shndx = deferred->shndx_;
1951 typename This::Shdr shdr(deferred->shdr_data_);
1952 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1953
1954 Output_section* data_section = out_sections[data_shndx];
1955 if (data_section == NULL)
1956 {
1957 out_sections[shndx] = NULL;
1958 out_section_offsets[shndx] = invalid_address;
1959 continue;
1960 }
1961
1962 Relocatable_relocs* rr = new Relocatable_relocs();
1963 this->set_relocatable_relocs(shndx, rr);
1964
1965 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1966 data_section, rr);
1967 out_sections[shndx] = os;
1968 out_section_offsets[shndx] = invalid_address;
1969 }
1970 }
1971
1972 // Add the symbols to the symbol table.
1973
1974 template<int size, bool big_endian>
1975 void
1976 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1977 Read_symbols_data* sd,
1978 Layout*)
1979 {
1980 if (sd->symbols == NULL)
1981 {
1982 gold_assert(sd->symbol_names == NULL);
1983 return;
1984 }
1985
1986 const int sym_size = This::sym_size;
1987 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1988 / sym_size);
1989 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1990 {
1991 this->error(_("size of symbols is not multiple of symbol size"));
1992 return;
1993 }
1994
1995 this->symbols_.resize(symcount);
1996
1997 const char* sym_names =
1998 reinterpret_cast<const char*>(sd->symbol_names->data());
1999 symtab->add_from_relobj(this,
2000 sd->symbols->data() + sd->external_symbols_offset,
2001 symcount, this->local_symbol_count_,
2002 sym_names, sd->symbol_names_size,
2003 &this->symbols_,
2004 &this->defined_count_);
2005
2006 delete sd->symbols;
2007 sd->symbols = NULL;
2008 delete sd->symbol_names;
2009 sd->symbol_names = NULL;
2010 }
2011
2012 // Find out if this object, that is a member of a lib group, should be included
2013 // in the link. We check every symbol defined by this object. If the symbol
2014 // table has a strong undefined reference to that symbol, we have to include
2015 // the object.
2016
2017 template<int size, bool big_endian>
2018 Archive::Should_include
2019 Sized_relobj_file<size, big_endian>::do_should_include_member(
2020 Symbol_table* symtab,
2021 Layout* layout,
2022 Read_symbols_data* sd,
2023 std::string* why)
2024 {
2025 char* tmpbuf = NULL;
2026 size_t tmpbuflen = 0;
2027 const char* sym_names =
2028 reinterpret_cast<const char*>(sd->symbol_names->data());
2029 const unsigned char* syms =
2030 sd->symbols->data() + sd->external_symbols_offset;
2031 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2032 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2033 / sym_size);
2034
2035 const unsigned char* p = syms;
2036
2037 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2038 {
2039 elfcpp::Sym<size, big_endian> sym(p);
2040 unsigned int st_shndx = sym.get_st_shndx();
2041 if (st_shndx == elfcpp::SHN_UNDEF)
2042 continue;
2043
2044 unsigned int st_name = sym.get_st_name();
2045 const char* name = sym_names + st_name;
2046 Symbol* symbol;
2047 Archive::Should_include t = Archive::should_include_member(symtab,
2048 layout,
2049 name,
2050 &symbol, why,
2051 &tmpbuf,
2052 &tmpbuflen);
2053 if (t == Archive::SHOULD_INCLUDE_YES)
2054 {
2055 if (tmpbuf != NULL)
2056 free(tmpbuf);
2057 return t;
2058 }
2059 }
2060 if (tmpbuf != NULL)
2061 free(tmpbuf);
2062 return Archive::SHOULD_INCLUDE_UNKNOWN;
2063 }
2064
2065 // Iterate over global defined symbols, calling a visitor class V for each.
2066
2067 template<int size, bool big_endian>
2068 void
2069 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2070 Read_symbols_data* sd,
2071 Library_base::Symbol_visitor_base* v)
2072 {
2073 const char* sym_names =
2074 reinterpret_cast<const char*>(sd->symbol_names->data());
2075 const unsigned char* syms =
2076 sd->symbols->data() + sd->external_symbols_offset;
2077 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2078 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2079 / sym_size);
2080 const unsigned char* p = syms;
2081
2082 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2083 {
2084 elfcpp::Sym<size, big_endian> sym(p);
2085 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2086 v->visit(sym_names + sym.get_st_name());
2087 }
2088 }
2089
2090 // Return whether the local symbol SYMNDX has a PLT offset.
2091
2092 template<int size, bool big_endian>
2093 bool
2094 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2095 unsigned int symndx) const
2096 {
2097 typename Local_plt_offsets::const_iterator p =
2098 this->local_plt_offsets_.find(symndx);
2099 return p != this->local_plt_offsets_.end();
2100 }
2101
2102 // Get the PLT offset of a local symbol.
2103
2104 template<int size, bool big_endian>
2105 unsigned int
2106 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2107 unsigned int symndx) const
2108 {
2109 typename Local_plt_offsets::const_iterator p =
2110 this->local_plt_offsets_.find(symndx);
2111 gold_assert(p != this->local_plt_offsets_.end());
2112 return p->second;
2113 }
2114
2115 // Set the PLT offset of a local symbol.
2116
2117 template<int size, bool big_endian>
2118 void
2119 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2120 unsigned int symndx, unsigned int plt_offset)
2121 {
2122 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2123 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2124 gold_assert(ins.second);
2125 }
2126
2127 // First pass over the local symbols. Here we add their names to
2128 // *POOL and *DYNPOOL, and we store the symbol value in
2129 // THIS->LOCAL_VALUES_. This function is always called from a
2130 // singleton thread. This is followed by a call to
2131 // finalize_local_symbols.
2132
2133 template<int size, bool big_endian>
2134 void
2135 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2136 Stringpool* dynpool)
2137 {
2138 gold_assert(this->symtab_shndx_ != -1U);
2139 if (this->symtab_shndx_ == 0)
2140 {
2141 // This object has no symbols. Weird but legal.
2142 return;
2143 }
2144
2145 // Read the symbol table section header.
2146 const unsigned int symtab_shndx = this->symtab_shndx_;
2147 typename This::Shdr symtabshdr(this,
2148 this->elf_file_.section_header(symtab_shndx));
2149 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2150
2151 // Read the local symbols.
2152 const int sym_size = This::sym_size;
2153 const unsigned int loccount = this->local_symbol_count_;
2154 gold_assert(loccount == symtabshdr.get_sh_info());
2155 off_t locsize = loccount * sym_size;
2156 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2157 locsize, true, true);
2158
2159 // Read the symbol names.
2160 const unsigned int strtab_shndx =
2161 this->adjust_shndx(symtabshdr.get_sh_link());
2162 section_size_type strtab_size;
2163 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2164 &strtab_size,
2165 true);
2166 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2167
2168 // Loop over the local symbols.
2169
2170 const Output_sections& out_sections(this->output_sections());
2171 unsigned int shnum = this->shnum();
2172 unsigned int count = 0;
2173 unsigned int dyncount = 0;
2174 // Skip the first, dummy, symbol.
2175 psyms += sym_size;
2176 bool strip_all = parameters->options().strip_all();
2177 bool discard_all = parameters->options().discard_all();
2178 bool discard_locals = parameters->options().discard_locals();
2179 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2180 {
2181 elfcpp::Sym<size, big_endian> sym(psyms);
2182
2183 Symbol_value<size>& lv(this->local_values_[i]);
2184
2185 bool is_ordinary;
2186 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2187 &is_ordinary);
2188 lv.set_input_shndx(shndx, is_ordinary);
2189
2190 if (sym.get_st_type() == elfcpp::STT_SECTION)
2191 lv.set_is_section_symbol();
2192 else if (sym.get_st_type() == elfcpp::STT_TLS)
2193 lv.set_is_tls_symbol();
2194 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2195 lv.set_is_ifunc_symbol();
2196
2197 // Save the input symbol value for use in do_finalize_local_symbols().
2198 lv.set_input_value(sym.get_st_value());
2199
2200 // Decide whether this symbol should go into the output file.
2201
2202 if ((shndx < shnum && out_sections[shndx] == NULL)
2203 || shndx == this->discarded_eh_frame_shndx_)
2204 {
2205 lv.set_no_output_symtab_entry();
2206 gold_assert(!lv.needs_output_dynsym_entry());
2207 continue;
2208 }
2209
2210 if (sym.get_st_type() == elfcpp::STT_SECTION
2211 || !this->adjust_local_symbol(&lv))
2212 {
2213 lv.set_no_output_symtab_entry();
2214 gold_assert(!lv.needs_output_dynsym_entry());
2215 continue;
2216 }
2217
2218 if (sym.get_st_name() >= strtab_size)
2219 {
2220 this->error(_("local symbol %u section name out of range: %u >= %u"),
2221 i, sym.get_st_name(),
2222 static_cast<unsigned int>(strtab_size));
2223 lv.set_no_output_symtab_entry();
2224 continue;
2225 }
2226
2227 const char* name = pnames + sym.get_st_name();
2228
2229 // If needed, add the symbol to the dynamic symbol table string pool.
2230 if (lv.needs_output_dynsym_entry())
2231 {
2232 dynpool->add(name, true, NULL);
2233 ++dyncount;
2234 }
2235
2236 if (strip_all
2237 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2238 {
2239 lv.set_no_output_symtab_entry();
2240 continue;
2241 }
2242
2243 // If --discard-locals option is used, discard all temporary local
2244 // symbols. These symbols start with system-specific local label
2245 // prefixes, typically .L for ELF system. We want to be compatible
2246 // with GNU ld so here we essentially use the same check in
2247 // bfd_is_local_label(). The code is different because we already
2248 // know that:
2249 //
2250 // - the symbol is local and thus cannot have global or weak binding.
2251 // - the symbol is not a section symbol.
2252 // - the symbol has a name.
2253 //
2254 // We do not discard a symbol if it needs a dynamic symbol entry.
2255 if (discard_locals
2256 && sym.get_st_type() != elfcpp::STT_FILE
2257 && !lv.needs_output_dynsym_entry()
2258 && lv.may_be_discarded_from_output_symtab()
2259 && parameters->target().is_local_label_name(name))
2260 {
2261 lv.set_no_output_symtab_entry();
2262 continue;
2263 }
2264
2265 // Discard the local symbol if -retain_symbols_file is specified
2266 // and the local symbol is not in that file.
2267 if (!parameters->options().should_retain_symbol(name))
2268 {
2269 lv.set_no_output_symtab_entry();
2270 continue;
2271 }
2272
2273 // Add the symbol to the symbol table string pool.
2274 pool->add(name, true, NULL);
2275 ++count;
2276 }
2277
2278 this->output_local_symbol_count_ = count;
2279 this->output_local_dynsym_count_ = dyncount;
2280 }
2281
2282 // Compute the final value of a local symbol.
2283
2284 template<int size, bool big_endian>
2285 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2286 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2287 unsigned int r_sym,
2288 const Symbol_value<size>* lv_in,
2289 Symbol_value<size>* lv_out,
2290 bool relocatable,
2291 const Output_sections& out_sections,
2292 const std::vector<Address>& out_offsets,
2293 const Symbol_table* symtab)
2294 {
2295 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2296 // we may have a memory leak.
2297 gold_assert(lv_out->has_output_value());
2298
2299 bool is_ordinary;
2300 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2301
2302 // Set the output symbol value.
2303
2304 if (!is_ordinary)
2305 {
2306 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2307 lv_out->set_output_value(lv_in->input_value());
2308 else
2309 {
2310 this->error(_("unknown section index %u for local symbol %u"),
2311 shndx, r_sym);
2312 lv_out->set_output_value(0);
2313 return This::CFLV_ERROR;
2314 }
2315 }
2316 else
2317 {
2318 if (shndx >= this->shnum())
2319 {
2320 this->error(_("local symbol %u section index %u out of range"),
2321 r_sym, shndx);
2322 lv_out->set_output_value(0);
2323 return This::CFLV_ERROR;
2324 }
2325
2326 Output_section* os = out_sections[shndx];
2327 Address secoffset = out_offsets[shndx];
2328 if (symtab->is_section_folded(this, shndx))
2329 {
2330 gold_assert(os == NULL && secoffset == invalid_address);
2331 // Get the os of the section it is folded onto.
2332 Section_id folded = symtab->icf()->get_folded_section(this,
2333 shndx);
2334 gold_assert(folded.first != NULL);
2335 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2336 <Sized_relobj_file<size, big_endian>*>(folded.first);
2337 os = folded_obj->output_section(folded.second);
2338 gold_assert(os != NULL);
2339 secoffset = folded_obj->get_output_section_offset(folded.second);
2340
2341 // This could be a relaxed input section.
2342 if (secoffset == invalid_address)
2343 {
2344 const Output_relaxed_input_section* relaxed_section =
2345 os->find_relaxed_input_section(folded_obj, folded.second);
2346 gold_assert(relaxed_section != NULL);
2347 secoffset = relaxed_section->address() - os->address();
2348 }
2349 }
2350
2351 if (os == NULL)
2352 {
2353 // This local symbol belongs to a section we are discarding.
2354 // In some cases when applying relocations later, we will
2355 // attempt to match it to the corresponding kept section,
2356 // so we leave the input value unchanged here.
2357 return This::CFLV_DISCARDED;
2358 }
2359 else if (secoffset == invalid_address)
2360 {
2361 uint64_t start;
2362
2363 // This is a SHF_MERGE section or one which otherwise
2364 // requires special handling.
2365 if (shndx == this->discarded_eh_frame_shndx_)
2366 {
2367 // This local symbol belongs to a discarded .eh_frame
2368 // section. Just treat it like the case in which
2369 // os == NULL above.
2370 gold_assert(this->has_eh_frame_);
2371 return This::CFLV_DISCARDED;
2372 }
2373 else if (!lv_in->is_section_symbol())
2374 {
2375 // This is not a section symbol. We can determine
2376 // the final value now.
2377 lv_out->set_output_value(
2378 os->output_address(this, shndx, lv_in->input_value()));
2379 }
2380 else if (!os->find_starting_output_address(this, shndx, &start))
2381 {
2382 // This is a section symbol, but apparently not one in a
2383 // merged section. First check to see if this is a relaxed
2384 // input section. If so, use its address. Otherwise just
2385 // use the start of the output section. This happens with
2386 // relocatable links when the input object has section
2387 // symbols for arbitrary non-merge sections.
2388 const Output_section_data* posd =
2389 os->find_relaxed_input_section(this, shndx);
2390 if (posd != NULL)
2391 {
2392 Address relocatable_link_adjustment =
2393 relocatable ? os->address() : 0;
2394 lv_out->set_output_value(posd->address()
2395 - relocatable_link_adjustment);
2396 }
2397 else
2398 lv_out->set_output_value(os->address());
2399 }
2400 else
2401 {
2402 // We have to consider the addend to determine the
2403 // value to use in a relocation. START is the start
2404 // of this input section. If we are doing a relocatable
2405 // link, use offset from start output section instead of
2406 // address.
2407 Address adjusted_start =
2408 relocatable ? start - os->address() : start;
2409 Merged_symbol_value<size>* msv =
2410 new Merged_symbol_value<size>(lv_in->input_value(),
2411 adjusted_start);
2412 lv_out->set_merged_symbol_value(msv);
2413 }
2414 }
2415 else if (lv_in->is_tls_symbol()
2416 || (lv_in->is_section_symbol()
2417 && (os->flags() & elfcpp::SHF_TLS)))
2418 lv_out->set_output_value(os->tls_offset()
2419 + secoffset
2420 + lv_in->input_value());
2421 else
2422 lv_out->set_output_value((relocatable ? 0 : os->address())
2423 + secoffset
2424 + lv_in->input_value());
2425 }
2426 return This::CFLV_OK;
2427 }
2428
2429 // Compute final local symbol value. R_SYM is the index of a local
2430 // symbol in symbol table. LV points to a symbol value, which is
2431 // expected to hold the input value and to be over-written by the
2432 // final value. SYMTAB points to a symbol table. Some targets may want
2433 // to know would-be-finalized local symbol values in relaxation.
2434 // Hence we provide this method. Since this method updates *LV, a
2435 // callee should make a copy of the original local symbol value and
2436 // use the copy instead of modifying an object's local symbols before
2437 // everything is finalized. The caller should also free up any allocated
2438 // memory in the return value in *LV.
2439 template<int size, bool big_endian>
2440 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2441 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2442 unsigned int r_sym,
2443 const Symbol_value<size>* lv_in,
2444 Symbol_value<size>* lv_out,
2445 const Symbol_table* symtab)
2446 {
2447 // This is just a wrapper of compute_final_local_value_internal.
2448 const bool relocatable = parameters->options().relocatable();
2449 const Output_sections& out_sections(this->output_sections());
2450 const std::vector<Address>& out_offsets(this->section_offsets());
2451 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2452 relocatable, out_sections,
2453 out_offsets, symtab);
2454 }
2455
2456 // Finalize the local symbols. Here we set the final value in
2457 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2458 // This function is always called from a singleton thread. The actual
2459 // output of the local symbols will occur in a separate task.
2460
2461 template<int size, bool big_endian>
2462 unsigned int
2463 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2464 unsigned int index,
2465 off_t off,
2466 Symbol_table* symtab)
2467 {
2468 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2469
2470 const unsigned int loccount = this->local_symbol_count_;
2471 this->local_symbol_offset_ = off;
2472
2473 const bool relocatable = parameters->options().relocatable();
2474 const Output_sections& out_sections(this->output_sections());
2475 const std::vector<Address>& out_offsets(this->section_offsets());
2476
2477 for (unsigned int i = 1; i < loccount; ++i)
2478 {
2479 Symbol_value<size>* lv = &this->local_values_[i];
2480
2481 Compute_final_local_value_status cflv_status =
2482 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2483 out_sections, out_offsets,
2484 symtab);
2485 switch (cflv_status)
2486 {
2487 case CFLV_OK:
2488 if (!lv->is_output_symtab_index_set())
2489 {
2490 lv->set_output_symtab_index(index);
2491 ++index;
2492 }
2493 break;
2494 case CFLV_DISCARDED:
2495 case CFLV_ERROR:
2496 // Do nothing.
2497 break;
2498 default:
2499 gold_unreachable();
2500 }
2501 }
2502 return index;
2503 }
2504
2505 // Set the output dynamic symbol table indexes for the local variables.
2506
2507 template<int size, bool big_endian>
2508 unsigned int
2509 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2510 unsigned int index)
2511 {
2512 const unsigned int loccount = this->local_symbol_count_;
2513 for (unsigned int i = 1; i < loccount; ++i)
2514 {
2515 Symbol_value<size>& lv(this->local_values_[i]);
2516 if (lv.needs_output_dynsym_entry())
2517 {
2518 lv.set_output_dynsym_index(index);
2519 ++index;
2520 }
2521 }
2522 return index;
2523 }
2524
2525 // Set the offset where local dynamic symbol information will be stored.
2526 // Returns the count of local symbols contributed to the symbol table by
2527 // this object.
2528
2529 template<int size, bool big_endian>
2530 unsigned int
2531 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2532 {
2533 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2534 this->local_dynsym_offset_ = off;
2535 return this->output_local_dynsym_count_;
2536 }
2537
2538 // If Symbols_data is not NULL get the section flags from here otherwise
2539 // get it from the file.
2540
2541 template<int size, bool big_endian>
2542 uint64_t
2543 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2544 {
2545 Symbols_data* sd = this->get_symbols_data();
2546 if (sd != NULL)
2547 {
2548 const unsigned char* pshdrs = sd->section_headers_data
2549 + This::shdr_size * shndx;
2550 typename This::Shdr shdr(pshdrs);
2551 return shdr.get_sh_flags();
2552 }
2553 // If sd is NULL, read the section header from the file.
2554 return this->elf_file_.section_flags(shndx);
2555 }
2556
2557 // Get the section's ent size from Symbols_data. Called by get_section_contents
2558 // in icf.cc
2559
2560 template<int size, bool big_endian>
2561 uint64_t
2562 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2563 {
2564 Symbols_data* sd = this->get_symbols_data();
2565 gold_assert(sd != NULL);
2566
2567 const unsigned char* pshdrs = sd->section_headers_data
2568 + This::shdr_size * shndx;
2569 typename This::Shdr shdr(pshdrs);
2570 return shdr.get_sh_entsize();
2571 }
2572
2573 // Write out the local symbols.
2574
2575 template<int size, bool big_endian>
2576 void
2577 Sized_relobj_file<size, big_endian>::write_local_symbols(
2578 Output_file* of,
2579 const Stringpool* sympool,
2580 const Stringpool* dynpool,
2581 Output_symtab_xindex* symtab_xindex,
2582 Output_symtab_xindex* dynsym_xindex,
2583 off_t symtab_off)
2584 {
2585 const bool strip_all = parameters->options().strip_all();
2586 if (strip_all)
2587 {
2588 if (this->output_local_dynsym_count_ == 0)
2589 return;
2590 this->output_local_symbol_count_ = 0;
2591 }
2592
2593 gold_assert(this->symtab_shndx_ != -1U);
2594 if (this->symtab_shndx_ == 0)
2595 {
2596 // This object has no symbols. Weird but legal.
2597 return;
2598 }
2599
2600 // Read the symbol table section header.
2601 const unsigned int symtab_shndx = this->symtab_shndx_;
2602 typename This::Shdr symtabshdr(this,
2603 this->elf_file_.section_header(symtab_shndx));
2604 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2605 const unsigned int loccount = this->local_symbol_count_;
2606 gold_assert(loccount == symtabshdr.get_sh_info());
2607
2608 // Read the local symbols.
2609 const int sym_size = This::sym_size;
2610 off_t locsize = loccount * sym_size;
2611 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2612 locsize, true, false);
2613
2614 // Read the symbol names.
2615 const unsigned int strtab_shndx =
2616 this->adjust_shndx(symtabshdr.get_sh_link());
2617 section_size_type strtab_size;
2618 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2619 &strtab_size,
2620 false);
2621 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2622
2623 // Get views into the output file for the portions of the symbol table
2624 // and the dynamic symbol table that we will be writing.
2625 off_t output_size = this->output_local_symbol_count_ * sym_size;
2626 unsigned char* oview = NULL;
2627 if (output_size > 0)
2628 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2629 output_size);
2630
2631 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2632 unsigned char* dyn_oview = NULL;
2633 if (dyn_output_size > 0)
2634 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2635 dyn_output_size);
2636
2637 const Output_sections& out_sections(this->output_sections());
2638
2639 gold_assert(this->local_values_.size() == loccount);
2640
2641 unsigned char* ov = oview;
2642 unsigned char* dyn_ov = dyn_oview;
2643 psyms += sym_size;
2644 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2645 {
2646 elfcpp::Sym<size, big_endian> isym(psyms);
2647
2648 Symbol_value<size>& lv(this->local_values_[i]);
2649
2650 bool is_ordinary;
2651 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2652 &is_ordinary);
2653 if (is_ordinary)
2654 {
2655 gold_assert(st_shndx < out_sections.size());
2656 if (out_sections[st_shndx] == NULL)
2657 continue;
2658 st_shndx = out_sections[st_shndx]->out_shndx();
2659 if (st_shndx >= elfcpp::SHN_LORESERVE)
2660 {
2661 if (lv.has_output_symtab_entry())
2662 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2663 if (lv.has_output_dynsym_entry())
2664 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2665 st_shndx = elfcpp::SHN_XINDEX;
2666 }
2667 }
2668
2669 // Write the symbol to the output symbol table.
2670 if (lv.has_output_symtab_entry())
2671 {
2672 elfcpp::Sym_write<size, big_endian> osym(ov);
2673
2674 gold_assert(isym.get_st_name() < strtab_size);
2675 const char* name = pnames + isym.get_st_name();
2676 osym.put_st_name(sympool->get_offset(name));
2677 osym.put_st_value(this->local_values_[i].value(this, 0));
2678 osym.put_st_size(isym.get_st_size());
2679 osym.put_st_info(isym.get_st_info());
2680 osym.put_st_other(isym.get_st_other());
2681 osym.put_st_shndx(st_shndx);
2682
2683 ov += sym_size;
2684 }
2685
2686 // Write the symbol to the output dynamic symbol table.
2687 if (lv.has_output_dynsym_entry())
2688 {
2689 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2690 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2691
2692 gold_assert(isym.get_st_name() < strtab_size);
2693 const char* name = pnames + isym.get_st_name();
2694 osym.put_st_name(dynpool->get_offset(name));
2695 osym.put_st_value(this->local_values_[i].value(this, 0));
2696 osym.put_st_size(isym.get_st_size());
2697 osym.put_st_info(isym.get_st_info());
2698 osym.put_st_other(isym.get_st_other());
2699 osym.put_st_shndx(st_shndx);
2700
2701 dyn_ov += sym_size;
2702 }
2703 }
2704
2705
2706 if (output_size > 0)
2707 {
2708 gold_assert(ov - oview == output_size);
2709 of->write_output_view(symtab_off + this->local_symbol_offset_,
2710 output_size, oview);
2711 }
2712
2713 if (dyn_output_size > 0)
2714 {
2715 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2716 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2717 dyn_oview);
2718 }
2719 }
2720
2721 // Set *INFO to symbolic information about the offset OFFSET in the
2722 // section SHNDX. Return true if we found something, false if we
2723 // found nothing.
2724
2725 template<int size, bool big_endian>
2726 bool
2727 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2728 unsigned int shndx,
2729 off_t offset,
2730 Symbol_location_info* info)
2731 {
2732 if (this->symtab_shndx_ == 0)
2733 return false;
2734
2735 section_size_type symbols_size;
2736 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2737 &symbols_size,
2738 false);
2739
2740 unsigned int symbol_names_shndx =
2741 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2742 section_size_type names_size;
2743 const unsigned char* symbol_names_u =
2744 this->section_contents(symbol_names_shndx, &names_size, false);
2745 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2746
2747 const int sym_size = This::sym_size;
2748 const size_t count = symbols_size / sym_size;
2749
2750 const unsigned char* p = symbols;
2751 for (size_t i = 0; i < count; ++i, p += sym_size)
2752 {
2753 elfcpp::Sym<size, big_endian> sym(p);
2754
2755 if (sym.get_st_type() == elfcpp::STT_FILE)
2756 {
2757 if (sym.get_st_name() >= names_size)
2758 info->source_file = "(invalid)";
2759 else
2760 info->source_file = symbol_names + sym.get_st_name();
2761 continue;
2762 }
2763
2764 bool is_ordinary;
2765 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2766 &is_ordinary);
2767 if (is_ordinary
2768 && st_shndx == shndx
2769 && static_cast<off_t>(sym.get_st_value()) <= offset
2770 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2771 > offset))
2772 {
2773 info->enclosing_symbol_type = sym.get_st_type();
2774 if (sym.get_st_name() > names_size)
2775 info->enclosing_symbol_name = "(invalid)";
2776 else
2777 {
2778 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2779 if (parameters->options().do_demangle())
2780 {
2781 char* demangled_name = cplus_demangle(
2782 info->enclosing_symbol_name.c_str(),
2783 DMGL_ANSI | DMGL_PARAMS);
2784 if (demangled_name != NULL)
2785 {
2786 info->enclosing_symbol_name.assign(demangled_name);
2787 free(demangled_name);
2788 }
2789 }
2790 }
2791 return true;
2792 }
2793 }
2794
2795 return false;
2796 }
2797
2798 // Look for a kept section corresponding to the given discarded section,
2799 // and return its output address. This is used only for relocations in
2800 // debugging sections. If we can't find the kept section, return 0.
2801
2802 template<int size, bool big_endian>
2803 typename Sized_relobj_file<size, big_endian>::Address
2804 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2805 unsigned int shndx,
2806 bool* found) const
2807 {
2808 Relobj* kept_object;
2809 unsigned int kept_shndx;
2810 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2811 {
2812 Sized_relobj_file<size, big_endian>* kept_relobj =
2813 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2814 Output_section* os = kept_relobj->output_section(kept_shndx);
2815 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2816 if (os != NULL && offset != invalid_address)
2817 {
2818 *found = true;
2819 return os->address() + offset;
2820 }
2821 }
2822 *found = false;
2823 return 0;
2824 }
2825
2826 // Get symbol counts.
2827
2828 template<int size, bool big_endian>
2829 void
2830 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2831 const Symbol_table*,
2832 size_t* defined,
2833 size_t* used) const
2834 {
2835 *defined = this->defined_count_;
2836 size_t count = 0;
2837 for (typename Symbols::const_iterator p = this->symbols_.begin();
2838 p != this->symbols_.end();
2839 ++p)
2840 if (*p != NULL
2841 && (*p)->source() == Symbol::FROM_OBJECT
2842 && (*p)->object() == this
2843 && (*p)->is_defined())
2844 ++count;
2845 *used = count;
2846 }
2847
2848 // Return a view of the decompressed contents of a section. Set *PLEN
2849 // to the size. Set *IS_NEW to true if the contents need to be freed
2850 // by the caller.
2851
2852 template<int size, bool big_endian>
2853 const unsigned char*
2854 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2855 unsigned int shndx,
2856 section_size_type* plen,
2857 bool* is_new)
2858 {
2859 section_size_type buffer_size;
2860 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2861 false);
2862
2863 if (this->compressed_sections_ == NULL)
2864 {
2865 *plen = buffer_size;
2866 *is_new = false;
2867 return buffer;
2868 }
2869
2870 Compressed_section_map::const_iterator p =
2871 this->compressed_sections_->find(shndx);
2872 if (p == this->compressed_sections_->end())
2873 {
2874 *plen = buffer_size;
2875 *is_new = false;
2876 return buffer;
2877 }
2878
2879 section_size_type uncompressed_size = p->second.size;
2880 if (p->second.contents != NULL)
2881 {
2882 *plen = uncompressed_size;
2883 *is_new = false;
2884 return p->second.contents;
2885 }
2886
2887 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2888 if (!decompress_input_section(buffer,
2889 buffer_size,
2890 uncompressed_data,
2891 uncompressed_size))
2892 this->error(_("could not decompress section %s"),
2893 this->do_section_name(shndx).c_str());
2894
2895 // We could cache the results in p->second.contents and store
2896 // false in *IS_NEW, but build_compressed_section_map() would
2897 // have done so if it had expected it to be profitable. If
2898 // we reach this point, we expect to need the contents only
2899 // once in this pass.
2900 *plen = uncompressed_size;
2901 *is_new = true;
2902 return uncompressed_data;
2903 }
2904
2905 // Discard any buffers of uncompressed sections. This is done
2906 // at the end of the Add_symbols task.
2907
2908 template<int size, bool big_endian>
2909 void
2910 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2911 {
2912 if (this->compressed_sections_ == NULL)
2913 return;
2914
2915 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2916 p != this->compressed_sections_->end();
2917 ++p)
2918 {
2919 if (p->second.contents != NULL)
2920 {
2921 delete[] p->second.contents;
2922 p->second.contents = NULL;
2923 }
2924 }
2925 }
2926
2927 // Input_objects methods.
2928
2929 // Add a regular relocatable object to the list. Return false if this
2930 // object should be ignored.
2931
2932 bool
2933 Input_objects::add_object(Object* obj)
2934 {
2935 // Print the filename if the -t/--trace option is selected.
2936 if (parameters->options().trace())
2937 gold_info("%s", obj->name().c_str());
2938
2939 if (!obj->is_dynamic())
2940 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2941 else
2942 {
2943 // See if this is a duplicate SONAME.
2944 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2945 const char* soname = dynobj->soname();
2946
2947 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2948 this->sonames_.insert(soname);
2949 if (!ins.second)
2950 {
2951 // We have already seen a dynamic object with this soname.
2952 return false;
2953 }
2954
2955 this->dynobj_list_.push_back(dynobj);
2956 }
2957
2958 // Add this object to the cross-referencer if requested.
2959 if (parameters->options().user_set_print_symbol_counts()
2960 || parameters->options().cref())
2961 {
2962 if (this->cref_ == NULL)
2963 this->cref_ = new Cref();
2964 this->cref_->add_object(obj);
2965 }
2966
2967 return true;
2968 }
2969
2970 // For each dynamic object, record whether we've seen all of its
2971 // explicit dependencies.
2972
2973 void
2974 Input_objects::check_dynamic_dependencies() const
2975 {
2976 bool issued_copy_dt_needed_error = false;
2977 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2978 p != this->dynobj_list_.end();
2979 ++p)
2980 {
2981 const Dynobj::Needed& needed((*p)->needed());
2982 bool found_all = true;
2983 Dynobj::Needed::const_iterator pneeded;
2984 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2985 {
2986 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2987 {
2988 found_all = false;
2989 break;
2990 }
2991 }
2992 (*p)->set_has_unknown_needed_entries(!found_all);
2993
2994 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2995 // that gold does not support. However, they cause no trouble
2996 // unless there is a DT_NEEDED entry that we don't know about;
2997 // warn only in that case.
2998 if (!found_all
2999 && !issued_copy_dt_needed_error
3000 && (parameters->options().copy_dt_needed_entries()
3001 || parameters->options().add_needed()))
3002 {
3003 const char* optname;
3004 if (parameters->options().copy_dt_needed_entries())
3005 optname = "--copy-dt-needed-entries";
3006 else
3007 optname = "--add-needed";
3008 gold_error(_("%s is not supported but is required for %s in %s"),
3009 optname, (*pneeded).c_str(), (*p)->name().c_str());
3010 issued_copy_dt_needed_error = true;
3011 }
3012 }
3013 }
3014
3015 // Start processing an archive.
3016
3017 void
3018 Input_objects::archive_start(Archive* archive)
3019 {
3020 if (parameters->options().user_set_print_symbol_counts()
3021 || parameters->options().cref())
3022 {
3023 if (this->cref_ == NULL)
3024 this->cref_ = new Cref();
3025 this->cref_->add_archive_start(archive);
3026 }
3027 }
3028
3029 // Stop processing an archive.
3030
3031 void
3032 Input_objects::archive_stop(Archive* archive)
3033 {
3034 if (parameters->options().user_set_print_symbol_counts()
3035 || parameters->options().cref())
3036 this->cref_->add_archive_stop(archive);
3037 }
3038
3039 // Print symbol counts
3040
3041 void
3042 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3043 {
3044 if (parameters->options().user_set_print_symbol_counts()
3045 && this->cref_ != NULL)
3046 this->cref_->print_symbol_counts(symtab);
3047 }
3048
3049 // Print a cross reference table.
3050
3051 void
3052 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3053 {
3054 if (parameters->options().cref() && this->cref_ != NULL)
3055 this->cref_->print_cref(symtab, f);
3056 }
3057
3058 // Relocate_info methods.
3059
3060 // Return a string describing the location of a relocation when file
3061 // and lineno information is not available. This is only used in
3062 // error messages.
3063
3064 template<int size, bool big_endian>
3065 std::string
3066 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3067 {
3068 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3069 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3070 if (!ret.empty())
3071 return ret;
3072
3073 ret = this->object->name();
3074
3075 Symbol_location_info info;
3076 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3077 {
3078 if (!info.source_file.empty())
3079 {
3080 ret += ":";
3081 ret += info.source_file;
3082 }
3083 ret += ":";
3084 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3085 ret += _("function ");
3086 ret += info.enclosing_symbol_name;
3087 return ret;
3088 }
3089
3090 ret += "(";
3091 ret += this->object->section_name(this->data_shndx);
3092 char buf[100];
3093 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3094 ret += buf;
3095 return ret;
3096 }
3097
3098 } // End namespace gold.
3099
3100 namespace
3101 {
3102
3103 using namespace gold;
3104
3105 // Read an ELF file with the header and return the appropriate
3106 // instance of Object.
3107
3108 template<int size, bool big_endian>
3109 Object*
3110 make_elf_sized_object(const std::string& name, Input_file* input_file,
3111 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3112 bool* punconfigured)
3113 {
3114 Target* target = select_target(input_file, offset,
3115 ehdr.get_e_machine(), size, big_endian,
3116 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3117 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3118 if (target == NULL)
3119 gold_fatal(_("%s: unsupported ELF machine number %d"),
3120 name.c_str(), ehdr.get_e_machine());
3121
3122 if (!parameters->target_valid())
3123 set_parameters_target(target);
3124 else if (target != &parameters->target())
3125 {
3126 if (punconfigured != NULL)
3127 *punconfigured = true;
3128 else
3129 gold_error(_("%s: incompatible target"), name.c_str());
3130 return NULL;
3131 }
3132
3133 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3134 ehdr);
3135 }
3136
3137 } // End anonymous namespace.
3138
3139 namespace gold
3140 {
3141
3142 // Return whether INPUT_FILE is an ELF object.
3143
3144 bool
3145 is_elf_object(Input_file* input_file, off_t offset,
3146 const unsigned char** start, int* read_size)
3147 {
3148 off_t filesize = input_file->file().filesize();
3149 int want = elfcpp::Elf_recognizer::max_header_size;
3150 if (filesize - offset < want)
3151 want = filesize - offset;
3152
3153 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3154 true, false);
3155 *start = p;
3156 *read_size = want;
3157
3158 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3159 }
3160
3161 // Read an ELF file and return the appropriate instance of Object.
3162
3163 Object*
3164 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3165 const unsigned char* p, section_offset_type bytes,
3166 bool* punconfigured)
3167 {
3168 if (punconfigured != NULL)
3169 *punconfigured = false;
3170
3171 std::string error;
3172 bool big_endian = false;
3173 int size = 0;
3174 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3175 &big_endian, &error))
3176 {
3177 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3178 return NULL;
3179 }
3180
3181 if (size == 32)
3182 {
3183 if (big_endian)
3184 {
3185 #ifdef HAVE_TARGET_32_BIG
3186 elfcpp::Ehdr<32, true> ehdr(p);
3187 return make_elf_sized_object<32, true>(name, input_file,
3188 offset, ehdr, punconfigured);
3189 #else
3190 if (punconfigured != NULL)
3191 *punconfigured = true;
3192 else
3193 gold_error(_("%s: not configured to support "
3194 "32-bit big-endian object"),
3195 name.c_str());
3196 return NULL;
3197 #endif
3198 }
3199 else
3200 {
3201 #ifdef HAVE_TARGET_32_LITTLE
3202 elfcpp::Ehdr<32, false> ehdr(p);
3203 return make_elf_sized_object<32, false>(name, input_file,
3204 offset, ehdr, punconfigured);
3205 #else
3206 if (punconfigured != NULL)
3207 *punconfigured = true;
3208 else
3209 gold_error(_("%s: not configured to support "
3210 "32-bit little-endian object"),
3211 name.c_str());
3212 return NULL;
3213 #endif
3214 }
3215 }
3216 else if (size == 64)
3217 {
3218 if (big_endian)
3219 {
3220 #ifdef HAVE_TARGET_64_BIG
3221 elfcpp::Ehdr<64, true> ehdr(p);
3222 return make_elf_sized_object<64, true>(name, input_file,
3223 offset, ehdr, punconfigured);
3224 #else
3225 if (punconfigured != NULL)
3226 *punconfigured = true;
3227 else
3228 gold_error(_("%s: not configured to support "
3229 "64-bit big-endian object"),
3230 name.c_str());
3231 return NULL;
3232 #endif
3233 }
3234 else
3235 {
3236 #ifdef HAVE_TARGET_64_LITTLE
3237 elfcpp::Ehdr<64, false> ehdr(p);
3238 return make_elf_sized_object<64, false>(name, input_file,
3239 offset, ehdr, punconfigured);
3240 #else
3241 if (punconfigured != NULL)
3242 *punconfigured = true;
3243 else
3244 gold_error(_("%s: not configured to support "
3245 "64-bit little-endian object"),
3246 name.c_str());
3247 return NULL;
3248 #endif
3249 }
3250 }
3251 else
3252 gold_unreachable();
3253 }
3254
3255 // Instantiate the templates we need.
3256
3257 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3258 template
3259 void
3260 Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
3261 typename elfcpp::Elf_types<64>::Elf_Addr starting_address,
3262 Unordered_map<section_offset_type,
3263 typename elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
3264 #endif
3265
3266 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3267 template
3268 void
3269 Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
3270 typename elfcpp::Elf_types<32>::Elf_Addr starting_address,
3271 Unordered_map<section_offset_type,
3272 typename elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
3273 #endif
3274
3275 #ifdef HAVE_TARGET_32_LITTLE
3276 template
3277 void
3278 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3279 Read_symbols_data*);
3280 template
3281 const unsigned char*
3282 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3283 section_size_type, const unsigned char*) const;
3284 #endif
3285
3286 #ifdef HAVE_TARGET_32_BIG
3287 template
3288 void
3289 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3290 Read_symbols_data*);
3291 template
3292 const unsigned char*
3293 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3294 section_size_type, const unsigned char*) const;
3295 #endif
3296
3297 #ifdef HAVE_TARGET_64_LITTLE
3298 template
3299 void
3300 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3301 Read_symbols_data*);
3302 template
3303 const unsigned char*
3304 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3305 section_size_type, const unsigned char*) const;
3306 #endif
3307
3308 #ifdef HAVE_TARGET_64_BIG
3309 template
3310 void
3311 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3312 Read_symbols_data*);
3313 template
3314 const unsigned char*
3315 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3316 section_size_type, const unsigned char*) const;
3317 #endif
3318
3319 #ifdef HAVE_TARGET_32_LITTLE
3320 template
3321 class Sized_relobj<32, false>;
3322
3323 template
3324 class Sized_relobj_file<32, false>;
3325 #endif
3326
3327 #ifdef HAVE_TARGET_32_BIG
3328 template
3329 class Sized_relobj<32, true>;
3330
3331 template
3332 class Sized_relobj_file<32, true>;
3333 #endif
3334
3335 #ifdef HAVE_TARGET_64_LITTLE
3336 template
3337 class Sized_relobj<64, false>;
3338
3339 template
3340 class Sized_relobj_file<64, false>;
3341 #endif
3342
3343 #ifdef HAVE_TARGET_64_BIG
3344 template
3345 class Sized_relobj<64, true>;
3346
3347 template
3348 class Sized_relobj_file<64, true>;
3349 #endif
3350
3351 #ifdef HAVE_TARGET_32_LITTLE
3352 template
3353 struct Relocate_info<32, false>;
3354 #endif
3355
3356 #ifdef HAVE_TARGET_32_BIG
3357 template
3358 struct Relocate_info<32, true>;
3359 #endif
3360
3361 #ifdef HAVE_TARGET_64_LITTLE
3362 template
3363 struct Relocate_info<64, false>;
3364 #endif
3365
3366 #ifdef HAVE_TARGET_64_BIG
3367 template
3368 struct Relocate_info<64, true>;
3369 #endif
3370
3371 #ifdef HAVE_TARGET_32_LITTLE
3372 template
3373 void
3374 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3375
3376 template
3377 void
3378 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3379 const unsigned char*);
3380 #endif
3381
3382 #ifdef HAVE_TARGET_32_BIG
3383 template
3384 void
3385 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3386
3387 template
3388 void
3389 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3390 const unsigned char*);
3391 #endif
3392
3393 #ifdef HAVE_TARGET_64_LITTLE
3394 template
3395 void
3396 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3397
3398 template
3399 void
3400 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3401 const unsigned char*);
3402 #endif
3403
3404 #ifdef HAVE_TARGET_64_BIG
3405 template
3406 void
3407 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3408
3409 template
3410 void
3411 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3412 const unsigned char*);
3413 #endif
3414
3415 } // End namespace gold.
This page took 0.118826 seconds and 5 git commands to generate.