2010-01-29 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Task;
39 class Cref;
40 class Archive;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 // Section headers.
59 File_view* section_headers;
60 // Section names.
61 File_view* section_names;
62 // Size of section name data in bytes.
63 section_size_type section_names_size;
64 // Symbol data.
65 File_view* symbols;
66 // Size of symbol data in bytes.
67 section_size_type symbols_size;
68 // Offset of external symbols within symbol data. This structure
69 // sometimes contains only external symbols, in which case this will
70 // be zero. Sometimes it contains all symbols.
71 section_offset_type external_symbols_offset;
72 // Symbol names.
73 File_view* symbol_names;
74 // Size of symbol name data in bytes.
75 section_size_type symbol_names_size;
76
77 // Version information. This is only used on dynamic objects.
78 // Version symbol data (from SHT_GNU_versym section).
79 File_view* versym;
80 section_size_type versym_size;
81 // Version definition data (from SHT_GNU_verdef section).
82 File_view* verdef;
83 section_size_type verdef_size;
84 unsigned int verdef_info;
85 // Needed version data (from SHT_GNU_verneed section).
86 File_view* verneed;
87 section_size_type verneed_size;
88 unsigned int verneed_info;
89 };
90
91 // Information used to print error messages.
92
93 struct Symbol_location_info
94 {
95 std::string source_file;
96 std::string enclosing_symbol_name;
97 int line_number;
98 };
99
100 // Data about a single relocation section. This is read in
101 // read_relocs and processed in scan_relocs.
102
103 struct Section_relocs
104 {
105 // Index of reloc section.
106 unsigned int reloc_shndx;
107 // Index of section that relocs apply to.
108 unsigned int data_shndx;
109 // Contents of reloc section.
110 File_view* contents;
111 // Reloc section type.
112 unsigned int sh_type;
113 // Number of reloc entries.
114 size_t reloc_count;
115 // Output section.
116 Output_section* output_section;
117 // Whether this section has special handling for offsets.
118 bool needs_special_offset_handling;
119 // Whether the data section is allocated (has the SHF_ALLOC flag set).
120 bool is_data_section_allocated;
121 };
122
123 // Relocations in an object file. This is read in read_relocs and
124 // processed in scan_relocs.
125
126 struct Read_relocs_data
127 {
128 typedef std::vector<Section_relocs> Relocs_list;
129 // The relocations.
130 Relocs_list relocs;
131 // The local symbols.
132 File_view* local_symbols;
133 };
134
135 // The Xindex class manages section indexes for objects with more than
136 // 0xff00 sections.
137
138 class Xindex
139 {
140 public:
141 Xindex(int large_shndx_offset)
142 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
143 { }
144
145 // Initialize the symtab_xindex_ array, given the object and the
146 // section index of the symbol table to use.
147 template<int size, bool big_endian>
148 void
149 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
150
151 // Read in the symtab_xindex_ array, given its section index.
152 // PSHDRS may optionally point to the section headers.
153 template<int size, bool big_endian>
154 void
155 read_symtab_xindex(Object*, unsigned int xindex_shndx,
156 const unsigned char* pshdrs);
157
158 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
159 // real section index.
160 unsigned int
161 sym_xindex_to_shndx(Object* object, unsigned int symndx);
162
163 private:
164 // The type of the array giving the real section index for symbols
165 // whose st_shndx field holds SHN_XINDEX.
166 typedef std::vector<unsigned int> Symtab_xindex;
167
168 // Adjust a section index if necessary. This should only be called
169 // for ordinary section indexes.
170 unsigned int
171 adjust_shndx(unsigned int shndx)
172 {
173 if (shndx >= elfcpp::SHN_LORESERVE)
174 shndx += this->large_shndx_offset_;
175 return shndx;
176 }
177
178 // Adjust to apply to large section indexes.
179 int large_shndx_offset_;
180 // The data from the SHT_SYMTAB_SHNDX section.
181 Symtab_xindex symtab_xindex_;
182 };
183
184 // Object is an abstract base class which represents either a 32-bit
185 // or a 64-bit input object. This can be a regular object file
186 // (ET_REL) or a shared object (ET_DYN).
187
188 class Object
189 {
190 public:
191 typedef std::vector<Symbol*> Symbols;
192
193 // NAME is the name of the object as we would report it to the user
194 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
195 // used to read the file. OFFSET is the offset within the input
196 // file--0 for a .o or .so file, something else for a .a file.
197 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
198 off_t offset = 0)
199 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
200 is_dynamic_(is_dynamic), is_needed_(false), uses_split_stack_(false),
201 has_no_split_stack_(false), no_export_(false), xindex_(NULL)
202 { input_file->file().add_object(); }
203
204 virtual ~Object()
205 { this->input_file_->file().remove_object(); }
206
207 // Return the name of the object as we would report it to the tuser.
208 const std::string&
209 name() const
210 { return this->name_; }
211
212 // Get the offset into the file.
213 off_t
214 offset() const
215 { return this->offset_; }
216
217 // Return whether this is a dynamic object.
218 bool
219 is_dynamic() const
220 { return this->is_dynamic_; }
221
222 // Return whether this object is needed--true if it is a dynamic
223 // object which defines some symbol referenced by a regular object.
224 // We keep the flag here rather than in Dynobj for convenience when
225 // setting it.
226 bool
227 is_needed() const
228 { return this->is_needed_; }
229
230 // Record that this object is needed.
231 void
232 set_is_needed()
233 { this->is_needed_ = true; }
234
235 // Return whether this object was compiled with -fsplit-stack.
236 bool
237 uses_split_stack() const
238 { return this->uses_split_stack_; }
239
240 // Return whether this object contains any functions compiled with
241 // the no_split_stack attribute.
242 bool
243 has_no_split_stack() const
244 { return this->has_no_split_stack_; }
245
246 // Returns NULL for Objects that are not plugin objects. This method
247 // is overridden in the Pluginobj class.
248 Pluginobj*
249 pluginobj()
250 { return this->do_pluginobj(); }
251
252 // Get the file. We pass on const-ness.
253 Input_file*
254 input_file()
255 { return this->input_file_; }
256
257 const Input_file*
258 input_file() const
259 { return this->input_file_; }
260
261 // Lock the underlying file.
262 void
263 lock(const Task* t)
264 { this->input_file()->file().lock(t); }
265
266 // Unlock the underlying file.
267 void
268 unlock(const Task* t)
269 { this->input_file()->file().unlock(t); }
270
271 // Return whether the underlying file is locked.
272 bool
273 is_locked() const
274 { return this->input_file()->file().is_locked(); }
275
276 // Return the token, so that the task can be queued.
277 Task_token*
278 token()
279 { return this->input_file()->file().token(); }
280
281 // Release the underlying file.
282 void
283 release()
284 { this->input_file_->file().release(); }
285
286 // Return whether we should just read symbols from this file.
287 bool
288 just_symbols() const
289 { return this->input_file()->just_symbols(); }
290
291 // Get the number of sections.
292 unsigned int
293 shnum() const
294 { return this->shnum_; }
295
296 // Return a view of the contents of a section. Set *PLEN to the
297 // size. CACHE is a hint as in File_read::get_view.
298 const unsigned char*
299 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
300
301 // Adjust a symbol's section index as needed. SYMNDX is the index
302 // of the symbol and SHNDX is the symbol's section from
303 // get_st_shndx. This returns the section index. It sets
304 // *IS_ORDINARY to indicate whether this is a normal section index,
305 // rather than a special code between SHN_LORESERVE and
306 // SHN_HIRESERVE.
307 unsigned int
308 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
309 {
310 if (shndx < elfcpp::SHN_LORESERVE)
311 *is_ordinary = true;
312 else if (shndx == elfcpp::SHN_XINDEX)
313 {
314 if (this->xindex_ == NULL)
315 this->xindex_ = this->do_initialize_xindex();
316 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
317 *is_ordinary = true;
318 }
319 else
320 *is_ordinary = false;
321 return shndx;
322 }
323
324 // Return the size of a section given a section index.
325 uint64_t
326 section_size(unsigned int shndx)
327 { return this->do_section_size(shndx); }
328
329 // Return the name of a section given a section index.
330 std::string
331 section_name(unsigned int shndx)
332 { return this->do_section_name(shndx); }
333
334 // Return the section flags given a section index.
335 uint64_t
336 section_flags(unsigned int shndx)
337 { return this->do_section_flags(shndx); }
338
339 // Return the section entsize given a section index.
340 uint64_t
341 section_entsize(unsigned int shndx)
342 { return this->do_section_entsize(shndx); }
343
344 // Return the section address given a section index.
345 uint64_t
346 section_address(unsigned int shndx)
347 { return this->do_section_address(shndx); }
348
349 // Return the section type given a section index.
350 unsigned int
351 section_type(unsigned int shndx)
352 { return this->do_section_type(shndx); }
353
354 // Return the section link field given a section index.
355 unsigned int
356 section_link(unsigned int shndx)
357 { return this->do_section_link(shndx); }
358
359 // Return the section info field given a section index.
360 unsigned int
361 section_info(unsigned int shndx)
362 { return this->do_section_info(shndx); }
363
364 // Return the required section alignment given a section index.
365 uint64_t
366 section_addralign(unsigned int shndx)
367 { return this->do_section_addralign(shndx); }
368
369 // Read the symbol information.
370 void
371 read_symbols(Read_symbols_data* sd)
372 { return this->do_read_symbols(sd); }
373
374 // Pass sections which should be included in the link to the Layout
375 // object, and record where the sections go in the output file.
376 void
377 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
378 { this->do_layout(symtab, layout, sd); }
379
380 // Add symbol information to the global symbol table.
381 void
382 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
383 { this->do_add_symbols(symtab, sd, layout); }
384
385 // Functions and types for the elfcpp::Elf_file interface. This
386 // permit us to use Object as the File template parameter for
387 // elfcpp::Elf_file.
388
389 // The View class is returned by view. It must support a single
390 // method, data(). This is trivial, because get_view does what we
391 // need.
392 class View
393 {
394 public:
395 View(const unsigned char* p)
396 : p_(p)
397 { }
398
399 const unsigned char*
400 data() const
401 { return this->p_; }
402
403 private:
404 const unsigned char* p_;
405 };
406
407 // Return a View.
408 View
409 view(off_t file_offset, section_size_type data_size)
410 { return View(this->get_view(file_offset, data_size, true, true)); }
411
412 // Report an error.
413 void
414 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
415
416 // A location in the file.
417 struct Location
418 {
419 off_t file_offset;
420 off_t data_size;
421
422 Location(off_t fo, section_size_type ds)
423 : file_offset(fo), data_size(ds)
424 { }
425 };
426
427 // Get a View given a Location.
428 View view(Location loc)
429 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
430
431 // Get a view into the underlying file.
432 const unsigned char*
433 get_view(off_t start, section_size_type size, bool aligned, bool cache)
434 {
435 return this->input_file()->file().get_view(this->offset_, start, size,
436 aligned, cache);
437 }
438
439 // Get a lasting view into the underlying file.
440 File_view*
441 get_lasting_view(off_t start, section_size_type size, bool aligned,
442 bool cache)
443 {
444 return this->input_file()->file().get_lasting_view(this->offset_, start,
445 size, aligned, cache);
446 }
447
448 // Read data from the underlying file.
449 void
450 read(off_t start, section_size_type size, void* p)
451 { this->input_file()->file().read(start + this->offset_, size, p); }
452
453 // Read multiple data from the underlying file.
454 void
455 read_multiple(const File_read::Read_multiple& rm)
456 { this->input_file()->file().read_multiple(this->offset_, rm); }
457
458 // Stop caching views in the underlying file.
459 void
460 clear_view_cache_marks()
461 { this->input_file()->file().clear_view_cache_marks(); }
462
463 // Get the number of global symbols defined by this object, and the
464 // number of the symbols whose final definition came from this
465 // object.
466 void
467 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
468 size_t* used) const
469 { this->do_get_global_symbol_counts(symtab, defined, used); }
470
471 // Get the symbols defined in this object.
472 const Symbols*
473 get_global_symbols() const
474 { return this->do_get_global_symbols(); }
475
476 // Return whether this object was found in a system directory.
477 bool
478 is_in_system_directory() const
479 { return this->input_file()->is_in_system_directory(); }
480
481 // Return whether we found this object by searching a directory.
482 bool
483 searched_for() const
484 { return this->input_file()->will_search_for(); }
485
486 bool
487 no_export() const
488 { return this->no_export_; }
489
490 void
491 set_no_export(bool value)
492 { this->no_export_ = value; }
493
494 protected:
495 // Returns NULL for Objects that are not plugin objects. This method
496 // is overridden in the Pluginobj class.
497 virtual Pluginobj*
498 do_pluginobj()
499 { return NULL; }
500
501 // Read the symbols--implemented by child class.
502 virtual void
503 do_read_symbols(Read_symbols_data*) = 0;
504
505 // Lay out sections--implemented by child class.
506 virtual void
507 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
508
509 // Add symbol information to the global symbol table--implemented by
510 // child class.
511 virtual void
512 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
513
514 // Return the location of the contents of a section. Implemented by
515 // child class.
516 virtual Location
517 do_section_contents(unsigned int shndx) = 0;
518
519 // Get the size of a section--implemented by child class.
520 virtual uint64_t
521 do_section_size(unsigned int shndx) = 0;
522
523 // Get the name of a section--implemented by child class.
524 virtual std::string
525 do_section_name(unsigned int shndx) = 0;
526
527 // Get section flags--implemented by child class.
528 virtual uint64_t
529 do_section_flags(unsigned int shndx) = 0;
530
531 // Get section entsize--implemented by child class.
532 virtual uint64_t
533 do_section_entsize(unsigned int shndx) = 0;
534
535 // Get section address--implemented by child class.
536 virtual uint64_t
537 do_section_address(unsigned int shndx) = 0;
538
539 // Get section type--implemented by child class.
540 virtual unsigned int
541 do_section_type(unsigned int shndx) = 0;
542
543 // Get section link field--implemented by child class.
544 virtual unsigned int
545 do_section_link(unsigned int shndx) = 0;
546
547 // Get section info field--implemented by child class.
548 virtual unsigned int
549 do_section_info(unsigned int shndx) = 0;
550
551 // Get section alignment--implemented by child class.
552 virtual uint64_t
553 do_section_addralign(unsigned int shndx) = 0;
554
555 // Return the Xindex structure to use.
556 virtual Xindex*
557 do_initialize_xindex() = 0;
558
559 // Implement get_global_symbol_counts--implemented by child class.
560 virtual void
561 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
562
563 virtual const Symbols*
564 do_get_global_symbols() const = 0;
565
566 // Set the number of sections.
567 void
568 set_shnum(int shnum)
569 { this->shnum_ = shnum; }
570
571 // Functions used by both Sized_relobj and Sized_dynobj.
572
573 // Read the section data into a Read_symbols_data object.
574 template<int size, bool big_endian>
575 void
576 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
577 Read_symbols_data*);
578
579 // Let the child class initialize the xindex object directly.
580 void
581 set_xindex(Xindex* xindex)
582 {
583 gold_assert(this->xindex_ == NULL);
584 this->xindex_ = xindex;
585 }
586
587 // If NAME is the name of a special .gnu.warning section, arrange
588 // for the warning to be issued. SHNDX is the section index.
589 // Return whether it is a warning section.
590 bool
591 handle_gnu_warning_section(const char* name, unsigned int shndx,
592 Symbol_table*);
593
594 // If NAME is the name of the special section which indicates that
595 // this object was compiled with -fstack-split, mark it accordingly,
596 // and return true. Otherwise return false.
597 bool
598 handle_split_stack_section(const char* name);
599
600 private:
601 // This class may not be copied.
602 Object(const Object&);
603 Object& operator=(const Object&);
604
605 // Name of object as printed to user.
606 std::string name_;
607 // For reading the file.
608 Input_file* input_file_;
609 // Offset within the file--0 for an object file, non-0 for an
610 // archive.
611 off_t offset_;
612 // Number of input sections.
613 unsigned int shnum_;
614 // Whether this is a dynamic object.
615 bool is_dynamic_ : 1;
616 // Whether this object is needed. This is only set for dynamic
617 // objects, and means that the object defined a symbol which was
618 // used by a reference from a regular object.
619 bool is_needed_ : 1;
620 // Whether this object was compiled with -fsplit-stack.
621 bool uses_split_stack_ : 1;
622 // Whether this object contains any functions compiled with the
623 // no_split_stack attribute.
624 bool has_no_split_stack_ : 1;
625 // True if exclude this object from automatic symbol export.
626 // This is used only for archive objects.
627 bool no_export_ : 1;
628 // Many sections for objects with more than SHN_LORESERVE sections.
629 Xindex* xindex_;
630 };
631
632 // A regular object (ET_REL). This is an abstract base class itself.
633 // The implementation is the template class Sized_relobj.
634
635 class Relobj : public Object
636 {
637 public:
638 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
639 : Object(name, input_file, false, offset),
640 output_sections_(),
641 map_to_relocatable_relocs_(NULL),
642 object_merge_map_(NULL),
643 relocs_must_follow_section_writes_(false),
644 sd_(NULL)
645 { }
646
647 // During garbage collection, the Read_symbols_data pass for
648 // each object is stored as layout needs to be done after
649 // reloc processing.
650 Symbols_data*
651 get_symbols_data()
652 { return this->sd_; }
653
654 // Decides which section names have to be included in the worklist
655 // as roots.
656 bool
657 is_section_name_included(const char *name);
658
659 void
660 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
661 unsigned int section_header_size);
662
663 void
664 set_symbols_data(Symbols_data* sd)
665 { this->sd_ = sd; }
666
667 // During garbage collection, the Read_relocs pass for all objects
668 // is done before scanning the relocs. In that case, this->rd_ is
669 // used to store the information from Read_relocs for each object.
670 // This data is also used to compute the list of relevant sections.
671 Read_relocs_data*
672 get_relocs_data()
673 { return this->rd_; }
674
675 void
676 set_relocs_data(Read_relocs_data* rd)
677 { this->rd_ = rd; }
678
679 virtual bool
680 is_output_section_offset_invalid(unsigned int shndx) const = 0;
681
682 // Read the relocs.
683 void
684 read_relocs(Read_relocs_data* rd)
685 { return this->do_read_relocs(rd); }
686
687 // Process the relocs, during garbage collection only.
688 void
689 gc_process_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
690 { return this->do_gc_process_relocs(symtab, layout, rd); }
691
692 // Scan the relocs and adjust the symbol table.
693 void
694 scan_relocs(Symbol_table* symtab, Layout* layout, Read_relocs_data* rd)
695 { return this->do_scan_relocs(symtab, layout, rd); }
696
697 // The number of local symbols in the input symbol table.
698 virtual unsigned int
699 local_symbol_count() const
700 { return this->do_local_symbol_count(); }
701
702 // Initial local symbol processing: count the number of local symbols
703 // in the output symbol table and dynamic symbol table; add local symbol
704 // names to *POOL and *DYNPOOL.
705 void
706 count_local_symbols(Stringpool_template<char>* pool,
707 Stringpool_template<char>* dynpool)
708 { return this->do_count_local_symbols(pool, dynpool); }
709
710 // Set the values of the local symbols, set the output symbol table
711 // indexes for the local variables, and set the offset where local
712 // symbol information will be stored. Returns the new local symbol index.
713 unsigned int
714 finalize_local_symbols(unsigned int index, off_t off, Symbol_table* symtab)
715 { return this->do_finalize_local_symbols(index, off, symtab); }
716
717 // Set the output dynamic symbol table indexes for the local variables.
718 unsigned int
719 set_local_dynsym_indexes(unsigned int index)
720 { return this->do_set_local_dynsym_indexes(index); }
721
722 // Set the offset where local dynamic symbol information will be stored.
723 unsigned int
724 set_local_dynsym_offset(off_t off)
725 { return this->do_set_local_dynsym_offset(off); }
726
727 // Relocate the input sections and write out the local symbols.
728 void
729 relocate(const Symbol_table* symtab, const Layout* layout, Output_file* of)
730 { return this->do_relocate(symtab, layout, of); }
731
732 // Return whether an input section is being included in the link.
733 bool
734 is_section_included(unsigned int shndx) const
735 {
736 gold_assert(shndx < this->output_sections_.size());
737 return this->output_sections_[shndx] != NULL;
738 }
739
740 // Given a section index, return the corresponding Output_section.
741 // The return value will be NULL if the section is not included in
742 // the link.
743 Output_section*
744 output_section(unsigned int shndx) const
745 {
746 gold_assert(shndx < this->output_sections_.size());
747 return this->output_sections_[shndx];
748 }
749
750 // The the output section of the input section with index SHNDX.
751 // This is only used currently to remove a section from the link in
752 // relaxation.
753 void
754 set_output_section(unsigned int shndx, Output_section* os)
755 {
756 gold_assert(shndx < this->output_sections_.size());
757 this->output_sections_[shndx] = os;
758 }
759
760 // Given a section index, return the offset in the Output_section.
761 // The return value will be -1U if the section is specially mapped,
762 // such as a merge section.
763 uint64_t
764 output_section_offset(unsigned int shndx) const
765 { return this->do_output_section_offset(shndx); }
766
767 // Set the offset of an input section within its output section.
768 void
769 set_section_offset(unsigned int shndx, uint64_t off)
770 { this->do_set_section_offset(shndx, off); }
771
772 // Return true if we need to wait for output sections to be written
773 // before we can apply relocations. This is true if the object has
774 // any relocations for sections which require special handling, such
775 // as the exception frame section.
776 bool
777 relocs_must_follow_section_writes() const
778 { return this->relocs_must_follow_section_writes_; }
779
780 // Return the object merge map.
781 Object_merge_map*
782 merge_map() const
783 { return this->object_merge_map_; }
784
785 // Set the object merge map.
786 void
787 set_merge_map(Object_merge_map* object_merge_map)
788 {
789 gold_assert(this->object_merge_map_ == NULL);
790 this->object_merge_map_ = object_merge_map;
791 }
792
793 // Record the relocatable reloc info for an input reloc section.
794 void
795 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
796 {
797 gold_assert(reloc_shndx < this->shnum());
798 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
799 }
800
801 // Get the relocatable reloc info for an input reloc section.
802 Relocatable_relocs*
803 relocatable_relocs(unsigned int reloc_shndx)
804 {
805 gold_assert(reloc_shndx < this->shnum());
806 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
807 }
808
809 // Layout sections whose layout was deferred while waiting for
810 // input files from a plugin.
811 void
812 layout_deferred_sections(Layout* layout)
813 { this->do_layout_deferred_sections(layout); }
814
815 protected:
816 // The output section to be used for each input section, indexed by
817 // the input section number. The output section is NULL if the
818 // input section is to be discarded.
819 typedef std::vector<Output_section*> Output_sections;
820
821 // Read the relocs--implemented by child class.
822 virtual void
823 do_read_relocs(Read_relocs_data*) = 0;
824
825 // Process the relocs--implemented by child class.
826 virtual void
827 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
828
829 // Scan the relocs--implemented by child class.
830 virtual void
831 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*) = 0;
832
833 // Return the number of local symbols--implemented by child class.
834 virtual unsigned int
835 do_local_symbol_count() const = 0;
836
837 // Count local symbols--implemented by child class.
838 virtual void
839 do_count_local_symbols(Stringpool_template<char>*,
840 Stringpool_template<char>*) = 0;
841
842 // Finalize the local symbols. Set the output symbol table indexes
843 // for the local variables, and set the offset where local symbol
844 // information will be stored.
845 virtual unsigned int
846 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*) = 0;
847
848 // Set the output dynamic symbol table indexes for the local variables.
849 virtual unsigned int
850 do_set_local_dynsym_indexes(unsigned int) = 0;
851
852 // Set the offset where local dynamic symbol information will be stored.
853 virtual unsigned int
854 do_set_local_dynsym_offset(off_t) = 0;
855
856 // Relocate the input sections and write out the local
857 // symbols--implemented by child class.
858 virtual void
859 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of) = 0;
860
861 // Get the offset of a section--implemented by child class.
862 virtual uint64_t
863 do_output_section_offset(unsigned int shndx) const = 0;
864
865 // Set the offset of a section--implemented by child class.
866 virtual void
867 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
868
869 // Layout sections whose layout was deferred while waiting for
870 // input files from a plugin--implemented by child class.
871 virtual void
872 do_layout_deferred_sections(Layout*) = 0;
873
874 // Return the vector mapping input sections to output sections.
875 Output_sections&
876 output_sections()
877 { return this->output_sections_; }
878
879 const Output_sections&
880 output_sections() const
881 { return this->output_sections_; }
882
883 // Set the size of the relocatable relocs array.
884 void
885 size_relocatable_relocs()
886 {
887 this->map_to_relocatable_relocs_ =
888 new std::vector<Relocatable_relocs*>(this->shnum());
889 }
890
891 // Record that we must wait for the output sections to be written
892 // before applying relocations.
893 void
894 set_relocs_must_follow_section_writes()
895 { this->relocs_must_follow_section_writes_ = true; }
896
897 private:
898 // Mapping from input sections to output section.
899 Output_sections output_sections_;
900 // Mapping from input section index to the information recorded for
901 // the relocations. This is only used for a relocatable link.
902 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
903 // Mappings for merge sections. This is managed by the code in the
904 // Merge_map class.
905 Object_merge_map* object_merge_map_;
906 // Whether we need to wait for output sections to be written before
907 // we can apply relocations.
908 bool relocs_must_follow_section_writes_;
909 // Used to store the relocs data computed by the Read_relocs pass.
910 // Used during garbage collection of unused sections.
911 Read_relocs_data* rd_;
912 // Used to store the symbols data computed by the Read_symbols pass.
913 // Again used during garbage collection when laying out referenced
914 // sections.
915 gold::Symbols_data *sd_;
916 };
917
918 // This class is used to handle relocations against a section symbol
919 // in an SHF_MERGE section. For such a symbol, we need to know the
920 // addend of the relocation before we can determine the final value.
921 // The addend gives us the location in the input section, and we can
922 // determine how it is mapped to the output section. For a
923 // non-section symbol, we apply the addend to the final value of the
924 // symbol; that is done in finalize_local_symbols, and does not use
925 // this class.
926
927 template<int size>
928 class Merged_symbol_value
929 {
930 public:
931 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
932
933 // We use a hash table to map offsets in the input section to output
934 // addresses.
935 typedef Unordered_map<section_offset_type, Value> Output_addresses;
936
937 Merged_symbol_value(Value input_value, Value output_start_address)
938 : input_value_(input_value), output_start_address_(output_start_address),
939 output_addresses_()
940 { }
941
942 // Initialize the hash table.
943 void
944 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
945
946 // Release the hash table to save space.
947 void
948 free_input_to_output_map()
949 { this->output_addresses_.clear(); }
950
951 // Get the output value corresponding to an addend. The object and
952 // input section index are passed in because the caller will have
953 // them; otherwise we could store them here.
954 Value
955 value(const Relobj* object, unsigned int input_shndx, Value addend) const
956 {
957 // This is a relocation against a section symbol. ADDEND is the
958 // offset in the section. The result should be the start of some
959 // merge area. If the object file wants something else, it should
960 // use a regular symbol rather than a section symbol.
961 // Unfortunately, PR 6658 shows a case in which the object file
962 // refers to the section symbol, but uses a negative ADDEND to
963 // compensate for a PC relative reloc. We can't handle the
964 // general case. However, we can handle the special case of a
965 // negative addend, by assuming that it refers to the start of the
966 // section. Of course, that means that we have to guess when
967 // ADDEND is negative. It is normal to see a 32-bit value here
968 // even when the template parameter size is 64, as 64-bit object
969 // file formats have 32-bit relocations. We know this is a merge
970 // section, so we know it has to fit into memory. So we assume
971 // that we won't see a value larger than a large 32-bit unsigned
972 // value. This will break objects with very very large merge
973 // sections; they probably break in other ways anyhow.
974 Value input_offset = this->input_value_;
975 if (addend < 0xffffff00)
976 {
977 input_offset += addend;
978 addend = 0;
979 }
980 typename Output_addresses::const_iterator p =
981 this->output_addresses_.find(input_offset);
982 if (p != this->output_addresses_.end())
983 return p->second + addend;
984
985 return (this->value_from_output_section(object, input_shndx, input_offset)
986 + addend);
987 }
988
989 private:
990 // Get the output value for an input offset if we couldn't find it
991 // in the hash table.
992 Value
993 value_from_output_section(const Relobj*, unsigned int input_shndx,
994 Value input_offset) const;
995
996 // The value of the section symbol in the input file. This is
997 // normally zero, but could in principle be something else.
998 Value input_value_;
999 // The start address of this merged section in the output file.
1000 Value output_start_address_;
1001 // A hash table which maps offsets in the input section to output
1002 // addresses. This only maps specific offsets, not all offsets.
1003 Output_addresses output_addresses_;
1004 };
1005
1006 // This POD class is holds the value of a symbol. This is used for
1007 // local symbols, and for all symbols during relocation processing.
1008 // For special sections, such as SHF_MERGE sections, this calls a
1009 // function to get the final symbol value.
1010
1011 template<int size>
1012 class Symbol_value
1013 {
1014 public:
1015 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
1016
1017 Symbol_value()
1018 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
1019 is_ordinary_shndx_(false), is_section_symbol_(false),
1020 is_tls_symbol_(false), has_output_value_(true)
1021 { this->u_.value = 0; }
1022
1023 // Get the value of this symbol. OBJECT is the object in which this
1024 // symbol is defined, and ADDEND is an addend to add to the value.
1025 template<bool big_endian>
1026 Value
1027 value(const Sized_relobj<size, big_endian>* object, Value addend) const
1028 {
1029 if (this->has_output_value_)
1030 return this->u_.value + addend;
1031 else
1032 {
1033 gold_assert(this->is_ordinary_shndx_);
1034 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
1035 addend);
1036 }
1037 }
1038
1039 // Set the value of this symbol in the output symbol table.
1040 void
1041 set_output_value(Value value)
1042 { this->u_.value = value; }
1043
1044 // For a section symbol in a merged section, we need more
1045 // information.
1046 void
1047 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1048 {
1049 gold_assert(this->is_section_symbol_);
1050 this->has_output_value_ = false;
1051 this->u_.merged_symbol_value = msv;
1052 }
1053
1054 // Initialize the input to output map for a section symbol in a
1055 // merged section. We also initialize the value of a non-section
1056 // symbol in a merged section.
1057 void
1058 initialize_input_to_output_map(const Relobj* object)
1059 {
1060 if (!this->has_output_value_)
1061 {
1062 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1063 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1064 msv->initialize_input_to_output_map(object, this->input_shndx_);
1065 }
1066 }
1067
1068 // Free the input to output map for a section symbol in a merged
1069 // section.
1070 void
1071 free_input_to_output_map()
1072 {
1073 if (!this->has_output_value_)
1074 this->u_.merged_symbol_value->free_input_to_output_map();
1075 }
1076
1077 // Set the value of the symbol from the input file. This is only
1078 // called by count_local_symbols, to communicate the value to
1079 // finalize_local_symbols.
1080 void
1081 set_input_value(Value value)
1082 { this->u_.value = value; }
1083
1084 // Return the input value. This is only called by
1085 // finalize_local_symbols and (in special cases) relocate_section.
1086 Value
1087 input_value() const
1088 { return this->u_.value; }
1089
1090 // Return whether this symbol should go into the output symbol
1091 // table.
1092 bool
1093 needs_output_symtab_entry() const
1094 { return this->output_symtab_index_ != -1U; }
1095
1096 // Return the index in the output symbol table.
1097 unsigned int
1098 output_symtab_index() const
1099 {
1100 gold_assert(this->output_symtab_index_ != 0);
1101 return this->output_symtab_index_;
1102 }
1103
1104 // Set the index in the output symbol table.
1105 void
1106 set_output_symtab_index(unsigned int i)
1107 {
1108 gold_assert(this->output_symtab_index_ == 0);
1109 this->output_symtab_index_ = i;
1110 }
1111
1112 // Record that this symbol should not go into the output symbol
1113 // table.
1114 void
1115 set_no_output_symtab_entry()
1116 {
1117 gold_assert(this->output_symtab_index_ == 0);
1118 this->output_symtab_index_ = -1U;
1119 }
1120
1121 // Set the index in the output dynamic symbol table.
1122 void
1123 set_needs_output_dynsym_entry()
1124 {
1125 gold_assert(!this->is_section_symbol());
1126 this->output_dynsym_index_ = 0;
1127 }
1128
1129 // Return whether this symbol should go into the output symbol
1130 // table.
1131 bool
1132 needs_output_dynsym_entry() const
1133 {
1134 return this->output_dynsym_index_ != -1U;
1135 }
1136
1137 // Record that this symbol should go into the dynamic symbol table.
1138 void
1139 set_output_dynsym_index(unsigned int i)
1140 {
1141 gold_assert(this->output_dynsym_index_ == 0);
1142 this->output_dynsym_index_ = i;
1143 }
1144
1145 // Return the index in the output dynamic symbol table.
1146 unsigned int
1147 output_dynsym_index() const
1148 {
1149 gold_assert(this->output_dynsym_index_ != 0
1150 && this->output_dynsym_index_ != -1U);
1151 return this->output_dynsym_index_;
1152 }
1153
1154 // Set the index of the input section in the input file.
1155 void
1156 set_input_shndx(unsigned int i, bool is_ordinary)
1157 {
1158 this->input_shndx_ = i;
1159 // input_shndx_ field is a bitfield, so make sure that the value
1160 // fits.
1161 gold_assert(this->input_shndx_ == i);
1162 this->is_ordinary_shndx_ = is_ordinary;
1163 }
1164
1165 // Return the index of the input section in the input file.
1166 unsigned int
1167 input_shndx(bool* is_ordinary) const
1168 {
1169 *is_ordinary = this->is_ordinary_shndx_;
1170 return this->input_shndx_;
1171 }
1172
1173 // Whether this is a section symbol.
1174 bool
1175 is_section_symbol() const
1176 { return this->is_section_symbol_; }
1177
1178 // Record that this is a section symbol.
1179 void
1180 set_is_section_symbol()
1181 {
1182 gold_assert(!this->needs_output_dynsym_entry());
1183 this->is_section_symbol_ = true;
1184 }
1185
1186 // Record that this is a TLS symbol.
1187 void
1188 set_is_tls_symbol()
1189 { this->is_tls_symbol_ = true; }
1190
1191 // Return TRUE if this is a TLS symbol.
1192 bool
1193 is_tls_symbol() const
1194 { return this->is_tls_symbol_; }
1195
1196 private:
1197 // The index of this local symbol in the output symbol table. This
1198 // will be -1 if the symbol should not go into the symbol table.
1199 unsigned int output_symtab_index_;
1200 // The index of this local symbol in the dynamic symbol table. This
1201 // will be -1 if the symbol should not go into the symbol table.
1202 unsigned int output_dynsym_index_;
1203 // The section index in the input file in which this symbol is
1204 // defined.
1205 unsigned int input_shndx_ : 28;
1206 // Whether the section index is an ordinary index, not a special
1207 // value.
1208 bool is_ordinary_shndx_ : 1;
1209 // Whether this is a STT_SECTION symbol.
1210 bool is_section_symbol_ : 1;
1211 // Whether this is a STT_TLS symbol.
1212 bool is_tls_symbol_ : 1;
1213 // Whether this symbol has a value for the output file. This is
1214 // normally set to true during Layout::finalize, by
1215 // finalize_local_symbols. It will be false for a section symbol in
1216 // a merge section, as for such symbols we can not determine the
1217 // value to use in a relocation until we see the addend.
1218 bool has_output_value_ : 1;
1219 union
1220 {
1221 // This is used if has_output_value_ is true. Between
1222 // count_local_symbols and finalize_local_symbols, this is the
1223 // value in the input file. After finalize_local_symbols, it is
1224 // the value in the output file.
1225 Value value;
1226 // This is used if has_output_value_ is false. It points to the
1227 // information we need to get the value for a merge section.
1228 Merged_symbol_value<size>* merged_symbol_value;
1229 } u_;
1230 };
1231
1232 // A GOT offset list. A symbol may have more than one GOT offset
1233 // (e.g., when mixing modules compiled with two different TLS models),
1234 // but will usually have at most one. GOT_TYPE identifies the type of
1235 // GOT entry; its values are specific to each target.
1236
1237 class Got_offset_list
1238 {
1239 public:
1240 Got_offset_list()
1241 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1242 { }
1243
1244 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1245 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1246 { }
1247
1248 ~Got_offset_list()
1249 {
1250 if (this->got_next_ != NULL)
1251 {
1252 delete this->got_next_;
1253 this->got_next_ = NULL;
1254 }
1255 }
1256
1257 // Initialize the fields to their default values.
1258 void
1259 init()
1260 {
1261 this->got_type_ = -1U;
1262 this->got_offset_ = 0;
1263 this->got_next_ = NULL;
1264 }
1265
1266 // Set the offset for the GOT entry of type GOT_TYPE.
1267 void
1268 set_offset(unsigned int got_type, unsigned int got_offset)
1269 {
1270 if (this->got_type_ == -1U)
1271 {
1272 this->got_type_ = got_type;
1273 this->got_offset_ = got_offset;
1274 }
1275 else
1276 {
1277 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1278 {
1279 if (g->got_type_ == got_type)
1280 {
1281 g->got_offset_ = got_offset;
1282 return;
1283 }
1284 }
1285 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1286 g->got_next_ = this->got_next_;
1287 this->got_next_ = g;
1288 }
1289 }
1290
1291 // Return the offset for a GOT entry of type GOT_TYPE.
1292 unsigned int
1293 get_offset(unsigned int got_type) const
1294 {
1295 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1296 {
1297 if (g->got_type_ == got_type)
1298 return g->got_offset_;
1299 }
1300 return -1U;
1301 }
1302
1303 private:
1304 unsigned int got_type_;
1305 unsigned int got_offset_;
1306 Got_offset_list* got_next_;
1307 };
1308
1309 // This type is used to modify relocations for -fsplit-stack. It is
1310 // indexed by relocation index, and means that the relocation at that
1311 // index should use the symbol from the vector, rather than the one
1312 // indicated by the relocation.
1313
1314 class Reloc_symbol_changes
1315 {
1316 public:
1317 Reloc_symbol_changes(size_t count)
1318 : vec_(count, NULL)
1319 { }
1320
1321 void
1322 set(size_t i, Symbol* sym)
1323 { this->vec_[i] = sym; }
1324
1325 const Symbol*
1326 operator[](size_t i) const
1327 { return this->vec_[i]; }
1328
1329 private:
1330 std::vector<Symbol*> vec_;
1331 };
1332
1333 // A regular object file. This is size and endian specific.
1334
1335 template<int size, bool big_endian>
1336 class Sized_relobj : public Relobj
1337 {
1338 public:
1339 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1340 typedef std::vector<Symbol*> Symbols;
1341 typedef std::vector<Symbol_value<size> > Local_values;
1342
1343 static const Address invalid_address = static_cast<Address>(0) - 1;
1344
1345 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1346 const typename elfcpp::Ehdr<size, big_endian>&);
1347
1348 ~Sized_relobj();
1349
1350 // Checks if the offset of input section SHNDX within its output
1351 // section is invalid.
1352 bool
1353 is_output_section_offset_invalid(unsigned int shndx) const
1354 { return this->get_output_section_offset(shndx) == invalid_address; }
1355
1356 // Set up the object file based on TARGET.
1357 void
1358 setup()
1359 { this->do_setup(); }
1360
1361 // Return the number of symbols. This is only valid after
1362 // Object::add_symbols has been called.
1363 unsigned int
1364 symbol_count() const
1365 { return this->local_symbol_count_ + this->symbols_.size(); }
1366
1367 // If SYM is the index of a global symbol in the object file's
1368 // symbol table, return the Symbol object. Otherwise, return NULL.
1369 Symbol*
1370 global_symbol(unsigned int sym) const
1371 {
1372 if (sym >= this->local_symbol_count_)
1373 {
1374 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1375 return this->symbols_[sym - this->local_symbol_count_];
1376 }
1377 return NULL;
1378 }
1379
1380 // Return the section index of symbol SYM. Set *VALUE to its value
1381 // in the object file. Set *IS_ORDINARY if this is an ordinary
1382 // section index, not a special code between SHN_LORESERVE and
1383 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1384 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1385 // it will not return the final value of the symbol in the link.
1386 unsigned int
1387 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1388
1389 // Return a pointer to the Symbol_value structure which holds the
1390 // value of a local symbol.
1391 const Symbol_value<size>*
1392 local_symbol(unsigned int sym) const
1393 {
1394 gold_assert(sym < this->local_values_.size());
1395 return &this->local_values_[sym];
1396 }
1397
1398 // Return the index of local symbol SYM in the ordinary symbol
1399 // table. A value of -1U means that the symbol is not being output.
1400 unsigned int
1401 symtab_index(unsigned int sym) const
1402 {
1403 gold_assert(sym < this->local_values_.size());
1404 return this->local_values_[sym].output_symtab_index();
1405 }
1406
1407 // Return the index of local symbol SYM in the dynamic symbol
1408 // table. A value of -1U means that the symbol is not being output.
1409 unsigned int
1410 dynsym_index(unsigned int sym) const
1411 {
1412 gold_assert(sym < this->local_values_.size());
1413 return this->local_values_[sym].output_dynsym_index();
1414 }
1415
1416 // Return the input section index of local symbol SYM.
1417 unsigned int
1418 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1419 {
1420 gold_assert(sym < this->local_values_.size());
1421 return this->local_values_[sym].input_shndx(is_ordinary);
1422 }
1423
1424 // Record that local symbol SYM needs a dynamic symbol entry.
1425 void
1426 set_needs_output_dynsym_entry(unsigned int sym)
1427 {
1428 gold_assert(sym < this->local_values_.size());
1429 this->local_values_[sym].set_needs_output_dynsym_entry();
1430 }
1431
1432 // Return whether the local symbol SYMNDX has a GOT offset.
1433 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1434 bool
1435 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1436 {
1437 Local_got_offsets::const_iterator p =
1438 this->local_got_offsets_.find(symndx);
1439 return (p != this->local_got_offsets_.end()
1440 && p->second->get_offset(got_type) != -1U);
1441 }
1442
1443 // Return the GOT offset of the local symbol SYMNDX.
1444 unsigned int
1445 local_got_offset(unsigned int symndx, unsigned int got_type) const
1446 {
1447 Local_got_offsets::const_iterator p =
1448 this->local_got_offsets_.find(symndx);
1449 gold_assert(p != this->local_got_offsets_.end());
1450 unsigned int off = p->second->get_offset(got_type);
1451 gold_assert(off != -1U);
1452 return off;
1453 }
1454
1455 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1456 void
1457 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1458 unsigned int got_offset)
1459 {
1460 Local_got_offsets::const_iterator p =
1461 this->local_got_offsets_.find(symndx);
1462 if (p != this->local_got_offsets_.end())
1463 p->second->set_offset(got_type, got_offset);
1464 else
1465 {
1466 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1467 std::pair<Local_got_offsets::iterator, bool> ins =
1468 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1469 gold_assert(ins.second);
1470 }
1471 }
1472
1473 // Get the offset of input section SHNDX within its output section.
1474 // This is -1 if the input section requires a special mapping, such
1475 // as a merge section. The output section can be found in the
1476 // output_sections_ field of the parent class Relobj.
1477 Address
1478 get_output_section_offset(unsigned int shndx) const
1479 {
1480 gold_assert(shndx < this->section_offsets_.size());
1481 return this->section_offsets_[shndx];
1482 }
1483
1484 // Return the name of the symbol that spans the given offset in the
1485 // specified section in this object. This is used only for error
1486 // messages and is not particularly efficient.
1487 bool
1488 get_symbol_location_info(unsigned int shndx, off_t offset,
1489 Symbol_location_info* info);
1490
1491 // Look for a kept section corresponding to the given discarded section,
1492 // and return its output address. This is used only for relocations in
1493 // debugging sections.
1494 Address
1495 map_to_kept_section(unsigned int shndx, bool* found) const;
1496
1497 protected:
1498 // Set up.
1499 virtual void
1500 do_setup();
1501
1502 // Read the symbols.
1503 void
1504 do_read_symbols(Read_symbols_data*);
1505
1506 // Return the number of local symbols.
1507 unsigned int
1508 do_local_symbol_count() const
1509 { return this->local_symbol_count_; }
1510
1511 // Lay out the input sections.
1512 void
1513 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1514
1515 // Layout sections whose layout was deferred while waiting for
1516 // input files from a plugin.
1517 void
1518 do_layout_deferred_sections(Layout*);
1519
1520 // Add the symbols to the symbol table.
1521 void
1522 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1523
1524 // Read the relocs.
1525 void
1526 do_read_relocs(Read_relocs_data*);
1527
1528 // Process the relocs to find list of referenced sections. Used only
1529 // during garbage collection.
1530 void
1531 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1532
1533 // Scan the relocs and adjust the symbol table.
1534 void
1535 do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*);
1536
1537 // Count the local symbols.
1538 void
1539 do_count_local_symbols(Stringpool_template<char>*,
1540 Stringpool_template<char>*);
1541
1542 // Finalize the local symbols.
1543 unsigned int
1544 do_finalize_local_symbols(unsigned int, off_t, Symbol_table*);
1545
1546 // Set the offset where local dynamic symbol information will be stored.
1547 unsigned int
1548 do_set_local_dynsym_indexes(unsigned int);
1549
1550 // Set the offset where local dynamic symbol information will be stored.
1551 unsigned int
1552 do_set_local_dynsym_offset(off_t);
1553
1554 // Relocate the input sections and write out the local symbols.
1555 void
1556 do_relocate(const Symbol_table* symtab, const Layout*, Output_file* of);
1557
1558 // Get the size of a section.
1559 uint64_t
1560 do_section_size(unsigned int shndx)
1561 { return this->elf_file_.section_size(shndx); }
1562
1563 // Get the name of a section.
1564 std::string
1565 do_section_name(unsigned int shndx)
1566 { return this->elf_file_.section_name(shndx); }
1567
1568 // Return the location of the contents of a section.
1569 Object::Location
1570 do_section_contents(unsigned int shndx)
1571 { return this->elf_file_.section_contents(shndx); }
1572
1573 // Return section flags.
1574 uint64_t
1575 do_section_flags(unsigned int shndx);
1576
1577 // Return section entsize.
1578 uint64_t
1579 do_section_entsize(unsigned int shndx);
1580
1581 // Return section address.
1582 uint64_t
1583 do_section_address(unsigned int shndx)
1584 { return this->elf_file_.section_addr(shndx); }
1585
1586 // Return section type.
1587 unsigned int
1588 do_section_type(unsigned int shndx)
1589 { return this->elf_file_.section_type(shndx); }
1590
1591 // Return the section link field.
1592 unsigned int
1593 do_section_link(unsigned int shndx)
1594 { return this->elf_file_.section_link(shndx); }
1595
1596 // Return the section info field.
1597 unsigned int
1598 do_section_info(unsigned int shndx)
1599 { return this->elf_file_.section_info(shndx); }
1600
1601 // Return the section alignment.
1602 uint64_t
1603 do_section_addralign(unsigned int shndx)
1604 { return this->elf_file_.section_addralign(shndx); }
1605
1606 // Return the Xindex structure to use.
1607 Xindex*
1608 do_initialize_xindex();
1609
1610 // Get symbol counts.
1611 void
1612 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1613
1614 // Get the global symbols.
1615 const Symbols*
1616 do_get_global_symbols() const
1617 { return &this->symbols_; }
1618
1619 // Get the offset of a section.
1620 uint64_t
1621 do_output_section_offset(unsigned int shndx) const
1622 {
1623 Address off = this->get_output_section_offset(shndx);
1624 if (off == invalid_address)
1625 return -1ULL;
1626 return off;
1627 }
1628
1629 // Set the offset of a section.
1630 void
1631 do_set_section_offset(unsigned int shndx, uint64_t off)
1632 {
1633 gold_assert(shndx < this->section_offsets_.size());
1634 this->section_offsets_[shndx] =
1635 (off == static_cast<uint64_t>(-1)
1636 ? invalid_address
1637 : convert_types<Address, uint64_t>(off));
1638 }
1639
1640 // Adjust a section index if necessary.
1641 unsigned int
1642 adjust_shndx(unsigned int shndx)
1643 {
1644 if (shndx >= elfcpp::SHN_LORESERVE)
1645 shndx += this->elf_file_.large_shndx_offset();
1646 return shndx;
1647 }
1648
1649 // Initialize input to output maps for section symbols in merged
1650 // sections.
1651 void
1652 initialize_input_to_output_maps();
1653
1654 // Free the input to output maps for section symbols in merged
1655 // sections.
1656 void
1657 free_input_to_output_maps();
1658
1659 // Return symbol table section index.
1660 unsigned int
1661 symtab_shndx() const
1662 { return this->symtab_shndx_; }
1663
1664 // Allow a child class to access the ELF file.
1665 elfcpp::Elf_file<size, big_endian, Object>*
1666 elf_file()
1667 { return &this->elf_file_; }
1668
1669 // Allow a child class to access the local values.
1670 Local_values*
1671 local_values()
1672 { return &this->local_values_; }
1673
1674 // Views and sizes when relocating.
1675 struct View_size
1676 {
1677 unsigned char* view;
1678 typename elfcpp::Elf_types<size>::Elf_Addr address;
1679 off_t offset;
1680 section_size_type view_size;
1681 bool is_input_output_view;
1682 bool is_postprocessing_view;
1683 };
1684
1685 typedef std::vector<View_size> Views;
1686
1687 // This may be overriden by a child class.
1688 virtual void
1689 do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
1690 const unsigned char* pshdrs, Views* pviews);
1691
1692 // Allow a child to set output local symbol count.
1693 void
1694 set_output_local_symbol_count(unsigned int value)
1695 { this->output_local_symbol_count_ = value; }
1696
1697 private:
1698 // For convenience.
1699 typedef Sized_relobj<size, big_endian> This;
1700 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1701 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1702 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1703 typedef elfcpp::Shdr<size, big_endian> Shdr;
1704
1705 // To keep track of discarded comdat sections, we need to map a member
1706 // section index to the object and section index of the corresponding
1707 // kept section.
1708 struct Kept_comdat_section
1709 {
1710 Kept_comdat_section(Relobj* a_object, unsigned int a_shndx)
1711 : object(a_object), shndx(a_shndx)
1712 { }
1713 Relobj* object;
1714 unsigned int shndx;
1715 };
1716 typedef std::map<unsigned int, Kept_comdat_section>
1717 Kept_comdat_section_table;
1718
1719 // Find the SHT_SYMTAB section, given the section headers.
1720 void
1721 find_symtab(const unsigned char* pshdrs);
1722
1723 // Return whether SHDR has the right flags for a GNU style exception
1724 // frame section.
1725 bool
1726 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1727
1728 // Return whether there is a section named .eh_frame which might be
1729 // a GNU style exception frame section.
1730 bool
1731 find_eh_frame(const unsigned char* pshdrs, const char* names,
1732 section_size_type names_size) const;
1733
1734 // Whether to include a section group in the link.
1735 bool
1736 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1737 const unsigned char*, const char *, section_size_type,
1738 std::vector<bool>*);
1739
1740 // Whether to include a linkonce section in the link.
1741 bool
1742 include_linkonce_section(Layout*, unsigned int, const char*,
1743 const elfcpp::Shdr<size, big_endian>&);
1744
1745 // Layout an input section.
1746 void
1747 layout_section(Layout* layout, unsigned int shndx, const char* name,
1748 typename This::Shdr& shdr, unsigned int reloc_shndx,
1749 unsigned int reloc_type);
1750
1751 // Write section data to the output file. Record the views and
1752 // sizes in VIEWS for use when relocating.
1753 void
1754 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1755
1756 // Relocate the sections in the output file.
1757 void
1758 relocate_sections(const Symbol_table* symtab, const Layout* layout,
1759 const unsigned char* pshdrs, Views* pviews)
1760 { this->do_relocate_sections(symtab, layout, pshdrs, pviews); }
1761
1762 // Scan the input relocations for --emit-relocs.
1763 void
1764 emit_relocs_scan(Symbol_table*, Layout*, const unsigned char* plocal_syms,
1765 const Read_relocs_data::Relocs_list::iterator&);
1766
1767 // Scan the input relocations for --emit-relocs, templatized on the
1768 // type of the relocation section.
1769 template<int sh_type>
1770 void
1771 emit_relocs_scan_reltype(Symbol_table*, Layout*,
1772 const unsigned char* plocal_syms,
1773 const Read_relocs_data::Relocs_list::iterator&,
1774 Relocatable_relocs*);
1775
1776 // Emit the relocs for --emit-relocs.
1777 void
1778 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1779 unsigned int sh_type, const unsigned char* prelocs,
1780 size_t reloc_count, Output_section*, Address output_offset,
1781 unsigned char* view, Address address,
1782 section_size_type view_size,
1783 unsigned char* reloc_view, section_size_type reloc_view_size);
1784
1785 // Emit the relocs for --emit-relocs, templatized on the type of the
1786 // relocation section.
1787 template<int sh_type>
1788 void
1789 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1790 const unsigned char* prelocs, size_t reloc_count,
1791 Output_section*, Address output_offset,
1792 unsigned char* view, Address address,
1793 section_size_type view_size,
1794 unsigned char* reloc_view,
1795 section_size_type reloc_view_size);
1796
1797 // A type shared by split_stack_adjust_reltype and find_functions.
1798 typedef std::map<section_offset_type, section_size_type> Function_offsets;
1799
1800 // Check for -fsplit-stack routines calling non-split-stack routines.
1801 void
1802 split_stack_adjust(const Symbol_table*, const unsigned char* pshdrs,
1803 unsigned int sh_type, unsigned int shndx,
1804 const unsigned char* prelocs, size_t reloc_count,
1805 unsigned char* view, section_size_type view_size,
1806 Reloc_symbol_changes** reloc_map);
1807
1808 template<int sh_type>
1809 void
1810 split_stack_adjust_reltype(const Symbol_table*, const unsigned char* pshdrs,
1811 unsigned int shndx, const unsigned char* prelocs,
1812 size_t reloc_count, unsigned char* view,
1813 section_size_type view_size,
1814 Reloc_symbol_changes** reloc_map);
1815
1816 // Find all functions in a section.
1817 void
1818 find_functions(const unsigned char* pshdrs, unsigned int shndx,
1819 Function_offsets*);
1820
1821 // Write out the local symbols.
1822 void
1823 write_local_symbols(Output_file*,
1824 const Stringpool_template<char>*,
1825 const Stringpool_template<char>*,
1826 Output_symtab_xindex*,
1827 Output_symtab_xindex*);
1828
1829 // Clear the local symbol information.
1830 void
1831 clear_local_symbols()
1832 {
1833 this->local_values_.clear();
1834 this->local_got_offsets_.clear();
1835 }
1836
1837 // Record a mapping from discarded section SHNDX to the corresponding
1838 // kept section.
1839 void
1840 set_kept_comdat_section(unsigned int shndx, Relobj* kept_object,
1841 unsigned int kept_shndx)
1842 {
1843 Kept_comdat_section kept(kept_object, kept_shndx);
1844 this->kept_comdat_sections_.insert(std::make_pair(shndx, kept));
1845 }
1846
1847 // Find the kept section corresponding to the discarded section
1848 // SHNDX. Return true if found.
1849 bool
1850 get_kept_comdat_section(unsigned int shndx, Relobj** kept_object,
1851 unsigned int* kept_shndx) const
1852 {
1853 typename Kept_comdat_section_table::const_iterator p =
1854 this->kept_comdat_sections_.find(shndx);
1855 if (p == this->kept_comdat_sections_.end())
1856 return false;
1857 *kept_object = p->second.object;
1858 *kept_shndx = p->second.shndx;
1859 return true;
1860 }
1861
1862 // The GOT offsets of local symbols. This map also stores GOT offsets
1863 // for tp-relative offsets for TLS symbols.
1864 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1865
1866 // The TLS GOT offsets of local symbols. The map stores the offsets
1867 // for either a single GOT entry that holds the module index of a TLS
1868 // symbol, or a pair of GOT entries containing the module index and
1869 // dtv-relative offset.
1870 struct Tls_got_entry
1871 {
1872 Tls_got_entry(int got_offset, bool have_pair)
1873 : got_offset_(got_offset),
1874 have_pair_(have_pair)
1875 { }
1876 int got_offset_;
1877 bool have_pair_;
1878 };
1879 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1880
1881 // Saved information for sections whose layout was deferred.
1882 struct Deferred_layout
1883 {
1884 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1885 Deferred_layout(unsigned int shndx, const char* name,
1886 const unsigned char* pshdr,
1887 unsigned int reloc_shndx, unsigned int reloc_type)
1888 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
1889 reloc_type_(reloc_type)
1890 {
1891 memcpy(this->shdr_data_, pshdr, shdr_size);
1892 }
1893 unsigned int shndx_;
1894 std::string name_;
1895 unsigned int reloc_shndx_;
1896 unsigned int reloc_type_;
1897 unsigned char shdr_data_[shdr_size];
1898 };
1899
1900 // General access to the ELF file.
1901 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1902 // Index of SHT_SYMTAB section.
1903 unsigned int symtab_shndx_;
1904 // The number of local symbols.
1905 unsigned int local_symbol_count_;
1906 // The number of local symbols which go into the output file.
1907 unsigned int output_local_symbol_count_;
1908 // The number of local symbols which go into the output file's dynamic
1909 // symbol table.
1910 unsigned int output_local_dynsym_count_;
1911 // The entries in the symbol table for the external symbols.
1912 Symbols symbols_;
1913 // Number of symbols defined in object file itself.
1914 size_t defined_count_;
1915 // File offset for local symbols.
1916 off_t local_symbol_offset_;
1917 // File offset for local dynamic symbols.
1918 off_t local_dynsym_offset_;
1919 // Values of local symbols.
1920 Local_values local_values_;
1921 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1922 // for TLS symbols, indexed by symbol number.
1923 Local_got_offsets local_got_offsets_;
1924 // For each input section, the offset of the input section in its
1925 // output section. This is INVALID_ADDRESS if the input section requires a
1926 // special mapping.
1927 std::vector<Address> section_offsets_;
1928 // Table mapping discarded comdat sections to corresponding kept sections.
1929 Kept_comdat_section_table kept_comdat_sections_;
1930 // Whether this object has a GNU style .eh_frame section.
1931 bool has_eh_frame_;
1932 // If this object has a GNU style .eh_frame section that is discarded in
1933 // output, record the index here. Otherwise it is -1U.
1934 unsigned int discarded_eh_frame_shndx_;
1935 // The list of sections whose layout was deferred.
1936 std::vector<Deferred_layout> deferred_layout_;
1937 };
1938
1939 // A class to manage the list of all objects.
1940
1941 class Input_objects
1942 {
1943 public:
1944 Input_objects()
1945 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
1946 { }
1947
1948 // The type of the list of input relocateable objects.
1949 typedef std::vector<Relobj*> Relobj_list;
1950 typedef Relobj_list::const_iterator Relobj_iterator;
1951
1952 // The type of the list of input dynamic objects.
1953 typedef std::vector<Dynobj*> Dynobj_list;
1954 typedef Dynobj_list::const_iterator Dynobj_iterator;
1955
1956 // Add an object to the list. Return true if all is well, or false
1957 // if this object should be ignored.
1958 bool
1959 add_object(Object*);
1960
1961 // Start processing an archive.
1962 void
1963 archive_start(Archive*);
1964
1965 // Stop processing an archive.
1966 void
1967 archive_stop(Archive*);
1968
1969 // For each dynamic object, check whether we've seen all of its
1970 // explicit dependencies.
1971 void
1972 check_dynamic_dependencies() const;
1973
1974 // Return whether an object was found in the system library
1975 // directory.
1976 bool
1977 found_in_system_library_directory(const Object*) const;
1978
1979 // Print symbol counts.
1980 void
1981 print_symbol_counts(const Symbol_table*) const;
1982
1983 // Print a cross reference table.
1984 void
1985 print_cref(const Symbol_table*, FILE*) const;
1986
1987 // Iterate over all regular objects.
1988
1989 Relobj_iterator
1990 relobj_begin() const
1991 { return this->relobj_list_.begin(); }
1992
1993 Relobj_iterator
1994 relobj_end() const
1995 { return this->relobj_list_.end(); }
1996
1997 // Iterate over all dynamic objects.
1998
1999 Dynobj_iterator
2000 dynobj_begin() const
2001 { return this->dynobj_list_.begin(); }
2002
2003 Dynobj_iterator
2004 dynobj_end() const
2005 { return this->dynobj_list_.end(); }
2006
2007 // Return whether we have seen any dynamic objects.
2008 bool
2009 any_dynamic() const
2010 { return !this->dynobj_list_.empty(); }
2011
2012 // Return the number of input objects.
2013 int
2014 number_of_input_objects() const
2015 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
2016
2017 private:
2018 Input_objects(const Input_objects&);
2019 Input_objects& operator=(const Input_objects&);
2020
2021 // The list of ordinary objects included in the link.
2022 Relobj_list relobj_list_;
2023 // The list of dynamic objects included in the link.
2024 Dynobj_list dynobj_list_;
2025 // SONAMEs that we have seen.
2026 Unordered_set<std::string> sonames_;
2027 // Manage cross-references if requested.
2028 Cref* cref_;
2029 };
2030
2031 // Some of the information we pass to the relocation routines. We
2032 // group this together to avoid passing a dozen different arguments.
2033
2034 template<int size, bool big_endian>
2035 struct Relocate_info
2036 {
2037 // Symbol table.
2038 const Symbol_table* symtab;
2039 // Layout.
2040 const Layout* layout;
2041 // Object being relocated.
2042 Sized_relobj<size, big_endian>* object;
2043 // Section index of relocation section.
2044 unsigned int reloc_shndx;
2045 // Section header of relocation section.
2046 const unsigned char* reloc_shdr;
2047 // Section index of section being relocated.
2048 unsigned int data_shndx;
2049 // Section header of data section.
2050 const unsigned char* data_shdr;
2051
2052 // Return a string showing the location of a relocation. This is
2053 // only used for error messages.
2054 std::string
2055 location(size_t relnum, off_t reloffset) const;
2056 };
2057
2058 // This is used to represent a section in an object and is used as the
2059 // key type for various section maps.
2060 typedef std::pair<Object*, unsigned int> Section_id;
2061
2062 // This is similar to Section_id but is used when the section
2063 // pointers are const.
2064 typedef std::pair<const Object*, unsigned int> Const_section_id;
2065
2066 // The hash value is based on the address of an object in memory during
2067 // linking. It is okay to use this for looking up sections but never use
2068 // this in an unordered container that we want to traverse in a repeatable
2069 // manner.
2070
2071 struct Section_id_hash
2072 {
2073 size_t operator()(const Section_id& loc) const
2074 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2075 };
2076
2077 struct Const_section_id_hash
2078 {
2079 size_t operator()(const Const_section_id& loc) const
2080 { return reinterpret_cast<uintptr_t>(loc.first) ^ loc.second; }
2081 };
2082
2083 // Return whether INPUT_FILE contains an ELF object start at file
2084 // offset OFFSET. This sets *START to point to a view of the start of
2085 // the file. It sets *READ_SIZE to the number of bytes in the view.
2086
2087 extern bool
2088 is_elf_object(Input_file* input_file, off_t offset,
2089 const unsigned char** start, int *read_size);
2090
2091 // Return an Object appropriate for the input file. P is BYTES long,
2092 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
2093 // this sees an object the linker is not configured to support, it
2094 // sets *PUNCONFIGURED to true and returns NULL without giving an
2095 // error message.
2096
2097 extern Object*
2098 make_elf_object(const std::string& name, Input_file*,
2099 off_t offset, const unsigned char* p,
2100 section_offset_type bytes, bool* punconfigured);
2101
2102 } // end namespace gold
2103
2104 #endif // !defined(GOLD_OBJECT_H)
This page took 0.088852 seconds and 5 git commands to generate.