* compressed_output.cc (zlib_decompress): New function.
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33 #include "archive.h"
34
35 namespace gold
36 {
37
38 class General_options;
39 class Task;
40 class Cref;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 Read_symbols_data()
59 : section_headers(NULL), section_names(NULL), symbols(NULL),
60 symbol_names(NULL), versym(NULL), verdef(NULL), verneed(NULL)
61 { }
62
63 ~Read_symbols_data();
64
65 // Section headers.
66 File_view* section_headers;
67 // Section names.
68 File_view* section_names;
69 // Size of section name data in bytes.
70 section_size_type section_names_size;
71 // Symbol data.
72 File_view* symbols;
73 // Size of symbol data in bytes.
74 section_size_type symbols_size;
75 // Offset of external symbols within symbol data. This structure
76 // sometimes contains only external symbols, in which case this will
77 // be zero. Sometimes it contains all symbols.
78 section_offset_type external_symbols_offset;
79 // Symbol names.
80 File_view* symbol_names;
81 // Size of symbol name data in bytes.
82 section_size_type symbol_names_size;
83
84 // Version information. This is only used on dynamic objects.
85 // Version symbol data (from SHT_GNU_versym section).
86 File_view* versym;
87 section_size_type versym_size;
88 // Version definition data (from SHT_GNU_verdef section).
89 File_view* verdef;
90 section_size_type verdef_size;
91 unsigned int verdef_info;
92 // Needed version data (from SHT_GNU_verneed section).
93 File_view* verneed;
94 section_size_type verneed_size;
95 unsigned int verneed_info;
96 };
97
98 // Information used to print error messages.
99
100 struct Symbol_location_info
101 {
102 std::string source_file;
103 std::string enclosing_symbol_name;
104 int line_number;
105 };
106
107 // Data about a single relocation section. This is read in
108 // read_relocs and processed in scan_relocs.
109
110 struct Section_relocs
111 {
112 Section_relocs()
113 : contents(NULL)
114 { }
115
116 ~Section_relocs()
117 { delete this->contents; }
118
119 // Index of reloc section.
120 unsigned int reloc_shndx;
121 // Index of section that relocs apply to.
122 unsigned int data_shndx;
123 // Contents of reloc section.
124 File_view* contents;
125 // Reloc section type.
126 unsigned int sh_type;
127 // Number of reloc entries.
128 size_t reloc_count;
129 // Output section.
130 Output_section* output_section;
131 // Whether this section has special handling for offsets.
132 bool needs_special_offset_handling;
133 // Whether the data section is allocated (has the SHF_ALLOC flag set).
134 bool is_data_section_allocated;
135 };
136
137 // Relocations in an object file. This is read in read_relocs and
138 // processed in scan_relocs.
139
140 struct Read_relocs_data
141 {
142 Read_relocs_data()
143 : local_symbols(NULL)
144 { }
145
146 ~Read_relocs_data()
147 { delete this->local_symbols; }
148
149 typedef std::vector<Section_relocs> Relocs_list;
150 // The relocations.
151 Relocs_list relocs;
152 // The local symbols.
153 File_view* local_symbols;
154 };
155
156 // The Xindex class manages section indexes for objects with more than
157 // 0xff00 sections.
158
159 class Xindex
160 {
161 public:
162 Xindex(int large_shndx_offset)
163 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
164 { }
165
166 // Initialize the symtab_xindex_ array, given the object and the
167 // section index of the symbol table to use.
168 template<int size, bool big_endian>
169 void
170 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
171
172 // Read in the symtab_xindex_ array, given its section index.
173 // PSHDRS may optionally point to the section headers.
174 template<int size, bool big_endian>
175 void
176 read_symtab_xindex(Object*, unsigned int xindex_shndx,
177 const unsigned char* pshdrs);
178
179 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
180 // real section index.
181 unsigned int
182 sym_xindex_to_shndx(Object* object, unsigned int symndx);
183
184 private:
185 // The type of the array giving the real section index for symbols
186 // whose st_shndx field holds SHN_XINDEX.
187 typedef std::vector<unsigned int> Symtab_xindex;
188
189 // Adjust a section index if necessary. This should only be called
190 // for ordinary section indexes.
191 unsigned int
192 adjust_shndx(unsigned int shndx)
193 {
194 if (shndx >= elfcpp::SHN_LORESERVE)
195 shndx += this->large_shndx_offset_;
196 return shndx;
197 }
198
199 // Adjust to apply to large section indexes.
200 int large_shndx_offset_;
201 // The data from the SHT_SYMTAB_SHNDX section.
202 Symtab_xindex symtab_xindex_;
203 };
204
205 // Object is an abstract base class which represents either a 32-bit
206 // or a 64-bit input object. This can be a regular object file
207 // (ET_REL) or a shared object (ET_DYN).
208
209 class Object
210 {
211 public:
212 typedef std::vector<Symbol*> Symbols;
213
214 // NAME is the name of the object as we would report it to the user
215 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
216 // used to read the file. OFFSET is the offset within the input
217 // file--0 for a .o or .so file, something else for a .a file.
218 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
219 off_t offset = 0)
220 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
221 is_dynamic_(is_dynamic), is_needed_(false), uses_split_stack_(false),
222 has_no_split_stack_(false), no_export_(false), xindex_(NULL)
223 { input_file->file().add_object(); }
224
225 virtual ~Object()
226 { this->input_file_->file().remove_object(); }
227
228 // Return the name of the object as we would report it to the tuser.
229 const std::string&
230 name() const
231 { return this->name_; }
232
233 // Get the offset into the file.
234 off_t
235 offset() const
236 { return this->offset_; }
237
238 // Return whether this is a dynamic object.
239 bool
240 is_dynamic() const
241 { return this->is_dynamic_; }
242
243 // Return whether this object is needed--true if it is a dynamic
244 // object which defines some symbol referenced by a regular object.
245 // We keep the flag here rather than in Dynobj for convenience when
246 // setting it.
247 bool
248 is_needed() const
249 { return this->is_needed_; }
250
251 // Record that this object is needed.
252 void
253 set_is_needed()
254 { this->is_needed_ = true; }
255
256 // Return whether this object was compiled with -fsplit-stack.
257 bool
258 uses_split_stack() const
259 { return this->uses_split_stack_; }
260
261 // Return whether this object contains any functions compiled with
262 // the no_split_stack attribute.
263 bool
264 has_no_split_stack() const
265 { return this->has_no_split_stack_; }
266
267 // Returns NULL for Objects that are not plugin objects. This method
268 // is overridden in the Pluginobj class.
269 Pluginobj*
270 pluginobj()
271 { return this->do_pluginobj(); }
272
273 // Get the file. We pass on const-ness.
274 Input_file*
275 input_file()
276 { return this->input_file_; }
277
278 const Input_file*
279 input_file() const
280 { return this->input_file_; }
281
282 // Lock the underlying file.
283 void
284 lock(const Task* t)
285 { this->input_file()->file().lock(t); }
286
287 // Unlock the underlying file.
288 void
289 unlock(const Task* t)
290 { this->input_file()->file().unlock(t); }
291
292 // Return whether the underlying file is locked.
293 bool
294 is_locked() const
295 { return this->input_file()->file().is_locked(); }
296
297 // Return the token, so that the task can be queued.
298 Task_token*
299 token()
300 { return this->input_file()->file().token(); }
301
302 // Release the underlying file.
303 void
304 release()
305 { this->input_file_->file().release(); }
306
307 // Return whether we should just read symbols from this file.
308 bool
309 just_symbols() const
310 { return this->input_file()->just_symbols(); }
311
312 // Get the number of sections.
313 unsigned int
314 shnum() const
315 { return this->shnum_; }
316
317 // Return a view of the contents of a section. Set *PLEN to the
318 // size. CACHE is a hint as in File_read::get_view.
319 const unsigned char*
320 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
321
322 // Adjust a symbol's section index as needed. SYMNDX is the index
323 // of the symbol and SHNDX is the symbol's section from
324 // get_st_shndx. This returns the section index. It sets
325 // *IS_ORDINARY to indicate whether this is a normal section index,
326 // rather than a special code between SHN_LORESERVE and
327 // SHN_HIRESERVE.
328 unsigned int
329 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
330 {
331 if (shndx < elfcpp::SHN_LORESERVE)
332 *is_ordinary = true;
333 else if (shndx == elfcpp::SHN_XINDEX)
334 {
335 if (this->xindex_ == NULL)
336 this->xindex_ = this->do_initialize_xindex();
337 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
338 *is_ordinary = true;
339 }
340 else
341 *is_ordinary = false;
342 return shndx;
343 }
344
345 // Return the size of a section given a section index.
346 uint64_t
347 section_size(unsigned int shndx)
348 { return this->do_section_size(shndx); }
349
350 // Return the name of a section given a section index.
351 std::string
352 section_name(unsigned int shndx)
353 { return this->do_section_name(shndx); }
354
355 // Return the section flags given a section index.
356 uint64_t
357 section_flags(unsigned int shndx)
358 { return this->do_section_flags(shndx); }
359
360 // Return the section entsize given a section index.
361 uint64_t
362 section_entsize(unsigned int shndx)
363 { return this->do_section_entsize(shndx); }
364
365 // Return the section address given a section index.
366 uint64_t
367 section_address(unsigned int shndx)
368 { return this->do_section_address(shndx); }
369
370 // Return the section type given a section index.
371 unsigned int
372 section_type(unsigned int shndx)
373 { return this->do_section_type(shndx); }
374
375 // Return the section link field given a section index.
376 unsigned int
377 section_link(unsigned int shndx)
378 { return this->do_section_link(shndx); }
379
380 // Return the section info field given a section index.
381 unsigned int
382 section_info(unsigned int shndx)
383 { return this->do_section_info(shndx); }
384
385 // Return the required section alignment given a section index.
386 uint64_t
387 section_addralign(unsigned int shndx)
388 { return this->do_section_addralign(shndx); }
389
390 // Read the symbol information.
391 void
392 read_symbols(Read_symbols_data* sd)
393 { return this->do_read_symbols(sd); }
394
395 // Pass sections which should be included in the link to the Layout
396 // object, and record where the sections go in the output file.
397 void
398 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
399 { this->do_layout(symtab, layout, sd); }
400
401 // Add symbol information to the global symbol table.
402 void
403 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
404 { this->do_add_symbols(symtab, sd, layout); }
405
406 // Add symbol information to the global symbol table.
407 Archive::Should_include
408 should_include_member(Symbol_table* symtab, Read_symbols_data* sd,
409 std::string* why)
410 { return this->do_should_include_member(symtab, sd, why); }
411
412 // Functions and types for the elfcpp::Elf_file interface. This
413 // permit us to use Object as the File template parameter for
414 // elfcpp::Elf_file.
415
416 // The View class is returned by view. It must support a single
417 // method, data(). This is trivial, because get_view does what we
418 // need.
419 class View
420 {
421 public:
422 View(const unsigned char* p)
423 : p_(p)
424 { }
425
426 const unsigned char*
427 data() const
428 { return this->p_; }
429
430 private:
431 const unsigned char* p_;
432 };
433
434 // Return a View.
435 View
436 view(off_t file_offset, section_size_type data_size)
437 { return View(this->get_view(file_offset, data_size, true, true)); }
438
439 // Report an error.
440 void
441 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
442
443 // A location in the file.
444 struct Location
445 {
446 off_t file_offset;
447 off_t data_size;
448
449 Location(off_t fo, section_size_type ds)
450 : file_offset(fo), data_size(ds)
451 { }
452 };
453
454 // Get a View given a Location.
455 View view(Location loc)
456 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
457
458 // Get a view into the underlying file.
459 const unsigned char*
460 get_view(off_t start, section_size_type size, bool aligned, bool cache)
461 {
462 return this->input_file()->file().get_view(this->offset_, start, size,
463 aligned, cache);
464 }
465
466 // Get a lasting view into the underlying file.
467 File_view*
468 get_lasting_view(off_t start, section_size_type size, bool aligned,
469 bool cache)
470 {
471 return this->input_file()->file().get_lasting_view(this->offset_, start,
472 size, aligned, cache);
473 }
474
475 // Read data from the underlying file.
476 void
477 read(off_t start, section_size_type size, void* p)
478 { this->input_file()->file().read(start + this->offset_, size, p); }
479
480 // Read multiple data from the underlying file.
481 void
482 read_multiple(const File_read::Read_multiple& rm)
483 { this->input_file()->file().read_multiple(this->offset_, rm); }
484
485 // Stop caching views in the underlying file.
486 void
487 clear_view_cache_marks()
488 { this->input_file()->file().clear_view_cache_marks(); }
489
490 // Get the number of global symbols defined by this object, and the
491 // number of the symbols whose final definition came from this
492 // object.
493 void
494 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
495 size_t* used) const
496 { this->do_get_global_symbol_counts(symtab, defined, used); }
497
498 // Get the symbols defined in this object.
499 const Symbols*
500 get_global_symbols() const
501 { return this->do_get_global_symbols(); }
502
503 // Return whether this object was found in a system directory.
504 bool
505 is_in_system_directory() const
506 { return this->input_file()->is_in_system_directory(); }
507
508 // Return whether we found this object by searching a directory.
509 bool
510 searched_for() const
511 { return this->input_file()->will_search_for(); }
512
513 bool
514 no_export() const
515 { return this->no_export_; }
516
517 void
518 set_no_export(bool value)
519 { this->no_export_ = value; }
520
521 // Return TRUE if the section is a compressed debug section, and set
522 // *UNCOMPRESSED_SIZE to the size of the uncompressed data.
523 bool
524 section_is_compressed(unsigned int shndx,
525 section_size_type* uncompressed_size) const
526 { return this->do_section_is_compressed(shndx, uncompressed_size); }
527
528 protected:
529 // Returns NULL for Objects that are not plugin objects. This method
530 // is overridden in the Pluginobj class.
531 virtual Pluginobj*
532 do_pluginobj()
533 { return NULL; }
534
535 // Read the symbols--implemented by child class.
536 virtual void
537 do_read_symbols(Read_symbols_data*) = 0;
538
539 // Lay out sections--implemented by child class.
540 virtual void
541 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
542
543 // Add symbol information to the global symbol table--implemented by
544 // child class.
545 virtual void
546 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
547
548 virtual Archive::Should_include
549 do_should_include_member(Symbol_table* symtab, Read_symbols_data*,
550 std::string* why) = 0;
551
552 // Return the location of the contents of a section. Implemented by
553 // child class.
554 virtual Location
555 do_section_contents(unsigned int shndx) = 0;
556
557 // Get the size of a section--implemented by child class.
558 virtual uint64_t
559 do_section_size(unsigned int shndx) = 0;
560
561 // Get the name of a section--implemented by child class.
562 virtual std::string
563 do_section_name(unsigned int shndx) = 0;
564
565 // Get section flags--implemented by child class.
566 virtual uint64_t
567 do_section_flags(unsigned int shndx) = 0;
568
569 // Get section entsize--implemented by child class.
570 virtual uint64_t
571 do_section_entsize(unsigned int shndx) = 0;
572
573 // Get section address--implemented by child class.
574 virtual uint64_t
575 do_section_address(unsigned int shndx) = 0;
576
577 // Get section type--implemented by child class.
578 virtual unsigned int
579 do_section_type(unsigned int shndx) = 0;
580
581 // Get section link field--implemented by child class.
582 virtual unsigned int
583 do_section_link(unsigned int shndx) = 0;
584
585 // Get section info field--implemented by child class.
586 virtual unsigned int
587 do_section_info(unsigned int shndx) = 0;
588
589 // Get section alignment--implemented by child class.
590 virtual uint64_t
591 do_section_addralign(unsigned int shndx) = 0;
592
593 // Return the Xindex structure to use.
594 virtual Xindex*
595 do_initialize_xindex() = 0;
596
597 // Implement get_global_symbol_counts--implemented by child class.
598 virtual void
599 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
600
601 virtual const Symbols*
602 do_get_global_symbols() const = 0;
603
604 // Set the number of sections.
605 void
606 set_shnum(int shnum)
607 { this->shnum_ = shnum; }
608
609 // Functions used by both Sized_relobj and Sized_dynobj.
610
611 // Read the section data into a Read_symbols_data object.
612 template<int size, bool big_endian>
613 void
614 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
615 Read_symbols_data*);
616
617 // Let the child class initialize the xindex object directly.
618 void
619 set_xindex(Xindex* xindex)
620 {
621 gold_assert(this->xindex_ == NULL);
622 this->xindex_ = xindex;
623 }
624
625 // If NAME is the name of a special .gnu.warning section, arrange
626 // for the warning to be issued. SHNDX is the section index.
627 // Return whether it is a warning section.
628 bool
629 handle_gnu_warning_section(const char* name, unsigned int shndx,
630 Symbol_table*);
631
632 // If NAME is the name of the special section which indicates that
633 // this object was compiled with -fstack-split, mark it accordingly,
634 // and return true. Otherwise return false.
635 bool
636 handle_split_stack_section(const char* name);
637
638 // Return TRUE if the section is a compressed debug section, and set
639 // *UNCOMPRESSED_SIZE to the size of the uncompressed data.
640 virtual bool
641 do_section_is_compressed(unsigned int, section_size_type*) const
642 { return false; }
643
644 private:
645 // This class may not be copied.
646 Object(const Object&);
647 Object& operator=(const Object&);
648
649 // Name of object as printed to user.
650 std::string name_;
651 // For reading the file.
652 Input_file* input_file_;
653 // Offset within the file--0 for an object file, non-0 for an
654 // archive.
655 off_t offset_;
656 // Number of input sections.
657 unsigned int shnum_;
658 // Whether this is a dynamic object.
659 bool is_dynamic_ : 1;
660 // Whether this object is needed. This is only set for dynamic
661 // objects, and means that the object defined a symbol which was
662 // used by a reference from a regular object.
663 bool is_needed_ : 1;
664 // Whether this object was compiled with -fsplit-stack.
665 bool uses_split_stack_ : 1;
666 // Whether this object contains any functions compiled with the
667 // no_split_stack attribute.
668 bool has_no_split_stack_ : 1;
669 // True if exclude this object from automatic symbol export.
670 // This is used only for archive objects.
671 bool no_export_ : 1;
672 // Many sections for objects with more than SHN_LORESERVE sections.
673 Xindex* xindex_;
674 };
675
676 // A regular object (ET_REL). This is an abstract base class itself.
677 // The implementation is the template class Sized_relobj.
678
679 class Relobj : public Object
680 {
681 public:
682 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
683 : Object(name, input_file, false, offset),
684 output_sections_(),
685 map_to_relocatable_relocs_(NULL),
686 object_merge_map_(NULL),
687 relocs_must_follow_section_writes_(false),
688 sd_(NULL)
689 { }
690
691 // During garbage collection, the Read_symbols_data pass for
692 // each object is stored as layout needs to be done after
693 // reloc processing.
694 Symbols_data*
695 get_symbols_data()
696 { return this->sd_; }
697
698 // Decides which section names have to be included in the worklist
699 // as roots.
700 bool
701 is_section_name_included(const char *name);
702
703 void
704 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
705 unsigned int section_header_size);
706
707 void
708 set_symbols_data(Symbols_data* sd)
709 { this->sd_ = sd; }
710
711 // During garbage collection, the Read_relocs pass for all objects
712 // is done before scanning the relocs. In that case, this->rd_ is
713 // used to store the information from Read_relocs for each object.
714 // This data is also used to compute the list of relevant sections.
715 Read_relocs_data*
716 get_relocs_data()
717 { return this->rd_; }
718
719 void
720 set_relocs_data(Read_relocs_data* rd)
721 { this->rd_ = rd; }
722
723 virtual bool
724 is_output_section_offset_invalid(unsigned int shndx) const = 0;
725
726 // Read the relocs.
727 void
728 read_relocs(Read_relocs_data* rd)
729 { return this->do_read_relocs(rd); }
730
731 // Process the relocs, during garbage collection only.
732 void
733 gc_process_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
734 { return this->do_gc_process_relocs(symtab, layout, rd); }
735
736 // Scan the relocs and adjust the symbol table.
737 void
738 scan_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
739 { return this->do_scan_relocs(symtab, layout, rd); }
740
741 // The number of local symbols in the input symbol table.
742 virtual unsigned int
743 local_symbol_count() const
744 { return this->do_local_symbol_count(); }
745
746 // Initial local symbol processing: count the number of local symbols
747 // in the output symbol table and dynamic symbol table; add local symbol
748 // names to *POOL and *DYNPOOL.
749 void
750 count_local_symbols(Stringpool_template<char>* pool,
751 Stringpool_template<char>* dynpool)
752 { return this->do_count_local_symbols(pool, dynpool); }
753
754 // Set the values of the local symbols, set the output symbol table
755 // indexes for the local variables, and set the offset where local
756 // symbol information will be stored. Returns the new local symbol index.
757 unsigned int
758 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
759 { return this->do_finalize_local_symbols(index, off, symtab); }
760
761 // Set the output dynamic symbol table indexes for the local variables.
762 unsigned int
763 set_local_dynsym_indexes(unsigned int index)
764 { return this->do_set_local_dynsym_indexes(index); }
765
766 // Set the offset where local dynamic symbol information will be stored.
767 unsigned int
768 set_local_dynsym_offset(off_t off)
769 { return this->do_set_local_dynsym_offset(off); }
770
771 // Relocate the input sections and write out the local symbols.
772 void
773 relocate(const Symbol_table* symtab, const Layout* layout, Output_file* of)
774 { return this->do_relocate(symtab, layout, of); }
775
776 // Return whether an input section is being included in the link.
777 bool
778 is_section_included(unsigned int shndx) const
779 {
780 gold_assert(shndx < this->output_sections_.size());
781 return this->output_sections_[shndx] != NULL;
782 }
783
784 // Given a section index, return the corresponding Output_section.
785 // The return value will be NULL if the section is not included in
786 // the link.
787 Output_section*
788 output_section(unsigned int shndx) const
789 {
790 gold_assert(shndx < this->output_sections_.size());
791 return this->output_sections_[shndx];
792 }
793
794 // The the output section of the input section with index SHNDX.
795 // This is only used currently to remove a section from the link in
796 // relaxation.
797 void
798 set_output_section(unsigned int shndx, Output_section* os)
799 {
800 gold_assert(shndx < this->output_sections_.size());
801 this->output_sections_[shndx] = os;
802 }
803
804 // Given a section index, return the offset in the Output_section.
805 // The return value will be -1U if the section is specially mapped,
806 // such as a merge section.
807 uint64_t
808 output_section_offset(unsigned int shndx) const
809 { return this->do_output_section_offset(shndx); }
810
811 // Set the offset of an input section within its output section.
812 void
813 set_section_offset(unsigned int shndx, uint64_t off)
814 { this->do_set_section_offset(shndx, off); }
815
816 // Return true if we need to wait for output sections to be written
817 // before we can apply relocations. This is true if the object has
818 // any relocations for sections which require special handling, such
819 // as the exception frame section.
820 bool
821 relocs_must_follow_section_writes() const
822 { return this->relocs_must_follow_section_writes_; }
823
824 // Return the object merge map.
825 Object_merge_map*
826 merge_map() const
827 { return this->object_merge_map_; }
828
829 // Set the object merge map.
830 void
831 set_merge_map(Object_merge_map* object_merge_map)
832 {
833 gold_assert(this->object_merge_map_ == NULL);
834 this->object_merge_map_ = object_merge_map;
835 }
836
837 // Record the relocatable reloc info for an input reloc section.
838 void
839 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
840 {
841 gold_assert(reloc_shndx < this->shnum());
842 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
843 }
844
845 // Get the relocatable reloc info for an input reloc section.
846 Relocatable_relocs*
847 relocatable_relocs(unsigned int reloc_shndx)
848 {
849 gold_assert(reloc_shndx < this->shnum());
850 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
851 }
852
853 // Layout sections whose layout was deferred while waiting for
854 // input files from a plugin.
855 void
856 layout_deferred_sections(Layout* layout)
857 { this->do_layout_deferred_sections(layout); }
858
859 protected:
860 // The output section to be used for each input section, indexed by
861 // the input section number. The output section is NULL if the
862 // input section is to be discarded.
863 typedef std::vector<Output_section*> Output_sections;
864
865 // Read the relocs--implemented by child class.
866 virtual void
867 do_read_relocs(Read_relocs_data*) = 0;
868
869 // Process the relocs--implemented by child class.
870 virtual void
871 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
872
873 // Scan the relocs--implemented by child class.
874 virtual void
875 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
876
877 // Return the number of local symbols--implemented by child class.
878 virtual unsigned int
879 do_local_symbol_count() const = 0;
880
881 // Count local symbols--implemented by child class.
882 virtual void
883 do_count_local_symbols(Stringpool_template<char>*,
884 Stringpool_template<char>*) = 0;
885
886 // Finalize the local symbols. Set the output symbol table indexes
887 // for the local variables, and set the offset where local symbol
888 // information will be stored.
889 virtual unsigned int
890 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;
891
892 // Set the output dynamic symbol table indexes for the local variables.
893 virtual unsigned int
894 do_set_local_dynsym_indexes(unsigned int) = 0;
895
896 // Set the offset where local dynamic symbol information will be stored.
897 virtual unsigned int
898 do_set_local_dynsym_offset(off_t) = 0;
899
900 // Relocate the input sections and write out the local
901 // symbols--implemented by child class.
902 virtual void
903 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of) = 0;
904
905 // Get the offset of a section--implemented by child class.
906 virtual uint64_t
907 do_output_section_offset(unsigned int shndx) const = 0;
908
909 // Set the offset of a section--implemented by child class.
910 virtual void
911 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
912
913 // Layout sections whose layout was deferred while waiting for
914 // input files from a plugin--implemented by child class.
915 virtual void
916 do_layout_deferred_sections(Layout*) = 0;
917
918 // Return the vector mapping input sections to output sections.
919 Output_sections&
920 output_sections()
921 { return this->output_sections_; }
922
923 const Output_sections&
924 output_sections() const
925 { return this->output_sections_; }
926
927 // Set the size of the relocatable relocs array.
928 void
929 size_relocatable_relocs()
930 {
931 this->map_to_relocatable_relocs_ =
932 new std::vector<Relocatable_relocs*>(this->shnum());
933 }
934
935 // Record that we must wait for the output sections to be written
936 // before applying relocations.
937 void
938 set_relocs_must_follow_section_writes()
939 { this->relocs_must_follow_section_writes_ = true; }
940
941 private:
942 // Mapping from input sections to output section.
943 Output_sections output_sections_;
944 // Mapping from input section index to the information recorded for
945 // the relocations. This is only used for a relocatable link.
946 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
947 // Mappings for merge sections. This is managed by the code in the
948 // Merge_map class.
949 Object_merge_map* object_merge_map_;
950 // Whether we need to wait for output sections to be written before
951 // we can apply relocations.
952 bool relocs_must_follow_section_writes_;
953 // Used to store the relocs data computed by the Read_relocs pass.
954 // Used during garbage collection of unused sections.
955 Read_relocs_data* rd_;
956 // Used to store the symbols data computed by the Read_symbols pass.
957 // Again used during garbage collection when laying out referenced
958 // sections.
959 gold::Symbols_data *sd_;
960 };
961
962 // This class is used to handle relocations against a section symbol
963 // in an SHF_MERGE section. For such a symbol, we need to know the
964 // addend of the relocation before we can determine the final value.
965 // The addend gives us the location in the input section, and we can
966 // determine how it is mapped to the output section. For a
967 // non-section symbol, we apply the addend to the final value of the
968 // symbol; that is done in finalize_local_symbols, and does not use
969 // this class.
970
971 template<int size>
972 class Merged_symbol_value
973 {
974 public:
975 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
976
977 // We use a hash table to map offsets in the input section to output
978 // addresses.
979 typedef Unordered_map<section_offset_type, Value> Output_addresses;
980
981 Merged_symbol_value(Value input_value, Value output_start_address)
982 : input_value_(input_value), output_start_address_(output_start_address),
983 output_addresses_()
984 { }
985
986 // Initialize the hash table.
987 void
988 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
989
990 // Release the hash table to save space.
991 void
992 free_input_to_output_map()
993 { this->output_addresses_.clear(); }
994
995 // Get the output value corresponding to an addend. The object and
996 // input section index are passed in because the caller will have
997 // them; otherwise we could store them here.
998 Value
999 value(const Relobj* object, unsigned int input_shndx, Value addend) const
1000 {
1001 // This is a relocation against a section symbol. ADDEND is the
1002 // offset in the section. The result should be the start of some
1003 // merge area. If the object file wants something else, it should
1004 // use a regular symbol rather than a section symbol.
1005 // Unfortunately, PR 6658 shows a case in which the object file
1006 // refers to the section symbol, but uses a negative ADDEND to
1007 // compensate for a PC relative reloc. We can't handle the
1008 // general case. However, we can handle the special case of a
1009 // negative addend, by assuming that it refers to the start of the
1010 // section. Of course, that means that we have to guess when
1011 // ADDEND is negative. It is normal to see a 32-bit value here
1012 // even when the template parameter size is 64, as 64-bit object
1013 // file formats have 32-bit relocations. We know this is a merge
1014 // section, so we know it has to fit into memory. So we assume
1015 // that we won't see a value larger than a large 32-bit unsigned
1016 // value. This will break objects with very very large merge
1017 // sections; they probably break in other ways anyhow.
1018 Value input_offset = this->input_value_;
1019 if (addend < 0xffffff00)
1020 {
1021 input_offset += addend;
1022 addend = 0;
1023 }
1024 typename Output_addresses::const_iterator p =
1025 this->output_addresses_.find(input_offset);
1026 if (p != this->output_addresses_.end())
1027 return p->second + addend;
1028
1029 return (this->value_from_output_section(object, input_shndx, input_offset)
1030 + addend);
1031 }
1032
1033 private:
1034 // Get the output value for an input offset if we couldn't find it
1035 // in the hash table.
1036 Value
1037 value_from_output_section(const Relobj*, unsigned int input_shndx,
1038 Value input_offset) const;
1039
1040 // The value of the section symbol in the input file. This is
1041 // normally zero, but could in principle be something else.
1042 Value input_value_;
1043 // The start address of this merged section in the output file.
1044 Value output_start_address_;
1045 // A hash table which maps offsets in the input section to output
1046 // addresses. This only maps specific offsets, not all offsets.
1047 Output_addresses output_addresses_;
1048 };
1049
1050 // This POD class is holds the value of a symbol. This is used for
1051 // local symbols, and for all symbols during relocation processing.
1052 // For special sections, such as SHF_MERGE sections, this calls a
1053 // function to get the final symbol value.
1054
1055 template<int size>
1056 class Symbol_value
1057 {
1058 public:
1059 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
1060
1061 Symbol_value()
1062 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
1063 is_ordinary_shndx_(false), is_section_symbol_(false),
1064 is_tls_symbol_(false), has_output_value_(true)
1065 { this->u_.value = 0; }
1066
1067 // Get the value of this symbol. OBJECT is the object in which this
1068 // symbol is defined, and ADDEND is an addend to add to the value.
1069 template<bool big_endian>
1070 Value
1071 value(const Sized_relobj<size, big_endian>* object, Value addend) const
1072 {
1073 if (this->has_output_value_)
1074 return this->u_.value + addend;
1075 else
1076 {
1077 gold_assert(this->is_ordinary_shndx_);
1078 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
1079 addend);
1080 }
1081 }
1082
1083 // Set the value of this symbol in the output symbol table.
1084 void
1085 set_output_value(Value value)
1086 { this->u_.value = value; }
1087
1088 // For a section symbol in a merged section, we need more
1089 // information.
1090 void
1091 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1092 {
1093 gold_assert(this->is_section_symbol_);
1094 this->has_output_value_ = false;
1095 this->u_.merged_symbol_value = msv;
1096 }
1097
1098 // Initialize the input to output map for a section symbol in a
1099 // merged section. We also initialize the value of a non-section
1100 // symbol in a merged section.
1101 void
1102 initialize_input_to_output_map(const Relobj* object)
1103 {
1104 if (!this->has_output_value_)
1105 {
1106 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1107 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1108 msv->initialize_input_to_output_map(object, this->input_shndx_);
1109 }
1110 }
1111
1112 // Free the input to output map for a section symbol in a merged
1113 // section.
1114 void
1115 free_input_to_output_map()
1116 {
1117 if (!this->has_output_value_)
1118 this->u_.merged_symbol_value->free_input_to_output_map();
1119 }
1120
1121 // Set the value of the symbol from the input file. This is only
1122 // called by count_local_symbols, to communicate the value to
1123 // finalize_local_symbols.
1124 void
1125 set_input_value(Value value)
1126 { this->u_.value = value; }
1127
1128 // Return the input value. This is only called by
1129 // finalize_local_symbols and (in special cases) relocate_section.
1130 Value
1131 input_value() const
1132 { return this->u_.value; }
1133
1134 // Return whether we have set the index in the output symbol table
1135 // yet.
1136 bool
1137 is_output_symtab_index_set() const
1138 {
1139 return (this->output_symtab_index_ != 0
1140 && this->output_symtab_index_ != -2U);
1141 }
1142
1143 // Return whether this symbol may be discarded from the normal
1144 // symbol table.
1145 bool
1146 may_be_discarded_from_output_symtab() const
1147 {
1148 gold_assert(!this->is_output_symtab_index_set());
1149 return this->output_symtab_index_ != -2U;
1150 }
1151
1152 // Return whether this symbol has an entry in the output symbol
1153 // table.
1154 bool
1155 has_output_symtab_entry() const
1156 {
1157 gold_assert(this->is_output_symtab_index_set());
1158 return this->output_symtab_index_ != -1U;
1159 }
1160
1161 // Return the index in the output symbol table.
1162 unsigned int
1163 output_symtab_index() const
1164 {
1165 gold_assert(this->is_output_symtab_index_set()
1166 && this->output_symtab_index_ != -1U);
1167 return this->output_symtab_index_;
1168 }
1169
1170 // Set the index in the output symbol table.
1171 void
1172 set_output_symtab_index(unsigned int i)
1173 {
1174 gold_assert(!this->is_output_symtab_index_set());
1175 gold_assert(i != 0 && i != -1U && i != -2U);
1176 this->output_symtab_index_ = i;
1177 }
1178
1179 // Record that this symbol should not go into the output symbol
1180 // table.
1181 void
1182 set_no_output_symtab_entry()
1183 {
1184 gold_assert(this->output_symtab_index_ == 0);
1185 this->output_symtab_index_ = -1U;
1186 }
1187
1188 // Record that this symbol must go into the output symbol table,
1189 // because it there is a relocation that uses it.
1190 void
1191 set_must_have_output_symtab_entry()
1192 {
1193 gold_assert(!this->is_output_symtab_index_set());
1194 this->output_symtab_index_ = -2U;
1195 }
1196
1197 // Set the index in the output dynamic symbol table.
1198 void
1199 set_needs_output_dynsym_entry()
1200 {
1201 gold_assert(!this->is_section_symbol());
1202 this->output_dynsym_index_ = 0;
1203 }
1204
1205 // Return whether this symbol should go into the dynamic symbol
1206 // table.
1207 bool
1208 needs_output_dynsym_entry() const
1209 {
1210 return this->output_dynsym_index_ != -1U;
1211 }
1212
1213 // Return whether this symbol has an entry in the dynamic symbol
1214 // table.
1215 bool
1216 has_output_dynsym_entry() const
1217 {
1218 gold_assert(this->output_dynsym_index_ != 0);
1219 return this->output_dynsym_index_ != -1U;
1220 }
1221
1222 // Record that this symbol should go into the dynamic symbol table.
1223 void
1224 set_output_dynsym_index(unsigned int i)
1225 {
1226 gold_assert(this->output_dynsym_index_ == 0);
1227 gold_assert(i != 0 && i != -1U);
1228 this->output_dynsym_index_ = i;
1229 }
1230
1231 // Return the index in the output dynamic symbol table.
1232 unsigned int
1233 output_dynsym_index() const
1234 {
1235 gold_assert(this->output_dynsym_index_ != 0
1236 && this->output_dynsym_index_ != -1U);
1237 return this->output_dynsym_index_;
1238 }
1239
1240 // Set the index of the input section in the input file.
1241 void
1242 set_input_shndx(unsigned int i, bool is_ordinary)
1243 {
1244 this->input_shndx_ = i;
1245 // input_shndx_ field is a bitfield, so make sure that the value
1246 // fits.
1247 gold_assert(this->input_shndx_ == i);
1248 this->is_ordinary_shndx_ = is_ordinary;
1249 }
1250
1251 // Return the index of the input section in the input file.
1252 unsigned int
1253 input_shndx(bool* is_ordinary) const
1254 {
1255 *is_ordinary = this->is_ordinary_shndx_;
1256 return this->input_shndx_;
1257 }
1258
1259 // Whether this is a section symbol.
1260 bool
1261 is_section_symbol() const
1262 { return this->is_section_symbol_; }
1263
1264 // Record that this is a section symbol.
1265 void
1266 set_is_section_symbol()
1267 {
1268 gold_assert(!this->needs_output_dynsym_entry());
1269 this->is_section_symbol_ = true;
1270 }
1271
1272 // Record that this is a TLS symbol.
1273 void
1274 set_is_tls_symbol()
1275 { this->is_tls_symbol_ = true; }
1276
1277 // Return TRUE if this is a TLS symbol.
1278 bool
1279 is_tls_symbol() const
1280 { return this->is_tls_symbol_; }
1281
1282 private:
1283 // The index of this local symbol in the output symbol table. This
1284 // will be 0 if no value has been assigned yet, and the symbol may
1285 // be omitted. This will be -1U if the symbol should not go into
1286 // the symbol table. This will be -2U if the symbol must go into
1287 // the symbol table, but no index has been assigned yet.
1288 unsigned int output_symtab_index_;
1289 // The index of this local symbol in the dynamic symbol table. This
1290 // will be -1U if the symbol should not go into the symbol table.
1291 unsigned int output_dynsym_index_;
1292 // The section index in the input file in which this symbol is
1293 // defined.
1294 unsigned int input_shndx_ : 28;
1295 // Whether the section index is an ordinary index, not a special
1296 // value.
1297 bool is_ordinary_shndx_ : 1;
1298 // Whether this is a STT_SECTION symbol.
1299 bool is_section_symbol_ : 1;
1300 // Whether this is a STT_TLS symbol.
1301 bool is_tls_symbol_ : 1;
1302 // Whether this symbol has a value for the output file. This is
1303 // normally set to true during Layout::finalize, by
1304 // finalize_local_symbols. It will be false for a section symbol in
1305 // a merge section, as for such symbols we can not determine the
1306 // value to use in a relocation until we see the addend.
1307 bool has_output_value_ : 1;
1308 union
1309 {
1310 // This is used if has_output_value_ is true. Between
1311 // count_local_symbols and finalize_local_symbols, this is the
1312 // value in the input file. After finalize_local_symbols, it is
1313 // the value in the output file.
1314 Value value;
1315 // This is used if has_output_value_ is false. It points to the
1316 // information we need to get the value for a merge section.
1317 Merged_symbol_value<size>* merged_symbol_value;
1318 } u_;
1319 };
1320
1321 // A GOT offset list. A symbol may have more than one GOT offset
1322 // (e.g., when mixing modules compiled with two different TLS models),
1323 // but will usually have at most one. GOT_TYPE identifies the type of
1324 // GOT entry; its values are specific to each target.
1325
1326 class Got_offset_list
1327 {
1328 public:
1329 Got_offset_list()
1330 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1331 { }
1332
1333 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1334 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1335 { }
1336
1337 ~Got_offset_list()
1338 {
1339 if (this->got_next_ != NULL)
1340 {
1341 delete this->got_next_;
1342 this->got_next_ = NULL;
1343 }
1344 }
1345
1346 // Initialize the fields to their default values.
1347 void
1348 init()
1349 {
1350 this->got_type_ = -1U;
1351 this->got_offset_ = 0;
1352 this->got_next_ = NULL;
1353 }
1354
1355 // Set the offset for the GOT entry of type GOT_TYPE.
1356 void
1357 set_offset(unsigned int got_type, unsigned int got_offset)
1358 {
1359 if (this->got_type_ == -1U)
1360 {
1361 this->got_type_ = got_type;
1362 this->got_offset_ = got_offset;
1363 }
1364 else
1365 {
1366 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1367 {
1368 if (g->got_type_ == got_type)
1369 {
1370 g->got_offset_ = got_offset;
1371 return;
1372 }
1373 }
1374 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1375 g->got_next_ = this->got_next_;
1376 this->got_next_ = g;
1377 }
1378 }
1379
1380 // Return the offset for a GOT entry of type GOT_TYPE.
1381 unsigned int
1382 get_offset(unsigned int got_type) const
1383 {
1384 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1385 {
1386 if (g->got_type_ == got_type)
1387 return g->got_offset_;
1388 }
1389 return -1U;
1390 }
1391
1392 private:
1393 unsigned int got_type_;
1394 unsigned int got_offset_;
1395 Got_offset_list* got_next_;
1396 };
1397
1398 // This type is used to modify relocations for -fsplit-stack. It is
1399 // indexed by relocation index, and means that the relocation at that
1400 // index should use the symbol from the vector, rather than the one
1401 // indicated by the relocation.
1402
1403 class Reloc_symbol_changes
1404 {
1405 public:
1406 Reloc_symbol_changes(size_t count)
1407 : vec_(count, NULL)
1408 { }
1409
1410 void
1411 set(size_t i, Symbol* sym)
1412 { this->vec_[i] = sym; }
1413
1414 const Symbol*
1415 operator[](size_t i) const
1416 { return this->vec_[i]; }
1417
1418 private:
1419 std::vector<Symbol*> vec_;
1420 };
1421
1422 // Type for mapping section index to uncompressed size.
1423
1424 typedef std::map<unsigned int, section_size_type> Compressed_section_map;
1425
1426 // A regular object file. This is size and endian specific.
1427
1428 template<int size, bool big_endian>
1429 class Sized_relobj : public Relobj
1430 {
1431 public:
1432 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1433 typedef std::vector<Symbol*> Symbols;
1434 typedef std::vector<Symbol_value<size> > Local_values;
1435
1436 static const Address invalid_address = static_cast<Address>(0) - 1;
1437
1438 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1439 const typename elfcpp::Ehdr<size, big_endian>&);
1440
1441 ~Sized_relobj();
1442
1443 // Checks if the offset of input section SHNDX within its output
1444 // section is invalid.
1445 bool
1446 is_output_section_offset_invalid(unsigned int shndx) const
1447 { return this->get_output_section_offset(shndx) == invalid_address; }
1448
1449 // Set up the object file based on TARGET.
1450 void
1451 setup()
1452 { this->do_setup(); }
1453
1454 // Return the number of symbols. This is only valid after
1455 // Object::add_symbols has been called.
1456 unsigned int
1457 symbol_count() const
1458 { return this->local_symbol_count_ + this->symbols_.size(); }
1459
1460 // If SYM is the index of a global symbol in the object file's
1461 // symbol table, return the Symbol object. Otherwise, return NULL.
1462 Symbol*
1463 global_symbol(unsigned int sym) const
1464 {
1465 if (sym >= this->local_symbol_count_)
1466 {
1467 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1468 return this->symbols_[sym - this->local_symbol_count_];
1469 }
1470 return NULL;
1471 }
1472
1473 // Return the section index of symbol SYM. Set *VALUE to its value
1474 // in the object file. Set *IS_ORDINARY if this is an ordinary
1475 // section index, not a special code between SHN_LORESERVE and
1476 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1477 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1478 // it will not return the final value of the symbol in the link.
1479 unsigned int
1480 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1481
1482 // Return a pointer to the Symbol_value structure which holds the
1483 // value of a local symbol.
1484 const Symbol_value<size>*
1485 local_symbol(unsigned int sym) const
1486 {
1487 gold_assert(sym < this->local_values_.size());
1488 return &this->local_values_[sym];
1489 }
1490
1491 // Return the index of local symbol SYM in the ordinary symbol
1492 // table. A value of -1U means that the symbol is not being output.
1493 unsigned int
1494 symtab_index(unsigned int sym) const
1495 {
1496 gold_assert(sym < this->local_values_.size());
1497 return this->local_values_[sym].output_symtab_index();
1498 }
1499
1500 // Return the index of local symbol SYM in the dynamic symbol
1501 // table. A value of -1U means that the symbol is not being output.
1502 unsigned int
1503 dynsym_index(unsigned int sym) const
1504 {
1505 gold_assert(sym < this->local_values_.size());
1506 return this->local_values_[sym].output_dynsym_index();
1507 }
1508
1509 // Return the input section index of local symbol SYM.
1510 unsigned int
1511 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1512 {
1513 gold_assert(sym < this->local_values_.size());
1514 return this->local_values_[sym].input_shndx(is_ordinary);
1515 }
1516
1517 // Record that local symbol SYM must be in the output symbol table.
1518 void
1519 set_must_have_output_symtab_entry(unsigned int sym)
1520 {
1521 gold_assert(sym < this->local_values_.size());
1522 this->local_values_[sym].set_must_have_output_symtab_entry();
1523 }
1524
1525 // Record that local symbol SYM needs a dynamic symbol entry.
1526 void
1527 set_needs_output_dynsym_entry(unsigned int sym)
1528 {
1529 gold_assert(sym < this->local_values_.size());
1530 this->local_values_[sym].set_needs_output_dynsym_entry();
1531 }
1532
1533 // Return whether the local symbol SYMNDX has a GOT offset.
1534 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1535 bool
1536 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1537 {
1538 Local_got_offsets::const_iterator p =
1539 this->local_got_offsets_.find(symndx);
1540 return (p != this->local_got_offsets_.end()
1541 && p->second->get_offset(got_type) != -1U);
1542 }
1543
1544 // Return the GOT offset of the local symbol SYMNDX.
1545 unsigned int
1546 local_got_offset(unsigned int symndx, unsigned int got_type) const
1547 {
1548 Local_got_offsets::const_iterator p =
1549 this->local_got_offsets_.find(symndx);
1550 gold_assert(p != this->local_got_offsets_.end());
1551 unsigned int off = p->second->get_offset(got_type);
1552 gold_assert(off != -1U);
1553 return off;
1554 }
1555
1556 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1557 void
1558 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1559 unsigned int got_offset)
1560 {
1561 Local_got_offsets::const_iterator p =
1562 this->local_got_offsets_.find(symndx);
1563 if (p != this->local_got_offsets_.end())
1564 p->second->set_offset(got_type, got_offset);
1565 else
1566 {
1567 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1568 std::pair<Local_got_offsets::iterator, bool> ins =
1569 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1570 gold_assert(ins.second);
1571 }
1572 }
1573
1574 // Get the offset of input section SHNDX within its output section.
1575 // This is -1 if the input section requires a special mapping, such
1576 // as a merge section. The output section can be found in the
1577 // output_sections_ field of the parent class Relobj.
1578 Address
1579 get_output_section_offset(unsigned int shndx) const
1580 {
1581 gold_assert(shndx < this->section_offsets_.size());
1582 return this->section_offsets_[shndx];
1583 }
1584
1585 // Return the name of the symbol that spans the given offset in the
1586 // specified section in this object. This is used only for error
1587 // messages and is not particularly efficient.
1588 bool
1589 get_symbol_location_info(unsigned int shndx, off_t offset,
1590 Symbol_location_info* info);
1591
1592 // Look for a kept section corresponding to the given discarded section,
1593 // and return its output address. This is used only for relocations in
1594 // debugging sections.
1595 Address
1596 map_to_kept_section(unsigned int shndx, bool* found) const;
1597
1598 protected:
1599 // Set up.
1600 virtual void
1601 do_setup();
1602
1603 // Read the symbols.
1604 void
1605 do_read_symbols(Read_symbols_data*);
1606
1607 // Return the number of local symbols.
1608 unsigned int
1609 do_local_symbol_count() const
1610 { return this->local_symbol_count_; }
1611
1612 // Lay out the input sections.
1613 void
1614 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1615
1616 // Layout sections whose layout was deferred while waiting for
1617 // input files from a plugin.
1618 void
1619 do_layout_deferred_sections(Layout*);
1620
1621 // Add the symbols to the symbol table.
1622 void
1623 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1624
1625 Archive::Should_include
1626 do_should_include_member(Symbol_table* symtab, Read_symbols_data*,
1627 std::string* why);
1628
1629 // Read the relocs.
1630 void
1631 do_read_relocs(Read_relocs_data*);
1632
1633 // Process the relocs to find list of referenced sections. Used only
1634 // during garbage collection.
1635 void
1636 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1637
1638 // Scan the relocs and adjust the symbol table.
1639 void
1640 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1641
1642 // Count the local symbols.
1643 void
1644 do_count_local_symbols(Stringpool_template<char>*,
1645 Stringpool_template<char>*);
1646
1647 // Finalize the local symbols.
1648 unsigned int
1649 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);
1650
1651 // Set the offset where local dynamic symbol information will be stored.
1652 unsigned int
1653 do_set_local_dynsym_indexes(unsigned int);
1654
1655 // Set the offset where local dynamic symbol information will be stored.
1656 unsigned int
1657 do_set_local_dynsym_offset(off_t);
1658
1659 // Relocate the input sections and write out the local symbols.
1660 void
1661 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of);
1662
1663 // Get the size of a section.
1664 uint64_t
1665 do_section_size(unsigned int shndx)
1666 { return this->elf_file_.section_size(shndx); }
1667
1668 // Get the name of a section.
1669 std::string
1670 do_section_name(unsigned int shndx)
1671 { return this->elf_file_.section_name(shndx); }
1672
1673 // Return the location of the contents of a section.
1674 Object::Location
1675 do_section_contents(unsigned int shndx)
1676 { return this->elf_file_.section_contents(shndx); }
1677
1678 // Return section flags.
1679 uint64_t
1680 do_section_flags(unsigned int shndx);
1681
1682 // Return section entsize.
1683 uint64_t
1684 do_section_entsize(unsigned int shndx);
1685
1686 // Return section address.
1687 uint64_t
1688 do_section_address(unsigned int shndx)
1689 { return this->elf_file_.section_addr(shndx); }
1690
1691 // Return section type.
1692 unsigned int
1693 do_section_type(unsigned int shndx)
1694 { return this->elf_file_.section_type(shndx); }
1695
1696 // Return the section link field.
1697 unsigned int
1698 do_section_link(unsigned int shndx)
1699 { return this->elf_file_.section_link(shndx); }
1700
1701 // Return the section info field.
1702 unsigned int
1703 do_section_info(unsigned int shndx)
1704 { return this->elf_file_.section_info(shndx); }
1705
1706 // Return the section alignment.
1707 uint64_t
1708 do_section_addralign(unsigned int shndx)
1709 { return this->elf_file_.section_addralign(shndx); }
1710
1711 // Return the Xindex structure to use.
1712 Xindex*
1713 do_initialize_xindex();
1714
1715 // Get symbol counts.
1716 void
1717 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1718
1719 // Get the global symbols.
1720 const Symbols*
1721 do_get_global_symbols() const
1722 { return &this->symbols_; }
1723
1724 // Get the offset of a section.
1725 uint64_t
1726 do_output_section_offset(unsigned int shndx) const
1727 {
1728 Address off = this->get_output_section_offset(shndx);
1729 if (off == invalid_address)
1730 return -1ULL;
1731 return off;
1732 }
1733
1734 // Set the offset of a section.
1735 void
1736 do_set_section_offset(unsigned int shndx, uint64_t off)
1737 {
1738 gold_assert(shndx < this->section_offsets_.size());
1739 this->section_offsets_[shndx] =
1740 (off == static_cast<uint64_t>(-1)
1741 ? invalid_address
1742 : convert_types<Address, uint64_t>(off));
1743 }
1744
1745 // Adjust a section index if necessary.
1746 unsigned int
1747 adjust_shndx(unsigned int shndx)
1748 {
1749 if (shndx >= elfcpp::SHN_LORESERVE)
1750 shndx += this->elf_file_.large_shndx_offset();
1751 return shndx;
1752 }
1753
1754 // Initialize input to output maps for section symbols in merged
1755 // sections.
1756 void
1757 initialize_input_to_output_maps();
1758
1759 // Free the input to output maps for section symbols in merged
1760 // sections.
1761 void
1762 free_input_to_output_maps();
1763
1764 // Return symbol table section index.
1765 unsigned int
1766 symtab_shndx() const
1767 { return this->symtab_shndx_; }
1768
1769 // Allow a child class to access the ELF file.
1770 elfcpp::Elf_file<size, big_endian, Object>*
1771 elf_file()
1772 { return &this->elf_file_; }
1773
1774 // Allow a child class to access the local values.
1775 Local_values*
1776 local_values()
1777 { return &this->local_values_; }
1778
1779 // Views and sizes when relocating.
1780 struct View_size
1781 {
1782 unsigned char* view;
1783 typename elfcpp::Elf_types<size>::Elf_Addr address;
1784 off_t offset;
1785 section_size_type view_size;
1786 bool is_input_output_view;
1787 bool is_postprocessing_view;
1788 };
1789
1790 typedef std::vector<View_size> Views;
1791
1792 // This may be overriden by a child class.
1793 virtual void
1794 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1795 const unsigned char* pshdrs, Views* pviews);
1796
1797 // Allow a child to set output local symbol count.
1798 void
1799 set_output_local_symbol_count(unsigned int value)
1800 { this->output_local_symbol_count_ = value; }
1801
1802 // Return TRUE if the section is a compressed debug section, and set
1803 // *UNCOMPRESSED_SIZE to the size of the uncompressed data.
1804 bool
1805 do_section_is_compressed(unsigned int shndx,
1806 section_size_type* uncompressed_size) const
1807 {
1808 if (this->compressed_sections_ == NULL)
1809 return false;
1810 Compressed_section_map::const_iterator p =
1811 this->compressed_sections_->find(shndx);
1812 if (p != this->compressed_sections_->end())
1813 {
1814 if (uncompressed_size != NULL)
1815 *uncompressed_size = p->second;
1816 return true;
1817 }
1818 return false;
1819 }
1820
1821 private:
1822 // For convenience.
1823 typedef Sized_relobj<size, big_endian> This;
1824 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1825 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1826 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1827 typedef elfcpp::Shdr<size, big_endian> Shdr;
1828
1829 // To keep track of discarded comdat sections, we need to map a member
1830 // section index to the object and section index of the corresponding
1831 // kept section.
1832 struct Kept_comdat_section
1833 {
1834 Kept_comdat_section(Relobj* a_object, unsigned int a_shndx)
1835 : object(a_object), shndx(a_shndx)
1836 { }
1837 Relobj* object;
1838 unsigned int shndx;
1839 };
1840 typedef std::map<unsigned int, Kept_comdat_section>
1841 Kept_comdat_section_table;
1842
1843 // Find the SHT_SYMTAB section, given the section headers.
1844 void
1845 find_symtab(const unsigned char* pshdrs);
1846
1847 // Return whether SHDR has the right flags for a GNU style exception
1848 // frame section.
1849 bool
1850 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1851
1852 // Return whether there is a section named .eh_frame which might be
1853 // a GNU style exception frame section.
1854 bool
1855 find_eh_frame(const unsigned char* pshdrs, const char* names,
1856 section_size_type names_size) const;
1857
1858 // Whether to include a section group in the link.
1859 bool
1860 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1861 const unsigned char*, const char *, section_size_type,
1862 std::vector<bool>*);
1863
1864 // Whether to include a linkonce section in the link.
1865 bool
1866 include_linkonce_section(Layout*, unsigned int, const char*,
1867 const elfcpp::Shdr<size, big_endian>&);
1868
1869 // Layout an input section.
1870 void
1871 layout_section(Layout* layout, unsigned int shndx, const char* name,
1872 typename This::Shdr& shdr, unsigned int reloc_shndx,
1873 unsigned int reloc_type);
1874
1875 // Write section data to the output file. Record the views and
1876 // sizes in VIEWS for use when relocating.
1877 void
1878 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1879
1880 // Relocate the sections in the output file.
1881 void
1882 relocate_sections(const Symbol_table* symtab, const Layout* layout,
1883 const unsigned char* pshdrs, Views* pviews)
1884 { this->do_relocate_sections(symtab, layout, pshdrs, pviews); }
1885
1886 // Scan the input relocations for --emit-relocs.
1887 void
1888 emit_relocs_scan(Symbol_table*, Layout*, const unsigned char* plocal_syms,
1889 const Read_relocs_data::Relocs_list::iterator&);
1890
1891 // Scan the input relocations for --emit-relocs, templatized on the
1892 // type of the relocation section.
1893 template<int sh_type>
1894 void
1895 emit_relocs_scan_reltype(Symbol_table*, Layout*,
1896 const unsigned char* plocal_syms,
1897 const Read_relocs_data::Relocs_list::iterator&,
1898 Relocatable_relocs*);
1899
1900 // Emit the relocs for --emit-relocs.
1901 void
1902 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1903 unsigned int sh_type, const unsigned char* prelocs,
1904 size_t reloc_count, Output_section*, Address output_offset,
1905 unsigned char* view, Address address,
1906 section_size_type view_size,
1907 unsigned char* reloc_view, section_size_type reloc_view_size);
1908
1909 // Emit the relocs for --emit-relocs, templatized on the type of the
1910 // relocation section.
1911 template<int sh_type>
1912 void
1913 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1914 const unsigned char* prelocs, size_t reloc_count,
1915 Output_section*, Address output_offset,
1916 unsigned char* view, Address address,
1917 section_size_type view_size,
1918 unsigned char* reloc_view,
1919 section_size_type reloc_view_size);
1920
1921 // A type shared by split_stack_adjust_reltype and find_functions.
1922 typedef std::map<section_offset_type, section_size_type> Function_offsets;
1923
1924 // Check for -fsplit-stack routines calling non-split-stack routines.
1925 void
1926 split_stack_adjust(const Symbol_table*, const unsigned char* pshdrs,
1927 unsigned int sh_type, unsigned int shndx,
1928 const unsigned char* prelocs, size_t reloc_count,
1929 unsigned char* view, section_size_type view_size,
1930 Reloc_symbol_changes** reloc_map);
1931
1932 template<int sh_type>
1933 void
1934 split_stack_adjust_reltype(const Symbol_table*, const unsigned char* pshdrs,
1935 unsigned int shndx, const unsigned char* prelocs,
1936 size_t reloc_count, unsigned char* view,
1937 section_size_type view_size,
1938 Reloc_symbol_changes** reloc_map);
1939
1940 // Find all functions in a section.
1941 void
1942 find_functions(const unsigned char* pshdrs, unsigned int shndx,
1943 Function_offsets*);
1944
1945 // Write out the local symbols.
1946 void
1947 write_local_symbols(Output_file*,
1948 const Stringpool_template<char>*,
1949 const Stringpool_template<char>*,
1950 Output_symtab_xindex*,
1951 Output_symtab_xindex*);
1952
1953 // Clear the local symbol information.
1954 void
1955 clear_local_symbols()
1956 {
1957 this->local_values_.clear();
1958 this->local_got_offsets_.clear();
1959 }
1960
1961 // Record a mapping from discarded section SHNDX to the corresponding
1962 // kept section.
1963 void
1964 set_kept_comdat_section(unsigned int shndx, Relobj* kept_object,
1965 unsigned int kept_shndx)
1966 {
1967 Kept_comdat_section kept(kept_object, kept_shndx);
1968 this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
1969 }
1970
1971 // Find the kept section corresponding to the discarded section
1972 // SHNDX. Return true if found.
1973 bool
1974 get_kept_comdat_section(unsigned int shndx, Relobj** kept_object,
1975 unsigned int* kept_shndx) const
1976 {
1977 typename Kept_comdat_section_table::const_iterator p =
1978 this->kept_comdat_sections_.find(shndx);
1979 if (p == this->kept_comdat_sections_.end())
1980 return false;
1981 *kept_object = p->second.object;
1982 *kept_shndx = p->second.shndx;
1983 return true;
1984 }
1985
1986 // The GOT offsets of local symbols. This map also stores GOT offsets
1987 // for tp-relative offsets for TLS symbols.
1988 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1989
1990 // The TLS GOT offsets of local symbols. The map stores the offsets
1991 // for either a single GOT entry that holds the module index of a TLS
1992 // symbol, or a pair of GOT entries containing the module index and
1993 // dtv-relative offset.
1994 struct Tls_got_entry
1995 {
1996 Tls_got_entry(int got_offset, bool have_pair)
1997 : got_offset_(got_offset),
1998 have_pair_(have_pair)
1999 { }
2000 int got_offset_;
2001 bool have_pair_;
2002 };
2003 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
2004
2005 // Saved information for sections whose layout was deferred.
2006 struct Deferred_layout
2007 {
2008 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2009 Deferred_layout(unsigned int shndx, const char* name,
2010 const unsigned char* pshdr,
2011 unsigned int reloc_shndx, unsigned int reloc_type)
2012 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
2013 reloc_type_(reloc_type)
2014 {
2015 memcpy(this->shdr_data_, pshdr, shdr_size);
2016 }
2017 unsigned int shndx_;
2018 std::string name_;
2019 unsigned int reloc_shndx_;
2020 unsigned int reloc_type_;
2021 unsigned char shdr_data_[shdr_size];
2022 };
2023
2024 // General access to the ELF file.
2025 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
2026 // Index of SHT_SYMTAB section.
2027 unsigned int symtab_shndx_;
2028 // The number of local symbols.
2029 unsigned int local_symbol_count_;
2030 // The number of local symbols which go into the output file.
2031 unsigned int output_local_symbol_count_;
2032 // The number of local symbols which go into the output file's dynamic
2033 // symbol table.
2034 unsigned int output_local_dynsym_count_;
2035 // The entries in the symbol table for the external symbols.
2036 Symbols symbols_;
2037 // Number of symbols defined in object file itself.
2038 size_t defined_count_;
2039 // File offset for local symbols.
2040 off_t local_symbol_offset_;
2041 // File offset for local dynamic symbols.
2042 off_t local_dynsym_offset_;
2043 // Values of local symbols.
2044 Local_values local_values_;
2045 // GOT offsets for local non-TLS symbols, and tp-relative offsets
2046 // for TLS symbols, indexed by symbol number.
2047 Local_got_offsets local_got_offsets_;
2048 // For each input section, the offset of the input section in its
2049 // output section. This is INVALID_ADDRESS if the input section requires a
2050 // special mapping.
2051 std::vector<Address> section_offsets_;
2052 // Table mapping discarded comdat sections to corresponding kept sections.
2053 Kept_comdat_section_table kept_comdat_sections_;
2054 // Whether this object has a GNU style .eh_frame section.
2055 bool has_eh_frame_;
2056 // If this object has a GNU style .eh_frame section that is discarded in
2057 // output, record the index here. Otherwise it is -1U.
2058 unsigned int discarded_eh_frame_shndx_;
2059 // The list of sections whose layout was deferred.
2060 std::vector<Deferred_layout> deferred_layout_;
2061 // The list of relocation sections whose layout was deferred.
2062 std::vector<Deferred_layout> deferred_layout_relocs_;
2063 // For compressed debug sections, map section index to uncompressed size.
2064 Compressed_section_map* compressed_sections_;
2065 };
2066
2067 // A class to manage the list of all objects.
2068
2069 class Input_objects
2070 {
2071 public:
2072 Input_objects()
2073 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
2074 { }
2075
2076 // The type of the list of input relocateable objects.
2077 typedef std::vector<Relobj*> Relobj_list;
2078 typedef Relobj_list::const_iterator Relobj_iterator;
2079
2080 // The type of the list of input dynamic objects.
2081 typedef std::vector<Dynobj*> Dynobj_list;
2082 typedef Dynobj_list::const_iterator Dynobj_iterator;
2083
2084 // Add an object to the list. Return true if all is well, or false
2085 // if this object should be ignored.
2086 bool
2087 add_object(Object*);
2088
2089 // Start processing an archive.
2090 void
2091 archive_start(Archive*);
2092
2093 // Stop processing an archive.
2094 void
2095 archive_stop(Archive*);
2096
2097 // For each dynamic object, check whether we've seen all of its
2098 // explicit dependencies.
2099 void
2100 check_dynamic_dependencies() const;
2101
2102 // Return whether an object was found in the system library
2103 // directory.
2104 bool
2105 found_in_system_library_directory(const Object*) const;
2106
2107 // Print symbol counts.
2108 void
2109 print_symbol_counts(const Symbol_table*) const;
2110
2111 // Print a cross reference table.
2112 void
2113 print_cref(const Symbol_table*, FILE*) const;
2114
2115 // Iterate over all regular objects.
2116
2117 Relobj_iterator
2118 relobj_begin() const
2119 { return this->relobj_list_.begin(); }
2120
2121 Relobj_iterator
2122 relobj_end() const
2123 { return this->relobj_list_.end(); }
2124
2125 // Iterate over all dynamic objects.
2126
2127 Dynobj_iterator
2128 dynobj_begin() const
2129 { return this->dynobj_list_.begin(); }
2130
2131 Dynobj_iterator
2132 dynobj_end() const
2133 { return this->dynobj_list_.end(); }
2134
2135 // Return whether we have seen any dynamic objects.
2136 bool
2137 any_dynamic() const
2138 { return !this->dynobj_list_.empty(); }
2139
2140 // Return the number of non dynamic objects.
2141 int
2142 number_of_relobjs() const
2143 { return this->relobj_list_.size(); }
2144
2145 // Return the number of input objects.
2146 int
2147 number_of_input_objects() const
2148 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
2149
2150 private:
2151 Input_objects(const Input_objects&);
2152 Input_objects& operator=(const Input_objects&);
2153
2154 // The list of ordinary objects included in the link.
2155 Relobj_list relobj_list_;
2156 // The list of dynamic objects included in the link.
2157 Dynobj_list dynobj_list_;
2158 // SONAMEs that we have seen.
2159 Unordered_set<std::string> sonames_;
2160 // Manage cross-references if requested.
2161 Cref* cref_;
2162 };
2163
2164 // Some of the information we pass to the relocation routines. We
2165 // group this together to avoid passing a dozen different arguments.
2166
2167 template<int size, bool big_endian>
2168 struct Relocate_info
2169 {
2170 // Symbol table.
2171 const Symbol_table* symtab;
2172 // Layout.
2173 const Layout* layout;
2174 // Object being relocated.
2175 Sized_relobj<size, big_endian>* object;
2176 // Section index of relocation section.
2177 unsigned int reloc_shndx;
2178 // Section header of relocation section.
2179 const unsigned char* reloc_shdr;
2180 // Section index of section being relocated.
2181 unsigned int data_shndx;
2182 // Section header of data section.
2183 const unsigned char* data_shdr;
2184
2185 // Return a string showing the location of a relocation. This is
2186 // only used for error messages.
2187 std::string
2188 location(size_t relnum, off_t reloffset) const;
2189 };
2190
2191 // This is used to represent a section in an object and is used as the
2192 // key type for various section maps.
2193 typedef std::pair<Object*, unsigned int> Section_id;
2194
2195 // This is similar to Section_id but is used when the section
2196 // pointers are const.
2197 typedef std::pair<const Object*, unsigned int> Const_section_id;
2198
2199 // The hash value is based on the address of an object in memory during
2200 // linking. It is okay to use this for looking up sections but never use
2201 // this in an unordered container that we want to traverse in a repeatable
2202 // manner.
2203
2204 struct Section_id_hash
2205 {
2206 size_t operator()(const Section_id& loc) const
2207 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2208 };
2209
2210 struct Const_section_id_hash
2211 {
2212 size_t operator()(const Const_section_id& loc) const
2213 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2214 };
2215
2216 // Return whether INPUT_FILE contains an ELF object start at file
2217 // offset OFFSET. This sets *START to point to a view of the start of
2218 // the file. It sets *READ_SIZE to the number of bytes in the view.
2219
2220 extern bool
2221 is_elf_object(Input_file* input_file, off_t offset,
2222 const unsigned char** start, int *read_size);
2223
2224 // Return an Object appropriate for the input file. P is BYTES long,
2225 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
2226 // this sees an object the linker is not configured to support, it
2227 // sets *PUNCONFIGURED to true and returns NULL without giving an
2228 // error message.
2229
2230 extern Object*
2231 make_elf_object(const std::string& name, Input_file*,
2232 off_t offset, const unsigned char* p,
2233 section_offset_type bytes, bool* punconfigured);
2234
2235 } // end namespace gold
2236
2237 #endif // !defined(GOLD_OBJECT_H)
This page took 0.075747 seconds and 5 git commands to generate.