Fix internal error with LTO on ARM.
[deliverable/binutils-gdb.git] / gold / object.cc
1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
53 Read_symbols_data::~Read_symbols_data()
54 {
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
60 delete this->symbols;
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
64 delete this->versym;
65 if (this->verdef != NULL)
66 delete this->verdef;
67 if (this->verneed != NULL)
68 delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81 if (!this->symtab_xindex_.empty())
82 return;
83
84 gold_assert(symtab_shndx != 0);
85
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
89 while (i > 0)
90 {
91 --i;
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 {
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 return;
97 }
98 }
99
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
111 {
112 section_size_type bytecount;
113 const unsigned char* contents;
114 if (pshdrs == NULL)
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
116 else
117 {
118 const unsigned char* p = (pshdrs
119 + (xindex_shndx
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124 }
125
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
129 {
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133 }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142 if (symndx >= this->symtab_xindex_.size())
143 {
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 symndx);
146 return elfcpp::SHN_UNDEF;
147 }
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 {
151 object->error(_("extended index for symbol %u out of range: %u"),
152 symndx, shndx);
153 return elfcpp::SHN_UNDEF;
154 }
155 return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
165 Object::error(const char* format, ...) const
166 {
167 va_list args;
168 va_start(args, format);
169 char* buf = NULL;
170 if (vasprintf(&buf, format, args) < 0)
171 gold_nomem();
172 va_end(args);
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
174 free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
191 {
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 true, true);
199
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
213 false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
219
220 bool
221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
223 {
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227 {
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
233 // simultaneously.
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
236 false);
237 if (len == 0)
238 {
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
242 }
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
245 return true;
246 }
247 return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
254 Object::handle_split_stack_section(const char* name)
255 {
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
257 {
258 this->uses_split_stack_ = true;
259 return true;
260 }
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262 {
263 this->has_no_split_stack_ = true;
264 return true;
265 }
266 return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
278 {
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
289 {
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 sd->symbols_size);
294 }
295 else
296 {
297 gc_sd->symbols_data = NULL;
298 }
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
302 {
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
307 }
308 else
309 {
310 gc_sd->symbol_names_data = NULL;
311 }
312 gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
320 Relobj::is_section_name_included(const char* name)
321 {
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".sdata", name)
335 && strstr(name, "personality"))
336 || (is_prefix_of(".gnu.linkonce.d", name)
337 && strstr(name, "personality")))
338 {
339 return true;
340 }
341 return false;
342 }
343
344 // Finalize the incremental relocation information. Allocates a block
345 // of relocation entries for each symbol, and sets the reloc_bases_
346 // array to point to the first entry in each block. If CLEAR_COUNTS
347 // is TRUE, also clear the per-symbol relocation counters.
348
349 void
350 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
351 {
352 unsigned int nsyms = this->get_global_symbols()->size();
353 this->reloc_bases_ = new unsigned int[nsyms];
354
355 gold_assert(this->reloc_bases_ != NULL);
356 gold_assert(layout->incremental_inputs() != NULL);
357
358 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
359 for (unsigned int i = 0; i < nsyms; ++i)
360 {
361 this->reloc_bases_[i] = rindex;
362 rindex += this->reloc_counts_[i];
363 if (clear_counts)
364 this->reloc_counts_[i] = 0;
365 }
366 layout->incremental_inputs()->set_reloc_count(rindex);
367 }
368
369 // Class Sized_relobj.
370
371 // Iterate over local symbols, calling a visitor class V for each GOT offset
372 // associated with a local symbol.
373
374 template<int size, bool big_endian>
375 void
376 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
377 Got_offset_list::Visitor* v) const
378 {
379 unsigned int nsyms = this->local_symbol_count();
380 for (unsigned int i = 0; i < nsyms; i++)
381 {
382 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
383 if (p != this->local_got_offsets_.end())
384 {
385 const Got_offset_list* got_offsets = p->second;
386 got_offsets->for_all_got_offsets(v);
387 }
388 }
389 }
390
391 // Get the address of an output section.
392
393 template<int size, bool big_endian>
394 uint64_t
395 Sized_relobj<size, big_endian>::do_output_section_address(
396 unsigned int shndx)
397 {
398 // If the input file is linked as --just-symbols, the output
399 // section address is the input section address.
400 if (this->just_symbols())
401 return this->section_address(shndx);
402
403 const Output_section* os = this->do_output_section(shndx);
404 gold_assert(os != NULL);
405 return os->address();
406 }
407
408 // Class Sized_relobj_file.
409
410 template<int size, bool big_endian>
411 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
412 const std::string& name,
413 Input_file* input_file,
414 off_t offset,
415 const elfcpp::Ehdr<size, big_endian>& ehdr)
416 : Sized_relobj<size, big_endian>(name, input_file, offset),
417 elf_file_(this, ehdr),
418 symtab_shndx_(-1U),
419 local_symbol_count_(0),
420 output_local_symbol_count_(0),
421 output_local_dynsym_count_(0),
422 symbols_(),
423 defined_count_(0),
424 local_symbol_offset_(0),
425 local_dynsym_offset_(0),
426 local_values_(),
427 local_plt_offsets_(),
428 kept_comdat_sections_(),
429 has_eh_frame_(false),
430 discarded_eh_frame_shndx_(-1U),
431 deferred_layout_(),
432 deferred_layout_relocs_(),
433 compressed_sections_()
434 {
435 this->e_type_ = ehdr.get_e_type();
436 }
437
438 template<int size, bool big_endian>
439 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
440 {
441 }
442
443 // Set up an object file based on the file header. This sets up the
444 // section information.
445
446 template<int size, bool big_endian>
447 void
448 Sized_relobj_file<size, big_endian>::do_setup()
449 {
450 const unsigned int shnum = this->elf_file_.shnum();
451 this->set_shnum(shnum);
452 }
453
454 // Find the SHT_SYMTAB section, given the section headers. The ELF
455 // standard says that maybe in the future there can be more than one
456 // SHT_SYMTAB section. Until somebody figures out how that could
457 // work, we assume there is only one.
458
459 template<int size, bool big_endian>
460 void
461 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
462 {
463 const unsigned int shnum = this->shnum();
464 this->symtab_shndx_ = 0;
465 if (shnum > 0)
466 {
467 // Look through the sections in reverse order, since gas tends
468 // to put the symbol table at the end.
469 const unsigned char* p = pshdrs + shnum * This::shdr_size;
470 unsigned int i = shnum;
471 unsigned int xindex_shndx = 0;
472 unsigned int xindex_link = 0;
473 while (i > 0)
474 {
475 --i;
476 p -= This::shdr_size;
477 typename This::Shdr shdr(p);
478 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
479 {
480 this->symtab_shndx_ = i;
481 if (xindex_shndx > 0 && xindex_link == i)
482 {
483 Xindex* xindex =
484 new Xindex(this->elf_file_.large_shndx_offset());
485 xindex->read_symtab_xindex<size, big_endian>(this,
486 xindex_shndx,
487 pshdrs);
488 this->set_xindex(xindex);
489 }
490 break;
491 }
492
493 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
494 // one. This will work if it follows the SHT_SYMTAB
495 // section.
496 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
497 {
498 xindex_shndx = i;
499 xindex_link = this->adjust_shndx(shdr.get_sh_link());
500 }
501 }
502 }
503 }
504
505 // Return the Xindex structure to use for object with lots of
506 // sections.
507
508 template<int size, bool big_endian>
509 Xindex*
510 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
511 {
512 gold_assert(this->symtab_shndx_ != -1U);
513 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
514 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
515 return xindex;
516 }
517
518 // Return whether SHDR has the right type and flags to be a GNU
519 // .eh_frame section.
520
521 template<int size, bool big_endian>
522 bool
523 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
524 const elfcpp::Shdr<size, big_endian>* shdr) const
525 {
526 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
527 return ((sh_type == elfcpp::SHT_PROGBITS
528 || sh_type == elfcpp::SHT_X86_64_UNWIND)
529 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
530 }
531
532 // Find the section header with the given name.
533
534 template<int size, bool big_endian>
535 const unsigned char*
536 Object::find_shdr(
537 const unsigned char* pshdrs,
538 const char* name,
539 const char* names,
540 section_size_type names_size,
541 const unsigned char* hdr) const
542 {
543 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
544 const unsigned int shnum = this->shnum();
545 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
546 size_t sh_name = 0;
547
548 while (1)
549 {
550 if (hdr)
551 {
552 // We found HDR last time we were called, continue looking.
553 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
554 sh_name = shdr.get_sh_name();
555 }
556 else
557 {
558 // Look for the next occurrence of NAME in NAMES.
559 // The fact that .shstrtab produced by current GNU tools is
560 // string merged means we shouldn't have both .not.foo and
561 // .foo in .shstrtab, and multiple .foo sections should all
562 // have the same sh_name. However, this is not guaranteed
563 // by the ELF spec and not all ELF object file producers may
564 // be so clever.
565 size_t len = strlen(name) + 1;
566 const char *p = sh_name ? names + sh_name + len : names;
567 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
568 name, len));
569 if (p == NULL)
570 return NULL;
571 sh_name = p - names;
572 hdr = pshdrs;
573 if (sh_name == 0)
574 return hdr;
575 }
576
577 hdr += shdr_size;
578 while (hdr < hdr_end)
579 {
580 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
581 if (shdr.get_sh_name() == sh_name)
582 return hdr;
583 hdr += shdr_size;
584 }
585 hdr = NULL;
586 if (sh_name == 0)
587 return hdr;
588 }
589 }
590
591 // Return whether there is a GNU .eh_frame section, given the section
592 // headers and the section names.
593
594 template<int size, bool big_endian>
595 bool
596 Sized_relobj_file<size, big_endian>::find_eh_frame(
597 const unsigned char* pshdrs,
598 const char* names,
599 section_size_type names_size) const
600 {
601 const unsigned char* s = NULL;
602
603 while (1)
604 {
605 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
606 names, names_size, s);
607 if (s == NULL)
608 return false;
609
610 typename This::Shdr shdr(s);
611 if (this->check_eh_frame_flags(&shdr))
612 return true;
613 }
614 }
615
616 // Return TRUE if this is a section whose contents will be needed in the
617 // Add_symbols task. This function is only called for sections that have
618 // already passed the test in is_compressed_debug_section(), so we know
619 // that the section name begins with ".zdebug".
620
621 static bool
622 need_decompressed_section(const char* name)
623 {
624 // Skip over the ".zdebug" and a quick check for the "_".
625 name += 7;
626 if (*name++ != '_')
627 return false;
628
629 #ifdef ENABLE_THREADS
630 // Decompressing these sections now will help only if we're
631 // multithreaded.
632 if (parameters->options().threads())
633 {
634 // We will need .zdebug_str if this is not an incremental link
635 // (i.e., we are processing string merge sections) or if we need
636 // to build a gdb index.
637 if ((!parameters->incremental() || parameters->options().gdb_index())
638 && strcmp(name, "str") == 0)
639 return true;
640
641 // We will need these other sections when building a gdb index.
642 if (parameters->options().gdb_index()
643 && (strcmp(name, "info") == 0
644 || strcmp(name, "types") == 0
645 || strcmp(name, "pubnames") == 0
646 || strcmp(name, "pubtypes") == 0
647 || strcmp(name, "ranges") == 0
648 || strcmp(name, "abbrev") == 0))
649 return true;
650 }
651 #endif
652
653 // Even when single-threaded, we will need .zdebug_str if this is
654 // not an incremental link and we are building a gdb index.
655 // Otherwise, we would decompress the section twice: once for
656 // string merge processing, and once for building the gdb index.
657 if (!parameters->incremental()
658 && parameters->options().gdb_index()
659 && strcmp(name, "str") == 0)
660 return true;
661
662 return false;
663 }
664
665 // Build a table for any compressed debug sections, mapping each section index
666 // to the uncompressed size and (if needed) the decompressed contents.
667
668 template<int size, bool big_endian>
669 Compressed_section_map*
670 build_compressed_section_map(
671 const unsigned char* pshdrs,
672 unsigned int shnum,
673 const char* names,
674 section_size_type names_size,
675 Sized_relobj_file<size, big_endian>* obj)
676 {
677 Compressed_section_map* uncompressed_map = new Compressed_section_map();
678 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
679 const unsigned char* p = pshdrs + shdr_size;
680
681 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
682 {
683 typename elfcpp::Shdr<size, big_endian> shdr(p);
684 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
685 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
686 {
687 if (shdr.get_sh_name() >= names_size)
688 {
689 obj->error(_("bad section name offset for section %u: %lu"),
690 i, static_cast<unsigned long>(shdr.get_sh_name()));
691 continue;
692 }
693
694 const char* name = names + shdr.get_sh_name();
695 if (is_compressed_debug_section(name))
696 {
697 section_size_type len;
698 const unsigned char* contents =
699 obj->section_contents(i, &len, false);
700 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
701 Compressed_section_info info;
702 info.size = convert_to_section_size_type(uncompressed_size);
703 info.contents = NULL;
704 if (uncompressed_size != -1ULL)
705 {
706 unsigned char* uncompressed_data = NULL;
707 if (need_decompressed_section(name))
708 {
709 uncompressed_data = new unsigned char[uncompressed_size];
710 if (decompress_input_section(contents, len,
711 uncompressed_data,
712 uncompressed_size))
713 info.contents = uncompressed_data;
714 else
715 delete[] uncompressed_data;
716 }
717 (*uncompressed_map)[i] = info;
718 }
719 }
720 }
721 }
722 return uncompressed_map;
723 }
724
725 // Stash away info for a number of special sections.
726 // Return true if any of the sections found require local symbols to be read.
727
728 template<int size, bool big_endian>
729 bool
730 Sized_relobj_file<size, big_endian>::do_find_special_sections(
731 Read_symbols_data* sd)
732 {
733 const unsigned char* const pshdrs = sd->section_headers->data();
734 const unsigned char* namesu = sd->section_names->data();
735 const char* names = reinterpret_cast<const char*>(namesu);
736
737 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
738 this->has_eh_frame_ = true;
739
740 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
741 this->compressed_sections_
742 = build_compressed_section_map(pshdrs, this->shnum(), names,
743 sd->section_names_size, this);
744 return (this->has_eh_frame_
745 || (!parameters->options().relocatable()
746 && parameters->options().gdb_index()
747 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
748 || memmem(names, sd->section_names_size, "debug_types",
749 13) == 0)));
750 }
751
752 // Read the sections and symbols from an object file.
753
754 template<int size, bool big_endian>
755 void
756 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
757 {
758 this->base_read_symbols(sd);
759 }
760
761 // Read the sections and symbols from an object file. This is common
762 // code for all target-specific overrides of do_read_symbols().
763
764 template<int size, bool big_endian>
765 void
766 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
767 {
768 this->read_section_data(&this->elf_file_, sd);
769
770 const unsigned char* const pshdrs = sd->section_headers->data();
771
772 this->find_symtab(pshdrs);
773
774 bool need_local_symbols = this->do_find_special_sections(sd);
775
776 sd->symbols = NULL;
777 sd->symbols_size = 0;
778 sd->external_symbols_offset = 0;
779 sd->symbol_names = NULL;
780 sd->symbol_names_size = 0;
781
782 if (this->symtab_shndx_ == 0)
783 {
784 // No symbol table. Weird but legal.
785 return;
786 }
787
788 // Get the symbol table section header.
789 typename This::Shdr symtabshdr(pshdrs
790 + this->symtab_shndx_ * This::shdr_size);
791 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
792
793 // If this object has a .eh_frame section, or if building a .gdb_index
794 // section and there is debug info, we need all the symbols.
795 // Otherwise we only need the external symbols. While it would be
796 // simpler to just always read all the symbols, I've seen object
797 // files with well over 2000 local symbols, which for a 64-bit
798 // object file format is over 5 pages that we don't need to read
799 // now.
800
801 const int sym_size = This::sym_size;
802 const unsigned int loccount = symtabshdr.get_sh_info();
803 this->local_symbol_count_ = loccount;
804 this->local_values_.resize(loccount);
805 section_offset_type locsize = loccount * sym_size;
806 off_t dataoff = symtabshdr.get_sh_offset();
807 section_size_type datasize =
808 convert_to_section_size_type(symtabshdr.get_sh_size());
809 off_t extoff = dataoff + locsize;
810 section_size_type extsize = datasize - locsize;
811
812 off_t readoff = need_local_symbols ? dataoff : extoff;
813 section_size_type readsize = need_local_symbols ? datasize : extsize;
814
815 if (readsize == 0)
816 {
817 // No external symbols. Also weird but also legal.
818 return;
819 }
820
821 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
822
823 // Read the section header for the symbol names.
824 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
825 if (strtab_shndx >= this->shnum())
826 {
827 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
828 return;
829 }
830 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
831 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
832 {
833 this->error(_("symbol table name section has wrong type: %u"),
834 static_cast<unsigned int>(strtabshdr.get_sh_type()));
835 return;
836 }
837
838 // Read the symbol names.
839 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
840 strtabshdr.get_sh_size(),
841 false, true);
842
843 sd->symbols = fvsymtab;
844 sd->symbols_size = readsize;
845 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
846 sd->symbol_names = fvstrtab;
847 sd->symbol_names_size =
848 convert_to_section_size_type(strtabshdr.get_sh_size());
849 }
850
851 // Return the section index of symbol SYM. Set *VALUE to its value in
852 // the object file. Set *IS_ORDINARY if this is an ordinary section
853 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
854 // Note that for a symbol which is not defined in this object file,
855 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
856 // the final value of the symbol in the link.
857
858 template<int size, bool big_endian>
859 unsigned int
860 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
861 Address* value,
862 bool* is_ordinary)
863 {
864 section_size_type symbols_size;
865 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
866 &symbols_size,
867 false);
868
869 const size_t count = symbols_size / This::sym_size;
870 gold_assert(sym < count);
871
872 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
873 *value = elfsym.get_st_value();
874
875 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
876 }
877
878 // Return whether to include a section group in the link. LAYOUT is
879 // used to keep track of which section groups we have already seen.
880 // INDEX is the index of the section group and SHDR is the section
881 // header. If we do not want to include this group, we set bits in
882 // OMIT for each section which should be discarded.
883
884 template<int size, bool big_endian>
885 bool
886 Sized_relobj_file<size, big_endian>::include_section_group(
887 Symbol_table* symtab,
888 Layout* layout,
889 unsigned int index,
890 const char* name,
891 const unsigned char* shdrs,
892 const char* section_names,
893 section_size_type section_names_size,
894 std::vector<bool>* omit)
895 {
896 // Read the section contents.
897 typename This::Shdr shdr(shdrs + index * This::shdr_size);
898 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
899 shdr.get_sh_size(), true, false);
900 const elfcpp::Elf_Word* pword =
901 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
902
903 // The first word contains flags. We only care about COMDAT section
904 // groups. Other section groups are always included in the link
905 // just like ordinary sections.
906 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
907
908 // Look up the group signature, which is the name of a symbol. ELF
909 // uses a symbol name because some group signatures are long, and
910 // the name is generally already in the symbol table, so it makes
911 // sense to put the long string just once in .strtab rather than in
912 // both .strtab and .shstrtab.
913
914 // Get the appropriate symbol table header (this will normally be
915 // the single SHT_SYMTAB section, but in principle it need not be).
916 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
917 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
918
919 // Read the symbol table entry.
920 unsigned int symndx = shdr.get_sh_info();
921 if (symndx >= symshdr.get_sh_size() / This::sym_size)
922 {
923 this->error(_("section group %u info %u out of range"),
924 index, symndx);
925 return false;
926 }
927 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
928 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
929 false);
930 elfcpp::Sym<size, big_endian> sym(psym);
931
932 // Read the symbol table names.
933 section_size_type symnamelen;
934 const unsigned char* psymnamesu;
935 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
936 &symnamelen, true);
937 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
938
939 // Get the section group signature.
940 if (sym.get_st_name() >= symnamelen)
941 {
942 this->error(_("symbol %u name offset %u out of range"),
943 symndx, sym.get_st_name());
944 return false;
945 }
946
947 std::string signature(psymnames + sym.get_st_name());
948
949 // It seems that some versions of gas will create a section group
950 // associated with a section symbol, and then fail to give a name to
951 // the section symbol. In such a case, use the name of the section.
952 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
953 {
954 bool is_ordinary;
955 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
956 sym.get_st_shndx(),
957 &is_ordinary);
958 if (!is_ordinary || sym_shndx >= this->shnum())
959 {
960 this->error(_("symbol %u invalid section index %u"),
961 symndx, sym_shndx);
962 return false;
963 }
964 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
965 if (member_shdr.get_sh_name() < section_names_size)
966 signature = section_names + member_shdr.get_sh_name();
967 }
968
969 // Record this section group in the layout, and see whether we've already
970 // seen one with the same signature.
971 bool include_group;
972 bool is_comdat;
973 Kept_section* kept_section = NULL;
974
975 if ((flags & elfcpp::GRP_COMDAT) == 0)
976 {
977 include_group = true;
978 is_comdat = false;
979 }
980 else
981 {
982 include_group = layout->find_or_add_kept_section(signature,
983 this, index, true,
984 true, &kept_section);
985 is_comdat = true;
986 }
987
988 if (is_comdat && include_group)
989 {
990 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
991 if (incremental_inputs != NULL)
992 incremental_inputs->report_comdat_group(this, signature.c_str());
993 }
994
995 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
996
997 std::vector<unsigned int> shndxes;
998 bool relocate_group = include_group && parameters->options().relocatable();
999 if (relocate_group)
1000 shndxes.reserve(count - 1);
1001
1002 for (size_t i = 1; i < count; ++i)
1003 {
1004 elfcpp::Elf_Word shndx =
1005 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1006
1007 if (relocate_group)
1008 shndxes.push_back(shndx);
1009
1010 if (shndx >= this->shnum())
1011 {
1012 this->error(_("section %u in section group %u out of range"),
1013 shndx, index);
1014 continue;
1015 }
1016
1017 // Check for an earlier section number, since we're going to get
1018 // it wrong--we may have already decided to include the section.
1019 if (shndx < index)
1020 this->error(_("invalid section group %u refers to earlier section %u"),
1021 index, shndx);
1022
1023 // Get the name of the member section.
1024 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1025 if (member_shdr.get_sh_name() >= section_names_size)
1026 {
1027 // This is an error, but it will be diagnosed eventually
1028 // in do_layout, so we don't need to do anything here but
1029 // ignore it.
1030 continue;
1031 }
1032 std::string mname(section_names + member_shdr.get_sh_name());
1033
1034 if (include_group)
1035 {
1036 if (is_comdat)
1037 kept_section->add_comdat_section(mname, shndx,
1038 member_shdr.get_sh_size());
1039 }
1040 else
1041 {
1042 (*omit)[shndx] = true;
1043
1044 if (is_comdat)
1045 {
1046 Relobj* kept_object = kept_section->object();
1047 if (kept_section->is_comdat())
1048 {
1049 // Find the corresponding kept section, and store
1050 // that info in the discarded section table.
1051 unsigned int kept_shndx;
1052 uint64_t kept_size;
1053 if (kept_section->find_comdat_section(mname, &kept_shndx,
1054 &kept_size))
1055 {
1056 // We don't keep a mapping for this section if
1057 // it has a different size. The mapping is only
1058 // used for relocation processing, and we don't
1059 // want to treat the sections as similar if the
1060 // sizes are different. Checking the section
1061 // size is the approach used by the GNU linker.
1062 if (kept_size == member_shdr.get_sh_size())
1063 this->set_kept_comdat_section(shndx, kept_object,
1064 kept_shndx);
1065 }
1066 }
1067 else
1068 {
1069 // The existing section is a linkonce section. Add
1070 // a mapping if there is exactly one section in the
1071 // group (which is true when COUNT == 2) and if it
1072 // is the same size.
1073 if (count == 2
1074 && (kept_section->linkonce_size()
1075 == member_shdr.get_sh_size()))
1076 this->set_kept_comdat_section(shndx, kept_object,
1077 kept_section->shndx());
1078 }
1079 }
1080 }
1081 }
1082
1083 if (relocate_group)
1084 layout->layout_group(symtab, this, index, name, signature.c_str(),
1085 shdr, flags, &shndxes);
1086
1087 return include_group;
1088 }
1089
1090 // Whether to include a linkonce section in the link. NAME is the
1091 // name of the section and SHDR is the section header.
1092
1093 // Linkonce sections are a GNU extension implemented in the original
1094 // GNU linker before section groups were defined. The semantics are
1095 // that we only include one linkonce section with a given name. The
1096 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1097 // where T is the type of section and SYMNAME is the name of a symbol.
1098 // In an attempt to make linkonce sections interact well with section
1099 // groups, we try to identify SYMNAME and use it like a section group
1100 // signature. We want to block section groups with that signature,
1101 // but not other linkonce sections with that signature. We also use
1102 // the full name of the linkonce section as a normal section group
1103 // signature.
1104
1105 template<int size, bool big_endian>
1106 bool
1107 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1108 Layout* layout,
1109 unsigned int index,
1110 const char* name,
1111 const elfcpp::Shdr<size, big_endian>& shdr)
1112 {
1113 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1114 // In general the symbol name we want will be the string following
1115 // the last '.'. However, we have to handle the case of
1116 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1117 // some versions of gcc. So we use a heuristic: if the name starts
1118 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1119 // we look for the last '.'. We can't always simply skip
1120 // ".gnu.linkonce.X", because we have to deal with cases like
1121 // ".gnu.linkonce.d.rel.ro.local".
1122 const char* const linkonce_t = ".gnu.linkonce.t.";
1123 const char* symname;
1124 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1125 symname = name + strlen(linkonce_t);
1126 else
1127 symname = strrchr(name, '.') + 1;
1128 std::string sig1(symname);
1129 std::string sig2(name);
1130 Kept_section* kept1;
1131 Kept_section* kept2;
1132 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1133 false, &kept1);
1134 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1135 true, &kept2);
1136
1137 if (!include2)
1138 {
1139 // We are not including this section because we already saw the
1140 // name of the section as a signature. This normally implies
1141 // that the kept section is another linkonce section. If it is
1142 // the same size, record it as the section which corresponds to
1143 // this one.
1144 if (kept2->object() != NULL
1145 && !kept2->is_comdat()
1146 && kept2->linkonce_size() == sh_size)
1147 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1148 }
1149 else if (!include1)
1150 {
1151 // The section is being discarded on the basis of its symbol
1152 // name. This means that the corresponding kept section was
1153 // part of a comdat group, and it will be difficult to identify
1154 // the specific section within that group that corresponds to
1155 // this linkonce section. We'll handle the simple case where
1156 // the group has only one member section. Otherwise, it's not
1157 // worth the effort.
1158 unsigned int kept_shndx;
1159 uint64_t kept_size;
1160 if (kept1->object() != NULL
1161 && kept1->is_comdat()
1162 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1163 && kept_size == sh_size)
1164 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1165 }
1166 else
1167 {
1168 kept1->set_linkonce_size(sh_size);
1169 kept2->set_linkonce_size(sh_size);
1170 }
1171
1172 return include1 && include2;
1173 }
1174
1175 // Layout an input section.
1176
1177 template<int size, bool big_endian>
1178 inline void
1179 Sized_relobj_file<size, big_endian>::layout_section(
1180 Layout* layout,
1181 unsigned int shndx,
1182 const char* name,
1183 const typename This::Shdr& shdr,
1184 unsigned int reloc_shndx,
1185 unsigned int reloc_type)
1186 {
1187 off_t offset;
1188 Output_section* os = layout->layout(this, shndx, name, shdr,
1189 reloc_shndx, reloc_type, &offset);
1190
1191 this->output_sections()[shndx] = os;
1192 if (offset == -1)
1193 this->section_offsets()[shndx] = invalid_address;
1194 else
1195 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1196
1197 // If this section requires special handling, and if there are
1198 // relocs that apply to it, then we must do the special handling
1199 // before we apply the relocs.
1200 if (offset == -1 && reloc_shndx != 0)
1201 this->set_relocs_must_follow_section_writes();
1202 }
1203
1204 // Layout an input .eh_frame section.
1205
1206 template<int size, bool big_endian>
1207 void
1208 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1209 Layout* layout,
1210 const unsigned char* symbols_data,
1211 section_size_type symbols_size,
1212 const unsigned char* symbol_names_data,
1213 section_size_type symbol_names_size,
1214 unsigned int shndx,
1215 const typename This::Shdr& shdr,
1216 unsigned int reloc_shndx,
1217 unsigned int reloc_type)
1218 {
1219 gold_assert(this->has_eh_frame_);
1220
1221 off_t offset;
1222 Output_section* os = layout->layout_eh_frame(this,
1223 symbols_data,
1224 symbols_size,
1225 symbol_names_data,
1226 symbol_names_size,
1227 shndx,
1228 shdr,
1229 reloc_shndx,
1230 reloc_type,
1231 &offset);
1232 this->output_sections()[shndx] = os;
1233 if (os == NULL || offset == -1)
1234 {
1235 // An object can contain at most one section holding exception
1236 // frame information.
1237 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1238 this->discarded_eh_frame_shndx_ = shndx;
1239 this->section_offsets()[shndx] = invalid_address;
1240 }
1241 else
1242 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1243
1244 // If this section requires special handling, and if there are
1245 // relocs that aply to it, then we must do the special handling
1246 // before we apply the relocs.
1247 if (os != NULL && offset == -1 && reloc_shndx != 0)
1248 this->set_relocs_must_follow_section_writes();
1249 }
1250
1251 // Lay out the input sections. We walk through the sections and check
1252 // whether they should be included in the link. If they should, we
1253 // pass them to the Layout object, which will return an output section
1254 // and an offset.
1255 // This function is called twice sometimes, two passes, when mapping
1256 // of input sections to output sections must be delayed.
1257 // This is true for the following :
1258 // * Garbage collection (--gc-sections): Some input sections will be
1259 // discarded and hence the assignment must wait until the second pass.
1260 // In the first pass, it is for setting up some sections as roots to
1261 // a work-list for --gc-sections and to do comdat processing.
1262 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1263 // will be folded and hence the assignment must wait.
1264 // * Using plugins to map some sections to unique segments: Mapping
1265 // some sections to unique segments requires mapping them to unique
1266 // output sections too. This can be done via plugins now and this
1267 // information is not available in the first pass.
1268
1269 template<int size, bool big_endian>
1270 void
1271 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1272 Layout* layout,
1273 Read_symbols_data* sd)
1274 {
1275 const unsigned int shnum = this->shnum();
1276
1277 /* Should this function be called twice? */
1278 bool is_two_pass = (parameters->options().gc_sections()
1279 || parameters->options().icf_enabled()
1280 || layout->is_unique_segment_for_sections_specified());
1281
1282 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1283 a two-pass approach is not needed. */
1284 bool is_pass_one = false;
1285 bool is_pass_two = false;
1286
1287 Symbols_data* gc_sd = NULL;
1288
1289 /* Check if do_layout needs to be two-pass. If so, find out which pass
1290 should happen. In the first pass, the data in sd is saved to be used
1291 later in the second pass. */
1292 if (is_two_pass)
1293 {
1294 gc_sd = this->get_symbols_data();
1295 if (gc_sd == NULL)
1296 {
1297 gold_assert(sd != NULL);
1298 is_pass_one = true;
1299 }
1300 else
1301 {
1302 if (parameters->options().gc_sections())
1303 gold_assert(symtab->gc()->is_worklist_ready());
1304 if (parameters->options().icf_enabled())
1305 gold_assert(symtab->icf()->is_icf_ready());
1306 is_pass_two = true;
1307 }
1308 }
1309
1310 if (shnum == 0)
1311 return;
1312
1313 if (is_pass_one)
1314 {
1315 // During garbage collection save the symbols data to use it when
1316 // re-entering this function.
1317 gc_sd = new Symbols_data;
1318 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1319 this->set_symbols_data(gc_sd);
1320 }
1321
1322 const unsigned char* section_headers_data = NULL;
1323 section_size_type section_names_size;
1324 const unsigned char* symbols_data = NULL;
1325 section_size_type symbols_size;
1326 const unsigned char* symbol_names_data = NULL;
1327 section_size_type symbol_names_size;
1328
1329 if (is_two_pass)
1330 {
1331 section_headers_data = gc_sd->section_headers_data;
1332 section_names_size = gc_sd->section_names_size;
1333 symbols_data = gc_sd->symbols_data;
1334 symbols_size = gc_sd->symbols_size;
1335 symbol_names_data = gc_sd->symbol_names_data;
1336 symbol_names_size = gc_sd->symbol_names_size;
1337 }
1338 else
1339 {
1340 section_headers_data = sd->section_headers->data();
1341 section_names_size = sd->section_names_size;
1342 if (sd->symbols != NULL)
1343 symbols_data = sd->symbols->data();
1344 symbols_size = sd->symbols_size;
1345 if (sd->symbol_names != NULL)
1346 symbol_names_data = sd->symbol_names->data();
1347 symbol_names_size = sd->symbol_names_size;
1348 }
1349
1350 // Get the section headers.
1351 const unsigned char* shdrs = section_headers_data;
1352 const unsigned char* pshdrs;
1353
1354 // Get the section names.
1355 const unsigned char* pnamesu = (is_two_pass
1356 ? gc_sd->section_names_data
1357 : sd->section_names->data());
1358
1359 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1360
1361 // If any input files have been claimed by plugins, we need to defer
1362 // actual layout until the replacement files have arrived.
1363 const bool should_defer_layout =
1364 (parameters->options().has_plugins()
1365 && parameters->options().plugins()->should_defer_layout());
1366 unsigned int num_sections_to_defer = 0;
1367
1368 // For each section, record the index of the reloc section if any.
1369 // Use 0 to mean that there is no reloc section, -1U to mean that
1370 // there is more than one.
1371 std::vector<unsigned int> reloc_shndx(shnum, 0);
1372 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1373 // Skip the first, dummy, section.
1374 pshdrs = shdrs + This::shdr_size;
1375 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1376 {
1377 typename This::Shdr shdr(pshdrs);
1378
1379 // Count the number of sections whose layout will be deferred.
1380 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1381 ++num_sections_to_defer;
1382
1383 unsigned int sh_type = shdr.get_sh_type();
1384 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1385 {
1386 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1387 if (target_shndx == 0 || target_shndx >= shnum)
1388 {
1389 this->error(_("relocation section %u has bad info %u"),
1390 i, target_shndx);
1391 continue;
1392 }
1393
1394 if (reloc_shndx[target_shndx] != 0)
1395 reloc_shndx[target_shndx] = -1U;
1396 else
1397 {
1398 reloc_shndx[target_shndx] = i;
1399 reloc_type[target_shndx] = sh_type;
1400 }
1401 }
1402 }
1403
1404 Output_sections& out_sections(this->output_sections());
1405 std::vector<Address>& out_section_offsets(this->section_offsets());
1406
1407 if (!is_pass_two)
1408 {
1409 out_sections.resize(shnum);
1410 out_section_offsets.resize(shnum);
1411 }
1412
1413 // If we are only linking for symbols, then there is nothing else to
1414 // do here.
1415 if (this->input_file()->just_symbols())
1416 {
1417 if (!is_pass_two)
1418 {
1419 delete sd->section_headers;
1420 sd->section_headers = NULL;
1421 delete sd->section_names;
1422 sd->section_names = NULL;
1423 }
1424 return;
1425 }
1426
1427 if (num_sections_to_defer > 0)
1428 {
1429 parameters->options().plugins()->add_deferred_layout_object(this);
1430 this->deferred_layout_.reserve(num_sections_to_defer);
1431 }
1432
1433 // Whether we've seen a .note.GNU-stack section.
1434 bool seen_gnu_stack = false;
1435 // The flags of a .note.GNU-stack section.
1436 uint64_t gnu_stack_flags = 0;
1437
1438 // Keep track of which sections to omit.
1439 std::vector<bool> omit(shnum, false);
1440
1441 // Keep track of reloc sections when emitting relocations.
1442 const bool relocatable = parameters->options().relocatable();
1443 const bool emit_relocs = (relocatable
1444 || parameters->options().emit_relocs());
1445 std::vector<unsigned int> reloc_sections;
1446
1447 // Keep track of .eh_frame sections.
1448 std::vector<unsigned int> eh_frame_sections;
1449
1450 // Keep track of .debug_info and .debug_types sections.
1451 std::vector<unsigned int> debug_info_sections;
1452 std::vector<unsigned int> debug_types_sections;
1453
1454 // Skip the first, dummy, section.
1455 pshdrs = shdrs + This::shdr_size;
1456 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1457 {
1458 typename This::Shdr shdr(pshdrs);
1459
1460 if (shdr.get_sh_name() >= section_names_size)
1461 {
1462 this->error(_("bad section name offset for section %u: %lu"),
1463 i, static_cast<unsigned long>(shdr.get_sh_name()));
1464 return;
1465 }
1466
1467 const char* name = pnames + shdr.get_sh_name();
1468
1469 if (!is_pass_two)
1470 {
1471 if (this->handle_gnu_warning_section(name, i, symtab))
1472 {
1473 if (!relocatable && !parameters->options().shared())
1474 omit[i] = true;
1475 }
1476
1477 // The .note.GNU-stack section is special. It gives the
1478 // protection flags that this object file requires for the stack
1479 // in memory.
1480 if (strcmp(name, ".note.GNU-stack") == 0)
1481 {
1482 seen_gnu_stack = true;
1483 gnu_stack_flags |= shdr.get_sh_flags();
1484 omit[i] = true;
1485 }
1486
1487 // The .note.GNU-split-stack section is also special. It
1488 // indicates that the object was compiled with
1489 // -fsplit-stack.
1490 if (this->handle_split_stack_section(name))
1491 {
1492 if (!relocatable && !parameters->options().shared())
1493 omit[i] = true;
1494 }
1495
1496 // Skip attributes section.
1497 if (parameters->target().is_attributes_section(name))
1498 {
1499 omit[i] = true;
1500 }
1501
1502 bool discard = omit[i];
1503 if (!discard)
1504 {
1505 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1506 {
1507 if (!this->include_section_group(symtab, layout, i, name,
1508 shdrs, pnames,
1509 section_names_size,
1510 &omit))
1511 discard = true;
1512 }
1513 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1514 && Layout::is_linkonce(name))
1515 {
1516 if (!this->include_linkonce_section(layout, i, name, shdr))
1517 discard = true;
1518 }
1519 }
1520
1521 // Add the section to the incremental inputs layout.
1522 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1523 if (incremental_inputs != NULL
1524 && !discard
1525 && can_incremental_update(shdr.get_sh_type()))
1526 {
1527 off_t sh_size = shdr.get_sh_size();
1528 section_size_type uncompressed_size;
1529 if (this->section_is_compressed(i, &uncompressed_size))
1530 sh_size = uncompressed_size;
1531 incremental_inputs->report_input_section(this, i, name, sh_size);
1532 }
1533
1534 if (discard)
1535 {
1536 // Do not include this section in the link.
1537 out_sections[i] = NULL;
1538 out_section_offsets[i] = invalid_address;
1539 continue;
1540 }
1541 }
1542
1543 if (is_pass_one && parameters->options().gc_sections())
1544 {
1545 if (this->is_section_name_included(name)
1546 || layout->keep_input_section (this, name)
1547 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1548 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1549 {
1550 symtab->gc()->worklist().push(Section_id(this, i));
1551 }
1552 // If the section name XXX can be represented as a C identifier
1553 // it cannot be discarded if there are references to
1554 // __start_XXX and __stop_XXX symbols. These need to be
1555 // specially handled.
1556 if (is_cident(name))
1557 {
1558 symtab->gc()->add_cident_section(name, Section_id(this, i));
1559 }
1560 }
1561
1562 // When doing a relocatable link we are going to copy input
1563 // reloc sections into the output. We only want to copy the
1564 // ones associated with sections which are not being discarded.
1565 // However, we don't know that yet for all sections. So save
1566 // reloc sections and process them later. Garbage collection is
1567 // not triggered when relocatable code is desired.
1568 if (emit_relocs
1569 && (shdr.get_sh_type() == elfcpp::SHT_REL
1570 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1571 {
1572 reloc_sections.push_back(i);
1573 continue;
1574 }
1575
1576 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1577 continue;
1578
1579 // The .eh_frame section is special. It holds exception frame
1580 // information that we need to read in order to generate the
1581 // exception frame header. We process these after all the other
1582 // sections so that the exception frame reader can reliably
1583 // determine which sections are being discarded, and discard the
1584 // corresponding information.
1585 if (!relocatable
1586 && strcmp(name, ".eh_frame") == 0
1587 && this->check_eh_frame_flags(&shdr))
1588 {
1589 if (is_pass_one)
1590 {
1591 out_sections[i] = reinterpret_cast<Output_section*>(1);
1592 out_section_offsets[i] = invalid_address;
1593 }
1594 else if (should_defer_layout)
1595 this->deferred_layout_.push_back(Deferred_layout(i, name,
1596 pshdrs,
1597 reloc_shndx[i],
1598 reloc_type[i]));
1599 else
1600 eh_frame_sections.push_back(i);
1601 continue;
1602 }
1603
1604 if (is_pass_two && parameters->options().gc_sections())
1605 {
1606 // This is executed during the second pass of garbage
1607 // collection. do_layout has been called before and some
1608 // sections have been already discarded. Simply ignore
1609 // such sections this time around.
1610 if (out_sections[i] == NULL)
1611 {
1612 gold_assert(out_section_offsets[i] == invalid_address);
1613 continue;
1614 }
1615 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1616 && symtab->gc()->is_section_garbage(this, i))
1617 {
1618 if (parameters->options().print_gc_sections())
1619 gold_info(_("%s: removing unused section from '%s'"
1620 " in file '%s'"),
1621 program_name, this->section_name(i).c_str(),
1622 this->name().c_str());
1623 out_sections[i] = NULL;
1624 out_section_offsets[i] = invalid_address;
1625 continue;
1626 }
1627 }
1628
1629 if (is_pass_two && parameters->options().icf_enabled())
1630 {
1631 if (out_sections[i] == NULL)
1632 {
1633 gold_assert(out_section_offsets[i] == invalid_address);
1634 continue;
1635 }
1636 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1637 && symtab->icf()->is_section_folded(this, i))
1638 {
1639 if (parameters->options().print_icf_sections())
1640 {
1641 Section_id folded =
1642 symtab->icf()->get_folded_section(this, i);
1643 Relobj* folded_obj =
1644 reinterpret_cast<Relobj*>(folded.first);
1645 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1646 "into '%s' in file '%s'"),
1647 program_name, this->section_name(i).c_str(),
1648 this->name().c_str(),
1649 folded_obj->section_name(folded.second).c_str(),
1650 folded_obj->name().c_str());
1651 }
1652 out_sections[i] = NULL;
1653 out_section_offsets[i] = invalid_address;
1654 continue;
1655 }
1656 }
1657
1658 // Defer layout here if input files are claimed by plugins. When gc
1659 // is turned on this function is called twice. For the second call
1660 // should_defer_layout should be false.
1661 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1662 {
1663 gold_assert(!is_pass_two);
1664 this->deferred_layout_.push_back(Deferred_layout(i, name,
1665 pshdrs,
1666 reloc_shndx[i],
1667 reloc_type[i]));
1668 // Put dummy values here; real values will be supplied by
1669 // do_layout_deferred_sections.
1670 out_sections[i] = reinterpret_cast<Output_section*>(2);
1671 out_section_offsets[i] = invalid_address;
1672 continue;
1673 }
1674
1675 // During gc_pass_two if a section that was previously deferred is
1676 // found, do not layout the section as layout_deferred_sections will
1677 // do it later from gold.cc.
1678 if (is_pass_two
1679 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1680 continue;
1681
1682 if (is_pass_one)
1683 {
1684 // This is during garbage collection. The out_sections are
1685 // assigned in the second call to this function.
1686 out_sections[i] = reinterpret_cast<Output_section*>(1);
1687 out_section_offsets[i] = invalid_address;
1688 }
1689 else
1690 {
1691 // When garbage collection is switched on the actual layout
1692 // only happens in the second call.
1693 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1694 reloc_type[i]);
1695
1696 // When generating a .gdb_index section, we do additional
1697 // processing of .debug_info and .debug_types sections after all
1698 // the other sections for the same reason as above.
1699 if (!relocatable
1700 && parameters->options().gdb_index()
1701 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1702 {
1703 if (strcmp(name, ".debug_info") == 0
1704 || strcmp(name, ".zdebug_info") == 0)
1705 debug_info_sections.push_back(i);
1706 else if (strcmp(name, ".debug_types") == 0
1707 || strcmp(name, ".zdebug_types") == 0)
1708 debug_types_sections.push_back(i);
1709 }
1710 }
1711 }
1712
1713 if (!is_pass_two)
1714 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1715
1716 // Handle the .eh_frame sections after the other sections.
1717 gold_assert(!is_pass_one || eh_frame_sections.empty());
1718 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1719 p != eh_frame_sections.end();
1720 ++p)
1721 {
1722 unsigned int i = *p;
1723 const unsigned char* pshdr;
1724 pshdr = section_headers_data + i * This::shdr_size;
1725 typename This::Shdr shdr(pshdr);
1726
1727 this->layout_eh_frame_section(layout,
1728 symbols_data,
1729 symbols_size,
1730 symbol_names_data,
1731 symbol_names_size,
1732 i,
1733 shdr,
1734 reloc_shndx[i],
1735 reloc_type[i]);
1736 }
1737
1738 // When doing a relocatable link handle the reloc sections at the
1739 // end. Garbage collection and Identical Code Folding is not
1740 // turned on for relocatable code.
1741 if (emit_relocs)
1742 this->size_relocatable_relocs();
1743
1744 gold_assert(!is_two_pass || reloc_sections.empty());
1745
1746 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1747 p != reloc_sections.end();
1748 ++p)
1749 {
1750 unsigned int i = *p;
1751 const unsigned char* pshdr;
1752 pshdr = section_headers_data + i * This::shdr_size;
1753 typename This::Shdr shdr(pshdr);
1754
1755 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1756 if (data_shndx >= shnum)
1757 {
1758 // We already warned about this above.
1759 continue;
1760 }
1761
1762 Output_section* data_section = out_sections[data_shndx];
1763 if (data_section == reinterpret_cast<Output_section*>(2))
1764 {
1765 // The layout for the data section was deferred, so we need
1766 // to defer the relocation section, too.
1767 const char* name = pnames + shdr.get_sh_name();
1768 this->deferred_layout_relocs_.push_back(
1769 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1770 out_sections[i] = reinterpret_cast<Output_section*>(2);
1771 out_section_offsets[i] = invalid_address;
1772 continue;
1773 }
1774 if (data_section == NULL)
1775 {
1776 out_sections[i] = NULL;
1777 out_section_offsets[i] = invalid_address;
1778 continue;
1779 }
1780
1781 Relocatable_relocs* rr = new Relocatable_relocs();
1782 this->set_relocatable_relocs(i, rr);
1783
1784 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1785 rr);
1786 out_sections[i] = os;
1787 out_section_offsets[i] = invalid_address;
1788 }
1789
1790 // When building a .gdb_index section, scan the .debug_info and
1791 // .debug_types sections.
1792 gold_assert(!is_pass_one
1793 || (debug_info_sections.empty() && debug_types_sections.empty()));
1794 for (std::vector<unsigned int>::const_iterator p
1795 = debug_info_sections.begin();
1796 p != debug_info_sections.end();
1797 ++p)
1798 {
1799 unsigned int i = *p;
1800 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1801 i, reloc_shndx[i], reloc_type[i]);
1802 }
1803 for (std::vector<unsigned int>::const_iterator p
1804 = debug_types_sections.begin();
1805 p != debug_types_sections.end();
1806 ++p)
1807 {
1808 unsigned int i = *p;
1809 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1810 i, reloc_shndx[i], reloc_type[i]);
1811 }
1812
1813 if (is_pass_two)
1814 {
1815 delete[] gc_sd->section_headers_data;
1816 delete[] gc_sd->section_names_data;
1817 delete[] gc_sd->symbols_data;
1818 delete[] gc_sd->symbol_names_data;
1819 this->set_symbols_data(NULL);
1820 }
1821 else
1822 {
1823 delete sd->section_headers;
1824 sd->section_headers = NULL;
1825 delete sd->section_names;
1826 sd->section_names = NULL;
1827 }
1828 }
1829
1830 // Layout sections whose layout was deferred while waiting for
1831 // input files from a plugin.
1832
1833 template<int size, bool big_endian>
1834 void
1835 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1836 {
1837 typename std::vector<Deferred_layout>::iterator deferred;
1838
1839 for (deferred = this->deferred_layout_.begin();
1840 deferred != this->deferred_layout_.end();
1841 ++deferred)
1842 {
1843 typename This::Shdr shdr(deferred->shdr_data_);
1844
1845 if (!parameters->options().relocatable()
1846 && deferred->name_ == ".eh_frame"
1847 && this->check_eh_frame_flags(&shdr))
1848 {
1849 // Checking is_section_included is not reliable for
1850 // .eh_frame sections, because they do not have an output
1851 // section. This is not a problem normally because we call
1852 // layout_eh_frame_section unconditionally, but when
1853 // deferring sections that is not true. We don't want to
1854 // keep all .eh_frame sections because that will cause us to
1855 // keep all sections that they refer to, which is the wrong
1856 // way around. Instead, the eh_frame code will discard
1857 // .eh_frame sections that refer to discarded sections.
1858
1859 // Reading the symbols again here may be slow.
1860 Read_symbols_data sd;
1861 this->base_read_symbols(&sd);
1862 this->layout_eh_frame_section(layout,
1863 sd.symbols->data(),
1864 sd.symbols_size,
1865 sd.symbol_names->data(),
1866 sd.symbol_names_size,
1867 deferred->shndx_,
1868 shdr,
1869 deferred->reloc_shndx_,
1870 deferred->reloc_type_);
1871 continue;
1872 }
1873
1874 // If the section is not included, it is because the garbage collector
1875 // decided it is not needed. Avoid reverting that decision.
1876 if (!this->is_section_included(deferred->shndx_))
1877 continue;
1878
1879 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1880 shdr, deferred->reloc_shndx_,
1881 deferred->reloc_type_);
1882 }
1883
1884 this->deferred_layout_.clear();
1885
1886 // Now handle the deferred relocation sections.
1887
1888 Output_sections& out_sections(this->output_sections());
1889 std::vector<Address>& out_section_offsets(this->section_offsets());
1890
1891 for (deferred = this->deferred_layout_relocs_.begin();
1892 deferred != this->deferred_layout_relocs_.end();
1893 ++deferred)
1894 {
1895 unsigned int shndx = deferred->shndx_;
1896 typename This::Shdr shdr(deferred->shdr_data_);
1897 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1898
1899 Output_section* data_section = out_sections[data_shndx];
1900 if (data_section == NULL)
1901 {
1902 out_sections[shndx] = NULL;
1903 out_section_offsets[shndx] = invalid_address;
1904 continue;
1905 }
1906
1907 Relocatable_relocs* rr = new Relocatable_relocs();
1908 this->set_relocatable_relocs(shndx, rr);
1909
1910 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1911 data_section, rr);
1912 out_sections[shndx] = os;
1913 out_section_offsets[shndx] = invalid_address;
1914 }
1915 }
1916
1917 // Add the symbols to the symbol table.
1918
1919 template<int size, bool big_endian>
1920 void
1921 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1922 Read_symbols_data* sd,
1923 Layout*)
1924 {
1925 if (sd->symbols == NULL)
1926 {
1927 gold_assert(sd->symbol_names == NULL);
1928 return;
1929 }
1930
1931 const int sym_size = This::sym_size;
1932 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1933 / sym_size);
1934 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1935 {
1936 this->error(_("size of symbols is not multiple of symbol size"));
1937 return;
1938 }
1939
1940 this->symbols_.resize(symcount);
1941
1942 const char* sym_names =
1943 reinterpret_cast<const char*>(sd->symbol_names->data());
1944 symtab->add_from_relobj(this,
1945 sd->symbols->data() + sd->external_symbols_offset,
1946 symcount, this->local_symbol_count_,
1947 sym_names, sd->symbol_names_size,
1948 &this->symbols_,
1949 &this->defined_count_);
1950
1951 delete sd->symbols;
1952 sd->symbols = NULL;
1953 delete sd->symbol_names;
1954 sd->symbol_names = NULL;
1955 }
1956
1957 // Find out if this object, that is a member of a lib group, should be included
1958 // in the link. We check every symbol defined by this object. If the symbol
1959 // table has a strong undefined reference to that symbol, we have to include
1960 // the object.
1961
1962 template<int size, bool big_endian>
1963 Archive::Should_include
1964 Sized_relobj_file<size, big_endian>::do_should_include_member(
1965 Symbol_table* symtab,
1966 Layout* layout,
1967 Read_symbols_data* sd,
1968 std::string* why)
1969 {
1970 char* tmpbuf = NULL;
1971 size_t tmpbuflen = 0;
1972 const char* sym_names =
1973 reinterpret_cast<const char*>(sd->symbol_names->data());
1974 const unsigned char* syms =
1975 sd->symbols->data() + sd->external_symbols_offset;
1976 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1977 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1978 / sym_size);
1979
1980 const unsigned char* p = syms;
1981
1982 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1983 {
1984 elfcpp::Sym<size, big_endian> sym(p);
1985 unsigned int st_shndx = sym.get_st_shndx();
1986 if (st_shndx == elfcpp::SHN_UNDEF)
1987 continue;
1988
1989 unsigned int st_name = sym.get_st_name();
1990 const char* name = sym_names + st_name;
1991 Symbol* symbol;
1992 Archive::Should_include t = Archive::should_include_member(symtab,
1993 layout,
1994 name,
1995 &symbol, why,
1996 &tmpbuf,
1997 &tmpbuflen);
1998 if (t == Archive::SHOULD_INCLUDE_YES)
1999 {
2000 if (tmpbuf != NULL)
2001 free(tmpbuf);
2002 return t;
2003 }
2004 }
2005 if (tmpbuf != NULL)
2006 free(tmpbuf);
2007 return Archive::SHOULD_INCLUDE_UNKNOWN;
2008 }
2009
2010 // Iterate over global defined symbols, calling a visitor class V for each.
2011
2012 template<int size, bool big_endian>
2013 void
2014 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2015 Read_symbols_data* sd,
2016 Library_base::Symbol_visitor_base* v)
2017 {
2018 const char* sym_names =
2019 reinterpret_cast<const char*>(sd->symbol_names->data());
2020 const unsigned char* syms =
2021 sd->symbols->data() + sd->external_symbols_offset;
2022 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2023 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2024 / sym_size);
2025 const unsigned char* p = syms;
2026
2027 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2028 {
2029 elfcpp::Sym<size, big_endian> sym(p);
2030 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2031 v->visit(sym_names + sym.get_st_name());
2032 }
2033 }
2034
2035 // Return whether the local symbol SYMNDX has a PLT offset.
2036
2037 template<int size, bool big_endian>
2038 bool
2039 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2040 unsigned int symndx) const
2041 {
2042 typename Local_plt_offsets::const_iterator p =
2043 this->local_plt_offsets_.find(symndx);
2044 return p != this->local_plt_offsets_.end();
2045 }
2046
2047 // Get the PLT offset of a local symbol.
2048
2049 template<int size, bool big_endian>
2050 unsigned int
2051 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2052 unsigned int symndx) const
2053 {
2054 typename Local_plt_offsets::const_iterator p =
2055 this->local_plt_offsets_.find(symndx);
2056 gold_assert(p != this->local_plt_offsets_.end());
2057 return p->second;
2058 }
2059
2060 // Set the PLT offset of a local symbol.
2061
2062 template<int size, bool big_endian>
2063 void
2064 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2065 unsigned int symndx, unsigned int plt_offset)
2066 {
2067 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2068 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2069 gold_assert(ins.second);
2070 }
2071
2072 // First pass over the local symbols. Here we add their names to
2073 // *POOL and *DYNPOOL, and we store the symbol value in
2074 // THIS->LOCAL_VALUES_. This function is always called from a
2075 // singleton thread. This is followed by a call to
2076 // finalize_local_symbols.
2077
2078 template<int size, bool big_endian>
2079 void
2080 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2081 Stringpool* dynpool)
2082 {
2083 gold_assert(this->symtab_shndx_ != -1U);
2084 if (this->symtab_shndx_ == 0)
2085 {
2086 // This object has no symbols. Weird but legal.
2087 return;
2088 }
2089
2090 // Read the symbol table section header.
2091 const unsigned int symtab_shndx = this->symtab_shndx_;
2092 typename This::Shdr symtabshdr(this,
2093 this->elf_file_.section_header(symtab_shndx));
2094 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2095
2096 // Read the local symbols.
2097 const int sym_size = This::sym_size;
2098 const unsigned int loccount = this->local_symbol_count_;
2099 gold_assert(loccount == symtabshdr.get_sh_info());
2100 off_t locsize = loccount * sym_size;
2101 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2102 locsize, true, true);
2103
2104 // Read the symbol names.
2105 const unsigned int strtab_shndx =
2106 this->adjust_shndx(symtabshdr.get_sh_link());
2107 section_size_type strtab_size;
2108 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2109 &strtab_size,
2110 true);
2111 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2112
2113 // Loop over the local symbols.
2114
2115 const Output_sections& out_sections(this->output_sections());
2116 unsigned int shnum = this->shnum();
2117 unsigned int count = 0;
2118 unsigned int dyncount = 0;
2119 // Skip the first, dummy, symbol.
2120 psyms += sym_size;
2121 bool strip_all = parameters->options().strip_all();
2122 bool discard_all = parameters->options().discard_all();
2123 bool discard_locals = parameters->options().discard_locals();
2124 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2125 {
2126 elfcpp::Sym<size, big_endian> sym(psyms);
2127
2128 Symbol_value<size>& lv(this->local_values_[i]);
2129
2130 bool is_ordinary;
2131 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2132 &is_ordinary);
2133 lv.set_input_shndx(shndx, is_ordinary);
2134
2135 if (sym.get_st_type() == elfcpp::STT_SECTION)
2136 lv.set_is_section_symbol();
2137 else if (sym.get_st_type() == elfcpp::STT_TLS)
2138 lv.set_is_tls_symbol();
2139 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2140 lv.set_is_ifunc_symbol();
2141
2142 // Save the input symbol value for use in do_finalize_local_symbols().
2143 lv.set_input_value(sym.get_st_value());
2144
2145 // Decide whether this symbol should go into the output file.
2146
2147 if ((shndx < shnum && out_sections[shndx] == NULL)
2148 || shndx == this->discarded_eh_frame_shndx_)
2149 {
2150 lv.set_no_output_symtab_entry();
2151 gold_assert(!lv.needs_output_dynsym_entry());
2152 continue;
2153 }
2154
2155 if (sym.get_st_type() == elfcpp::STT_SECTION
2156 || !this->adjust_local_symbol(&lv))
2157 {
2158 lv.set_no_output_symtab_entry();
2159 gold_assert(!lv.needs_output_dynsym_entry());
2160 continue;
2161 }
2162
2163 if (sym.get_st_name() >= strtab_size)
2164 {
2165 this->error(_("local symbol %u section name out of range: %u >= %u"),
2166 i, sym.get_st_name(),
2167 static_cast<unsigned int>(strtab_size));
2168 lv.set_no_output_symtab_entry();
2169 continue;
2170 }
2171
2172 const char* name = pnames + sym.get_st_name();
2173
2174 // If needed, add the symbol to the dynamic symbol table string pool.
2175 if (lv.needs_output_dynsym_entry())
2176 {
2177 dynpool->add(name, true, NULL);
2178 ++dyncount;
2179 }
2180
2181 if (strip_all
2182 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2183 {
2184 lv.set_no_output_symtab_entry();
2185 continue;
2186 }
2187
2188 // If --discard-locals option is used, discard all temporary local
2189 // symbols. These symbols start with system-specific local label
2190 // prefixes, typically .L for ELF system. We want to be compatible
2191 // with GNU ld so here we essentially use the same check in
2192 // bfd_is_local_label(). The code is different because we already
2193 // know that:
2194 //
2195 // - the symbol is local and thus cannot have global or weak binding.
2196 // - the symbol is not a section symbol.
2197 // - the symbol has a name.
2198 //
2199 // We do not discard a symbol if it needs a dynamic symbol entry.
2200 if (discard_locals
2201 && sym.get_st_type() != elfcpp::STT_FILE
2202 && !lv.needs_output_dynsym_entry()
2203 && lv.may_be_discarded_from_output_symtab()
2204 && parameters->target().is_local_label_name(name))
2205 {
2206 lv.set_no_output_symtab_entry();
2207 continue;
2208 }
2209
2210 // Discard the local symbol if -retain_symbols_file is specified
2211 // and the local symbol is not in that file.
2212 if (!parameters->options().should_retain_symbol(name))
2213 {
2214 lv.set_no_output_symtab_entry();
2215 continue;
2216 }
2217
2218 // Add the symbol to the symbol table string pool.
2219 pool->add(name, true, NULL);
2220 ++count;
2221 }
2222
2223 this->output_local_symbol_count_ = count;
2224 this->output_local_dynsym_count_ = dyncount;
2225 }
2226
2227 // Compute the final value of a local symbol.
2228
2229 template<int size, bool big_endian>
2230 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2231 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2232 unsigned int r_sym,
2233 const Symbol_value<size>* lv_in,
2234 Symbol_value<size>* lv_out,
2235 bool relocatable,
2236 const Output_sections& out_sections,
2237 const std::vector<Address>& out_offsets,
2238 const Symbol_table* symtab)
2239 {
2240 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2241 // we may have a memory leak.
2242 gold_assert(lv_out->has_output_value());
2243
2244 bool is_ordinary;
2245 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2246
2247 // Set the output symbol value.
2248
2249 if (!is_ordinary)
2250 {
2251 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2252 lv_out->set_output_value(lv_in->input_value());
2253 else
2254 {
2255 this->error(_("unknown section index %u for local symbol %u"),
2256 shndx, r_sym);
2257 lv_out->set_output_value(0);
2258 return This::CFLV_ERROR;
2259 }
2260 }
2261 else
2262 {
2263 if (shndx >= this->shnum())
2264 {
2265 this->error(_("local symbol %u section index %u out of range"),
2266 r_sym, shndx);
2267 lv_out->set_output_value(0);
2268 return This::CFLV_ERROR;
2269 }
2270
2271 Output_section* os = out_sections[shndx];
2272 Address secoffset = out_offsets[shndx];
2273 if (symtab->is_section_folded(this, shndx))
2274 {
2275 gold_assert(os == NULL && secoffset == invalid_address);
2276 // Get the os of the section it is folded onto.
2277 Section_id folded = symtab->icf()->get_folded_section(this,
2278 shndx);
2279 gold_assert(folded.first != NULL);
2280 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2281 <Sized_relobj_file<size, big_endian>*>(folded.first);
2282 os = folded_obj->output_section(folded.second);
2283 gold_assert(os != NULL);
2284 secoffset = folded_obj->get_output_section_offset(folded.second);
2285
2286 // This could be a relaxed input section.
2287 if (secoffset == invalid_address)
2288 {
2289 const Output_relaxed_input_section* relaxed_section =
2290 os->find_relaxed_input_section(folded_obj, folded.second);
2291 gold_assert(relaxed_section != NULL);
2292 secoffset = relaxed_section->address() - os->address();
2293 }
2294 }
2295
2296 if (os == NULL)
2297 {
2298 // This local symbol belongs to a section we are discarding.
2299 // In some cases when applying relocations later, we will
2300 // attempt to match it to the corresponding kept section,
2301 // so we leave the input value unchanged here.
2302 return This::CFLV_DISCARDED;
2303 }
2304 else if (secoffset == invalid_address)
2305 {
2306 uint64_t start;
2307
2308 // This is a SHF_MERGE section or one which otherwise
2309 // requires special handling.
2310 if (shndx == this->discarded_eh_frame_shndx_)
2311 {
2312 // This local symbol belongs to a discarded .eh_frame
2313 // section. Just treat it like the case in which
2314 // os == NULL above.
2315 gold_assert(this->has_eh_frame_);
2316 return This::CFLV_DISCARDED;
2317 }
2318 else if (!lv_in->is_section_symbol())
2319 {
2320 // This is not a section symbol. We can determine
2321 // the final value now.
2322 lv_out->set_output_value(
2323 os->output_address(this, shndx, lv_in->input_value()));
2324 }
2325 else if (!os->find_starting_output_address(this, shndx, &start))
2326 {
2327 // This is a section symbol, but apparently not one in a
2328 // merged section. First check to see if this is a relaxed
2329 // input section. If so, use its address. Otherwise just
2330 // use the start of the output section. This happens with
2331 // relocatable links when the input object has section
2332 // symbols for arbitrary non-merge sections.
2333 const Output_section_data* posd =
2334 os->find_relaxed_input_section(this, shndx);
2335 if (posd != NULL)
2336 {
2337 Address relocatable_link_adjustment =
2338 relocatable ? os->address() : 0;
2339 lv_out->set_output_value(posd->address()
2340 - relocatable_link_adjustment);
2341 }
2342 else
2343 lv_out->set_output_value(os->address());
2344 }
2345 else
2346 {
2347 // We have to consider the addend to determine the
2348 // value to use in a relocation. START is the start
2349 // of this input section. If we are doing a relocatable
2350 // link, use offset from start output section instead of
2351 // address.
2352 Address adjusted_start =
2353 relocatable ? start - os->address() : start;
2354 Merged_symbol_value<size>* msv =
2355 new Merged_symbol_value<size>(lv_in->input_value(),
2356 adjusted_start);
2357 lv_out->set_merged_symbol_value(msv);
2358 }
2359 }
2360 else if (lv_in->is_tls_symbol())
2361 lv_out->set_output_value(os->tls_offset()
2362 + secoffset
2363 + lv_in->input_value());
2364 else
2365 lv_out->set_output_value((relocatable ? 0 : os->address())
2366 + secoffset
2367 + lv_in->input_value());
2368 }
2369 return This::CFLV_OK;
2370 }
2371
2372 // Compute final local symbol value. R_SYM is the index of a local
2373 // symbol in symbol table. LV points to a symbol value, which is
2374 // expected to hold the input value and to be over-written by the
2375 // final value. SYMTAB points to a symbol table. Some targets may want
2376 // to know would-be-finalized local symbol values in relaxation.
2377 // Hence we provide this method. Since this method updates *LV, a
2378 // callee should make a copy of the original local symbol value and
2379 // use the copy instead of modifying an object's local symbols before
2380 // everything is finalized. The caller should also free up any allocated
2381 // memory in the return value in *LV.
2382 template<int size, bool big_endian>
2383 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
2384 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2385 unsigned int r_sym,
2386 const Symbol_value<size>* lv_in,
2387 Symbol_value<size>* lv_out,
2388 const Symbol_table* symtab)
2389 {
2390 // This is just a wrapper of compute_final_local_value_internal.
2391 const bool relocatable = parameters->options().relocatable();
2392 const Output_sections& out_sections(this->output_sections());
2393 const std::vector<Address>& out_offsets(this->section_offsets());
2394 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2395 relocatable, out_sections,
2396 out_offsets, symtab);
2397 }
2398
2399 // Finalize the local symbols. Here we set the final value in
2400 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2401 // This function is always called from a singleton thread. The actual
2402 // output of the local symbols will occur in a separate task.
2403
2404 template<int size, bool big_endian>
2405 unsigned int
2406 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2407 unsigned int index,
2408 off_t off,
2409 Symbol_table* symtab)
2410 {
2411 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2412
2413 const unsigned int loccount = this->local_symbol_count_;
2414 this->local_symbol_offset_ = off;
2415
2416 const bool relocatable = parameters->options().relocatable();
2417 const Output_sections& out_sections(this->output_sections());
2418 const std::vector<Address>& out_offsets(this->section_offsets());
2419
2420 for (unsigned int i = 1; i < loccount; ++i)
2421 {
2422 Symbol_value<size>* lv = &this->local_values_[i];
2423
2424 Compute_final_local_value_status cflv_status =
2425 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2426 out_sections, out_offsets,
2427 symtab);
2428 switch (cflv_status)
2429 {
2430 case CFLV_OK:
2431 if (!lv->is_output_symtab_index_set())
2432 {
2433 lv->set_output_symtab_index(index);
2434 ++index;
2435 }
2436 break;
2437 case CFLV_DISCARDED:
2438 case CFLV_ERROR:
2439 // Do nothing.
2440 break;
2441 default:
2442 gold_unreachable();
2443 }
2444 }
2445 return index;
2446 }
2447
2448 // Set the output dynamic symbol table indexes for the local variables.
2449
2450 template<int size, bool big_endian>
2451 unsigned int
2452 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2453 unsigned int index)
2454 {
2455 const unsigned int loccount = this->local_symbol_count_;
2456 for (unsigned int i = 1; i < loccount; ++i)
2457 {
2458 Symbol_value<size>& lv(this->local_values_[i]);
2459 if (lv.needs_output_dynsym_entry())
2460 {
2461 lv.set_output_dynsym_index(index);
2462 ++index;
2463 }
2464 }
2465 return index;
2466 }
2467
2468 // Set the offset where local dynamic symbol information will be stored.
2469 // Returns the count of local symbols contributed to the symbol table by
2470 // this object.
2471
2472 template<int size, bool big_endian>
2473 unsigned int
2474 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2475 {
2476 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2477 this->local_dynsym_offset_ = off;
2478 return this->output_local_dynsym_count_;
2479 }
2480
2481 // If Symbols_data is not NULL get the section flags from here otherwise
2482 // get it from the file.
2483
2484 template<int size, bool big_endian>
2485 uint64_t
2486 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2487 {
2488 Symbols_data* sd = this->get_symbols_data();
2489 if (sd != NULL)
2490 {
2491 const unsigned char* pshdrs = sd->section_headers_data
2492 + This::shdr_size * shndx;
2493 typename This::Shdr shdr(pshdrs);
2494 return shdr.get_sh_flags();
2495 }
2496 // If sd is NULL, read the section header from the file.
2497 return this->elf_file_.section_flags(shndx);
2498 }
2499
2500 // Get the section's ent size from Symbols_data. Called by get_section_contents
2501 // in icf.cc
2502
2503 template<int size, bool big_endian>
2504 uint64_t
2505 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2506 {
2507 Symbols_data* sd = this->get_symbols_data();
2508 gold_assert(sd != NULL);
2509
2510 const unsigned char* pshdrs = sd->section_headers_data
2511 + This::shdr_size * shndx;
2512 typename This::Shdr shdr(pshdrs);
2513 return shdr.get_sh_entsize();
2514 }
2515
2516 // Write out the local symbols.
2517
2518 template<int size, bool big_endian>
2519 void
2520 Sized_relobj_file<size, big_endian>::write_local_symbols(
2521 Output_file* of,
2522 const Stringpool* sympool,
2523 const Stringpool* dynpool,
2524 Output_symtab_xindex* symtab_xindex,
2525 Output_symtab_xindex* dynsym_xindex,
2526 off_t symtab_off)
2527 {
2528 const bool strip_all = parameters->options().strip_all();
2529 if (strip_all)
2530 {
2531 if (this->output_local_dynsym_count_ == 0)
2532 return;
2533 this->output_local_symbol_count_ = 0;
2534 }
2535
2536 gold_assert(this->symtab_shndx_ != -1U);
2537 if (this->symtab_shndx_ == 0)
2538 {
2539 // This object has no symbols. Weird but legal.
2540 return;
2541 }
2542
2543 // Read the symbol table section header.
2544 const unsigned int symtab_shndx = this->symtab_shndx_;
2545 typename This::Shdr symtabshdr(this,
2546 this->elf_file_.section_header(symtab_shndx));
2547 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2548 const unsigned int loccount = this->local_symbol_count_;
2549 gold_assert(loccount == symtabshdr.get_sh_info());
2550
2551 // Read the local symbols.
2552 const int sym_size = This::sym_size;
2553 off_t locsize = loccount * sym_size;
2554 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2555 locsize, true, false);
2556
2557 // Read the symbol names.
2558 const unsigned int strtab_shndx =
2559 this->adjust_shndx(symtabshdr.get_sh_link());
2560 section_size_type strtab_size;
2561 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2562 &strtab_size,
2563 false);
2564 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2565
2566 // Get views into the output file for the portions of the symbol table
2567 // and the dynamic symbol table that we will be writing.
2568 off_t output_size = this->output_local_symbol_count_ * sym_size;
2569 unsigned char* oview = NULL;
2570 if (output_size > 0)
2571 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2572 output_size);
2573
2574 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2575 unsigned char* dyn_oview = NULL;
2576 if (dyn_output_size > 0)
2577 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2578 dyn_output_size);
2579
2580 const Output_sections out_sections(this->output_sections());
2581
2582 gold_assert(this->local_values_.size() == loccount);
2583
2584 unsigned char* ov = oview;
2585 unsigned char* dyn_ov = dyn_oview;
2586 psyms += sym_size;
2587 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2588 {
2589 elfcpp::Sym<size, big_endian> isym(psyms);
2590
2591 Symbol_value<size>& lv(this->local_values_[i]);
2592
2593 bool is_ordinary;
2594 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2595 &is_ordinary);
2596 if (is_ordinary)
2597 {
2598 gold_assert(st_shndx < out_sections.size());
2599 if (out_sections[st_shndx] == NULL)
2600 continue;
2601 st_shndx = out_sections[st_shndx]->out_shndx();
2602 if (st_shndx >= elfcpp::SHN_LORESERVE)
2603 {
2604 if (lv.has_output_symtab_entry())
2605 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2606 if (lv.has_output_dynsym_entry())
2607 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2608 st_shndx = elfcpp::SHN_XINDEX;
2609 }
2610 }
2611
2612 // Write the symbol to the output symbol table.
2613 if (lv.has_output_symtab_entry())
2614 {
2615 elfcpp::Sym_write<size, big_endian> osym(ov);
2616
2617 gold_assert(isym.get_st_name() < strtab_size);
2618 const char* name = pnames + isym.get_st_name();
2619 osym.put_st_name(sympool->get_offset(name));
2620 osym.put_st_value(this->local_values_[i].value(this, 0));
2621 osym.put_st_size(isym.get_st_size());
2622 osym.put_st_info(isym.get_st_info());
2623 osym.put_st_other(isym.get_st_other());
2624 osym.put_st_shndx(st_shndx);
2625
2626 ov += sym_size;
2627 }
2628
2629 // Write the symbol to the output dynamic symbol table.
2630 if (lv.has_output_dynsym_entry())
2631 {
2632 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2633 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2634
2635 gold_assert(isym.get_st_name() < strtab_size);
2636 const char* name = pnames + isym.get_st_name();
2637 osym.put_st_name(dynpool->get_offset(name));
2638 osym.put_st_value(this->local_values_[i].value(this, 0));
2639 osym.put_st_size(isym.get_st_size());
2640 osym.put_st_info(isym.get_st_info());
2641 osym.put_st_other(isym.get_st_other());
2642 osym.put_st_shndx(st_shndx);
2643
2644 dyn_ov += sym_size;
2645 }
2646 }
2647
2648
2649 if (output_size > 0)
2650 {
2651 gold_assert(ov - oview == output_size);
2652 of->write_output_view(symtab_off + this->local_symbol_offset_,
2653 output_size, oview);
2654 }
2655
2656 if (dyn_output_size > 0)
2657 {
2658 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2659 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2660 dyn_oview);
2661 }
2662 }
2663
2664 // Set *INFO to symbolic information about the offset OFFSET in the
2665 // section SHNDX. Return true if we found something, false if we
2666 // found nothing.
2667
2668 template<int size, bool big_endian>
2669 bool
2670 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2671 unsigned int shndx,
2672 off_t offset,
2673 Symbol_location_info* info)
2674 {
2675 if (this->symtab_shndx_ == 0)
2676 return false;
2677
2678 section_size_type symbols_size;
2679 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2680 &symbols_size,
2681 false);
2682
2683 unsigned int symbol_names_shndx =
2684 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2685 section_size_type names_size;
2686 const unsigned char* symbol_names_u =
2687 this->section_contents(symbol_names_shndx, &names_size, false);
2688 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2689
2690 const int sym_size = This::sym_size;
2691 const size_t count = symbols_size / sym_size;
2692
2693 const unsigned char* p = symbols;
2694 for (size_t i = 0; i < count; ++i, p += sym_size)
2695 {
2696 elfcpp::Sym<size, big_endian> sym(p);
2697
2698 if (sym.get_st_type() == elfcpp::STT_FILE)
2699 {
2700 if (sym.get_st_name() >= names_size)
2701 info->source_file = "(invalid)";
2702 else
2703 info->source_file = symbol_names + sym.get_st_name();
2704 continue;
2705 }
2706
2707 bool is_ordinary;
2708 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2709 &is_ordinary);
2710 if (is_ordinary
2711 && st_shndx == shndx
2712 && static_cast<off_t>(sym.get_st_value()) <= offset
2713 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2714 > offset))
2715 {
2716 info->enclosing_symbol_type = sym.get_st_type();
2717 if (sym.get_st_name() > names_size)
2718 info->enclosing_symbol_name = "(invalid)";
2719 else
2720 {
2721 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2722 if (parameters->options().do_demangle())
2723 {
2724 char* demangled_name = cplus_demangle(
2725 info->enclosing_symbol_name.c_str(),
2726 DMGL_ANSI | DMGL_PARAMS);
2727 if (demangled_name != NULL)
2728 {
2729 info->enclosing_symbol_name.assign(demangled_name);
2730 free(demangled_name);
2731 }
2732 }
2733 }
2734 return true;
2735 }
2736 }
2737
2738 return false;
2739 }
2740
2741 // Look for a kept section corresponding to the given discarded section,
2742 // and return its output address. This is used only for relocations in
2743 // debugging sections. If we can't find the kept section, return 0.
2744
2745 template<int size, bool big_endian>
2746 typename Sized_relobj_file<size, big_endian>::Address
2747 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2748 unsigned int shndx,
2749 bool* found) const
2750 {
2751 Relobj* kept_object;
2752 unsigned int kept_shndx;
2753 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2754 {
2755 Sized_relobj_file<size, big_endian>* kept_relobj =
2756 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2757 Output_section* os = kept_relobj->output_section(kept_shndx);
2758 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2759 if (os != NULL && offset != invalid_address)
2760 {
2761 *found = true;
2762 return os->address() + offset;
2763 }
2764 }
2765 *found = false;
2766 return 0;
2767 }
2768
2769 // Get symbol counts.
2770
2771 template<int size, bool big_endian>
2772 void
2773 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2774 const Symbol_table*,
2775 size_t* defined,
2776 size_t* used) const
2777 {
2778 *defined = this->defined_count_;
2779 size_t count = 0;
2780 for (typename Symbols::const_iterator p = this->symbols_.begin();
2781 p != this->symbols_.end();
2782 ++p)
2783 if (*p != NULL
2784 && (*p)->source() == Symbol::FROM_OBJECT
2785 && (*p)->object() == this
2786 && (*p)->is_defined())
2787 ++count;
2788 *used = count;
2789 }
2790
2791 // Return a view of the decompressed contents of a section. Set *PLEN
2792 // to the size. Set *IS_NEW to true if the contents need to be freed
2793 // by the caller.
2794
2795 template<int size, bool big_endian>
2796 const unsigned char*
2797 Sized_relobj_file<size, big_endian>::do_decompressed_section_contents(
2798 unsigned int shndx,
2799 section_size_type* plen,
2800 bool* is_new)
2801 {
2802 section_size_type buffer_size;
2803 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2804 false);
2805
2806 if (this->compressed_sections_ == NULL)
2807 {
2808 *plen = buffer_size;
2809 *is_new = false;
2810 return buffer;
2811 }
2812
2813 Compressed_section_map::const_iterator p =
2814 this->compressed_sections_->find(shndx);
2815 if (p == this->compressed_sections_->end())
2816 {
2817 *plen = buffer_size;
2818 *is_new = false;
2819 return buffer;
2820 }
2821
2822 section_size_type uncompressed_size = p->second.size;
2823 if (p->second.contents != NULL)
2824 {
2825 *plen = uncompressed_size;
2826 *is_new = false;
2827 return p->second.contents;
2828 }
2829
2830 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2831 if (!decompress_input_section(buffer,
2832 buffer_size,
2833 uncompressed_data,
2834 uncompressed_size))
2835 this->error(_("could not decompress section %s"),
2836 this->do_section_name(shndx).c_str());
2837
2838 // We could cache the results in p->second.contents and store
2839 // false in *IS_NEW, but build_compressed_section_map() would
2840 // have done so if it had expected it to be profitable. If
2841 // we reach this point, we expect to need the contents only
2842 // once in this pass.
2843 *plen = uncompressed_size;
2844 *is_new = true;
2845 return uncompressed_data;
2846 }
2847
2848 // Discard any buffers of uncompressed sections. This is done
2849 // at the end of the Add_symbols task.
2850
2851 template<int size, bool big_endian>
2852 void
2853 Sized_relobj_file<size, big_endian>::do_discard_decompressed_sections()
2854 {
2855 if (this->compressed_sections_ == NULL)
2856 return;
2857
2858 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2859 p != this->compressed_sections_->end();
2860 ++p)
2861 {
2862 if (p->second.contents != NULL)
2863 {
2864 delete[] p->second.contents;
2865 p->second.contents = NULL;
2866 }
2867 }
2868 }
2869
2870 // Input_objects methods.
2871
2872 // Add a regular relocatable object to the list. Return false if this
2873 // object should be ignored.
2874
2875 bool
2876 Input_objects::add_object(Object* obj)
2877 {
2878 // Print the filename if the -t/--trace option is selected.
2879 if (parameters->options().trace())
2880 gold_info("%s", obj->name().c_str());
2881
2882 if (!obj->is_dynamic())
2883 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2884 else
2885 {
2886 // See if this is a duplicate SONAME.
2887 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2888 const char* soname = dynobj->soname();
2889
2890 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2891 this->sonames_.insert(soname);
2892 if (!ins.second)
2893 {
2894 // We have already seen a dynamic object with this soname.
2895 return false;
2896 }
2897
2898 this->dynobj_list_.push_back(dynobj);
2899 }
2900
2901 // Add this object to the cross-referencer if requested.
2902 if (parameters->options().user_set_print_symbol_counts()
2903 || parameters->options().cref())
2904 {
2905 if (this->cref_ == NULL)
2906 this->cref_ = new Cref();
2907 this->cref_->add_object(obj);
2908 }
2909
2910 return true;
2911 }
2912
2913 // For each dynamic object, record whether we've seen all of its
2914 // explicit dependencies.
2915
2916 void
2917 Input_objects::check_dynamic_dependencies() const
2918 {
2919 bool issued_copy_dt_needed_error = false;
2920 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2921 p != this->dynobj_list_.end();
2922 ++p)
2923 {
2924 const Dynobj::Needed& needed((*p)->needed());
2925 bool found_all = true;
2926 Dynobj::Needed::const_iterator pneeded;
2927 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2928 {
2929 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2930 {
2931 found_all = false;
2932 break;
2933 }
2934 }
2935 (*p)->set_has_unknown_needed_entries(!found_all);
2936
2937 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2938 // that gold does not support. However, they cause no trouble
2939 // unless there is a DT_NEEDED entry that we don't know about;
2940 // warn only in that case.
2941 if (!found_all
2942 && !issued_copy_dt_needed_error
2943 && (parameters->options().copy_dt_needed_entries()
2944 || parameters->options().add_needed()))
2945 {
2946 const char* optname;
2947 if (parameters->options().copy_dt_needed_entries())
2948 optname = "--copy-dt-needed-entries";
2949 else
2950 optname = "--add-needed";
2951 gold_error(_("%s is not supported but is required for %s in %s"),
2952 optname, (*pneeded).c_str(), (*p)->name().c_str());
2953 issued_copy_dt_needed_error = true;
2954 }
2955 }
2956 }
2957
2958 // Start processing an archive.
2959
2960 void
2961 Input_objects::archive_start(Archive* archive)
2962 {
2963 if (parameters->options().user_set_print_symbol_counts()
2964 || parameters->options().cref())
2965 {
2966 if (this->cref_ == NULL)
2967 this->cref_ = new Cref();
2968 this->cref_->add_archive_start(archive);
2969 }
2970 }
2971
2972 // Stop processing an archive.
2973
2974 void
2975 Input_objects::archive_stop(Archive* archive)
2976 {
2977 if (parameters->options().user_set_print_symbol_counts()
2978 || parameters->options().cref())
2979 this->cref_->add_archive_stop(archive);
2980 }
2981
2982 // Print symbol counts
2983
2984 void
2985 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
2986 {
2987 if (parameters->options().user_set_print_symbol_counts()
2988 && this->cref_ != NULL)
2989 this->cref_->print_symbol_counts(symtab);
2990 }
2991
2992 // Print a cross reference table.
2993
2994 void
2995 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
2996 {
2997 if (parameters->options().cref() && this->cref_ != NULL)
2998 this->cref_->print_cref(symtab, f);
2999 }
3000
3001 // Relocate_info methods.
3002
3003 // Return a string describing the location of a relocation when file
3004 // and lineno information is not available. This is only used in
3005 // error messages.
3006
3007 template<int size, bool big_endian>
3008 std::string
3009 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3010 {
3011 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3012 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3013 if (!ret.empty())
3014 return ret;
3015
3016 ret = this->object->name();
3017
3018 Symbol_location_info info;
3019 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3020 {
3021 if (!info.source_file.empty())
3022 {
3023 ret += ":";
3024 ret += info.source_file;
3025 }
3026 ret += ":";
3027 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3028 ret += _("function ");
3029 ret += info.enclosing_symbol_name;
3030 return ret;
3031 }
3032
3033 ret += "(";
3034 ret += this->object->section_name(this->data_shndx);
3035 char buf[100];
3036 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3037 ret += buf;
3038 return ret;
3039 }
3040
3041 } // End namespace gold.
3042
3043 namespace
3044 {
3045
3046 using namespace gold;
3047
3048 // Read an ELF file with the header and return the appropriate
3049 // instance of Object.
3050
3051 template<int size, bool big_endian>
3052 Object*
3053 make_elf_sized_object(const std::string& name, Input_file* input_file,
3054 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3055 bool* punconfigured)
3056 {
3057 Target* target = select_target(input_file, offset,
3058 ehdr.get_e_machine(), size, big_endian,
3059 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3060 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3061 if (target == NULL)
3062 gold_fatal(_("%s: unsupported ELF machine number %d"),
3063 name.c_str(), ehdr.get_e_machine());
3064
3065 if (!parameters->target_valid())
3066 set_parameters_target(target);
3067 else if (target != &parameters->target())
3068 {
3069 if (punconfigured != NULL)
3070 *punconfigured = true;
3071 else
3072 gold_error(_("%s: incompatible target"), name.c_str());
3073 return NULL;
3074 }
3075
3076 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3077 ehdr);
3078 }
3079
3080 } // End anonymous namespace.
3081
3082 namespace gold
3083 {
3084
3085 // Return whether INPUT_FILE is an ELF object.
3086
3087 bool
3088 is_elf_object(Input_file* input_file, off_t offset,
3089 const unsigned char** start, int* read_size)
3090 {
3091 off_t filesize = input_file->file().filesize();
3092 int want = elfcpp::Elf_recognizer::max_header_size;
3093 if (filesize - offset < want)
3094 want = filesize - offset;
3095
3096 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3097 true, false);
3098 *start = p;
3099 *read_size = want;
3100
3101 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3102 }
3103
3104 // Read an ELF file and return the appropriate instance of Object.
3105
3106 Object*
3107 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3108 const unsigned char* p, section_offset_type bytes,
3109 bool* punconfigured)
3110 {
3111 if (punconfigured != NULL)
3112 *punconfigured = false;
3113
3114 std::string error;
3115 bool big_endian = false;
3116 int size = 0;
3117 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3118 &big_endian, &error))
3119 {
3120 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3121 return NULL;
3122 }
3123
3124 if (size == 32)
3125 {
3126 if (big_endian)
3127 {
3128 #ifdef HAVE_TARGET_32_BIG
3129 elfcpp::Ehdr<32, true> ehdr(p);
3130 return make_elf_sized_object<32, true>(name, input_file,
3131 offset, ehdr, punconfigured);
3132 #else
3133 if (punconfigured != NULL)
3134 *punconfigured = true;
3135 else
3136 gold_error(_("%s: not configured to support "
3137 "32-bit big-endian object"),
3138 name.c_str());
3139 return NULL;
3140 #endif
3141 }
3142 else
3143 {
3144 #ifdef HAVE_TARGET_32_LITTLE
3145 elfcpp::Ehdr<32, false> ehdr(p);
3146 return make_elf_sized_object<32, false>(name, input_file,
3147 offset, ehdr, punconfigured);
3148 #else
3149 if (punconfigured != NULL)
3150 *punconfigured = true;
3151 else
3152 gold_error(_("%s: not configured to support "
3153 "32-bit little-endian object"),
3154 name.c_str());
3155 return NULL;
3156 #endif
3157 }
3158 }
3159 else if (size == 64)
3160 {
3161 if (big_endian)
3162 {
3163 #ifdef HAVE_TARGET_64_BIG
3164 elfcpp::Ehdr<64, true> ehdr(p);
3165 return make_elf_sized_object<64, true>(name, input_file,
3166 offset, ehdr, punconfigured);
3167 #else
3168 if (punconfigured != NULL)
3169 *punconfigured = true;
3170 else
3171 gold_error(_("%s: not configured to support "
3172 "64-bit big-endian object"),
3173 name.c_str());
3174 return NULL;
3175 #endif
3176 }
3177 else
3178 {
3179 #ifdef HAVE_TARGET_64_LITTLE
3180 elfcpp::Ehdr<64, false> ehdr(p);
3181 return make_elf_sized_object<64, false>(name, input_file,
3182 offset, ehdr, punconfigured);
3183 #else
3184 if (punconfigured != NULL)
3185 *punconfigured = true;
3186 else
3187 gold_error(_("%s: not configured to support "
3188 "64-bit little-endian object"),
3189 name.c_str());
3190 return NULL;
3191 #endif
3192 }
3193 }
3194 else
3195 gold_unreachable();
3196 }
3197
3198 // Instantiate the templates we need.
3199
3200 #ifdef HAVE_TARGET_32_LITTLE
3201 template
3202 void
3203 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3204 Read_symbols_data*);
3205 template
3206 const unsigned char*
3207 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3208 section_size_type, const unsigned char*) const;
3209 #endif
3210
3211 #ifdef HAVE_TARGET_32_BIG
3212 template
3213 void
3214 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3215 Read_symbols_data*);
3216 template
3217 const unsigned char*
3218 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3219 section_size_type, const unsigned char*) const;
3220 #endif
3221
3222 #ifdef HAVE_TARGET_64_LITTLE
3223 template
3224 void
3225 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3226 Read_symbols_data*);
3227 template
3228 const unsigned char*
3229 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3230 section_size_type, const unsigned char*) const;
3231 #endif
3232
3233 #ifdef HAVE_TARGET_64_BIG
3234 template
3235 void
3236 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3237 Read_symbols_data*);
3238 template
3239 const unsigned char*
3240 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3241 section_size_type, const unsigned char*) const;
3242 #endif
3243
3244 #ifdef HAVE_TARGET_32_LITTLE
3245 template
3246 class Sized_relobj<32, false>;
3247
3248 template
3249 class Sized_relobj_file<32, false>;
3250 #endif
3251
3252 #ifdef HAVE_TARGET_32_BIG
3253 template
3254 class Sized_relobj<32, true>;
3255
3256 template
3257 class Sized_relobj_file<32, true>;
3258 #endif
3259
3260 #ifdef HAVE_TARGET_64_LITTLE
3261 template
3262 class Sized_relobj<64, false>;
3263
3264 template
3265 class Sized_relobj_file<64, false>;
3266 #endif
3267
3268 #ifdef HAVE_TARGET_64_BIG
3269 template
3270 class Sized_relobj<64, true>;
3271
3272 template
3273 class Sized_relobj_file<64, true>;
3274 #endif
3275
3276 #ifdef HAVE_TARGET_32_LITTLE
3277 template
3278 struct Relocate_info<32, false>;
3279 #endif
3280
3281 #ifdef HAVE_TARGET_32_BIG
3282 template
3283 struct Relocate_info<32, true>;
3284 #endif
3285
3286 #ifdef HAVE_TARGET_64_LITTLE
3287 template
3288 struct Relocate_info<64, false>;
3289 #endif
3290
3291 #ifdef HAVE_TARGET_64_BIG
3292 template
3293 struct Relocate_info<64, true>;
3294 #endif
3295
3296 #ifdef HAVE_TARGET_32_LITTLE
3297 template
3298 void
3299 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3300
3301 template
3302 void
3303 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3304 const unsigned char*);
3305 #endif
3306
3307 #ifdef HAVE_TARGET_32_BIG
3308 template
3309 void
3310 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3311
3312 template
3313 void
3314 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3315 const unsigned char*);
3316 #endif
3317
3318 #ifdef HAVE_TARGET_64_LITTLE
3319 template
3320 void
3321 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3322
3323 template
3324 void
3325 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3326 const unsigned char*);
3327 #endif
3328
3329 #ifdef HAVE_TARGET_64_BIG
3330 template
3331 void
3332 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3333
3334 template
3335 void
3336 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3337 const unsigned char*);
3338 #endif
3339
3340 } // End namespace gold.
This page took 0.109665 seconds and 5 git commands to generate.