2010-01-20 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Task;
39 class Cref;
40 class Archive;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 // Section headers.
59 File_view* section_headers;
60 // Section names.
61 File_view* section_names;
62 // Size of section name data in bytes.
63 section_size_type section_names_size;
64 // Symbol data.
65 File_view* symbols;
66 // Size of symbol data in bytes.
67 section_size_type symbols_size;
68 // Offset of external symbols within symbol data. This structure
69 // sometimes contains only external symbols, in which case this will
70 // be zero. Sometimes it contains all symbols.
71 section_offset_type external_symbols_offset;
72 // Symbol names.
73 File_view* symbol_names;
74 // Size of symbol name data in bytes.
75 section_size_type symbol_names_size;
76
77 // Version information. This is only used on dynamic objects.
78 // Version symbol data (from SHT_GNU_versym section).
79 File_view* versym;
80 section_size_type versym_size;
81 // Version definition data (from SHT_GNU_verdef section).
82 File_view* verdef;
83 section_size_type verdef_size;
84 unsigned int verdef_info;
85 // Needed version data (from SHT_GNU_verneed section).
86 File_view* verneed;
87 section_size_type verneed_size;
88 unsigned int verneed_info;
89 };
90
91 // Information used to print error messages.
92
93 struct Symbol_location_info
94 {
95 std::string source_file;
96 std::string enclosing_symbol_name;
97 int line_number;
98 };
99
100 // Data about a single relocation section. This is read in
101 // read_relocs and processed in scan_relocs.
102
103 struct Section_relocs
104 {
105 // Index of reloc section.
106 unsigned int reloc_shndx;
107 // Index of section that relocs apply to.
108 unsigned int data_shndx;
109 // Contents of reloc section.
110 File_view* contents;
111 // Reloc section type.
112 unsigned int sh_type;
113 // Number of reloc entries.
114 size_t reloc_count;
115 // Output section.
116 Output_section* output_section;
117 // Whether this section has special handling for offsets.
118 bool needs_special_offset_handling;
119 // Whether the data section is allocated (has the SHF_ALLOC flag set).
120 bool is_data_section_allocated;
121 };
122
123 // Relocations in an object file. This is read in read_relocs and
124 // processed in scan_relocs.
125
126 struct Read_relocs_data
127 {
128 typedef std::vector<Section_relocs> Relocs_list;
129 // The relocations.
130 Relocs_list relocs;
131 // The local symbols.
132 File_view* local_symbols;
133 };
134
135 // The Xindex class manages section indexes for objects with more than
136 // 0xff00 sections.
137
138 class Xindex
139 {
140 public:
141 Xindex(int large_shndx_offset)
142 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
143 { }
144
145 // Initialize the symtab_xindex_ array, given the object and the
146 // section index of the symbol table to use.
147 template<int size, bool big_endian>
148 void
149 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
150
151 // Read in the symtab_xindex_ array, given its section index.
152 // PSHDRS may optionally point to the section headers.
153 template<int size, bool big_endian>
154 void
155 read_symtab_xindex(Object*, unsigned int xindex_shndx,
156 const unsigned char* pshdrs);
157
158 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
159 // real section index.
160 unsigned int
161 sym_xindex_to_shndx(Object* object, unsigned int symndx);
162
163 private:
164 // The type of the array giving the real section index for symbols
165 // whose st_shndx field holds SHN_XINDEX.
166 typedef std::vector<unsigned int> Symtab_xindex;
167
168 // Adjust a section index if necessary. This should only be called
169 // for ordinary section indexes.
170 unsigned int
171 adjust_shndx(unsigned int shndx)
172 {
173 if (shndx >= elfcpp::SHN_LORESERVE)
174 shndx += this->large_shndx_offset_;
175 return shndx;
176 }
177
178 // Adjust to apply to large section indexes.
179 int large_shndx_offset_;
180 // The data from the SHT_SYMTAB_SHNDX section.
181 Symtab_xindex symtab_xindex_;
182 };
183
184 // Object is an abstract base class which represents either a 32-bit
185 // or a 64-bit input object. This can be a regular object file
186 // (ET_REL) or a shared object (ET_DYN).
187
188 class Object
189 {
190 public:
191 typedef std::vector<Symbol*> Symbols;
192
193 // NAME is the name of the object as we would report it to the user
194 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
195 // used to read the file. OFFSET is the offset within the input
196 // file--0 for a .o or .so file, something else for a .a file.
197 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
198 off_t offset = 0)
199 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
200 is_dynamic_(is_dynamic), is_needed_(false), uses_split_stack_(false),
201 has_no_split_stack_(false), no_export_(false), xindex_(NULL)
202 { input_file->file().add_object(); }
203
204 virtual ~Object()
205 { this->input_file_->file().remove_object(); }
206
207 // Return the name of the object as we would report it to the tuser.
208 const std::string&
209 name() const
210 { return this->name_; }
211
212 // Get the offset into the file.
213 off_t
214 offset() const
215 { return this->offset_; }
216
217 // Return whether this is a dynamic object.
218 bool
219 is_dynamic() const
220 { return this->is_dynamic_; }
221
222 // Return whether this object is needed--true if it is a dynamic
223 // object which defines some symbol referenced by a regular object.
224 // We keep the flag here rather than in Dynobj for convenience when
225 // setting it.
226 bool
227 is_needed() const
228 { return this->is_needed_; }
229
230 // Record that this object is needed.
231 void
232 set_is_needed()
233 { this->is_needed_ = true; }
234
235 // Return whether this object was compiled with -fsplit-stack.
236 bool
237 uses_split_stack() const
238 { return this->uses_split_stack_; }
239
240 // Return whether this object contains any functions compiled with
241 // the no_split_stack attribute.
242 bool
243 has_no_split_stack() const
244 { return this->has_no_split_stack_; }
245
246 // Returns NULL for Objects that are not plugin objects. This method
247 // is overridden in the Pluginobj class.
248 Pluginobj*
249 pluginobj()
250 { return this->do_pluginobj(); }
251
252 // Get the file. We pass on const-ness.
253 Input_file*
254 input_file()
255 { return this->input_file_; }
256
257 const Input_file*
258 input_file() const
259 { return this->input_file_; }
260
261 // Lock the underlying file.
262 void
263 lock(const Task* t)
264 { this->input_file()->file().lock(t); }
265
266 // Unlock the underlying file.
267 void
268 unlock(const Task* t)
269 { this->input_file()->file().unlock(t); }
270
271 // Return whether the underlying file is locked.
272 bool
273 is_locked() const
274 { return this->input_file()->file().is_locked(); }
275
276 // Return the token, so that the task can be queued.
277 Task_token*
278 token()
279 { return this->input_file()->file().token(); }
280
281 // Release the underlying file.
282 void
283 release()
284 { this->input_file_->file().release(); }
285
286 // Return whether we should just read symbols from this file.
287 bool
288 just_symbols() const
289 { return this->input_file()->just_symbols(); }
290
291 // Get the number of sections.
292 unsigned int
293 shnum() const
294 { return this->shnum_; }
295
296 // Return a view of the contents of a section. Set *PLEN to the
297 // size. CACHE is a hint as in File_read::get_view.
298 const unsigned char*
299 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
300
301 // Adjust a symbol's section index as needed. SYMNDX is the index
302 // of the symbol and SHNDX is the symbol's section from
303 // get_st_shndx. This returns the section index. It sets
304 // *IS_ORDINARY to indicate whether this is a normal section index,
305 // rather than a special code between SHN_LORESERVE and
306 // SHN_HIRESERVE.
307 unsigned int
308 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
309 {
310 if (shndx < elfcpp::SHN_LORESERVE)
311 *is_ordinary = true;
312 else if (shndx == elfcpp::SHN_XINDEX)
313 {
314 if (this->xindex_ == NULL)
315 this->xindex_ = this->do_initialize_xindex();
316 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
317 *is_ordinary = true;
318 }
319 else
320 *is_ordinary = false;
321 return shndx;
322 }
323
324 // Return the size of a section given a section index.
325 uint64_t
326 section_size(unsigned int shndx)
327 { return this->do_section_size(shndx); }
328
329 // Return the name of a section given a section index.
330 std::string
331 section_name(unsigned int shndx)
332 { return this->do_section_name(shndx); }
333
334 // Return the section flags given a section index.
335 uint64_t
336 section_flags(unsigned int shndx)
337 { return this->do_section_flags(shndx); }
338
339 // Return the section entsize given a section index.
340 uint64_t
341 section_entsize(unsigned int shndx)
342 { return this->do_section_entsize(shndx); }
343
344 // Return the section address given a section index.
345 uint64_t
346 section_address(unsigned int shndx)
347 { return this->do_section_address(shndx); }
348
349 // Return the section type given a section index.
350 unsigned int
351 section_type(unsigned int shndx)
352 { return this->do_section_type(shndx); }
353
354 // Return the section link field given a section index.
355 unsigned int
356 section_link(unsigned int shndx)
357 { return this->do_section_link(shndx); }
358
359 // Return the section info field given a section index.
360 unsigned int
361 section_info(unsigned int shndx)
362 { return this->do_section_info(shndx); }
363
364 // Return the required section alignment given a section index.
365 uint64_t
366 section_addralign(unsigned int shndx)
367 { return this->do_section_addralign(shndx); }
368
369 // Read the symbol information.
370 void
371 read_symbols(Read_symbols_data* sd)
372 { return this->do_read_symbols(sd); }
373
374 // Pass sections which should be included in the link to the Layout
375 // object, and record where the sections go in the output file.
376 void
377 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
378 { this->do_layout(symtab, layout, sd); }
379
380 // Add symbol information to the global symbol table.
381 void
382 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
383 { this->do_add_symbols(symtab, sd, layout); }
384
385 // Functions and types for the elfcpp::Elf_file interface. This
386 // permit us to use Object as the File template parameter for
387 // elfcpp::Elf_file.
388
389 // The View class is returned by view. It must support a single
390 // method, data(). This is trivial, because get_view does what we
391 // need.
392 class View
393 {
394 public:
395 View(const unsigned char* p)
396 : p_(p)
397 { }
398
399 const unsigned char*
400 data() const
401 { return this->p_; }
402
403 private:
404 const unsigned char* p_;
405 };
406
407 // Return a View.
408 View
409 view(off_t file_offset, section_size_type data_size)
410 { return View(this->get_view(file_offset, data_size, true, true)); }
411
412 // Report an error.
413 void
414 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
415
416 // A location in the file.
417 struct Location
418 {
419 off_t file_offset;
420 off_t data_size;
421
422 Location(off_t fo, section_size_type ds)
423 : file_offset(fo), data_size(ds)
424 { }
425 };
426
427 // Get a View given a Location.
428 View view(Location loc)
429 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
430
431 // Get a view into the underlying file.
432 const unsigned char*
433 get_view(off_t start, section_size_type size, bool aligned, bool cache)
434 {
435 return this->input_file()->file().get_view(this->offset_, start, size,
436 aligned, cache);
437 }
438
439 // Get a lasting view into the underlying file.
440 File_view*
441 get_lasting_view(off_t start, section_size_type size, bool aligned,
442 bool cache)
443 {
444 return this->input_file()->file().get_lasting_view(this->offset_, start,
445 size, aligned, cache);
446 }
447
448 // Read data from the underlying file.
449 void
450 read(off_t start, section_size_type size, void* p)
451 { this->input_file()->file().read(start + this->offset_, size, p); }
452
453 // Read multiple data from the underlying file.
454 void
455 read_multiple(const File_read::Read_multiple& rm)
456 { this->input_file()->file().read_multiple(this->offset_, rm); }
457
458 // Stop caching views in the underlying file.
459 void
460 clear_view_cache_marks()
461 { this->input_file()->file().clear_view_cache_marks(); }
462
463 // Get the number of global symbols defined by this object, and the
464 // number of the symbols whose final definition came from this
465 // object.
466 void
467 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
468 size_t* used) const
469 { this->do_get_global_symbol_counts(symtab, defined, used); }
470
471 // Get the symbols defined in this object.
472 const Symbols*
473 get_global_symbols() const
474 { return this->do_get_global_symbols(); }
475
476 // Return whether this object was found in a system directory.
477 bool
478 is_in_system_directory() const
479 { return this->input_file()->is_in_system_directory(); }
480
481 // Return whether we found this object by searching a directory.
482 bool
483 searched_for() const
484 { return this->input_file()->will_search_for(); }
485
486 bool
487 no_export() const
488 { return this->no_export_; }
489
490 void
491 set_no_export(bool value)
492 { this->no_export_ = value; }
493
494 protected:
495 // Returns NULL for Objects that are not plugin objects. This method
496 // is overridden in the Pluginobj class.
497 virtual Pluginobj*
498 do_pluginobj()
499 { return NULL; }
500
501 // Read the symbols--implemented by child class.
502 virtual void
503 do_read_symbols(Read_symbols_data*) = 0;
504
505 // Lay out sections--implemented by child class.
506 virtual void
507 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
508
509 // Add symbol information to the global symbol table--implemented by
510 // child class.
511 virtual void
512 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
513
514 // Return the location of the contents of a section. Implemented by
515 // child class.
516 virtual Location
517 do_section_contents(unsigned int shndx) = 0;
518
519 // Get the size of a section--implemented by child class.
520 virtual uint64_t
521 do_section_size(unsigned int shndx) = 0;
522
523 // Get the name of a section--implemented by child class.
524 virtual std::string
525 do_section_name(unsigned int shndx) = 0;
526
527 // Get section flags--implemented by child class.
528 virtual uint64_t
529 do_section_flags(unsigned int shndx) = 0;
530
531 // Get section entsize--implemented by child class.
532 virtual uint64_t
533 do_section_entsize(unsigned int shndx) = 0;
534
535 // Get section address--implemented by child class.
536 virtual uint64_t
537 do_section_address(unsigned int shndx) = 0;
538
539 // Get section type--implemented by child class.
540 virtual unsigned int
541 do_section_type(unsigned int shndx) = 0;
542
543 // Get section link field--implemented by child class.
544 virtual unsigned int
545 do_section_link(unsigned int shndx) = 0;
546
547 // Get section info field--implemented by child class.
548 virtual unsigned int
549 do_section_info(unsigned int shndx) = 0;
550
551 // Get section alignment--implemented by child class.
552 virtual uint64_t
553 do_section_addralign(unsigned int shndx) = 0;
554
555 // Return the Xindex structure to use.
556 virtual Xindex*
557 do_initialize_xindex() = 0;
558
559 // Implement get_global_symbol_counts--implemented by child class.
560 virtual void
561 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
562
563 virtual const Symbols*
564 do_get_global_symbols() const = 0;
565
566 // Set the number of sections.
567 void
568 set_shnum(int shnum)
569 { this->shnum_ = shnum; }
570
571 // Functions used by both Sized_relobj and Sized_dynobj.
572
573 // Read the section data into a Read_symbols_data object.
574 template<int size, bool big_endian>
575 void
576 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
577 Read_symbols_data*);
578
579 // Let the child class initialize the xindex object directly.
580 void
581 set_xindex(Xindex* xindex)
582 {
583 gold_assert(this->xindex_ == NULL);
584 this->xindex_ = xindex;
585 }
586
587 // If NAME is the name of a special .gnu.warning section, arrange
588 // for the warning to be issued. SHNDX is the section index.
589 // Return whether it is a warning section.
590 bool
591 handle_gnu_warning_section(const char* name, unsigned int shndx,
592 Symbol_table*);
593
594 // If NAME is the name of the special section which indicates that
595 // this object was compiled with -fstack-split, mark it accordingly,
596 // and return true. Otherwise return false.
597 bool
598 handle_split_stack_section(const char* name);
599
600 private:
601 // This class may not be copied.
602 Object(const Object&);
603 Object& operator=(const Object&);
604
605 // Name of object as printed to user.
606 std::string name_;
607 // For reading the file.
608 Input_file* input_file_;
609 // Offset within the file--0 for an object file, non-0 for an
610 // archive.
611 off_t offset_;
612 // Number of input sections.
613 unsigned int shnum_;
614 // Whether this is a dynamic object.
615 bool is_dynamic_ : 1;
616 // Whether this object is needed. This is only set for dynamic
617 // objects, and means that the object defined a symbol which was
618 // used by a reference from a regular object.
619 bool is_needed_ : 1;
620 // Whether this object was compiled with -fsplit-stack.
621 bool uses_split_stack_ : 1;
622 // Whether this object contains any functions compiled with the
623 // no_split_stack attribute.
624 bool has_no_split_stack_ : 1;
625 // True if exclude this object from automatic symbol export.
626 // This is used only for archive objects.
627 bool no_export_ : 1;
628 // Many sections for objects with more than SHN_LORESERVE sections.
629 Xindex* xindex_;
630 };
631
632 // A regular object (ET_REL). This is an abstract base class itself.
633 // The implementation is the template class Sized_relobj.
634
635 class Relobj : public Object
636 {
637 public:
638 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
639 : Object(name, input_file, false, offset),
640 output_sections_(),
641 map_to_relocatable_relocs_(NULL),
642 object_merge_map_(NULL),
643 relocs_must_follow_section_writes_(false),
644 sd_(NULL)
645 { }
646
647 // During garbage collection, the Read_symbols_data pass for
648 // each object is stored as layout needs to be done after
649 // reloc processing.
650 Symbols_data*
651 get_symbols_data()
652 { return this->sd_; }
653
654 // Decides which section names have to be included in the worklist
655 // as roots.
656 bool
657 is_section_name_included(const char *name);
658
659 void
660 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
661 unsigned int section_header_size);
662
663 void
664 set_symbols_data(Symbols_data* sd)
665 { this->sd_ = sd; }
666
667 // During garbage collection, the Read_relocs pass for all objects
668 // is done before scanning the relocs. In that case, this->rd_ is
669 // used to store the information from Read_relocs for each object.
670 // This data is also used to compute the list of relevant sections.
671 Read_relocs_data*
672 get_relocs_data()
673 { return this->rd_; }
674
675 void
676 set_relocs_data(Read_relocs_data* rd)
677 { this->rd_ = rd; }
678
679 virtual bool
680 is_output_section_offset_invalid(unsigned int shndx) const = 0;
681
682 // Read the relocs.
683 void
684 read_relocs(Read_relocs_data* rd)
685 { return this->do_read_relocs(rd); }
686
687 // Process the relocs, during garbage collection only.
688 void
689 gc_process_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
690 { return this->do_gc_process_relocs(symtab, layout, rd); }
691
692 // Scan the relocs and adjust the symbol table.
693 void
694 scan_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
695 { return this->do_scan_relocs(symtab, layout, rd); }
696
697 // The number of local symbols in the input symbol table.
698 virtual unsigned int
699 local_symbol_count() const
700 { return this->do_local_symbol_count(); }
701
702 // Initial local symbol processing: count the number of local symbols
703 // in the output symbol table and dynamic symbol table; add local symbol
704 // names to *POOL and *DYNPOOL.
705 void
706 count_local_symbols(Stringpool_template<char>* pool,
707 Stringpool_template<char>* dynpool)
708 { return this->do_count_local_symbols(pool, dynpool); }
709
710 // Set the values of the local symbols, set the output symbol table
711 // indexes for the local variables, and set the offset where local
712 // symbol information will be stored. Returns the new local symbol index.
713 unsigned int
714 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
715 { return this->do_finalize_local_symbols(index, off, symtab); }
716
717 // Set the output dynamic symbol table indexes for the local variables.
718 unsigned int
719 set_local_dynsym_indexes(unsigned int index)
720 { return this->do_set_local_dynsym_indexes(index); }
721
722 // Set the offset where local dynamic symbol information will be stored.
723 unsigned int
724 set_local_dynsym_offset(off_t off)
725 { return this->do_set_local_dynsym_offset(off); }
726
727 // Relocate the input sections and write out the local symbols.
728 void
729 relocate(const Symbol_table* symtab, const Layout* layout, Output_file* of)
730 { return this->do_relocate(symtab, layout, of); }
731
732 // Return whether an input section is being included in the link.
733 bool
734 is_section_included(unsigned int shndx) const
735 {
736 gold_assert(shndx < this->output_sections_.size());
737 return this->output_sections_[shndx] != NULL;
738 }
739
740 // Given a section index, return the corresponding Output_section.
741 // The return value will be NULL if the section is not included in
742 // the link.
743 Output_section*
744 output_section(unsigned int shndx) const
745 {
746 gold_assert(shndx < this->output_sections_.size());
747 return this->output_sections_[shndx];
748 }
749
750 // Given a section index, return the offset in the Output_section.
751 // The return value will be -1U if the section is specially mapped,
752 // such as a merge section.
753 uint64_t
754 output_section_offset(unsigned int shndx) const
755 { return this->do_output_section_offset(shndx); }
756
757 // Set the offset of an input section within its output section.
758 void
759 set_section_offset(unsigned int shndx, uint64_t off)
760 { this->do_set_section_offset(shndx, off); }
761
762 // Return true if we need to wait for output sections to be written
763 // before we can apply relocations. This is true if the object has
764 // any relocations for sections which require special handling, such
765 // as the exception frame section.
766 bool
767 relocs_must_follow_section_writes() const
768 { return this->relocs_must_follow_section_writes_; }
769
770 // Return the object merge map.
771 Object_merge_map*
772 merge_map() const
773 { return this->object_merge_map_; }
774
775 // Set the object merge map.
776 void
777 set_merge_map(Object_merge_map* object_merge_map)
778 {
779 gold_assert(this->object_merge_map_ == NULL);
780 this->object_merge_map_ = object_merge_map;
781 }
782
783 // Record the relocatable reloc info for an input reloc section.
784 void
785 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
786 {
787 gold_assert(reloc_shndx < this->shnum());
788 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
789 }
790
791 // Get the relocatable reloc info for an input reloc section.
792 Relocatable_relocs*
793 relocatable_relocs(unsigned int reloc_shndx)
794 {
795 gold_assert(reloc_shndx < this->shnum());
796 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
797 }
798
799 // Layout sections whose layout was deferred while waiting for
800 // input files from a plugin.
801 void
802 layout_deferred_sections(Layout* layout)
803 { this->do_layout_deferred_sections(layout); }
804
805 protected:
806 // The output section to be used for each input section, indexed by
807 // the input section number. The output section is NULL if the
808 // input section is to be discarded.
809 typedef std::vector<Output_section*> Output_sections;
810
811 // Read the relocs--implemented by child class.
812 virtual void
813 do_read_relocs(Read_relocs_data*) = 0;
814
815 // Process the relocs--implemented by child class.
816 virtual void
817 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
818
819 // Scan the relocs--implemented by child class.
820 virtual void
821 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
822
823 // Return the number of local symbols--implemented by child class.
824 virtual unsigned int
825 do_local_symbol_count() const = 0;
826
827 // Count local symbols--implemented by child class.
828 virtual void
829 do_count_local_symbols(Stringpool_template<char>*,
830 Stringpool_template<char>*) = 0;
831
832 // Finalize the local symbols. Set the output symbol table indexes
833 // for the local variables, and set the offset where local symbol
834 // information will be stored.
835 virtual unsigned int
836 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;
837
838 // Set the output dynamic symbol table indexes for the local variables.
839 virtual unsigned int
840 do_set_local_dynsym_indexes(unsigned int) = 0;
841
842 // Set the offset where local dynamic symbol information will be stored.
843 virtual unsigned int
844 do_set_local_dynsym_offset(off_t) = 0;
845
846 // Relocate the input sections and write out the local
847 // symbols--implemented by child class.
848 virtual void
849 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of) = 0;
850
851 // Get the offset of a section--implemented by child class.
852 virtual uint64_t
853 do_output_section_offset(unsigned int shndx) const = 0;
854
855 // Set the offset of a section--implemented by child class.
856 virtual void
857 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
858
859 // Layout sections whose layout was deferred while waiting for
860 // input files from a plugin--implemented by child class.
861 virtual void
862 do_layout_deferred_sections(Layout*) = 0;
863
864 // Return the vector mapping input sections to output sections.
865 Output_sections&
866 output_sections()
867 { return this->output_sections_; }
868
869 const Output_sections&
870 output_sections() const
871 { return this->output_sections_; }
872
873 // Set the size of the relocatable relocs array.
874 void
875 size_relocatable_relocs()
876 {
877 this->map_to_relocatable_relocs_ =
878 new std::vector<Relocatable_relocs*>(this->shnum());
879 }
880
881 // Record that we must wait for the output sections to be written
882 // before applying relocations.
883 void
884 set_relocs_must_follow_section_writes()
885 { this->relocs_must_follow_section_writes_ = true; }
886
887 private:
888 // Mapping from input sections to output section.
889 Output_sections output_sections_;
890 // Mapping from input section index to the information recorded for
891 // the relocations. This is only used for a relocatable link.
892 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
893 // Mappings for merge sections. This is managed by the code in the
894 // Merge_map class.
895 Object_merge_map* object_merge_map_;
896 // Whether we need to wait for output sections to be written before
897 // we can apply relocations.
898 bool relocs_must_follow_section_writes_;
899 // Used to store the relocs data computed by the Read_relocs pass.
900 // Used during garbage collection of unused sections.
901 Read_relocs_data* rd_;
902 // Used to store the symbols data computed by the Read_symbols pass.
903 // Again used during garbage collection when laying out referenced
904 // sections.
905 gold::Symbols_data *sd_;
906 };
907
908 // This class is used to handle relocations against a section symbol
909 // in an SHF_MERGE section. For such a symbol, we need to know the
910 // addend of the relocation before we can determine the final value.
911 // The addend gives us the location in the input section, and we can
912 // determine how it is mapped to the output section. For a
913 // non-section symbol, we apply the addend to the final value of the
914 // symbol; that is done in finalize_local_symbols, and does not use
915 // this class.
916
917 template<int size>
918 class Merged_symbol_value
919 {
920 public:
921 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
922
923 // We use a hash table to map offsets in the input section to output
924 // addresses.
925 typedef Unordered_map<section_offset_type, Value> Output_addresses;
926
927 Merged_symbol_value(Value input_value, Value output_start_address)
928 : input_value_(input_value), output_start_address_(output_start_address),
929 output_addresses_()
930 { }
931
932 // Initialize the hash table.
933 void
934 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
935
936 // Release the hash table to save space.
937 void
938 free_input_to_output_map()
939 { this->output_addresses_.clear(); }
940
941 // Get the output value corresponding to an addend. The object and
942 // input section index are passed in because the caller will have
943 // them; otherwise we could store them here.
944 Value
945 value(const Relobj* object, unsigned int input_shndx, Value addend) const
946 {
947 // This is a relocation against a section symbol. ADDEND is the
948 // offset in the section. The result should be the start of some
949 // merge area. If the object file wants something else, it should
950 // use a regular symbol rather than a section symbol.
951 // Unfortunately, PR 6658 shows a case in which the object file
952 // refers to the section symbol, but uses a negative ADDEND to
953 // compensate for a PC relative reloc. We can't handle the
954 // general case. However, we can handle the special case of a
955 // negative addend, by assuming that it refers to the start of the
956 // section. Of course, that means that we have to guess when
957 // ADDEND is negative. It is normal to see a 32-bit value here
958 // even when the template parameter size is 64, as 64-bit object
959 // file formats have 32-bit relocations. We know this is a merge
960 // section, so we know it has to fit into memory. So we assume
961 // that we won't see a value larger than a large 32-bit unsigned
962 // value. This will break objects with very very large merge
963 // sections; they probably break in other ways anyhow.
964 Value input_offset = this->input_value_;
965 if (addend < 0xffffff00)
966 {
967 input_offset += addend;
968 addend = 0;
969 }
970 typename Output_addresses::const_iterator p =
971 this->output_addresses_.find(input_offset);
972 if (p != this->output_addresses_.end())
973 return p->second + addend;
974
975 return (this->value_from_output_section(object, input_shndx, input_offset)
976 + addend);
977 }
978
979 private:
980 // Get the output value for an input offset if we couldn't find it
981 // in the hash table.
982 Value
983 value_from_output_section(const Relobj*, unsigned int input_shndx,
984 Value input_offset) const;
985
986 // The value of the section symbol in the input file. This is
987 // normally zero, but could in principle be something else.
988 Value input_value_;
989 // The start address of this merged section in the output file.
990 Value output_start_address_;
991 // A hash table which maps offsets in the input section to output
992 // addresses. This only maps specific offsets, not all offsets.
993 Output_addresses output_addresses_;
994 };
995
996 // This POD class is holds the value of a symbol. This is used for
997 // local symbols, and for all symbols during relocation processing.
998 // For special sections, such as SHF_MERGE sections, this calls a
999 // function to get the final symbol value.
1000
1001 template<int size>
1002 class Symbol_value
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
1006
1007 Symbol_value()
1008 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
1009 is_ordinary_shndx_(false), is_section_symbol_(false),
1010 is_tls_symbol_(false), has_output_value_(true)
1011 { this->u_.value = 0; }
1012
1013 // Get the value of this symbol. OBJECT is the object in which this
1014 // symbol is defined, and ADDEND is an addend to add to the value.
1015 template<bool big_endian>
1016 Value
1017 value(const Sized_relobj<size, big_endian>* object, Value addend) const
1018 {
1019 if (this->has_output_value_)
1020 return this->u_.value + addend;
1021 else
1022 {
1023 gold_assert(this->is_ordinary_shndx_);
1024 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
1025 addend);
1026 }
1027 }
1028
1029 // Set the value of this symbol in the output symbol table.
1030 void
1031 set_output_value(Value value)
1032 { this->u_.value = value; }
1033
1034 // For a section symbol in a merged section, we need more
1035 // information.
1036 void
1037 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1038 {
1039 gold_assert(this->is_section_symbol_);
1040 this->has_output_value_ = false;
1041 this->u_.merged_symbol_value = msv;
1042 }
1043
1044 // Initialize the input to output map for a section symbol in a
1045 // merged section. We also initialize the value of a non-section
1046 // symbol in a merged section.
1047 void
1048 initialize_input_to_output_map(const Relobj* object)
1049 {
1050 if (!this->has_output_value_)
1051 {
1052 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1053 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1054 msv->initialize_input_to_output_map(object, this->input_shndx_);
1055 }
1056 }
1057
1058 // Free the input to output map for a section symbol in a merged
1059 // section.
1060 void
1061 free_input_to_output_map()
1062 {
1063 if (!this->has_output_value_)
1064 this->u_.merged_symbol_value->free_input_to_output_map();
1065 }
1066
1067 // Set the value of the symbol from the input file. This is only
1068 // called by count_local_symbols, to communicate the value to
1069 // finalize_local_symbols.
1070 void
1071 set_input_value(Value value)
1072 { this->u_.value = value; }
1073
1074 // Return the input value. This is only called by
1075 // finalize_local_symbols and (in special cases) relocate_section.
1076 Value
1077 input_value() const
1078 { return this->u_.value; }
1079
1080 // Return whether this symbol should go into the output symbol
1081 // table.
1082 bool
1083 needs_output_symtab_entry() const
1084 { return this->output_symtab_index_ != -1U; }
1085
1086 // Return the index in the output symbol table.
1087 unsigned int
1088 output_symtab_index() const
1089 {
1090 gold_assert(this->output_symtab_index_ != 0);
1091 return this->output_symtab_index_;
1092 }
1093
1094 // Set the index in the output symbol table.
1095 void
1096 set_output_symtab_index(unsigned int i)
1097 {
1098 gold_assert(this->output_symtab_index_ == 0);
1099 this->output_symtab_index_ = i;
1100 }
1101
1102 // Record that this symbol should not go into the output symbol
1103 // table.
1104 void
1105 set_no_output_symtab_entry()
1106 {
1107 gold_assert(this->output_symtab_index_ == 0);
1108 this->output_symtab_index_ = -1U;
1109 }
1110
1111 // Set the index in the output dynamic symbol table.
1112 void
1113 set_needs_output_dynsym_entry()
1114 {
1115 gold_assert(!this->is_section_symbol());
1116 this->output_dynsym_index_ = 0;
1117 }
1118
1119 // Return whether this symbol should go into the output symbol
1120 // table.
1121 bool
1122 needs_output_dynsym_entry() const
1123 {
1124 return this->output_dynsym_index_ != -1U;
1125 }
1126
1127 // Record that this symbol should go into the dynamic symbol table.
1128 void
1129 set_output_dynsym_index(unsigned int i)
1130 {
1131 gold_assert(this->output_dynsym_index_ == 0);
1132 this->output_dynsym_index_ = i;
1133 }
1134
1135 // Return the index in the output dynamic symbol table.
1136 unsigned int
1137 output_dynsym_index() const
1138 {
1139 gold_assert(this->output_dynsym_index_ != 0
1140 && this->output_dynsym_index_ != -1U);
1141 return this->output_dynsym_index_;
1142 }
1143
1144 // Set the index of the input section in the input file.
1145 void
1146 set_input_shndx(unsigned int i, bool is_ordinary)
1147 {
1148 this->input_shndx_ = i;
1149 // input_shndx_ field is a bitfield, so make sure that the value
1150 // fits.
1151 gold_assert(this->input_shndx_ == i);
1152 this->is_ordinary_shndx_ = is_ordinary;
1153 }
1154
1155 // Return the index of the input section in the input file.
1156 unsigned int
1157 input_shndx(bool* is_ordinary) const
1158 {
1159 *is_ordinary = this->is_ordinary_shndx_;
1160 return this->input_shndx_;
1161 }
1162
1163 // Whether this is a section symbol.
1164 bool
1165 is_section_symbol() const
1166 { return this->is_section_symbol_; }
1167
1168 // Record that this is a section symbol.
1169 void
1170 set_is_section_symbol()
1171 {
1172 gold_assert(!this->needs_output_dynsym_entry());
1173 this->is_section_symbol_ = true;
1174 }
1175
1176 // Record that this is a TLS symbol.
1177 void
1178 set_is_tls_symbol()
1179 { this->is_tls_symbol_ = true; }
1180
1181 // Return TRUE if this is a TLS symbol.
1182 bool
1183 is_tls_symbol() const
1184 { return this->is_tls_symbol_; }
1185
1186 private:
1187 // The index of this local symbol in the output symbol table. This
1188 // will be -1 if the symbol should not go into the symbol table.
1189 unsigned int output_symtab_index_;
1190 // The index of this local symbol in the dynamic symbol table. This
1191 // will be -1 if the symbol should not go into the symbol table.
1192 unsigned int output_dynsym_index_;
1193 // The section index in the input file in which this symbol is
1194 // defined.
1195 unsigned int input_shndx_ : 28;
1196 // Whether the section index is an ordinary index, not a special
1197 // value.
1198 bool is_ordinary_shndx_ : 1;
1199 // Whether this is a STT_SECTION symbol.
1200 bool is_section_symbol_ : 1;
1201 // Whether this is a STT_TLS symbol.
1202 bool is_tls_symbol_ : 1;
1203 // Whether this symbol has a value for the output file. This is
1204 // normally set to true during Layout::finalize, by
1205 // finalize_local_symbols. It will be false for a section symbol in
1206 // a merge section, as for such symbols we can not determine the
1207 // value to use in a relocation until we see the addend.
1208 bool has_output_value_ : 1;
1209 union
1210 {
1211 // This is used if has_output_value_ is true. Between
1212 // count_local_symbols and finalize_local_symbols, this is the
1213 // value in the input file. After finalize_local_symbols, it is
1214 // the value in the output file.
1215 Value value;
1216 // This is used if has_output_value_ is false. It points to the
1217 // information we need to get the value for a merge section.
1218 Merged_symbol_value<size>* merged_symbol_value;
1219 } u_;
1220 };
1221
1222 // A GOT offset list. A symbol may have more than one GOT offset
1223 // (e.g., when mixing modules compiled with two different TLS models),
1224 // but will usually have at most one. GOT_TYPE identifies the type of
1225 // GOT entry; its values are specific to each target.
1226
1227 class Got_offset_list
1228 {
1229 public:
1230 Got_offset_list()
1231 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1232 { }
1233
1234 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1235 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1236 { }
1237
1238 ~Got_offset_list()
1239 {
1240 if (this->got_next_ != NULL)
1241 {
1242 delete this->got_next_;
1243 this->got_next_ = NULL;
1244 }
1245 }
1246
1247 // Initialize the fields to their default values.
1248 void
1249 init()
1250 {
1251 this->got_type_ = -1U;
1252 this->got_offset_ = 0;
1253 this->got_next_ = NULL;
1254 }
1255
1256 // Set the offset for the GOT entry of type GOT_TYPE.
1257 void
1258 set_offset(unsigned int got_type, unsigned int got_offset)
1259 {
1260 if (this->got_type_ == -1U)
1261 {
1262 this->got_type_ = got_type;
1263 this->got_offset_ = got_offset;
1264 }
1265 else
1266 {
1267 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1268 {
1269 if (g->got_type_ == got_type)
1270 {
1271 g->got_offset_ = got_offset;
1272 return;
1273 }
1274 }
1275 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1276 g->got_next_ = this->got_next_;
1277 this->got_next_ = g;
1278 }
1279 }
1280
1281 // Return the offset for a GOT entry of type GOT_TYPE.
1282 unsigned int
1283 get_offset(unsigned int got_type) const
1284 {
1285 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1286 {
1287 if (g->got_type_ == got_type)
1288 return g->got_offset_;
1289 }
1290 return -1U;
1291 }
1292
1293 private:
1294 unsigned int got_type_;
1295 unsigned int got_offset_;
1296 Got_offset_list* got_next_;
1297 };
1298
1299 // This type is used to modify relocations for -fsplit-stack. It is
1300 // indexed by relocation index, and means that the relocation at that
1301 // index should use the symbol from the vector, rather than the one
1302 // indicated by the relocation.
1303
1304 class Reloc_symbol_changes
1305 {
1306 public:
1307 Reloc_symbol_changes(size_t count)
1308 : vec_(count, NULL)
1309 { }
1310
1311 void
1312 set(size_t i, Symbol* sym)
1313 { this->vec_[i] = sym; }
1314
1315 const Symbol*
1316 operator[](size_t i) const
1317 { return this->vec_[i]; }
1318
1319 private:
1320 std::vector<Symbol*> vec_;
1321 };
1322
1323 // A regular object file. This is size and endian specific.
1324
1325 template<int size, bool big_endian>
1326 class Sized_relobj : public Relobj
1327 {
1328 public:
1329 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1330 typedef std::vector<Symbol*> Symbols;
1331 typedef std::vector<Symbol_value<size> > Local_values;
1332
1333 static const Address invalid_address = static_cast<Address>(0) - 1;
1334
1335 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1336 const typename elfcpp::Ehdr<size, big_endian>&);
1337
1338 ~Sized_relobj();
1339
1340 // Checks if the offset of input section SHNDX within its output
1341 // section is invalid.
1342 bool
1343 is_output_section_offset_invalid(unsigned int shndx) const
1344 { return this->get_output_section_offset(shndx) == invalid_address; }
1345
1346 // Set up the object file based on TARGET.
1347 void
1348 setup()
1349 { this->do_setup(); }
1350
1351 // Return the number of symbols. This is only valid after
1352 // Object::add_symbols has been called.
1353 unsigned int
1354 symbol_count() const
1355 { return this->local_symbol_count_ + this->symbols_.size(); }
1356
1357 // If SYM is the index of a global symbol in the object file's
1358 // symbol table, return the Symbol object. Otherwise, return NULL.
1359 Symbol*
1360 global_symbol(unsigned int sym) const
1361 {
1362 if (sym >= this->local_symbol_count_)
1363 {
1364 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1365 return this->symbols_[sym - this->local_symbol_count_];
1366 }
1367 return NULL;
1368 }
1369
1370 // Return the section index of symbol SYM. Set *VALUE to its value
1371 // in the object file. Set *IS_ORDINARY if this is an ordinary
1372 // section index, not a special code between SHN_LORESERVE and
1373 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1374 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1375 // it will not return the final value of the symbol in the link.
1376 unsigned int
1377 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1378
1379 // Return a pointer to the Symbol_value structure which holds the
1380 // value of a local symbol.
1381 const Symbol_value<size>*
1382 local_symbol(unsigned int sym) const
1383 {
1384 gold_assert(sym < this->local_values_.size());
1385 return &this->local_values_[sym];
1386 }
1387
1388 // Return the index of local symbol SYM in the ordinary symbol
1389 // table. A value of -1U means that the symbol is not being output.
1390 unsigned int
1391 symtab_index(unsigned int sym) const
1392 {
1393 gold_assert(sym < this->local_values_.size());
1394 return this->local_values_[sym].output_symtab_index();
1395 }
1396
1397 // Return the index of local symbol SYM in the dynamic symbol
1398 // table. A value of -1U means that the symbol is not being output.
1399 unsigned int
1400 dynsym_index(unsigned int sym) const
1401 {
1402 gold_assert(sym < this->local_values_.size());
1403 return this->local_values_[sym].output_dynsym_index();
1404 }
1405
1406 // Return the input section index of local symbol SYM.
1407 unsigned int
1408 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1409 {
1410 gold_assert(sym < this->local_values_.size());
1411 return this->local_values_[sym].input_shndx(is_ordinary);
1412 }
1413
1414 // Record that local symbol SYM needs a dynamic symbol entry.
1415 void
1416 set_needs_output_dynsym_entry(unsigned int sym)
1417 {
1418 gold_assert(sym < this->local_values_.size());
1419 this->local_values_[sym].set_needs_output_dynsym_entry();
1420 }
1421
1422 // Return whether the local symbol SYMNDX has a GOT offset.
1423 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1424 bool
1425 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1426 {
1427 Local_got_offsets::const_iterator p =
1428 this->local_got_offsets_.find(symndx);
1429 return (p != this->local_got_offsets_.end()
1430 && p->second->get_offset(got_type) != -1U);
1431 }
1432
1433 // Return the GOT offset of the local symbol SYMNDX.
1434 unsigned int
1435 local_got_offset(unsigned int symndx, unsigned int got_type) const
1436 {
1437 Local_got_offsets::const_iterator p =
1438 this->local_got_offsets_.find(symndx);
1439 gold_assert(p != this->local_got_offsets_.end());
1440 unsigned int off = p->second->get_offset(got_type);
1441 gold_assert(off != -1U);
1442 return off;
1443 }
1444
1445 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1446 void
1447 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1448 unsigned int got_offset)
1449 {
1450 Local_got_offsets::const_iterator p =
1451 this->local_got_offsets_.find(symndx);
1452 if (p != this->local_got_offsets_.end())
1453 p->second->set_offset(got_type, got_offset);
1454 else
1455 {
1456 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1457 std::pair<Local_got_offsets::iterator, bool> ins =
1458 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1459 gold_assert(ins.second);
1460 }
1461 }
1462
1463 // Get the offset of input section SHNDX within its output section.
1464 // This is -1 if the input section requires a special mapping, such
1465 // as a merge section. The output section can be found in the
1466 // output_sections_ field of the parent class Relobj.
1467 Address
1468 get_output_section_offset(unsigned int shndx) const
1469 {
1470 gold_assert(shndx < this->section_offsets_.size());
1471 return this->section_offsets_[shndx];
1472 }
1473
1474 // Return the name of the symbol that spans the given offset in the
1475 // specified section in this object. This is used only for error
1476 // messages and is not particularly efficient.
1477 bool
1478 get_symbol_location_info(unsigned int shndx, off_t offset,
1479 Symbol_location_info* info);
1480
1481 // Look for a kept section corresponding to the given discarded section,
1482 // and return its output address. This is used only for relocations in
1483 // debugging sections.
1484 Address
1485 map_to_kept_section(unsigned int shndx, bool* found) const;
1486
1487 // Make section offset invalid. This is needed for relaxation.
1488 void
1489 invalidate_section_offset(unsigned int shndx)
1490 { this->do_invalidate_section_offset(shndx); }
1491
1492 protected:
1493 // Set up.
1494 virtual void
1495 do_setup();
1496
1497 // Read the symbols.
1498 void
1499 do_read_symbols(Read_symbols_data*);
1500
1501 // Return the number of local symbols.
1502 unsigned int
1503 do_local_symbol_count() const
1504 { return this->local_symbol_count_; }
1505
1506 // Lay out the input sections.
1507 void
1508 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1509
1510 // Layout sections whose layout was deferred while waiting for
1511 // input files from a plugin.
1512 void
1513 do_layout_deferred_sections(Layout*);
1514
1515 // Add the symbols to the symbol table.
1516 void
1517 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1518
1519 // Read the relocs.
1520 void
1521 do_read_relocs(Read_relocs_data*);
1522
1523 // Process the relocs to find list of referenced sections. Used only
1524 // during garbage collection.
1525 void
1526 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1527
1528 // Scan the relocs and adjust the symbol table.
1529 void
1530 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1531
1532 // Count the local symbols.
1533 void
1534 do_count_local_symbols(Stringpool_template<char>*,
1535 Stringpool_template<char>*);
1536
1537 // Finalize the local symbols.
1538 unsigned int
1539 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);
1540
1541 // Set the offset where local dynamic symbol information will be stored.
1542 unsigned int
1543 do_set_local_dynsym_indexes(unsigned int);
1544
1545 // Set the offset where local dynamic symbol information will be stored.
1546 unsigned int
1547 do_set_local_dynsym_offset(off_t);
1548
1549 // Relocate the input sections and write out the local symbols.
1550 void
1551 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of);
1552
1553 // Get the size of a section.
1554 uint64_t
1555 do_section_size(unsigned int shndx)
1556 { return this->elf_file_.section_size(shndx); }
1557
1558 // Get the name of a section.
1559 std::string
1560 do_section_name(unsigned int shndx)
1561 { return this->elf_file_.section_name(shndx); }
1562
1563 // Return the location of the contents of a section.
1564 Object::Location
1565 do_section_contents(unsigned int shndx)
1566 { return this->elf_file_.section_contents(shndx); }
1567
1568 // Return section flags.
1569 uint64_t
1570 do_section_flags(unsigned int shndx);
1571
1572 // Return section entsize.
1573 uint64_t
1574 do_section_entsize(unsigned int shndx);
1575
1576 // Return section address.
1577 uint64_t
1578 do_section_address(unsigned int shndx)
1579 { return this->elf_file_.section_addr(shndx); }
1580
1581 // Return section type.
1582 unsigned int
1583 do_section_type(unsigned int shndx)
1584 { return this->elf_file_.section_type(shndx); }
1585
1586 // Return the section link field.
1587 unsigned int
1588 do_section_link(unsigned int shndx)
1589 { return this->elf_file_.section_link(shndx); }
1590
1591 // Return the section info field.
1592 unsigned int
1593 do_section_info(unsigned int shndx)
1594 { return this->elf_file_.section_info(shndx); }
1595
1596 // Return the section alignment.
1597 uint64_t
1598 do_section_addralign(unsigned int shndx)
1599 { return this->elf_file_.section_addralign(shndx); }
1600
1601 // Return the Xindex structure to use.
1602 Xindex*
1603 do_initialize_xindex();
1604
1605 // Get symbol counts.
1606 void
1607 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1608
1609 // Get the global symbols.
1610 const Symbols*
1611 do_get_global_symbols() const
1612 { return &this->symbols_; }
1613
1614 // Get the offset of a section.
1615 uint64_t
1616 do_output_section_offset(unsigned int shndx) const
1617 {
1618 Address off = this->get_output_section_offset(shndx);
1619 if (off == invalid_address)
1620 return -1ULL;
1621 return off;
1622 }
1623
1624 // Set the offset of a section.
1625 void
1626 do_set_section_offset(unsigned int shndx, uint64_t off)
1627 {
1628 gold_assert(shndx < this->section_offsets_.size());
1629 this->section_offsets_[shndx] = convert_types<Address, uint64_t>(off);
1630 }
1631
1632 // Set the offset of a section to invalid_address.
1633 virtual void
1634 do_invalidate_section_offset(unsigned int shndx)
1635 {
1636 gold_assert(shndx < this->section_offsets_.size());
1637 this->section_offsets_[shndx] = invalid_address;
1638 }
1639
1640 // Adjust a section index if necessary.
1641 unsigned int
1642 adjust_shndx(unsigned int shndx)
1643 {
1644 if (shndx >= elfcpp::SHN_LORESERVE)
1645 shndx += this->elf_file_.large_shndx_offset();
1646 return shndx;
1647 }
1648
1649 // Initialize input to output maps for section symbols in merged
1650 // sections.
1651 void
1652 initialize_input_to_output_maps();
1653
1654 // Free the input to output maps for section symbols in merged
1655 // sections.
1656 void
1657 free_input_to_output_maps();
1658
1659 // Return symbol table section index.
1660 unsigned int
1661 symtab_shndx() const
1662 { return this->symtab_shndx_; }
1663
1664 // Allow a child class to access the ELF file.
1665 elfcpp::Elf_file<size, big_endian, Object>*
1666 elf_file()
1667 { return &this->elf_file_; }
1668
1669 // Allow a child class to access the local values.
1670 Local_values*
1671 local_values()
1672 { return &this->local_values_; }
1673
1674 // Views and sizes when relocating.
1675 struct View_size
1676 {
1677 unsigned char* view;
1678 typename elfcpp::Elf_types<size>::Elf_Addr address;
1679 off_t offset;
1680 section_size_type view_size;
1681 bool is_input_output_view;
1682 bool is_postprocessing_view;
1683 };
1684
1685 typedef std::vector<View_size> Views;
1686
1687 // This may be overriden by a child class.
1688 virtual void
1689 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1690 const unsigned char* pshdrs, Views* pviews);
1691
1692 private:
1693 // For convenience.
1694 typedef Sized_relobj<size, big_endian> This;
1695 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1696 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1697 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1698 typedef elfcpp::Shdr<size, big_endian> Shdr;
1699
1700 // To keep track of discarded comdat sections, we need to map a member
1701 // section index to the object and section index of the corresponding
1702 // kept section.
1703 struct Kept_comdat_section
1704 {
1705 Kept_comdat_section(Relobj* a_object, unsigned int a_shndx)
1706 : object(a_object), shndx(a_shndx)
1707 { }
1708 Relobj* object;
1709 unsigned int shndx;
1710 };
1711 typedef std::map<unsigned int, Kept_comdat_section>
1712 Kept_comdat_section_table;
1713
1714 // Find the SHT_SYMTAB section, given the section headers.
1715 void
1716 find_symtab(const unsigned char* pshdrs);
1717
1718 // Return whether SHDR has the right flags for a GNU style exception
1719 // frame section.
1720 bool
1721 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1722
1723 // Return whether there is a section named .eh_frame which might be
1724 // a GNU style exception frame section.
1725 bool
1726 find_eh_frame(const unsigned char* pshdrs, const char* names,
1727 section_size_type names_size) const;
1728
1729 // Whether to include a section group in the link.
1730 bool
1731 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1732 const unsigned char*, const char *, section_size_type,
1733 std::vector<bool>*);
1734
1735 // Whether to include a linkonce section in the link.
1736 bool
1737 include_linkonce_section(Layout*, unsigned int, const char*,
1738 const elfcpp::Shdr<size, big_endian>&);
1739
1740 // Layout an input section.
1741 void
1742 layout_section(Layout* layout, unsigned int shndx, const char* name,
1743 typename This::Shdr& shdr, unsigned int reloc_shndx,
1744 unsigned int reloc_type);
1745
1746 // Write section data to the output file. Record the views and
1747 // sizes in VIEWS for use when relocating.
1748 void
1749 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1750
1751 // Relocate the sections in the output file.
1752 void
1753 relocate_sections(const Symbol_table* symtab, const Layout* layout,
1754 const unsigned char* pshdrs, Views* pviews)
1755 { this->do_relocate_sections(symtab, layout, pshdrs, pviews); }
1756
1757 // Scan the input relocations for --emit-relocs.
1758 void
1759 emit_relocs_scan(Symbol_table*, Layout*, const unsigned char* plocal_syms,
1760 const Read_relocs_data::Relocs_list::iterator&);
1761
1762 // Scan the input relocations for --emit-relocs, templatized on the
1763 // type of the relocation section.
1764 template<int sh_type>
1765 void
1766 emit_relocs_scan_reltype(Symbol_table*, Layout*,
1767 const unsigned char* plocal_syms,
1768 const Read_relocs_data::Relocs_list::iterator&,
1769 Relocatable_relocs*);
1770
1771 // Emit the relocs for --emit-relocs.
1772 void
1773 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1774 unsigned int sh_type, const unsigned char* prelocs,
1775 size_t reloc_count, Output_section*, Address output_offset,
1776 unsigned char* view, Address address,
1777 section_size_type view_size,
1778 unsigned char* reloc_view, section_size_type reloc_view_size);
1779
1780 // Emit the relocs for --emit-relocs, templatized on the type of the
1781 // relocation section.
1782 template<int sh_type>
1783 void
1784 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1785 const unsigned char* prelocs, size_t reloc_count,
1786 Output_section*, Address output_offset,
1787 unsigned char* view, Address address,
1788 section_size_type view_size,
1789 unsigned char* reloc_view,
1790 section_size_type reloc_view_size);
1791
1792 // A type shared by split_stack_adjust_reltype and find_functions.
1793 typedef std::map<section_offset_type, section_size_type> Function_offsets;
1794
1795 // Check for -fsplit-stack routines calling non-split-stack routines.
1796 void
1797 split_stack_adjust(const Symbol_table*, const unsigned char* pshdrs,
1798 unsigned int sh_type, unsigned int shndx,
1799 const unsigned char* prelocs, size_t reloc_count,
1800 unsigned char* view, section_size_type view_size,
1801 Reloc_symbol_changes** reloc_map);
1802
1803 template<int sh_type>
1804 void
1805 split_stack_adjust_reltype(const Symbol_table*, const unsigned char* pshdrs,
1806 unsigned int shndx, const unsigned char* prelocs,
1807 size_t reloc_count, unsigned char* view,
1808 section_size_type view_size,
1809 Reloc_symbol_changes** reloc_map);
1810
1811 // Find all functions in a section.
1812 void
1813 find_functions(const unsigned char* pshdrs, unsigned int shndx,
1814 Function_offsets*);
1815
1816 // Write out the local symbols.
1817 void
1818 write_local_symbols(Output_file*,
1819 const Stringpool_template<char>*,
1820 const Stringpool_template<char>*,
1821 Output_symtab_xindex*,
1822 Output_symtab_xindex*);
1823
1824 // Clear the local symbol information.
1825 void
1826 clear_local_symbols()
1827 {
1828 this->local_values_.clear();
1829 this->local_got_offsets_.clear();
1830 }
1831
1832 // Record a mapping from discarded section SHNDX to the corresponding
1833 // kept section.
1834 void
1835 set_kept_comdat_section(unsigned int shndx, Relobj* kept_object,
1836 unsigned int kept_shndx)
1837 {
1838 Kept_comdat_section kept(kept_object, kept_shndx);
1839 this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
1840 }
1841
1842 // Find the kept section corresponding to the discarded section
1843 // SHNDX. Return true if found.
1844 bool
1845 get_kept_comdat_section(unsigned int shndx, Relobj** kept_object,
1846 unsigned int* kept_shndx) const
1847 {
1848 typename Kept_comdat_section_table::const_iterator p =
1849 this->kept_comdat_sections_.find(shndx);
1850 if (p == this->kept_comdat_sections_.end())
1851 return false;
1852 *kept_object = p->second.object;
1853 *kept_shndx = p->second.shndx;
1854 return true;
1855 }
1856
1857 // The GOT offsets of local symbols. This map also stores GOT offsets
1858 // for tp-relative offsets for TLS symbols.
1859 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1860
1861 // The TLS GOT offsets of local symbols. The map stores the offsets
1862 // for either a single GOT entry that holds the module index of a TLS
1863 // symbol, or a pair of GOT entries containing the module index and
1864 // dtv-relative offset.
1865 struct Tls_got_entry
1866 {
1867 Tls_got_entry(int got_offset, bool have_pair)
1868 : got_offset_(got_offset),
1869 have_pair_(have_pair)
1870 { }
1871 int got_offset_;
1872 bool have_pair_;
1873 };
1874 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1875
1876 // Saved information for sections whose layout was deferred.
1877 struct Deferred_layout
1878 {
1879 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1880 Deferred_layout(unsigned int shndx, const char* name,
1881 const unsigned char* pshdr,
1882 unsigned int reloc_shndx, unsigned int reloc_type)
1883 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
1884 reloc_type_(reloc_type)
1885 {
1886 memcpy(this->shdr_data_, pshdr, shdr_size);
1887 }
1888 unsigned int shndx_;
1889 std::string name_;
1890 unsigned int reloc_shndx_;
1891 unsigned int reloc_type_;
1892 unsigned char shdr_data_[shdr_size];
1893 };
1894
1895 // General access to the ELF file.
1896 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1897 // Index of SHT_SYMTAB section.
1898 unsigned int symtab_shndx_;
1899 // The number of local symbols.
1900 unsigned int local_symbol_count_;
1901 // The number of local symbols which go into the output file.
1902 unsigned int output_local_symbol_count_;
1903 // The number of local symbols which go into the output file's dynamic
1904 // symbol table.
1905 unsigned int output_local_dynsym_count_;
1906 // The entries in the symbol table for the external symbols.
1907 Symbols symbols_;
1908 // Number of symbols defined in object file itself.
1909 size_t defined_count_;
1910 // File offset for local symbols.
1911 off_t local_symbol_offset_;
1912 // File offset for local dynamic symbols.
1913 off_t local_dynsym_offset_;
1914 // Values of local symbols.
1915 Local_values local_values_;
1916 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1917 // for TLS symbols, indexed by symbol number.
1918 Local_got_offsets local_got_offsets_;
1919 // For each input section, the offset of the input section in its
1920 // output section. This is INVALID_ADDRESS if the input section requires a
1921 // special mapping.
1922 std::vector<Address> section_offsets_;
1923 // Table mapping discarded comdat sections to corresponding kept sections.
1924 Kept_comdat_section_table kept_comdat_sections_;
1925 // Whether this object has a GNU style .eh_frame section.
1926 bool has_eh_frame_;
1927 // If this object has a GNU style .eh_frame section that is discarded in
1928 // output, record the index here. Otherwise it is -1U.
1929 unsigned int discarded_eh_frame_shndx_;
1930 // The list of sections whose layout was deferred.
1931 std::vector<Deferred_layout> deferred_layout_;
1932 };
1933
1934 // A class to manage the list of all objects.
1935
1936 class Input_objects
1937 {
1938 public:
1939 Input_objects()
1940 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
1941 { }
1942
1943 // The type of the list of input relocateable objects.
1944 typedef std::vector<Relobj*> Relobj_list;
1945 typedef Relobj_list::const_iterator Relobj_iterator;
1946
1947 // The type of the list of input dynamic objects.
1948 typedef std::vector<Dynobj*> Dynobj_list;
1949 typedef Dynobj_list::const_iterator Dynobj_iterator;
1950
1951 // Add an object to the list. Return true if all is well, or false
1952 // if this object should be ignored.
1953 bool
1954 add_object(Object*);
1955
1956 // Start processing an archive.
1957 void
1958 archive_start(Archive*);
1959
1960 // Stop processing an archive.
1961 void
1962 archive_stop(Archive*);
1963
1964 // For each dynamic object, check whether we've seen all of its
1965 // explicit dependencies.
1966 void
1967 check_dynamic_dependencies() const;
1968
1969 // Return whether an object was found in the system library
1970 // directory.
1971 bool
1972 found_in_system_library_directory(const Object*) const;
1973
1974 // Print symbol counts.
1975 void
1976 print_symbol_counts(const Symbol_table*) const;
1977
1978 // Print a cross reference table.
1979 void
1980 print_cref(const Symbol_table*, FILE*) const;
1981
1982 // Iterate over all regular objects.
1983
1984 Relobj_iterator
1985 relobj_begin() const
1986 { return this->relobj_list_.begin(); }
1987
1988 Relobj_iterator
1989 relobj_end() const
1990 { return this->relobj_list_.end(); }
1991
1992 // Iterate over all dynamic objects.
1993
1994 Dynobj_iterator
1995 dynobj_begin() const
1996 { return this->dynobj_list_.begin(); }
1997
1998 Dynobj_iterator
1999 dynobj_end() const
2000 { return this->dynobj_list_.end(); }
2001
2002 // Return whether we have seen any dynamic objects.
2003 bool
2004 any_dynamic() const
2005 { return !this->dynobj_list_.empty(); }
2006
2007 // Return the number of input objects.
2008 int
2009 number_of_input_objects() const
2010 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
2011
2012 private:
2013 Input_objects(const Input_objects&);
2014 Input_objects& operator=(const Input_objects&);
2015
2016 // The list of ordinary objects included in the link.
2017 Relobj_list relobj_list_;
2018 // The list of dynamic objects included in the link.
2019 Dynobj_list dynobj_list_;
2020 // SONAMEs that we have seen.
2021 Unordered_set<std::string> sonames_;
2022 // Manage cross-references if requested.
2023 Cref* cref_;
2024 };
2025
2026 // Some of the information we pass to the relocation routines. We
2027 // group this together to avoid passing a dozen different arguments.
2028
2029 template<int size, bool big_endian>
2030 struct Relocate_info
2031 {
2032 // Symbol table.
2033 const Symbol_table* symtab;
2034 // Layout.
2035 const Layout* layout;
2036 // Object being relocated.
2037 Sized_relobj<size, big_endian>* object;
2038 // Section index of relocation section.
2039 unsigned int reloc_shndx;
2040 // Section header of relocation section.
2041 const unsigned char* reloc_shdr;
2042 // Section index of section being relocated.
2043 unsigned int data_shndx;
2044 // Section header of data section.
2045 const unsigned char* data_shdr;
2046
2047 // Return a string showing the location of a relocation. This is
2048 // only used for error messages.
2049 std::string
2050 location(size_t relnum, off_t reloffset) const;
2051 };
2052
2053 // This is used to represent a section in an object and is used as the
2054 // key type for various section maps.
2055 typedef std::pair<Object*, unsigned int> Section_id;
2056
2057 // This is similar to Section_id but is used when the section
2058 // pointers are const.
2059 typedef std::pair<const Object*, unsigned int> Const_section_id;
2060
2061 // The hash value is based on the address of an object in memory during
2062 // linking. It is okay to use this for looking up sections but never use
2063 // this in an unordered container that we want to traverse in a repeatable
2064 // manner.
2065
2066 struct Section_id_hash
2067 {
2068 size_t operator()(const Section_id& loc) const
2069 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2070 };
2071
2072 struct Const_section_id_hash
2073 {
2074 size_t operator()(const Const_section_id& loc) const
2075 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2076 };
2077
2078 // Return whether INPUT_FILE contains an ELF object start at file
2079 // offset OFFSET. This sets *START to point to a view of the start of
2080 // the file. It sets *READ_SIZE to the number of bytes in the view.
2081
2082 extern bool
2083 is_elf_object(Input_file* input_file, off_t offset,
2084 const unsigned char** start, int *read_size);
2085
2086 // Return an Object appropriate for the input file. P is BYTES long,
2087 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
2088 // this sees an object the linker is not configured to support, it
2089 // sets *PUNCONFIGURED to true and returns NULL without giving an
2090 // error message.
2091
2092 extern Object*
2093 make_elf_object(const std::string& name, Input_file*,
2094 off_t offset, const unsigned char* p,
2095 section_offset_type bytes, bool* punconfigured);
2096
2097 } // end namespace gold
2098
2099 #endif // !defined(GOLD_OBJECT_H)
This page took 0.071326 seconds and 5 git commands to generate.