elfcpp/ChangeLog:
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33 #include "archive.h"
34
35 namespace gold
36 {
37
38 class General_options;
39 class Task;
40 class Cref;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 Read_symbols_data()
59 : section_headers(NULL), section_names(NULL), symbols(NULL),
60 symbol_names(NULL), versym(NULL), verdef(NULL), verneed(NULL)
61 { }
62
63 ~Read_symbols_data();
64
65 // Section headers.
66 File_view* section_headers;
67 // Section names.
68 File_view* section_names;
69 // Size of section name data in bytes.
70 section_size_type section_names_size;
71 // Symbol data.
72 File_view* symbols;
73 // Size of symbol data in bytes.
74 section_size_type symbols_size;
75 // Offset of external symbols within symbol data. This structure
76 // sometimes contains only external symbols, in which case this will
77 // be zero. Sometimes it contains all symbols.
78 section_offset_type external_symbols_offset;
79 // Symbol names.
80 File_view* symbol_names;
81 // Size of symbol name data in bytes.
82 section_size_type symbol_names_size;
83
84 // Version information. This is only used on dynamic objects.
85 // Version symbol data (from SHT_GNU_versym section).
86 File_view* versym;
87 section_size_type versym_size;
88 // Version definition data (from SHT_GNU_verdef section).
89 File_view* verdef;
90 section_size_type verdef_size;
91 unsigned int verdef_info;
92 // Needed version data (from SHT_GNU_verneed section).
93 File_view* verneed;
94 section_size_type verneed_size;
95 unsigned int verneed_info;
96 };
97
98 // Information used to print error messages.
99
100 struct Symbol_location_info
101 {
102 std::string source_file;
103 std::string enclosing_symbol_name;
104 int line_number;
105 };
106
107 // Data about a single relocation section. This is read in
108 // read_relocs and processed in scan_relocs.
109
110 struct Section_relocs
111 {
112 Section_relocs()
113 : contents(NULL)
114 { }
115
116 ~Section_relocs()
117 { delete this->contents; }
118
119 // Index of reloc section.
120 unsigned int reloc_shndx;
121 // Index of section that relocs apply to.
122 unsigned int data_shndx;
123 // Contents of reloc section.
124 File_view* contents;
125 // Reloc section type.
126 unsigned int sh_type;
127 // Number of reloc entries.
128 size_t reloc_count;
129 // Output section.
130 Output_section* output_section;
131 // Whether this section has special handling for offsets.
132 bool needs_special_offset_handling;
133 // Whether the data section is allocated (has the SHF_ALLOC flag set).
134 bool is_data_section_allocated;
135 };
136
137 // Relocations in an object file. This is read in read_relocs and
138 // processed in scan_relocs.
139
140 struct Read_relocs_data
141 {
142 Read_relocs_data()
143 : local_symbols(NULL)
144 { }
145
146 ~Read_relocs_data()
147 { delete this->local_symbols; }
148
149 typedef std::vector<Section_relocs> Relocs_list;
150 // The relocations.
151 Relocs_list relocs;
152 // The local symbols.
153 File_view* local_symbols;
154 };
155
156 // The Xindex class manages section indexes for objects with more than
157 // 0xff00 sections.
158
159 class Xindex
160 {
161 public:
162 Xindex(int large_shndx_offset)
163 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
164 { }
165
166 // Initialize the symtab_xindex_ array, given the object and the
167 // section index of the symbol table to use.
168 template<int size, bool big_endian>
169 void
170 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
171
172 // Read in the symtab_xindex_ array, given its section index.
173 // PSHDRS may optionally point to the section headers.
174 template<int size, bool big_endian>
175 void
176 read_symtab_xindex(Object*, unsigned int xindex_shndx,
177 const unsigned char* pshdrs);
178
179 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
180 // real section index.
181 unsigned int
182 sym_xindex_to_shndx(Object* object, unsigned int symndx);
183
184 private:
185 // The type of the array giving the real section index for symbols
186 // whose st_shndx field holds SHN_XINDEX.
187 typedef std::vector<unsigned int> Symtab_xindex;
188
189 // Adjust a section index if necessary. This should only be called
190 // for ordinary section indexes.
191 unsigned int
192 adjust_shndx(unsigned int shndx)
193 {
194 if (shndx >= elfcpp::SHN_LORESERVE)
195 shndx += this->large_shndx_offset_;
196 return shndx;
197 }
198
199 // Adjust to apply to large section indexes.
200 int large_shndx_offset_;
201 // The data from the SHT_SYMTAB_SHNDX section.
202 Symtab_xindex symtab_xindex_;
203 };
204
205 // Object is an abstract base class which represents either a 32-bit
206 // or a 64-bit input object. This can be a regular object file
207 // (ET_REL) or a shared object (ET_DYN).
208
209 class Object
210 {
211 public:
212 typedef std::vector<Symbol*> Symbols;
213
214 // NAME is the name of the object as we would report it to the user
215 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
216 // used to read the file. OFFSET is the offset within the input
217 // file--0 for a .o or .so file, something else for a .a file.
218 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
219 off_t offset = 0)
220 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
221 is_dynamic_(is_dynamic), is_needed_(false), uses_split_stack_(false),
222 has_no_split_stack_(false), no_export_(false), xindex_(NULL)
223 { input_file->file().add_object(); }
224
225 virtual ~Object()
226 { this->input_file_->file().remove_object(); }
227
228 // Return the name of the object as we would report it to the tuser.
229 const std::string&
230 name() const
231 { return this->name_; }
232
233 // Get the offset into the file.
234 off_t
235 offset() const
236 { return this->offset_; }
237
238 // Return whether this is a dynamic object.
239 bool
240 is_dynamic() const
241 { return this->is_dynamic_; }
242
243 // Return whether this object is needed--true if it is a dynamic
244 // object which defines some symbol referenced by a regular object.
245 // We keep the flag here rather than in Dynobj for convenience when
246 // setting it.
247 bool
248 is_needed() const
249 { return this->is_needed_; }
250
251 // Record that this object is needed.
252 void
253 set_is_needed()
254 { this->is_needed_ = true; }
255
256 // Return whether this object was compiled with -fsplit-stack.
257 bool
258 uses_split_stack() const
259 { return this->uses_split_stack_; }
260
261 // Return whether this object contains any functions compiled with
262 // the no_split_stack attribute.
263 bool
264 has_no_split_stack() const
265 { return this->has_no_split_stack_; }
266
267 // Returns NULL for Objects that are not plugin objects. This method
268 // is overridden in the Pluginobj class.
269 Pluginobj*
270 pluginobj()
271 { return this->do_pluginobj(); }
272
273 // Get the file. We pass on const-ness.
274 Input_file*
275 input_file()
276 { return this->input_file_; }
277
278 const Input_file*
279 input_file() const
280 { return this->input_file_; }
281
282 // Lock the underlying file.
283 void
284 lock(const Task* t)
285 { this->input_file()->file().lock(t); }
286
287 // Unlock the underlying file.
288 void
289 unlock(const Task* t)
290 { this->input_file()->file().unlock(t); }
291
292 // Return whether the underlying file is locked.
293 bool
294 is_locked() const
295 { return this->input_file()->file().is_locked(); }
296
297 // Return the token, so that the task can be queued.
298 Task_token*
299 token()
300 { return this->input_file()->file().token(); }
301
302 // Release the underlying file.
303 void
304 release()
305 { this->input_file_->file().release(); }
306
307 // Return whether we should just read symbols from this file.
308 bool
309 just_symbols() const
310 { return this->input_file()->just_symbols(); }
311
312 // Get the number of sections.
313 unsigned int
314 shnum() const
315 { return this->shnum_; }
316
317 // Return a view of the contents of a section. Set *PLEN to the
318 // size. CACHE is a hint as in File_read::get_view.
319 const unsigned char*
320 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
321
322 // Adjust a symbol's section index as needed. SYMNDX is the index
323 // of the symbol and SHNDX is the symbol's section from
324 // get_st_shndx. This returns the section index. It sets
325 // *IS_ORDINARY to indicate whether this is a normal section index,
326 // rather than a special code between SHN_LORESERVE and
327 // SHN_HIRESERVE.
328 unsigned int
329 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
330 {
331 if (shndx < elfcpp::SHN_LORESERVE)
332 *is_ordinary = true;
333 else if (shndx == elfcpp::SHN_XINDEX)
334 {
335 if (this->xindex_ == NULL)
336 this->xindex_ = this->do_initialize_xindex();
337 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
338 *is_ordinary = true;
339 }
340 else
341 *is_ordinary = false;
342 return shndx;
343 }
344
345 // Return the size of a section given a section index.
346 uint64_t
347 section_size(unsigned int shndx)
348 { return this->do_section_size(shndx); }
349
350 // Return the name of a section given a section index.
351 std::string
352 section_name(unsigned int shndx)
353 { return this->do_section_name(shndx); }
354
355 // Return the section flags given a section index.
356 uint64_t
357 section_flags(unsigned int shndx)
358 { return this->do_section_flags(shndx); }
359
360 // Return the section entsize given a section index.
361 uint64_t
362 section_entsize(unsigned int shndx)
363 { return this->do_section_entsize(shndx); }
364
365 // Return the section address given a section index.
366 uint64_t
367 section_address(unsigned int shndx)
368 { return this->do_section_address(shndx); }
369
370 // Return the section type given a section index.
371 unsigned int
372 section_type(unsigned int shndx)
373 { return this->do_section_type(shndx); }
374
375 // Return the section link field given a section index.
376 unsigned int
377 section_link(unsigned int shndx)
378 { return this->do_section_link(shndx); }
379
380 // Return the section info field given a section index.
381 unsigned int
382 section_info(unsigned int shndx)
383 { return this->do_section_info(shndx); }
384
385 // Return the required section alignment given a section index.
386 uint64_t
387 section_addralign(unsigned int shndx)
388 { return this->do_section_addralign(shndx); }
389
390 // Return the output section given a section index.
391 Output_section*
392 output_section(unsigned int shndx) const
393 { return this->do_output_section(shndx); }
394
395 // Given a section index, return the offset in the Output_section.
396 // The return value will be -1U if the section is specially mapped,
397 // such as a merge section.
398 uint64_t
399 output_section_offset(unsigned int shndx) const
400 { return this->do_output_section_offset(shndx); }
401
402 // Read the symbol information.
403 void
404 read_symbols(Read_symbols_data* sd)
405 { return this->do_read_symbols(sd); }
406
407 // Pass sections which should be included in the link to the Layout
408 // object, and record where the sections go in the output file.
409 void
410 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
411 { this->do_layout(symtab, layout, sd); }
412
413 // Add symbol information to the global symbol table.
414 void
415 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
416 { this->do_add_symbols(symtab, sd, layout); }
417
418 // Add symbol information to the global symbol table.
419 Archive::Should_include
420 should_include_member(Symbol_table* symtab, Layout* layout,
421 Read_symbols_data* sd, std::string* why)
422 { return this->do_should_include_member(symtab, layout, sd, why); }
423
424 // Functions and types for the elfcpp::Elf_file interface. This
425 // permit us to use Object as the File template parameter for
426 // elfcpp::Elf_file.
427
428 // The View class is returned by view. It must support a single
429 // method, data(). This is trivial, because get_view does what we
430 // need.
431 class View
432 {
433 public:
434 View(const unsigned char* p)
435 : p_(p)
436 { }
437
438 const unsigned char*
439 data() const
440 { return this->p_; }
441
442 private:
443 const unsigned char* p_;
444 };
445
446 // Return a View.
447 View
448 view(off_t file_offset, section_size_type data_size)
449 { return View(this->get_view(file_offset, data_size, true, true)); }
450
451 // Report an error.
452 void
453 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
454
455 // A location in the file.
456 struct Location
457 {
458 off_t file_offset;
459 off_t data_size;
460
461 Location(off_t fo, section_size_type ds)
462 : file_offset(fo), data_size(ds)
463 { }
464 };
465
466 // Get a View given a Location.
467 View view(Location loc)
468 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
469
470 // Get a view into the underlying file.
471 const unsigned char*
472 get_view(off_t start, section_size_type size, bool aligned, bool cache)
473 {
474 return this->input_file()->file().get_view(this->offset_, start, size,
475 aligned, cache);
476 }
477
478 // Get a lasting view into the underlying file.
479 File_view*
480 get_lasting_view(off_t start, section_size_type size, bool aligned,
481 bool cache)
482 {
483 return this->input_file()->file().get_lasting_view(this->offset_, start,
484 size, aligned, cache);
485 }
486
487 // Read data from the underlying file.
488 void
489 read(off_t start, section_size_type size, void* p)
490 { this->input_file()->file().read(start + this->offset_, size, p); }
491
492 // Read multiple data from the underlying file.
493 void
494 read_multiple(const File_read::Read_multiple& rm)
495 { this->input_file()->file().read_multiple(this->offset_, rm); }
496
497 // Stop caching views in the underlying file.
498 void
499 clear_view_cache_marks()
500 { this->input_file()->file().clear_view_cache_marks(); }
501
502 // Get the number of global symbols defined by this object, and the
503 // number of the symbols whose final definition came from this
504 // object.
505 void
506 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
507 size_t* used) const
508 { this->do_get_global_symbol_counts(symtab, defined, used); }
509
510 // Get the symbols defined in this object.
511 const Symbols*
512 get_global_symbols() const
513 { return this->do_get_global_symbols(); }
514
515 // Return whether this object was found in a system directory.
516 bool
517 is_in_system_directory() const
518 { return this->input_file()->is_in_system_directory(); }
519
520 // Return whether we found this object by searching a directory.
521 bool
522 searched_for() const
523 { return this->input_file()->will_search_for(); }
524
525 bool
526 no_export() const
527 { return this->no_export_; }
528
529 void
530 set_no_export(bool value)
531 { this->no_export_ = value; }
532
533 // Return TRUE if the section is a compressed debug section, and set
534 // *UNCOMPRESSED_SIZE to the size of the uncompressed data.
535 bool
536 section_is_compressed(unsigned int shndx,
537 section_size_type* uncompressed_size) const
538 { return this->do_section_is_compressed(shndx, uncompressed_size); }
539
540 // Return the index of the first incremental relocation for symbol SYMNDX.
541 unsigned int
542 get_incremental_reloc_base(unsigned int symndx) const
543 { return this->do_get_incremental_reloc_base(symndx); }
544
545 // Return the number of incremental relocations for symbol SYMNDX.
546 unsigned int
547 get_incremental_reloc_count(unsigned int symndx) const
548 { return this->do_get_incremental_reloc_count(symndx); }
549
550 protected:
551 // Returns NULL for Objects that are not plugin objects. This method
552 // is overridden in the Pluginobj class.
553 virtual Pluginobj*
554 do_pluginobj()
555 { return NULL; }
556
557 // Read the symbols--implemented by child class.
558 virtual void
559 do_read_symbols(Read_symbols_data*) = 0;
560
561 // Lay out sections--implemented by child class.
562 virtual void
563 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
564
565 // Add symbol information to the global symbol table--implemented by
566 // child class.
567 virtual void
568 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
569
570 virtual Archive::Should_include
571 do_should_include_member(Symbol_table* symtab, Layout*, Read_symbols_data*,
572 std::string* why) = 0;
573
574 // Return the location of the contents of a section. Implemented by
575 // child class.
576 virtual Location
577 do_section_contents(unsigned int shndx) = 0;
578
579 // Get the size of a section--implemented by child class.
580 virtual uint64_t
581 do_section_size(unsigned int shndx) = 0;
582
583 // Get the name of a section--implemented by child class.
584 virtual std::string
585 do_section_name(unsigned int shndx) = 0;
586
587 // Get section flags--implemented by child class.
588 virtual uint64_t
589 do_section_flags(unsigned int shndx) = 0;
590
591 // Get section entsize--implemented by child class.
592 virtual uint64_t
593 do_section_entsize(unsigned int shndx) = 0;
594
595 // Get section address--implemented by child class.
596 virtual uint64_t
597 do_section_address(unsigned int shndx) = 0;
598
599 // Get section type--implemented by child class.
600 virtual unsigned int
601 do_section_type(unsigned int shndx) = 0;
602
603 // Get section link field--implemented by child class.
604 virtual unsigned int
605 do_section_link(unsigned int shndx) = 0;
606
607 // Get section info field--implemented by child class.
608 virtual unsigned int
609 do_section_info(unsigned int shndx) = 0;
610
611 // Get section alignment--implemented by child class.
612 virtual uint64_t
613 do_section_addralign(unsigned int shndx) = 0;
614
615 // Return the output section given a section index--implemented
616 // by child class.
617 virtual Output_section*
618 do_output_section(unsigned int) const
619 { gold_unreachable(); }
620
621 // Get the offset of a section--implemented by child class.
622 virtual uint64_t
623 do_output_section_offset(unsigned int) const
624 { gold_unreachable(); }
625
626 // Return the Xindex structure to use.
627 virtual Xindex*
628 do_initialize_xindex() = 0;
629
630 // Implement get_global_symbol_counts--implemented by child class.
631 virtual void
632 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
633
634 virtual const Symbols*
635 do_get_global_symbols() const = 0;
636
637 // Set the number of sections.
638 void
639 set_shnum(int shnum)
640 { this->shnum_ = shnum; }
641
642 // Functions used by both Sized_relobj and Sized_dynobj.
643
644 // Read the section data into a Read_symbols_data object.
645 template<int size, bool big_endian>
646 void
647 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
648 Read_symbols_data*);
649
650 // Let the child class initialize the xindex object directly.
651 void
652 set_xindex(Xindex* xindex)
653 {
654 gold_assert(this->xindex_ == NULL);
655 this->xindex_ = xindex;
656 }
657
658 // If NAME is the name of a special .gnu.warning section, arrange
659 // for the warning to be issued. SHNDX is the section index.
660 // Return whether it is a warning section.
661 bool
662 handle_gnu_warning_section(const char* name, unsigned int shndx,
663 Symbol_table*);
664
665 // If NAME is the name of the special section which indicates that
666 // this object was compiled with -fstack-split, mark it accordingly,
667 // and return true. Otherwise return false.
668 bool
669 handle_split_stack_section(const char* name);
670
671 // Return TRUE if the section is a compressed debug section, and set
672 // *UNCOMPRESSED_SIZE to the size of the uncompressed data.
673 virtual bool
674 do_section_is_compressed(unsigned int, section_size_type*) const
675 { return false; }
676
677 // Return the index of the first incremental relocation for symbol SYMNDX--
678 // implemented by child class.
679 virtual unsigned int
680 do_get_incremental_reloc_base(unsigned int) const
681 { gold_unreachable(); }
682
683 // Return the number of incremental relocations for symbol SYMNDX--
684 // implemented by child class.
685 virtual unsigned int
686 do_get_incremental_reloc_count(unsigned int) const
687 { gold_unreachable(); }
688
689 private:
690 // This class may not be copied.
691 Object(const Object&);
692 Object& operator=(const Object&);
693
694 // Name of object as printed to user.
695 std::string name_;
696 // For reading the file.
697 Input_file* input_file_;
698 // Offset within the file--0 for an object file, non-0 for an
699 // archive.
700 off_t offset_;
701 // Number of input sections.
702 unsigned int shnum_;
703 // Whether this is a dynamic object.
704 bool is_dynamic_ : 1;
705 // Whether this object is needed. This is only set for dynamic
706 // objects, and means that the object defined a symbol which was
707 // used by a reference from a regular object.
708 bool is_needed_ : 1;
709 // Whether this object was compiled with -fsplit-stack.
710 bool uses_split_stack_ : 1;
711 // Whether this object contains any functions compiled with the
712 // no_split_stack attribute.
713 bool has_no_split_stack_ : 1;
714 // True if exclude this object from automatic symbol export.
715 // This is used only for archive objects.
716 bool no_export_ : 1;
717 // Many sections for objects with more than SHN_LORESERVE sections.
718 Xindex* xindex_;
719 };
720
721 // A regular object (ET_REL). This is an abstract base class itself.
722 // The implementation is the template class Sized_relobj.
723
724 class Relobj : public Object
725 {
726 public:
727 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
728 : Object(name, input_file, false, offset),
729 output_sections_(),
730 map_to_relocatable_relocs_(NULL),
731 object_merge_map_(NULL),
732 relocs_must_follow_section_writes_(false),
733 sd_(NULL),
734 reloc_counts_(NULL),
735 reloc_bases_(NULL)
736 { }
737
738 // During garbage collection, the Read_symbols_data pass for
739 // each object is stored as layout needs to be done after
740 // reloc processing.
741 Symbols_data*
742 get_symbols_data()
743 { return this->sd_; }
744
745 // Decides which section names have to be included in the worklist
746 // as roots.
747 bool
748 is_section_name_included(const char *name);
749
750 void
751 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
752 unsigned int section_header_size);
753
754 void
755 set_symbols_data(Symbols_data* sd)
756 { this->sd_ = sd; }
757
758 // During garbage collection, the Read_relocs pass for all objects
759 // is done before scanning the relocs. In that case, this->rd_ is
760 // used to store the information from Read_relocs for each object.
761 // This data is also used to compute the list of relevant sections.
762 Read_relocs_data*
763 get_relocs_data()
764 { return this->rd_; }
765
766 void
767 set_relocs_data(Read_relocs_data* rd)
768 { this->rd_ = rd; }
769
770 virtual bool
771 is_output_section_offset_invalid(unsigned int shndx) const = 0;
772
773 // Read the relocs.
774 void
775 read_relocs(Read_relocs_data* rd)
776 { return this->do_read_relocs(rd); }
777
778 // Process the relocs, during garbage collection only.
779 void
780 gc_process_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
781 { return this->do_gc_process_relocs(symtab, layout, rd); }
782
783 // Scan the relocs and adjust the symbol table.
784 void
785 scan_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
786 { return this->do_scan_relocs(symtab, layout, rd); }
787
788 // The number of local symbols in the input symbol table.
789 virtual unsigned int
790 local_symbol_count() const
791 { return this->do_local_symbol_count(); }
792
793 // Initial local symbol processing: count the number of local symbols
794 // in the output symbol table and dynamic symbol table; add local symbol
795 // names to *POOL and *DYNPOOL.
796 void
797 count_local_symbols(Stringpool_template<char>* pool,
798 Stringpool_template<char>* dynpool)
799 { return this->do_count_local_symbols(pool, dynpool); }
800
801 // Set the values of the local symbols, set the output symbol table
802 // indexes for the local variables, and set the offset where local
803 // symbol information will be stored. Returns the new local symbol index.
804 unsigned int
805 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
806 { return this->do_finalize_local_symbols(index, off, symtab); }
807
808 // Set the output dynamic symbol table indexes for the local variables.
809 unsigned int
810 set_local_dynsym_indexes(unsigned int index)
811 { return this->do_set_local_dynsym_indexes(index); }
812
813 // Set the offset where local dynamic symbol information will be stored.
814 unsigned int
815 set_local_dynsym_offset(off_t off)
816 { return this->do_set_local_dynsym_offset(off); }
817
818 // Relocate the input sections and write out the local symbols.
819 void
820 relocate(const Symbol_table* symtab, const Layout* layout, Output_file* of)
821 { return this->do_relocate(symtab, layout, of); }
822
823 // Return whether an input section is being included in the link.
824 bool
825 is_section_included(unsigned int shndx) const
826 {
827 gold_assert(shndx < this->output_sections_.size());
828 return this->output_sections_[shndx] != NULL;
829 }
830
831 // The the output section of the input section with index SHNDX.
832 // This is only used currently to remove a section from the link in
833 // relaxation.
834 void
835 set_output_section(unsigned int shndx, Output_section* os)
836 {
837 gold_assert(shndx < this->output_sections_.size());
838 this->output_sections_[shndx] = os;
839 }
840
841 // Set the offset of an input section within its output section.
842 void
843 set_section_offset(unsigned int shndx, uint64_t off)
844 { this->do_set_section_offset(shndx, off); }
845
846 // Return true if we need to wait for output sections to be written
847 // before we can apply relocations. This is true if the object has
848 // any relocations for sections which require special handling, such
849 // as the exception frame section.
850 bool
851 relocs_must_follow_section_writes() const
852 { return this->relocs_must_follow_section_writes_; }
853
854 // Return the object merge map.
855 Object_merge_map*
856 merge_map() const
857 { return this->object_merge_map_; }
858
859 // Set the object merge map.
860 void
861 set_merge_map(Object_merge_map* object_merge_map)
862 {
863 gold_assert(this->object_merge_map_ == NULL);
864 this->object_merge_map_ = object_merge_map;
865 }
866
867 // Record the relocatable reloc info for an input reloc section.
868 void
869 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
870 {
871 gold_assert(reloc_shndx < this->shnum());
872 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
873 }
874
875 // Get the relocatable reloc info for an input reloc section.
876 Relocatable_relocs*
877 relocatable_relocs(unsigned int reloc_shndx)
878 {
879 gold_assert(reloc_shndx < this->shnum());
880 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
881 }
882
883 // Layout sections whose layout was deferred while waiting for
884 // input files from a plugin.
885 void
886 layout_deferred_sections(Layout* layout)
887 { this->do_layout_deferred_sections(layout); }
888
889 // Return the index of the first incremental relocation for symbol SYMNDX.
890 virtual unsigned int
891 do_get_incremental_reloc_base(unsigned int symndx) const
892 { return this->reloc_bases_[symndx]; }
893
894 // Return the number of incremental relocations for symbol SYMNDX.
895 virtual unsigned int
896 do_get_incremental_reloc_count(unsigned int symndx) const
897 { return this->reloc_counts_[symndx]; }
898
899 protected:
900 // The output section to be used for each input section, indexed by
901 // the input section number. The output section is NULL if the
902 // input section is to be discarded.
903 typedef std::vector<Output_section*> Output_sections;
904
905 // Read the relocs--implemented by child class.
906 virtual void
907 do_read_relocs(Read_relocs_data*) = 0;
908
909 // Process the relocs--implemented by child class.
910 virtual void
911 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
912
913 // Scan the relocs--implemented by child class.
914 virtual void
915 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
916
917 // Return the number of local symbols--implemented by child class.
918 virtual unsigned int
919 do_local_symbol_count() const = 0;
920
921 // Count local symbols--implemented by child class.
922 virtual void
923 do_count_local_symbols(Stringpool_template<char>*,
924 Stringpool_template<char>*) = 0;
925
926 // Finalize the local symbols. Set the output symbol table indexes
927 // for the local variables, and set the offset where local symbol
928 // information will be stored.
929 virtual unsigned int
930 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;
931
932 // Set the output dynamic symbol table indexes for the local variables.
933 virtual unsigned int
934 do_set_local_dynsym_indexes(unsigned int) = 0;
935
936 // Set the offset where local dynamic symbol information will be stored.
937 virtual unsigned int
938 do_set_local_dynsym_offset(off_t) = 0;
939
940 // Relocate the input sections and write out the local
941 // symbols--implemented by child class.
942 virtual void
943 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of) = 0;
944
945 // Set the offset of a section--implemented by child class.
946 virtual void
947 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
948
949 // Layout sections whose layout was deferred while waiting for
950 // input files from a plugin--implemented by child class.
951 virtual void
952 do_layout_deferred_sections(Layout*) = 0;
953
954 // Given a section index, return the corresponding Output_section.
955 // The return value will be NULL if the section is not included in
956 // the link.
957 Output_section*
958 do_output_section(unsigned int shndx) const
959 {
960 gold_assert(shndx < this->output_sections_.size());
961 return this->output_sections_[shndx];
962 }
963
964 // Return the vector mapping input sections to output sections.
965 Output_sections&
966 output_sections()
967 { return this->output_sections_; }
968
969 const Output_sections&
970 output_sections() const
971 { return this->output_sections_; }
972
973 // Set the size of the relocatable relocs array.
974 void
975 size_relocatable_relocs()
976 {
977 this->map_to_relocatable_relocs_ =
978 new std::vector<Relocatable_relocs*>(this->shnum());
979 }
980
981 // Record that we must wait for the output sections to be written
982 // before applying relocations.
983 void
984 set_relocs_must_follow_section_writes()
985 { this->relocs_must_follow_section_writes_ = true; }
986
987 // Allocate the array for counting incremental relocations.
988 void
989 allocate_incremental_reloc_counts()
990 {
991 unsigned int nsyms = this->do_get_global_symbols()->size();
992 this->reloc_counts_ = new unsigned int[nsyms];
993 gold_assert(this->reloc_counts_ != NULL);
994 memset(this->reloc_counts_, 0, nsyms * sizeof(unsigned int));
995 }
996
997 // Record a relocation in this object referencing global symbol SYMNDX.
998 // Used for tracking incremental link information.
999 void
1000 count_incremental_reloc(unsigned int symndx)
1001 {
1002 unsigned int nsyms = this->do_get_global_symbols()->size();
1003 gold_assert(symndx < nsyms);
1004 gold_assert(this->reloc_counts_ != NULL);
1005 ++this->reloc_counts_[symndx];
1006 }
1007
1008 // Finalize the incremental relocation information.
1009 void
1010 finalize_incremental_relocs(Layout* layout);
1011
1012 // Return the index of the next relocation to be written for global symbol
1013 // SYMNDX. Only valid after finalize_incremental_relocs() has been called.
1014 unsigned int
1015 next_incremental_reloc_index(unsigned int symndx)
1016 {
1017 unsigned int nsyms = this->do_get_global_symbols()->size();
1018
1019 gold_assert(this->reloc_counts_ != NULL);
1020 gold_assert(this->reloc_bases_ != NULL);
1021 gold_assert(symndx < nsyms);
1022
1023 unsigned int counter = this->reloc_counts_[symndx]++;
1024 return this->reloc_bases_[symndx] + counter;
1025 }
1026
1027 private:
1028 // Mapping from input sections to output section.
1029 Output_sections output_sections_;
1030 // Mapping from input section index to the information recorded for
1031 // the relocations. This is only used for a relocatable link.
1032 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
1033 // Mappings for merge sections. This is managed by the code in the
1034 // Merge_map class.
1035 Object_merge_map* object_merge_map_;
1036 // Whether we need to wait for output sections to be written before
1037 // we can apply relocations.
1038 bool relocs_must_follow_section_writes_;
1039 // Used to store the relocs data computed by the Read_relocs pass.
1040 // Used during garbage collection of unused sections.
1041 Read_relocs_data* rd_;
1042 // Used to store the symbols data computed by the Read_symbols pass.
1043 // Again used during garbage collection when laying out referenced
1044 // sections.
1045 gold::Symbols_data *sd_;
1046 // Per-symbol counts of relocations, for incremental links.
1047 unsigned int* reloc_counts_;
1048 // Per-symbol base indexes of relocations, for incremental links.
1049 unsigned int* reloc_bases_;
1050 };
1051
1052 // This class is used to handle relocations against a section symbol
1053 // in an SHF_MERGE section. For such a symbol, we need to know the
1054 // addend of the relocation before we can determine the final value.
1055 // The addend gives us the location in the input section, and we can
1056 // determine how it is mapped to the output section. For a
1057 // non-section symbol, we apply the addend to the final value of the
1058 // symbol; that is done in finalize_local_symbols, and does not use
1059 // this class.
1060
1061 template<int size>
1062 class Merged_symbol_value
1063 {
1064 public:
1065 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
1066
1067 // We use a hash table to map offsets in the input section to output
1068 // addresses.
1069 typedef Unordered_map<section_offset_type, Value> Output_addresses;
1070
1071 Merged_symbol_value(Value input_value, Value output_start_address)
1072 : input_value_(input_value), output_start_address_(output_start_address),
1073 output_addresses_()
1074 { }
1075
1076 // Initialize the hash table.
1077 void
1078 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
1079
1080 // Release the hash table to save space.
1081 void
1082 free_input_to_output_map()
1083 { this->output_addresses_.clear(); }
1084
1085 // Get the output value corresponding to an addend. The object and
1086 // input section index are passed in because the caller will have
1087 // them; otherwise we could store them here.
1088 Value
1089 value(const Relobj* object, unsigned int input_shndx, Value addend) const
1090 {
1091 // This is a relocation against a section symbol. ADDEND is the
1092 // offset in the section. The result should be the start of some
1093 // merge area. If the object file wants something else, it should
1094 // use a regular symbol rather than a section symbol.
1095 // Unfortunately, PR 6658 shows a case in which the object file
1096 // refers to the section symbol, but uses a negative ADDEND to
1097 // compensate for a PC relative reloc. We can't handle the
1098 // general case. However, we can handle the special case of a
1099 // negative addend, by assuming that it refers to the start of the
1100 // section. Of course, that means that we have to guess when
1101 // ADDEND is negative. It is normal to see a 32-bit value here
1102 // even when the template parameter size is 64, as 64-bit object
1103 // file formats have 32-bit relocations. We know this is a merge
1104 // section, so we know it has to fit into memory. So we assume
1105 // that we won't see a value larger than a large 32-bit unsigned
1106 // value. This will break objects with very very large merge
1107 // sections; they probably break in other ways anyhow.
1108 Value input_offset = this->input_value_;
1109 if (addend < 0xffffff00)
1110 {
1111 input_offset += addend;
1112 addend = 0;
1113 }
1114 typename Output_addresses::const_iterator p =
1115 this->output_addresses_.find(input_offset);
1116 if (p != this->output_addresses_.end())
1117 return p->second + addend;
1118
1119 return (this->value_from_output_section(object, input_shndx, input_offset)
1120 + addend);
1121 }
1122
1123 private:
1124 // Get the output value for an input offset if we couldn't find it
1125 // in the hash table.
1126 Value
1127 value_from_output_section(const Relobj*, unsigned int input_shndx,
1128 Value input_offset) const;
1129
1130 // The value of the section symbol in the input file. This is
1131 // normally zero, but could in principle be something else.
1132 Value input_value_;
1133 // The start address of this merged section in the output file.
1134 Value output_start_address_;
1135 // A hash table which maps offsets in the input section to output
1136 // addresses. This only maps specific offsets, not all offsets.
1137 Output_addresses output_addresses_;
1138 };
1139
1140 // This POD class is holds the value of a symbol. This is used for
1141 // local symbols, and for all symbols during relocation processing.
1142 // For special sections, such as SHF_MERGE sections, this calls a
1143 // function to get the final symbol value.
1144
1145 template<int size>
1146 class Symbol_value
1147 {
1148 public:
1149 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
1150
1151 Symbol_value()
1152 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
1153 is_ordinary_shndx_(false), is_section_symbol_(false),
1154 is_tls_symbol_(false), has_output_value_(true)
1155 { this->u_.value = 0; }
1156
1157 // Get the value of this symbol. OBJECT is the object in which this
1158 // symbol is defined, and ADDEND is an addend to add to the value.
1159 template<bool big_endian>
1160 Value
1161 value(const Sized_relobj<size, big_endian>* object, Value addend) const
1162 {
1163 if (this->has_output_value_)
1164 return this->u_.value + addend;
1165 else
1166 {
1167 gold_assert(this->is_ordinary_shndx_);
1168 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
1169 addend);
1170 }
1171 }
1172
1173 // Set the value of this symbol in the output symbol table.
1174 void
1175 set_output_value(Value value)
1176 { this->u_.value = value; }
1177
1178 // For a section symbol in a merged section, we need more
1179 // information.
1180 void
1181 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1182 {
1183 gold_assert(this->is_section_symbol_);
1184 this->has_output_value_ = false;
1185 this->u_.merged_symbol_value = msv;
1186 }
1187
1188 // Initialize the input to output map for a section symbol in a
1189 // merged section. We also initialize the value of a non-section
1190 // symbol in a merged section.
1191 void
1192 initialize_input_to_output_map(const Relobj* object)
1193 {
1194 if (!this->has_output_value_)
1195 {
1196 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1197 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1198 msv->initialize_input_to_output_map(object, this->input_shndx_);
1199 }
1200 }
1201
1202 // Free the input to output map for a section symbol in a merged
1203 // section.
1204 void
1205 free_input_to_output_map()
1206 {
1207 if (!this->has_output_value_)
1208 this->u_.merged_symbol_value->free_input_to_output_map();
1209 }
1210
1211 // Set the value of the symbol from the input file. This is only
1212 // called by count_local_symbols, to communicate the value to
1213 // finalize_local_symbols.
1214 void
1215 set_input_value(Value value)
1216 { this->u_.value = value; }
1217
1218 // Return the input value. This is only called by
1219 // finalize_local_symbols and (in special cases) relocate_section.
1220 Value
1221 input_value() const
1222 { return this->u_.value; }
1223
1224 // Return whether we have set the index in the output symbol table
1225 // yet.
1226 bool
1227 is_output_symtab_index_set() const
1228 {
1229 return (this->output_symtab_index_ != 0
1230 && this->output_symtab_index_ != -2U);
1231 }
1232
1233 // Return whether this symbol may be discarded from the normal
1234 // symbol table.
1235 bool
1236 may_be_discarded_from_output_symtab() const
1237 {
1238 gold_assert(!this->is_output_symtab_index_set());
1239 return this->output_symtab_index_ != -2U;
1240 }
1241
1242 // Return whether this symbol has an entry in the output symbol
1243 // table.
1244 bool
1245 has_output_symtab_entry() const
1246 {
1247 gold_assert(this->is_output_symtab_index_set());
1248 return this->output_symtab_index_ != -1U;
1249 }
1250
1251 // Return the index in the output symbol table.
1252 unsigned int
1253 output_symtab_index() const
1254 {
1255 gold_assert(this->is_output_symtab_index_set()
1256 && this->output_symtab_index_ != -1U);
1257 return this->output_symtab_index_;
1258 }
1259
1260 // Set the index in the output symbol table.
1261 void
1262 set_output_symtab_index(unsigned int i)
1263 {
1264 gold_assert(!this->is_output_symtab_index_set());
1265 gold_assert(i != 0 && i != -1U && i != -2U);
1266 this->output_symtab_index_ = i;
1267 }
1268
1269 // Record that this symbol should not go into the output symbol
1270 // table.
1271 void
1272 set_no_output_symtab_entry()
1273 {
1274 gold_assert(this->output_symtab_index_ == 0);
1275 this->output_symtab_index_ = -1U;
1276 }
1277
1278 // Record that this symbol must go into the output symbol table,
1279 // because it there is a relocation that uses it.
1280 void
1281 set_must_have_output_symtab_entry()
1282 {
1283 gold_assert(!this->is_output_symtab_index_set());
1284 this->output_symtab_index_ = -2U;
1285 }
1286
1287 // Set the index in the output dynamic symbol table.
1288 void
1289 set_needs_output_dynsym_entry()
1290 {
1291 gold_assert(!this->is_section_symbol());
1292 this->output_dynsym_index_ = 0;
1293 }
1294
1295 // Return whether this symbol should go into the dynamic symbol
1296 // table.
1297 bool
1298 needs_output_dynsym_entry() const
1299 {
1300 return this->output_dynsym_index_ != -1U;
1301 }
1302
1303 // Return whether this symbol has an entry in the dynamic symbol
1304 // table.
1305 bool
1306 has_output_dynsym_entry() const
1307 {
1308 gold_assert(this->output_dynsym_index_ != 0);
1309 return this->output_dynsym_index_ != -1U;
1310 }
1311
1312 // Record that this symbol should go into the dynamic symbol table.
1313 void
1314 set_output_dynsym_index(unsigned int i)
1315 {
1316 gold_assert(this->output_dynsym_index_ == 0);
1317 gold_assert(i != 0 && i != -1U);
1318 this->output_dynsym_index_ = i;
1319 }
1320
1321 // Return the index in the output dynamic symbol table.
1322 unsigned int
1323 output_dynsym_index() const
1324 {
1325 gold_assert(this->output_dynsym_index_ != 0
1326 && this->output_dynsym_index_ != -1U);
1327 return this->output_dynsym_index_;
1328 }
1329
1330 // Set the index of the input section in the input file.
1331 void
1332 set_input_shndx(unsigned int i, bool is_ordinary)
1333 {
1334 this->input_shndx_ = i;
1335 // input_shndx_ field is a bitfield, so make sure that the value
1336 // fits.
1337 gold_assert(this->input_shndx_ == i);
1338 this->is_ordinary_shndx_ = is_ordinary;
1339 }
1340
1341 // Return the index of the input section in the input file.
1342 unsigned int
1343 input_shndx(bool* is_ordinary) const
1344 {
1345 *is_ordinary = this->is_ordinary_shndx_;
1346 return this->input_shndx_;
1347 }
1348
1349 // Whether this is a section symbol.
1350 bool
1351 is_section_symbol() const
1352 { return this->is_section_symbol_; }
1353
1354 // Record that this is a section symbol.
1355 void
1356 set_is_section_symbol()
1357 {
1358 gold_assert(!this->needs_output_dynsym_entry());
1359 this->is_section_symbol_ = true;
1360 }
1361
1362 // Record that this is a TLS symbol.
1363 void
1364 set_is_tls_symbol()
1365 { this->is_tls_symbol_ = true; }
1366
1367 // Return TRUE if this is a TLS symbol.
1368 bool
1369 is_tls_symbol() const
1370 { return this->is_tls_symbol_; }
1371
1372 private:
1373 // The index of this local symbol in the output symbol table. This
1374 // will be 0 if no value has been assigned yet, and the symbol may
1375 // be omitted. This will be -1U if the symbol should not go into
1376 // the symbol table. This will be -2U if the symbol must go into
1377 // the symbol table, but no index has been assigned yet.
1378 unsigned int output_symtab_index_;
1379 // The index of this local symbol in the dynamic symbol table. This
1380 // will be -1U if the symbol should not go into the symbol table.
1381 unsigned int output_dynsym_index_;
1382 // The section index in the input file in which this symbol is
1383 // defined.
1384 unsigned int input_shndx_ : 28;
1385 // Whether the section index is an ordinary index, not a special
1386 // value.
1387 bool is_ordinary_shndx_ : 1;
1388 // Whether this is a STT_SECTION symbol.
1389 bool is_section_symbol_ : 1;
1390 // Whether this is a STT_TLS symbol.
1391 bool is_tls_symbol_ : 1;
1392 // Whether this symbol has a value for the output file. This is
1393 // normally set to true during Layout::finalize, by
1394 // finalize_local_symbols. It will be false for a section symbol in
1395 // a merge section, as for such symbols we can not determine the
1396 // value to use in a relocation until we see the addend.
1397 bool has_output_value_ : 1;
1398 union
1399 {
1400 // This is used if has_output_value_ is true. Between
1401 // count_local_symbols and finalize_local_symbols, this is the
1402 // value in the input file. After finalize_local_symbols, it is
1403 // the value in the output file.
1404 Value value;
1405 // This is used if has_output_value_ is false. It points to the
1406 // information we need to get the value for a merge section.
1407 Merged_symbol_value<size>* merged_symbol_value;
1408 } u_;
1409 };
1410
1411 // A GOT offset list. A symbol may have more than one GOT offset
1412 // (e.g., when mixing modules compiled with two different TLS models),
1413 // but will usually have at most one. GOT_TYPE identifies the type of
1414 // GOT entry; its values are specific to each target.
1415
1416 class Got_offset_list
1417 {
1418 public:
1419 Got_offset_list()
1420 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1421 { }
1422
1423 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1424 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1425 { }
1426
1427 ~Got_offset_list()
1428 {
1429 if (this->got_next_ != NULL)
1430 {
1431 delete this->got_next_;
1432 this->got_next_ = NULL;
1433 }
1434 }
1435
1436 // Initialize the fields to their default values.
1437 void
1438 init()
1439 {
1440 this->got_type_ = -1U;
1441 this->got_offset_ = 0;
1442 this->got_next_ = NULL;
1443 }
1444
1445 // Set the offset for the GOT entry of type GOT_TYPE.
1446 void
1447 set_offset(unsigned int got_type, unsigned int got_offset)
1448 {
1449 if (this->got_type_ == -1U)
1450 {
1451 this->got_type_ = got_type;
1452 this->got_offset_ = got_offset;
1453 }
1454 else
1455 {
1456 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1457 {
1458 if (g->got_type_ == got_type)
1459 {
1460 g->got_offset_ = got_offset;
1461 return;
1462 }
1463 }
1464 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1465 g->got_next_ = this->got_next_;
1466 this->got_next_ = g;
1467 }
1468 }
1469
1470 // Return the offset for a GOT entry of type GOT_TYPE.
1471 unsigned int
1472 get_offset(unsigned int got_type) const
1473 {
1474 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1475 {
1476 if (g->got_type_ == got_type)
1477 return g->got_offset_;
1478 }
1479 return -1U;
1480 }
1481
1482 private:
1483 unsigned int got_type_;
1484 unsigned int got_offset_;
1485 Got_offset_list* got_next_;
1486 };
1487
1488 // This type is used to modify relocations for -fsplit-stack. It is
1489 // indexed by relocation index, and means that the relocation at that
1490 // index should use the symbol from the vector, rather than the one
1491 // indicated by the relocation.
1492
1493 class Reloc_symbol_changes
1494 {
1495 public:
1496 Reloc_symbol_changes(size_t count)
1497 : vec_(count, NULL)
1498 { }
1499
1500 void
1501 set(size_t i, Symbol* sym)
1502 { this->vec_[i] = sym; }
1503
1504 const Symbol*
1505 operator[](size_t i) const
1506 { return this->vec_[i]; }
1507
1508 private:
1509 std::vector<Symbol*> vec_;
1510 };
1511
1512 // Type for mapping section index to uncompressed size.
1513
1514 typedef std::map<unsigned int, section_size_type> Compressed_section_map;
1515
1516 // A regular object file. This is size and endian specific.
1517
1518 template<int size, bool big_endian>
1519 class Sized_relobj : public Relobj
1520 {
1521 public:
1522 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1523 typedef std::vector<Symbol*> Symbols;
1524 typedef std::vector<Symbol_value<size> > Local_values;
1525
1526 static const Address invalid_address = static_cast<Address>(0) - 1;
1527
1528 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1529 const typename elfcpp::Ehdr<size, big_endian>&);
1530
1531 ~Sized_relobj();
1532
1533 // Checks if the offset of input section SHNDX within its output
1534 // section is invalid.
1535 bool
1536 is_output_section_offset_invalid(unsigned int shndx) const
1537 { return this->get_output_section_offset(shndx) == invalid_address; }
1538
1539 // Set up the object file based on TARGET.
1540 void
1541 setup()
1542 { this->do_setup(); }
1543
1544 // Return the number of symbols. This is only valid after
1545 // Object::add_symbols has been called.
1546 unsigned int
1547 symbol_count() const
1548 { return this->local_symbol_count_ + this->symbols_.size(); }
1549
1550 // If SYM is the index of a global symbol in the object file's
1551 // symbol table, return the Symbol object. Otherwise, return NULL.
1552 Symbol*
1553 global_symbol(unsigned int sym) const
1554 {
1555 if (sym >= this->local_symbol_count_)
1556 {
1557 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1558 return this->symbols_[sym - this->local_symbol_count_];
1559 }
1560 return NULL;
1561 }
1562
1563 // Return the section index of symbol SYM. Set *VALUE to its value
1564 // in the object file. Set *IS_ORDINARY if this is an ordinary
1565 // section index, not a special code between SHN_LORESERVE and
1566 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1567 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1568 // it will not return the final value of the symbol in the link.
1569 unsigned int
1570 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1571
1572 // Return a pointer to the Symbol_value structure which holds the
1573 // value of a local symbol.
1574 const Symbol_value<size>*
1575 local_symbol(unsigned int sym) const
1576 {
1577 gold_assert(sym < this->local_values_.size());
1578 return &this->local_values_[sym];
1579 }
1580
1581 // Return the index of local symbol SYM in the ordinary symbol
1582 // table. A value of -1U means that the symbol is not being output.
1583 unsigned int
1584 symtab_index(unsigned int sym) const
1585 {
1586 gold_assert(sym < this->local_values_.size());
1587 return this->local_values_[sym].output_symtab_index();
1588 }
1589
1590 // Return the index of local symbol SYM in the dynamic symbol
1591 // table. A value of -1U means that the symbol is not being output.
1592 unsigned int
1593 dynsym_index(unsigned int sym) const
1594 {
1595 gold_assert(sym < this->local_values_.size());
1596 return this->local_values_[sym].output_dynsym_index();
1597 }
1598
1599 // Return the input section index of local symbol SYM.
1600 unsigned int
1601 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1602 {
1603 gold_assert(sym < this->local_values_.size());
1604 return this->local_values_[sym].input_shndx(is_ordinary);
1605 }
1606
1607 // Record that local symbol SYM must be in the output symbol table.
1608 void
1609 set_must_have_output_symtab_entry(unsigned int sym)
1610 {
1611 gold_assert(sym < this->local_values_.size());
1612 this->local_values_[sym].set_must_have_output_symtab_entry();
1613 }
1614
1615 // Record that local symbol SYM needs a dynamic symbol entry.
1616 void
1617 set_needs_output_dynsym_entry(unsigned int sym)
1618 {
1619 gold_assert(sym < this->local_values_.size());
1620 this->local_values_[sym].set_needs_output_dynsym_entry();
1621 }
1622
1623 // Return whether the local symbol SYMNDX has a GOT offset.
1624 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1625 bool
1626 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1627 {
1628 Local_got_offsets::const_iterator p =
1629 this->local_got_offsets_.find(symndx);
1630 return (p != this->local_got_offsets_.end()
1631 && p->second->get_offset(got_type) != -1U);
1632 }
1633
1634 // Return the GOT offset of the local symbol SYMNDX.
1635 unsigned int
1636 local_got_offset(unsigned int symndx, unsigned int got_type) const
1637 {
1638 Local_got_offsets::const_iterator p =
1639 this->local_got_offsets_.find(symndx);
1640 gold_assert(p != this->local_got_offsets_.end());
1641 unsigned int off = p->second->get_offset(got_type);
1642 gold_assert(off != -1U);
1643 return off;
1644 }
1645
1646 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1647 void
1648 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1649 unsigned int got_offset)
1650 {
1651 Local_got_offsets::const_iterator p =
1652 this->local_got_offsets_.find(symndx);
1653 if (p != this->local_got_offsets_.end())
1654 p->second->set_offset(got_type, got_offset);
1655 else
1656 {
1657 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1658 std::pair<Local_got_offsets::iterator, bool> ins =
1659 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1660 gold_assert(ins.second);
1661 }
1662 }
1663
1664 // Get the offset of input section SHNDX within its output section.
1665 // This is -1 if the input section requires a special mapping, such
1666 // as a merge section. The output section can be found in the
1667 // output_sections_ field of the parent class Relobj.
1668 Address
1669 get_output_section_offset(unsigned int shndx) const
1670 {
1671 gold_assert(shndx < this->section_offsets_.size());
1672 return this->section_offsets_[shndx];
1673 }
1674
1675 // Return the name of the symbol that spans the given offset in the
1676 // specified section in this object. This is used only for error
1677 // messages and is not particularly efficient.
1678 bool
1679 get_symbol_location_info(unsigned int shndx, off_t offset,
1680 Symbol_location_info* info);
1681
1682 // Look for a kept section corresponding to the given discarded section,
1683 // and return its output address. This is used only for relocations in
1684 // debugging sections.
1685 Address
1686 map_to_kept_section(unsigned int shndx, bool* found) const;
1687
1688 protected:
1689 // Set up.
1690 virtual void
1691 do_setup();
1692
1693 // Read the symbols.
1694 void
1695 do_read_symbols(Read_symbols_data*);
1696
1697 // Return the number of local symbols.
1698 unsigned int
1699 do_local_symbol_count() const
1700 { return this->local_symbol_count_; }
1701
1702 // Lay out the input sections.
1703 void
1704 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1705
1706 // Layout sections whose layout was deferred while waiting for
1707 // input files from a plugin.
1708 void
1709 do_layout_deferred_sections(Layout*);
1710
1711 // Add the symbols to the symbol table.
1712 void
1713 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1714
1715 Archive::Should_include
1716 do_should_include_member(Symbol_table* symtab, Layout*, Read_symbols_data*,
1717 std::string* why);
1718
1719 // Read the relocs.
1720 void
1721 do_read_relocs(Read_relocs_data*);
1722
1723 // Process the relocs to find list of referenced sections. Used only
1724 // during garbage collection.
1725 void
1726 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1727
1728 // Scan the relocs and adjust the symbol table.
1729 void
1730 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1731
1732 // Count the local symbols.
1733 void
1734 do_count_local_symbols(Stringpool_template<char>*,
1735 Stringpool_template<char>*);
1736
1737 // Finalize the local symbols.
1738 unsigned int
1739 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);
1740
1741 // Set the offset where local dynamic symbol information will be stored.
1742 unsigned int
1743 do_set_local_dynsym_indexes(unsigned int);
1744
1745 // Set the offset where local dynamic symbol information will be stored.
1746 unsigned int
1747 do_set_local_dynsym_offset(off_t);
1748
1749 // Relocate the input sections and write out the local symbols.
1750 void
1751 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of);
1752
1753 // Get the size of a section.
1754 uint64_t
1755 do_section_size(unsigned int shndx)
1756 { return this->elf_file_.section_size(shndx); }
1757
1758 // Get the name of a section.
1759 std::string
1760 do_section_name(unsigned int shndx)
1761 { return this->elf_file_.section_name(shndx); }
1762
1763 // Return the location of the contents of a section.
1764 Object::Location
1765 do_section_contents(unsigned int shndx)
1766 { return this->elf_file_.section_contents(shndx); }
1767
1768 // Return section flags.
1769 uint64_t
1770 do_section_flags(unsigned int shndx);
1771
1772 // Return section entsize.
1773 uint64_t
1774 do_section_entsize(unsigned int shndx);
1775
1776 // Return section address.
1777 uint64_t
1778 do_section_address(unsigned int shndx)
1779 { return this->elf_file_.section_addr(shndx); }
1780
1781 // Return section type.
1782 unsigned int
1783 do_section_type(unsigned int shndx)
1784 { return this->elf_file_.section_type(shndx); }
1785
1786 // Return the section link field.
1787 unsigned int
1788 do_section_link(unsigned int shndx)
1789 { return this->elf_file_.section_link(shndx); }
1790
1791 // Return the section info field.
1792 unsigned int
1793 do_section_info(unsigned int shndx)
1794 { return this->elf_file_.section_info(shndx); }
1795
1796 // Return the section alignment.
1797 uint64_t
1798 do_section_addralign(unsigned int shndx)
1799 { return this->elf_file_.section_addralign(shndx); }
1800
1801 // Return the Xindex structure to use.
1802 Xindex*
1803 do_initialize_xindex();
1804
1805 // Get symbol counts.
1806 void
1807 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1808
1809 // Get the global symbols.
1810 const Symbols*
1811 do_get_global_symbols() const
1812 { return &this->symbols_; }
1813
1814 // Get the offset of a section.
1815 uint64_t
1816 do_output_section_offset(unsigned int shndx) const
1817 {
1818 Address off = this->get_output_section_offset(shndx);
1819 if (off == invalid_address)
1820 return -1ULL;
1821 return off;
1822 }
1823
1824 // Set the offset of a section.
1825 void
1826 do_set_section_offset(unsigned int shndx, uint64_t off)
1827 {
1828 gold_assert(shndx < this->section_offsets_.size());
1829 this->section_offsets_[shndx] =
1830 (off == static_cast<uint64_t>(-1)
1831 ? invalid_address
1832 : convert_types<Address, uint64_t>(off));
1833 }
1834
1835 // Adjust a section index if necessary.
1836 unsigned int
1837 adjust_shndx(unsigned int shndx)
1838 {
1839 if (shndx >= elfcpp::SHN_LORESERVE)
1840 shndx += this->elf_file_.large_shndx_offset();
1841 return shndx;
1842 }
1843
1844 // Initialize input to output maps for section symbols in merged
1845 // sections.
1846 void
1847 initialize_input_to_output_maps();
1848
1849 // Free the input to output maps for section symbols in merged
1850 // sections.
1851 void
1852 free_input_to_output_maps();
1853
1854 // Return symbol table section index.
1855 unsigned int
1856 symtab_shndx() const
1857 { return this->symtab_shndx_; }
1858
1859 // Allow a child class to access the ELF file.
1860 elfcpp::Elf_file<size, big_endian, Object>*
1861 elf_file()
1862 { return &this->elf_file_; }
1863
1864 // Allow a child class to access the local values.
1865 Local_values*
1866 local_values()
1867 { return &this->local_values_; }
1868
1869 // Views and sizes when relocating.
1870 struct View_size
1871 {
1872 unsigned char* view;
1873 typename elfcpp::Elf_types<size>::Elf_Addr address;
1874 off_t offset;
1875 section_size_type view_size;
1876 bool is_input_output_view;
1877 bool is_postprocessing_view;
1878 };
1879
1880 typedef std::vector<View_size> Views;
1881
1882 // This may be overriden by a child class.
1883 virtual void
1884 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1885 const unsigned char* pshdrs, Output_file* of,
1886 Views* pviews);
1887
1888 // Allow a child to set output local symbol count.
1889 void
1890 set_output_local_symbol_count(unsigned int value)
1891 { this->output_local_symbol_count_ = value; }
1892
1893 // Return TRUE if the section is a compressed debug section, and set
1894 // *UNCOMPRESSED_SIZE to the size of the uncompressed data.
1895 bool
1896 do_section_is_compressed(unsigned int shndx,
1897 section_size_type* uncompressed_size) const
1898 {
1899 if (this->compressed_sections_ == NULL)
1900 return false;
1901 Compressed_section_map::const_iterator p =
1902 this->compressed_sections_->find(shndx);
1903 if (p != this->compressed_sections_->end())
1904 {
1905 if (uncompressed_size != NULL)
1906 *uncompressed_size = p->second;
1907 return true;
1908 }
1909 return false;
1910 }
1911
1912 private:
1913 // For convenience.
1914 typedef Sized_relobj<size, big_endian> This;
1915 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1916 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1917 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1918 typedef elfcpp::Shdr<size, big_endian> Shdr;
1919
1920 // To keep track of discarded comdat sections, we need to map a member
1921 // section index to the object and section index of the corresponding
1922 // kept section.
1923 struct Kept_comdat_section
1924 {
1925 Kept_comdat_section(Relobj* a_object, unsigned int a_shndx)
1926 : object(a_object), shndx(a_shndx)
1927 { }
1928 Relobj* object;
1929 unsigned int shndx;
1930 };
1931 typedef std::map<unsigned int, Kept_comdat_section>
1932 Kept_comdat_section_table;
1933
1934 // Find the SHT_SYMTAB section, given the section headers.
1935 void
1936 find_symtab(const unsigned char* pshdrs);
1937
1938 // Return whether SHDR has the right flags for a GNU style exception
1939 // frame section.
1940 bool
1941 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1942
1943 // Return whether there is a section named .eh_frame which might be
1944 // a GNU style exception frame section.
1945 bool
1946 find_eh_frame(const unsigned char* pshdrs, const char* names,
1947 section_size_type names_size) const;
1948
1949 // Whether to include a section group in the link.
1950 bool
1951 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1952 const unsigned char*, const char *, section_size_type,
1953 std::vector<bool>*);
1954
1955 // Whether to include a linkonce section in the link.
1956 bool
1957 include_linkonce_section(Layout*, unsigned int, const char*,
1958 const elfcpp::Shdr<size, big_endian>&);
1959
1960 // Layout an input section.
1961 void
1962 layout_section(Layout* layout, unsigned int shndx, const char* name,
1963 typename This::Shdr& shdr, unsigned int reloc_shndx,
1964 unsigned int reloc_type);
1965
1966 // Write section data to the output file. Record the views and
1967 // sizes in VIEWS for use when relocating.
1968 void
1969 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1970
1971 // Relocate the sections in the output file.
1972 void
1973 relocate_sections(const Symbol_table* symtab, const Layout* layout,
1974 const unsigned char* pshdrs, Output_file* of,
1975 Views* pviews)
1976 { this->do_relocate_sections(symtab, layout, pshdrs, of, pviews); }
1977
1978 // Scan the input relocations for --emit-relocs.
1979 void
1980 emit_relocs_scan(Symbol_table*, Layout*, const unsigned char* plocal_syms,
1981 const Read_relocs_data::Relocs_list::iterator&);
1982
1983 // Scan the input relocations for --emit-relocs, templatized on the
1984 // type of the relocation section.
1985 template<int sh_type>
1986 void
1987 emit_relocs_scan_reltype(Symbol_table*, Layout*,
1988 const unsigned char* plocal_syms,
1989 const Read_relocs_data::Relocs_list::iterator&,
1990 Relocatable_relocs*);
1991
1992 // Emit the relocs for --emit-relocs.
1993 void
1994 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1995 unsigned int sh_type, const unsigned char* prelocs,
1996 size_t reloc_count, Output_section*, Address output_offset,
1997 unsigned char* view, Address address,
1998 section_size_type view_size,
1999 unsigned char* reloc_view, section_size_type reloc_view_size);
2000
2001 // Emit the relocs for --emit-relocs, templatized on the type of the
2002 // relocation section.
2003 template<int sh_type>
2004 void
2005 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
2006 const unsigned char* prelocs, size_t reloc_count,
2007 Output_section*, Address output_offset,
2008 unsigned char* view, Address address,
2009 section_size_type view_size,
2010 unsigned char* reloc_view,
2011 section_size_type reloc_view_size);
2012
2013 // Scan the input relocations for --incremental.
2014 void
2015 incremental_relocs_scan(const Read_relocs_data::Relocs_list::iterator&);
2016
2017 // Scan the input relocations for --incremental, templatized on the
2018 // type of the relocation section.
2019 template<int sh_type>
2020 void
2021 incremental_relocs_scan_reltype(
2022 const Read_relocs_data::Relocs_list::iterator&);
2023
2024 void
2025 incremental_relocs_write(const Relocate_info<size, big_endian>*,
2026 unsigned int sh_type,
2027 const unsigned char* prelocs,
2028 size_t reloc_count,
2029 Output_section*,
2030 Address output_offset,
2031 Output_file*);
2032
2033 template<int sh_type>
2034 void
2035 incremental_relocs_write_reltype(const Relocate_info<size, big_endian>*,
2036 const unsigned char* prelocs,
2037 size_t reloc_count,
2038 Output_section*,
2039 Address output_offset,
2040 Output_file*);
2041
2042 // A type shared by split_stack_adjust_reltype and find_functions.
2043 typedef std::map<section_offset_type, section_size_type> Function_offsets;
2044
2045 // Check for -fsplit-stack routines calling non-split-stack routines.
2046 void
2047 split_stack_adjust(const Symbol_table*, const unsigned char* pshdrs,
2048 unsigned int sh_type, unsigned int shndx,
2049 const unsigned char* prelocs, size_t reloc_count,
2050 unsigned char* view, section_size_type view_size,
2051 Reloc_symbol_changes** reloc_map);
2052
2053 template<int sh_type>
2054 void
2055 split_stack_adjust_reltype(const Symbol_table*, const unsigned char* pshdrs,
2056 unsigned int shndx, const unsigned char* prelocs,
2057 size_t reloc_count, unsigned char* view,
2058 section_size_type view_size,
2059 Reloc_symbol_changes** reloc_map);
2060
2061 // Find all functions in a section.
2062 void
2063 find_functions(const unsigned char* pshdrs, unsigned int shndx,
2064 Function_offsets*);
2065
2066 // Write out the local symbols.
2067 void
2068 write_local_symbols(Output_file*,
2069 const Stringpool_template<char>*,
2070 const Stringpool_template<char>*,
2071 Output_symtab_xindex*,
2072 Output_symtab_xindex*);
2073
2074 // Clear the local symbol information.
2075 void
2076 clear_local_symbols()
2077 {
2078 this->local_values_.clear();
2079 this->local_got_offsets_.clear();
2080 }
2081
2082 // Record a mapping from discarded section SHNDX to the corresponding
2083 // kept section.
2084 void
2085 set_kept_comdat_section(unsigned int shndx, Relobj* kept_object,
2086 unsigned int kept_shndx)
2087 {
2088 Kept_comdat_section kept(kept_object, kept_shndx);
2089 this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
2090 }
2091
2092 // Find the kept section corresponding to the discarded section
2093 // SHNDX. Return true if found.
2094 bool
2095 get_kept_comdat_section(unsigned int shndx, Relobj** kept_object,
2096 unsigned int* kept_shndx) const
2097 {
2098 typename Kept_comdat_section_table::const_iterator p =
2099 this->kept_comdat_sections_.find(shndx);
2100 if (p == this->kept_comdat_sections_.end())
2101 return false;
2102 *kept_object = p->second.object;
2103 *kept_shndx = p->second.shndx;
2104 return true;
2105 }
2106
2107 // The GOT offsets of local symbols. This map also stores GOT offsets
2108 // for tp-relative offsets for TLS symbols.
2109 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
2110
2111 // The TLS GOT offsets of local symbols. The map stores the offsets
2112 // for either a single GOT entry that holds the module index of a TLS
2113 // symbol, or a pair of GOT entries containing the module index and
2114 // dtv-relative offset.
2115 struct Tls_got_entry
2116 {
2117 Tls_got_entry(int got_offset, bool have_pair)
2118 : got_offset_(got_offset),
2119 have_pair_(have_pair)
2120 { }
2121 int got_offset_;
2122 bool have_pair_;
2123 };
2124 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
2125
2126 // Saved information for sections whose layout was deferred.
2127 struct Deferred_layout
2128 {
2129 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2130 Deferred_layout(unsigned int shndx, const char* name,
2131 const unsigned char* pshdr,
2132 unsigned int reloc_shndx, unsigned int reloc_type)
2133 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
2134 reloc_type_(reloc_type)
2135 {
2136 memcpy(this->shdr_data_, pshdr, shdr_size);
2137 }
2138 unsigned int shndx_;
2139 std::string name_;
2140 unsigned int reloc_shndx_;
2141 unsigned int reloc_type_;
2142 unsigned char shdr_data_[shdr_size];
2143 };
2144
2145 // General access to the ELF file.
2146 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
2147 // Index of SHT_SYMTAB section.
2148 unsigned int symtab_shndx_;
2149 // The number of local symbols.
2150 unsigned int local_symbol_count_;
2151 // The number of local symbols which go into the output file.
2152 unsigned int output_local_symbol_count_;
2153 // The number of local symbols which go into the output file's dynamic
2154 // symbol table.
2155 unsigned int output_local_dynsym_count_;
2156 // The entries in the symbol table for the external symbols.
2157 Symbols symbols_;
2158 // Number of symbols defined in object file itself.
2159 size_t defined_count_;
2160 // File offset for local symbols.
2161 off_t local_symbol_offset_;
2162 // File offset for local dynamic symbols.
2163 off_t local_dynsym_offset_;
2164 // Values of local symbols.
2165 Local_values local_values_;
2166 // GOT offsets for local non-TLS symbols, and tp-relative offsets
2167 // for TLS symbols, indexed by symbol number.
2168 Local_got_offsets local_got_offsets_;
2169 // For each input section, the offset of the input section in its
2170 // output section. This is INVALID_ADDRESS if the input section requires a
2171 // special mapping.
2172 std::vector<Address> section_offsets_;
2173 // Table mapping discarded comdat sections to corresponding kept sections.
2174 Kept_comdat_section_table kept_comdat_sections_;
2175 // Whether this object has a GNU style .eh_frame section.
2176 bool has_eh_frame_;
2177 // If this object has a GNU style .eh_frame section that is discarded in
2178 // output, record the index here. Otherwise it is -1U.
2179 unsigned int discarded_eh_frame_shndx_;
2180 // The list of sections whose layout was deferred.
2181 std::vector<Deferred_layout> deferred_layout_;
2182 // The list of relocation sections whose layout was deferred.
2183 std::vector<Deferred_layout> deferred_layout_relocs_;
2184 // For compressed debug sections, map section index to uncompressed size.
2185 Compressed_section_map* compressed_sections_;
2186 };
2187
2188 // A class to manage the list of all objects.
2189
2190 class Input_objects
2191 {
2192 public:
2193 Input_objects()
2194 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
2195 { }
2196
2197 // The type of the list of input relocateable objects.
2198 typedef std::vector<Relobj*> Relobj_list;
2199 typedef Relobj_list::const_iterator Relobj_iterator;
2200
2201 // The type of the list of input dynamic objects.
2202 typedef std::vector<Dynobj*> Dynobj_list;
2203 typedef Dynobj_list::const_iterator Dynobj_iterator;
2204
2205 // Add an object to the list. Return true if all is well, or false
2206 // if this object should be ignored.
2207 bool
2208 add_object(Object*);
2209
2210 // Start processing an archive.
2211 void
2212 archive_start(Archive*);
2213
2214 // Stop processing an archive.
2215 void
2216 archive_stop(Archive*);
2217
2218 // For each dynamic object, check whether we've seen all of its
2219 // explicit dependencies.
2220 void
2221 check_dynamic_dependencies() const;
2222
2223 // Return whether an object was found in the system library
2224 // directory.
2225 bool
2226 found_in_system_library_directory(const Object*) const;
2227
2228 // Print symbol counts.
2229 void
2230 print_symbol_counts(const Symbol_table*) const;
2231
2232 // Print a cross reference table.
2233 void
2234 print_cref(const Symbol_table*, FILE*) const;
2235
2236 // Iterate over all regular objects.
2237
2238 Relobj_iterator
2239 relobj_begin() const
2240 { return this->relobj_list_.begin(); }
2241
2242 Relobj_iterator
2243 relobj_end() const
2244 { return this->relobj_list_.end(); }
2245
2246 // Iterate over all dynamic objects.
2247
2248 Dynobj_iterator
2249 dynobj_begin() const
2250 { return this->dynobj_list_.begin(); }
2251
2252 Dynobj_iterator
2253 dynobj_end() const
2254 { return this->dynobj_list_.end(); }
2255
2256 // Return whether we have seen any dynamic objects.
2257 bool
2258 any_dynamic() const
2259 { return !this->dynobj_list_.empty(); }
2260
2261 // Return the number of non dynamic objects.
2262 int
2263 number_of_relobjs() const
2264 { return this->relobj_list_.size(); }
2265
2266 // Return the number of input objects.
2267 int
2268 number_of_input_objects() const
2269 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
2270
2271 private:
2272 Input_objects(const Input_objects&);
2273 Input_objects& operator=(const Input_objects&);
2274
2275 // The list of ordinary objects included in the link.
2276 Relobj_list relobj_list_;
2277 // The list of dynamic objects included in the link.
2278 Dynobj_list dynobj_list_;
2279 // SONAMEs that we have seen.
2280 Unordered_set<std::string> sonames_;
2281 // Manage cross-references if requested.
2282 Cref* cref_;
2283 };
2284
2285 // Some of the information we pass to the relocation routines. We
2286 // group this together to avoid passing a dozen different arguments.
2287
2288 template<int size, bool big_endian>
2289 struct Relocate_info
2290 {
2291 // Symbol table.
2292 const Symbol_table* symtab;
2293 // Layout.
2294 const Layout* layout;
2295 // Object being relocated.
2296 Sized_relobj<size, big_endian>* object;
2297 // Section index of relocation section.
2298 unsigned int reloc_shndx;
2299 // Section header of relocation section.
2300 const unsigned char* reloc_shdr;
2301 // Section index of section being relocated.
2302 unsigned int data_shndx;
2303 // Section header of data section.
2304 const unsigned char* data_shdr;
2305
2306 // Return a string showing the location of a relocation. This is
2307 // only used for error messages.
2308 std::string
2309 location(size_t relnum, off_t reloffset) const;
2310 };
2311
2312 // This is used to represent a section in an object and is used as the
2313 // key type for various section maps.
2314 typedef std::pair<Object*, unsigned int> Section_id;
2315
2316 // This is similar to Section_id but is used when the section
2317 // pointers are const.
2318 typedef std::pair<const Object*, unsigned int> Const_section_id;
2319
2320 // The hash value is based on the address of an object in memory during
2321 // linking. It is okay to use this for looking up sections but never use
2322 // this in an unordered container that we want to traverse in a repeatable
2323 // manner.
2324
2325 struct Section_id_hash
2326 {
2327 size_t operator()(const Section_id& loc) const
2328 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2329 };
2330
2331 struct Const_section_id_hash
2332 {
2333 size_t operator()(const Const_section_id& loc) const
2334 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2335 };
2336
2337 // Return whether INPUT_FILE contains an ELF object start at file
2338 // offset OFFSET. This sets *START to point to a view of the start of
2339 // the file. It sets *READ_SIZE to the number of bytes in the view.
2340
2341 extern bool
2342 is_elf_object(Input_file* input_file, off_t offset,
2343 const unsigned char** start, int *read_size);
2344
2345 // Return an Object appropriate for the input file. P is BYTES long,
2346 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
2347 // this sees an object the linker is not configured to support, it
2348 // sets *PUNCONFIGURED to true and returns NULL without giving an
2349 // error message.
2350
2351 extern Object*
2352 make_elf_object(const std::string& name, Input_file*,
2353 off_t offset, const unsigned char* p,
2354 section_offset_type bytes, bool* punconfigured);
2355
2356 } // end namespace gold
2357
2358 #endif // !defined(GOLD_OBJECT_H)
This page took 0.075707 seconds and 5 git commands to generate.