* object.h (class Object): Remove target_ field, and target,
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Task;
39 class Cref;
40 class Archive;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 // Section headers.
59 File_view* section_headers;
60 // Section names.
61 File_view* section_names;
62 // Size of section name data in bytes.
63 section_size_type section_names_size;
64 // Symbol data.
65 File_view* symbols;
66 // Size of symbol data in bytes.
67 section_size_type symbols_size;
68 // Offset of external symbols within symbol data. This structure
69 // sometimes contains only external symbols, in which case this will
70 // be zero. Sometimes it contains all symbols.
71 section_offset_type external_symbols_offset;
72 // Symbol names.
73 File_view* symbol_names;
74 // Size of symbol name data in bytes.
75 section_size_type symbol_names_size;
76
77 // Version information. This is only used on dynamic objects.
78 // Version symbol data (from SHT_GNU_versym section).
79 File_view* versym;
80 section_size_type versym_size;
81 // Version definition data (from SHT_GNU_verdef section).
82 File_view* verdef;
83 section_size_type verdef_size;
84 unsigned int verdef_info;
85 // Needed version data (from SHT_GNU_verneed section).
86 File_view* verneed;
87 section_size_type verneed_size;
88 unsigned int verneed_info;
89 };
90
91 // Information used to print error messages.
92
93 struct Symbol_location_info
94 {
95 std::string source_file;
96 std::string enclosing_symbol_name;
97 int line_number;
98 };
99
100 // Data about a single relocation section. This is read in
101 // read_relocs and processed in scan_relocs.
102
103 struct Section_relocs
104 {
105 // Index of reloc section.
106 unsigned int reloc_shndx;
107 // Index of section that relocs apply to.
108 unsigned int data_shndx;
109 // Contents of reloc section.
110 File_view* contents;
111 // Reloc section type.
112 unsigned int sh_type;
113 // Number of reloc entries.
114 size_t reloc_count;
115 // Output section.
116 Output_section* output_section;
117 // Whether this section has special handling for offsets.
118 bool needs_special_offset_handling;
119 // Whether the data section is allocated (has the SHF_ALLOC flag set).
120 bool is_data_section_allocated;
121 };
122
123 // Relocations in an object file. This is read in read_relocs and
124 // processed in scan_relocs.
125
126 struct Read_relocs_data
127 {
128 typedef std::vector<Section_relocs> Relocs_list;
129 // The relocations.
130 Relocs_list relocs;
131 // The local symbols.
132 File_view* local_symbols;
133 };
134
135 // The Xindex class manages section indexes for objects with more than
136 // 0xff00 sections.
137
138 class Xindex
139 {
140 public:
141 Xindex(int large_shndx_offset)
142 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
143 { }
144
145 // Initialize the symtab_xindex_ array, given the object and the
146 // section index of the symbol table to use.
147 template<int size, bool big_endian>
148 void
149 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
150
151 // Read in the symtab_xindex_ array, given its section index.
152 // PSHDRS may optionally point to the section headers.
153 template<int size, bool big_endian>
154 void
155 read_symtab_xindex(Object*, unsigned int xindex_shndx,
156 const unsigned char* pshdrs);
157
158 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
159 // real section index.
160 unsigned int
161 sym_xindex_to_shndx(Object* object, unsigned int symndx);
162
163 private:
164 // The type of the array giving the real section index for symbols
165 // whose st_shndx field holds SHN_XINDEX.
166 typedef std::vector<unsigned int> Symtab_xindex;
167
168 // Adjust a section index if necessary. This should only be called
169 // for ordinary section indexes.
170 unsigned int
171 adjust_shndx(unsigned int shndx)
172 {
173 if (shndx >= elfcpp::SHN_LORESERVE)
174 shndx += this->large_shndx_offset_;
175 return shndx;
176 }
177
178 // Adjust to apply to large section indexes.
179 int large_shndx_offset_;
180 // The data from the SHT_SYMTAB_SHNDX section.
181 Symtab_xindex symtab_xindex_;
182 };
183
184 // Object is an abstract base class which represents either a 32-bit
185 // or a 64-bit input object. This can be a regular object file
186 // (ET_REL) or a shared object (ET_DYN).
187
188 class Object
189 {
190 public:
191 // NAME is the name of the object as we would report it to the user
192 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
193 // used to read the file. OFFSET is the offset within the input
194 // file--0 for a .o or .so file, something else for a .a file.
195 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
196 off_t offset = 0)
197 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
198 is_dynamic_(is_dynamic), xindex_(NULL), no_export_(false)
199 { input_file->file().add_object(); }
200
201 virtual ~Object()
202 { this->input_file_->file().remove_object(); }
203
204 // Return the name of the object as we would report it to the tuser.
205 const std::string&
206 name() const
207 { return this->name_; }
208
209 // Get the offset into the file.
210 off_t
211 offset() const
212 { return this->offset_; }
213
214 // Return whether this is a dynamic object.
215 bool
216 is_dynamic() const
217 { return this->is_dynamic_; }
218
219 // Returns NULL for Objects that are not plugin objects. This method
220 // is overridden in the Pluginobj class.
221 Pluginobj*
222 pluginobj()
223 { return this->do_pluginobj(); }
224
225 // Get the file. We pass on const-ness.
226 Input_file*
227 input_file()
228 { return this->input_file_; }
229
230 const Input_file*
231 input_file() const
232 { return this->input_file_; }
233
234 // Lock the underlying file.
235 void
236 lock(const Task* t)
237 { this->input_file()->file().lock(t); }
238
239 // Unlock the underlying file.
240 void
241 unlock(const Task* t)
242 { this->input_file()->file().unlock(t); }
243
244 // Return whether the underlying file is locked.
245 bool
246 is_locked() const
247 { return this->input_file()->file().is_locked(); }
248
249 // Return the token, so that the task can be queued.
250 Task_token*
251 token()
252 { return this->input_file()->file().token(); }
253
254 // Release the underlying file.
255 void
256 release()
257 { this->input_file_->file().release(); }
258
259 // Return whether we should just read symbols from this file.
260 bool
261 just_symbols() const
262 { return this->input_file()->just_symbols(); }
263
264 // Get the number of sections.
265 unsigned int
266 shnum() const
267 { return this->shnum_; }
268
269 // Return a view of the contents of a section. Set *PLEN to the
270 // size. CACHE is a hint as in File_read::get_view.
271 const unsigned char*
272 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
273
274 // Adjust a symbol's section index as needed. SYMNDX is the index
275 // of the symbol and SHNDX is the symbol's section from
276 // get_st_shndx. This returns the section index. It sets
277 // *IS_ORDINARY to indicate whether this is a normal section index,
278 // rather than a special code between SHN_LORESERVE and
279 // SHN_HIRESERVE.
280 unsigned int
281 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
282 {
283 if (shndx < elfcpp::SHN_LORESERVE)
284 *is_ordinary = true;
285 else if (shndx == elfcpp::SHN_XINDEX)
286 {
287 if (this->xindex_ == NULL)
288 this->xindex_ = this->do_initialize_xindex();
289 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
290 *is_ordinary = true;
291 }
292 else
293 *is_ordinary = false;
294 return shndx;
295 }
296
297 // Return the size of a section given a section index.
298 uint64_t
299 section_size(unsigned int shndx)
300 { return this->do_section_size(shndx); }
301
302 // Return the name of a section given a section index.
303 std::string
304 section_name(unsigned int shndx)
305 { return this->do_section_name(shndx); }
306
307 // Return the section flags given a section index.
308 uint64_t
309 section_flags(unsigned int shndx)
310 { return this->do_section_flags(shndx); }
311
312 // Return the section entsize given a section index.
313 uint64_t
314 section_entsize(unsigned int shndx)
315 { return this->do_section_entsize(shndx); }
316
317 // Return the section address given a section index.
318 uint64_t
319 section_address(unsigned int shndx)
320 { return this->do_section_address(shndx); }
321
322 // Return the section type given a section index.
323 unsigned int
324 section_type(unsigned int shndx)
325 { return this->do_section_type(shndx); }
326
327 // Return the section link field given a section index.
328 unsigned int
329 section_link(unsigned int shndx)
330 { return this->do_section_link(shndx); }
331
332 // Return the section info field given a section index.
333 unsigned int
334 section_info(unsigned int shndx)
335 { return this->do_section_info(shndx); }
336
337 // Return the required section alignment given a section index.
338 uint64_t
339 section_addralign(unsigned int shndx)
340 { return this->do_section_addralign(shndx); }
341
342 // Read the symbol information.
343 void
344 read_symbols(Read_symbols_data* sd)
345 { return this->do_read_symbols(sd); }
346
347 // Pass sections which should be included in the link to the Layout
348 // object, and record where the sections go in the output file.
349 void
350 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
351 { this->do_layout(symtab, layout, sd); }
352
353 // Add symbol information to the global symbol table.
354 void
355 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
356 { this->do_add_symbols(symtab, sd, layout); }
357
358 // Functions and types for the elfcpp::Elf_file interface. This
359 // permit us to use Object as the File template parameter for
360 // elfcpp::Elf_file.
361
362 // The View class is returned by view. It must support a single
363 // method, data(). This is trivial, because get_view does what we
364 // need.
365 class View
366 {
367 public:
368 View(const unsigned char* p)
369 : p_(p)
370 { }
371
372 const unsigned char*
373 data() const
374 { return this->p_; }
375
376 private:
377 const unsigned char* p_;
378 };
379
380 // Return a View.
381 View
382 view(off_t file_offset, section_size_type data_size)
383 { return View(this->get_view(file_offset, data_size, true, true)); }
384
385 // Report an error.
386 void
387 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
388
389 // A location in the file.
390 struct Location
391 {
392 off_t file_offset;
393 off_t data_size;
394
395 Location(off_t fo, section_size_type ds)
396 : file_offset(fo), data_size(ds)
397 { }
398 };
399
400 // Get a View given a Location.
401 View view(Location loc)
402 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
403
404 // Get a view into the underlying file.
405 const unsigned char*
406 get_view(off_t start, section_size_type size, bool aligned, bool cache)
407 {
408 return this->input_file()->file().get_view(this->offset_, start, size,
409 aligned, cache);
410 }
411
412 // Get a lasting view into the underlying file.
413 File_view*
414 get_lasting_view(off_t start, section_size_type size, bool aligned,
415 bool cache)
416 {
417 return this->input_file()->file().get_lasting_view(this->offset_, start,
418 size, aligned, cache);
419 }
420
421 // Read data from the underlying file.
422 void
423 read(off_t start, section_size_type size, void* p)
424 { this->input_file()->file().read(start + this->offset_, size, p); }
425
426 // Read multiple data from the underlying file.
427 void
428 read_multiple(const File_read::Read_multiple& rm)
429 { this->input_file()->file().read_multiple(this->offset_, rm); }
430
431 // Stop caching views in the underlying file.
432 void
433 clear_view_cache_marks()
434 { this->input_file()->file().clear_view_cache_marks(); }
435
436 // Get the number of global symbols defined by this object, and the
437 // number of the symbols whose final definition came from this
438 // object.
439 void
440 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
441 size_t* used) const
442 { this->do_get_global_symbol_counts(symtab, defined, used); }
443
444 // Return whether this object was found in a system directory.
445 bool
446 is_in_system_directory() const
447 { return this->input_file()->is_in_system_directory(); }
448
449 // Return whether we found this object by searching a directory.
450 bool
451 searched_for() const
452 { return this->input_file()->will_search_for(); }
453
454 bool
455 no_export() const
456 { return this->no_export_; }
457
458 void
459 set_no_export(bool value)
460 { this->no_export_ = value; }
461
462 protected:
463 // Returns NULL for Objects that are not plugin objects. This method
464 // is overridden in the Pluginobj class.
465 virtual Pluginobj*
466 do_pluginobj()
467 { return NULL; }
468
469 // Read the symbols--implemented by child class.
470 virtual void
471 do_read_symbols(Read_symbols_data*) = 0;
472
473 // Lay out sections--implemented by child class.
474 virtual void
475 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
476
477 // Add symbol information to the global symbol table--implemented by
478 // child class.
479 virtual void
480 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
481
482 // Return the location of the contents of a section. Implemented by
483 // child class.
484 virtual Location
485 do_section_contents(unsigned int shndx) = 0;
486
487 // Get the size of a section--implemented by child class.
488 virtual uint64_t
489 do_section_size(unsigned int shndx) = 0;
490
491 // Get the name of a section--implemented by child class.
492 virtual std::string
493 do_section_name(unsigned int shndx) = 0;
494
495 // Get section flags--implemented by child class.
496 virtual uint64_t
497 do_section_flags(unsigned int shndx) = 0;
498
499 // Get section entsize--implemented by child class.
500 virtual uint64_t
501 do_section_entsize(unsigned int shndx) = 0;
502
503 // Get section address--implemented by child class.
504 virtual uint64_t
505 do_section_address(unsigned int shndx) = 0;
506
507 // Get section type--implemented by child class.
508 virtual unsigned int
509 do_section_type(unsigned int shndx) = 0;
510
511 // Get section link field--implemented by child class.
512 virtual unsigned int
513 do_section_link(unsigned int shndx) = 0;
514
515 // Get section info field--implemented by child class.
516 virtual unsigned int
517 do_section_info(unsigned int shndx) = 0;
518
519 // Get section alignment--implemented by child class.
520 virtual uint64_t
521 do_section_addralign(unsigned int shndx) = 0;
522
523 // Return the Xindex structure to use.
524 virtual Xindex*
525 do_initialize_xindex() = 0;
526
527 // Implement get_global_symbol_counts--implemented by child class.
528 virtual void
529 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
530
531 // Set the number of sections.
532 void
533 set_shnum(int shnum)
534 { this->shnum_ = shnum; }
535
536 // Functions used by both Sized_relobj and Sized_dynobj.
537
538 // Read the section data into a Read_symbols_data object.
539 template<int size, bool big_endian>
540 void
541 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
542 Read_symbols_data*);
543
544 // Let the child class initialize the xindex object directly.
545 void
546 set_xindex(Xindex* xindex)
547 {
548 gold_assert(this->xindex_ == NULL);
549 this->xindex_ = xindex;
550 }
551
552 // If NAME is the name of a special .gnu.warning section, arrange
553 // for the warning to be issued. SHNDX is the section index.
554 // Return whether it is a warning section.
555 bool
556 handle_gnu_warning_section(const char* name, unsigned int shndx,
557 Symbol_table*);
558
559 private:
560 // This class may not be copied.
561 Object(const Object&);
562 Object& operator=(const Object&);
563
564 // Name of object as printed to user.
565 std::string name_;
566 // For reading the file.
567 Input_file* input_file_;
568 // Offset within the file--0 for an object file, non-0 for an
569 // archive.
570 off_t offset_;
571 // Number of input sections.
572 unsigned int shnum_;
573 // Whether this is a dynamic object.
574 bool is_dynamic_;
575 // Many sections for objects with more than SHN_LORESERVE sections.
576 Xindex* xindex_;
577 // True if exclude this object from automatic symbol export.
578 // This is used only for archive objects.
579 bool no_export_;
580 };
581
582 // A regular object (ET_REL). This is an abstract base class itself.
583 // The implementation is the template class Sized_relobj.
584
585 class Relobj : public Object
586 {
587 public:
588 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
589 : Object(name, input_file, false, offset),
590 output_sections_(),
591 map_to_relocatable_relocs_(NULL),
592 object_merge_map_(NULL),
593 relocs_must_follow_section_writes_(false),
594 sd_(NULL)
595 { }
596
597 // During garbage collection, the Read_symbols_data pass for
598 // each object is stored as layout needs to be done after
599 // reloc processing.
600 Symbols_data*
601 get_symbols_data()
602 { return this->sd_; }
603
604 // Decides which section names have to be included in the worklist
605 // as roots.
606 bool
607 is_section_name_included(const char *name);
608
609 void
610 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
611 unsigned int section_header_size);
612
613 void
614 set_symbols_data(Symbols_data* sd)
615 { this->sd_ = sd; }
616
617 // During garbage collection, the Read_relocs pass for all objects
618 // is done before scanning the relocs. In that case, this->rd_ is
619 // used to store the information from Read_relocs for each object.
620 // This data is also used to compute the list of relevant sections.
621 Read_relocs_data*
622 get_relocs_data()
623 { return this->rd_; }
624
625 void
626 set_relocs_data(Read_relocs_data* rd)
627 { this->rd_ = rd; }
628
629 virtual bool
630 is_output_section_offset_invalid(unsigned int shndx) const = 0;
631
632 // Read the relocs.
633 void
634 read_relocs(Read_relocs_data* rd)
635 { return this->do_read_relocs(rd); }
636
637 // Process the relocs, during garbage collection only.
638 void
639 gc_process_relocs(const General_options& options, Symbol_table* symtab,
640 Layout* layout, Read_relocs_data* rd)
641 { return this->do_gc_process_relocs(options, symtab, layout, rd); }
642
643 // Scan the relocs and adjust the symbol table.
644 void
645 scan_relocs(const General_options& options, Symbol_table* symtab,
646 Layout* layout, Read_relocs_data* rd)
647 { return this->do_scan_relocs(options, symtab, layout, rd); }
648
649 // The number of local symbols in the input symbol table.
650 virtual unsigned int
651 local_symbol_count() const
652 { return this->do_local_symbol_count(); }
653
654 // Initial local symbol processing: count the number of local symbols
655 // in the output symbol table and dynamic symbol table; add local symbol
656 // names to *POOL and *DYNPOOL.
657 void
658 count_local_symbols(Stringpool_template<char>* pool,
659 Stringpool_template<char>* dynpool)
660 { return this->do_count_local_symbols(pool, dynpool); }
661
662 // Set the values of the local symbols, set the output symbol table
663 // indexes for the local variables, and set the offset where local
664 // symbol information will be stored. Returns the new local symbol index.
665 unsigned int
666 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
667 { return this->do_finalize_local_symbols(index, off, symtab); }
668
669 // Set the output dynamic symbol table indexes for the local variables.
670 unsigned int
671 set_local_dynsym_indexes(unsigned int index)
672 { return this->do_set_local_dynsym_indexes(index); }
673
674 // Set the offset where local dynamic symbol information will be stored.
675 unsigned int
676 set_local_dynsym_offset(off_t off)
677 { return this->do_set_local_dynsym_offset(off); }
678
679 // Relocate the input sections and write out the local symbols.
680 void
681 relocate(const General_options& options, const Symbol_table* symtab,
682 const Layout* layout, Output_file* of)
683 { return this->do_relocate(options, symtab, layout, of); }
684
685 // Return whether an input section is being included in the link.
686 bool
687 is_section_included(unsigned int shndx) const
688 {
689 gold_assert(shndx < this->output_sections_.size());
690 return this->output_sections_[shndx] != NULL;
691 }
692
693 // Given a section index, return the corresponding Output_section.
694 // The return value will be NULL if the section is not included in
695 // the link.
696 Output_section*
697 output_section(unsigned int shndx) const
698 {
699 gold_assert(shndx < this->output_sections_.size());
700 return this->output_sections_[shndx];
701 }
702
703 // Given a section index, return the offset in the Output_section.
704 // The return value will be -1U if the section is specially mapped,
705 // such as a merge section.
706 uint64_t
707 output_section_offset(unsigned int shndx) const
708 { return this->do_output_section_offset(shndx); }
709
710 // Set the offset of an input section within its output section.
711 void
712 set_section_offset(unsigned int shndx, uint64_t off)
713 { this->do_set_section_offset(shndx, off); }
714
715 // Return true if we need to wait for output sections to be written
716 // before we can apply relocations. This is true if the object has
717 // any relocations for sections which require special handling, such
718 // as the exception frame section.
719 bool
720 relocs_must_follow_section_writes() const
721 { return this->relocs_must_follow_section_writes_; }
722
723 // Return the object merge map.
724 Object_merge_map*
725 merge_map() const
726 { return this->object_merge_map_; }
727
728 // Set the object merge map.
729 void
730 set_merge_map(Object_merge_map* object_merge_map)
731 {
732 gold_assert(this->object_merge_map_ == NULL);
733 this->object_merge_map_ = object_merge_map;
734 }
735
736 // Record the relocatable reloc info for an input reloc section.
737 void
738 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
739 {
740 gold_assert(reloc_shndx < this->shnum());
741 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
742 }
743
744 // Get the relocatable reloc info for an input reloc section.
745 Relocatable_relocs*
746 relocatable_relocs(unsigned int reloc_shndx)
747 {
748 gold_assert(reloc_shndx < this->shnum());
749 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
750 }
751
752 // Layout sections whose layout was deferred while waiting for
753 // input files from a plugin.
754 void
755 layout_deferred_sections(Layout* layout)
756 { this->do_layout_deferred_sections(layout); }
757
758 protected:
759 // The output section to be used for each input section, indexed by
760 // the input section number. The output section is NULL if the
761 // input section is to be discarded.
762 typedef std::vector<Output_section*> Output_sections;
763
764 // Read the relocs--implemented by child class.
765 virtual void
766 do_read_relocs(Read_relocs_data*) = 0;
767
768 // Process the relocs--implemented by child class.
769 virtual void
770 do_gc_process_relocs(const General_options&, Symbol_table*, Layout*,
771 Read_relocs_data*) = 0;
772
773 // Scan the relocs--implemented by child class.
774 virtual void
775 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
776 Read_relocs_data*) = 0;
777
778 // Return the number of local symbols--implemented by child class.
779 virtual unsigned int
780 do_local_symbol_count() const = 0;
781
782 // Count local symbols--implemented by child class.
783 virtual void
784 do_count_local_symbols(Stringpool_template<char>*,
785 Stringpool_template<char>*) = 0;
786
787 // Finalize the local symbols. Set the output symbol table indexes
788 // for the local variables, and set the offset where local symbol
789 // information will be stored.
790 virtual unsigned int
791 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;
792
793 // Set the output dynamic symbol table indexes for the local variables.
794 virtual unsigned int
795 do_set_local_dynsym_indexes(unsigned int) = 0;
796
797 // Set the offset where local dynamic symbol information will be stored.
798 virtual unsigned int
799 do_set_local_dynsym_offset(off_t) = 0;
800
801 // Relocate the input sections and write out the local
802 // symbols--implemented by child class.
803 virtual void
804 do_relocate(const General_options& options, const Symbol_table* symtab,
805 const Layout*, Output_file* of) = 0;
806
807 // Get the offset of a section--implemented by child class.
808 virtual uint64_t
809 do_output_section_offset(unsigned int shndx) const = 0;
810
811 // Set the offset of a section--implemented by child class.
812 virtual void
813 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
814
815 // Layout sections whose layout was deferred while waiting for
816 // input files from a plugin--implemented by child class.
817 virtual void
818 do_layout_deferred_sections(Layout*) = 0;
819
820 // Return the vector mapping input sections to output sections.
821 Output_sections&
822 output_sections()
823 { return this->output_sections_; }
824
825 const Output_sections&
826 output_sections() const
827 { return this->output_sections_; }
828
829 // Set the size of the relocatable relocs array.
830 void
831 size_relocatable_relocs()
832 {
833 this->map_to_relocatable_relocs_ =
834 new std::vector<Relocatable_relocs*>(this->shnum());
835 }
836
837 // Record that we must wait for the output sections to be written
838 // before applying relocations.
839 void
840 set_relocs_must_follow_section_writes()
841 { this->relocs_must_follow_section_writes_ = true; }
842
843 private:
844 // Mapping from input sections to output section.
845 Output_sections output_sections_;
846 // Mapping from input section index to the information recorded for
847 // the relocations. This is only used for a relocatable link.
848 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
849 // Mappings for merge sections. This is managed by the code in the
850 // Merge_map class.
851 Object_merge_map* object_merge_map_;
852 // Whether we need to wait for output sections to be written before
853 // we can apply relocations.
854 bool relocs_must_follow_section_writes_;
855 // Used to store the relocs data computed by the Read_relocs pass.
856 // Used during garbage collection of unused sections.
857 Read_relocs_data* rd_;
858 // Used to store the symbols data computed by the Read_symbols pass.
859 // Again used during garbage collection when laying out referenced
860 // sections.
861 gold::Symbols_data *sd_;
862 };
863
864 // This class is used to handle relocations against a section symbol
865 // in an SHF_MERGE section. For such a symbol, we need to know the
866 // addend of the relocation before we can determine the final value.
867 // The addend gives us the location in the input section, and we can
868 // determine how it is mapped to the output section. For a
869 // non-section symbol, we apply the addend to the final value of the
870 // symbol; that is done in finalize_local_symbols, and does not use
871 // this class.
872
873 template<int size>
874 class Merged_symbol_value
875 {
876 public:
877 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
878
879 // We use a hash table to map offsets in the input section to output
880 // addresses.
881 typedef Unordered_map<section_offset_type, Value> Output_addresses;
882
883 Merged_symbol_value(Value input_value, Value output_start_address)
884 : input_value_(input_value), output_start_address_(output_start_address),
885 output_addresses_()
886 { }
887
888 // Initialize the hash table.
889 void
890 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
891
892 // Release the hash table to save space.
893 void
894 free_input_to_output_map()
895 { this->output_addresses_.clear(); }
896
897 // Get the output value corresponding to an addend. The object and
898 // input section index are passed in because the caller will have
899 // them; otherwise we could store them here.
900 Value
901 value(const Relobj* object, unsigned int input_shndx, Value addend) const
902 {
903 // This is a relocation against a section symbol. ADDEND is the
904 // offset in the section. The result should be the start of some
905 // merge area. If the object file wants something else, it should
906 // use a regular symbol rather than a section symbol.
907 // Unfortunately, PR 6658 shows a case in which the object file
908 // refers to the section symbol, but uses a negative ADDEND to
909 // compensate for a PC relative reloc. We can't handle the
910 // general case. However, we can handle the special case of a
911 // negative addend, by assuming that it refers to the start of the
912 // section. Of course, that means that we have to guess when
913 // ADDEND is negative. It is normal to see a 32-bit value here
914 // even when the template parameter size is 64, as 64-bit object
915 // file formats have 32-bit relocations. We know this is a merge
916 // section, so we know it has to fit into memory. So we assume
917 // that we won't see a value larger than a large 32-bit unsigned
918 // value. This will break objects with very very large merge
919 // sections; they probably break in other ways anyhow.
920 Value input_offset = this->input_value_;
921 if (addend < 0xffffff00)
922 {
923 input_offset += addend;
924 addend = 0;
925 }
926 typename Output_addresses::const_iterator p =
927 this->output_addresses_.find(input_offset);
928 if (p != this->output_addresses_.end())
929 return p->second + addend;
930
931 return (this->value_from_output_section(object, input_shndx, input_offset)
932 + addend);
933 }
934
935 private:
936 // Get the output value for an input offset if we couldn't find it
937 // in the hash table.
938 Value
939 value_from_output_section(const Relobj*, unsigned int input_shndx,
940 Value input_offset) const;
941
942 // The value of the section symbol in the input file. This is
943 // normally zero, but could in principle be something else.
944 Value input_value_;
945 // The start address of this merged section in the output file.
946 Value output_start_address_;
947 // A hash table which maps offsets in the input section to output
948 // addresses. This only maps specific offsets, not all offsets.
949 Output_addresses output_addresses_;
950 };
951
952 // This POD class is holds the value of a symbol. This is used for
953 // local symbols, and for all symbols during relocation processing.
954 // For special sections, such as SHF_MERGE sections, this calls a
955 // function to get the final symbol value.
956
957 template<int size>
958 class Symbol_value
959 {
960 public:
961 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
962
963 Symbol_value()
964 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
965 is_ordinary_shndx_(false), is_section_symbol_(false),
966 is_tls_symbol_(false), has_output_value_(true)
967 { this->u_.value = 0; }
968
969 // Get the value of this symbol. OBJECT is the object in which this
970 // symbol is defined, and ADDEND is an addend to add to the value.
971 template<bool big_endian>
972 Value
973 value(const Sized_relobj<size, big_endian>* object, Value addend) const
974 {
975 if (this->has_output_value_)
976 return this->u_.value + addend;
977 else
978 {
979 gold_assert(this->is_ordinary_shndx_);
980 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
981 addend);
982 }
983 }
984
985 // Set the value of this symbol in the output symbol table.
986 void
987 set_output_value(Value value)
988 { this->u_.value = value; }
989
990 // For a section symbol in a merged section, we need more
991 // information.
992 void
993 set_merged_symbol_value(Merged_symbol_value<size>* msv)
994 {
995 gold_assert(this->is_section_symbol_);
996 this->has_output_value_ = false;
997 this->u_.merged_symbol_value = msv;
998 }
999
1000 // Initialize the input to output map for a section symbol in a
1001 // merged section. We also initialize the value of a non-section
1002 // symbol in a merged section.
1003 void
1004 initialize_input_to_output_map(const Relobj* object)
1005 {
1006 if (!this->has_output_value_)
1007 {
1008 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1009 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1010 msv->initialize_input_to_output_map(object, this->input_shndx_);
1011 }
1012 }
1013
1014 // Free the input to output map for a section symbol in a merged
1015 // section.
1016 void
1017 free_input_to_output_map()
1018 {
1019 if (!this->has_output_value_)
1020 this->u_.merged_symbol_value->free_input_to_output_map();
1021 }
1022
1023 // Set the value of the symbol from the input file. This is only
1024 // called by count_local_symbols, to communicate the value to
1025 // finalize_local_symbols.
1026 void
1027 set_input_value(Value value)
1028 { this->u_.value = value; }
1029
1030 // Return the input value. This is only called by
1031 // finalize_local_symbols and (in special cases) relocate_section.
1032 Value
1033 input_value() const
1034 { return this->u_.value; }
1035
1036 // Return whether this symbol should go into the output symbol
1037 // table.
1038 bool
1039 needs_output_symtab_entry() const
1040 { return this->output_symtab_index_ != -1U; }
1041
1042 // Return the index in the output symbol table.
1043 unsigned int
1044 output_symtab_index() const
1045 {
1046 gold_assert(this->output_symtab_index_ != 0);
1047 return this->output_symtab_index_;
1048 }
1049
1050 // Set the index in the output symbol table.
1051 void
1052 set_output_symtab_index(unsigned int i)
1053 {
1054 gold_assert(this->output_symtab_index_ == 0);
1055 this->output_symtab_index_ = i;
1056 }
1057
1058 // Record that this symbol should not go into the output symbol
1059 // table.
1060 void
1061 set_no_output_symtab_entry()
1062 {
1063 gold_assert(this->output_symtab_index_ == 0);
1064 this->output_symtab_index_ = -1U;
1065 }
1066
1067 // Set the index in the output dynamic symbol table.
1068 void
1069 set_needs_output_dynsym_entry()
1070 {
1071 gold_assert(!this->is_section_symbol());
1072 this->output_dynsym_index_ = 0;
1073 }
1074
1075 // Return whether this symbol should go into the output symbol
1076 // table.
1077 bool
1078 needs_output_dynsym_entry() const
1079 {
1080 return this->output_dynsym_index_ != -1U;
1081 }
1082
1083 // Record that this symbol should go into the dynamic symbol table.
1084 void
1085 set_output_dynsym_index(unsigned int i)
1086 {
1087 gold_assert(this->output_dynsym_index_ == 0);
1088 this->output_dynsym_index_ = i;
1089 }
1090
1091 // Return the index in the output dynamic symbol table.
1092 unsigned int
1093 output_dynsym_index() const
1094 {
1095 gold_assert(this->output_dynsym_index_ != 0
1096 && this->output_dynsym_index_ != -1U);
1097 return this->output_dynsym_index_;
1098 }
1099
1100 // Set the index of the input section in the input file.
1101 void
1102 set_input_shndx(unsigned int i, bool is_ordinary)
1103 {
1104 this->input_shndx_ = i;
1105 // input_shndx_ field is a bitfield, so make sure that the value
1106 // fits.
1107 gold_assert(this->input_shndx_ == i);
1108 this->is_ordinary_shndx_ = is_ordinary;
1109 }
1110
1111 // Return the index of the input section in the input file.
1112 unsigned int
1113 input_shndx(bool* is_ordinary) const
1114 {
1115 *is_ordinary = this->is_ordinary_shndx_;
1116 return this->input_shndx_;
1117 }
1118
1119 // Whether this is a section symbol.
1120 bool
1121 is_section_symbol() const
1122 { return this->is_section_symbol_; }
1123
1124 // Record that this is a section symbol.
1125 void
1126 set_is_section_symbol()
1127 {
1128 gold_assert(!this->needs_output_dynsym_entry());
1129 this->is_section_symbol_ = true;
1130 }
1131
1132 // Record that this is a TLS symbol.
1133 void
1134 set_is_tls_symbol()
1135 { this->is_tls_symbol_ = true; }
1136
1137 // Return TRUE if this is a TLS symbol.
1138 bool
1139 is_tls_symbol() const
1140 { return this->is_tls_symbol_; }
1141
1142 private:
1143 // The index of this local symbol in the output symbol table. This
1144 // will be -1 if the symbol should not go into the symbol table.
1145 unsigned int output_symtab_index_;
1146 // The index of this local symbol in the dynamic symbol table. This
1147 // will be -1 if the symbol should not go into the symbol table.
1148 unsigned int output_dynsym_index_;
1149 // The section index in the input file in which this symbol is
1150 // defined.
1151 unsigned int input_shndx_ : 28;
1152 // Whether the section index is an ordinary index, not a special
1153 // value.
1154 bool is_ordinary_shndx_ : 1;
1155 // Whether this is a STT_SECTION symbol.
1156 bool is_section_symbol_ : 1;
1157 // Whether this is a STT_TLS symbol.
1158 bool is_tls_symbol_ : 1;
1159 // Whether this symbol has a value for the output file. This is
1160 // normally set to true during Layout::finalize, by
1161 // finalize_local_symbols. It will be false for a section symbol in
1162 // a merge section, as for such symbols we can not determine the
1163 // value to use in a relocation until we see the addend.
1164 bool has_output_value_ : 1;
1165 union
1166 {
1167 // This is used if has_output_value_ is true. Between
1168 // count_local_symbols and finalize_local_symbols, this is the
1169 // value in the input file. After finalize_local_symbols, it is
1170 // the value in the output file.
1171 Value value;
1172 // This is used if has_output_value_ is false. It points to the
1173 // information we need to get the value for a merge section.
1174 Merged_symbol_value<size>* merged_symbol_value;
1175 } u_;
1176 };
1177
1178 // A GOT offset list. A symbol may have more than one GOT offset
1179 // (e.g., when mixing modules compiled with two different TLS models),
1180 // but will usually have at most one. GOT_TYPE identifies the type of
1181 // GOT entry; its values are specific to each target.
1182
1183 class Got_offset_list
1184 {
1185 public:
1186 Got_offset_list()
1187 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1188 { }
1189
1190 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1191 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1192 { }
1193
1194 ~Got_offset_list()
1195 {
1196 if (this->got_next_ != NULL)
1197 {
1198 delete this->got_next_;
1199 this->got_next_ = NULL;
1200 }
1201 }
1202
1203 // Initialize the fields to their default values.
1204 void
1205 init()
1206 {
1207 this->got_type_ = -1U;
1208 this->got_offset_ = 0;
1209 this->got_next_ = NULL;
1210 }
1211
1212 // Set the offset for the GOT entry of type GOT_TYPE.
1213 void
1214 set_offset(unsigned int got_type, unsigned int got_offset)
1215 {
1216 if (this->got_type_ == -1U)
1217 {
1218 this->got_type_ = got_type;
1219 this->got_offset_ = got_offset;
1220 }
1221 else
1222 {
1223 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1224 {
1225 if (g->got_type_ == got_type)
1226 {
1227 g->got_offset_ = got_offset;
1228 return;
1229 }
1230 }
1231 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1232 g->got_next_ = this->got_next_;
1233 this->got_next_ = g;
1234 }
1235 }
1236
1237 // Return the offset for a GOT entry of type GOT_TYPE.
1238 unsigned int
1239 get_offset(unsigned int got_type) const
1240 {
1241 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1242 {
1243 if (g->got_type_ == got_type)
1244 return g->got_offset_;
1245 }
1246 return -1U;
1247 }
1248
1249 private:
1250 unsigned int got_type_;
1251 unsigned int got_offset_;
1252 Got_offset_list* got_next_;
1253 };
1254
1255 // A regular object file. This is size and endian specific.
1256
1257 template<int size, bool big_endian>
1258 class Sized_relobj : public Relobj
1259 {
1260 public:
1261 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1262 typedef std::vector<Symbol*> Symbols;
1263 typedef std::vector<Symbol_value<size> > Local_values;
1264
1265 static const Address invalid_address = static_cast<Address>(0) - 1;
1266
1267 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1268 const typename elfcpp::Ehdr<size, big_endian>&);
1269
1270 ~Sized_relobj();
1271
1272 // Checks if the offset of input section SHNDX within its output
1273 // section is invalid.
1274 bool
1275 is_output_section_offset_invalid(unsigned int shndx) const
1276 { return this->get_output_section_offset(shndx) == invalid_address; }
1277
1278 // Set up the object file based on TARGET.
1279 void
1280 setup();
1281
1282 // Return the number of symbols. This is only valid after
1283 // Object::add_symbols has been called.
1284 unsigned int
1285 symbol_count() const
1286 { return this->local_symbol_count_ + this->symbols_.size(); }
1287
1288 // If SYM is the index of a global symbol in the object file's
1289 // symbol table, return the Symbol object. Otherwise, return NULL.
1290 Symbol*
1291 global_symbol(unsigned int sym) const
1292 {
1293 if (sym >= this->local_symbol_count_)
1294 {
1295 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1296 return this->symbols_[sym - this->local_symbol_count_];
1297 }
1298 return NULL;
1299 }
1300
1301 // Return the section index of symbol SYM. Set *VALUE to its value
1302 // in the object file. Set *IS_ORDINARY if this is an ordinary
1303 // section index, not a special code between SHN_LORESERVE and
1304 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1305 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1306 // it will not return the final value of the symbol in the link.
1307 unsigned int
1308 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1309
1310 // Return a pointer to the Symbol_value structure which holds the
1311 // value of a local symbol.
1312 const Symbol_value<size>*
1313 local_symbol(unsigned int sym) const
1314 {
1315 gold_assert(sym < this->local_values_.size());
1316 return &this->local_values_[sym];
1317 }
1318
1319 // Return the index of local symbol SYM in the ordinary symbol
1320 // table. A value of -1U means that the symbol is not being output.
1321 unsigned int
1322 symtab_index(unsigned int sym) const
1323 {
1324 gold_assert(sym < this->local_values_.size());
1325 return this->local_values_[sym].output_symtab_index();
1326 }
1327
1328 // Return the index of local symbol SYM in the dynamic symbol
1329 // table. A value of -1U means that the symbol is not being output.
1330 unsigned int
1331 dynsym_index(unsigned int sym) const
1332 {
1333 gold_assert(sym < this->local_values_.size());
1334 return this->local_values_[sym].output_dynsym_index();
1335 }
1336
1337 // Return the input section index of local symbol SYM.
1338 unsigned int
1339 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1340 {
1341 gold_assert(sym < this->local_values_.size());
1342 return this->local_values_[sym].input_shndx(is_ordinary);
1343 }
1344
1345 // Record that local symbol SYM needs a dynamic symbol entry.
1346 void
1347 set_needs_output_dynsym_entry(unsigned int sym)
1348 {
1349 gold_assert(sym < this->local_values_.size());
1350 this->local_values_[sym].set_needs_output_dynsym_entry();
1351 }
1352
1353 // Return whether the local symbol SYMNDX has a GOT offset.
1354 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1355 bool
1356 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1357 {
1358 Local_got_offsets::const_iterator p =
1359 this->local_got_offsets_.find(symndx);
1360 return (p != this->local_got_offsets_.end()
1361 && p->second->get_offset(got_type) != -1U);
1362 }
1363
1364 // Return the GOT offset of the local symbol SYMNDX.
1365 unsigned int
1366 local_got_offset(unsigned int symndx, unsigned int got_type) const
1367 {
1368 Local_got_offsets::const_iterator p =
1369 this->local_got_offsets_.find(symndx);
1370 gold_assert(p != this->local_got_offsets_.end());
1371 unsigned int off = p->second->get_offset(got_type);
1372 gold_assert(off != -1U);
1373 return off;
1374 }
1375
1376 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1377 void
1378 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1379 unsigned int got_offset)
1380 {
1381 Local_got_offsets::const_iterator p =
1382 this->local_got_offsets_.find(symndx);
1383 if (p != this->local_got_offsets_.end())
1384 p->second->set_offset(got_type, got_offset);
1385 else
1386 {
1387 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1388 std::pair<Local_got_offsets::iterator, bool> ins =
1389 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1390 gold_assert(ins.second);
1391 }
1392 }
1393
1394 // Get the offset of input section SHNDX within its output section.
1395 // This is -1 if the input section requires a special mapping, such
1396 // as a merge section. The output section can be found in the
1397 // output_sections_ field of the parent class Relobj.
1398 Address
1399 get_output_section_offset(unsigned int shndx) const
1400 {
1401 gold_assert(shndx < this->section_offsets_.size());
1402 return this->section_offsets_[shndx];
1403 }
1404
1405 // Return the name of the symbol that spans the given offset in the
1406 // specified section in this object. This is used only for error
1407 // messages and is not particularly efficient.
1408 bool
1409 get_symbol_location_info(unsigned int shndx, off_t offset,
1410 Symbol_location_info* info);
1411
1412 // Look for a kept section corresponding to the given discarded section,
1413 // and return its output address. This is used only for relocations in
1414 // debugging sections.
1415 Address
1416 map_to_kept_section(unsigned int shndx, bool* found) const;
1417
1418 protected:
1419 // Read the symbols.
1420 void
1421 do_read_symbols(Read_symbols_data*);
1422
1423 // Return the number of local symbols.
1424 unsigned int
1425 do_local_symbol_count() const
1426 { return this->local_symbol_count_; }
1427
1428 // Lay out the input sections.
1429 void
1430 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1431
1432 // Layout sections whose layout was deferred while waiting for
1433 // input files from a plugin.
1434 void
1435 do_layout_deferred_sections(Layout*);
1436
1437 // Add the symbols to the symbol table.
1438 void
1439 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1440
1441 // Read the relocs.
1442 void
1443 do_read_relocs(Read_relocs_data*);
1444
1445 // Process the relocs to find list of referenced sections. Used only
1446 // during garbage collection.
1447 void
1448 do_gc_process_relocs(const General_options&, Symbol_table*, Layout*,
1449 Read_relocs_data*);
1450
1451 // Scan the relocs and adjust the symbol table.
1452 void
1453 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
1454 Read_relocs_data*);
1455
1456 // Count the local symbols.
1457 void
1458 do_count_local_symbols(Stringpool_template<char>*,
1459 Stringpool_template<char>*);
1460
1461 // Finalize the local symbols.
1462 unsigned int
1463 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);
1464
1465 // Set the offset where local dynamic symbol information will be stored.
1466 unsigned int
1467 do_set_local_dynsym_indexes(unsigned int);
1468
1469 // Set the offset where local dynamic symbol information will be stored.
1470 unsigned int
1471 do_set_local_dynsym_offset(off_t);
1472
1473 // Relocate the input sections and write out the local symbols.
1474 void
1475 do_relocate(const General_options& options, const Symbol_table* symtab,
1476 const Layout*, Output_file* of);
1477
1478 // Get the size of a section.
1479 uint64_t
1480 do_section_size(unsigned int shndx)
1481 { return this->elf_file_.section_size(shndx); }
1482
1483 // Get the name of a section.
1484 std::string
1485 do_section_name(unsigned int shndx)
1486 { return this->elf_file_.section_name(shndx); }
1487
1488 // Return the location of the contents of a section.
1489 Object::Location
1490 do_section_contents(unsigned int shndx)
1491 { return this->elf_file_.section_contents(shndx); }
1492
1493 // Return section flags.
1494 uint64_t
1495 do_section_flags(unsigned int shndx);
1496
1497 // Return section entsize.
1498 uint64_t
1499 do_section_entsize(unsigned int shndx);
1500
1501 // Return section address.
1502 uint64_t
1503 do_section_address(unsigned int shndx)
1504 { return this->elf_file_.section_addr(shndx); }
1505
1506 // Return section type.
1507 unsigned int
1508 do_section_type(unsigned int shndx)
1509 { return this->elf_file_.section_type(shndx); }
1510
1511 // Return the section link field.
1512 unsigned int
1513 do_section_link(unsigned int shndx)
1514 { return this->elf_file_.section_link(shndx); }
1515
1516 // Return the section info field.
1517 unsigned int
1518 do_section_info(unsigned int shndx)
1519 { return this->elf_file_.section_info(shndx); }
1520
1521 // Return the section alignment.
1522 uint64_t
1523 do_section_addralign(unsigned int shndx)
1524 { return this->elf_file_.section_addralign(shndx); }
1525
1526 // Return the Xindex structure to use.
1527 Xindex*
1528 do_initialize_xindex();
1529
1530 // Get symbol counts.
1531 void
1532 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1533
1534 // Get the offset of a section.
1535 uint64_t
1536 do_output_section_offset(unsigned int shndx) const
1537 {
1538 Address off = this->get_output_section_offset(shndx);
1539 if (off == invalid_address)
1540 return -1ULL;
1541 return off;
1542 }
1543
1544 // Set the offset of a section.
1545 void
1546 do_set_section_offset(unsigned int shndx, uint64_t off)
1547 {
1548 gold_assert(shndx < this->section_offsets_.size());
1549 this->section_offsets_[shndx] = convert_types<Address, uint64_t>(off);
1550 }
1551
1552 private:
1553 // For convenience.
1554 typedef Sized_relobj<size, big_endian> This;
1555 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1556 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1557 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1558 typedef elfcpp::Shdr<size, big_endian> Shdr;
1559
1560 // To keep track of discarded comdat sections, we need to map a member
1561 // section index to the object and section index of the corresponding
1562 // kept section.
1563 struct Kept_comdat_section
1564 {
1565 Kept_comdat_section(Relobj* a_object, unsigned int a_shndx)
1566 : object(a_object), shndx(a_shndx)
1567 { }
1568 Relobj* object;
1569 unsigned int shndx;
1570 };
1571 typedef std::map<unsigned int, Kept_comdat_section>
1572 Kept_comdat_section_table;
1573
1574 // Adjust a section index if necessary.
1575 unsigned int
1576 adjust_shndx(unsigned int shndx)
1577 {
1578 if (shndx >= elfcpp::SHN_LORESERVE)
1579 shndx += this->elf_file_.large_shndx_offset();
1580 return shndx;
1581 }
1582
1583 // Find the SHT_SYMTAB section, given the section headers.
1584 void
1585 find_symtab(const unsigned char* pshdrs);
1586
1587 // Return whether SHDR has the right flags for a GNU style exception
1588 // frame section.
1589 bool
1590 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1591
1592 // Return whether there is a section named .eh_frame which might be
1593 // a GNU style exception frame section.
1594 bool
1595 find_eh_frame(const unsigned char* pshdrs, const char* names,
1596 section_size_type names_size) const;
1597
1598 // Whether to include a section group in the link.
1599 bool
1600 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1601 const unsigned char*, const char *, section_size_type,
1602 std::vector<bool>*);
1603
1604 // Whether to include a linkonce section in the link.
1605 bool
1606 include_linkonce_section(Layout*, unsigned int, const char*,
1607 const elfcpp::Shdr<size, big_endian>&);
1608
1609 // Layout an input section.
1610 void
1611 layout_section(Layout* layout, unsigned int shndx, const char* name,
1612 typename This::Shdr& shdr, unsigned int reloc_shndx,
1613 unsigned int reloc_type);
1614
1615 // Views and sizes when relocating.
1616 struct View_size
1617 {
1618 unsigned char* view;
1619 typename elfcpp::Elf_types<size>::Elf_Addr address;
1620 off_t offset;
1621 section_size_type view_size;
1622 bool is_input_output_view;
1623 bool is_postprocessing_view;
1624 };
1625
1626 typedef std::vector<View_size> Views;
1627
1628 // Write section data to the output file. Record the views and
1629 // sizes in VIEWS for use when relocating.
1630 void
1631 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1632
1633 // Relocate the sections in the output file.
1634 void
1635 relocate_sections(const General_options& options, const Symbol_table*,
1636 const Layout*, const unsigned char* pshdrs, Views*);
1637
1638 // Scan the input relocations for --emit-relocs.
1639 void
1640 emit_relocs_scan(const General_options&, Symbol_table*, Layout*,
1641 const unsigned char* plocal_syms,
1642 const Read_relocs_data::Relocs_list::iterator&);
1643
1644 // Scan the input relocations for --emit-relocs, templatized on the
1645 // type of the relocation section.
1646 template<int sh_type>
1647 void
1648 emit_relocs_scan_reltype(const General_options&, Symbol_table*, Layout*,
1649 const unsigned char* plocal_syms,
1650 const Read_relocs_data::Relocs_list::iterator&,
1651 Relocatable_relocs*);
1652
1653 // Emit the relocs for --emit-relocs.
1654 void
1655 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1656 unsigned int sh_type, const unsigned char* prelocs,
1657 size_t reloc_count, Output_section*, Address output_offset,
1658 unsigned char* view, Address address,
1659 section_size_type view_size,
1660 unsigned char* reloc_view, section_size_type reloc_view_size);
1661
1662 // Emit the relocs for --emit-relocs, templatized on the type of the
1663 // relocation section.
1664 template<int sh_type>
1665 void
1666 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1667 const unsigned char* prelocs, size_t reloc_count,
1668 Output_section*, Address output_offset,
1669 unsigned char* view, Address address,
1670 section_size_type view_size,
1671 unsigned char* reloc_view,
1672 section_size_type reloc_view_size);
1673
1674 // Initialize input to output maps for section symbols in merged
1675 // sections.
1676 void
1677 initialize_input_to_output_maps();
1678
1679 // Free the input to output maps for section symbols in merged
1680 // sections.
1681 void
1682 free_input_to_output_maps();
1683
1684 // Write out the local symbols.
1685 void
1686 write_local_symbols(Output_file*,
1687 const Stringpool_template<char>*,
1688 const Stringpool_template<char>*,
1689 Output_symtab_xindex*,
1690 Output_symtab_xindex*);
1691
1692 // Clear the local symbol information.
1693 void
1694 clear_local_symbols()
1695 {
1696 this->local_values_.clear();
1697 this->local_got_offsets_.clear();
1698 }
1699
1700 // Record a mapping from discarded section SHNDX to the corresponding
1701 // kept section.
1702 void
1703 set_kept_comdat_section(unsigned int shndx, Relobj* kept_object,
1704 unsigned int kept_shndx)
1705 {
1706 Kept_comdat_section kept(kept_object, kept_shndx);
1707 this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
1708 }
1709
1710 // Find the kept section corresponding to the discarded section
1711 // SHNDX. Return true if found.
1712 bool
1713 get_kept_comdat_section(unsigned int shndx, Relobj** kept_object,
1714 unsigned int* kept_shndx) const
1715 {
1716 typename Kept_comdat_section_table::const_iterator p =
1717 this->kept_comdat_sections_.find(shndx);
1718 if (p == this->kept_comdat_sections_.end())
1719 return false;
1720 *kept_object = p->second.object;
1721 *kept_shndx = p->second.shndx;
1722 return true;
1723 }
1724
1725 // The GOT offsets of local symbols. This map also stores GOT offsets
1726 // for tp-relative offsets for TLS symbols.
1727 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1728
1729 // The TLS GOT offsets of local symbols. The map stores the offsets
1730 // for either a single GOT entry that holds the module index of a TLS
1731 // symbol, or a pair of GOT entries containing the module index and
1732 // dtv-relative offset.
1733 struct Tls_got_entry
1734 {
1735 Tls_got_entry(int got_offset, bool have_pair)
1736 : got_offset_(got_offset),
1737 have_pair_(have_pair)
1738 { }
1739 int got_offset_;
1740 bool have_pair_;
1741 };
1742 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1743
1744 // Saved information for sections whose layout was deferred.
1745 struct Deferred_layout
1746 {
1747 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1748 Deferred_layout(unsigned int shndx, const char* name,
1749 const unsigned char* pshdr,
1750 unsigned int reloc_shndx, unsigned int reloc_type)
1751 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
1752 reloc_type_(reloc_type)
1753 {
1754 memcpy(this->shdr_data_, pshdr, shdr_size);
1755 }
1756 unsigned int shndx_;
1757 std::string name_;
1758 unsigned int reloc_shndx_;
1759 unsigned int reloc_type_;
1760 unsigned char shdr_data_[shdr_size];
1761 };
1762
1763 // General access to the ELF file.
1764 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1765 // Index of SHT_SYMTAB section.
1766 unsigned int symtab_shndx_;
1767 // The number of local symbols.
1768 unsigned int local_symbol_count_;
1769 // The number of local symbols which go into the output file.
1770 unsigned int output_local_symbol_count_;
1771 // The number of local symbols which go into the output file's dynamic
1772 // symbol table.
1773 unsigned int output_local_dynsym_count_;
1774 // The entries in the symbol table for the external symbols.
1775 Symbols symbols_;
1776 // Number of symbols defined in object file itself.
1777 size_t defined_count_;
1778 // File offset for local symbols.
1779 off_t local_symbol_offset_;
1780 // File offset for local dynamic symbols.
1781 off_t local_dynsym_offset_;
1782 // Values of local symbols.
1783 Local_values local_values_;
1784 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1785 // for TLS symbols, indexed by symbol number.
1786 Local_got_offsets local_got_offsets_;
1787 // For each input section, the offset of the input section in its
1788 // output section. This is INVALID_ADDRESS if the input section requires a
1789 // special mapping.
1790 std::vector<Address> section_offsets_;
1791 // Table mapping discarded comdat sections to corresponding kept sections.
1792 Kept_comdat_section_table kept_comdat_sections_;
1793 // Whether this object has a GNU style .eh_frame section.
1794 bool has_eh_frame_;
1795 // If this object has a GNU style .eh_frame section that is discarded in
1796 // output, record the index here. Otherwise it is -1U.
1797 unsigned int discarded_eh_frame_shndx_;
1798 // The list of sections whose layout was deferred.
1799 std::vector<Deferred_layout> deferred_layout_;
1800 };
1801
1802 // A class to manage the list of all objects.
1803
1804 class Input_objects
1805 {
1806 public:
1807 Input_objects()
1808 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
1809 { }
1810
1811 // The type of the list of input relocateable objects.
1812 typedef std::vector<Relobj*> Relobj_list;
1813 typedef Relobj_list::const_iterator Relobj_iterator;
1814
1815 // The type of the list of input dynamic objects.
1816 typedef std::vector<Dynobj*> Dynobj_list;
1817 typedef Dynobj_list::const_iterator Dynobj_iterator;
1818
1819 // Add an object to the list. Return true if all is well, or false
1820 // if this object should be ignored.
1821 bool
1822 add_object(Object*);
1823
1824 // Start processing an archive.
1825 void
1826 archive_start(Archive*);
1827
1828 // Stop processing an archive.
1829 void
1830 archive_stop(Archive*);
1831
1832 // For each dynamic object, check whether we've seen all of its
1833 // explicit dependencies.
1834 void
1835 check_dynamic_dependencies() const;
1836
1837 // Return whether an object was found in the system library
1838 // directory.
1839 bool
1840 found_in_system_library_directory(const Object*) const;
1841
1842 // Print symbol counts.
1843 void
1844 print_symbol_counts(const Symbol_table*) const;
1845
1846 // Iterate over all regular objects.
1847
1848 Relobj_iterator
1849 relobj_begin() const
1850 { return this->relobj_list_.begin(); }
1851
1852 Relobj_iterator
1853 relobj_end() const
1854 { return this->relobj_list_.end(); }
1855
1856 // Iterate over all dynamic objects.
1857
1858 Dynobj_iterator
1859 dynobj_begin() const
1860 { return this->dynobj_list_.begin(); }
1861
1862 Dynobj_iterator
1863 dynobj_end() const
1864 { return this->dynobj_list_.end(); }
1865
1866 // Return whether we have seen any dynamic objects.
1867 bool
1868 any_dynamic() const
1869 { return !this->dynobj_list_.empty(); }
1870
1871 // Return the number of input objects.
1872 int
1873 number_of_input_objects() const
1874 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
1875
1876 private:
1877 Input_objects(const Input_objects&);
1878 Input_objects& operator=(const Input_objects&);
1879
1880 // The list of ordinary objects included in the link.
1881 Relobj_list relobj_list_;
1882 // The list of dynamic objects included in the link.
1883 Dynobj_list dynobj_list_;
1884 // SONAMEs that we have seen.
1885 Unordered_set<std::string> sonames_;
1886 // Manage cross-references if requested.
1887 Cref* cref_;
1888 };
1889
1890 // Some of the information we pass to the relocation routines. We
1891 // group this together to avoid passing a dozen different arguments.
1892
1893 template<int size, bool big_endian>
1894 struct Relocate_info
1895 {
1896 // Command line options.
1897 const General_options* options;
1898 // Symbol table.
1899 const Symbol_table* symtab;
1900 // Layout.
1901 const Layout* layout;
1902 // Object being relocated.
1903 Sized_relobj<size, big_endian>* object;
1904 // Section index of relocation section.
1905 unsigned int reloc_shndx;
1906 // Section index of section being relocated.
1907 unsigned int data_shndx;
1908
1909 // Return a string showing the location of a relocation. This is
1910 // only used for error messages.
1911 std::string
1912 location(size_t relnum, off_t reloffset) const;
1913 };
1914
1915 // Return whether INPUT_FILE contains an ELF object start at file
1916 // offset OFFSET. This sets *START to point to a view of the start of
1917 // the file. It sets *READ_SIZE to the number of bytes in the view.
1918
1919 extern bool
1920 is_elf_object(Input_file* input_file, off_t offset,
1921 const unsigned char** start, int *read_size);
1922
1923 // Return an Object appropriate for the input file. P is BYTES long,
1924 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
1925 // this sees an object the linker is not configured to support, it
1926 // sets *PUNCONFIGURED to true and returns NULL without giving an
1927 // error message.
1928
1929 extern Object*
1930 make_elf_object(const std::string& name, Input_file*,
1931 off_t offset, const unsigned char* p,
1932 section_offset_type bytes, bool* punconfigured);
1933
1934 } // end namespace gold
1935
1936 #endif // !defined(GOLD_OBJECT_H)
This page took 0.090629 seconds and 5 git commands to generate.