* archive.cc (Library_base::should_include_member): Move
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. Returns the next
353 // available relocation index.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 this->reloc_counts_[i] = 0;
370 }
371 layout->incremental_inputs()->set_reloc_count(rindex);
372 }
373
374 // Class Sized_relobj.
375
376 template<int size, bool big_endian>
377 Sized_relobj<size, big_endian>::Sized_relobj(
378 const std::string& name,
379 Input_file* input_file,
380 off_t offset,
381 const elfcpp::Ehdr<size, big_endian>& ehdr)
382 : Relobj(name, input_file, offset),
383 elf_file_(this, ehdr),
384 symtab_shndx_(-1U),
385 local_symbol_count_(0),
386 output_local_symbol_count_(0),
387 output_local_dynsym_count_(0),
388 symbols_(),
389 defined_count_(0),
390 local_symbol_offset_(0),
391 local_dynsym_offset_(0),
392 local_values_(),
393 local_got_offsets_(),
394 local_plt_offsets_(),
395 kept_comdat_sections_(),
396 has_eh_frame_(false),
397 discarded_eh_frame_shndx_(-1U),
398 deferred_layout_(),
399 deferred_layout_relocs_(),
400 compressed_sections_()
401 {
402 }
403
404 template<int size, bool big_endian>
405 Sized_relobj<size, big_endian>::~Sized_relobj()
406 {
407 }
408
409 // Set up an object file based on the file header. This sets up the
410 // section information.
411
412 template<int size, bool big_endian>
413 void
414 Sized_relobj<size, big_endian>::do_setup()
415 {
416 const unsigned int shnum = this->elf_file_.shnum();
417 this->set_shnum(shnum);
418 }
419
420 // Find the SHT_SYMTAB section, given the section headers. The ELF
421 // standard says that maybe in the future there can be more than one
422 // SHT_SYMTAB section. Until somebody figures out how that could
423 // work, we assume there is only one.
424
425 template<int size, bool big_endian>
426 void
427 Sized_relobj<size, big_endian>::find_symtab(const unsigned char* pshdrs)
428 {
429 const unsigned int shnum = this->shnum();
430 this->symtab_shndx_ = 0;
431 if (shnum > 0)
432 {
433 // Look through the sections in reverse order, since gas tends
434 // to put the symbol table at the end.
435 const unsigned char* p = pshdrs + shnum * This::shdr_size;
436 unsigned int i = shnum;
437 unsigned int xindex_shndx = 0;
438 unsigned int xindex_link = 0;
439 while (i > 0)
440 {
441 --i;
442 p -= This::shdr_size;
443 typename This::Shdr shdr(p);
444 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
445 {
446 this->symtab_shndx_ = i;
447 if (xindex_shndx > 0 && xindex_link == i)
448 {
449 Xindex* xindex =
450 new Xindex(this->elf_file_.large_shndx_offset());
451 xindex->read_symtab_xindex<size, big_endian>(this,
452 xindex_shndx,
453 pshdrs);
454 this->set_xindex(xindex);
455 }
456 break;
457 }
458
459 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
460 // one. This will work if it follows the SHT_SYMTAB
461 // section.
462 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
463 {
464 xindex_shndx = i;
465 xindex_link = this->adjust_shndx(shdr.get_sh_link());
466 }
467 }
468 }
469 }
470
471 // Return the Xindex structure to use for object with lots of
472 // sections.
473
474 template<int size, bool big_endian>
475 Xindex*
476 Sized_relobj<size, big_endian>::do_initialize_xindex()
477 {
478 gold_assert(this->symtab_shndx_ != -1U);
479 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
480 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
481 return xindex;
482 }
483
484 // Return whether SHDR has the right type and flags to be a GNU
485 // .eh_frame section.
486
487 template<int size, bool big_endian>
488 bool
489 Sized_relobj<size, big_endian>::check_eh_frame_flags(
490 const elfcpp::Shdr<size, big_endian>* shdr) const
491 {
492 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
493 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
494 }
495
496 // Return whether there is a GNU .eh_frame section, given the section
497 // headers and the section names.
498
499 template<int size, bool big_endian>
500 bool
501 Sized_relobj<size, big_endian>::find_eh_frame(
502 const unsigned char* pshdrs,
503 const char* names,
504 section_size_type names_size) const
505 {
506 const unsigned int shnum = this->shnum();
507 const unsigned char* p = pshdrs + This::shdr_size;
508 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
509 {
510 typename This::Shdr shdr(p);
511 if (this->check_eh_frame_flags(&shdr))
512 {
513 if (shdr.get_sh_name() >= names_size)
514 {
515 this->error(_("bad section name offset for section %u: %lu"),
516 i, static_cast<unsigned long>(shdr.get_sh_name()));
517 continue;
518 }
519
520 const char* name = names + shdr.get_sh_name();
521 if (strcmp(name, ".eh_frame") == 0)
522 return true;
523 }
524 }
525 return false;
526 }
527
528 // Build a table for any compressed debug sections, mapping each section index
529 // to the uncompressed size.
530
531 template<int size, bool big_endian>
532 Compressed_section_map*
533 build_compressed_section_map(
534 const unsigned char* pshdrs,
535 unsigned int shnum,
536 const char* names,
537 section_size_type names_size,
538 Sized_relobj<size, big_endian>* obj)
539 {
540 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
541 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
542 const unsigned char* p = pshdrs + shdr_size;
543 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
544 {
545 typename elfcpp::Shdr<size, big_endian> shdr(p);
546 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
547 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
548 {
549 if (shdr.get_sh_name() >= names_size)
550 {
551 obj->error(_("bad section name offset for section %u: %lu"),
552 i, static_cast<unsigned long>(shdr.get_sh_name()));
553 continue;
554 }
555
556 const char* name = names + shdr.get_sh_name();
557 if (is_compressed_debug_section(name))
558 {
559 section_size_type len;
560 const unsigned char* contents =
561 obj->section_contents(i, &len, false);
562 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
563 if (uncompressed_size != -1ULL)
564 (*uncompressed_sizes)[i] =
565 convert_to_section_size_type(uncompressed_size);
566 }
567 }
568 }
569 return uncompressed_sizes;
570 }
571
572 // Read the sections and symbols from an object file.
573
574 template<int size, bool big_endian>
575 void
576 Sized_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
577 {
578 this->read_section_data(&this->elf_file_, sd);
579
580 const unsigned char* const pshdrs = sd->section_headers->data();
581
582 this->find_symtab(pshdrs);
583
584 const unsigned char* namesu = sd->section_names->data();
585 const char* names = reinterpret_cast<const char*>(namesu);
586 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
587 {
588 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
589 this->has_eh_frame_ = true;
590 }
591 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
592 this->compressed_sections_ =
593 build_compressed_section_map(pshdrs, this->shnum(), names,
594 sd->section_names_size, this);
595
596 sd->symbols = NULL;
597 sd->symbols_size = 0;
598 sd->external_symbols_offset = 0;
599 sd->symbol_names = NULL;
600 sd->symbol_names_size = 0;
601
602 if (this->symtab_shndx_ == 0)
603 {
604 // No symbol table. Weird but legal.
605 return;
606 }
607
608 // Get the symbol table section header.
609 typename This::Shdr symtabshdr(pshdrs
610 + this->symtab_shndx_ * This::shdr_size);
611 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
612
613 // If this object has a .eh_frame section, we need all the symbols.
614 // Otherwise we only need the external symbols. While it would be
615 // simpler to just always read all the symbols, I've seen object
616 // files with well over 2000 local symbols, which for a 64-bit
617 // object file format is over 5 pages that we don't need to read
618 // now.
619
620 const int sym_size = This::sym_size;
621 const unsigned int loccount = symtabshdr.get_sh_info();
622 this->local_symbol_count_ = loccount;
623 this->local_values_.resize(loccount);
624 section_offset_type locsize = loccount * sym_size;
625 off_t dataoff = symtabshdr.get_sh_offset();
626 section_size_type datasize =
627 convert_to_section_size_type(symtabshdr.get_sh_size());
628 off_t extoff = dataoff + locsize;
629 section_size_type extsize = datasize - locsize;
630
631 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
632 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
633
634 if (readsize == 0)
635 {
636 // No external symbols. Also weird but also legal.
637 return;
638 }
639
640 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
641
642 // Read the section header for the symbol names.
643 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
644 if (strtab_shndx >= this->shnum())
645 {
646 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
647 return;
648 }
649 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
650 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
651 {
652 this->error(_("symbol table name section has wrong type: %u"),
653 static_cast<unsigned int>(strtabshdr.get_sh_type()));
654 return;
655 }
656
657 // Read the symbol names.
658 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
659 strtabshdr.get_sh_size(),
660 false, true);
661
662 sd->symbols = fvsymtab;
663 sd->symbols_size = readsize;
664 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
665 sd->symbol_names = fvstrtab;
666 sd->symbol_names_size =
667 convert_to_section_size_type(strtabshdr.get_sh_size());
668 }
669
670 // Return the section index of symbol SYM. Set *VALUE to its value in
671 // the object file. Set *IS_ORDINARY if this is an ordinary section
672 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
673 // Note that for a symbol which is not defined in this object file,
674 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
675 // the final value of the symbol in the link.
676
677 template<int size, bool big_endian>
678 unsigned int
679 Sized_relobj<size, big_endian>::symbol_section_and_value(unsigned int sym,
680 Address* value,
681 bool* is_ordinary)
682 {
683 section_size_type symbols_size;
684 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
685 &symbols_size,
686 false);
687
688 const size_t count = symbols_size / This::sym_size;
689 gold_assert(sym < count);
690
691 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
692 *value = elfsym.get_st_value();
693
694 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
695 }
696
697 // Return whether to include a section group in the link. LAYOUT is
698 // used to keep track of which section groups we have already seen.
699 // INDEX is the index of the section group and SHDR is the section
700 // header. If we do not want to include this group, we set bits in
701 // OMIT for each section which should be discarded.
702
703 template<int size, bool big_endian>
704 bool
705 Sized_relobj<size, big_endian>::include_section_group(
706 Symbol_table* symtab,
707 Layout* layout,
708 unsigned int index,
709 const char* name,
710 const unsigned char* shdrs,
711 const char* section_names,
712 section_size_type section_names_size,
713 std::vector<bool>* omit)
714 {
715 // Read the section contents.
716 typename This::Shdr shdr(shdrs + index * This::shdr_size);
717 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
718 shdr.get_sh_size(), true, false);
719 const elfcpp::Elf_Word* pword =
720 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
721
722 // The first word contains flags. We only care about COMDAT section
723 // groups. Other section groups are always included in the link
724 // just like ordinary sections.
725 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
726
727 // Look up the group signature, which is the name of a symbol. This
728 // is a lot of effort to go to to read a string. Why didn't they
729 // just have the group signature point into the string table, rather
730 // than indirect through a symbol?
731
732 // Get the appropriate symbol table header (this will normally be
733 // the single SHT_SYMTAB section, but in principle it need not be).
734 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
735 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
736
737 // Read the symbol table entry.
738 unsigned int symndx = shdr.get_sh_info();
739 if (symndx >= symshdr.get_sh_size() / This::sym_size)
740 {
741 this->error(_("section group %u info %u out of range"),
742 index, symndx);
743 return false;
744 }
745 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
746 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
747 false);
748 elfcpp::Sym<size, big_endian> sym(psym);
749
750 // Read the symbol table names.
751 section_size_type symnamelen;
752 const unsigned char* psymnamesu;
753 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
754 &symnamelen, true);
755 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
756
757 // Get the section group signature.
758 if (sym.get_st_name() >= symnamelen)
759 {
760 this->error(_("symbol %u name offset %u out of range"),
761 symndx, sym.get_st_name());
762 return false;
763 }
764
765 std::string signature(psymnames + sym.get_st_name());
766
767 // It seems that some versions of gas will create a section group
768 // associated with a section symbol, and then fail to give a name to
769 // the section symbol. In such a case, use the name of the section.
770 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
771 {
772 bool is_ordinary;
773 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
774 sym.get_st_shndx(),
775 &is_ordinary);
776 if (!is_ordinary || sym_shndx >= this->shnum())
777 {
778 this->error(_("symbol %u invalid section index %u"),
779 symndx, sym_shndx);
780 return false;
781 }
782 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
783 if (member_shdr.get_sh_name() < section_names_size)
784 signature = section_names + member_shdr.get_sh_name();
785 }
786
787 // Record this section group in the layout, and see whether we've already
788 // seen one with the same signature.
789 bool include_group;
790 bool is_comdat;
791 Kept_section* kept_section = NULL;
792
793 if ((flags & elfcpp::GRP_COMDAT) == 0)
794 {
795 include_group = true;
796 is_comdat = false;
797 }
798 else
799 {
800 include_group = layout->find_or_add_kept_section(signature,
801 this, index, true,
802 true, &kept_section);
803 is_comdat = true;
804 }
805
806 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
807
808 std::vector<unsigned int> shndxes;
809 bool relocate_group = include_group && parameters->options().relocatable();
810 if (relocate_group)
811 shndxes.reserve(count - 1);
812
813 for (size_t i = 1; i < count; ++i)
814 {
815 elfcpp::Elf_Word shndx =
816 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
817
818 if (relocate_group)
819 shndxes.push_back(shndx);
820
821 if (shndx >= this->shnum())
822 {
823 this->error(_("section %u in section group %u out of range"),
824 shndx, index);
825 continue;
826 }
827
828 // Check for an earlier section number, since we're going to get
829 // it wrong--we may have already decided to include the section.
830 if (shndx < index)
831 this->error(_("invalid section group %u refers to earlier section %u"),
832 index, shndx);
833
834 // Get the name of the member section.
835 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
836 if (member_shdr.get_sh_name() >= section_names_size)
837 {
838 // This is an error, but it will be diagnosed eventually
839 // in do_layout, so we don't need to do anything here but
840 // ignore it.
841 continue;
842 }
843 std::string mname(section_names + member_shdr.get_sh_name());
844
845 if (include_group)
846 {
847 if (is_comdat)
848 kept_section->add_comdat_section(mname, shndx,
849 member_shdr.get_sh_size());
850 }
851 else
852 {
853 (*omit)[shndx] = true;
854
855 if (is_comdat)
856 {
857 Relobj* kept_object = kept_section->object();
858 if (kept_section->is_comdat())
859 {
860 // Find the corresponding kept section, and store
861 // that info in the discarded section table.
862 unsigned int kept_shndx;
863 uint64_t kept_size;
864 if (kept_section->find_comdat_section(mname, &kept_shndx,
865 &kept_size))
866 {
867 // We don't keep a mapping for this section if
868 // it has a different size. The mapping is only
869 // used for relocation processing, and we don't
870 // want to treat the sections as similar if the
871 // sizes are different. Checking the section
872 // size is the approach used by the GNU linker.
873 if (kept_size == member_shdr.get_sh_size())
874 this->set_kept_comdat_section(shndx, kept_object,
875 kept_shndx);
876 }
877 }
878 else
879 {
880 // The existing section is a linkonce section. Add
881 // a mapping if there is exactly one section in the
882 // group (which is true when COUNT == 2) and if it
883 // is the same size.
884 if (count == 2
885 && (kept_section->linkonce_size()
886 == member_shdr.get_sh_size()))
887 this->set_kept_comdat_section(shndx, kept_object,
888 kept_section->shndx());
889 }
890 }
891 }
892 }
893
894 if (relocate_group)
895 layout->layout_group(symtab, this, index, name, signature.c_str(),
896 shdr, flags, &shndxes);
897
898 return include_group;
899 }
900
901 // Whether to include a linkonce section in the link. NAME is the
902 // name of the section and SHDR is the section header.
903
904 // Linkonce sections are a GNU extension implemented in the original
905 // GNU linker before section groups were defined. The semantics are
906 // that we only include one linkonce section with a given name. The
907 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
908 // where T is the type of section and SYMNAME is the name of a symbol.
909 // In an attempt to make linkonce sections interact well with section
910 // groups, we try to identify SYMNAME and use it like a section group
911 // signature. We want to block section groups with that signature,
912 // but not other linkonce sections with that signature. We also use
913 // the full name of the linkonce section as a normal section group
914 // signature.
915
916 template<int size, bool big_endian>
917 bool
918 Sized_relobj<size, big_endian>::include_linkonce_section(
919 Layout* layout,
920 unsigned int index,
921 const char* name,
922 const elfcpp::Shdr<size, big_endian>& shdr)
923 {
924 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
925 // In general the symbol name we want will be the string following
926 // the last '.'. However, we have to handle the case of
927 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
928 // some versions of gcc. So we use a heuristic: if the name starts
929 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
930 // we look for the last '.'. We can't always simply skip
931 // ".gnu.linkonce.X", because we have to deal with cases like
932 // ".gnu.linkonce.d.rel.ro.local".
933 const char* const linkonce_t = ".gnu.linkonce.t.";
934 const char* symname;
935 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
936 symname = name + strlen(linkonce_t);
937 else
938 symname = strrchr(name, '.') + 1;
939 std::string sig1(symname);
940 std::string sig2(name);
941 Kept_section* kept1;
942 Kept_section* kept2;
943 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
944 false, &kept1);
945 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
946 true, &kept2);
947
948 if (!include2)
949 {
950 // We are not including this section because we already saw the
951 // name of the section as a signature. This normally implies
952 // that the kept section is another linkonce section. If it is
953 // the same size, record it as the section which corresponds to
954 // this one.
955 if (kept2->object() != NULL
956 && !kept2->is_comdat()
957 && kept2->linkonce_size() == sh_size)
958 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
959 }
960 else if (!include1)
961 {
962 // The section is being discarded on the basis of its symbol
963 // name. This means that the corresponding kept section was
964 // part of a comdat group, and it will be difficult to identify
965 // the specific section within that group that corresponds to
966 // this linkonce section. We'll handle the simple case where
967 // the group has only one member section. Otherwise, it's not
968 // worth the effort.
969 unsigned int kept_shndx;
970 uint64_t kept_size;
971 if (kept1->object() != NULL
972 && kept1->is_comdat()
973 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
974 && kept_size == sh_size)
975 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
976 }
977 else
978 {
979 kept1->set_linkonce_size(sh_size);
980 kept2->set_linkonce_size(sh_size);
981 }
982
983 return include1 && include2;
984 }
985
986 // Layout an input section.
987
988 template<int size, bool big_endian>
989 inline void
990 Sized_relobj<size, big_endian>::layout_section(Layout* layout,
991 unsigned int shndx,
992 const char* name,
993 typename This::Shdr& shdr,
994 unsigned int reloc_shndx,
995 unsigned int reloc_type)
996 {
997 off_t offset;
998 Output_section* os = layout->layout(this, shndx, name, shdr,
999 reloc_shndx, reloc_type, &offset);
1000
1001 this->output_sections()[shndx] = os;
1002 if (offset == -1)
1003 this->section_offsets_[shndx] = invalid_address;
1004 else
1005 this->section_offsets_[shndx] = convert_types<Address, off_t>(offset);
1006
1007 // If this section requires special handling, and if there are
1008 // relocs that apply to it, then we must do the special handling
1009 // before we apply the relocs.
1010 if (offset == -1 && reloc_shndx != 0)
1011 this->set_relocs_must_follow_section_writes();
1012 }
1013
1014 // Lay out the input sections. We walk through the sections and check
1015 // whether they should be included in the link. If they should, we
1016 // pass them to the Layout object, which will return an output section
1017 // and an offset.
1018 // During garbage collection (--gc-sections) and identical code folding
1019 // (--icf), this function is called twice. When it is called the first
1020 // time, it is for setting up some sections as roots to a work-list for
1021 // --gc-sections and to do comdat processing. Actual layout happens the
1022 // second time around after all the relevant sections have been determined.
1023 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1024 // set to true after the garbage collection worklist or identical code
1025 // folding is processed and the relevant sections to be kept are
1026 // determined. Then, this function is called again to layout the sections.
1027
1028 template<int size, bool big_endian>
1029 void
1030 Sized_relobj<size, big_endian>::do_layout(Symbol_table* symtab,
1031 Layout* layout,
1032 Read_symbols_data* sd)
1033 {
1034 const unsigned int shnum = this->shnum();
1035 bool is_gc_pass_one = ((parameters->options().gc_sections()
1036 && !symtab->gc()->is_worklist_ready())
1037 || (parameters->options().icf_enabled()
1038 && !symtab->icf()->is_icf_ready()));
1039
1040 bool is_gc_pass_two = ((parameters->options().gc_sections()
1041 && symtab->gc()->is_worklist_ready())
1042 || (parameters->options().icf_enabled()
1043 && symtab->icf()->is_icf_ready()));
1044
1045 bool is_gc_or_icf = (parameters->options().gc_sections()
1046 || parameters->options().icf_enabled());
1047
1048 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1049 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1050
1051 if (shnum == 0)
1052 return;
1053 Symbols_data* gc_sd = NULL;
1054 if (is_gc_pass_one)
1055 {
1056 // During garbage collection save the symbols data to use it when
1057 // re-entering this function.
1058 gc_sd = new Symbols_data;
1059 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1060 this->set_symbols_data(gc_sd);
1061 }
1062 else if (is_gc_pass_two)
1063 {
1064 gc_sd = this->get_symbols_data();
1065 }
1066
1067 const unsigned char* section_headers_data = NULL;
1068 section_size_type section_names_size;
1069 const unsigned char* symbols_data = NULL;
1070 section_size_type symbols_size;
1071 section_offset_type external_symbols_offset;
1072 const unsigned char* symbol_names_data = NULL;
1073 section_size_type symbol_names_size;
1074
1075 if (is_gc_or_icf)
1076 {
1077 section_headers_data = gc_sd->section_headers_data;
1078 section_names_size = gc_sd->section_names_size;
1079 symbols_data = gc_sd->symbols_data;
1080 symbols_size = gc_sd->symbols_size;
1081 external_symbols_offset = gc_sd->external_symbols_offset;
1082 symbol_names_data = gc_sd->symbol_names_data;
1083 symbol_names_size = gc_sd->symbol_names_size;
1084 }
1085 else
1086 {
1087 section_headers_data = sd->section_headers->data();
1088 section_names_size = sd->section_names_size;
1089 if (sd->symbols != NULL)
1090 symbols_data = sd->symbols->data();
1091 symbols_size = sd->symbols_size;
1092 external_symbols_offset = sd->external_symbols_offset;
1093 if (sd->symbol_names != NULL)
1094 symbol_names_data = sd->symbol_names->data();
1095 symbol_names_size = sd->symbol_names_size;
1096 }
1097
1098 // Get the section headers.
1099 const unsigned char* shdrs = section_headers_data;
1100 const unsigned char* pshdrs;
1101
1102 // Get the section names.
1103 const unsigned char* pnamesu = (is_gc_or_icf)
1104 ? gc_sd->section_names_data
1105 : sd->section_names->data();
1106
1107 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1108
1109 // If any input files have been claimed by plugins, we need to defer
1110 // actual layout until the replacement files have arrived.
1111 const bool should_defer_layout =
1112 (parameters->options().has_plugins()
1113 && parameters->options().plugins()->should_defer_layout());
1114 unsigned int num_sections_to_defer = 0;
1115
1116 // For each section, record the index of the reloc section if any.
1117 // Use 0 to mean that there is no reloc section, -1U to mean that
1118 // there is more than one.
1119 std::vector<unsigned int> reloc_shndx(shnum, 0);
1120 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1121 // Skip the first, dummy, section.
1122 pshdrs = shdrs + This::shdr_size;
1123 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1124 {
1125 typename This::Shdr shdr(pshdrs);
1126
1127 // Count the number of sections whose layout will be deferred.
1128 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1129 ++num_sections_to_defer;
1130
1131 unsigned int sh_type = shdr.get_sh_type();
1132 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1133 {
1134 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1135 if (target_shndx == 0 || target_shndx >= shnum)
1136 {
1137 this->error(_("relocation section %u has bad info %u"),
1138 i, target_shndx);
1139 continue;
1140 }
1141
1142 if (reloc_shndx[target_shndx] != 0)
1143 reloc_shndx[target_shndx] = -1U;
1144 else
1145 {
1146 reloc_shndx[target_shndx] = i;
1147 reloc_type[target_shndx] = sh_type;
1148 }
1149 }
1150 }
1151
1152 Output_sections& out_sections(this->output_sections());
1153 std::vector<Address>& out_section_offsets(this->section_offsets_);
1154
1155 if (!is_gc_pass_two)
1156 {
1157 out_sections.resize(shnum);
1158 out_section_offsets.resize(shnum);
1159 }
1160
1161 // If we are only linking for symbols, then there is nothing else to
1162 // do here.
1163 if (this->input_file()->just_symbols())
1164 {
1165 if (!is_gc_pass_two)
1166 {
1167 delete sd->section_headers;
1168 sd->section_headers = NULL;
1169 delete sd->section_names;
1170 sd->section_names = NULL;
1171 }
1172 return;
1173 }
1174
1175 if (num_sections_to_defer > 0)
1176 {
1177 parameters->options().plugins()->add_deferred_layout_object(this);
1178 this->deferred_layout_.reserve(num_sections_to_defer);
1179 }
1180
1181 // Whether we've seen a .note.GNU-stack section.
1182 bool seen_gnu_stack = false;
1183 // The flags of a .note.GNU-stack section.
1184 uint64_t gnu_stack_flags = 0;
1185
1186 // Keep track of which sections to omit.
1187 std::vector<bool> omit(shnum, false);
1188
1189 // Keep track of reloc sections when emitting relocations.
1190 const bool relocatable = parameters->options().relocatable();
1191 const bool emit_relocs = (relocatable
1192 || parameters->options().emit_relocs());
1193 std::vector<unsigned int> reloc_sections;
1194
1195 // Keep track of .eh_frame sections.
1196 std::vector<unsigned int> eh_frame_sections;
1197
1198 // Skip the first, dummy, section.
1199 pshdrs = shdrs + This::shdr_size;
1200 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1201 {
1202 typename This::Shdr shdr(pshdrs);
1203
1204 if (shdr.get_sh_name() >= section_names_size)
1205 {
1206 this->error(_("bad section name offset for section %u: %lu"),
1207 i, static_cast<unsigned long>(shdr.get_sh_name()));
1208 return;
1209 }
1210
1211 const char* name = pnames + shdr.get_sh_name();
1212
1213 if (!is_gc_pass_two)
1214 {
1215 if (this->handle_gnu_warning_section(name, i, symtab))
1216 {
1217 if (!relocatable)
1218 omit[i] = true;
1219 }
1220
1221 // The .note.GNU-stack section is special. It gives the
1222 // protection flags that this object file requires for the stack
1223 // in memory.
1224 if (strcmp(name, ".note.GNU-stack") == 0)
1225 {
1226 seen_gnu_stack = true;
1227 gnu_stack_flags |= shdr.get_sh_flags();
1228 omit[i] = true;
1229 }
1230
1231 // The .note.GNU-split-stack section is also special. It
1232 // indicates that the object was compiled with
1233 // -fsplit-stack.
1234 if (this->handle_split_stack_section(name))
1235 {
1236 if (!parameters->options().relocatable()
1237 && !parameters->options().shared())
1238 omit[i] = true;
1239 }
1240
1241 // Skip attributes section.
1242 if (parameters->target().is_attributes_section(name))
1243 {
1244 omit[i] = true;
1245 }
1246
1247 bool discard = omit[i];
1248 if (!discard)
1249 {
1250 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1251 {
1252 if (!this->include_section_group(symtab, layout, i, name,
1253 shdrs, pnames,
1254 section_names_size,
1255 &omit))
1256 discard = true;
1257 }
1258 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1259 && Layout::is_linkonce(name))
1260 {
1261 if (!this->include_linkonce_section(layout, i, name, shdr))
1262 discard = true;
1263 }
1264 }
1265
1266 // Add the section to the incremental inputs layout.
1267 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1268 if (incremental_inputs != NULL)
1269 incremental_inputs->report_input_section(this, i,
1270 discard ? NULL : name,
1271 shdr.get_sh_size());
1272
1273 if (discard)
1274 {
1275 // Do not include this section in the link.
1276 out_sections[i] = NULL;
1277 out_section_offsets[i] = invalid_address;
1278 continue;
1279 }
1280 }
1281
1282 if (is_gc_pass_one && parameters->options().gc_sections())
1283 {
1284 if (is_section_name_included(name)
1285 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1286 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1287 {
1288 symtab->gc()->worklist().push(Section_id(this, i));
1289 }
1290 // If the section name XXX can be represented as a C identifier
1291 // it cannot be discarded if there are references to
1292 // __start_XXX and __stop_XXX symbols. These need to be
1293 // specially handled.
1294 if (is_cident(name))
1295 {
1296 symtab->gc()->add_cident_section(name, Section_id(this, i));
1297 }
1298 }
1299
1300 // When doing a relocatable link we are going to copy input
1301 // reloc sections into the output. We only want to copy the
1302 // ones associated with sections which are not being discarded.
1303 // However, we don't know that yet for all sections. So save
1304 // reloc sections and process them later. Garbage collection is
1305 // not triggered when relocatable code is desired.
1306 if (emit_relocs
1307 && (shdr.get_sh_type() == elfcpp::SHT_REL
1308 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1309 {
1310 reloc_sections.push_back(i);
1311 continue;
1312 }
1313
1314 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1315 continue;
1316
1317 // The .eh_frame section is special. It holds exception frame
1318 // information that we need to read in order to generate the
1319 // exception frame header. We process these after all the other
1320 // sections so that the exception frame reader can reliably
1321 // determine which sections are being discarded, and discard the
1322 // corresponding information.
1323 if (!relocatable
1324 && strcmp(name, ".eh_frame") == 0
1325 && this->check_eh_frame_flags(&shdr))
1326 {
1327 if (is_gc_pass_one)
1328 {
1329 out_sections[i] = reinterpret_cast<Output_section*>(1);
1330 out_section_offsets[i] = invalid_address;
1331 }
1332 else
1333 eh_frame_sections.push_back(i);
1334 continue;
1335 }
1336
1337 if (is_gc_pass_two && parameters->options().gc_sections())
1338 {
1339 // This is executed during the second pass of garbage
1340 // collection. do_layout has been called before and some
1341 // sections have been already discarded. Simply ignore
1342 // such sections this time around.
1343 if (out_sections[i] == NULL)
1344 {
1345 gold_assert(out_section_offsets[i] == invalid_address);
1346 continue;
1347 }
1348 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1349 && symtab->gc()->is_section_garbage(this, i))
1350 {
1351 if (parameters->options().print_gc_sections())
1352 gold_info(_("%s: removing unused section from '%s'"
1353 " in file '%s'"),
1354 program_name, this->section_name(i).c_str(),
1355 this->name().c_str());
1356 out_sections[i] = NULL;
1357 out_section_offsets[i] = invalid_address;
1358 continue;
1359 }
1360 }
1361
1362 if (is_gc_pass_two && parameters->options().icf_enabled())
1363 {
1364 if (out_sections[i] == NULL)
1365 {
1366 gold_assert(out_section_offsets[i] == invalid_address);
1367 continue;
1368 }
1369 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1370 && symtab->icf()->is_section_folded(this, i))
1371 {
1372 if (parameters->options().print_icf_sections())
1373 {
1374 Section_id folded =
1375 symtab->icf()->get_folded_section(this, i);
1376 Relobj* folded_obj =
1377 reinterpret_cast<Relobj*>(folded.first);
1378 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1379 "into '%s' in file '%s'"),
1380 program_name, this->section_name(i).c_str(),
1381 this->name().c_str(),
1382 folded_obj->section_name(folded.second).c_str(),
1383 folded_obj->name().c_str());
1384 }
1385 out_sections[i] = NULL;
1386 out_section_offsets[i] = invalid_address;
1387 continue;
1388 }
1389 }
1390
1391 // Defer layout here if input files are claimed by plugins. When gc
1392 // is turned on this function is called twice. For the second call
1393 // should_defer_layout should be false.
1394 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1395 {
1396 gold_assert(!is_gc_pass_two);
1397 this->deferred_layout_.push_back(Deferred_layout(i, name,
1398 pshdrs,
1399 reloc_shndx[i],
1400 reloc_type[i]));
1401 // Put dummy values here; real values will be supplied by
1402 // do_layout_deferred_sections.
1403 out_sections[i] = reinterpret_cast<Output_section*>(2);
1404 out_section_offsets[i] = invalid_address;
1405 continue;
1406 }
1407
1408 // During gc_pass_two if a section that was previously deferred is
1409 // found, do not layout the section as layout_deferred_sections will
1410 // do it later from gold.cc.
1411 if (is_gc_pass_two
1412 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1413 continue;
1414
1415 if (is_gc_pass_one)
1416 {
1417 // This is during garbage collection. The out_sections are
1418 // assigned in the second call to this function.
1419 out_sections[i] = reinterpret_cast<Output_section*>(1);
1420 out_section_offsets[i] = invalid_address;
1421 }
1422 else
1423 {
1424 // When garbage collection is switched on the actual layout
1425 // only happens in the second call.
1426 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1427 reloc_type[i]);
1428 }
1429 }
1430
1431 if (!is_gc_pass_two)
1432 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1433
1434 // When doing a relocatable link handle the reloc sections at the
1435 // end. Garbage collection and Identical Code Folding is not
1436 // turned on for relocatable code.
1437 if (emit_relocs)
1438 this->size_relocatable_relocs();
1439
1440 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1441
1442 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1443 p != reloc_sections.end();
1444 ++p)
1445 {
1446 unsigned int i = *p;
1447 const unsigned char* pshdr;
1448 pshdr = section_headers_data + i * This::shdr_size;
1449 typename This::Shdr shdr(pshdr);
1450
1451 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1452 if (data_shndx >= shnum)
1453 {
1454 // We already warned about this above.
1455 continue;
1456 }
1457
1458 Output_section* data_section = out_sections[data_shndx];
1459 if (data_section == reinterpret_cast<Output_section*>(2))
1460 {
1461 // The layout for the data section was deferred, so we need
1462 // to defer the relocation section, too.
1463 const char* name = pnames + shdr.get_sh_name();
1464 this->deferred_layout_relocs_.push_back(
1465 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1466 out_sections[i] = reinterpret_cast<Output_section*>(2);
1467 out_section_offsets[i] = invalid_address;
1468 continue;
1469 }
1470 if (data_section == NULL)
1471 {
1472 out_sections[i] = NULL;
1473 out_section_offsets[i] = invalid_address;
1474 continue;
1475 }
1476
1477 Relocatable_relocs* rr = new Relocatable_relocs();
1478 this->set_relocatable_relocs(i, rr);
1479
1480 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1481 rr);
1482 out_sections[i] = os;
1483 out_section_offsets[i] = invalid_address;
1484 }
1485
1486 // Handle the .eh_frame sections at the end.
1487 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1488 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1489 p != eh_frame_sections.end();
1490 ++p)
1491 {
1492 gold_assert(this->has_eh_frame_);
1493 gold_assert(external_symbols_offset != 0);
1494
1495 unsigned int i = *p;
1496 const unsigned char* pshdr;
1497 pshdr = section_headers_data + i * This::shdr_size;
1498 typename This::Shdr shdr(pshdr);
1499
1500 off_t offset;
1501 Output_section* os = layout->layout_eh_frame(this,
1502 symbols_data,
1503 symbols_size,
1504 symbol_names_data,
1505 symbol_names_size,
1506 i, shdr,
1507 reloc_shndx[i],
1508 reloc_type[i],
1509 &offset);
1510 out_sections[i] = os;
1511 if (os == NULL || offset == -1)
1512 {
1513 // An object can contain at most one section holding exception
1514 // frame information.
1515 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1516 this->discarded_eh_frame_shndx_ = i;
1517 out_section_offsets[i] = invalid_address;
1518 }
1519 else
1520 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1521
1522 // If this section requires special handling, and if there are
1523 // relocs that apply to it, then we must do the special handling
1524 // before we apply the relocs.
1525 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1526 this->set_relocs_must_follow_section_writes();
1527 }
1528
1529 if (is_gc_pass_two)
1530 {
1531 delete[] gc_sd->section_headers_data;
1532 delete[] gc_sd->section_names_data;
1533 delete[] gc_sd->symbols_data;
1534 delete[] gc_sd->symbol_names_data;
1535 this->set_symbols_data(NULL);
1536 }
1537 else
1538 {
1539 delete sd->section_headers;
1540 sd->section_headers = NULL;
1541 delete sd->section_names;
1542 sd->section_names = NULL;
1543 }
1544 }
1545
1546 // Layout sections whose layout was deferred while waiting for
1547 // input files from a plugin.
1548
1549 template<int size, bool big_endian>
1550 void
1551 Sized_relobj<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1552 {
1553 typename std::vector<Deferred_layout>::iterator deferred;
1554
1555 for (deferred = this->deferred_layout_.begin();
1556 deferred != this->deferred_layout_.end();
1557 ++deferred)
1558 {
1559 typename This::Shdr shdr(deferred->shdr_data_);
1560 // If the section is not included, it is because the garbage collector
1561 // decided it is not needed. Avoid reverting that decision.
1562 if (!this->is_section_included(deferred->shndx_))
1563 continue;
1564
1565 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1566 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1567 }
1568
1569 this->deferred_layout_.clear();
1570
1571 // Now handle the deferred relocation sections.
1572
1573 Output_sections& out_sections(this->output_sections());
1574 std::vector<Address>& out_section_offsets(this->section_offsets_);
1575
1576 for (deferred = this->deferred_layout_relocs_.begin();
1577 deferred != this->deferred_layout_relocs_.end();
1578 ++deferred)
1579 {
1580 unsigned int shndx = deferred->shndx_;
1581 typename This::Shdr shdr(deferred->shdr_data_);
1582 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1583
1584 Output_section* data_section = out_sections[data_shndx];
1585 if (data_section == NULL)
1586 {
1587 out_sections[shndx] = NULL;
1588 out_section_offsets[shndx] = invalid_address;
1589 continue;
1590 }
1591
1592 Relocatable_relocs* rr = new Relocatable_relocs();
1593 this->set_relocatable_relocs(shndx, rr);
1594
1595 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1596 data_section, rr);
1597 out_sections[shndx] = os;
1598 out_section_offsets[shndx] = invalid_address;
1599 }
1600 }
1601
1602 // Add the symbols to the symbol table.
1603
1604 template<int size, bool big_endian>
1605 void
1606 Sized_relobj<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1607 Read_symbols_data* sd,
1608 Layout*)
1609 {
1610 if (sd->symbols == NULL)
1611 {
1612 gold_assert(sd->symbol_names == NULL);
1613 return;
1614 }
1615
1616 const int sym_size = This::sym_size;
1617 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1618 / sym_size);
1619 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1620 {
1621 this->error(_("size of symbols is not multiple of symbol size"));
1622 return;
1623 }
1624
1625 this->symbols_.resize(symcount);
1626
1627 const char* sym_names =
1628 reinterpret_cast<const char*>(sd->symbol_names->data());
1629 symtab->add_from_relobj(this,
1630 sd->symbols->data() + sd->external_symbols_offset,
1631 symcount, this->local_symbol_count_,
1632 sym_names, sd->symbol_names_size,
1633 &this->symbols_,
1634 &this->defined_count_);
1635
1636 delete sd->symbols;
1637 sd->symbols = NULL;
1638 delete sd->symbol_names;
1639 sd->symbol_names = NULL;
1640 }
1641
1642 // Find out if this object, that is a member of a lib group, should be included
1643 // in the link. We check every symbol defined by this object. If the symbol
1644 // table has a strong undefined reference to that symbol, we have to include
1645 // the object.
1646
1647 template<int size, bool big_endian>
1648 Archive::Should_include
1649 Sized_relobj<size, big_endian>::do_should_include_member(Symbol_table* symtab,
1650 Layout* layout,
1651 Read_symbols_data* sd,
1652 std::string* why)
1653 {
1654 char* tmpbuf = NULL;
1655 size_t tmpbuflen = 0;
1656 const char* sym_names =
1657 reinterpret_cast<const char*>(sd->symbol_names->data());
1658 const unsigned char* syms =
1659 sd->symbols->data() + sd->external_symbols_offset;
1660 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1661 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1662 / sym_size);
1663
1664 const unsigned char* p = syms;
1665
1666 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1667 {
1668 elfcpp::Sym<size, big_endian> sym(p);
1669 unsigned int st_shndx = sym.get_st_shndx();
1670 if (st_shndx == elfcpp::SHN_UNDEF)
1671 continue;
1672
1673 unsigned int st_name = sym.get_st_name();
1674 const char* name = sym_names + st_name;
1675 Symbol* symbol;
1676 Archive::Should_include t = Archive::should_include_member(symtab,
1677 layout,
1678 name,
1679 &symbol, why,
1680 &tmpbuf,
1681 &tmpbuflen);
1682 if (t == Archive::SHOULD_INCLUDE_YES)
1683 {
1684 if (tmpbuf != NULL)
1685 free(tmpbuf);
1686 return t;
1687 }
1688 }
1689 if (tmpbuf != NULL)
1690 free(tmpbuf);
1691 return Archive::SHOULD_INCLUDE_UNKNOWN;
1692 }
1693
1694 // Iterate over global defined symbols, calling a visitor class V for each.
1695
1696 template<int size, bool big_endian>
1697 void
1698 Sized_relobj<size, big_endian>::do_for_all_global_symbols(
1699 Read_symbols_data* sd,
1700 Library_base::Symbol_visitor_base* v)
1701 {
1702 const char* sym_names =
1703 reinterpret_cast<const char*>(sd->symbol_names->data());
1704 const unsigned char* syms =
1705 sd->symbols->data() + sd->external_symbols_offset;
1706 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1707 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1708 / sym_size);
1709 const unsigned char* p = syms;
1710
1711 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1712 {
1713 elfcpp::Sym<size, big_endian> sym(p);
1714 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1715 v->visit(sym_names + sym.get_st_name());
1716 }
1717 }
1718
1719 // Return whether the local symbol SYMNDX has a PLT offset.
1720
1721 template<int size, bool big_endian>
1722 bool
1723 Sized_relobj<size, big_endian>::local_has_plt_offset(unsigned int symndx) const
1724 {
1725 typename Local_plt_offsets::const_iterator p =
1726 this->local_plt_offsets_.find(symndx);
1727 return p != this->local_plt_offsets_.end();
1728 }
1729
1730 // Get the PLT offset of a local symbol.
1731
1732 template<int size, bool big_endian>
1733 unsigned int
1734 Sized_relobj<size, big_endian>::local_plt_offset(unsigned int symndx) const
1735 {
1736 typename Local_plt_offsets::const_iterator p =
1737 this->local_plt_offsets_.find(symndx);
1738 gold_assert(p != this->local_plt_offsets_.end());
1739 return p->second;
1740 }
1741
1742 // Set the PLT offset of a local symbol.
1743
1744 template<int size, bool big_endian>
1745 void
1746 Sized_relobj<size, big_endian>::set_local_plt_offset(unsigned int symndx,
1747 unsigned int plt_offset)
1748 {
1749 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1750 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1751 gold_assert(ins.second);
1752 }
1753
1754 // First pass over the local symbols. Here we add their names to
1755 // *POOL and *DYNPOOL, and we store the symbol value in
1756 // THIS->LOCAL_VALUES_. This function is always called from a
1757 // singleton thread. This is followed by a call to
1758 // finalize_local_symbols.
1759
1760 template<int size, bool big_endian>
1761 void
1762 Sized_relobj<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1763 Stringpool* dynpool)
1764 {
1765 gold_assert(this->symtab_shndx_ != -1U);
1766 if (this->symtab_shndx_ == 0)
1767 {
1768 // This object has no symbols. Weird but legal.
1769 return;
1770 }
1771
1772 // Read the symbol table section header.
1773 const unsigned int symtab_shndx = this->symtab_shndx_;
1774 typename This::Shdr symtabshdr(this,
1775 this->elf_file_.section_header(symtab_shndx));
1776 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1777
1778 // Read the local symbols.
1779 const int sym_size = This::sym_size;
1780 const unsigned int loccount = this->local_symbol_count_;
1781 gold_assert(loccount == symtabshdr.get_sh_info());
1782 off_t locsize = loccount * sym_size;
1783 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1784 locsize, true, true);
1785
1786 // Read the symbol names.
1787 const unsigned int strtab_shndx =
1788 this->adjust_shndx(symtabshdr.get_sh_link());
1789 section_size_type strtab_size;
1790 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1791 &strtab_size,
1792 true);
1793 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1794
1795 // Loop over the local symbols.
1796
1797 const Output_sections& out_sections(this->output_sections());
1798 unsigned int shnum = this->shnum();
1799 unsigned int count = 0;
1800 unsigned int dyncount = 0;
1801 // Skip the first, dummy, symbol.
1802 psyms += sym_size;
1803 bool discard_all = parameters->options().discard_all();
1804 bool discard_locals = parameters->options().discard_locals();
1805 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1806 {
1807 elfcpp::Sym<size, big_endian> sym(psyms);
1808
1809 Symbol_value<size>& lv(this->local_values_[i]);
1810
1811 bool is_ordinary;
1812 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1813 &is_ordinary);
1814 lv.set_input_shndx(shndx, is_ordinary);
1815
1816 if (sym.get_st_type() == elfcpp::STT_SECTION)
1817 lv.set_is_section_symbol();
1818 else if (sym.get_st_type() == elfcpp::STT_TLS)
1819 lv.set_is_tls_symbol();
1820 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1821 lv.set_is_ifunc_symbol();
1822
1823 // Save the input symbol value for use in do_finalize_local_symbols().
1824 lv.set_input_value(sym.get_st_value());
1825
1826 // Decide whether this symbol should go into the output file.
1827
1828 if ((shndx < shnum && out_sections[shndx] == NULL)
1829 || shndx == this->discarded_eh_frame_shndx_)
1830 {
1831 lv.set_no_output_symtab_entry();
1832 gold_assert(!lv.needs_output_dynsym_entry());
1833 continue;
1834 }
1835
1836 if (sym.get_st_type() == elfcpp::STT_SECTION)
1837 {
1838 lv.set_no_output_symtab_entry();
1839 gold_assert(!lv.needs_output_dynsym_entry());
1840 continue;
1841 }
1842
1843 if (sym.get_st_name() >= strtab_size)
1844 {
1845 this->error(_("local symbol %u section name out of range: %u >= %u"),
1846 i, sym.get_st_name(),
1847 static_cast<unsigned int>(strtab_size));
1848 lv.set_no_output_symtab_entry();
1849 continue;
1850 }
1851
1852 const char* name = pnames + sym.get_st_name();
1853
1854 // If needed, add the symbol to the dynamic symbol table string pool.
1855 if (lv.needs_output_dynsym_entry())
1856 {
1857 dynpool->add(name, true, NULL);
1858 ++dyncount;
1859 }
1860
1861 if (discard_all && lv.may_be_discarded_from_output_symtab())
1862 {
1863 lv.set_no_output_symtab_entry();
1864 continue;
1865 }
1866
1867 // If --discard-locals option is used, discard all temporary local
1868 // symbols. These symbols start with system-specific local label
1869 // prefixes, typically .L for ELF system. We want to be compatible
1870 // with GNU ld so here we essentially use the same check in
1871 // bfd_is_local_label(). The code is different because we already
1872 // know that:
1873 //
1874 // - the symbol is local and thus cannot have global or weak binding.
1875 // - the symbol is not a section symbol.
1876 // - the symbol has a name.
1877 //
1878 // We do not discard a symbol if it needs a dynamic symbol entry.
1879 if (discard_locals
1880 && sym.get_st_type() != elfcpp::STT_FILE
1881 && !lv.needs_output_dynsym_entry()
1882 && lv.may_be_discarded_from_output_symtab()
1883 && parameters->target().is_local_label_name(name))
1884 {
1885 lv.set_no_output_symtab_entry();
1886 continue;
1887 }
1888
1889 // Discard the local symbol if -retain_symbols_file is specified
1890 // and the local symbol is not in that file.
1891 if (!parameters->options().should_retain_symbol(name))
1892 {
1893 lv.set_no_output_symtab_entry();
1894 continue;
1895 }
1896
1897 // Add the symbol to the symbol table string pool.
1898 pool->add(name, true, NULL);
1899 ++count;
1900 }
1901
1902 this->output_local_symbol_count_ = count;
1903 this->output_local_dynsym_count_ = dyncount;
1904 }
1905
1906 // Compute the final value of a local symbol.
1907
1908 template<int size, bool big_endian>
1909 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
1910 Sized_relobj<size, big_endian>::compute_final_local_value_internal(
1911 unsigned int r_sym,
1912 const Symbol_value<size>* lv_in,
1913 Symbol_value<size>* lv_out,
1914 bool relocatable,
1915 const Output_sections& out_sections,
1916 const std::vector<Address>& out_offsets,
1917 const Symbol_table* symtab)
1918 {
1919 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1920 // we may have a memory leak.
1921 gold_assert(lv_out->has_output_value());
1922
1923 bool is_ordinary;
1924 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1925
1926 // Set the output symbol value.
1927
1928 if (!is_ordinary)
1929 {
1930 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1931 lv_out->set_output_value(lv_in->input_value());
1932 else
1933 {
1934 this->error(_("unknown section index %u for local symbol %u"),
1935 shndx, r_sym);
1936 lv_out->set_output_value(0);
1937 return This::CFLV_ERROR;
1938 }
1939 }
1940 else
1941 {
1942 if (shndx >= this->shnum())
1943 {
1944 this->error(_("local symbol %u section index %u out of range"),
1945 r_sym, shndx);
1946 lv_out->set_output_value(0);
1947 return This::CFLV_ERROR;
1948 }
1949
1950 Output_section* os = out_sections[shndx];
1951 Address secoffset = out_offsets[shndx];
1952 if (symtab->is_section_folded(this, shndx))
1953 {
1954 gold_assert(os == NULL && secoffset == invalid_address);
1955 // Get the os of the section it is folded onto.
1956 Section_id folded = symtab->icf()->get_folded_section(this,
1957 shndx);
1958 gold_assert(folded.first != NULL);
1959 Sized_relobj<size, big_endian>* folded_obj = reinterpret_cast
1960 <Sized_relobj<size, big_endian>*>(folded.first);
1961 os = folded_obj->output_section(folded.second);
1962 gold_assert(os != NULL);
1963 secoffset = folded_obj->get_output_section_offset(folded.second);
1964
1965 // This could be a relaxed input section.
1966 if (secoffset == invalid_address)
1967 {
1968 const Output_relaxed_input_section* relaxed_section =
1969 os->find_relaxed_input_section(folded_obj, folded.second);
1970 gold_assert(relaxed_section != NULL);
1971 secoffset = relaxed_section->address() - os->address();
1972 }
1973 }
1974
1975 if (os == NULL)
1976 {
1977 // This local symbol belongs to a section we are discarding.
1978 // In some cases when applying relocations later, we will
1979 // attempt to match it to the corresponding kept section,
1980 // so we leave the input value unchanged here.
1981 return This::CFLV_DISCARDED;
1982 }
1983 else if (secoffset == invalid_address)
1984 {
1985 uint64_t start;
1986
1987 // This is a SHF_MERGE section or one which otherwise
1988 // requires special handling.
1989 if (shndx == this->discarded_eh_frame_shndx_)
1990 {
1991 // This local symbol belongs to a discarded .eh_frame
1992 // section. Just treat it like the case in which
1993 // os == NULL above.
1994 gold_assert(this->has_eh_frame_);
1995 return This::CFLV_DISCARDED;
1996 }
1997 else if (!lv_in->is_section_symbol())
1998 {
1999 // This is not a section symbol. We can determine
2000 // the final value now.
2001 lv_out->set_output_value(
2002 os->output_address(this, shndx, lv_in->input_value()));
2003 }
2004 else if (!os->find_starting_output_address(this, shndx, &start))
2005 {
2006 // This is a section symbol, but apparently not one in a
2007 // merged section. First check to see if this is a relaxed
2008 // input section. If so, use its address. Otherwise just
2009 // use the start of the output section. This happens with
2010 // relocatable links when the input object has section
2011 // symbols for arbitrary non-merge sections.
2012 const Output_section_data* posd =
2013 os->find_relaxed_input_section(this, shndx);
2014 if (posd != NULL)
2015 {
2016 Address relocatable_link_adjustment =
2017 relocatable ? os->address() : 0;
2018 lv_out->set_output_value(posd->address()
2019 - relocatable_link_adjustment);
2020 }
2021 else
2022 lv_out->set_output_value(os->address());
2023 }
2024 else
2025 {
2026 // We have to consider the addend to determine the
2027 // value to use in a relocation. START is the start
2028 // of this input section. If we are doing a relocatable
2029 // link, use offset from start output section instead of
2030 // address.
2031 Address adjusted_start =
2032 relocatable ? start - os->address() : start;
2033 Merged_symbol_value<size>* msv =
2034 new Merged_symbol_value<size>(lv_in->input_value(),
2035 adjusted_start);
2036 lv_out->set_merged_symbol_value(msv);
2037 }
2038 }
2039 else if (lv_in->is_tls_symbol())
2040 lv_out->set_output_value(os->tls_offset()
2041 + secoffset
2042 + lv_in->input_value());
2043 else
2044 lv_out->set_output_value((relocatable ? 0 : os->address())
2045 + secoffset
2046 + lv_in->input_value());
2047 }
2048 return This::CFLV_OK;
2049 }
2050
2051 // Compute final local symbol value. R_SYM is the index of a local
2052 // symbol in symbol table. LV points to a symbol value, which is
2053 // expected to hold the input value and to be over-written by the
2054 // final value. SYMTAB points to a symbol table. Some targets may want
2055 // to know would-be-finalized local symbol values in relaxation.
2056 // Hence we provide this method. Since this method updates *LV, a
2057 // callee should make a copy of the original local symbol value and
2058 // use the copy instead of modifying an object's local symbols before
2059 // everything is finalized. The caller should also free up any allocated
2060 // memory in the return value in *LV.
2061 template<int size, bool big_endian>
2062 typename Sized_relobj<size, big_endian>::Compute_final_local_value_status
2063 Sized_relobj<size, big_endian>::compute_final_local_value(
2064 unsigned int r_sym,
2065 const Symbol_value<size>* lv_in,
2066 Symbol_value<size>* lv_out,
2067 const Symbol_table* symtab)
2068 {
2069 // This is just a wrapper of compute_final_local_value_internal.
2070 const bool relocatable = parameters->options().relocatable();
2071 const Output_sections& out_sections(this->output_sections());
2072 const std::vector<Address>& out_offsets(this->section_offsets_);
2073 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2074 relocatable, out_sections,
2075 out_offsets, symtab);
2076 }
2077
2078 // Finalize the local symbols. Here we set the final value in
2079 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2080 // This function is always called from a singleton thread. The actual
2081 // output of the local symbols will occur in a separate task.
2082
2083 template<int size, bool big_endian>
2084 unsigned int
2085 Sized_relobj<size, big_endian>::do_finalize_local_symbols(unsigned int index,
2086 off_t off,
2087 Symbol_table* symtab)
2088 {
2089 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2090
2091 const unsigned int loccount = this->local_symbol_count_;
2092 this->local_symbol_offset_ = off;
2093
2094 const bool relocatable = parameters->options().relocatable();
2095 const Output_sections& out_sections(this->output_sections());
2096 const std::vector<Address>& out_offsets(this->section_offsets_);
2097
2098 for (unsigned int i = 1; i < loccount; ++i)
2099 {
2100 Symbol_value<size>* lv = &this->local_values_[i];
2101
2102 Compute_final_local_value_status cflv_status =
2103 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2104 out_sections, out_offsets,
2105 symtab);
2106 switch (cflv_status)
2107 {
2108 case CFLV_OK:
2109 if (!lv->is_output_symtab_index_set())
2110 {
2111 lv->set_output_symtab_index(index);
2112 ++index;
2113 }
2114 break;
2115 case CFLV_DISCARDED:
2116 case CFLV_ERROR:
2117 // Do nothing.
2118 break;
2119 default:
2120 gold_unreachable();
2121 }
2122 }
2123 return index;
2124 }
2125
2126 // Set the output dynamic symbol table indexes for the local variables.
2127
2128 template<int size, bool big_endian>
2129 unsigned int
2130 Sized_relobj<size, big_endian>::do_set_local_dynsym_indexes(unsigned int index)
2131 {
2132 const unsigned int loccount = this->local_symbol_count_;
2133 for (unsigned int i = 1; i < loccount; ++i)
2134 {
2135 Symbol_value<size>& lv(this->local_values_[i]);
2136 if (lv.needs_output_dynsym_entry())
2137 {
2138 lv.set_output_dynsym_index(index);
2139 ++index;
2140 }
2141 }
2142 return index;
2143 }
2144
2145 // Set the offset where local dynamic symbol information will be stored.
2146 // Returns the count of local symbols contributed to the symbol table by
2147 // this object.
2148
2149 template<int size, bool big_endian>
2150 unsigned int
2151 Sized_relobj<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2152 {
2153 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2154 this->local_dynsym_offset_ = off;
2155 return this->output_local_dynsym_count_;
2156 }
2157
2158 // If Symbols_data is not NULL get the section flags from here otherwise
2159 // get it from the file.
2160
2161 template<int size, bool big_endian>
2162 uint64_t
2163 Sized_relobj<size, big_endian>::do_section_flags(unsigned int shndx)
2164 {
2165 Symbols_data* sd = this->get_symbols_data();
2166 if (sd != NULL)
2167 {
2168 const unsigned char* pshdrs = sd->section_headers_data
2169 + This::shdr_size * shndx;
2170 typename This::Shdr shdr(pshdrs);
2171 return shdr.get_sh_flags();
2172 }
2173 // If sd is NULL, read the section header from the file.
2174 return this->elf_file_.section_flags(shndx);
2175 }
2176
2177 // Get the section's ent size from Symbols_data. Called by get_section_contents
2178 // in icf.cc
2179
2180 template<int size, bool big_endian>
2181 uint64_t
2182 Sized_relobj<size, big_endian>::do_section_entsize(unsigned int shndx)
2183 {
2184 Symbols_data* sd = this->get_symbols_data();
2185 gold_assert(sd != NULL);
2186
2187 const unsigned char* pshdrs = sd->section_headers_data
2188 + This::shdr_size * shndx;
2189 typename This::Shdr shdr(pshdrs);
2190 return shdr.get_sh_entsize();
2191 }
2192
2193 // Write out the local symbols.
2194
2195 template<int size, bool big_endian>
2196 void
2197 Sized_relobj<size, big_endian>::write_local_symbols(
2198 Output_file* of,
2199 const Stringpool* sympool,
2200 const Stringpool* dynpool,
2201 Output_symtab_xindex* symtab_xindex,
2202 Output_symtab_xindex* dynsym_xindex)
2203 {
2204 const bool strip_all = parameters->options().strip_all();
2205 if (strip_all)
2206 {
2207 if (this->output_local_dynsym_count_ == 0)
2208 return;
2209 this->output_local_symbol_count_ = 0;
2210 }
2211
2212 gold_assert(this->symtab_shndx_ != -1U);
2213 if (this->symtab_shndx_ == 0)
2214 {
2215 // This object has no symbols. Weird but legal.
2216 return;
2217 }
2218
2219 // Read the symbol table section header.
2220 const unsigned int symtab_shndx = this->symtab_shndx_;
2221 typename This::Shdr symtabshdr(this,
2222 this->elf_file_.section_header(symtab_shndx));
2223 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2224 const unsigned int loccount = this->local_symbol_count_;
2225 gold_assert(loccount == symtabshdr.get_sh_info());
2226
2227 // Read the local symbols.
2228 const int sym_size = This::sym_size;
2229 off_t locsize = loccount * sym_size;
2230 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2231 locsize, true, false);
2232
2233 // Read the symbol names.
2234 const unsigned int strtab_shndx =
2235 this->adjust_shndx(symtabshdr.get_sh_link());
2236 section_size_type strtab_size;
2237 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2238 &strtab_size,
2239 false);
2240 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2241
2242 // Get views into the output file for the portions of the symbol table
2243 // and the dynamic symbol table that we will be writing.
2244 off_t output_size = this->output_local_symbol_count_ * sym_size;
2245 unsigned char* oview = NULL;
2246 if (output_size > 0)
2247 oview = of->get_output_view(this->local_symbol_offset_, output_size);
2248
2249 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2250 unsigned char* dyn_oview = NULL;
2251 if (dyn_output_size > 0)
2252 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2253 dyn_output_size);
2254
2255 const Output_sections out_sections(this->output_sections());
2256
2257 gold_assert(this->local_values_.size() == loccount);
2258
2259 unsigned char* ov = oview;
2260 unsigned char* dyn_ov = dyn_oview;
2261 psyms += sym_size;
2262 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2263 {
2264 elfcpp::Sym<size, big_endian> isym(psyms);
2265
2266 Symbol_value<size>& lv(this->local_values_[i]);
2267
2268 bool is_ordinary;
2269 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2270 &is_ordinary);
2271 if (is_ordinary)
2272 {
2273 gold_assert(st_shndx < out_sections.size());
2274 if (out_sections[st_shndx] == NULL)
2275 continue;
2276 st_shndx = out_sections[st_shndx]->out_shndx();
2277 if (st_shndx >= elfcpp::SHN_LORESERVE)
2278 {
2279 if (lv.has_output_symtab_entry())
2280 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2281 if (lv.has_output_dynsym_entry())
2282 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2283 st_shndx = elfcpp::SHN_XINDEX;
2284 }
2285 }
2286
2287 // Write the symbol to the output symbol table.
2288 if (lv.has_output_symtab_entry())
2289 {
2290 elfcpp::Sym_write<size, big_endian> osym(ov);
2291
2292 gold_assert(isym.get_st_name() < strtab_size);
2293 const char* name = pnames + isym.get_st_name();
2294 osym.put_st_name(sympool->get_offset(name));
2295 osym.put_st_value(this->local_values_[i].value(this, 0));
2296 osym.put_st_size(isym.get_st_size());
2297 osym.put_st_info(isym.get_st_info());
2298 osym.put_st_other(isym.get_st_other());
2299 osym.put_st_shndx(st_shndx);
2300
2301 ov += sym_size;
2302 }
2303
2304 // Write the symbol to the output dynamic symbol table.
2305 if (lv.has_output_dynsym_entry())
2306 {
2307 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2308 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2309
2310 gold_assert(isym.get_st_name() < strtab_size);
2311 const char* name = pnames + isym.get_st_name();
2312 osym.put_st_name(dynpool->get_offset(name));
2313 osym.put_st_value(this->local_values_[i].value(this, 0));
2314 osym.put_st_size(isym.get_st_size());
2315 osym.put_st_info(isym.get_st_info());
2316 osym.put_st_other(isym.get_st_other());
2317 osym.put_st_shndx(st_shndx);
2318
2319 dyn_ov += sym_size;
2320 }
2321 }
2322
2323
2324 if (output_size > 0)
2325 {
2326 gold_assert(ov - oview == output_size);
2327 of->write_output_view(this->local_symbol_offset_, output_size, oview);
2328 }
2329
2330 if (dyn_output_size > 0)
2331 {
2332 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2333 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2334 dyn_oview);
2335 }
2336 }
2337
2338 // Set *INFO to symbolic information about the offset OFFSET in the
2339 // section SHNDX. Return true if we found something, false if we
2340 // found nothing.
2341
2342 template<int size, bool big_endian>
2343 bool
2344 Sized_relobj<size, big_endian>::get_symbol_location_info(
2345 unsigned int shndx,
2346 off_t offset,
2347 Symbol_location_info* info)
2348 {
2349 if (this->symtab_shndx_ == 0)
2350 return false;
2351
2352 section_size_type symbols_size;
2353 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2354 &symbols_size,
2355 false);
2356
2357 unsigned int symbol_names_shndx =
2358 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2359 section_size_type names_size;
2360 const unsigned char* symbol_names_u =
2361 this->section_contents(symbol_names_shndx, &names_size, false);
2362 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2363
2364 const int sym_size = This::sym_size;
2365 const size_t count = symbols_size / sym_size;
2366
2367 const unsigned char* p = symbols;
2368 for (size_t i = 0; i < count; ++i, p += sym_size)
2369 {
2370 elfcpp::Sym<size, big_endian> sym(p);
2371
2372 if (sym.get_st_type() == elfcpp::STT_FILE)
2373 {
2374 if (sym.get_st_name() >= names_size)
2375 info->source_file = "(invalid)";
2376 else
2377 info->source_file = symbol_names + sym.get_st_name();
2378 continue;
2379 }
2380
2381 bool is_ordinary;
2382 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2383 &is_ordinary);
2384 if (is_ordinary
2385 && st_shndx == shndx
2386 && static_cast<off_t>(sym.get_st_value()) <= offset
2387 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2388 > offset))
2389 {
2390 if (sym.get_st_name() > names_size)
2391 info->enclosing_symbol_name = "(invalid)";
2392 else
2393 {
2394 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2395 if (parameters->options().do_demangle())
2396 {
2397 char* demangled_name = cplus_demangle(
2398 info->enclosing_symbol_name.c_str(),
2399 DMGL_ANSI | DMGL_PARAMS);
2400 if (demangled_name != NULL)
2401 {
2402 info->enclosing_symbol_name.assign(demangled_name);
2403 free(demangled_name);
2404 }
2405 }
2406 }
2407 return true;
2408 }
2409 }
2410
2411 return false;
2412 }
2413
2414 // Look for a kept section corresponding to the given discarded section,
2415 // and return its output address. This is used only for relocations in
2416 // debugging sections. If we can't find the kept section, return 0.
2417
2418 template<int size, bool big_endian>
2419 typename Sized_relobj<size, big_endian>::Address
2420 Sized_relobj<size, big_endian>::map_to_kept_section(
2421 unsigned int shndx,
2422 bool* found) const
2423 {
2424 Relobj* kept_object;
2425 unsigned int kept_shndx;
2426 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2427 {
2428 Sized_relobj<size, big_endian>* kept_relobj =
2429 static_cast<Sized_relobj<size, big_endian>*>(kept_object);
2430 Output_section* os = kept_relobj->output_section(kept_shndx);
2431 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2432 if (os != NULL && offset != invalid_address)
2433 {
2434 *found = true;
2435 return os->address() + offset;
2436 }
2437 }
2438 *found = false;
2439 return 0;
2440 }
2441
2442 // Get symbol counts.
2443
2444 template<int size, bool big_endian>
2445 void
2446 Sized_relobj<size, big_endian>::do_get_global_symbol_counts(
2447 const Symbol_table*,
2448 size_t* defined,
2449 size_t* used) const
2450 {
2451 *defined = this->defined_count_;
2452 size_t count = 0;
2453 for (Symbols::const_iterator p = this->symbols_.begin();
2454 p != this->symbols_.end();
2455 ++p)
2456 if (*p != NULL
2457 && (*p)->source() == Symbol::FROM_OBJECT
2458 && (*p)->object() == this
2459 && (*p)->is_defined())
2460 ++count;
2461 *used = count;
2462 }
2463
2464 // Input_objects methods.
2465
2466 // Add a regular relocatable object to the list. Return false if this
2467 // object should be ignored.
2468
2469 bool
2470 Input_objects::add_object(Object* obj)
2471 {
2472 // Print the filename if the -t/--trace option is selected.
2473 if (parameters->options().trace())
2474 gold_info("%s", obj->name().c_str());
2475
2476 if (!obj->is_dynamic())
2477 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2478 else
2479 {
2480 // See if this is a duplicate SONAME.
2481 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2482 const char* soname = dynobj->soname();
2483
2484 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2485 this->sonames_.insert(soname);
2486 if (!ins.second)
2487 {
2488 // We have already seen a dynamic object with this soname.
2489 return false;
2490 }
2491
2492 this->dynobj_list_.push_back(dynobj);
2493 }
2494
2495 // Add this object to the cross-referencer if requested.
2496 if (parameters->options().user_set_print_symbol_counts()
2497 || parameters->options().cref())
2498 {
2499 if (this->cref_ == NULL)
2500 this->cref_ = new Cref();
2501 this->cref_->add_object(obj);
2502 }
2503
2504 return true;
2505 }
2506
2507 // For each dynamic object, record whether we've seen all of its
2508 // explicit dependencies.
2509
2510 void
2511 Input_objects::check_dynamic_dependencies() const
2512 {
2513 bool issued_copy_dt_needed_error = false;
2514 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2515 p != this->dynobj_list_.end();
2516 ++p)
2517 {
2518 const Dynobj::Needed& needed((*p)->needed());
2519 bool found_all = true;
2520 Dynobj::Needed::const_iterator pneeded;
2521 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2522 {
2523 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2524 {
2525 found_all = false;
2526 break;
2527 }
2528 }
2529 (*p)->set_has_unknown_needed_entries(!found_all);
2530
2531 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2532 // that gold does not support. However, they cause no trouble
2533 // unless there is a DT_NEEDED entry that we don't know about;
2534 // warn only in that case.
2535 if (!found_all
2536 && !issued_copy_dt_needed_error
2537 && (parameters->options().copy_dt_needed_entries()
2538 || parameters->options().add_needed()))
2539 {
2540 const char* optname;
2541 if (parameters->options().copy_dt_needed_entries())
2542 optname = "--copy-dt-needed-entries";
2543 else
2544 optname = "--add-needed";
2545 gold_error(_("%s is not supported but is required for %s in %s"),
2546 optname, (*pneeded).c_str(), (*p)->name().c_str());
2547 issued_copy_dt_needed_error = true;
2548 }
2549 }
2550 }
2551
2552 // Start processing an archive.
2553
2554 void
2555 Input_objects::archive_start(Archive* archive)
2556 {
2557 if (parameters->options().user_set_print_symbol_counts()
2558 || parameters->options().cref())
2559 {
2560 if (this->cref_ == NULL)
2561 this->cref_ = new Cref();
2562 this->cref_->add_archive_start(archive);
2563 }
2564 }
2565
2566 // Stop processing an archive.
2567
2568 void
2569 Input_objects::archive_stop(Archive* archive)
2570 {
2571 if (parameters->options().user_set_print_symbol_counts()
2572 || parameters->options().cref())
2573 this->cref_->add_archive_stop(archive);
2574 }
2575
2576 // Print symbol counts
2577
2578 void
2579 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2580 {
2581 if (parameters->options().user_set_print_symbol_counts()
2582 && this->cref_ != NULL)
2583 this->cref_->print_symbol_counts(symtab);
2584 }
2585
2586 // Print a cross reference table.
2587
2588 void
2589 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2590 {
2591 if (parameters->options().cref() && this->cref_ != NULL)
2592 this->cref_->print_cref(symtab, f);
2593 }
2594
2595 // Relocate_info methods.
2596
2597 // Return a string describing the location of a relocation. This is
2598 // only used in error messages.
2599
2600 template<int size, bool big_endian>
2601 std::string
2602 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2603 {
2604 // See if we can get line-number information from debugging sections.
2605 std::string filename;
2606 std::string file_and_lineno; // Better than filename-only, if available.
2607
2608 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2609 // This will be "" if we failed to parse the debug info for any reason.
2610 file_and_lineno = line_info.addr2line(this->data_shndx, offset, NULL);
2611
2612 std::string ret(this->object->name());
2613 ret += ':';
2614 Symbol_location_info info;
2615 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2616 {
2617 ret += " in function ";
2618 ret += info.enclosing_symbol_name;
2619 ret += ":";
2620 filename = info.source_file;
2621 }
2622
2623 if (!file_and_lineno.empty())
2624 ret += file_and_lineno;
2625 else
2626 {
2627 if (!filename.empty())
2628 ret += filename;
2629 ret += "(";
2630 ret += this->object->section_name(this->data_shndx);
2631 char buf[100];
2632 // Offsets into sections have to be positive.
2633 snprintf(buf, sizeof(buf), "+0x%lx", static_cast<long>(offset));
2634 ret += buf;
2635 ret += ")";
2636 }
2637 return ret;
2638 }
2639
2640 } // End namespace gold.
2641
2642 namespace
2643 {
2644
2645 using namespace gold;
2646
2647 // Read an ELF file with the header and return the appropriate
2648 // instance of Object.
2649
2650 template<int size, bool big_endian>
2651 Object*
2652 make_elf_sized_object(const std::string& name, Input_file* input_file,
2653 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2654 bool* punconfigured)
2655 {
2656 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2657 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2658 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2659 if (target == NULL)
2660 gold_fatal(_("%s: unsupported ELF machine number %d"),
2661 name.c_str(), ehdr.get_e_machine());
2662
2663 if (!parameters->target_valid())
2664 set_parameters_target(target);
2665 else if (target != &parameters->target())
2666 {
2667 if (punconfigured != NULL)
2668 *punconfigured = true;
2669 else
2670 gold_error(_("%s: incompatible target"), name.c_str());
2671 return NULL;
2672 }
2673
2674 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2675 ehdr);
2676 }
2677
2678 } // End anonymous namespace.
2679
2680 namespace gold
2681 {
2682
2683 // Return whether INPUT_FILE is an ELF object.
2684
2685 bool
2686 is_elf_object(Input_file* input_file, off_t offset,
2687 const unsigned char** start, int* read_size)
2688 {
2689 off_t filesize = input_file->file().filesize();
2690 int want = elfcpp::Elf_recognizer::max_header_size;
2691 if (filesize - offset < want)
2692 want = filesize - offset;
2693
2694 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2695 true, false);
2696 *start = p;
2697 *read_size = want;
2698
2699 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2700 }
2701
2702 // Read an ELF file and return the appropriate instance of Object.
2703
2704 Object*
2705 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2706 const unsigned char* p, section_offset_type bytes,
2707 bool* punconfigured)
2708 {
2709 if (punconfigured != NULL)
2710 *punconfigured = false;
2711
2712 std::string error;
2713 bool big_endian = false;
2714 int size = 0;
2715 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2716 &big_endian, &error))
2717 {
2718 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2719 return NULL;
2720 }
2721
2722 if (size == 32)
2723 {
2724 if (big_endian)
2725 {
2726 #ifdef HAVE_TARGET_32_BIG
2727 elfcpp::Ehdr<32, true> ehdr(p);
2728 return make_elf_sized_object<32, true>(name, input_file,
2729 offset, ehdr, punconfigured);
2730 #else
2731 if (punconfigured != NULL)
2732 *punconfigured = true;
2733 else
2734 gold_error(_("%s: not configured to support "
2735 "32-bit big-endian object"),
2736 name.c_str());
2737 return NULL;
2738 #endif
2739 }
2740 else
2741 {
2742 #ifdef HAVE_TARGET_32_LITTLE
2743 elfcpp::Ehdr<32, false> ehdr(p);
2744 return make_elf_sized_object<32, false>(name, input_file,
2745 offset, ehdr, punconfigured);
2746 #else
2747 if (punconfigured != NULL)
2748 *punconfigured = true;
2749 else
2750 gold_error(_("%s: not configured to support "
2751 "32-bit little-endian object"),
2752 name.c_str());
2753 return NULL;
2754 #endif
2755 }
2756 }
2757 else if (size == 64)
2758 {
2759 if (big_endian)
2760 {
2761 #ifdef HAVE_TARGET_64_BIG
2762 elfcpp::Ehdr<64, true> ehdr(p);
2763 return make_elf_sized_object<64, true>(name, input_file,
2764 offset, ehdr, punconfigured);
2765 #else
2766 if (punconfigured != NULL)
2767 *punconfigured = true;
2768 else
2769 gold_error(_("%s: not configured to support "
2770 "64-bit big-endian object"),
2771 name.c_str());
2772 return NULL;
2773 #endif
2774 }
2775 else
2776 {
2777 #ifdef HAVE_TARGET_64_LITTLE
2778 elfcpp::Ehdr<64, false> ehdr(p);
2779 return make_elf_sized_object<64, false>(name, input_file,
2780 offset, ehdr, punconfigured);
2781 #else
2782 if (punconfigured != NULL)
2783 *punconfigured = true;
2784 else
2785 gold_error(_("%s: not configured to support "
2786 "64-bit little-endian object"),
2787 name.c_str());
2788 return NULL;
2789 #endif
2790 }
2791 }
2792 else
2793 gold_unreachable();
2794 }
2795
2796 // Instantiate the templates we need.
2797
2798 #ifdef HAVE_TARGET_32_LITTLE
2799 template
2800 void
2801 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2802 Read_symbols_data*);
2803 #endif
2804
2805 #ifdef HAVE_TARGET_32_BIG
2806 template
2807 void
2808 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2809 Read_symbols_data*);
2810 #endif
2811
2812 #ifdef HAVE_TARGET_64_LITTLE
2813 template
2814 void
2815 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2816 Read_symbols_data*);
2817 #endif
2818
2819 #ifdef HAVE_TARGET_64_BIG
2820 template
2821 void
2822 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2823 Read_symbols_data*);
2824 #endif
2825
2826 #ifdef HAVE_TARGET_32_LITTLE
2827 template
2828 class Sized_relobj<32, false>;
2829 #endif
2830
2831 #ifdef HAVE_TARGET_32_BIG
2832 template
2833 class Sized_relobj<32, true>;
2834 #endif
2835
2836 #ifdef HAVE_TARGET_64_LITTLE
2837 template
2838 class Sized_relobj<64, false>;
2839 #endif
2840
2841 #ifdef HAVE_TARGET_64_BIG
2842 template
2843 class Sized_relobj<64, true>;
2844 #endif
2845
2846 #ifdef HAVE_TARGET_32_LITTLE
2847 template
2848 struct Relocate_info<32, false>;
2849 #endif
2850
2851 #ifdef HAVE_TARGET_32_BIG
2852 template
2853 struct Relocate_info<32, true>;
2854 #endif
2855
2856 #ifdef HAVE_TARGET_64_LITTLE
2857 template
2858 struct Relocate_info<64, false>;
2859 #endif
2860
2861 #ifdef HAVE_TARGET_64_BIG
2862 template
2863 struct Relocate_info<64, true>;
2864 #endif
2865
2866 #ifdef HAVE_TARGET_32_LITTLE
2867 template
2868 void
2869 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2870
2871 template
2872 void
2873 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2874 const unsigned char*);
2875 #endif
2876
2877 #ifdef HAVE_TARGET_32_BIG
2878 template
2879 void
2880 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2881
2882 template
2883 void
2884 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2885 const unsigned char*);
2886 #endif
2887
2888 #ifdef HAVE_TARGET_64_LITTLE
2889 template
2890 void
2891 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2892
2893 template
2894 void
2895 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2896 const unsigned char*);
2897 #endif
2898
2899 #ifdef HAVE_TARGET_64_BIG
2900 template
2901 void
2902 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2903
2904 template
2905 void
2906 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2907 const unsigned char*);
2908 #endif
2909
2910 } // End namespace gold.
This page took 0.1032 seconds and 5 git commands to generate.