* object.cc (Sized_relobj_file::do_layout): Keep warning sections
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects.
51
52 Read_symbols_data::~Read_symbols_data()
53 {
54 if (this->section_headers != NULL)
55 delete this->section_headers;
56 if (this->section_names != NULL)
57 delete this->section_names;
58 if (this->symbols != NULL)
59 delete this->symbols;
60 if (this->symbol_names != NULL)
61 delete this->symbol_names;
62 if (this->versym != NULL)
63 delete this->versym;
64 if (this->verdef != NULL)
65 delete this->verdef;
66 if (this->verneed != NULL)
67 delete this->verneed;
68 }
69
70 // Class Xindex.
71
72 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
73 // section and read it in. SYMTAB_SHNDX is the index of the symbol
74 // table we care about.
75
76 template<int size, bool big_endian>
77 void
78 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
79 {
80 if (!this->symtab_xindex_.empty())
81 return;
82
83 gold_assert(symtab_shndx != 0);
84
85 // Look through the sections in reverse order, on the theory that it
86 // is more likely to be near the end than the beginning.
87 unsigned int i = object->shnum();
88 while (i > 0)
89 {
90 --i;
91 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
92 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
93 {
94 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
95 return;
96 }
97 }
98
99 object->error(_("missing SHT_SYMTAB_SHNDX section"));
100 }
101
102 // Read in the symtab_xindex_ array, given the section index of the
103 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
104 // section headers.
105
106 template<int size, bool big_endian>
107 void
108 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
109 const unsigned char* pshdrs)
110 {
111 section_size_type bytecount;
112 const unsigned char* contents;
113 if (pshdrs == NULL)
114 contents = object->section_contents(xindex_shndx, &bytecount, false);
115 else
116 {
117 const unsigned char* p = (pshdrs
118 + (xindex_shndx
119 * elfcpp::Elf_sizes<size>::shdr_size));
120 typename elfcpp::Shdr<size, big_endian> shdr(p);
121 bytecount = convert_to_section_size_type(shdr.get_sh_size());
122 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
123 }
124
125 gold_assert(this->symtab_xindex_.empty());
126 this->symtab_xindex_.reserve(bytecount / 4);
127 for (section_size_type i = 0; i < bytecount; i += 4)
128 {
129 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
130 // We preadjust the section indexes we save.
131 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
132 }
133 }
134
135 // Symbol symndx has a section of SHN_XINDEX; return the real section
136 // index.
137
138 unsigned int
139 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
140 {
141 if (symndx >= this->symtab_xindex_.size())
142 {
143 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
144 symndx);
145 return elfcpp::SHN_UNDEF;
146 }
147 unsigned int shndx = this->symtab_xindex_[symndx];
148 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
149 {
150 object->error(_("extended index for symbol %u out of range: %u"),
151 symndx, shndx);
152 return elfcpp::SHN_UNDEF;
153 }
154 return shndx;
155 }
156
157 // Class Object.
158
159 // Report an error for this object file. This is used by the
160 // elfcpp::Elf_file interface, and also called by the Object code
161 // itself.
162
163 void
164 Object::error(const char* format, ...) const
165 {
166 va_list args;
167 va_start(args, format);
168 char* buf = NULL;
169 if (vasprintf(&buf, format, args) < 0)
170 gold_nomem();
171 va_end(args);
172 gold_error(_("%s: %s"), this->name().c_str(), buf);
173 free(buf);
174 }
175
176 // Return a view of the contents of a section.
177
178 const unsigned char*
179 Object::section_contents(unsigned int shndx, section_size_type* plen,
180 bool cache)
181 {
182 Location loc(this->do_section_contents(shndx));
183 *plen = convert_to_section_size_type(loc.data_size);
184 if (*plen == 0)
185 {
186 static const unsigned char empty[1] = { '\0' };
187 return empty;
188 }
189 return this->get_view(loc.file_offset, *plen, true, cache);
190 }
191
192 // Read the section data into SD. This is code common to Sized_relobj_file
193 // and Sized_dynobj, so we put it into Object.
194
195 template<int size, bool big_endian>
196 void
197 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
198 Read_symbols_data* sd)
199 {
200 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
201
202 // Read the section headers.
203 const off_t shoff = elf_file->shoff();
204 const unsigned int shnum = this->shnum();
205 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
206 true, true);
207
208 // Read the section names.
209 const unsigned char* pshdrs = sd->section_headers->data();
210 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
211 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
212
213 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
214 this->error(_("section name section has wrong type: %u"),
215 static_cast<unsigned int>(shdrnames.get_sh_type()));
216
217 sd->section_names_size =
218 convert_to_section_size_type(shdrnames.get_sh_size());
219 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
220 sd->section_names_size, false,
221 false);
222 }
223
224 // If NAME is the name of a special .gnu.warning section, arrange for
225 // the warning to be issued. SHNDX is the section index. Return
226 // whether it is a warning section.
227
228 bool
229 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
230 Symbol_table* symtab)
231 {
232 const char warn_prefix[] = ".gnu.warning.";
233 const int warn_prefix_len = sizeof warn_prefix - 1;
234 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
235 {
236 // Read the section contents to get the warning text. It would
237 // be nicer if we only did this if we have to actually issue a
238 // warning. Unfortunately, warnings are issued as we relocate
239 // sections. That means that we can not lock the object then,
240 // as we might try to issue the same warning multiple times
241 // simultaneously.
242 section_size_type len;
243 const unsigned char* contents = this->section_contents(shndx, &len,
244 false);
245 if (len == 0)
246 {
247 const char* warning = name + warn_prefix_len;
248 contents = reinterpret_cast<const unsigned char*>(warning);
249 len = strlen(warning);
250 }
251 std::string warning(reinterpret_cast<const char*>(contents), len);
252 symtab->add_warning(name + warn_prefix_len, this, warning);
253 return true;
254 }
255 return false;
256 }
257
258 // If NAME is the name of the special section which indicates that
259 // this object was compiled with -fsplit-stack, mark it accordingly.
260
261 bool
262 Object::handle_split_stack_section(const char* name)
263 {
264 if (strcmp(name, ".note.GNU-split-stack") == 0)
265 {
266 this->uses_split_stack_ = true;
267 return true;
268 }
269 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
270 {
271 this->has_no_split_stack_ = true;
272 return true;
273 }
274 return false;
275 }
276
277 // Class Relobj
278
279 // To copy the symbols data read from the file to a local data structure.
280 // This function is called from do_layout only while doing garbage
281 // collection.
282
283 void
284 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
285 unsigned int section_header_size)
286 {
287 gc_sd->section_headers_data =
288 new unsigned char[(section_header_size)];
289 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
290 section_header_size);
291 gc_sd->section_names_data =
292 new unsigned char[sd->section_names_size];
293 memcpy(gc_sd->section_names_data, sd->section_names->data(),
294 sd->section_names_size);
295 gc_sd->section_names_size = sd->section_names_size;
296 if (sd->symbols != NULL)
297 {
298 gc_sd->symbols_data =
299 new unsigned char[sd->symbols_size];
300 memcpy(gc_sd->symbols_data, sd->symbols->data(),
301 sd->symbols_size);
302 }
303 else
304 {
305 gc_sd->symbols_data = NULL;
306 }
307 gc_sd->symbols_size = sd->symbols_size;
308 gc_sd->external_symbols_offset = sd->external_symbols_offset;
309 if (sd->symbol_names != NULL)
310 {
311 gc_sd->symbol_names_data =
312 new unsigned char[sd->symbol_names_size];
313 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
314 sd->symbol_names_size);
315 }
316 else
317 {
318 gc_sd->symbol_names_data = NULL;
319 }
320 gc_sd->symbol_names_size = sd->symbol_names_size;
321 }
322
323 // This function determines if a particular section name must be included
324 // in the link. This is used during garbage collection to determine the
325 // roots of the worklist.
326
327 bool
328 Relobj::is_section_name_included(const char* name)
329 {
330 if (is_prefix_of(".ctors", name)
331 || is_prefix_of(".dtors", name)
332 || is_prefix_of(".note", name)
333 || is_prefix_of(".init", name)
334 || is_prefix_of(".fini", name)
335 || is_prefix_of(".gcc_except_table", name)
336 || is_prefix_of(".jcr", name)
337 || is_prefix_of(".preinit_array", name)
338 || (is_prefix_of(".text", name)
339 && strstr(name, "personality"))
340 || (is_prefix_of(".data", name)
341 && strstr(name, "personality"))
342 || (is_prefix_of(".gnu.linkonce.d", name)
343 && strstr(name, "personality")))
344 {
345 return true;
346 }
347 return false;
348 }
349
350 // Finalize the incremental relocation information. Allocates a block
351 // of relocation entries for each symbol, and sets the reloc_bases_
352 // array to point to the first entry in each block. If CLEAR_COUNTS
353 // is TRUE, also clear the per-symbol relocation counters.
354
355 void
356 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
357 {
358 unsigned int nsyms = this->get_global_symbols()->size();
359 this->reloc_bases_ = new unsigned int[nsyms];
360
361 gold_assert(this->reloc_bases_ != NULL);
362 gold_assert(layout->incremental_inputs() != NULL);
363
364 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
365 for (unsigned int i = 0; i < nsyms; ++i)
366 {
367 this->reloc_bases_[i] = rindex;
368 rindex += this->reloc_counts_[i];
369 if (clear_counts)
370 this->reloc_counts_[i] = 0;
371 }
372 layout->incremental_inputs()->set_reloc_count(rindex);
373 }
374
375 // Class Sized_relobj.
376
377 // Iterate over local symbols, calling a visitor class V for each GOT offset
378 // associated with a local symbol.
379
380 template<int size, bool big_endian>
381 void
382 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
383 Got_offset_list::Visitor* v) const
384 {
385 unsigned int nsyms = this->local_symbol_count();
386 for (unsigned int i = 0; i < nsyms; i++)
387 {
388 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
389 if (p != this->local_got_offsets_.end())
390 {
391 const Got_offset_list* got_offsets = p->second;
392 got_offsets->for_all_got_offsets(v);
393 }
394 }
395 }
396
397 // Class Sized_relobj_file.
398
399 template<int size, bool big_endian>
400 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
401 const std::string& name,
402 Input_file* input_file,
403 off_t offset,
404 const elfcpp::Ehdr<size, big_endian>& ehdr)
405 : Sized_relobj<size, big_endian>(name, input_file, offset),
406 elf_file_(this, ehdr),
407 symtab_shndx_(-1U),
408 local_symbol_count_(0),
409 output_local_symbol_count_(0),
410 output_local_dynsym_count_(0),
411 symbols_(),
412 defined_count_(0),
413 local_symbol_offset_(0),
414 local_dynsym_offset_(0),
415 local_values_(),
416 local_plt_offsets_(),
417 kept_comdat_sections_(),
418 has_eh_frame_(false),
419 discarded_eh_frame_shndx_(-1U),
420 deferred_layout_(),
421 deferred_layout_relocs_(),
422 compressed_sections_()
423 {
424 }
425
426 template<int size, bool big_endian>
427 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
428 {
429 }
430
431 // Set up an object file based on the file header. This sets up the
432 // section information.
433
434 template<int size, bool big_endian>
435 void
436 Sized_relobj_file<size, big_endian>::do_setup()
437 {
438 const unsigned int shnum = this->elf_file_.shnum();
439 this->set_shnum(shnum);
440 }
441
442 // Find the SHT_SYMTAB section, given the section headers. The ELF
443 // standard says that maybe in the future there can be more than one
444 // SHT_SYMTAB section. Until somebody figures out how that could
445 // work, we assume there is only one.
446
447 template<int size, bool big_endian>
448 void
449 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
450 {
451 const unsigned int shnum = this->shnum();
452 this->symtab_shndx_ = 0;
453 if (shnum > 0)
454 {
455 // Look through the sections in reverse order, since gas tends
456 // to put the symbol table at the end.
457 const unsigned char* p = pshdrs + shnum * This::shdr_size;
458 unsigned int i = shnum;
459 unsigned int xindex_shndx = 0;
460 unsigned int xindex_link = 0;
461 while (i > 0)
462 {
463 --i;
464 p -= This::shdr_size;
465 typename This::Shdr shdr(p);
466 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
467 {
468 this->symtab_shndx_ = i;
469 if (xindex_shndx > 0 && xindex_link == i)
470 {
471 Xindex* xindex =
472 new Xindex(this->elf_file_.large_shndx_offset());
473 xindex->read_symtab_xindex<size, big_endian>(this,
474 xindex_shndx,
475 pshdrs);
476 this->set_xindex(xindex);
477 }
478 break;
479 }
480
481 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
482 // one. This will work if it follows the SHT_SYMTAB
483 // section.
484 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
485 {
486 xindex_shndx = i;
487 xindex_link = this->adjust_shndx(shdr.get_sh_link());
488 }
489 }
490 }
491 }
492
493 // Return the Xindex structure to use for object with lots of
494 // sections.
495
496 template<int size, bool big_endian>
497 Xindex*
498 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
499 {
500 gold_assert(this->symtab_shndx_ != -1U);
501 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
502 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
503 return xindex;
504 }
505
506 // Return whether SHDR has the right type and flags to be a GNU
507 // .eh_frame section.
508
509 template<int size, bool big_endian>
510 bool
511 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
512 const elfcpp::Shdr<size, big_endian>* shdr) const
513 {
514 return (shdr->get_sh_type() == elfcpp::SHT_PROGBITS
515 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
516 }
517
518 // Return whether there is a GNU .eh_frame section, given the section
519 // headers and the section names.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::find_eh_frame(
524 const unsigned char* pshdrs,
525 const char* names,
526 section_size_type names_size) const
527 {
528 const unsigned int shnum = this->shnum();
529 const unsigned char* p = pshdrs + This::shdr_size;
530 for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
531 {
532 typename This::Shdr shdr(p);
533 if (this->check_eh_frame_flags(&shdr))
534 {
535 if (shdr.get_sh_name() >= names_size)
536 {
537 this->error(_("bad section name offset for section %u: %lu"),
538 i, static_cast<unsigned long>(shdr.get_sh_name()));
539 continue;
540 }
541
542 const char* name = names + shdr.get_sh_name();
543 if (strcmp(name, ".eh_frame") == 0)
544 return true;
545 }
546 }
547 return false;
548 }
549
550 // Build a table for any compressed debug sections, mapping each section index
551 // to the uncompressed size.
552
553 template<int size, bool big_endian>
554 Compressed_section_map*
555 build_compressed_section_map(
556 const unsigned char* pshdrs,
557 unsigned int shnum,
558 const char* names,
559 section_size_type names_size,
560 Sized_relobj_file<size, big_endian>* obj)
561 {
562 Compressed_section_map* uncompressed_sizes = new Compressed_section_map();
563 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
564 const unsigned char* p = pshdrs + shdr_size;
565 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
566 {
567 typename elfcpp::Shdr<size, big_endian> shdr(p);
568 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
569 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570 {
571 if (shdr.get_sh_name() >= names_size)
572 {
573 obj->error(_("bad section name offset for section %u: %lu"),
574 i, static_cast<unsigned long>(shdr.get_sh_name()));
575 continue;
576 }
577
578 const char* name = names + shdr.get_sh_name();
579 if (is_compressed_debug_section(name))
580 {
581 section_size_type len;
582 const unsigned char* contents =
583 obj->section_contents(i, &len, false);
584 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
585 if (uncompressed_size != -1ULL)
586 (*uncompressed_sizes)[i] =
587 convert_to_section_size_type(uncompressed_size);
588 }
589 }
590 }
591 return uncompressed_sizes;
592 }
593
594 // Read the sections and symbols from an object file.
595
596 template<int size, bool big_endian>
597 void
598 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
599 {
600 this->read_section_data(&this->elf_file_, sd);
601
602 const unsigned char* const pshdrs = sd->section_headers->data();
603
604 this->find_symtab(pshdrs);
605
606 const unsigned char* namesu = sd->section_names->data();
607 const char* names = reinterpret_cast<const char*>(namesu);
608 if (memmem(names, sd->section_names_size, ".eh_frame", 10) != NULL)
609 {
610 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
611 this->has_eh_frame_ = true;
612 }
613 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
614 this->compressed_sections_ =
615 build_compressed_section_map(pshdrs, this->shnum(), names,
616 sd->section_names_size, this);
617
618 sd->symbols = NULL;
619 sd->symbols_size = 0;
620 sd->external_symbols_offset = 0;
621 sd->symbol_names = NULL;
622 sd->symbol_names_size = 0;
623
624 if (this->symtab_shndx_ == 0)
625 {
626 // No symbol table. Weird but legal.
627 return;
628 }
629
630 // Get the symbol table section header.
631 typename This::Shdr symtabshdr(pshdrs
632 + this->symtab_shndx_ * This::shdr_size);
633 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
634
635 // If this object has a .eh_frame section, we need all the symbols.
636 // Otherwise we only need the external symbols. While it would be
637 // simpler to just always read all the symbols, I've seen object
638 // files with well over 2000 local symbols, which for a 64-bit
639 // object file format is over 5 pages that we don't need to read
640 // now.
641
642 const int sym_size = This::sym_size;
643 const unsigned int loccount = symtabshdr.get_sh_info();
644 this->local_symbol_count_ = loccount;
645 this->local_values_.resize(loccount);
646 section_offset_type locsize = loccount * sym_size;
647 off_t dataoff = symtabshdr.get_sh_offset();
648 section_size_type datasize =
649 convert_to_section_size_type(symtabshdr.get_sh_size());
650 off_t extoff = dataoff + locsize;
651 section_size_type extsize = datasize - locsize;
652
653 off_t readoff = this->has_eh_frame_ ? dataoff : extoff;
654 section_size_type readsize = this->has_eh_frame_ ? datasize : extsize;
655
656 if (readsize == 0)
657 {
658 // No external symbols. Also weird but also legal.
659 return;
660 }
661
662 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
663
664 // Read the section header for the symbol names.
665 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
666 if (strtab_shndx >= this->shnum())
667 {
668 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
669 return;
670 }
671 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
672 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
673 {
674 this->error(_("symbol table name section has wrong type: %u"),
675 static_cast<unsigned int>(strtabshdr.get_sh_type()));
676 return;
677 }
678
679 // Read the symbol names.
680 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
681 strtabshdr.get_sh_size(),
682 false, true);
683
684 sd->symbols = fvsymtab;
685 sd->symbols_size = readsize;
686 sd->external_symbols_offset = this->has_eh_frame_ ? locsize : 0;
687 sd->symbol_names = fvstrtab;
688 sd->symbol_names_size =
689 convert_to_section_size_type(strtabshdr.get_sh_size());
690 }
691
692 // Return the section index of symbol SYM. Set *VALUE to its value in
693 // the object file. Set *IS_ORDINARY if this is an ordinary section
694 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
695 // Note that for a symbol which is not defined in this object file,
696 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
697 // the final value of the symbol in the link.
698
699 template<int size, bool big_endian>
700 unsigned int
701 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
702 Address* value,
703 bool* is_ordinary)
704 {
705 section_size_type symbols_size;
706 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
707 &symbols_size,
708 false);
709
710 const size_t count = symbols_size / This::sym_size;
711 gold_assert(sym < count);
712
713 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
714 *value = elfsym.get_st_value();
715
716 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
717 }
718
719 // Return whether to include a section group in the link. LAYOUT is
720 // used to keep track of which section groups we have already seen.
721 // INDEX is the index of the section group and SHDR is the section
722 // header. If we do not want to include this group, we set bits in
723 // OMIT for each section which should be discarded.
724
725 template<int size, bool big_endian>
726 bool
727 Sized_relobj_file<size, big_endian>::include_section_group(
728 Symbol_table* symtab,
729 Layout* layout,
730 unsigned int index,
731 const char* name,
732 const unsigned char* shdrs,
733 const char* section_names,
734 section_size_type section_names_size,
735 std::vector<bool>* omit)
736 {
737 // Read the section contents.
738 typename This::Shdr shdr(shdrs + index * This::shdr_size);
739 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
740 shdr.get_sh_size(), true, false);
741 const elfcpp::Elf_Word* pword =
742 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
743
744 // The first word contains flags. We only care about COMDAT section
745 // groups. Other section groups are always included in the link
746 // just like ordinary sections.
747 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
748
749 // Look up the group signature, which is the name of a symbol. This
750 // is a lot of effort to go to to read a string. Why didn't they
751 // just have the group signature point into the string table, rather
752 // than indirect through a symbol?
753
754 // Get the appropriate symbol table header (this will normally be
755 // the single SHT_SYMTAB section, but in principle it need not be).
756 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
757 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
758
759 // Read the symbol table entry.
760 unsigned int symndx = shdr.get_sh_info();
761 if (symndx >= symshdr.get_sh_size() / This::sym_size)
762 {
763 this->error(_("section group %u info %u out of range"),
764 index, symndx);
765 return false;
766 }
767 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
768 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
769 false);
770 elfcpp::Sym<size, big_endian> sym(psym);
771
772 // Read the symbol table names.
773 section_size_type symnamelen;
774 const unsigned char* psymnamesu;
775 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
776 &symnamelen, true);
777 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
778
779 // Get the section group signature.
780 if (sym.get_st_name() >= symnamelen)
781 {
782 this->error(_("symbol %u name offset %u out of range"),
783 symndx, sym.get_st_name());
784 return false;
785 }
786
787 std::string signature(psymnames + sym.get_st_name());
788
789 // It seems that some versions of gas will create a section group
790 // associated with a section symbol, and then fail to give a name to
791 // the section symbol. In such a case, use the name of the section.
792 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
793 {
794 bool is_ordinary;
795 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
796 sym.get_st_shndx(),
797 &is_ordinary);
798 if (!is_ordinary || sym_shndx >= this->shnum())
799 {
800 this->error(_("symbol %u invalid section index %u"),
801 symndx, sym_shndx);
802 return false;
803 }
804 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
805 if (member_shdr.get_sh_name() < section_names_size)
806 signature = section_names + member_shdr.get_sh_name();
807 }
808
809 // Record this section group in the layout, and see whether we've already
810 // seen one with the same signature.
811 bool include_group;
812 bool is_comdat;
813 Kept_section* kept_section = NULL;
814
815 if ((flags & elfcpp::GRP_COMDAT) == 0)
816 {
817 include_group = true;
818 is_comdat = false;
819 }
820 else
821 {
822 include_group = layout->find_or_add_kept_section(signature,
823 this, index, true,
824 true, &kept_section);
825 is_comdat = true;
826 }
827
828 if (is_comdat && include_group)
829 {
830 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
831 if (incremental_inputs != NULL)
832 incremental_inputs->report_comdat_group(this, signature.c_str());
833 }
834
835 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
836
837 std::vector<unsigned int> shndxes;
838 bool relocate_group = include_group && parameters->options().relocatable();
839 if (relocate_group)
840 shndxes.reserve(count - 1);
841
842 for (size_t i = 1; i < count; ++i)
843 {
844 elfcpp::Elf_Word shndx =
845 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
846
847 if (relocate_group)
848 shndxes.push_back(shndx);
849
850 if (shndx >= this->shnum())
851 {
852 this->error(_("section %u in section group %u out of range"),
853 shndx, index);
854 continue;
855 }
856
857 // Check for an earlier section number, since we're going to get
858 // it wrong--we may have already decided to include the section.
859 if (shndx < index)
860 this->error(_("invalid section group %u refers to earlier section %u"),
861 index, shndx);
862
863 // Get the name of the member section.
864 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
865 if (member_shdr.get_sh_name() >= section_names_size)
866 {
867 // This is an error, but it will be diagnosed eventually
868 // in do_layout, so we don't need to do anything here but
869 // ignore it.
870 continue;
871 }
872 std::string mname(section_names + member_shdr.get_sh_name());
873
874 if (include_group)
875 {
876 if (is_comdat)
877 kept_section->add_comdat_section(mname, shndx,
878 member_shdr.get_sh_size());
879 }
880 else
881 {
882 (*omit)[shndx] = true;
883
884 if (is_comdat)
885 {
886 Relobj* kept_object = kept_section->object();
887 if (kept_section->is_comdat())
888 {
889 // Find the corresponding kept section, and store
890 // that info in the discarded section table.
891 unsigned int kept_shndx;
892 uint64_t kept_size;
893 if (kept_section->find_comdat_section(mname, &kept_shndx,
894 &kept_size))
895 {
896 // We don't keep a mapping for this section if
897 // it has a different size. The mapping is only
898 // used for relocation processing, and we don't
899 // want to treat the sections as similar if the
900 // sizes are different. Checking the section
901 // size is the approach used by the GNU linker.
902 if (kept_size == member_shdr.get_sh_size())
903 this->set_kept_comdat_section(shndx, kept_object,
904 kept_shndx);
905 }
906 }
907 else
908 {
909 // The existing section is a linkonce section. Add
910 // a mapping if there is exactly one section in the
911 // group (which is true when COUNT == 2) and if it
912 // is the same size.
913 if (count == 2
914 && (kept_section->linkonce_size()
915 == member_shdr.get_sh_size()))
916 this->set_kept_comdat_section(shndx, kept_object,
917 kept_section->shndx());
918 }
919 }
920 }
921 }
922
923 if (relocate_group)
924 layout->layout_group(symtab, this, index, name, signature.c_str(),
925 shdr, flags, &shndxes);
926
927 return include_group;
928 }
929
930 // Whether to include a linkonce section in the link. NAME is the
931 // name of the section and SHDR is the section header.
932
933 // Linkonce sections are a GNU extension implemented in the original
934 // GNU linker before section groups were defined. The semantics are
935 // that we only include one linkonce section with a given name. The
936 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
937 // where T is the type of section and SYMNAME is the name of a symbol.
938 // In an attempt to make linkonce sections interact well with section
939 // groups, we try to identify SYMNAME and use it like a section group
940 // signature. We want to block section groups with that signature,
941 // but not other linkonce sections with that signature. We also use
942 // the full name of the linkonce section as a normal section group
943 // signature.
944
945 template<int size, bool big_endian>
946 bool
947 Sized_relobj_file<size, big_endian>::include_linkonce_section(
948 Layout* layout,
949 unsigned int index,
950 const char* name,
951 const elfcpp::Shdr<size, big_endian>& shdr)
952 {
953 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
954 // In general the symbol name we want will be the string following
955 // the last '.'. However, we have to handle the case of
956 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
957 // some versions of gcc. So we use a heuristic: if the name starts
958 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
959 // we look for the last '.'. We can't always simply skip
960 // ".gnu.linkonce.X", because we have to deal with cases like
961 // ".gnu.linkonce.d.rel.ro.local".
962 const char* const linkonce_t = ".gnu.linkonce.t.";
963 const char* symname;
964 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
965 symname = name + strlen(linkonce_t);
966 else
967 symname = strrchr(name, '.') + 1;
968 std::string sig1(symname);
969 std::string sig2(name);
970 Kept_section* kept1;
971 Kept_section* kept2;
972 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
973 false, &kept1);
974 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
975 true, &kept2);
976
977 if (!include2)
978 {
979 // We are not including this section because we already saw the
980 // name of the section as a signature. This normally implies
981 // that the kept section is another linkonce section. If it is
982 // the same size, record it as the section which corresponds to
983 // this one.
984 if (kept2->object() != NULL
985 && !kept2->is_comdat()
986 && kept2->linkonce_size() == sh_size)
987 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
988 }
989 else if (!include1)
990 {
991 // The section is being discarded on the basis of its symbol
992 // name. This means that the corresponding kept section was
993 // part of a comdat group, and it will be difficult to identify
994 // the specific section within that group that corresponds to
995 // this linkonce section. We'll handle the simple case where
996 // the group has only one member section. Otherwise, it's not
997 // worth the effort.
998 unsigned int kept_shndx;
999 uint64_t kept_size;
1000 if (kept1->object() != NULL
1001 && kept1->is_comdat()
1002 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1003 && kept_size == sh_size)
1004 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1005 }
1006 else
1007 {
1008 kept1->set_linkonce_size(sh_size);
1009 kept2->set_linkonce_size(sh_size);
1010 }
1011
1012 return include1 && include2;
1013 }
1014
1015 // Layout an input section.
1016
1017 template<int size, bool big_endian>
1018 inline void
1019 Sized_relobj_file<size, big_endian>::layout_section(Layout* layout,
1020 unsigned int shndx,
1021 const char* name,
1022 typename This::Shdr& shdr,
1023 unsigned int reloc_shndx,
1024 unsigned int reloc_type)
1025 {
1026 off_t offset;
1027 Output_section* os = layout->layout(this, shndx, name, shdr,
1028 reloc_shndx, reloc_type, &offset);
1029
1030 this->output_sections()[shndx] = os;
1031 if (offset == -1)
1032 this->section_offsets()[shndx] = invalid_address;
1033 else
1034 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1035
1036 // If this section requires special handling, and if there are
1037 // relocs that apply to it, then we must do the special handling
1038 // before we apply the relocs.
1039 if (offset == -1 && reloc_shndx != 0)
1040 this->set_relocs_must_follow_section_writes();
1041 }
1042
1043 // Lay out the input sections. We walk through the sections and check
1044 // whether they should be included in the link. If they should, we
1045 // pass them to the Layout object, which will return an output section
1046 // and an offset.
1047 // During garbage collection (--gc-sections) and identical code folding
1048 // (--icf), this function is called twice. When it is called the first
1049 // time, it is for setting up some sections as roots to a work-list for
1050 // --gc-sections and to do comdat processing. Actual layout happens the
1051 // second time around after all the relevant sections have been determined.
1052 // The first time, is_worklist_ready or is_icf_ready is false. It is then
1053 // set to true after the garbage collection worklist or identical code
1054 // folding is processed and the relevant sections to be kept are
1055 // determined. Then, this function is called again to layout the sections.
1056
1057 template<int size, bool big_endian>
1058 void
1059 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1060 Layout* layout,
1061 Read_symbols_data* sd)
1062 {
1063 const unsigned int shnum = this->shnum();
1064 bool is_gc_pass_one = ((parameters->options().gc_sections()
1065 && !symtab->gc()->is_worklist_ready())
1066 || (parameters->options().icf_enabled()
1067 && !symtab->icf()->is_icf_ready()));
1068
1069 bool is_gc_pass_two = ((parameters->options().gc_sections()
1070 && symtab->gc()->is_worklist_ready())
1071 || (parameters->options().icf_enabled()
1072 && symtab->icf()->is_icf_ready()));
1073
1074 bool is_gc_or_icf = (parameters->options().gc_sections()
1075 || parameters->options().icf_enabled());
1076
1077 // Both is_gc_pass_one and is_gc_pass_two should not be true.
1078 gold_assert(!(is_gc_pass_one && is_gc_pass_two));
1079
1080 if (shnum == 0)
1081 return;
1082 Symbols_data* gc_sd = NULL;
1083 if (is_gc_pass_one)
1084 {
1085 // During garbage collection save the symbols data to use it when
1086 // re-entering this function.
1087 gc_sd = new Symbols_data;
1088 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1089 this->set_symbols_data(gc_sd);
1090 }
1091 else if (is_gc_pass_two)
1092 {
1093 gc_sd = this->get_symbols_data();
1094 }
1095
1096 const unsigned char* section_headers_data = NULL;
1097 section_size_type section_names_size;
1098 const unsigned char* symbols_data = NULL;
1099 section_size_type symbols_size;
1100 section_offset_type external_symbols_offset;
1101 const unsigned char* symbol_names_data = NULL;
1102 section_size_type symbol_names_size;
1103
1104 if (is_gc_or_icf)
1105 {
1106 section_headers_data = gc_sd->section_headers_data;
1107 section_names_size = gc_sd->section_names_size;
1108 symbols_data = gc_sd->symbols_data;
1109 symbols_size = gc_sd->symbols_size;
1110 external_symbols_offset = gc_sd->external_symbols_offset;
1111 symbol_names_data = gc_sd->symbol_names_data;
1112 symbol_names_size = gc_sd->symbol_names_size;
1113 }
1114 else
1115 {
1116 section_headers_data = sd->section_headers->data();
1117 section_names_size = sd->section_names_size;
1118 if (sd->symbols != NULL)
1119 symbols_data = sd->symbols->data();
1120 symbols_size = sd->symbols_size;
1121 external_symbols_offset = sd->external_symbols_offset;
1122 if (sd->symbol_names != NULL)
1123 symbol_names_data = sd->symbol_names->data();
1124 symbol_names_size = sd->symbol_names_size;
1125 }
1126
1127 // Get the section headers.
1128 const unsigned char* shdrs = section_headers_data;
1129 const unsigned char* pshdrs;
1130
1131 // Get the section names.
1132 const unsigned char* pnamesu = (is_gc_or_icf)
1133 ? gc_sd->section_names_data
1134 : sd->section_names->data();
1135
1136 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1137
1138 // If any input files have been claimed by plugins, we need to defer
1139 // actual layout until the replacement files have arrived.
1140 const bool should_defer_layout =
1141 (parameters->options().has_plugins()
1142 && parameters->options().plugins()->should_defer_layout());
1143 unsigned int num_sections_to_defer = 0;
1144
1145 // For each section, record the index of the reloc section if any.
1146 // Use 0 to mean that there is no reloc section, -1U to mean that
1147 // there is more than one.
1148 std::vector<unsigned int> reloc_shndx(shnum, 0);
1149 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1150 // Skip the first, dummy, section.
1151 pshdrs = shdrs + This::shdr_size;
1152 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1153 {
1154 typename This::Shdr shdr(pshdrs);
1155
1156 // Count the number of sections whose layout will be deferred.
1157 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1158 ++num_sections_to_defer;
1159
1160 unsigned int sh_type = shdr.get_sh_type();
1161 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1162 {
1163 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1164 if (target_shndx == 0 || target_shndx >= shnum)
1165 {
1166 this->error(_("relocation section %u has bad info %u"),
1167 i, target_shndx);
1168 continue;
1169 }
1170
1171 if (reloc_shndx[target_shndx] != 0)
1172 reloc_shndx[target_shndx] = -1U;
1173 else
1174 {
1175 reloc_shndx[target_shndx] = i;
1176 reloc_type[target_shndx] = sh_type;
1177 }
1178 }
1179 }
1180
1181 Output_sections& out_sections(this->output_sections());
1182 std::vector<Address>& out_section_offsets(this->section_offsets());
1183
1184 if (!is_gc_pass_two)
1185 {
1186 out_sections.resize(shnum);
1187 out_section_offsets.resize(shnum);
1188 }
1189
1190 // If we are only linking for symbols, then there is nothing else to
1191 // do here.
1192 if (this->input_file()->just_symbols())
1193 {
1194 if (!is_gc_pass_two)
1195 {
1196 delete sd->section_headers;
1197 sd->section_headers = NULL;
1198 delete sd->section_names;
1199 sd->section_names = NULL;
1200 }
1201 return;
1202 }
1203
1204 if (num_sections_to_defer > 0)
1205 {
1206 parameters->options().plugins()->add_deferred_layout_object(this);
1207 this->deferred_layout_.reserve(num_sections_to_defer);
1208 }
1209
1210 // Whether we've seen a .note.GNU-stack section.
1211 bool seen_gnu_stack = false;
1212 // The flags of a .note.GNU-stack section.
1213 uint64_t gnu_stack_flags = 0;
1214
1215 // Keep track of which sections to omit.
1216 std::vector<bool> omit(shnum, false);
1217
1218 // Keep track of reloc sections when emitting relocations.
1219 const bool relocatable = parameters->options().relocatable();
1220 const bool emit_relocs = (relocatable
1221 || parameters->options().emit_relocs());
1222 std::vector<unsigned int> reloc_sections;
1223
1224 // Keep track of .eh_frame sections.
1225 std::vector<unsigned int> eh_frame_sections;
1226
1227 // Skip the first, dummy, section.
1228 pshdrs = shdrs + This::shdr_size;
1229 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1230 {
1231 typename This::Shdr shdr(pshdrs);
1232
1233 if (shdr.get_sh_name() >= section_names_size)
1234 {
1235 this->error(_("bad section name offset for section %u: %lu"),
1236 i, static_cast<unsigned long>(shdr.get_sh_name()));
1237 return;
1238 }
1239
1240 const char* name = pnames + shdr.get_sh_name();
1241
1242 if (!is_gc_pass_two)
1243 {
1244 if (this->handle_gnu_warning_section(name, i, symtab))
1245 {
1246 if (!relocatable && !parameters->options().shared())
1247 omit[i] = true;
1248 }
1249
1250 // The .note.GNU-stack section is special. It gives the
1251 // protection flags that this object file requires for the stack
1252 // in memory.
1253 if (strcmp(name, ".note.GNU-stack") == 0)
1254 {
1255 seen_gnu_stack = true;
1256 gnu_stack_flags |= shdr.get_sh_flags();
1257 omit[i] = true;
1258 }
1259
1260 // The .note.GNU-split-stack section is also special. It
1261 // indicates that the object was compiled with
1262 // -fsplit-stack.
1263 if (this->handle_split_stack_section(name))
1264 {
1265 if (!relocatable && !parameters->options().shared())
1266 omit[i] = true;
1267 }
1268
1269 // Skip attributes section.
1270 if (parameters->target().is_attributes_section(name))
1271 {
1272 omit[i] = true;
1273 }
1274
1275 bool discard = omit[i];
1276 if (!discard)
1277 {
1278 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1279 {
1280 if (!this->include_section_group(symtab, layout, i, name,
1281 shdrs, pnames,
1282 section_names_size,
1283 &omit))
1284 discard = true;
1285 }
1286 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1287 && Layout::is_linkonce(name))
1288 {
1289 if (!this->include_linkonce_section(layout, i, name, shdr))
1290 discard = true;
1291 }
1292 }
1293
1294 // Add the section to the incremental inputs layout.
1295 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1296 if (incremental_inputs != NULL
1297 && !discard
1298 && (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1299 || shdr.get_sh_type() == elfcpp::SHT_NOBITS
1300 || shdr.get_sh_type() == elfcpp::SHT_NOTE))
1301 {
1302 off_t sh_size = shdr.get_sh_size();
1303 section_size_type uncompressed_size;
1304 if (this->section_is_compressed(i, &uncompressed_size))
1305 sh_size = uncompressed_size;
1306 incremental_inputs->report_input_section(this, i, name, sh_size);
1307 }
1308
1309 if (discard)
1310 {
1311 // Do not include this section in the link.
1312 out_sections[i] = NULL;
1313 out_section_offsets[i] = invalid_address;
1314 continue;
1315 }
1316 }
1317
1318 if (is_gc_pass_one && parameters->options().gc_sections())
1319 {
1320 if (this->is_section_name_included(name)
1321 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1322 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1323 {
1324 symtab->gc()->worklist().push(Section_id(this, i));
1325 }
1326 // If the section name XXX can be represented as a C identifier
1327 // it cannot be discarded if there are references to
1328 // __start_XXX and __stop_XXX symbols. These need to be
1329 // specially handled.
1330 if (is_cident(name))
1331 {
1332 symtab->gc()->add_cident_section(name, Section_id(this, i));
1333 }
1334 }
1335
1336 // When doing a relocatable link we are going to copy input
1337 // reloc sections into the output. We only want to copy the
1338 // ones associated with sections which are not being discarded.
1339 // However, we don't know that yet for all sections. So save
1340 // reloc sections and process them later. Garbage collection is
1341 // not triggered when relocatable code is desired.
1342 if (emit_relocs
1343 && (shdr.get_sh_type() == elfcpp::SHT_REL
1344 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1345 {
1346 reloc_sections.push_back(i);
1347 continue;
1348 }
1349
1350 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1351 continue;
1352
1353 // The .eh_frame section is special. It holds exception frame
1354 // information that we need to read in order to generate the
1355 // exception frame header. We process these after all the other
1356 // sections so that the exception frame reader can reliably
1357 // determine which sections are being discarded, and discard the
1358 // corresponding information.
1359 if (!relocatable
1360 && strcmp(name, ".eh_frame") == 0
1361 && this->check_eh_frame_flags(&shdr))
1362 {
1363 if (is_gc_pass_one)
1364 {
1365 out_sections[i] = reinterpret_cast<Output_section*>(1);
1366 out_section_offsets[i] = invalid_address;
1367 }
1368 else
1369 eh_frame_sections.push_back(i);
1370 continue;
1371 }
1372
1373 if (is_gc_pass_two && parameters->options().gc_sections())
1374 {
1375 // This is executed during the second pass of garbage
1376 // collection. do_layout has been called before and some
1377 // sections have been already discarded. Simply ignore
1378 // such sections this time around.
1379 if (out_sections[i] == NULL)
1380 {
1381 gold_assert(out_section_offsets[i] == invalid_address);
1382 continue;
1383 }
1384 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1385 && symtab->gc()->is_section_garbage(this, i))
1386 {
1387 if (parameters->options().print_gc_sections())
1388 gold_info(_("%s: removing unused section from '%s'"
1389 " in file '%s'"),
1390 program_name, this->section_name(i).c_str(),
1391 this->name().c_str());
1392 out_sections[i] = NULL;
1393 out_section_offsets[i] = invalid_address;
1394 continue;
1395 }
1396 }
1397
1398 if (is_gc_pass_two && parameters->options().icf_enabled())
1399 {
1400 if (out_sections[i] == NULL)
1401 {
1402 gold_assert(out_section_offsets[i] == invalid_address);
1403 continue;
1404 }
1405 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1406 && symtab->icf()->is_section_folded(this, i))
1407 {
1408 if (parameters->options().print_icf_sections())
1409 {
1410 Section_id folded =
1411 symtab->icf()->get_folded_section(this, i);
1412 Relobj* folded_obj =
1413 reinterpret_cast<Relobj*>(folded.first);
1414 gold_info(_("%s: ICF folding section '%s' in file '%s'"
1415 "into '%s' in file '%s'"),
1416 program_name, this->section_name(i).c_str(),
1417 this->name().c_str(),
1418 folded_obj->section_name(folded.second).c_str(),
1419 folded_obj->name().c_str());
1420 }
1421 out_sections[i] = NULL;
1422 out_section_offsets[i] = invalid_address;
1423 continue;
1424 }
1425 }
1426
1427 // Defer layout here if input files are claimed by plugins. When gc
1428 // is turned on this function is called twice. For the second call
1429 // should_defer_layout should be false.
1430 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1431 {
1432 gold_assert(!is_gc_pass_two);
1433 this->deferred_layout_.push_back(Deferred_layout(i, name,
1434 pshdrs,
1435 reloc_shndx[i],
1436 reloc_type[i]));
1437 // Put dummy values here; real values will be supplied by
1438 // do_layout_deferred_sections.
1439 out_sections[i] = reinterpret_cast<Output_section*>(2);
1440 out_section_offsets[i] = invalid_address;
1441 continue;
1442 }
1443
1444 // During gc_pass_two if a section that was previously deferred is
1445 // found, do not layout the section as layout_deferred_sections will
1446 // do it later from gold.cc.
1447 if (is_gc_pass_two
1448 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1449 continue;
1450
1451 if (is_gc_pass_one)
1452 {
1453 // This is during garbage collection. The out_sections are
1454 // assigned in the second call to this function.
1455 out_sections[i] = reinterpret_cast<Output_section*>(1);
1456 out_section_offsets[i] = invalid_address;
1457 }
1458 else
1459 {
1460 // When garbage collection is switched on the actual layout
1461 // only happens in the second call.
1462 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1463 reloc_type[i]);
1464 }
1465 }
1466
1467 if (!is_gc_pass_two)
1468 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1469
1470 // When doing a relocatable link handle the reloc sections at the
1471 // end. Garbage collection and Identical Code Folding is not
1472 // turned on for relocatable code.
1473 if (emit_relocs)
1474 this->size_relocatable_relocs();
1475
1476 gold_assert(!(is_gc_or_icf) || reloc_sections.empty());
1477
1478 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1479 p != reloc_sections.end();
1480 ++p)
1481 {
1482 unsigned int i = *p;
1483 const unsigned char* pshdr;
1484 pshdr = section_headers_data + i * This::shdr_size;
1485 typename This::Shdr shdr(pshdr);
1486
1487 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1488 if (data_shndx >= shnum)
1489 {
1490 // We already warned about this above.
1491 continue;
1492 }
1493
1494 Output_section* data_section = out_sections[data_shndx];
1495 if (data_section == reinterpret_cast<Output_section*>(2))
1496 {
1497 // The layout for the data section was deferred, so we need
1498 // to defer the relocation section, too.
1499 const char* name = pnames + shdr.get_sh_name();
1500 this->deferred_layout_relocs_.push_back(
1501 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1502 out_sections[i] = reinterpret_cast<Output_section*>(2);
1503 out_section_offsets[i] = invalid_address;
1504 continue;
1505 }
1506 if (data_section == NULL)
1507 {
1508 out_sections[i] = NULL;
1509 out_section_offsets[i] = invalid_address;
1510 continue;
1511 }
1512
1513 Relocatable_relocs* rr = new Relocatable_relocs();
1514 this->set_relocatable_relocs(i, rr);
1515
1516 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1517 rr);
1518 out_sections[i] = os;
1519 out_section_offsets[i] = invalid_address;
1520 }
1521
1522 // Handle the .eh_frame sections at the end.
1523 gold_assert(!is_gc_pass_one || eh_frame_sections.empty());
1524 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1525 p != eh_frame_sections.end();
1526 ++p)
1527 {
1528 gold_assert(this->has_eh_frame_);
1529 gold_assert(external_symbols_offset != 0);
1530
1531 unsigned int i = *p;
1532 const unsigned char* pshdr;
1533 pshdr = section_headers_data + i * This::shdr_size;
1534 typename This::Shdr shdr(pshdr);
1535
1536 off_t offset;
1537 Output_section* os = layout->layout_eh_frame(this,
1538 symbols_data,
1539 symbols_size,
1540 symbol_names_data,
1541 symbol_names_size,
1542 i, shdr,
1543 reloc_shndx[i],
1544 reloc_type[i],
1545 &offset);
1546 out_sections[i] = os;
1547 if (os == NULL || offset == -1)
1548 {
1549 // An object can contain at most one section holding exception
1550 // frame information.
1551 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1552 this->discarded_eh_frame_shndx_ = i;
1553 out_section_offsets[i] = invalid_address;
1554 }
1555 else
1556 out_section_offsets[i] = convert_types<Address, off_t>(offset);
1557
1558 // If this section requires special handling, and if there are
1559 // relocs that apply to it, then we must do the special handling
1560 // before we apply the relocs.
1561 if (os != NULL && offset == -1 && reloc_shndx[i] != 0)
1562 this->set_relocs_must_follow_section_writes();
1563 }
1564
1565 if (is_gc_pass_two)
1566 {
1567 delete[] gc_sd->section_headers_data;
1568 delete[] gc_sd->section_names_data;
1569 delete[] gc_sd->symbols_data;
1570 delete[] gc_sd->symbol_names_data;
1571 this->set_symbols_data(NULL);
1572 }
1573 else
1574 {
1575 delete sd->section_headers;
1576 sd->section_headers = NULL;
1577 delete sd->section_names;
1578 sd->section_names = NULL;
1579 }
1580 }
1581
1582 // Layout sections whose layout was deferred while waiting for
1583 // input files from a plugin.
1584
1585 template<int size, bool big_endian>
1586 void
1587 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1588 {
1589 typename std::vector<Deferred_layout>::iterator deferred;
1590
1591 for (deferred = this->deferred_layout_.begin();
1592 deferred != this->deferred_layout_.end();
1593 ++deferred)
1594 {
1595 typename This::Shdr shdr(deferred->shdr_data_);
1596 // If the section is not included, it is because the garbage collector
1597 // decided it is not needed. Avoid reverting that decision.
1598 if (!this->is_section_included(deferred->shndx_))
1599 continue;
1600
1601 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1602 shdr, deferred->reloc_shndx_, deferred->reloc_type_);
1603 }
1604
1605 this->deferred_layout_.clear();
1606
1607 // Now handle the deferred relocation sections.
1608
1609 Output_sections& out_sections(this->output_sections());
1610 std::vector<Address>& out_section_offsets(this->section_offsets());
1611
1612 for (deferred = this->deferred_layout_relocs_.begin();
1613 deferred != this->deferred_layout_relocs_.end();
1614 ++deferred)
1615 {
1616 unsigned int shndx = deferred->shndx_;
1617 typename This::Shdr shdr(deferred->shdr_data_);
1618 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1619
1620 Output_section* data_section = out_sections[data_shndx];
1621 if (data_section == NULL)
1622 {
1623 out_sections[shndx] = NULL;
1624 out_section_offsets[shndx] = invalid_address;
1625 continue;
1626 }
1627
1628 Relocatable_relocs* rr = new Relocatable_relocs();
1629 this->set_relocatable_relocs(shndx, rr);
1630
1631 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1632 data_section, rr);
1633 out_sections[shndx] = os;
1634 out_section_offsets[shndx] = invalid_address;
1635 }
1636 }
1637
1638 // Add the symbols to the symbol table.
1639
1640 template<int size, bool big_endian>
1641 void
1642 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1643 Read_symbols_data* sd,
1644 Layout*)
1645 {
1646 if (sd->symbols == NULL)
1647 {
1648 gold_assert(sd->symbol_names == NULL);
1649 return;
1650 }
1651
1652 const int sym_size = This::sym_size;
1653 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1654 / sym_size);
1655 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1656 {
1657 this->error(_("size of symbols is not multiple of symbol size"));
1658 return;
1659 }
1660
1661 this->symbols_.resize(symcount);
1662
1663 const char* sym_names =
1664 reinterpret_cast<const char*>(sd->symbol_names->data());
1665 symtab->add_from_relobj(this,
1666 sd->symbols->data() + sd->external_symbols_offset,
1667 symcount, this->local_symbol_count_,
1668 sym_names, sd->symbol_names_size,
1669 &this->symbols_,
1670 &this->defined_count_);
1671
1672 delete sd->symbols;
1673 sd->symbols = NULL;
1674 delete sd->symbol_names;
1675 sd->symbol_names = NULL;
1676 }
1677
1678 // Find out if this object, that is a member of a lib group, should be included
1679 // in the link. We check every symbol defined by this object. If the symbol
1680 // table has a strong undefined reference to that symbol, we have to include
1681 // the object.
1682
1683 template<int size, bool big_endian>
1684 Archive::Should_include
1685 Sized_relobj_file<size, big_endian>::do_should_include_member(
1686 Symbol_table* symtab,
1687 Layout* layout,
1688 Read_symbols_data* sd,
1689 std::string* why)
1690 {
1691 char* tmpbuf = NULL;
1692 size_t tmpbuflen = 0;
1693 const char* sym_names =
1694 reinterpret_cast<const char*>(sd->symbol_names->data());
1695 const unsigned char* syms =
1696 sd->symbols->data() + sd->external_symbols_offset;
1697 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1698 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1699 / sym_size);
1700
1701 const unsigned char* p = syms;
1702
1703 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1704 {
1705 elfcpp::Sym<size, big_endian> sym(p);
1706 unsigned int st_shndx = sym.get_st_shndx();
1707 if (st_shndx == elfcpp::SHN_UNDEF)
1708 continue;
1709
1710 unsigned int st_name = sym.get_st_name();
1711 const char* name = sym_names + st_name;
1712 Symbol* symbol;
1713 Archive::Should_include t = Archive::should_include_member(symtab,
1714 layout,
1715 name,
1716 &symbol, why,
1717 &tmpbuf,
1718 &tmpbuflen);
1719 if (t == Archive::SHOULD_INCLUDE_YES)
1720 {
1721 if (tmpbuf != NULL)
1722 free(tmpbuf);
1723 return t;
1724 }
1725 }
1726 if (tmpbuf != NULL)
1727 free(tmpbuf);
1728 return Archive::SHOULD_INCLUDE_UNKNOWN;
1729 }
1730
1731 // Iterate over global defined symbols, calling a visitor class V for each.
1732
1733 template<int size, bool big_endian>
1734 void
1735 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
1736 Read_symbols_data* sd,
1737 Library_base::Symbol_visitor_base* v)
1738 {
1739 const char* sym_names =
1740 reinterpret_cast<const char*>(sd->symbol_names->data());
1741 const unsigned char* syms =
1742 sd->symbols->data() + sd->external_symbols_offset;
1743 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1744 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1745 / sym_size);
1746 const unsigned char* p = syms;
1747
1748 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1749 {
1750 elfcpp::Sym<size, big_endian> sym(p);
1751 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
1752 v->visit(sym_names + sym.get_st_name());
1753 }
1754 }
1755
1756 // Return whether the local symbol SYMNDX has a PLT offset.
1757
1758 template<int size, bool big_endian>
1759 bool
1760 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
1761 unsigned int symndx) const
1762 {
1763 typename Local_plt_offsets::const_iterator p =
1764 this->local_plt_offsets_.find(symndx);
1765 return p != this->local_plt_offsets_.end();
1766 }
1767
1768 // Get the PLT offset of a local symbol.
1769
1770 template<int size, bool big_endian>
1771 unsigned int
1772 Sized_relobj_file<size, big_endian>::local_plt_offset(unsigned int symndx) const
1773 {
1774 typename Local_plt_offsets::const_iterator p =
1775 this->local_plt_offsets_.find(symndx);
1776 gold_assert(p != this->local_plt_offsets_.end());
1777 return p->second;
1778 }
1779
1780 // Set the PLT offset of a local symbol.
1781
1782 template<int size, bool big_endian>
1783 void
1784 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
1785 unsigned int symndx, unsigned int plt_offset)
1786 {
1787 std::pair<typename Local_plt_offsets::iterator, bool> ins =
1788 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
1789 gold_assert(ins.second);
1790 }
1791
1792 // First pass over the local symbols. Here we add their names to
1793 // *POOL and *DYNPOOL, and we store the symbol value in
1794 // THIS->LOCAL_VALUES_. This function is always called from a
1795 // singleton thread. This is followed by a call to
1796 // finalize_local_symbols.
1797
1798 template<int size, bool big_endian>
1799 void
1800 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
1801 Stringpool* dynpool)
1802 {
1803 gold_assert(this->symtab_shndx_ != -1U);
1804 if (this->symtab_shndx_ == 0)
1805 {
1806 // This object has no symbols. Weird but legal.
1807 return;
1808 }
1809
1810 // Read the symbol table section header.
1811 const unsigned int symtab_shndx = this->symtab_shndx_;
1812 typename This::Shdr symtabshdr(this,
1813 this->elf_file_.section_header(symtab_shndx));
1814 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1815
1816 // Read the local symbols.
1817 const int sym_size = This::sym_size;
1818 const unsigned int loccount = this->local_symbol_count_;
1819 gold_assert(loccount == symtabshdr.get_sh_info());
1820 off_t locsize = loccount * sym_size;
1821 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1822 locsize, true, true);
1823
1824 // Read the symbol names.
1825 const unsigned int strtab_shndx =
1826 this->adjust_shndx(symtabshdr.get_sh_link());
1827 section_size_type strtab_size;
1828 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
1829 &strtab_size,
1830 true);
1831 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1832
1833 // Loop over the local symbols.
1834
1835 const Output_sections& out_sections(this->output_sections());
1836 unsigned int shnum = this->shnum();
1837 unsigned int count = 0;
1838 unsigned int dyncount = 0;
1839 // Skip the first, dummy, symbol.
1840 psyms += sym_size;
1841 bool strip_all = parameters->options().strip_all();
1842 bool discard_all = parameters->options().discard_all();
1843 bool discard_locals = parameters->options().discard_locals();
1844 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1845 {
1846 elfcpp::Sym<size, big_endian> sym(psyms);
1847
1848 Symbol_value<size>& lv(this->local_values_[i]);
1849
1850 bool is_ordinary;
1851 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
1852 &is_ordinary);
1853 lv.set_input_shndx(shndx, is_ordinary);
1854
1855 if (sym.get_st_type() == elfcpp::STT_SECTION)
1856 lv.set_is_section_symbol();
1857 else if (sym.get_st_type() == elfcpp::STT_TLS)
1858 lv.set_is_tls_symbol();
1859 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
1860 lv.set_is_ifunc_symbol();
1861
1862 // Save the input symbol value for use in do_finalize_local_symbols().
1863 lv.set_input_value(sym.get_st_value());
1864
1865 // Decide whether this symbol should go into the output file.
1866
1867 if ((shndx < shnum && out_sections[shndx] == NULL)
1868 || shndx == this->discarded_eh_frame_shndx_)
1869 {
1870 lv.set_no_output_symtab_entry();
1871 gold_assert(!lv.needs_output_dynsym_entry());
1872 continue;
1873 }
1874
1875 if (sym.get_st_type() == elfcpp::STT_SECTION)
1876 {
1877 lv.set_no_output_symtab_entry();
1878 gold_assert(!lv.needs_output_dynsym_entry());
1879 continue;
1880 }
1881
1882 if (sym.get_st_name() >= strtab_size)
1883 {
1884 this->error(_("local symbol %u section name out of range: %u >= %u"),
1885 i, sym.get_st_name(),
1886 static_cast<unsigned int>(strtab_size));
1887 lv.set_no_output_symtab_entry();
1888 continue;
1889 }
1890
1891 const char* name = pnames + sym.get_st_name();
1892
1893 // If needed, add the symbol to the dynamic symbol table string pool.
1894 if (lv.needs_output_dynsym_entry())
1895 {
1896 dynpool->add(name, true, NULL);
1897 ++dyncount;
1898 }
1899
1900 if (strip_all
1901 || (discard_all && lv.may_be_discarded_from_output_symtab()))
1902 {
1903 lv.set_no_output_symtab_entry();
1904 continue;
1905 }
1906
1907 // If --discard-locals option is used, discard all temporary local
1908 // symbols. These symbols start with system-specific local label
1909 // prefixes, typically .L for ELF system. We want to be compatible
1910 // with GNU ld so here we essentially use the same check in
1911 // bfd_is_local_label(). The code is different because we already
1912 // know that:
1913 //
1914 // - the symbol is local and thus cannot have global or weak binding.
1915 // - the symbol is not a section symbol.
1916 // - the symbol has a name.
1917 //
1918 // We do not discard a symbol if it needs a dynamic symbol entry.
1919 if (discard_locals
1920 && sym.get_st_type() != elfcpp::STT_FILE
1921 && !lv.needs_output_dynsym_entry()
1922 && lv.may_be_discarded_from_output_symtab()
1923 && parameters->target().is_local_label_name(name))
1924 {
1925 lv.set_no_output_symtab_entry();
1926 continue;
1927 }
1928
1929 // Discard the local symbol if -retain_symbols_file is specified
1930 // and the local symbol is not in that file.
1931 if (!parameters->options().should_retain_symbol(name))
1932 {
1933 lv.set_no_output_symtab_entry();
1934 continue;
1935 }
1936
1937 // Add the symbol to the symbol table string pool.
1938 pool->add(name, true, NULL);
1939 ++count;
1940 }
1941
1942 this->output_local_symbol_count_ = count;
1943 this->output_local_dynsym_count_ = dyncount;
1944 }
1945
1946 // Compute the final value of a local symbol.
1947
1948 template<int size, bool big_endian>
1949 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
1950 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
1951 unsigned int r_sym,
1952 const Symbol_value<size>* lv_in,
1953 Symbol_value<size>* lv_out,
1954 bool relocatable,
1955 const Output_sections& out_sections,
1956 const std::vector<Address>& out_offsets,
1957 const Symbol_table* symtab)
1958 {
1959 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
1960 // we may have a memory leak.
1961 gold_assert(lv_out->has_output_value());
1962
1963 bool is_ordinary;
1964 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
1965
1966 // Set the output symbol value.
1967
1968 if (!is_ordinary)
1969 {
1970 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
1971 lv_out->set_output_value(lv_in->input_value());
1972 else
1973 {
1974 this->error(_("unknown section index %u for local symbol %u"),
1975 shndx, r_sym);
1976 lv_out->set_output_value(0);
1977 return This::CFLV_ERROR;
1978 }
1979 }
1980 else
1981 {
1982 if (shndx >= this->shnum())
1983 {
1984 this->error(_("local symbol %u section index %u out of range"),
1985 r_sym, shndx);
1986 lv_out->set_output_value(0);
1987 return This::CFLV_ERROR;
1988 }
1989
1990 Output_section* os = out_sections[shndx];
1991 Address secoffset = out_offsets[shndx];
1992 if (symtab->is_section_folded(this, shndx))
1993 {
1994 gold_assert(os == NULL && secoffset == invalid_address);
1995 // Get the os of the section it is folded onto.
1996 Section_id folded = symtab->icf()->get_folded_section(this,
1997 shndx);
1998 gold_assert(folded.first != NULL);
1999 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2000 <Sized_relobj_file<size, big_endian>*>(folded.first);
2001 os = folded_obj->output_section(folded.second);
2002 gold_assert(os != NULL);
2003 secoffset = folded_obj->get_output_section_offset(folded.second);
2004
2005 // This could be a relaxed input section.
2006 if (secoffset == invalid_address)
2007 {
2008 const Output_relaxed_input_section* relaxed_section =
2009 os->find_relaxed_input_section(folded_obj, folded.second);
2010 gold_assert(relaxed_section != NULL);
2011 secoffset = relaxed_section->address() - os->address();
2012 }
2013 }
2014
2015 if (os == NULL)
2016 {
2017 // This local symbol belongs to a section we are discarding.
2018 // In some cases when applying relocations later, we will
2019 // attempt to match it to the corresponding kept section,
2020 // so we leave the input value unchanged here.
2021 return This::CFLV_DISCARDED;
2022 }
2023 else if (secoffset == invalid_address)
2024 {
2025 uint64_t start;
2026
2027 // This is a SHF_MERGE section or one which otherwise
2028 // requires special handling.
2029 if (shndx == this->discarded_eh_frame_shndx_)
2030 {
2031 // This local symbol belongs to a discarded .eh_frame
2032 // section. Just treat it like the case in which
2033 // os == NULL above.
2034 gold_assert(this->has_eh_frame_);
2035 return This::CFLV_DISCARDED;
2036 }
2037 else if (!lv_in->is_section_symbol())
2038 {
2039 // This is not a section symbol. We can determine
2040 // the final value now.
2041 lv_out->set_output_value(
2042 os->output_address(this, shndx, lv_in->input_value()));
2043 }
2044 else if (!os->find_starting_output_address(this, shndx, &start))
2045 {
2046 // This is a section symbol, but apparently not one in a
2047 // merged section. First check to see if this is a relaxed
2048 // input section. If so, use its address. Otherwise just
2049 // use the start of the output section. This happens with
2050 // relocatable links when the input object has section
2051 // symbols for arbitrary non-merge sections.
2052 const Output_section_data* posd =
2053 os->find_relaxed_input_section(this, shndx);
2054 if (posd != NULL)
2055 {
2056 Address relocatable_link_adjustment =
2057 relocatable ? os->address() : 0;
2058 lv_out->set_output_value(posd->address()
2059 - relocatable_link_adjustment);
2060 }
2061 else
2062 lv_out->set_output_value(os->address());
2063 }
2064 else
2065 {
2066 // We have to consider the addend to determine the
2067 // value to use in a relocation. START is the start
2068 // of this input section. If we are doing a relocatable
2069 // link, use offset from start output section instead of
2070 // address.
2071 Address adjusted_start =
2072 relocatable ? start - os->address() : start;
2073 Merged_symbol_value<size>* msv =
2074 new Merged_symbol_value<size>(lv_in->input_value(),
2075 adjusted_start);
2076 lv_out->set_merged_symbol_value(msv);
2077 }
2078 }
2079 else if (lv_in->is_tls_symbol())
2080 lv_out->set_output_value(os->tls_offset()
2081 + secoffset
2082 + lv_in->input_value());
2083 else
2084 lv_out->set_output_value((relocatable ? 0 : os->address())
2085 + secoffset
2086 + lv_in->input_value());
2087 }
2088 return This::CFLV_OK;
2089 }
2090
2091 // Compute final local symbol value. R_SYM is the index of a local
2092 // symbol in symbol table. LV points to a symbol value, which is
2093 // expected to hold the input value and to be over-written by the
2094 // final value. SYMTAB points to a symbol table. Some targets may want
2095 // to know would-be-finalized local symbol values in relaxation.
2096 // Hence we provide this method. Since this method updates *LV, a
2097 // callee should make a copy of the original local symbol value and
2098 // use the copy instead of modifying an object's local symbols before
2099 // everything is finalized. The caller should also free up any allocated
2100 // memory in the return value in *LV.
2101 template<int size, bool big_endian>
2102 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2103 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2104 unsigned int r_sym,
2105 const Symbol_value<size>* lv_in,
2106 Symbol_value<size>* lv_out,
2107 const Symbol_table* symtab)
2108 {
2109 // This is just a wrapper of compute_final_local_value_internal.
2110 const bool relocatable = parameters->options().relocatable();
2111 const Output_sections& out_sections(this->output_sections());
2112 const std::vector<Address>& out_offsets(this->section_offsets());
2113 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2114 relocatable, out_sections,
2115 out_offsets, symtab);
2116 }
2117
2118 // Finalize the local symbols. Here we set the final value in
2119 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2120 // This function is always called from a singleton thread. The actual
2121 // output of the local symbols will occur in a separate task.
2122
2123 template<int size, bool big_endian>
2124 unsigned int
2125 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2126 unsigned int index,
2127 off_t off,
2128 Symbol_table* symtab)
2129 {
2130 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2131
2132 const unsigned int loccount = this->local_symbol_count_;
2133 this->local_symbol_offset_ = off;
2134
2135 const bool relocatable = parameters->options().relocatable();
2136 const Output_sections& out_sections(this->output_sections());
2137 const std::vector<Address>& out_offsets(this->section_offsets());
2138
2139 for (unsigned int i = 1; i < loccount; ++i)
2140 {
2141 Symbol_value<size>* lv = &this->local_values_[i];
2142
2143 Compute_final_local_value_status cflv_status =
2144 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2145 out_sections, out_offsets,
2146 symtab);
2147 switch (cflv_status)
2148 {
2149 case CFLV_OK:
2150 if (!lv->is_output_symtab_index_set())
2151 {
2152 lv->set_output_symtab_index(index);
2153 ++index;
2154 }
2155 break;
2156 case CFLV_DISCARDED:
2157 case CFLV_ERROR:
2158 // Do nothing.
2159 break;
2160 default:
2161 gold_unreachable();
2162 }
2163 }
2164 return index;
2165 }
2166
2167 // Set the output dynamic symbol table indexes for the local variables.
2168
2169 template<int size, bool big_endian>
2170 unsigned int
2171 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2172 unsigned int index)
2173 {
2174 const unsigned int loccount = this->local_symbol_count_;
2175 for (unsigned int i = 1; i < loccount; ++i)
2176 {
2177 Symbol_value<size>& lv(this->local_values_[i]);
2178 if (lv.needs_output_dynsym_entry())
2179 {
2180 lv.set_output_dynsym_index(index);
2181 ++index;
2182 }
2183 }
2184 return index;
2185 }
2186
2187 // Set the offset where local dynamic symbol information will be stored.
2188 // Returns the count of local symbols contributed to the symbol table by
2189 // this object.
2190
2191 template<int size, bool big_endian>
2192 unsigned int
2193 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2194 {
2195 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2196 this->local_dynsym_offset_ = off;
2197 return this->output_local_dynsym_count_;
2198 }
2199
2200 // If Symbols_data is not NULL get the section flags from here otherwise
2201 // get it from the file.
2202
2203 template<int size, bool big_endian>
2204 uint64_t
2205 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2206 {
2207 Symbols_data* sd = this->get_symbols_data();
2208 if (sd != NULL)
2209 {
2210 const unsigned char* pshdrs = sd->section_headers_data
2211 + This::shdr_size * shndx;
2212 typename This::Shdr shdr(pshdrs);
2213 return shdr.get_sh_flags();
2214 }
2215 // If sd is NULL, read the section header from the file.
2216 return this->elf_file_.section_flags(shndx);
2217 }
2218
2219 // Get the section's ent size from Symbols_data. Called by get_section_contents
2220 // in icf.cc
2221
2222 template<int size, bool big_endian>
2223 uint64_t
2224 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2225 {
2226 Symbols_data* sd = this->get_symbols_data();
2227 gold_assert(sd != NULL);
2228
2229 const unsigned char* pshdrs = sd->section_headers_data
2230 + This::shdr_size * shndx;
2231 typename This::Shdr shdr(pshdrs);
2232 return shdr.get_sh_entsize();
2233 }
2234
2235 // Write out the local symbols.
2236
2237 template<int size, bool big_endian>
2238 void
2239 Sized_relobj_file<size, big_endian>::write_local_symbols(
2240 Output_file* of,
2241 const Stringpool* sympool,
2242 const Stringpool* dynpool,
2243 Output_symtab_xindex* symtab_xindex,
2244 Output_symtab_xindex* dynsym_xindex,
2245 off_t symtab_off)
2246 {
2247 const bool strip_all = parameters->options().strip_all();
2248 if (strip_all)
2249 {
2250 if (this->output_local_dynsym_count_ == 0)
2251 return;
2252 this->output_local_symbol_count_ = 0;
2253 }
2254
2255 gold_assert(this->symtab_shndx_ != -1U);
2256 if (this->symtab_shndx_ == 0)
2257 {
2258 // This object has no symbols. Weird but legal.
2259 return;
2260 }
2261
2262 // Read the symbol table section header.
2263 const unsigned int symtab_shndx = this->symtab_shndx_;
2264 typename This::Shdr symtabshdr(this,
2265 this->elf_file_.section_header(symtab_shndx));
2266 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2267 const unsigned int loccount = this->local_symbol_count_;
2268 gold_assert(loccount == symtabshdr.get_sh_info());
2269
2270 // Read the local symbols.
2271 const int sym_size = This::sym_size;
2272 off_t locsize = loccount * sym_size;
2273 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2274 locsize, true, false);
2275
2276 // Read the symbol names.
2277 const unsigned int strtab_shndx =
2278 this->adjust_shndx(symtabshdr.get_sh_link());
2279 section_size_type strtab_size;
2280 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2281 &strtab_size,
2282 false);
2283 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2284
2285 // Get views into the output file for the portions of the symbol table
2286 // and the dynamic symbol table that we will be writing.
2287 off_t output_size = this->output_local_symbol_count_ * sym_size;
2288 unsigned char* oview = NULL;
2289 if (output_size > 0)
2290 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2291 output_size);
2292
2293 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2294 unsigned char* dyn_oview = NULL;
2295 if (dyn_output_size > 0)
2296 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2297 dyn_output_size);
2298
2299 const Output_sections out_sections(this->output_sections());
2300
2301 gold_assert(this->local_values_.size() == loccount);
2302
2303 unsigned char* ov = oview;
2304 unsigned char* dyn_ov = dyn_oview;
2305 psyms += sym_size;
2306 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2307 {
2308 elfcpp::Sym<size, big_endian> isym(psyms);
2309
2310 Symbol_value<size>& lv(this->local_values_[i]);
2311
2312 bool is_ordinary;
2313 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2314 &is_ordinary);
2315 if (is_ordinary)
2316 {
2317 gold_assert(st_shndx < out_sections.size());
2318 if (out_sections[st_shndx] == NULL)
2319 continue;
2320 st_shndx = out_sections[st_shndx]->out_shndx();
2321 if (st_shndx >= elfcpp::SHN_LORESERVE)
2322 {
2323 if (lv.has_output_symtab_entry())
2324 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2325 if (lv.has_output_dynsym_entry())
2326 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2327 st_shndx = elfcpp::SHN_XINDEX;
2328 }
2329 }
2330
2331 // Write the symbol to the output symbol table.
2332 if (lv.has_output_symtab_entry())
2333 {
2334 elfcpp::Sym_write<size, big_endian> osym(ov);
2335
2336 gold_assert(isym.get_st_name() < strtab_size);
2337 const char* name = pnames + isym.get_st_name();
2338 osym.put_st_name(sympool->get_offset(name));
2339 osym.put_st_value(this->local_values_[i].value(this, 0));
2340 osym.put_st_size(isym.get_st_size());
2341 osym.put_st_info(isym.get_st_info());
2342 osym.put_st_other(isym.get_st_other());
2343 osym.put_st_shndx(st_shndx);
2344
2345 ov += sym_size;
2346 }
2347
2348 // Write the symbol to the output dynamic symbol table.
2349 if (lv.has_output_dynsym_entry())
2350 {
2351 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2352 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2353
2354 gold_assert(isym.get_st_name() < strtab_size);
2355 const char* name = pnames + isym.get_st_name();
2356 osym.put_st_name(dynpool->get_offset(name));
2357 osym.put_st_value(this->local_values_[i].value(this, 0));
2358 osym.put_st_size(isym.get_st_size());
2359 osym.put_st_info(isym.get_st_info());
2360 osym.put_st_other(isym.get_st_other());
2361 osym.put_st_shndx(st_shndx);
2362
2363 dyn_ov += sym_size;
2364 }
2365 }
2366
2367
2368 if (output_size > 0)
2369 {
2370 gold_assert(ov - oview == output_size);
2371 of->write_output_view(symtab_off + this->local_symbol_offset_,
2372 output_size, oview);
2373 }
2374
2375 if (dyn_output_size > 0)
2376 {
2377 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2378 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2379 dyn_oview);
2380 }
2381 }
2382
2383 // Set *INFO to symbolic information about the offset OFFSET in the
2384 // section SHNDX. Return true if we found something, false if we
2385 // found nothing.
2386
2387 template<int size, bool big_endian>
2388 bool
2389 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2390 unsigned int shndx,
2391 off_t offset,
2392 Symbol_location_info* info)
2393 {
2394 if (this->symtab_shndx_ == 0)
2395 return false;
2396
2397 section_size_type symbols_size;
2398 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2399 &symbols_size,
2400 false);
2401
2402 unsigned int symbol_names_shndx =
2403 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2404 section_size_type names_size;
2405 const unsigned char* symbol_names_u =
2406 this->section_contents(symbol_names_shndx, &names_size, false);
2407 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2408
2409 const int sym_size = This::sym_size;
2410 const size_t count = symbols_size / sym_size;
2411
2412 const unsigned char* p = symbols;
2413 for (size_t i = 0; i < count; ++i, p += sym_size)
2414 {
2415 elfcpp::Sym<size, big_endian> sym(p);
2416
2417 if (sym.get_st_type() == elfcpp::STT_FILE)
2418 {
2419 if (sym.get_st_name() >= names_size)
2420 info->source_file = "(invalid)";
2421 else
2422 info->source_file = symbol_names + sym.get_st_name();
2423 continue;
2424 }
2425
2426 bool is_ordinary;
2427 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2428 &is_ordinary);
2429 if (is_ordinary
2430 && st_shndx == shndx
2431 && static_cast<off_t>(sym.get_st_value()) <= offset
2432 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2433 > offset))
2434 {
2435 if (sym.get_st_name() > names_size)
2436 info->enclosing_symbol_name = "(invalid)";
2437 else
2438 {
2439 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2440 if (parameters->options().do_demangle())
2441 {
2442 char* demangled_name = cplus_demangle(
2443 info->enclosing_symbol_name.c_str(),
2444 DMGL_ANSI | DMGL_PARAMS);
2445 if (demangled_name != NULL)
2446 {
2447 info->enclosing_symbol_name.assign(demangled_name);
2448 free(demangled_name);
2449 }
2450 }
2451 }
2452 return true;
2453 }
2454 }
2455
2456 return false;
2457 }
2458
2459 // Look for a kept section corresponding to the given discarded section,
2460 // and return its output address. This is used only for relocations in
2461 // debugging sections. If we can't find the kept section, return 0.
2462
2463 template<int size, bool big_endian>
2464 typename Sized_relobj_file<size, big_endian>::Address
2465 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2466 unsigned int shndx,
2467 bool* found) const
2468 {
2469 Relobj* kept_object;
2470 unsigned int kept_shndx;
2471 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2472 {
2473 Sized_relobj_file<size, big_endian>* kept_relobj =
2474 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2475 Output_section* os = kept_relobj->output_section(kept_shndx);
2476 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2477 if (os != NULL && offset != invalid_address)
2478 {
2479 *found = true;
2480 return os->address() + offset;
2481 }
2482 }
2483 *found = false;
2484 return 0;
2485 }
2486
2487 // Get symbol counts.
2488
2489 template<int size, bool big_endian>
2490 void
2491 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2492 const Symbol_table*,
2493 size_t* defined,
2494 size_t* used) const
2495 {
2496 *defined = this->defined_count_;
2497 size_t count = 0;
2498 for (typename Symbols::const_iterator p = this->symbols_.begin();
2499 p != this->symbols_.end();
2500 ++p)
2501 if (*p != NULL
2502 && (*p)->source() == Symbol::FROM_OBJECT
2503 && (*p)->object() == this
2504 && (*p)->is_defined())
2505 ++count;
2506 *used = count;
2507 }
2508
2509 // Input_objects methods.
2510
2511 // Add a regular relocatable object to the list. Return false if this
2512 // object should be ignored.
2513
2514 bool
2515 Input_objects::add_object(Object* obj)
2516 {
2517 // Print the filename if the -t/--trace option is selected.
2518 if (parameters->options().trace())
2519 gold_info("%s", obj->name().c_str());
2520
2521 if (!obj->is_dynamic())
2522 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2523 else
2524 {
2525 // See if this is a duplicate SONAME.
2526 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2527 const char* soname = dynobj->soname();
2528
2529 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2530 this->sonames_.insert(soname);
2531 if (!ins.second)
2532 {
2533 // We have already seen a dynamic object with this soname.
2534 return false;
2535 }
2536
2537 this->dynobj_list_.push_back(dynobj);
2538 }
2539
2540 // Add this object to the cross-referencer if requested.
2541 if (parameters->options().user_set_print_symbol_counts()
2542 || parameters->options().cref())
2543 {
2544 if (this->cref_ == NULL)
2545 this->cref_ = new Cref();
2546 this->cref_->add_object(obj);
2547 }
2548
2549 return true;
2550 }
2551
2552 // For each dynamic object, record whether we've seen all of its
2553 // explicit dependencies.
2554
2555 void
2556 Input_objects::check_dynamic_dependencies() const
2557 {
2558 bool issued_copy_dt_needed_error = false;
2559 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2560 p != this->dynobj_list_.end();
2561 ++p)
2562 {
2563 const Dynobj::Needed& needed((*p)->needed());
2564 bool found_all = true;
2565 Dynobj::Needed::const_iterator pneeded;
2566 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2567 {
2568 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2569 {
2570 found_all = false;
2571 break;
2572 }
2573 }
2574 (*p)->set_has_unknown_needed_entries(!found_all);
2575
2576 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2577 // that gold does not support. However, they cause no trouble
2578 // unless there is a DT_NEEDED entry that we don't know about;
2579 // warn only in that case.
2580 if (!found_all
2581 && !issued_copy_dt_needed_error
2582 && (parameters->options().copy_dt_needed_entries()
2583 || parameters->options().add_needed()))
2584 {
2585 const char* optname;
2586 if (parameters->options().copy_dt_needed_entries())
2587 optname = "--copy-dt-needed-entries";
2588 else
2589 optname = "--add-needed";
2590 gold_error(_("%s is not supported but is required for %s in %s"),
2591 optname, (*pneeded).c_str(), (*p)->name().c_str());
2592 issued_copy_dt_needed_error = true;
2593 }
2594 }
2595 }
2596
2597 // Start processing an archive.
2598
2599 void
2600 Input_objects::archive_start(Archive* archive)
2601 {
2602 if (parameters->options().user_set_print_symbol_counts()
2603 || parameters->options().cref())
2604 {
2605 if (this->cref_ == NULL)
2606 this->cref_ = new Cref();
2607 this->cref_->add_archive_start(archive);
2608 }
2609 }
2610
2611 // Stop processing an archive.
2612
2613 void
2614 Input_objects::archive_stop(Archive* archive)
2615 {
2616 if (parameters->options().user_set_print_symbol_counts()
2617 || parameters->options().cref())
2618 this->cref_->add_archive_stop(archive);
2619 }
2620
2621 // Print symbol counts
2622
2623 void
2624 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2625 {
2626 if (parameters->options().user_set_print_symbol_counts()
2627 && this->cref_ != NULL)
2628 this->cref_->print_symbol_counts(symtab);
2629 }
2630
2631 // Print a cross reference table.
2632
2633 void
2634 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2635 {
2636 if (parameters->options().cref() && this->cref_ != NULL)
2637 this->cref_->print_cref(symtab, f);
2638 }
2639
2640 // Relocate_info methods.
2641
2642 // Return a string describing the location of a relocation when file
2643 // and lineno information is not available. This is only used in
2644 // error messages.
2645
2646 template<int size, bool big_endian>
2647 std::string
2648 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
2649 {
2650 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
2651 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
2652 if (!ret.empty())
2653 return ret;
2654
2655 ret = this->object->name();
2656
2657 Symbol_location_info info;
2658 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
2659 {
2660 if (!info.source_file.empty())
2661 {
2662 ret += ":";
2663 ret += info.source_file;
2664 }
2665 size_t len = info.enclosing_symbol_name.length() + 100;
2666 char* buf = new char[len];
2667 snprintf(buf, len, _(":function %s"),
2668 info.enclosing_symbol_name.c_str());
2669 ret += buf;
2670 delete[] buf;
2671 return ret;
2672 }
2673
2674 ret += "(";
2675 ret += this->object->section_name(this->data_shndx);
2676 char buf[100];
2677 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
2678 ret += buf;
2679 return ret;
2680 }
2681
2682 } // End namespace gold.
2683
2684 namespace
2685 {
2686
2687 using namespace gold;
2688
2689 // Read an ELF file with the header and return the appropriate
2690 // instance of Object.
2691
2692 template<int size, bool big_endian>
2693 Object*
2694 make_elf_sized_object(const std::string& name, Input_file* input_file,
2695 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
2696 bool* punconfigured)
2697 {
2698 Target* target = select_target(ehdr.get_e_machine(), size, big_endian,
2699 ehdr.get_e_ident()[elfcpp::EI_OSABI],
2700 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
2701 if (target == NULL)
2702 gold_fatal(_("%s: unsupported ELF machine number %d"),
2703 name.c_str(), ehdr.get_e_machine());
2704
2705 if (!parameters->target_valid())
2706 set_parameters_target(target);
2707 else if (target != &parameters->target())
2708 {
2709 if (punconfigured != NULL)
2710 *punconfigured = true;
2711 else
2712 gold_error(_("%s: incompatible target"), name.c_str());
2713 return NULL;
2714 }
2715
2716 return target->make_elf_object<size, big_endian>(name, input_file, offset,
2717 ehdr);
2718 }
2719
2720 } // End anonymous namespace.
2721
2722 namespace gold
2723 {
2724
2725 // Return whether INPUT_FILE is an ELF object.
2726
2727 bool
2728 is_elf_object(Input_file* input_file, off_t offset,
2729 const unsigned char** start, int* read_size)
2730 {
2731 off_t filesize = input_file->file().filesize();
2732 int want = elfcpp::Elf_recognizer::max_header_size;
2733 if (filesize - offset < want)
2734 want = filesize - offset;
2735
2736 const unsigned char* p = input_file->file().get_view(offset, 0, want,
2737 true, false);
2738 *start = p;
2739 *read_size = want;
2740
2741 return elfcpp::Elf_recognizer::is_elf_file(p, want);
2742 }
2743
2744 // Read an ELF file and return the appropriate instance of Object.
2745
2746 Object*
2747 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
2748 const unsigned char* p, section_offset_type bytes,
2749 bool* punconfigured)
2750 {
2751 if (punconfigured != NULL)
2752 *punconfigured = false;
2753
2754 std::string error;
2755 bool big_endian = false;
2756 int size = 0;
2757 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
2758 &big_endian, &error))
2759 {
2760 gold_error(_("%s: %s"), name.c_str(), error.c_str());
2761 return NULL;
2762 }
2763
2764 if (size == 32)
2765 {
2766 if (big_endian)
2767 {
2768 #ifdef HAVE_TARGET_32_BIG
2769 elfcpp::Ehdr<32, true> ehdr(p);
2770 return make_elf_sized_object<32, true>(name, input_file,
2771 offset, ehdr, punconfigured);
2772 #else
2773 if (punconfigured != NULL)
2774 *punconfigured = true;
2775 else
2776 gold_error(_("%s: not configured to support "
2777 "32-bit big-endian object"),
2778 name.c_str());
2779 return NULL;
2780 #endif
2781 }
2782 else
2783 {
2784 #ifdef HAVE_TARGET_32_LITTLE
2785 elfcpp::Ehdr<32, false> ehdr(p);
2786 return make_elf_sized_object<32, false>(name, input_file,
2787 offset, ehdr, punconfigured);
2788 #else
2789 if (punconfigured != NULL)
2790 *punconfigured = true;
2791 else
2792 gold_error(_("%s: not configured to support "
2793 "32-bit little-endian object"),
2794 name.c_str());
2795 return NULL;
2796 #endif
2797 }
2798 }
2799 else if (size == 64)
2800 {
2801 if (big_endian)
2802 {
2803 #ifdef HAVE_TARGET_64_BIG
2804 elfcpp::Ehdr<64, true> ehdr(p);
2805 return make_elf_sized_object<64, true>(name, input_file,
2806 offset, ehdr, punconfigured);
2807 #else
2808 if (punconfigured != NULL)
2809 *punconfigured = true;
2810 else
2811 gold_error(_("%s: not configured to support "
2812 "64-bit big-endian object"),
2813 name.c_str());
2814 return NULL;
2815 #endif
2816 }
2817 else
2818 {
2819 #ifdef HAVE_TARGET_64_LITTLE
2820 elfcpp::Ehdr<64, false> ehdr(p);
2821 return make_elf_sized_object<64, false>(name, input_file,
2822 offset, ehdr, punconfigured);
2823 #else
2824 if (punconfigured != NULL)
2825 *punconfigured = true;
2826 else
2827 gold_error(_("%s: not configured to support "
2828 "64-bit little-endian object"),
2829 name.c_str());
2830 return NULL;
2831 #endif
2832 }
2833 }
2834 else
2835 gold_unreachable();
2836 }
2837
2838 // Instantiate the templates we need.
2839
2840 #ifdef HAVE_TARGET_32_LITTLE
2841 template
2842 void
2843 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
2844 Read_symbols_data*);
2845 #endif
2846
2847 #ifdef HAVE_TARGET_32_BIG
2848 template
2849 void
2850 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
2851 Read_symbols_data*);
2852 #endif
2853
2854 #ifdef HAVE_TARGET_64_LITTLE
2855 template
2856 void
2857 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
2858 Read_symbols_data*);
2859 #endif
2860
2861 #ifdef HAVE_TARGET_64_BIG
2862 template
2863 void
2864 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
2865 Read_symbols_data*);
2866 #endif
2867
2868 #ifdef HAVE_TARGET_32_LITTLE
2869 template
2870 class Sized_relobj_file<32, false>;
2871 #endif
2872
2873 #ifdef HAVE_TARGET_32_BIG
2874 template
2875 class Sized_relobj_file<32, true>;
2876 #endif
2877
2878 #ifdef HAVE_TARGET_64_LITTLE
2879 template
2880 class Sized_relobj_file<64, false>;
2881 #endif
2882
2883 #ifdef HAVE_TARGET_64_BIG
2884 template
2885 class Sized_relobj_file<64, true>;
2886 #endif
2887
2888 #ifdef HAVE_TARGET_32_LITTLE
2889 template
2890 struct Relocate_info<32, false>;
2891 #endif
2892
2893 #ifdef HAVE_TARGET_32_BIG
2894 template
2895 struct Relocate_info<32, true>;
2896 #endif
2897
2898 #ifdef HAVE_TARGET_64_LITTLE
2899 template
2900 struct Relocate_info<64, false>;
2901 #endif
2902
2903 #ifdef HAVE_TARGET_64_BIG
2904 template
2905 struct Relocate_info<64, true>;
2906 #endif
2907
2908 #ifdef HAVE_TARGET_32_LITTLE
2909 template
2910 void
2911 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
2912
2913 template
2914 void
2915 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
2916 const unsigned char*);
2917 #endif
2918
2919 #ifdef HAVE_TARGET_32_BIG
2920 template
2921 void
2922 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
2923
2924 template
2925 void
2926 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
2927 const unsigned char*);
2928 #endif
2929
2930 #ifdef HAVE_TARGET_64_LITTLE
2931 template
2932 void
2933 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
2934
2935 template
2936 void
2937 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
2938 const unsigned char*);
2939 #endif
2940
2941 #ifdef HAVE_TARGET_64_BIG
2942 template
2943 void
2944 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
2945
2946 template
2947 void
2948 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
2949 const unsigned char*);
2950 #endif
2951
2952 } // End namespace gold.
This page took 0.09519 seconds and 5 git commands to generate.