2010-03-22 Rafael Espindola <espindola@google.com>
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33 #include "archive.h"
34
35 namespace gold
36 {
37
38 class General_options;
39 class Task;
40 class Cref;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 // Section headers.
59 File_view* section_headers;
60 // Section names.
61 File_view* section_names;
62 // Size of section name data in bytes.
63 section_size_type section_names_size;
64 // Symbol data.
65 File_view* symbols;
66 // Size of symbol data in bytes.
67 section_size_type symbols_size;
68 // Offset of external symbols within symbol data. This structure
69 // sometimes contains only external symbols, in which case this will
70 // be zero. Sometimes it contains all symbols.
71 section_offset_type external_symbols_offset;
72 // Symbol names.
73 File_view* symbol_names;
74 // Size of symbol name data in bytes.
75 section_size_type symbol_names_size;
76
77 // Version information. This is only used on dynamic objects.
78 // Version symbol data (from SHT_GNU_versym section).
79 File_view* versym;
80 section_size_type versym_size;
81 // Version definition data (from SHT_GNU_verdef section).
82 File_view* verdef;
83 section_size_type verdef_size;
84 unsigned int verdef_info;
85 // Needed version data (from SHT_GNU_verneed section).
86 File_view* verneed;
87 section_size_type verneed_size;
88 unsigned int verneed_info;
89 };
90
91 // Information used to print error messages.
92
93 struct Symbol_location_info
94 {
95 std::string source_file;
96 std::string enclosing_symbol_name;
97 int line_number;
98 };
99
100 // Data about a single relocation section. This is read in
101 // read_relocs and processed in scan_relocs.
102
103 struct Section_relocs
104 {
105 // Index of reloc section.
106 unsigned int reloc_shndx;
107 // Index of section that relocs apply to.
108 unsigned int data_shndx;
109 // Contents of reloc section.
110 File_view* contents;
111 // Reloc section type.
112 unsigned int sh_type;
113 // Number of reloc entries.
114 size_t reloc_count;
115 // Output section.
116 Output_section* output_section;
117 // Whether this section has special handling for offsets.
118 bool needs_special_offset_handling;
119 // Whether the data section is allocated (has the SHF_ALLOC flag set).
120 bool is_data_section_allocated;
121 };
122
123 // Relocations in an object file. This is read in read_relocs and
124 // processed in scan_relocs.
125
126 struct Read_relocs_data
127 {
128 typedef std::vector<Section_relocs> Relocs_list;
129 // The relocations.
130 Relocs_list relocs;
131 // The local symbols.
132 File_view* local_symbols;
133 };
134
135 // The Xindex class manages section indexes for objects with more than
136 // 0xff00 sections.
137
138 class Xindex
139 {
140 public:
141 Xindex(int large_shndx_offset)
142 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
143 { }
144
145 // Initialize the symtab_xindex_ array, given the object and the
146 // section index of the symbol table to use.
147 template<int size, bool big_endian>
148 void
149 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
150
151 // Read in the symtab_xindex_ array, given its section index.
152 // PSHDRS may optionally point to the section headers.
153 template<int size, bool big_endian>
154 void
155 read_symtab_xindex(Object*, unsigned int xindex_shndx,
156 const unsigned char* pshdrs);
157
158 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
159 // real section index.
160 unsigned int
161 sym_xindex_to_shndx(Object* object, unsigned int symndx);
162
163 private:
164 // The type of the array giving the real section index for symbols
165 // whose st_shndx field holds SHN_XINDEX.
166 typedef std::vector<unsigned int> Symtab_xindex;
167
168 // Adjust a section index if necessary. This should only be called
169 // for ordinary section indexes.
170 unsigned int
171 adjust_shndx(unsigned int shndx)
172 {
173 if (shndx >= elfcpp::SHN_LORESERVE)
174 shndx += this->large_shndx_offset_;
175 return shndx;
176 }
177
178 // Adjust to apply to large section indexes.
179 int large_shndx_offset_;
180 // The data from the SHT_SYMTAB_SHNDX section.
181 Symtab_xindex symtab_xindex_;
182 };
183
184 // Object is an abstract base class which represents either a 32-bit
185 // or a 64-bit input object. This can be a regular object file
186 // (ET_REL) or a shared object (ET_DYN).
187
188 class Object
189 {
190 public:
191 typedef std::vector<Symbol*> Symbols;
192
193 // NAME is the name of the object as we would report it to the user
194 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
195 // used to read the file. OFFSET is the offset within the input
196 // file--0 for a .o or .so file, something else for a .a file.
197 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
198 off_t offset = 0)
199 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
200 is_dynamic_(is_dynamic), is_needed_(false), uses_split_stack_(false),
201 has_no_split_stack_(false), no_export_(false), xindex_(NULL)
202 { input_file->file().add_object(); }
203
204 virtual ~Object()
205 { this->input_file_->file().remove_object(); }
206
207 // Return the name of the object as we would report it to the tuser.
208 const std::string&
209 name() const
210 { return this->name_; }
211
212 // Get the offset into the file.
213 off_t
214 offset() const
215 { return this->offset_; }
216
217 // Return whether this is a dynamic object.
218 bool
219 is_dynamic() const
220 { return this->is_dynamic_; }
221
222 // Return whether this object is needed--true if it is a dynamic
223 // object which defines some symbol referenced by a regular object.
224 // We keep the flag here rather than in Dynobj for convenience when
225 // setting it.
226 bool
227 is_needed() const
228 { return this->is_needed_; }
229
230 // Record that this object is needed.
231 void
232 set_is_needed()
233 { this->is_needed_ = true; }
234
235 // Return whether this object was compiled with -fsplit-stack.
236 bool
237 uses_split_stack() const
238 { return this->uses_split_stack_; }
239
240 // Return whether this object contains any functions compiled with
241 // the no_split_stack attribute.
242 bool
243 has_no_split_stack() const
244 { return this->has_no_split_stack_; }
245
246 // Returns NULL for Objects that are not plugin objects. This method
247 // is overridden in the Pluginobj class.
248 Pluginobj*
249 pluginobj()
250 { return this->do_pluginobj(); }
251
252 // Get the file. We pass on const-ness.
253 Input_file*
254 input_file()
255 { return this->input_file_; }
256
257 const Input_file*
258 input_file() const
259 { return this->input_file_; }
260
261 // Lock the underlying file.
262 void
263 lock(const Task* t)
264 { this->input_file()->file().lock(t); }
265
266 // Unlock the underlying file.
267 void
268 unlock(const Task* t)
269 { this->input_file()->file().unlock(t); }
270
271 // Return whether the underlying file is locked.
272 bool
273 is_locked() const
274 { return this->input_file()->file().is_locked(); }
275
276 // Return the token, so that the task can be queued.
277 Task_token*
278 token()
279 { return this->input_file()->file().token(); }
280
281 // Release the underlying file.
282 void
283 release()
284 { this->input_file_->file().release(); }
285
286 // Return whether we should just read symbols from this file.
287 bool
288 just_symbols() const
289 { return this->input_file()->just_symbols(); }
290
291 // Get the number of sections.
292 unsigned int
293 shnum() const
294 { return this->shnum_; }
295
296 // Return a view of the contents of a section. Set *PLEN to the
297 // size. CACHE is a hint as in File_read::get_view.
298 const unsigned char*
299 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
300
301 // Adjust a symbol's section index as needed. SYMNDX is the index
302 // of the symbol and SHNDX is the symbol's section from
303 // get_st_shndx. This returns the section index. It sets
304 // *IS_ORDINARY to indicate whether this is a normal section index,
305 // rather than a special code between SHN_LORESERVE and
306 // SHN_HIRESERVE.
307 unsigned int
308 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
309 {
310 if (shndx < elfcpp::SHN_LORESERVE)
311 *is_ordinary = true;
312 else if (shndx == elfcpp::SHN_XINDEX)
313 {
314 if (this->xindex_ == NULL)
315 this->xindex_ = this->do_initialize_xindex();
316 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
317 *is_ordinary = true;
318 }
319 else
320 *is_ordinary = false;
321 return shndx;
322 }
323
324 // Return the size of a section given a section index.
325 uint64_t
326 section_size(unsigned int shndx)
327 { return this->do_section_size(shndx); }
328
329 // Return the name of a section given a section index.
330 std::string
331 section_name(unsigned int shndx)
332 { return this->do_section_name(shndx); }
333
334 // Return the section flags given a section index.
335 uint64_t
336 section_flags(unsigned int shndx)
337 { return this->do_section_flags(shndx); }
338
339 // Return the section entsize given a section index.
340 uint64_t
341 section_entsize(unsigned int shndx)
342 { return this->do_section_entsize(shndx); }
343
344 // Return the section address given a section index.
345 uint64_t
346 section_address(unsigned int shndx)
347 { return this->do_section_address(shndx); }
348
349 // Return the section type given a section index.
350 unsigned int
351 section_type(unsigned int shndx)
352 { return this->do_section_type(shndx); }
353
354 // Return the section link field given a section index.
355 unsigned int
356 section_link(unsigned int shndx)
357 { return this->do_section_link(shndx); }
358
359 // Return the section info field given a section index.
360 unsigned int
361 section_info(unsigned int shndx)
362 { return this->do_section_info(shndx); }
363
364 // Return the required section alignment given a section index.
365 uint64_t
366 section_addralign(unsigned int shndx)
367 { return this->do_section_addralign(shndx); }
368
369 // Read the symbol information.
370 void
371 read_symbols(Read_symbols_data* sd)
372 { return this->do_read_symbols(sd); }
373
374 // Pass sections which should be included in the link to the Layout
375 // object, and record where the sections go in the output file.
376 void
377 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
378 { this->do_layout(symtab, layout, sd); }
379
380 // Add symbol information to the global symbol table.
381 void
382 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
383 { this->do_add_symbols(symtab, sd, layout); }
384
385 // Add symbol information to the global symbol table.
386 Archive::Should_include
387 should_include_member(Symbol_table* symtab, Read_symbols_data* sd,
388 std::string* why)
389 { return this->do_should_include_member(symtab, sd, why); }
390
391 // Functions and types for the elfcpp::Elf_file interface. This
392 // permit us to use Object as the File template parameter for
393 // elfcpp::Elf_file.
394
395 // The View class is returned by view. It must support a single
396 // method, data(). This is trivial, because get_view does what we
397 // need.
398 class View
399 {
400 public:
401 View(const unsigned char* p)
402 : p_(p)
403 { }
404
405 const unsigned char*
406 data() const
407 { return this->p_; }
408
409 private:
410 const unsigned char* p_;
411 };
412
413 // Return a View.
414 View
415 view(off_t file_offset, section_size_type data_size)
416 { return View(this->get_view(file_offset, data_size, true, true)); }
417
418 // Report an error.
419 void
420 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
421
422 // A location in the file.
423 struct Location
424 {
425 off_t file_offset;
426 off_t data_size;
427
428 Location(off_t fo, section_size_type ds)
429 : file_offset(fo), data_size(ds)
430 { }
431 };
432
433 // Get a View given a Location.
434 View view(Location loc)
435 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
436
437 // Get a view into the underlying file.
438 const unsigned char*
439 get_view(off_t start, section_size_type size, bool aligned, bool cache)
440 {
441 return this->input_file()->file().get_view(this->offset_, start, size,
442 aligned, cache);
443 }
444
445 // Get a lasting view into the underlying file.
446 File_view*
447 get_lasting_view(off_t start, section_size_type size, bool aligned,
448 bool cache)
449 {
450 return this->input_file()->file().get_lasting_view(this->offset_, start,
451 size, aligned, cache);
452 }
453
454 // Read data from the underlying file.
455 void
456 read(off_t start, section_size_type size, void* p)
457 { this->input_file()->file().read(start + this->offset_, size, p); }
458
459 // Read multiple data from the underlying file.
460 void
461 read_multiple(const File_read::Read_multiple& rm)
462 { this->input_file()->file().read_multiple(this->offset_, rm); }
463
464 // Stop caching views in the underlying file.
465 void
466 clear_view_cache_marks()
467 { this->input_file()->file().clear_view_cache_marks(); }
468
469 // Get the number of global symbols defined by this object, and the
470 // number of the symbols whose final definition came from this
471 // object.
472 void
473 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
474 size_t* used) const
475 { this->do_get_global_symbol_counts(symtab, defined, used); }
476
477 // Get the symbols defined in this object.
478 const Symbols*
479 get_global_symbols() const
480 { return this->do_get_global_symbols(); }
481
482 // Return whether this object was found in a system directory.
483 bool
484 is_in_system_directory() const
485 { return this->input_file()->is_in_system_directory(); }
486
487 // Return whether we found this object by searching a directory.
488 bool
489 searched_for() const
490 { return this->input_file()->will_search_for(); }
491
492 bool
493 no_export() const
494 { return this->no_export_; }
495
496 void
497 set_no_export(bool value)
498 { this->no_export_ = value; }
499
500 protected:
501 // Returns NULL for Objects that are not plugin objects. This method
502 // is overridden in the Pluginobj class.
503 virtual Pluginobj*
504 do_pluginobj()
505 { return NULL; }
506
507 // Read the symbols--implemented by child class.
508 virtual void
509 do_read_symbols(Read_symbols_data*) = 0;
510
511 // Lay out sections--implemented by child class.
512 virtual void
513 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
514
515 // Add symbol information to the global symbol table--implemented by
516 // child class.
517 virtual void
518 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
519
520 virtual Archive::Should_include
521 do_should_include_member(Symbol_table* symtab, Read_symbols_data*,
522 std::string* why) = 0;
523
524 // Return the location of the contents of a section. Implemented by
525 // child class.
526 virtual Location
527 do_section_contents(unsigned int shndx) = 0;
528
529 // Get the size of a section--implemented by child class.
530 virtual uint64_t
531 do_section_size(unsigned int shndx) = 0;
532
533 // Get the name of a section--implemented by child class.
534 virtual std::string
535 do_section_name(unsigned int shndx) = 0;
536
537 // Get section flags--implemented by child class.
538 virtual uint64_t
539 do_section_flags(unsigned int shndx) = 0;
540
541 // Get section entsize--implemented by child class.
542 virtual uint64_t
543 do_section_entsize(unsigned int shndx) = 0;
544
545 // Get section address--implemented by child class.
546 virtual uint64_t
547 do_section_address(unsigned int shndx) = 0;
548
549 // Get section type--implemented by child class.
550 virtual unsigned int
551 do_section_type(unsigned int shndx) = 0;
552
553 // Get section link field--implemented by child class.
554 virtual unsigned int
555 do_section_link(unsigned int shndx) = 0;
556
557 // Get section info field--implemented by child class.
558 virtual unsigned int
559 do_section_info(unsigned int shndx) = 0;
560
561 // Get section alignment--implemented by child class.
562 virtual uint64_t
563 do_section_addralign(unsigned int shndx) = 0;
564
565 // Return the Xindex structure to use.
566 virtual Xindex*
567 do_initialize_xindex() = 0;
568
569 // Implement get_global_symbol_counts--implemented by child class.
570 virtual void
571 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
572
573 virtual const Symbols*
574 do_get_global_symbols() const = 0;
575
576 // Set the number of sections.
577 void
578 set_shnum(int shnum)
579 { this->shnum_ = shnum; }
580
581 // Functions used by both Sized_relobj and Sized_dynobj.
582
583 // Read the section data into a Read_symbols_data object.
584 template<int size, bool big_endian>
585 void
586 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
587 Read_symbols_data*);
588
589 // Let the child class initialize the xindex object directly.
590 void
591 set_xindex(Xindex* xindex)
592 {
593 gold_assert(this->xindex_ == NULL);
594 this->xindex_ = xindex;
595 }
596
597 // If NAME is the name of a special .gnu.warning section, arrange
598 // for the warning to be issued. SHNDX is the section index.
599 // Return whether it is a warning section.
600 bool
601 handle_gnu_warning_section(const char* name, unsigned int shndx,
602 Symbol_table*);
603
604 // If NAME is the name of the special section which indicates that
605 // this object was compiled with -fstack-split, mark it accordingly,
606 // and return true. Otherwise return false.
607 bool
608 handle_split_stack_section(const char* name);
609
610 private:
611 // This class may not be copied.
612 Object(const Object&);
613 Object& operator=(const Object&);
614
615 // Name of object as printed to user.
616 std::string name_;
617 // For reading the file.
618 Input_file* input_file_;
619 // Offset within the file--0 for an object file, non-0 for an
620 // archive.
621 off_t offset_;
622 // Number of input sections.
623 unsigned int shnum_;
624 // Whether this is a dynamic object.
625 bool is_dynamic_ : 1;
626 // Whether this object is needed. This is only set for dynamic
627 // objects, and means that the object defined a symbol which was
628 // used by a reference from a regular object.
629 bool is_needed_ : 1;
630 // Whether this object was compiled with -fsplit-stack.
631 bool uses_split_stack_ : 1;
632 // Whether this object contains any functions compiled with the
633 // no_split_stack attribute.
634 bool has_no_split_stack_ : 1;
635 // True if exclude this object from automatic symbol export.
636 // This is used only for archive objects.
637 bool no_export_ : 1;
638 // Many sections for objects with more than SHN_LORESERVE sections.
639 Xindex* xindex_;
640 };
641
642 // A regular object (ET_REL). This is an abstract base class itself.
643 // The implementation is the template class Sized_relobj.
644
645 class Relobj : public Object
646 {
647 public:
648 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
649 : Object(name, input_file, false, offset),
650 output_sections_(),
651 map_to_relocatable_relocs_(NULL),
652 object_merge_map_(NULL),
653 relocs_must_follow_section_writes_(false),
654 sd_(NULL)
655 { }
656
657 // During garbage collection, the Read_symbols_data pass for
658 // each object is stored as layout needs to be done after
659 // reloc processing.
660 Symbols_data*
661 get_symbols_data()
662 { return this->sd_; }
663
664 // Decides which section names have to be included in the worklist
665 // as roots.
666 bool
667 is_section_name_included(const char *name);
668
669 void
670 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
671 unsigned int section_header_size);
672
673 void
674 set_symbols_data(Symbols_data* sd)
675 { this->sd_ = sd; }
676
677 // During garbage collection, the Read_relocs pass for all objects
678 // is done before scanning the relocs. In that case, this->rd_ is
679 // used to store the information from Read_relocs for each object.
680 // This data is also used to compute the list of relevant sections.
681 Read_relocs_data*
682 get_relocs_data()
683 { return this->rd_; }
684
685 void
686 set_relocs_data(Read_relocs_data* rd)
687 { this->rd_ = rd; }
688
689 virtual bool
690 is_output_section_offset_invalid(unsigned int shndx) const = 0;
691
692 // Read the relocs.
693 void
694 read_relocs(Read_relocs_data* rd)
695 { return this->do_read_relocs(rd); }
696
697 // Process the relocs, during garbage collection only.
698 void
699 gc_process_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
700 { return this->do_gc_process_relocs(symtab, layout, rd); }
701
702 // Scan the relocs and adjust the symbol table.
703 void
704 scan_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
705 { return this->do_scan_relocs(symtab, layout, rd); }
706
707 // The number of local symbols in the input symbol table.
708 virtual unsigned int
709 local_symbol_count() const
710 { return this->do_local_symbol_count(); }
711
712 // Initial local symbol processing: count the number of local symbols
713 // in the output symbol table and dynamic symbol table; add local symbol
714 // names to *POOL and *DYNPOOL.
715 void
716 count_local_symbols(Stringpool_template<char>* pool,
717 Stringpool_template<char>* dynpool)
718 { return this->do_count_local_symbols(pool, dynpool); }
719
720 // Set the values of the local symbols, set the output symbol table
721 // indexes for the local variables, and set the offset where local
722 // symbol information will be stored. Returns the new local symbol index.
723 unsigned int
724 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
725 { return this->do_finalize_local_symbols(index, off, symtab); }
726
727 // Set the output dynamic symbol table indexes for the local variables.
728 unsigned int
729 set_local_dynsym_indexes(unsigned int index)
730 { return this->do_set_local_dynsym_indexes(index); }
731
732 // Set the offset where local dynamic symbol information will be stored.
733 unsigned int
734 set_local_dynsym_offset(off_t off)
735 { return this->do_set_local_dynsym_offset(off); }
736
737 // Relocate the input sections and write out the local symbols.
738 void
739 relocate(const Symbol_table* symtab, const Layout* layout, Output_file* of)
740 { return this->do_relocate(symtab, layout, of); }
741
742 // Return whether an input section is being included in the link.
743 bool
744 is_section_included(unsigned int shndx) const
745 {
746 gold_assert(shndx < this->output_sections_.size());
747 return this->output_sections_[shndx] != NULL;
748 }
749
750 // Given a section index, return the corresponding Output_section.
751 // The return value will be NULL if the section is not included in
752 // the link.
753 Output_section*
754 output_section(unsigned int shndx) const
755 {
756 gold_assert(shndx < this->output_sections_.size());
757 return this->output_sections_[shndx];
758 }
759
760 // The the output section of the input section with index SHNDX.
761 // This is only used currently to remove a section from the link in
762 // relaxation.
763 void
764 set_output_section(unsigned int shndx, Output_section* os)
765 {
766 gold_assert(shndx < this->output_sections_.size());
767 this->output_sections_[shndx] = os;
768 }
769
770 // Given a section index, return the offset in the Output_section.
771 // The return value will be -1U if the section is specially mapped,
772 // such as a merge section.
773 uint64_t
774 output_section_offset(unsigned int shndx) const
775 { return this->do_output_section_offset(shndx); }
776
777 // Set the offset of an input section within its output section.
778 void
779 set_section_offset(unsigned int shndx, uint64_t off)
780 { this->do_set_section_offset(shndx, off); }
781
782 // Return true if we need to wait for output sections to be written
783 // before we can apply relocations. This is true if the object has
784 // any relocations for sections which require special handling, such
785 // as the exception frame section.
786 bool
787 relocs_must_follow_section_writes() const
788 { return this->relocs_must_follow_section_writes_; }
789
790 // Return the object merge map.
791 Object_merge_map*
792 merge_map() const
793 { return this->object_merge_map_; }
794
795 // Set the object merge map.
796 void
797 set_merge_map(Object_merge_map* object_merge_map)
798 {
799 gold_assert(this->object_merge_map_ == NULL);
800 this->object_merge_map_ = object_merge_map;
801 }
802
803 // Record the relocatable reloc info for an input reloc section.
804 void
805 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
806 {
807 gold_assert(reloc_shndx < this->shnum());
808 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
809 }
810
811 // Get the relocatable reloc info for an input reloc section.
812 Relocatable_relocs*
813 relocatable_relocs(unsigned int reloc_shndx)
814 {
815 gold_assert(reloc_shndx < this->shnum());
816 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
817 }
818
819 // Layout sections whose layout was deferred while waiting for
820 // input files from a plugin.
821 void
822 layout_deferred_sections(Layout* layout)
823 { this->do_layout_deferred_sections(layout); }
824
825 protected:
826 // The output section to be used for each input section, indexed by
827 // the input section number. The output section is NULL if the
828 // input section is to be discarded.
829 typedef std::vector<Output_section*> Output_sections;
830
831 // Read the relocs--implemented by child class.
832 virtual void
833 do_read_relocs(Read_relocs_data*) = 0;
834
835 // Process the relocs--implemented by child class.
836 virtual void
837 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
838
839 // Scan the relocs--implemented by child class.
840 virtual void
841 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
842
843 // Return the number of local symbols--implemented by child class.
844 virtual unsigned int
845 do_local_symbol_count() const = 0;
846
847 // Count local symbols--implemented by child class.
848 virtual void
849 do_count_local_symbols(Stringpool_template<char>*,
850 Stringpool_template<char>*) = 0;
851
852 // Finalize the local symbols. Set the output symbol table indexes
853 // for the local variables, and set the offset where local symbol
854 // information will be stored.
855 virtual unsigned int
856 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;
857
858 // Set the output dynamic symbol table indexes for the local variables.
859 virtual unsigned int
860 do_set_local_dynsym_indexes(unsigned int) = 0;
861
862 // Set the offset where local dynamic symbol information will be stored.
863 virtual unsigned int
864 do_set_local_dynsym_offset(off_t) = 0;
865
866 // Relocate the input sections and write out the local
867 // symbols--implemented by child class.
868 virtual void
869 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of) = 0;
870
871 // Get the offset of a section--implemented by child class.
872 virtual uint64_t
873 do_output_section_offset(unsigned int shndx) const = 0;
874
875 // Set the offset of a section--implemented by child class.
876 virtual void
877 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
878
879 // Layout sections whose layout was deferred while waiting for
880 // input files from a plugin--implemented by child class.
881 virtual void
882 do_layout_deferred_sections(Layout*) = 0;
883
884 // Return the vector mapping input sections to output sections.
885 Output_sections&
886 output_sections()
887 { return this->output_sections_; }
888
889 const Output_sections&
890 output_sections() const
891 { return this->output_sections_; }
892
893 // Set the size of the relocatable relocs array.
894 void
895 size_relocatable_relocs()
896 {
897 this->map_to_relocatable_relocs_ =
898 new std::vector<Relocatable_relocs*>(this->shnum());
899 }
900
901 // Record that we must wait for the output sections to be written
902 // before applying relocations.
903 void
904 set_relocs_must_follow_section_writes()
905 { this->relocs_must_follow_section_writes_ = true; }
906
907 private:
908 // Mapping from input sections to output section.
909 Output_sections output_sections_;
910 // Mapping from input section index to the information recorded for
911 // the relocations. This is only used for a relocatable link.
912 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
913 // Mappings for merge sections. This is managed by the code in the
914 // Merge_map class.
915 Object_merge_map* object_merge_map_;
916 // Whether we need to wait for output sections to be written before
917 // we can apply relocations.
918 bool relocs_must_follow_section_writes_;
919 // Used to store the relocs data computed by the Read_relocs pass.
920 // Used during garbage collection of unused sections.
921 Read_relocs_data* rd_;
922 // Used to store the symbols data computed by the Read_symbols pass.
923 // Again used during garbage collection when laying out referenced
924 // sections.
925 gold::Symbols_data *sd_;
926 };
927
928 // This class is used to handle relocations against a section symbol
929 // in an SHF_MERGE section. For such a symbol, we need to know the
930 // addend of the relocation before we can determine the final value.
931 // The addend gives us the location in the input section, and we can
932 // determine how it is mapped to the output section. For a
933 // non-section symbol, we apply the addend to the final value of the
934 // symbol; that is done in finalize_local_symbols, and does not use
935 // this class.
936
937 template<int size>
938 class Merged_symbol_value
939 {
940 public:
941 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
942
943 // We use a hash table to map offsets in the input section to output
944 // addresses.
945 typedef Unordered_map<section_offset_type, Value> Output_addresses;
946
947 Merged_symbol_value(Value input_value, Value output_start_address)
948 : input_value_(input_value), output_start_address_(output_start_address),
949 output_addresses_()
950 { }
951
952 // Initialize the hash table.
953 void
954 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
955
956 // Release the hash table to save space.
957 void
958 free_input_to_output_map()
959 { this->output_addresses_.clear(); }
960
961 // Get the output value corresponding to an addend. The object and
962 // input section index are passed in because the caller will have
963 // them; otherwise we could store them here.
964 Value
965 value(const Relobj* object, unsigned int input_shndx, Value addend) const
966 {
967 // This is a relocation against a section symbol. ADDEND is the
968 // offset in the section. The result should be the start of some
969 // merge area. If the object file wants something else, it should
970 // use a regular symbol rather than a section symbol.
971 // Unfortunately, PR 6658 shows a case in which the object file
972 // refers to the section symbol, but uses a negative ADDEND to
973 // compensate for a PC relative reloc. We can't handle the
974 // general case. However, we can handle the special case of a
975 // negative addend, by assuming that it refers to the start of the
976 // section. Of course, that means that we have to guess when
977 // ADDEND is negative. It is normal to see a 32-bit value here
978 // even when the template parameter size is 64, as 64-bit object
979 // file formats have 32-bit relocations. We know this is a merge
980 // section, so we know it has to fit into memory. So we assume
981 // that we won't see a value larger than a large 32-bit unsigned
982 // value. This will break objects with very very large merge
983 // sections; they probably break in other ways anyhow.
984 Value input_offset = this->input_value_;
985 if (addend < 0xffffff00)
986 {
987 input_offset += addend;
988 addend = 0;
989 }
990 typename Output_addresses::const_iterator p =
991 this->output_addresses_.find(input_offset);
992 if (p != this->output_addresses_.end())
993 return p->second + addend;
994
995 return (this->value_from_output_section(object, input_shndx, input_offset)
996 + addend);
997 }
998
999 private:
1000 // Get the output value for an input offset if we couldn't find it
1001 // in the hash table.
1002 Value
1003 value_from_output_section(const Relobj*, unsigned int input_shndx,
1004 Value input_offset) const;
1005
1006 // The value of the section symbol in the input file. This is
1007 // normally zero, but could in principle be something else.
1008 Value input_value_;
1009 // The start address of this merged section in the output file.
1010 Value output_start_address_;
1011 // A hash table which maps offsets in the input section to output
1012 // addresses. This only maps specific offsets, not all offsets.
1013 Output_addresses output_addresses_;
1014 };
1015
1016 // This POD class is holds the value of a symbol. This is used for
1017 // local symbols, and for all symbols during relocation processing.
1018 // For special sections, such as SHF_MERGE sections, this calls a
1019 // function to get the final symbol value.
1020
1021 template<int size>
1022 class Symbol_value
1023 {
1024 public:
1025 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
1026
1027 Symbol_value()
1028 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
1029 is_ordinary_shndx_(false), is_section_symbol_(false),
1030 is_tls_symbol_(false), has_output_value_(true)
1031 { this->u_.value = 0; }
1032
1033 // Get the value of this symbol. OBJECT is the object in which this
1034 // symbol is defined, and ADDEND is an addend to add to the value.
1035 template<bool big_endian>
1036 Value
1037 value(const Sized_relobj<size, big_endian>* object, Value addend) const
1038 {
1039 if (this->has_output_value_)
1040 return this->u_.value + addend;
1041 else
1042 {
1043 gold_assert(this->is_ordinary_shndx_);
1044 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
1045 addend);
1046 }
1047 }
1048
1049 // Set the value of this symbol in the output symbol table.
1050 void
1051 set_output_value(Value value)
1052 { this->u_.value = value; }
1053
1054 // For a section symbol in a merged section, we need more
1055 // information.
1056 void
1057 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1058 {
1059 gold_assert(this->is_section_symbol_);
1060 this->has_output_value_ = false;
1061 this->u_.merged_symbol_value = msv;
1062 }
1063
1064 // Initialize the input to output map for a section symbol in a
1065 // merged section. We also initialize the value of a non-section
1066 // symbol in a merged section.
1067 void
1068 initialize_input_to_output_map(const Relobj* object)
1069 {
1070 if (!this->has_output_value_)
1071 {
1072 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1073 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1074 msv->initialize_input_to_output_map(object, this->input_shndx_);
1075 }
1076 }
1077
1078 // Free the input to output map for a section symbol in a merged
1079 // section.
1080 void
1081 free_input_to_output_map()
1082 {
1083 if (!this->has_output_value_)
1084 this->u_.merged_symbol_value->free_input_to_output_map();
1085 }
1086
1087 // Set the value of the symbol from the input file. This is only
1088 // called by count_local_symbols, to communicate the value to
1089 // finalize_local_symbols.
1090 void
1091 set_input_value(Value value)
1092 { this->u_.value = value; }
1093
1094 // Return the input value. This is only called by
1095 // finalize_local_symbols and (in special cases) relocate_section.
1096 Value
1097 input_value() const
1098 { return this->u_.value; }
1099
1100 // Return whether we have set the index in the output symbol table
1101 // yet.
1102 bool
1103 is_output_symtab_index_set() const
1104 {
1105 return (this->output_symtab_index_ != 0
1106 && this->output_symtab_index_ != -2U);
1107 }
1108
1109 // Return whether this symbol may be discarded from the normal
1110 // symbol table.
1111 bool
1112 may_be_discarded_from_output_symtab() const
1113 {
1114 gold_assert(!this->is_output_symtab_index_set());
1115 return this->output_symtab_index_ != -2U;
1116 }
1117
1118 // Return whether this symbol has an entry in the output symbol
1119 // table.
1120 bool
1121 has_output_symtab_entry() const
1122 {
1123 gold_assert(this->is_output_symtab_index_set());
1124 return this->output_symtab_index_ != -1U;
1125 }
1126
1127 // Return the index in the output symbol table.
1128 unsigned int
1129 output_symtab_index() const
1130 {
1131 gold_assert(this->is_output_symtab_index_set()
1132 && this->output_symtab_index_ != -1U);
1133 return this->output_symtab_index_;
1134 }
1135
1136 // Set the index in the output symbol table.
1137 void
1138 set_output_symtab_index(unsigned int i)
1139 {
1140 gold_assert(!this->is_output_symtab_index_set());
1141 gold_assert(i != 0 && i != -1U && i != -2U);
1142 this->output_symtab_index_ = i;
1143 }
1144
1145 // Record that this symbol should not go into the output symbol
1146 // table.
1147 void
1148 set_no_output_symtab_entry()
1149 {
1150 gold_assert(this->output_symtab_index_ == 0);
1151 this->output_symtab_index_ = -1U;
1152 }
1153
1154 // Record that this symbol must go into the output symbol table,
1155 // because it there is a relocation that uses it.
1156 void
1157 set_must_have_output_symtab_entry()
1158 {
1159 gold_assert(!this->is_output_symtab_index_set());
1160 this->output_symtab_index_ = -2U;
1161 }
1162
1163 // Set the index in the output dynamic symbol table.
1164 void
1165 set_needs_output_dynsym_entry()
1166 {
1167 gold_assert(!this->is_section_symbol());
1168 this->output_dynsym_index_ = 0;
1169 }
1170
1171 // Return whether this symbol should go into the dynamic symbol
1172 // table.
1173 bool
1174 needs_output_dynsym_entry() const
1175 {
1176 return this->output_dynsym_index_ != -1U;
1177 }
1178
1179 // Return whether this symbol has an entry in the dynamic symbol
1180 // table.
1181 bool
1182 has_output_dynsym_entry() const
1183 {
1184 gold_assert(this->output_dynsym_index_ != 0);
1185 return this->output_dynsym_index_ != -1U;
1186 }
1187
1188 // Record that this symbol should go into the dynamic symbol table.
1189 void
1190 set_output_dynsym_index(unsigned int i)
1191 {
1192 gold_assert(this->output_dynsym_index_ == 0);
1193 gold_assert(i != 0 && i != -1U);
1194 this->output_dynsym_index_ = i;
1195 }
1196
1197 // Return the index in the output dynamic symbol table.
1198 unsigned int
1199 output_dynsym_index() const
1200 {
1201 gold_assert(this->output_dynsym_index_ != 0
1202 && this->output_dynsym_index_ != -1U);
1203 return this->output_dynsym_index_;
1204 }
1205
1206 // Set the index of the input section in the input file.
1207 void
1208 set_input_shndx(unsigned int i, bool is_ordinary)
1209 {
1210 this->input_shndx_ = i;
1211 // input_shndx_ field is a bitfield, so make sure that the value
1212 // fits.
1213 gold_assert(this->input_shndx_ == i);
1214 this->is_ordinary_shndx_ = is_ordinary;
1215 }
1216
1217 // Return the index of the input section in the input file.
1218 unsigned int
1219 input_shndx(bool* is_ordinary) const
1220 {
1221 *is_ordinary = this->is_ordinary_shndx_;
1222 return this->input_shndx_;
1223 }
1224
1225 // Whether this is a section symbol.
1226 bool
1227 is_section_symbol() const
1228 { return this->is_section_symbol_; }
1229
1230 // Record that this is a section symbol.
1231 void
1232 set_is_section_symbol()
1233 {
1234 gold_assert(!this->needs_output_dynsym_entry());
1235 this->is_section_symbol_ = true;
1236 }
1237
1238 // Record that this is a TLS symbol.
1239 void
1240 set_is_tls_symbol()
1241 { this->is_tls_symbol_ = true; }
1242
1243 // Return TRUE if this is a TLS symbol.
1244 bool
1245 is_tls_symbol() const
1246 { return this->is_tls_symbol_; }
1247
1248 private:
1249 // The index of this local symbol in the output symbol table. This
1250 // will be 0 if no value has been assigned yet, and the symbol may
1251 // be omitted. This will be -1U if the symbol should not go into
1252 // the symbol table. This will be -2U if the symbol must go into
1253 // the symbol table, but no index has been assigned yet.
1254 unsigned int output_symtab_index_;
1255 // The index of this local symbol in the dynamic symbol table. This
1256 // will be -1U if the symbol should not go into the symbol table.
1257 unsigned int output_dynsym_index_;
1258 // The section index in the input file in which this symbol is
1259 // defined.
1260 unsigned int input_shndx_ : 28;
1261 // Whether the section index is an ordinary index, not a special
1262 // value.
1263 bool is_ordinary_shndx_ : 1;
1264 // Whether this is a STT_SECTION symbol.
1265 bool is_section_symbol_ : 1;
1266 // Whether this is a STT_TLS symbol.
1267 bool is_tls_symbol_ : 1;
1268 // Whether this symbol has a value for the output file. This is
1269 // normally set to true during Layout::finalize, by
1270 // finalize_local_symbols. It will be false for a section symbol in
1271 // a merge section, as for such symbols we can not determine the
1272 // value to use in a relocation until we see the addend.
1273 bool has_output_value_ : 1;
1274 union
1275 {
1276 // This is used if has_output_value_ is true. Between
1277 // count_local_symbols and finalize_local_symbols, this is the
1278 // value in the input file. After finalize_local_symbols, it is
1279 // the value in the output file.
1280 Value value;
1281 // This is used if has_output_value_ is false. It points to the
1282 // information we need to get the value for a merge section.
1283 Merged_symbol_value<size>* merged_symbol_value;
1284 } u_;
1285 };
1286
1287 // A GOT offset list. A symbol may have more than one GOT offset
1288 // (e.g., when mixing modules compiled with two different TLS models),
1289 // but will usually have at most one. GOT_TYPE identifies the type of
1290 // GOT entry; its values are specific to each target.
1291
1292 class Got_offset_list
1293 {
1294 public:
1295 Got_offset_list()
1296 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1297 { }
1298
1299 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1300 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1301 { }
1302
1303 ~Got_offset_list()
1304 {
1305 if (this->got_next_ != NULL)
1306 {
1307 delete this->got_next_;
1308 this->got_next_ = NULL;
1309 }
1310 }
1311
1312 // Initialize the fields to their default values.
1313 void
1314 init()
1315 {
1316 this->got_type_ = -1U;
1317 this->got_offset_ = 0;
1318 this->got_next_ = NULL;
1319 }
1320
1321 // Set the offset for the GOT entry of type GOT_TYPE.
1322 void
1323 set_offset(unsigned int got_type, unsigned int got_offset)
1324 {
1325 if (this->got_type_ == -1U)
1326 {
1327 this->got_type_ = got_type;
1328 this->got_offset_ = got_offset;
1329 }
1330 else
1331 {
1332 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1333 {
1334 if (g->got_type_ == got_type)
1335 {
1336 g->got_offset_ = got_offset;
1337 return;
1338 }
1339 }
1340 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1341 g->got_next_ = this->got_next_;
1342 this->got_next_ = g;
1343 }
1344 }
1345
1346 // Return the offset for a GOT entry of type GOT_TYPE.
1347 unsigned int
1348 get_offset(unsigned int got_type) const
1349 {
1350 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1351 {
1352 if (g->got_type_ == got_type)
1353 return g->got_offset_;
1354 }
1355 return -1U;
1356 }
1357
1358 private:
1359 unsigned int got_type_;
1360 unsigned int got_offset_;
1361 Got_offset_list* got_next_;
1362 };
1363
1364 // This type is used to modify relocations for -fsplit-stack. It is
1365 // indexed by relocation index, and means that the relocation at that
1366 // index should use the symbol from the vector, rather than the one
1367 // indicated by the relocation.
1368
1369 class Reloc_symbol_changes
1370 {
1371 public:
1372 Reloc_symbol_changes(size_t count)
1373 : vec_(count, NULL)
1374 { }
1375
1376 void
1377 set(size_t i, Symbol* sym)
1378 { this->vec_[i] = sym; }
1379
1380 const Symbol*
1381 operator[](size_t i) const
1382 { return this->vec_[i]; }
1383
1384 private:
1385 std::vector<Symbol*> vec_;
1386 };
1387
1388 // A regular object file. This is size and endian specific.
1389
1390 template<int size, bool big_endian>
1391 class Sized_relobj : public Relobj
1392 {
1393 public:
1394 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1395 typedef std::vector<Symbol*> Symbols;
1396 typedef std::vector<Symbol_value<size> > Local_values;
1397
1398 static const Address invalid_address = static_cast<Address>(0) - 1;
1399
1400 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1401 const typename elfcpp::Ehdr<size, big_endian>&);
1402
1403 ~Sized_relobj();
1404
1405 // Checks if the offset of input section SHNDX within its output
1406 // section is invalid.
1407 bool
1408 is_output_section_offset_invalid(unsigned int shndx) const
1409 { return this->get_output_section_offset(shndx) == invalid_address; }
1410
1411 // Set up the object file based on TARGET.
1412 void
1413 setup()
1414 { this->do_setup(); }
1415
1416 // Return the number of symbols. This is only valid after
1417 // Object::add_symbols has been called.
1418 unsigned int
1419 symbol_count() const
1420 { return this->local_symbol_count_ + this->symbols_.size(); }
1421
1422 // If SYM is the index of a global symbol in the object file's
1423 // symbol table, return the Symbol object. Otherwise, return NULL.
1424 Symbol*
1425 global_symbol(unsigned int sym) const
1426 {
1427 if (sym >= this->local_symbol_count_)
1428 {
1429 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1430 return this->symbols_[sym - this->local_symbol_count_];
1431 }
1432 return NULL;
1433 }
1434
1435 // Return the section index of symbol SYM. Set *VALUE to its value
1436 // in the object file. Set *IS_ORDINARY if this is an ordinary
1437 // section index, not a special code between SHN_LORESERVE and
1438 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1439 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1440 // it will not return the final value of the symbol in the link.
1441 unsigned int
1442 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1443
1444 // Return a pointer to the Symbol_value structure which holds the
1445 // value of a local symbol.
1446 const Symbol_value<size>*
1447 local_symbol(unsigned int sym) const
1448 {
1449 gold_assert(sym < this->local_values_.size());
1450 return &this->local_values_[sym];
1451 }
1452
1453 // Return the index of local symbol SYM in the ordinary symbol
1454 // table. A value of -1U means that the symbol is not being output.
1455 unsigned int
1456 symtab_index(unsigned int sym) const
1457 {
1458 gold_assert(sym < this->local_values_.size());
1459 return this->local_values_[sym].output_symtab_index();
1460 }
1461
1462 // Return the index of local symbol SYM in the dynamic symbol
1463 // table. A value of -1U means that the symbol is not being output.
1464 unsigned int
1465 dynsym_index(unsigned int sym) const
1466 {
1467 gold_assert(sym < this->local_values_.size());
1468 return this->local_values_[sym].output_dynsym_index();
1469 }
1470
1471 // Return the input section index of local symbol SYM.
1472 unsigned int
1473 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1474 {
1475 gold_assert(sym < this->local_values_.size());
1476 return this->local_values_[sym].input_shndx(is_ordinary);
1477 }
1478
1479 // Record that local symbol SYM must be in the output symbol table.
1480 void
1481 set_must_have_output_symtab_entry(unsigned int sym)
1482 {
1483 gold_assert(sym < this->local_values_.size());
1484 this->local_values_[sym].set_must_have_output_symtab_entry();
1485 }
1486
1487 // Record that local symbol SYM needs a dynamic symbol entry.
1488 void
1489 set_needs_output_dynsym_entry(unsigned int sym)
1490 {
1491 gold_assert(sym < this->local_values_.size());
1492 this->local_values_[sym].set_needs_output_dynsym_entry();
1493 }
1494
1495 // Return whether the local symbol SYMNDX has a GOT offset.
1496 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1497 bool
1498 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1499 {
1500 Local_got_offsets::const_iterator p =
1501 this->local_got_offsets_.find(symndx);
1502 return (p != this->local_got_offsets_.end()
1503 && p->second->get_offset(got_type) != -1U);
1504 }
1505
1506 // Return the GOT offset of the local symbol SYMNDX.
1507 unsigned int
1508 local_got_offset(unsigned int symndx, unsigned int got_type) const
1509 {
1510 Local_got_offsets::const_iterator p =
1511 this->local_got_offsets_.find(symndx);
1512 gold_assert(p != this->local_got_offsets_.end());
1513 unsigned int off = p->second->get_offset(got_type);
1514 gold_assert(off != -1U);
1515 return off;
1516 }
1517
1518 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1519 void
1520 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1521 unsigned int got_offset)
1522 {
1523 Local_got_offsets::const_iterator p =
1524 this->local_got_offsets_.find(symndx);
1525 if (p != this->local_got_offsets_.end())
1526 p->second->set_offset(got_type, got_offset);
1527 else
1528 {
1529 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1530 std::pair<Local_got_offsets::iterator, bool> ins =
1531 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1532 gold_assert(ins.second);
1533 }
1534 }
1535
1536 // Get the offset of input section SHNDX within its output section.
1537 // This is -1 if the input section requires a special mapping, such
1538 // as a merge section. The output section can be found in the
1539 // output_sections_ field of the parent class Relobj.
1540 Address
1541 get_output_section_offset(unsigned int shndx) const
1542 {
1543 gold_assert(shndx < this->section_offsets_.size());
1544 return this->section_offsets_[shndx];
1545 }
1546
1547 // Return the name of the symbol that spans the given offset in the
1548 // specified section in this object. This is used only for error
1549 // messages and is not particularly efficient.
1550 bool
1551 get_symbol_location_info(unsigned int shndx, off_t offset,
1552 Symbol_location_info* info);
1553
1554 // Look for a kept section corresponding to the given discarded section,
1555 // and return its output address. This is used only for relocations in
1556 // debugging sections.
1557 Address
1558 map_to_kept_section(unsigned int shndx, bool* found) const;
1559
1560 protected:
1561 // Set up.
1562 virtual void
1563 do_setup();
1564
1565 // Read the symbols.
1566 void
1567 do_read_symbols(Read_symbols_data*);
1568
1569 // Return the number of local symbols.
1570 unsigned int
1571 do_local_symbol_count() const
1572 { return this->local_symbol_count_; }
1573
1574 // Lay out the input sections.
1575 void
1576 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1577
1578 // Layout sections whose layout was deferred while waiting for
1579 // input files from a plugin.
1580 void
1581 do_layout_deferred_sections(Layout*);
1582
1583 // Add the symbols to the symbol table.
1584 void
1585 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1586
1587 Archive::Should_include
1588 do_should_include_member(Symbol_table* symtab, Read_symbols_data*,
1589 std::string* why);
1590
1591 // Read the relocs.
1592 void
1593 do_read_relocs(Read_relocs_data*);
1594
1595 // Process the relocs to find list of referenced sections. Used only
1596 // during garbage collection.
1597 void
1598 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1599
1600 // Scan the relocs and adjust the symbol table.
1601 void
1602 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1603
1604 // Count the local symbols.
1605 void
1606 do_count_local_symbols(Stringpool_template<char>*,
1607 Stringpool_template<char>*);
1608
1609 // Finalize the local symbols.
1610 unsigned int
1611 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);
1612
1613 // Set the offset where local dynamic symbol information will be stored.
1614 unsigned int
1615 do_set_local_dynsym_indexes(unsigned int);
1616
1617 // Set the offset where local dynamic symbol information will be stored.
1618 unsigned int
1619 do_set_local_dynsym_offset(off_t);
1620
1621 // Relocate the input sections and write out the local symbols.
1622 void
1623 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of);
1624
1625 // Get the size of a section.
1626 uint64_t
1627 do_section_size(unsigned int shndx)
1628 { return this->elf_file_.section_size(shndx); }
1629
1630 // Get the name of a section.
1631 std::string
1632 do_section_name(unsigned int shndx)
1633 { return this->elf_file_.section_name(shndx); }
1634
1635 // Return the location of the contents of a section.
1636 Object::Location
1637 do_section_contents(unsigned int shndx)
1638 { return this->elf_file_.section_contents(shndx); }
1639
1640 // Return section flags.
1641 uint64_t
1642 do_section_flags(unsigned int shndx);
1643
1644 // Return section entsize.
1645 uint64_t
1646 do_section_entsize(unsigned int shndx);
1647
1648 // Return section address.
1649 uint64_t
1650 do_section_address(unsigned int shndx)
1651 { return this->elf_file_.section_addr(shndx); }
1652
1653 // Return section type.
1654 unsigned int
1655 do_section_type(unsigned int shndx)
1656 { return this->elf_file_.section_type(shndx); }
1657
1658 // Return the section link field.
1659 unsigned int
1660 do_section_link(unsigned int shndx)
1661 { return this->elf_file_.section_link(shndx); }
1662
1663 // Return the section info field.
1664 unsigned int
1665 do_section_info(unsigned int shndx)
1666 { return this->elf_file_.section_info(shndx); }
1667
1668 // Return the section alignment.
1669 uint64_t
1670 do_section_addralign(unsigned int shndx)
1671 { return this->elf_file_.section_addralign(shndx); }
1672
1673 // Return the Xindex structure to use.
1674 Xindex*
1675 do_initialize_xindex();
1676
1677 // Get symbol counts.
1678 void
1679 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1680
1681 // Get the global symbols.
1682 const Symbols*
1683 do_get_global_symbols() const
1684 { return &this->symbols_; }
1685
1686 // Get the offset of a section.
1687 uint64_t
1688 do_output_section_offset(unsigned int shndx) const
1689 {
1690 Address off = this->get_output_section_offset(shndx);
1691 if (off == invalid_address)
1692 return -1ULL;
1693 return off;
1694 }
1695
1696 // Set the offset of a section.
1697 void
1698 do_set_section_offset(unsigned int shndx, uint64_t off)
1699 {
1700 gold_assert(shndx < this->section_offsets_.size());
1701 this->section_offsets_[shndx] =
1702 (off == static_cast<uint64_t>(-1)
1703 ? invalid_address
1704 : convert_types<Address, uint64_t>(off));
1705 }
1706
1707 // Adjust a section index if necessary.
1708 unsigned int
1709 adjust_shndx(unsigned int shndx)
1710 {
1711 if (shndx >= elfcpp::SHN_LORESERVE)
1712 shndx += this->elf_file_.large_shndx_offset();
1713 return shndx;
1714 }
1715
1716 // Initialize input to output maps for section symbols in merged
1717 // sections.
1718 void
1719 initialize_input_to_output_maps();
1720
1721 // Free the input to output maps for section symbols in merged
1722 // sections.
1723 void
1724 free_input_to_output_maps();
1725
1726 // Return symbol table section index.
1727 unsigned int
1728 symtab_shndx() const
1729 { return this->symtab_shndx_; }
1730
1731 // Allow a child class to access the ELF file.
1732 elfcpp::Elf_file<size, big_endian, Object>*
1733 elf_file()
1734 { return &this->elf_file_; }
1735
1736 // Allow a child class to access the local values.
1737 Local_values*
1738 local_values()
1739 { return &this->local_values_; }
1740
1741 // Views and sizes when relocating.
1742 struct View_size
1743 {
1744 unsigned char* view;
1745 typename elfcpp::Elf_types<size>::Elf_Addr address;
1746 off_t offset;
1747 section_size_type view_size;
1748 bool is_input_output_view;
1749 bool is_postprocessing_view;
1750 };
1751
1752 typedef std::vector<View_size> Views;
1753
1754 // This may be overriden by a child class.
1755 virtual void
1756 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1757 const unsigned char* pshdrs, Views* pviews);
1758
1759 // Allow a child to set output local symbol count.
1760 void
1761 set_output_local_symbol_count(unsigned int value)
1762 { this->output_local_symbol_count_ = value; }
1763
1764 private:
1765 // For convenience.
1766 typedef Sized_relobj<size, big_endian> This;
1767 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1768 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1769 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1770 typedef elfcpp::Shdr<size, big_endian> Shdr;
1771
1772 // To keep track of discarded comdat sections, we need to map a member
1773 // section index to the object and section index of the corresponding
1774 // kept section.
1775 struct Kept_comdat_section
1776 {
1777 Kept_comdat_section(Relobj* a_object, unsigned int a_shndx)
1778 : object(a_object), shndx(a_shndx)
1779 { }
1780 Relobj* object;
1781 unsigned int shndx;
1782 };
1783 typedef std::map<unsigned int, Kept_comdat_section>
1784 Kept_comdat_section_table;
1785
1786 // Find the SHT_SYMTAB section, given the section headers.
1787 void
1788 find_symtab(const unsigned char* pshdrs);
1789
1790 // Return whether SHDR has the right flags for a GNU style exception
1791 // frame section.
1792 bool
1793 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1794
1795 // Return whether there is a section named .eh_frame which might be
1796 // a GNU style exception frame section.
1797 bool
1798 find_eh_frame(const unsigned char* pshdrs, const char* names,
1799 section_size_type names_size) const;
1800
1801 // Whether to include a section group in the link.
1802 bool
1803 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1804 const unsigned char*, const char *, section_size_type,
1805 std::vector<bool>*);
1806
1807 // Whether to include a linkonce section in the link.
1808 bool
1809 include_linkonce_section(Layout*, unsigned int, const char*,
1810 const elfcpp::Shdr<size, big_endian>&);
1811
1812 // Layout an input section.
1813 void
1814 layout_section(Layout* layout, unsigned int shndx, const char* name,
1815 typename This::Shdr& shdr, unsigned int reloc_shndx,
1816 unsigned int reloc_type);
1817
1818 // Write section data to the output file. Record the views and
1819 // sizes in VIEWS for use when relocating.
1820 void
1821 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1822
1823 // Relocate the sections in the output file.
1824 void
1825 relocate_sections(const Symbol_table* symtab, const Layout* layout,
1826 const unsigned char* pshdrs, Views* pviews)
1827 { this->do_relocate_sections(symtab, layout, pshdrs, pviews); }
1828
1829 // Scan the input relocations for --emit-relocs.
1830 void
1831 emit_relocs_scan(Symbol_table*, Layout*, const unsigned char* plocal_syms,
1832 const Read_relocs_data::Relocs_list::iterator&);
1833
1834 // Scan the input relocations for --emit-relocs, templatized on the
1835 // type of the relocation section.
1836 template<int sh_type>
1837 void
1838 emit_relocs_scan_reltype(Symbol_table*, Layout*,
1839 const unsigned char* plocal_syms,
1840 const Read_relocs_data::Relocs_list::iterator&,
1841 Relocatable_relocs*);
1842
1843 // Emit the relocs for --emit-relocs.
1844 void
1845 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1846 unsigned int sh_type, const unsigned char* prelocs,
1847 size_t reloc_count, Output_section*, Address output_offset,
1848 unsigned char* view, Address address,
1849 section_size_type view_size,
1850 unsigned char* reloc_view, section_size_type reloc_view_size);
1851
1852 // Emit the relocs for --emit-relocs, templatized on the type of the
1853 // relocation section.
1854 template<int sh_type>
1855 void
1856 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1857 const unsigned char* prelocs, size_t reloc_count,
1858 Output_section*, Address output_offset,
1859 unsigned char* view, Address address,
1860 section_size_type view_size,
1861 unsigned char* reloc_view,
1862 section_size_type reloc_view_size);
1863
1864 // A type shared by split_stack_adjust_reltype and find_functions.
1865 typedef std::map<section_offset_type, section_size_type> Function_offsets;
1866
1867 // Check for -fsplit-stack routines calling non-split-stack routines.
1868 void
1869 split_stack_adjust(const Symbol_table*, const unsigned char* pshdrs,
1870 unsigned int sh_type, unsigned int shndx,
1871 const unsigned char* prelocs, size_t reloc_count,
1872 unsigned char* view, section_size_type view_size,
1873 Reloc_symbol_changes** reloc_map);
1874
1875 template<int sh_type>
1876 void
1877 split_stack_adjust_reltype(const Symbol_table*, const unsigned char* pshdrs,
1878 unsigned int shndx, const unsigned char* prelocs,
1879 size_t reloc_count, unsigned char* view,
1880 section_size_type view_size,
1881 Reloc_symbol_changes** reloc_map);
1882
1883 // Find all functions in a section.
1884 void
1885 find_functions(const unsigned char* pshdrs, unsigned int shndx,
1886 Function_offsets*);
1887
1888 // Write out the local symbols.
1889 void
1890 write_local_symbols(Output_file*,
1891 const Stringpool_template<char>*,
1892 const Stringpool_template<char>*,
1893 Output_symtab_xindex*,
1894 Output_symtab_xindex*);
1895
1896 // Clear the local symbol information.
1897 void
1898 clear_local_symbols()
1899 {
1900 this->local_values_.clear();
1901 this->local_got_offsets_.clear();
1902 }
1903
1904 // Record a mapping from discarded section SHNDX to the corresponding
1905 // kept section.
1906 void
1907 set_kept_comdat_section(unsigned int shndx, Relobj* kept_object,
1908 unsigned int kept_shndx)
1909 {
1910 Kept_comdat_section kept(kept_object, kept_shndx);
1911 this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
1912 }
1913
1914 // Find the kept section corresponding to the discarded section
1915 // SHNDX. Return true if found.
1916 bool
1917 get_kept_comdat_section(unsigned int shndx, Relobj** kept_object,
1918 unsigned int* kept_shndx) const
1919 {
1920 typename Kept_comdat_section_table::const_iterator p =
1921 this->kept_comdat_sections_.find(shndx);
1922 if (p == this->kept_comdat_sections_.end())
1923 return false;
1924 *kept_object = p->second.object;
1925 *kept_shndx = p->second.shndx;
1926 return true;
1927 }
1928
1929 // The GOT offsets of local symbols. This map also stores GOT offsets
1930 // for tp-relative offsets for TLS symbols.
1931 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1932
1933 // The TLS GOT offsets of local symbols. The map stores the offsets
1934 // for either a single GOT entry that holds the module index of a TLS
1935 // symbol, or a pair of GOT entries containing the module index and
1936 // dtv-relative offset.
1937 struct Tls_got_entry
1938 {
1939 Tls_got_entry(int got_offset, bool have_pair)
1940 : got_offset_(got_offset),
1941 have_pair_(have_pair)
1942 { }
1943 int got_offset_;
1944 bool have_pair_;
1945 };
1946 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1947
1948 // Saved information for sections whose layout was deferred.
1949 struct Deferred_layout
1950 {
1951 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1952 Deferred_layout(unsigned int shndx, const char* name,
1953 const unsigned char* pshdr,
1954 unsigned int reloc_shndx, unsigned int reloc_type)
1955 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
1956 reloc_type_(reloc_type)
1957 {
1958 memcpy(this->shdr_data_, pshdr, shdr_size);
1959 }
1960 unsigned int shndx_;
1961 std::string name_;
1962 unsigned int reloc_shndx_;
1963 unsigned int reloc_type_;
1964 unsigned char shdr_data_[shdr_size];
1965 };
1966
1967 // General access to the ELF file.
1968 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1969 // Index of SHT_SYMTAB section.
1970 unsigned int symtab_shndx_;
1971 // The number of local symbols.
1972 unsigned int local_symbol_count_;
1973 // The number of local symbols which go into the output file.
1974 unsigned int output_local_symbol_count_;
1975 // The number of local symbols which go into the output file's dynamic
1976 // symbol table.
1977 unsigned int output_local_dynsym_count_;
1978 // The entries in the symbol table for the external symbols.
1979 Symbols symbols_;
1980 // Number of symbols defined in object file itself.
1981 size_t defined_count_;
1982 // File offset for local symbols.
1983 off_t local_symbol_offset_;
1984 // File offset for local dynamic symbols.
1985 off_t local_dynsym_offset_;
1986 // Values of local symbols.
1987 Local_values local_values_;
1988 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1989 // for TLS symbols, indexed by symbol number.
1990 Local_got_offsets local_got_offsets_;
1991 // For each input section, the offset of the input section in its
1992 // output section. This is INVALID_ADDRESS if the input section requires a
1993 // special mapping.
1994 std::vector<Address> section_offsets_;
1995 // Table mapping discarded comdat sections to corresponding kept sections.
1996 Kept_comdat_section_table kept_comdat_sections_;
1997 // Whether this object has a GNU style .eh_frame section.
1998 bool has_eh_frame_;
1999 // If this object has a GNU style .eh_frame section that is discarded in
2000 // output, record the index here. Otherwise it is -1U.
2001 unsigned int discarded_eh_frame_shndx_;
2002 // The list of sections whose layout was deferred.
2003 std::vector<Deferred_layout> deferred_layout_;
2004 };
2005
2006 // A class to manage the list of all objects.
2007
2008 class Input_objects
2009 {
2010 public:
2011 Input_objects()
2012 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
2013 { }
2014
2015 // The type of the list of input relocateable objects.
2016 typedef std::vector<Relobj*> Relobj_list;
2017 typedef Relobj_list::const_iterator Relobj_iterator;
2018
2019 // The type of the list of input dynamic objects.
2020 typedef std::vector<Dynobj*> Dynobj_list;
2021 typedef Dynobj_list::const_iterator Dynobj_iterator;
2022
2023 // Add an object to the list. Return true if all is well, or false
2024 // if this object should be ignored.
2025 bool
2026 add_object(Object*);
2027
2028 // Start processing an archive.
2029 void
2030 archive_start(Archive*);
2031
2032 // Stop processing an archive.
2033 void
2034 archive_stop(Archive*);
2035
2036 // For each dynamic object, check whether we've seen all of its
2037 // explicit dependencies.
2038 void
2039 check_dynamic_dependencies() const;
2040
2041 // Return whether an object was found in the system library
2042 // directory.
2043 bool
2044 found_in_system_library_directory(const Object*) const;
2045
2046 // Print symbol counts.
2047 void
2048 print_symbol_counts(const Symbol_table*) const;
2049
2050 // Print a cross reference table.
2051 void
2052 print_cref(const Symbol_table*, FILE*) const;
2053
2054 // Iterate over all regular objects.
2055
2056 Relobj_iterator
2057 relobj_begin() const
2058 { return this->relobj_list_.begin(); }
2059
2060 Relobj_iterator
2061 relobj_end() const
2062 { return this->relobj_list_.end(); }
2063
2064 // Iterate over all dynamic objects.
2065
2066 Dynobj_iterator
2067 dynobj_begin() const
2068 { return this->dynobj_list_.begin(); }
2069
2070 Dynobj_iterator
2071 dynobj_end() const
2072 { return this->dynobj_list_.end(); }
2073
2074 // Return whether we have seen any dynamic objects.
2075 bool
2076 any_dynamic() const
2077 { return !this->dynobj_list_.empty(); }
2078
2079 // Return the number of non dynamic objects.
2080 int
2081 number_of_relobjs() const
2082 { return this->relobj_list_.size(); }
2083
2084 // Return the number of input objects.
2085 int
2086 number_of_input_objects() const
2087 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
2088
2089 private:
2090 Input_objects(const Input_objects&);
2091 Input_objects& operator=(const Input_objects&);
2092
2093 // The list of ordinary objects included in the link.
2094 Relobj_list relobj_list_;
2095 // The list of dynamic objects included in the link.
2096 Dynobj_list dynobj_list_;
2097 // SONAMEs that we have seen.
2098 Unordered_set<std::string> sonames_;
2099 // Manage cross-references if requested.
2100 Cref* cref_;
2101 };
2102
2103 // Some of the information we pass to the relocation routines. We
2104 // group this together to avoid passing a dozen different arguments.
2105
2106 template<int size, bool big_endian>
2107 struct Relocate_info
2108 {
2109 // Symbol table.
2110 const Symbol_table* symtab;
2111 // Layout.
2112 const Layout* layout;
2113 // Object being relocated.
2114 Sized_relobj<size, big_endian>* object;
2115 // Section index of relocation section.
2116 unsigned int reloc_shndx;
2117 // Section header of relocation section.
2118 const unsigned char* reloc_shdr;
2119 // Section index of section being relocated.
2120 unsigned int data_shndx;
2121 // Section header of data section.
2122 const unsigned char* data_shdr;
2123
2124 // Return a string showing the location of a relocation. This is
2125 // only used for error messages.
2126 std::string
2127 location(size_t relnum, off_t reloffset) const;
2128 };
2129
2130 // This is used to represent a section in an object and is used as the
2131 // key type for various section maps.
2132 typedef std::pair<Object*, unsigned int> Section_id;
2133
2134 // This is similar to Section_id but is used when the section
2135 // pointers are const.
2136 typedef std::pair<const Object*, unsigned int> Const_section_id;
2137
2138 // The hash value is based on the address of an object in memory during
2139 // linking. It is okay to use this for looking up sections but never use
2140 // this in an unordered container that we want to traverse in a repeatable
2141 // manner.
2142
2143 struct Section_id_hash
2144 {
2145 size_t operator()(const Section_id& loc) const
2146 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2147 };
2148
2149 struct Const_section_id_hash
2150 {
2151 size_t operator()(const Const_section_id& loc) const
2152 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2153 };
2154
2155 // Return whether INPUT_FILE contains an ELF object start at file
2156 // offset OFFSET. This sets *START to point to a view of the start of
2157 // the file. It sets *READ_SIZE to the number of bytes in the view.
2158
2159 extern bool
2160 is_elf_object(Input_file* input_file, off_t offset,
2161 const unsigned char** start, int *read_size);
2162
2163 // Return an Object appropriate for the input file. P is BYTES long,
2164 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
2165 // this sees an object the linker is not configured to support, it
2166 // sets *PUNCONFIGURED to true and returns NULL without giving an
2167 // error message.
2168
2169 extern Object*
2170 make_elf_object(const std::string& name, Input_file*,
2171 off_t offset, const unsigned char* p,
2172 section_offset_type bytes, bool* punconfigured);
2173
2174 } // end namespace gold
2175
2176 #endif // !defined(GOLD_OBJECT_H)
This page took 0.104194 seconds and 5 git commands to generate.