* object.cc (is_elf_object): Define.
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Task;
39 class Cref;
40 class Archive;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 // Section headers.
59 File_view* section_headers;
60 // Section names.
61 File_view* section_names;
62 // Size of section name data in bytes.
63 section_size_type section_names_size;
64 // Symbol data.
65 File_view* symbols;
66 // Size of symbol data in bytes.
67 section_size_type symbols_size;
68 // Offset of external symbols within symbol data. This structure
69 // sometimes contains only external symbols, in which case this will
70 // be zero. Sometimes it contains all symbols.
71 section_offset_type external_symbols_offset;
72 // Symbol names.
73 File_view* symbol_names;
74 // Size of symbol name data in bytes.
75 section_size_type symbol_names_size;
76
77 // Version information. This is only used on dynamic objects.
78 // Version symbol data (from SHT_GNU_versym section).
79 File_view* versym;
80 section_size_type versym_size;
81 // Version definition data (from SHT_GNU_verdef section).
82 File_view* verdef;
83 section_size_type verdef_size;
84 unsigned int verdef_info;
85 // Needed version data (from SHT_GNU_verneed section).
86 File_view* verneed;
87 section_size_type verneed_size;
88 unsigned int verneed_info;
89 };
90
91 // Information used to print error messages.
92
93 struct Symbol_location_info
94 {
95 std::string source_file;
96 std::string enclosing_symbol_name;
97 int line_number;
98 };
99
100 // Data about a single relocation section. This is read in
101 // read_relocs and processed in scan_relocs.
102
103 struct Section_relocs
104 {
105 // Index of reloc section.
106 unsigned int reloc_shndx;
107 // Index of section that relocs apply to.
108 unsigned int data_shndx;
109 // Contents of reloc section.
110 File_view* contents;
111 // Reloc section type.
112 unsigned int sh_type;
113 // Number of reloc entries.
114 size_t reloc_count;
115 // Output section.
116 Output_section* output_section;
117 // Whether this section has special handling for offsets.
118 bool needs_special_offset_handling;
119 // Whether the data section is allocated (has the SHF_ALLOC flag set).
120 bool is_data_section_allocated;
121 };
122
123 // Relocations in an object file. This is read in read_relocs and
124 // processed in scan_relocs.
125
126 struct Read_relocs_data
127 {
128 typedef std::vector<Section_relocs> Relocs_list;
129 // The relocations.
130 Relocs_list relocs;
131 // The local symbols.
132 File_view* local_symbols;
133 };
134
135 // The Xindex class manages section indexes for objects with more than
136 // 0xff00 sections.
137
138 class Xindex
139 {
140 public:
141 Xindex(int large_shndx_offset)
142 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
143 { }
144
145 // Initialize the symtab_xindex_ array, given the object and the
146 // section index of the symbol table to use.
147 template<int size, bool big_endian>
148 void
149 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
150
151 // Read in the symtab_xindex_ array, given its section index.
152 // PSHDRS may optionally point to the section headers.
153 template<int size, bool big_endian>
154 void
155 read_symtab_xindex(Object*, unsigned int xindex_shndx,
156 const unsigned char* pshdrs);
157
158 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
159 // real section index.
160 unsigned int
161 sym_xindex_to_shndx(Object* object, unsigned int symndx);
162
163 private:
164 // The type of the array giving the real section index for symbols
165 // whose st_shndx field holds SHN_XINDEX.
166 typedef std::vector<unsigned int> Symtab_xindex;
167
168 // Adjust a section index if necessary. This should only be called
169 // for ordinary section indexes.
170 unsigned int
171 adjust_shndx(unsigned int shndx)
172 {
173 if (shndx >= elfcpp::SHN_LORESERVE)
174 shndx += this->large_shndx_offset_;
175 return shndx;
176 }
177
178 // Adjust to apply to large section indexes.
179 int large_shndx_offset_;
180 // The data from the SHT_SYMTAB_SHNDX section.
181 Symtab_xindex symtab_xindex_;
182 };
183
184 // Object is an abstract base class which represents either a 32-bit
185 // or a 64-bit input object. This can be a regular object file
186 // (ET_REL) or a shared object (ET_DYN).
187
188 class Object
189 {
190 public:
191 // NAME is the name of the object as we would report it to the user
192 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
193 // used to read the file. OFFSET is the offset within the input
194 // file--0 for a .o or .so file, something else for a .a file.
195 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
196 off_t offset = 0)
197 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
198 is_dynamic_(is_dynamic), target_(NULL), xindex_(NULL)
199 { input_file->file().add_object(); }
200
201 virtual ~Object()
202 { this->input_file_->file().remove_object(); }
203
204 // Return the name of the object as we would report it to the tuser.
205 const std::string&
206 name() const
207 { return this->name_; }
208
209 // Get the offset into the file.
210 off_t
211 offset() const
212 { return this->offset_; }
213
214 // Return whether this is a dynamic object.
215 bool
216 is_dynamic() const
217 { return this->is_dynamic_; }
218
219 // Returns NULL for Objects that are not plugin objects. This method
220 // is overridden in the Pluginobj class.
221 Pluginobj*
222 pluginobj()
223 { return this->do_pluginobj(); }
224
225 // Return the target structure associated with this object.
226 Target*
227 target() const
228 { return this->target_; }
229
230 // Get the file. We pass on const-ness.
231 Input_file*
232 input_file()
233 { return this->input_file_; }
234
235 const Input_file*
236 input_file() const
237 { return this->input_file_; }
238
239 // Lock the underlying file.
240 void
241 lock(const Task* t)
242 { this->input_file()->file().lock(t); }
243
244 // Unlock the underlying file.
245 void
246 unlock(const Task* t)
247 { this->input_file()->file().unlock(t); }
248
249 // Return whether the underlying file is locked.
250 bool
251 is_locked() const
252 { return this->input_file()->file().is_locked(); }
253
254 // Return the token, so that the task can be queued.
255 Task_token*
256 token()
257 { return this->input_file()->file().token(); }
258
259 // Release the underlying file.
260 void
261 release()
262 { this->input_file_->file().release(); }
263
264 // Return whether we should just read symbols from this file.
265 bool
266 just_symbols() const
267 { return this->input_file()->just_symbols(); }
268
269 // Return the sized target structure associated with this object.
270 // This is like the target method but it returns a pointer of
271 // appropriate checked type.
272 template<int size, bool big_endian>
273 Sized_target<size, big_endian>*
274 sized_target() const;
275
276 // Get the number of sections.
277 unsigned int
278 shnum() const
279 { return this->shnum_; }
280
281 // Return a view of the contents of a section. Set *PLEN to the
282 // size. CACHE is a hint as in File_read::get_view.
283 const unsigned char*
284 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
285
286 // Adjust a symbol's section index as needed. SYMNDX is the index
287 // of the symbol and SHNDX is the symbol's section from
288 // get_st_shndx. This returns the section index. It sets
289 // *IS_ORDINARY to indicate whether this is a normal section index,
290 // rather than a special code between SHN_LORESERVE and
291 // SHN_HIRESERVE.
292 unsigned int
293 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
294 {
295 if (shndx < elfcpp::SHN_LORESERVE)
296 *is_ordinary = true;
297 else if (shndx == elfcpp::SHN_XINDEX)
298 {
299 if (this->xindex_ == NULL)
300 this->xindex_ = this->do_initialize_xindex();
301 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
302 *is_ordinary = true;
303 }
304 else
305 *is_ordinary = false;
306 return shndx;
307 }
308
309 // Return the size of a section given a section index.
310 uint64_t
311 section_size(unsigned int shndx)
312 { return this->do_section_size(shndx); }
313
314 // Return the name of a section given a section index.
315 std::string
316 section_name(unsigned int shndx)
317 { return this->do_section_name(shndx); }
318
319 // Return the section flags given a section index.
320 uint64_t
321 section_flags(unsigned int shndx)
322 { return this->do_section_flags(shndx); }
323
324 // Return the section address given a section index.
325 uint64_t
326 section_address(unsigned int shndx)
327 { return this->do_section_address(shndx); }
328
329 // Return the section type given a section index.
330 unsigned int
331 section_type(unsigned int shndx)
332 { return this->do_section_type(shndx); }
333
334 // Return the section link field given a section index.
335 unsigned int
336 section_link(unsigned int shndx)
337 { return this->do_section_link(shndx); }
338
339 // Return the section info field given a section index.
340 unsigned int
341 section_info(unsigned int shndx)
342 { return this->do_section_info(shndx); }
343
344 // Return the required section alignment given a section index.
345 uint64_t
346 section_addralign(unsigned int shndx)
347 { return this->do_section_addralign(shndx); }
348
349 // Read the symbol information.
350 void
351 read_symbols(Read_symbols_data* sd)
352 { return this->do_read_symbols(sd); }
353
354 // Pass sections which should be included in the link to the Layout
355 // object, and record where the sections go in the output file.
356 void
357 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
358 { this->do_layout(symtab, layout, sd); }
359
360 // Add symbol information to the global symbol table.
361 void
362 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
363 { this->do_add_symbols(symtab, sd, layout); }
364
365 // Functions and types for the elfcpp::Elf_file interface. This
366 // permit us to use Object as the File template parameter for
367 // elfcpp::Elf_file.
368
369 // The View class is returned by view. It must support a single
370 // method, data(). This is trivial, because get_view does what we
371 // need.
372 class View
373 {
374 public:
375 View(const unsigned char* p)
376 : p_(p)
377 { }
378
379 const unsigned char*
380 data() const
381 { return this->p_; }
382
383 private:
384 const unsigned char* p_;
385 };
386
387 // Return a View.
388 View
389 view(off_t file_offset, section_size_type data_size)
390 { return View(this->get_view(file_offset, data_size, true, true)); }
391
392 // Report an error.
393 void
394 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
395
396 // A location in the file.
397 struct Location
398 {
399 off_t file_offset;
400 off_t data_size;
401
402 Location(off_t fo, section_size_type ds)
403 : file_offset(fo), data_size(ds)
404 { }
405 };
406
407 // Get a View given a Location.
408 View view(Location loc)
409 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
410
411 // Get a view into the underlying file.
412 const unsigned char*
413 get_view(off_t start, section_size_type size, bool aligned, bool cache)
414 {
415 return this->input_file()->file().get_view(this->offset_, start, size,
416 aligned, cache);
417 }
418
419 // Get a lasting view into the underlying file.
420 File_view*
421 get_lasting_view(off_t start, section_size_type size, bool aligned,
422 bool cache)
423 {
424 return this->input_file()->file().get_lasting_view(this->offset_, start,
425 size, aligned, cache);
426 }
427
428 // Read data from the underlying file.
429 void
430 read(off_t start, section_size_type size, void* p)
431 { this->input_file()->file().read(start + this->offset_, size, p); }
432
433 // Read multiple data from the underlying file.
434 void
435 read_multiple(const File_read::Read_multiple& rm)
436 { this->input_file()->file().read_multiple(this->offset_, rm); }
437
438 // Stop caching views in the underlying file.
439 void
440 clear_view_cache_marks()
441 { this->input_file()->file().clear_view_cache_marks(); }
442
443 // Get the number of global symbols defined by this object, and the
444 // number of the symbols whose final definition came from this
445 // object.
446 void
447 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
448 size_t* used) const
449 { this->do_get_global_symbol_counts(symtab, defined, used); }
450
451 // Set the target.
452 void
453 set_target(Target* target)
454 { this->target_ = target; }
455
456 // Return whether this object was found in a system directory.
457 bool
458 is_in_system_directory() const
459 { return this->input_file()->is_in_system_directory(); }
460
461 // Return whether we found this object by searching a directory.
462 bool
463 searched_for() const
464 { return this->input_file()->will_search_for(); }
465
466 protected:
467 // Returns NULL for Objects that are not plugin objects. This method
468 // is overridden in the Pluginobj class.
469 virtual Pluginobj*
470 do_pluginobj()
471 { return NULL; }
472
473 // Read the symbols--implemented by child class.
474 virtual void
475 do_read_symbols(Read_symbols_data*) = 0;
476
477 // Lay out sections--implemented by child class.
478 virtual void
479 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
480
481 // Add symbol information to the global symbol table--implemented by
482 // child class.
483 virtual void
484 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
485
486 // Return the location of the contents of a section. Implemented by
487 // child class.
488 virtual Location
489 do_section_contents(unsigned int shndx) = 0;
490
491 // Get the size of a section--implemented by child class.
492 virtual uint64_t
493 do_section_size(unsigned int shndx) = 0;
494
495 // Get the name of a section--implemented by child class.
496 virtual std::string
497 do_section_name(unsigned int shndx) = 0;
498
499 // Get section flags--implemented by child class.
500 virtual uint64_t
501 do_section_flags(unsigned int shndx) = 0;
502
503 // Get section address--implemented by child class.
504 virtual uint64_t
505 do_section_address(unsigned int shndx) = 0;
506
507 // Get section type--implemented by child class.
508 virtual unsigned int
509 do_section_type(unsigned int shndx) = 0;
510
511 // Get section link field--implemented by child class.
512 virtual unsigned int
513 do_section_link(unsigned int shndx) = 0;
514
515 // Get section info field--implemented by child class.
516 virtual unsigned int
517 do_section_info(unsigned int shndx) = 0;
518
519 // Get section alignment--implemented by child class.
520 virtual uint64_t
521 do_section_addralign(unsigned int shndx) = 0;
522
523 // Return the Xindex structure to use.
524 virtual Xindex*
525 do_initialize_xindex() = 0;
526
527 // Implement get_global_symbol_counts--implemented by child class.
528 virtual void
529 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
530
531 // Set the target.
532 void
533 set_target(int machine, int size, bool big_endian, int osabi,
534 int abiversion);
535
536 // Set the number of sections.
537 void
538 set_shnum(int shnum)
539 { this->shnum_ = shnum; }
540
541 // Functions used by both Sized_relobj and Sized_dynobj.
542
543 // Read the section data into a Read_symbols_data object.
544 template<int size, bool big_endian>
545 void
546 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
547 Read_symbols_data*);
548
549 // Let the child class initialize the xindex object directly.
550 void
551 set_xindex(Xindex* xindex)
552 {
553 gold_assert(this->xindex_ == NULL);
554 this->xindex_ = xindex;
555 }
556
557 // If NAME is the name of a special .gnu.warning section, arrange
558 // for the warning to be issued. SHNDX is the section index.
559 // Return whether it is a warning section.
560 bool
561 handle_gnu_warning_section(const char* name, unsigned int shndx,
562 Symbol_table*);
563
564 private:
565 // This class may not be copied.
566 Object(const Object&);
567 Object& operator=(const Object&);
568
569 // Name of object as printed to user.
570 std::string name_;
571 // For reading the file.
572 Input_file* input_file_;
573 // Offset within the file--0 for an object file, non-0 for an
574 // archive.
575 off_t offset_;
576 // Number of input sections.
577 unsigned int shnum_;
578 // Whether this is a dynamic object.
579 bool is_dynamic_;
580 // Target functions--may be NULL if the target is not known.
581 Target* target_;
582 // Many sections for objects with more than SHN_LORESERVE sections.
583 Xindex* xindex_;
584 };
585
586 // Implement sized_target inline for efficiency. This approach breaks
587 // static type checking, but is made safe using asserts.
588
589 template<int size, bool big_endian>
590 inline Sized_target<size, big_endian>*
591 Object::sized_target() const
592 {
593 gold_assert(this->target_->get_size() == size);
594 gold_assert(this->target_->is_big_endian() ? big_endian : !big_endian);
595 return static_cast<Sized_target<size, big_endian>*>(this->target_);
596 }
597
598 // A regular object (ET_REL). This is an abstract base class itself.
599 // The implementation is the template class Sized_relobj.
600
601 class Relobj : public Object
602 {
603 public:
604 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
605 : Object(name, input_file, false, offset),
606 output_sections_(),
607 map_to_relocatable_relocs_(NULL),
608 object_merge_map_(NULL),
609 relocs_must_follow_section_writes_(false)
610 { }
611
612 // During garbage collection, the Read_symbols_data pass for
613 // each object is stored as layout needs to be done after
614 // reloc processing.
615 Symbols_data*
616 get_symbols_data()
617 { return this->sd_; }
618
619 // Decides which section names have to be included in the worklist
620 // as roots.
621 bool
622 is_section_name_included(const char *name);
623
624 void
625 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
626 unsigned int section_header_size);
627
628 void
629 set_symbols_data(Symbols_data* sd)
630 { this->sd_ = sd; }
631
632 // During garbage collection, the Read_relocs pass for all objects
633 // is done before scanning the relocs. In that case, this->rd_ is
634 // used to store the information from Read_relocs for each object.
635 // This data is also used to compute the list of relevant sections.
636 Read_relocs_data*
637 get_relocs_data()
638 { return this->rd_; }
639
640 void
641 set_relocs_data(Read_relocs_data* rd)
642 { this->rd_ = rd; }
643
644 virtual bool
645 is_output_section_offset_invalid(unsigned int shndx) const = 0;
646
647 // Read the relocs.
648 void
649 read_relocs(Read_relocs_data* rd)
650 { return this->do_read_relocs(rd); }
651
652 // Process the relocs, during garbage collection only.
653 void
654 gc_process_relocs(const General_options& options, Symbol_table* symtab,
655 Layout* layout, Read_relocs_data* rd)
656 { return this->do_gc_process_relocs(options, symtab, layout, rd); }
657
658 // Scan the relocs and adjust the symbol table.
659 void
660 scan_relocs(const General_options& options, Symbol_table* symtab,
661 Layout* layout, Read_relocs_data* rd)
662 { return this->do_scan_relocs(options, symtab, layout, rd); }
663
664 // The number of local symbols in the input symbol table.
665 virtual unsigned int
666 local_symbol_count() const
667 { return this->do_local_symbol_count(); }
668
669 // Initial local symbol processing: count the number of local symbols
670 // in the output symbol table and dynamic symbol table; add local symbol
671 // names to *POOL and *DYNPOOL.
672 void
673 count_local_symbols(Stringpool_template<char>* pool,
674 Stringpool_template<char>* dynpool)
675 { return this->do_count_local_symbols(pool, dynpool); }
676
677 // Set the values of the local symbols, set the output symbol table
678 // indexes for the local variables, and set the offset where local
679 // symbol information will be stored. Returns the new local symbol index.
680 unsigned int
681 finalize_local_symbols(unsigned int index, off_t off)
682 { return this->do_finalize_local_symbols(index, off); }
683
684 // Set the output dynamic symbol table indexes for the local variables.
685 unsigned int
686 set_local_dynsym_indexes(unsigned int index)
687 { return this->do_set_local_dynsym_indexes(index); }
688
689 // Set the offset where local dynamic symbol information will be stored.
690 unsigned int
691 set_local_dynsym_offset(off_t off)
692 { return this->do_set_local_dynsym_offset(off); }
693
694 // Relocate the input sections and write out the local symbols.
695 void
696 relocate(const General_options& options, const Symbol_table* symtab,
697 const Layout* layout, Output_file* of)
698 { return this->do_relocate(options, symtab, layout, of); }
699
700 // Return whether an input section is being included in the link.
701 bool
702 is_section_included(unsigned int shndx) const
703 {
704 gold_assert(shndx < this->output_sections_.size());
705 return this->output_sections_[shndx] != NULL;
706 }
707
708 // Given a section index, return the corresponding Output_section.
709 // The return value will be NULL if the section is not included in
710 // the link.
711 Output_section*
712 output_section(unsigned int shndx) const
713 {
714 gold_assert(shndx < this->output_sections_.size());
715 return this->output_sections_[shndx];
716 }
717
718 // Given a section index, return the offset in the Output_section.
719 // The return value will be -1U if the section is specially mapped,
720 // such as a merge section.
721 uint64_t
722 output_section_offset(unsigned int shndx) const
723 { return this->do_output_section_offset(shndx); }
724
725 // Set the offset of an input section within its output section.
726 void
727 set_section_offset(unsigned int shndx, uint64_t off)
728 { this->do_set_section_offset(shndx, off); }
729
730 // Return true if we need to wait for output sections to be written
731 // before we can apply relocations. This is true if the object has
732 // any relocations for sections which require special handling, such
733 // as the exception frame section.
734 bool
735 relocs_must_follow_section_writes() const
736 { return this->relocs_must_follow_section_writes_; }
737
738 // Return the object merge map.
739 Object_merge_map*
740 merge_map() const
741 { return this->object_merge_map_; }
742
743 // Set the object merge map.
744 void
745 set_merge_map(Object_merge_map* object_merge_map)
746 {
747 gold_assert(this->object_merge_map_ == NULL);
748 this->object_merge_map_ = object_merge_map;
749 }
750
751 // Record the relocatable reloc info for an input reloc section.
752 void
753 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
754 {
755 gold_assert(reloc_shndx < this->shnum());
756 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
757 }
758
759 // Get the relocatable reloc info for an input reloc section.
760 Relocatable_relocs*
761 relocatable_relocs(unsigned int reloc_shndx)
762 {
763 gold_assert(reloc_shndx < this->shnum());
764 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
765 }
766
767 // Layout sections whose layout was deferred while waiting for
768 // input files from a plugin.
769 void
770 layout_deferred_sections(Layout* layout)
771 { this->do_layout_deferred_sections(layout); }
772
773 protected:
774 // The output section to be used for each input section, indexed by
775 // the input section number. The output section is NULL if the
776 // input section is to be discarded.
777 typedef std::vector<Output_section*> Output_sections;
778
779 // Read the relocs--implemented by child class.
780 virtual void
781 do_read_relocs(Read_relocs_data*) = 0;
782
783 // Process the relocs--implemented by child class.
784 virtual void
785 do_gc_process_relocs(const General_options&, Symbol_table*, Layout*,
786 Read_relocs_data*) = 0;
787
788 // Scan the relocs--implemented by child class.
789 virtual void
790 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
791 Read_relocs_data*) = 0;
792
793 // Return the number of local symbols--implemented by child class.
794 virtual unsigned int
795 do_local_symbol_count() const = 0;
796
797 // Count local symbols--implemented by child class.
798 virtual void
799 do_count_local_symbols(Stringpool_template<char>*,
800 Stringpool_template<char>*) = 0;
801
802 // Finalize the local symbols. Set the output symbol table indexes
803 // for the local variables, and set the offset where local symbol
804 // information will be stored.
805 virtual unsigned int
806 do_finalize_local_symbols(unsigned int, off_t) = 0;
807
808 // Set the output dynamic symbol table indexes for the local variables.
809 virtual unsigned int
810 do_set_local_dynsym_indexes(unsigned int) = 0;
811
812 // Set the offset where local dynamic symbol information will be stored.
813 virtual unsigned int
814 do_set_local_dynsym_offset(off_t) = 0;
815
816 // Relocate the input sections and write out the local
817 // symbols--implemented by child class.
818 virtual void
819 do_relocate(const General_options& options, const Symbol_table* symtab,
820 const Layout*, Output_file* of) = 0;
821
822 // Get the offset of a section--implemented by child class.
823 virtual uint64_t
824 do_output_section_offset(unsigned int shndx) const = 0;
825
826 // Set the offset of a section--implemented by child class.
827 virtual void
828 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
829
830 // Layout sections whose layout was deferred while waiting for
831 // input files from a plugin--implemented by child class.
832 virtual void
833 do_layout_deferred_sections(Layout*) = 0;
834
835 // Return the vector mapping input sections to output sections.
836 Output_sections&
837 output_sections()
838 { return this->output_sections_; }
839
840 const Output_sections&
841 output_sections() const
842 { return this->output_sections_; }
843
844 // Set the size of the relocatable relocs array.
845 void
846 size_relocatable_relocs()
847 {
848 this->map_to_relocatable_relocs_ =
849 new std::vector<Relocatable_relocs*>(this->shnum());
850 }
851
852 // Record that we must wait for the output sections to be written
853 // before applying relocations.
854 void
855 set_relocs_must_follow_section_writes()
856 { this->relocs_must_follow_section_writes_ = true; }
857
858 private:
859 // Mapping from input sections to output section.
860 Output_sections output_sections_;
861 // Mapping from input section index to the information recorded for
862 // the relocations. This is only used for a relocatable link.
863 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
864 // Mappings for merge sections. This is managed by the code in the
865 // Merge_map class.
866 Object_merge_map* object_merge_map_;
867 // Whether we need to wait for output sections to be written before
868 // we can apply relocations.
869 bool relocs_must_follow_section_writes_;
870 // Used to store the relocs data computed by the Read_relocs pass.
871 // Used during garbage collection of unused sections.
872 Read_relocs_data* rd_;
873 // Used to store the symbols data computed by the Read_symbols pass.
874 // Again used during garbage collection when laying out referenced
875 // sections.
876 gold::Symbols_data *sd_;
877 };
878
879 // This class is used to handle relocations against a section symbol
880 // in an SHF_MERGE section. For such a symbol, we need to know the
881 // addend of the relocation before we can determine the final value.
882 // The addend gives us the location in the input section, and we can
883 // determine how it is mapped to the output section. For a
884 // non-section symbol, we apply the addend to the final value of the
885 // symbol; that is done in finalize_local_symbols, and does not use
886 // this class.
887
888 template<int size>
889 class Merged_symbol_value
890 {
891 public:
892 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
893
894 // We use a hash table to map offsets in the input section to output
895 // addresses.
896 typedef Unordered_map<section_offset_type, Value> Output_addresses;
897
898 Merged_symbol_value(Value input_value, Value output_start_address)
899 : input_value_(input_value), output_start_address_(output_start_address),
900 output_addresses_()
901 { }
902
903 // Initialize the hash table.
904 void
905 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
906
907 // Release the hash table to save space.
908 void
909 free_input_to_output_map()
910 { this->output_addresses_.clear(); }
911
912 // Get the output value corresponding to an addend. The object and
913 // input section index are passed in because the caller will have
914 // them; otherwise we could store them here.
915 Value
916 value(const Relobj* object, unsigned int input_shndx, Value addend) const
917 {
918 // This is a relocation against a section symbol. ADDEND is the
919 // offset in the section. The result should be the start of some
920 // merge area. If the object file wants something else, it should
921 // use a regular symbol rather than a section symbol.
922 // Unfortunately, PR 6658 shows a case in which the object file
923 // refers to the section symbol, but uses a negative ADDEND to
924 // compensate for a PC relative reloc. We can't handle the
925 // general case. However, we can handle the special case of a
926 // negative addend, by assuming that it refers to the start of the
927 // section. Of course, that means that we have to guess when
928 // ADDEND is negative. It is normal to see a 32-bit value here
929 // even when the template parameter size is 64, as 64-bit object
930 // file formats have 32-bit relocations. We know this is a merge
931 // section, so we know it has to fit into memory. So we assume
932 // that we won't see a value larger than a large 32-bit unsigned
933 // value. This will break objects with very very large merge
934 // sections; they probably break in other ways anyhow.
935 Value input_offset = this->input_value_;
936 if (addend < 0xffffff00)
937 {
938 input_offset += addend;
939 addend = 0;
940 }
941 typename Output_addresses::const_iterator p =
942 this->output_addresses_.find(input_offset);
943 if (p != this->output_addresses_.end())
944 return p->second + addend;
945
946 return (this->value_from_output_section(object, input_shndx, input_offset)
947 + addend);
948 }
949
950 private:
951 // Get the output value for an input offset if we couldn't find it
952 // in the hash table.
953 Value
954 value_from_output_section(const Relobj*, unsigned int input_shndx,
955 Value input_offset) const;
956
957 // The value of the section symbol in the input file. This is
958 // normally zero, but could in principle be something else.
959 Value input_value_;
960 // The start address of this merged section in the output file.
961 Value output_start_address_;
962 // A hash table which maps offsets in the input section to output
963 // addresses. This only maps specific offsets, not all offsets.
964 Output_addresses output_addresses_;
965 };
966
967 // This POD class is holds the value of a symbol. This is used for
968 // local symbols, and for all symbols during relocation processing.
969 // For special sections, such as SHF_MERGE sections, this calls a
970 // function to get the final symbol value.
971
972 template<int size>
973 class Symbol_value
974 {
975 public:
976 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
977
978 Symbol_value()
979 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
980 is_ordinary_shndx_(false), is_section_symbol_(false),
981 is_tls_symbol_(false), has_output_value_(true)
982 { this->u_.value = 0; }
983
984 // Get the value of this symbol. OBJECT is the object in which this
985 // symbol is defined, and ADDEND is an addend to add to the value.
986 template<bool big_endian>
987 Value
988 value(const Sized_relobj<size, big_endian>* object, Value addend) const
989 {
990 if (this->has_output_value_)
991 return this->u_.value + addend;
992 else
993 {
994 gold_assert(this->is_ordinary_shndx_);
995 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
996 addend);
997 }
998 }
999
1000 // Set the value of this symbol in the output symbol table.
1001 void
1002 set_output_value(Value value)
1003 { this->u_.value = value; }
1004
1005 // For a section symbol in a merged section, we need more
1006 // information.
1007 void
1008 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1009 {
1010 gold_assert(this->is_section_symbol_);
1011 this->has_output_value_ = false;
1012 this->u_.merged_symbol_value = msv;
1013 }
1014
1015 // Initialize the input to output map for a section symbol in a
1016 // merged section. We also initialize the value of a non-section
1017 // symbol in a merged section.
1018 void
1019 initialize_input_to_output_map(const Relobj* object)
1020 {
1021 if (!this->has_output_value_)
1022 {
1023 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1024 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1025 msv->initialize_input_to_output_map(object, this->input_shndx_);
1026 }
1027 }
1028
1029 // Free the input to output map for a section symbol in a merged
1030 // section.
1031 void
1032 free_input_to_output_map()
1033 {
1034 if (!this->has_output_value_)
1035 this->u_.merged_symbol_value->free_input_to_output_map();
1036 }
1037
1038 // Set the value of the symbol from the input file. This is only
1039 // called by count_local_symbols, to communicate the value to
1040 // finalize_local_symbols.
1041 void
1042 set_input_value(Value value)
1043 { this->u_.value = value; }
1044
1045 // Return the input value. This is only called by
1046 // finalize_local_symbols and (in special cases) relocate_section.
1047 Value
1048 input_value() const
1049 { return this->u_.value; }
1050
1051 // Return whether this symbol should go into the output symbol
1052 // table.
1053 bool
1054 needs_output_symtab_entry() const
1055 { return this->output_symtab_index_ != -1U; }
1056
1057 // Return the index in the output symbol table.
1058 unsigned int
1059 output_symtab_index() const
1060 {
1061 gold_assert(this->output_symtab_index_ != 0);
1062 return this->output_symtab_index_;
1063 }
1064
1065 // Set the index in the output symbol table.
1066 void
1067 set_output_symtab_index(unsigned int i)
1068 {
1069 gold_assert(this->output_symtab_index_ == 0);
1070 this->output_symtab_index_ = i;
1071 }
1072
1073 // Record that this symbol should not go into the output symbol
1074 // table.
1075 void
1076 set_no_output_symtab_entry()
1077 {
1078 gold_assert(this->output_symtab_index_ == 0);
1079 this->output_symtab_index_ = -1U;
1080 }
1081
1082 // Set the index in the output dynamic symbol table.
1083 void
1084 set_needs_output_dynsym_entry()
1085 {
1086 gold_assert(!this->is_section_symbol());
1087 this->output_dynsym_index_ = 0;
1088 }
1089
1090 // Return whether this symbol should go into the output symbol
1091 // table.
1092 bool
1093 needs_output_dynsym_entry() const
1094 {
1095 return this->output_dynsym_index_ != -1U;
1096 }
1097
1098 // Record that this symbol should go into the dynamic symbol table.
1099 void
1100 set_output_dynsym_index(unsigned int i)
1101 {
1102 gold_assert(this->output_dynsym_index_ == 0);
1103 this->output_dynsym_index_ = i;
1104 }
1105
1106 // Return the index in the output dynamic symbol table.
1107 unsigned int
1108 output_dynsym_index() const
1109 {
1110 gold_assert(this->output_dynsym_index_ != 0
1111 && this->output_dynsym_index_ != -1U);
1112 return this->output_dynsym_index_;
1113 }
1114
1115 // Set the index of the input section in the input file.
1116 void
1117 set_input_shndx(unsigned int i, bool is_ordinary)
1118 {
1119 this->input_shndx_ = i;
1120 // input_shndx_ field is a bitfield, so make sure that the value
1121 // fits.
1122 gold_assert(this->input_shndx_ == i);
1123 this->is_ordinary_shndx_ = is_ordinary;
1124 }
1125
1126 // Return the index of the input section in the input file.
1127 unsigned int
1128 input_shndx(bool* is_ordinary) const
1129 {
1130 *is_ordinary = this->is_ordinary_shndx_;
1131 return this->input_shndx_;
1132 }
1133
1134 // Whether this is a section symbol.
1135 bool
1136 is_section_symbol() const
1137 { return this->is_section_symbol_; }
1138
1139 // Record that this is a section symbol.
1140 void
1141 set_is_section_symbol()
1142 {
1143 gold_assert(!this->needs_output_dynsym_entry());
1144 this->is_section_symbol_ = true;
1145 }
1146
1147 // Record that this is a TLS symbol.
1148 void
1149 set_is_tls_symbol()
1150 { this->is_tls_symbol_ = true; }
1151
1152 // Return TRUE if this is a TLS symbol.
1153 bool
1154 is_tls_symbol() const
1155 { return this->is_tls_symbol_; }
1156
1157 private:
1158 // The index of this local symbol in the output symbol table. This
1159 // will be -1 if the symbol should not go into the symbol table.
1160 unsigned int output_symtab_index_;
1161 // The index of this local symbol in the dynamic symbol table. This
1162 // will be -1 if the symbol should not go into the symbol table.
1163 unsigned int output_dynsym_index_;
1164 // The section index in the input file in which this symbol is
1165 // defined.
1166 unsigned int input_shndx_ : 28;
1167 // Whether the section index is an ordinary index, not a special
1168 // value.
1169 bool is_ordinary_shndx_ : 1;
1170 // Whether this is a STT_SECTION symbol.
1171 bool is_section_symbol_ : 1;
1172 // Whether this is a STT_TLS symbol.
1173 bool is_tls_symbol_ : 1;
1174 // Whether this symbol has a value for the output file. This is
1175 // normally set to true during Layout::finalize, by
1176 // finalize_local_symbols. It will be false for a section symbol in
1177 // a merge section, as for such symbols we can not determine the
1178 // value to use in a relocation until we see the addend.
1179 bool has_output_value_ : 1;
1180 union
1181 {
1182 // This is used if has_output_value_ is true. Between
1183 // count_local_symbols and finalize_local_symbols, this is the
1184 // value in the input file. After finalize_local_symbols, it is
1185 // the value in the output file.
1186 Value value;
1187 // This is used if has_output_value_ is false. It points to the
1188 // information we need to get the value for a merge section.
1189 Merged_symbol_value<size>* merged_symbol_value;
1190 } u_;
1191 };
1192
1193 // A GOT offset list. A symbol may have more than one GOT offset
1194 // (e.g., when mixing modules compiled with two different TLS models),
1195 // but will usually have at most one. GOT_TYPE identifies the type of
1196 // GOT entry; its values are specific to each target.
1197
1198 class Got_offset_list
1199 {
1200 public:
1201 Got_offset_list()
1202 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1203 { }
1204
1205 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1206 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1207 { }
1208
1209 ~Got_offset_list()
1210 {
1211 if (this->got_next_ != NULL)
1212 {
1213 delete this->got_next_;
1214 this->got_next_ = NULL;
1215 }
1216 }
1217
1218 // Initialize the fields to their default values.
1219 void
1220 init()
1221 {
1222 this->got_type_ = -1U;
1223 this->got_offset_ = 0;
1224 this->got_next_ = NULL;
1225 }
1226
1227 // Set the offset for the GOT entry of type GOT_TYPE.
1228 void
1229 set_offset(unsigned int got_type, unsigned int got_offset)
1230 {
1231 if (this->got_type_ == -1U)
1232 {
1233 this->got_type_ = got_type;
1234 this->got_offset_ = got_offset;
1235 }
1236 else
1237 {
1238 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1239 {
1240 if (g->got_type_ == got_type)
1241 {
1242 g->got_offset_ = got_offset;
1243 return;
1244 }
1245 }
1246 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1247 g->got_next_ = this->got_next_;
1248 this->got_next_ = g;
1249 }
1250 }
1251
1252 // Return the offset for a GOT entry of type GOT_TYPE.
1253 unsigned int
1254 get_offset(unsigned int got_type) const
1255 {
1256 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1257 {
1258 if (g->got_type_ == got_type)
1259 return g->got_offset_;
1260 }
1261 return -1U;
1262 }
1263
1264 private:
1265 unsigned int got_type_;
1266 unsigned int got_offset_;
1267 Got_offset_list* got_next_;
1268 };
1269
1270 // A regular object file. This is size and endian specific.
1271
1272 template<int size, bool big_endian>
1273 class Sized_relobj : public Relobj
1274 {
1275 public:
1276 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1277 typedef std::vector<Symbol*> Symbols;
1278 typedef std::vector<Symbol_value<size> > Local_values;
1279
1280 static const Address invalid_address = static_cast<Address>(0) - 1;
1281
1282 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1283 const typename elfcpp::Ehdr<size, big_endian>&);
1284
1285 ~Sized_relobj();
1286
1287 // Checks if the offset of input section SHNDX within its output
1288 // section is invalid.
1289 bool
1290 is_output_section_offset_invalid(unsigned int shndx) const
1291 { return this->get_output_section_offset(shndx) == invalid_address; }
1292
1293 // Set up the object file based on the ELF header.
1294 void
1295 setup(const typename elfcpp::Ehdr<size, big_endian>&);
1296
1297 // Return the number of symbols. This is only valid after
1298 // Object::add_symbols has been called.
1299 unsigned int
1300 symbol_count() const
1301 { return this->local_symbol_count_ + this->symbols_.size(); }
1302
1303 // If SYM is the index of a global symbol in the object file's
1304 // symbol table, return the Symbol object. Otherwise, return NULL.
1305 Symbol*
1306 global_symbol(unsigned int sym) const
1307 {
1308 if (sym >= this->local_symbol_count_)
1309 {
1310 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1311 return this->symbols_[sym - this->local_symbol_count_];
1312 }
1313 return NULL;
1314 }
1315
1316 // Return the section index of symbol SYM. Set *VALUE to its value
1317 // in the object file. Set *IS_ORDINARY if this is an ordinary
1318 // section index, not a special code between SHN_LORESERVE and
1319 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1320 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1321 // it will not return the final value of the symbol in the link.
1322 unsigned int
1323 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1324
1325 // Return a pointer to the Symbol_value structure which holds the
1326 // value of a local symbol.
1327 const Symbol_value<size>*
1328 local_symbol(unsigned int sym) const
1329 {
1330 gold_assert(sym < this->local_values_.size());
1331 return &this->local_values_[sym];
1332 }
1333
1334 // Return the index of local symbol SYM in the ordinary symbol
1335 // table. A value of -1U means that the symbol is not being output.
1336 unsigned int
1337 symtab_index(unsigned int sym) const
1338 {
1339 gold_assert(sym < this->local_values_.size());
1340 return this->local_values_[sym].output_symtab_index();
1341 }
1342
1343 // Return the index of local symbol SYM in the dynamic symbol
1344 // table. A value of -1U means that the symbol is not being output.
1345 unsigned int
1346 dynsym_index(unsigned int sym) const
1347 {
1348 gold_assert(sym < this->local_values_.size());
1349 return this->local_values_[sym].output_dynsym_index();
1350 }
1351
1352 // Return the input section index of local symbol SYM.
1353 unsigned int
1354 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1355 {
1356 gold_assert(sym < this->local_values_.size());
1357 return this->local_values_[sym].input_shndx(is_ordinary);
1358 }
1359
1360 // Return the appropriate Sized_target structure.
1361 Sized_target<size, big_endian>*
1362 sized_target()
1363 { return this->Object::sized_target<size, big_endian>(); }
1364
1365 // Record that local symbol SYM needs a dynamic symbol entry.
1366 void
1367 set_needs_output_dynsym_entry(unsigned int sym)
1368 {
1369 gold_assert(sym < this->local_values_.size());
1370 this->local_values_[sym].set_needs_output_dynsym_entry();
1371 }
1372
1373 // Return whether the local symbol SYMNDX has a GOT offset.
1374 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1375 bool
1376 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1377 {
1378 Local_got_offsets::const_iterator p =
1379 this->local_got_offsets_.find(symndx);
1380 return (p != this->local_got_offsets_.end()
1381 && p->second->get_offset(got_type) != -1U);
1382 }
1383
1384 // Return the GOT offset of the local symbol SYMNDX.
1385 unsigned int
1386 local_got_offset(unsigned int symndx, unsigned int got_type) const
1387 {
1388 Local_got_offsets::const_iterator p =
1389 this->local_got_offsets_.find(symndx);
1390 gold_assert(p != this->local_got_offsets_.end());
1391 unsigned int off = p->second->get_offset(got_type);
1392 gold_assert(off != -1U);
1393 return off;
1394 }
1395
1396 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1397 void
1398 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1399 unsigned int got_offset)
1400 {
1401 Local_got_offsets::const_iterator p =
1402 this->local_got_offsets_.find(symndx);
1403 if (p != this->local_got_offsets_.end())
1404 p->second->set_offset(got_type, got_offset);
1405 else
1406 {
1407 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1408 std::pair<Local_got_offsets::iterator, bool> ins =
1409 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1410 gold_assert(ins.second);
1411 }
1412 }
1413
1414 // Get the offset of input section SHNDX within its output section.
1415 // This is -1 if the input section requires a special mapping, such
1416 // as a merge section. The output section can be found in the
1417 // output_sections_ field of the parent class Relobj.
1418 Address
1419 get_output_section_offset(unsigned int shndx) const
1420 {
1421 gold_assert(shndx < this->section_offsets_.size());
1422 return this->section_offsets_[shndx];
1423 }
1424
1425 // Return the name of the symbol that spans the given offset in the
1426 // specified section in this object. This is used only for error
1427 // messages and is not particularly efficient.
1428 bool
1429 get_symbol_location_info(unsigned int shndx, off_t offset,
1430 Symbol_location_info* info);
1431
1432 // Look for a kept section corresponding to the given discarded section,
1433 // and return its output address. This is used only for relocations in
1434 // debugging sections.
1435 Address
1436 map_to_kept_section(unsigned int shndx, bool* found) const;
1437
1438 protected:
1439 // Read the symbols.
1440 void
1441 do_read_symbols(Read_symbols_data*);
1442
1443 // Return the number of local symbols.
1444 unsigned int
1445 do_local_symbol_count() const
1446 { return this->local_symbol_count_; }
1447
1448 // Lay out the input sections.
1449 void
1450 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1451
1452 // Layout sections whose layout was deferred while waiting for
1453 // input files from a plugin.
1454 void
1455 do_layout_deferred_sections(Layout*);
1456
1457 // Add the symbols to the symbol table.
1458 void
1459 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1460
1461 // Read the relocs.
1462 void
1463 do_read_relocs(Read_relocs_data*);
1464
1465 // Process the relocs to find list of referenced sections. Used only
1466 // during garbage collection.
1467 void
1468 do_gc_process_relocs(const General_options&, Symbol_table*, Layout*,
1469 Read_relocs_data*);
1470
1471 // Scan the relocs and adjust the symbol table.
1472 void
1473 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
1474 Read_relocs_data*);
1475
1476 // Count the local symbols.
1477 void
1478 do_count_local_symbols(Stringpool_template<char>*,
1479 Stringpool_template<char>*);
1480
1481 // Finalize the local symbols.
1482 unsigned int
1483 do_finalize_local_symbols(unsigned int, off_t);
1484
1485 // Set the offset where local dynamic symbol information will be stored.
1486 unsigned int
1487 do_set_local_dynsym_indexes(unsigned int);
1488
1489 // Set the offset where local dynamic symbol information will be stored.
1490 unsigned int
1491 do_set_local_dynsym_offset(off_t);
1492
1493 // Relocate the input sections and write out the local symbols.
1494 void
1495 do_relocate(const General_options& options, const Symbol_table* symtab,
1496 const Layout*, Output_file* of);
1497
1498 // Get the size of a section.
1499 uint64_t
1500 do_section_size(unsigned int shndx)
1501 { return this->elf_file_.section_size(shndx); }
1502
1503 // Get the name of a section.
1504 std::string
1505 do_section_name(unsigned int shndx)
1506 { return this->elf_file_.section_name(shndx); }
1507
1508 // Return the location of the contents of a section.
1509 Object::Location
1510 do_section_contents(unsigned int shndx)
1511 { return this->elf_file_.section_contents(shndx); }
1512
1513 // Return section flags.
1514 uint64_t
1515 do_section_flags(unsigned int shndx)
1516 { return this->elf_file_.section_flags(shndx); }
1517
1518 // Return section address.
1519 uint64_t
1520 do_section_address(unsigned int shndx)
1521 { return this->elf_file_.section_addr(shndx); }
1522
1523 // Return section type.
1524 unsigned int
1525 do_section_type(unsigned int shndx)
1526 { return this->elf_file_.section_type(shndx); }
1527
1528 // Return the section link field.
1529 unsigned int
1530 do_section_link(unsigned int shndx)
1531 { return this->elf_file_.section_link(shndx); }
1532
1533 // Return the section info field.
1534 unsigned int
1535 do_section_info(unsigned int shndx)
1536 { return this->elf_file_.section_info(shndx); }
1537
1538 // Return the section alignment.
1539 uint64_t
1540 do_section_addralign(unsigned int shndx)
1541 { return this->elf_file_.section_addralign(shndx); }
1542
1543 // Return the Xindex structure to use.
1544 Xindex*
1545 do_initialize_xindex();
1546
1547 // Get symbol counts.
1548 void
1549 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1550
1551 // Get the offset of a section.
1552 uint64_t
1553 do_output_section_offset(unsigned int shndx) const
1554 {
1555 Address off = this->get_output_section_offset(shndx);
1556 if (off == invalid_address)
1557 return -1ULL;
1558 return off;
1559 }
1560
1561 // Set the offset of a section.
1562 void
1563 do_set_section_offset(unsigned int shndx, uint64_t off)
1564 {
1565 gold_assert(shndx < this->section_offsets_.size());
1566 this->section_offsets_[shndx] = convert_types<Address, uint64_t>(off);
1567 }
1568
1569 private:
1570 // For convenience.
1571 typedef Sized_relobj<size, big_endian> This;
1572 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1573 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1574 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1575 typedef elfcpp::Shdr<size, big_endian> Shdr;
1576
1577 // To keep track of discarded comdat sections, we need to map a member
1578 // section index to the object and section index of the corresponding
1579 // kept section.
1580 struct Kept_comdat_section
1581 {
1582 Kept_comdat_section(Sized_relobj<size, big_endian>* object,
1583 unsigned int shndx)
1584 : object_(object), shndx_(shndx)
1585 { }
1586 Sized_relobj<size, big_endian>* object_;
1587 unsigned int shndx_;
1588 };
1589 typedef std::map<unsigned int, Kept_comdat_section*>
1590 Kept_comdat_section_table;
1591
1592 // Adjust a section index if necessary.
1593 unsigned int
1594 adjust_shndx(unsigned int shndx)
1595 {
1596 if (shndx >= elfcpp::SHN_LORESERVE)
1597 shndx += this->elf_file_.large_shndx_offset();
1598 return shndx;
1599 }
1600
1601 // Find the SHT_SYMTAB section, given the section headers.
1602 void
1603 find_symtab(const unsigned char* pshdrs);
1604
1605 // Return whether SHDR has the right flags for a GNU style exception
1606 // frame section.
1607 bool
1608 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1609
1610 // Return whether there is a section named .eh_frame which might be
1611 // a GNU style exception frame section.
1612 bool
1613 find_eh_frame(const unsigned char* pshdrs, const char* names,
1614 section_size_type names_size) const;
1615
1616 // Whether to include a section group in the link.
1617 bool
1618 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1619 const unsigned char*, const char *, section_size_type,
1620 std::vector<bool>*);
1621
1622 // Whether to include a linkonce section in the link.
1623 bool
1624 include_linkonce_section(Layout*, unsigned int, const char*,
1625 const elfcpp::Shdr<size, big_endian>&);
1626
1627 // Layout an input section.
1628 void
1629 layout_section(Layout* layout, unsigned int shndx, const char* name,
1630 typename This::Shdr& shdr, unsigned int reloc_shndx,
1631 unsigned int reloc_type);
1632
1633 // Views and sizes when relocating.
1634 struct View_size
1635 {
1636 unsigned char* view;
1637 typename elfcpp::Elf_types<size>::Elf_Addr address;
1638 off_t offset;
1639 section_size_type view_size;
1640 bool is_input_output_view;
1641 bool is_postprocessing_view;
1642 };
1643
1644 typedef std::vector<View_size> Views;
1645
1646 // Write section data to the output file. Record the views and
1647 // sizes in VIEWS for use when relocating.
1648 void
1649 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1650
1651 // Relocate the sections in the output file.
1652 void
1653 relocate_sections(const General_options& options, const Symbol_table*,
1654 const Layout*, const unsigned char* pshdrs, Views*);
1655
1656 // Scan the input relocations for --emit-relocs.
1657 void
1658 emit_relocs_scan(const General_options&, Symbol_table*, Layout*,
1659 const unsigned char* plocal_syms,
1660 const Read_relocs_data::Relocs_list::iterator&);
1661
1662 // Scan the input relocations for --emit-relocs, templatized on the
1663 // type of the relocation section.
1664 template<int sh_type>
1665 void
1666 emit_relocs_scan_reltype(const General_options&, Symbol_table*, Layout*,
1667 const unsigned char* plocal_syms,
1668 const Read_relocs_data::Relocs_list::iterator&,
1669 Relocatable_relocs*);
1670
1671 // Emit the relocs for --emit-relocs.
1672 void
1673 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1674 unsigned int sh_type, const unsigned char* prelocs,
1675 size_t reloc_count, Output_section*, Address output_offset,
1676 unsigned char* view, Address address,
1677 section_size_type view_size,
1678 unsigned char* reloc_view, section_size_type reloc_view_size);
1679
1680 // Emit the relocs for --emit-relocs, templatized on the type of the
1681 // relocation section.
1682 template<int sh_type>
1683 void
1684 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1685 const unsigned char* prelocs, size_t reloc_count,
1686 Output_section*, Address output_offset,
1687 unsigned char* view, Address address,
1688 section_size_type view_size,
1689 unsigned char* reloc_view,
1690 section_size_type reloc_view_size);
1691
1692 // Initialize input to output maps for section symbols in merged
1693 // sections.
1694 void
1695 initialize_input_to_output_maps();
1696
1697 // Free the input to output maps for section symbols in merged
1698 // sections.
1699 void
1700 free_input_to_output_maps();
1701
1702 // Write out the local symbols.
1703 void
1704 write_local_symbols(Output_file*,
1705 const Stringpool_template<char>*,
1706 const Stringpool_template<char>*,
1707 Output_symtab_xindex*,
1708 Output_symtab_xindex*);
1709
1710 // Clear the local symbol information.
1711 void
1712 clear_local_symbols()
1713 {
1714 this->local_values_.clear();
1715 this->local_got_offsets_.clear();
1716 }
1717
1718 // Record a mapping from discarded section SHNDX to the corresponding
1719 // kept section.
1720 void
1721 set_kept_comdat_section(unsigned int shndx, Kept_comdat_section* kept)
1722 {
1723 this->kept_comdat_sections_[shndx] = kept;
1724 }
1725
1726 // Find the kept section corresponding to the discarded section SHNDX.
1727 Kept_comdat_section*
1728 get_kept_comdat_section(unsigned int shndx) const
1729 {
1730 typename Kept_comdat_section_table::const_iterator p =
1731 this->kept_comdat_sections_.find(shndx);
1732 if (p == this->kept_comdat_sections_.end())
1733 return NULL;
1734 return p->second;
1735 }
1736
1737 // The GOT offsets of local symbols. This map also stores GOT offsets
1738 // for tp-relative offsets for TLS symbols.
1739 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1740
1741 // The TLS GOT offsets of local symbols. The map stores the offsets
1742 // for either a single GOT entry that holds the module index of a TLS
1743 // symbol, or a pair of GOT entries containing the module index and
1744 // dtv-relative offset.
1745 struct Tls_got_entry
1746 {
1747 Tls_got_entry(int got_offset, bool have_pair)
1748 : got_offset_(got_offset),
1749 have_pair_(have_pair)
1750 { }
1751 int got_offset_;
1752 bool have_pair_;
1753 };
1754 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1755
1756 // Saved information for sections whose layout was deferred.
1757 struct Deferred_layout
1758 {
1759 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1760 Deferred_layout(unsigned int shndx, const char* name,
1761 const unsigned char* pshdr,
1762 unsigned int reloc_shndx, unsigned int reloc_type)
1763 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
1764 reloc_type_(reloc_type)
1765 {
1766 memcpy(this->shdr_data_, pshdr, shdr_size);
1767 }
1768 unsigned int shndx_;
1769 std::string name_;
1770 unsigned int reloc_shndx_;
1771 unsigned int reloc_type_;
1772 unsigned char shdr_data_[shdr_size];
1773 };
1774
1775 // General access to the ELF file.
1776 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1777 // Index of SHT_SYMTAB section.
1778 unsigned int symtab_shndx_;
1779 // The number of local symbols.
1780 unsigned int local_symbol_count_;
1781 // The number of local symbols which go into the output file.
1782 unsigned int output_local_symbol_count_;
1783 // The number of local symbols which go into the output file's dynamic
1784 // symbol table.
1785 unsigned int output_local_dynsym_count_;
1786 // The entries in the symbol table for the external symbols.
1787 Symbols symbols_;
1788 // Number of symbols defined in object file itself.
1789 size_t defined_count_;
1790 // File offset for local symbols.
1791 off_t local_symbol_offset_;
1792 // File offset for local dynamic symbols.
1793 off_t local_dynsym_offset_;
1794 // Values of local symbols.
1795 Local_values local_values_;
1796 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1797 // for TLS symbols, indexed by symbol number.
1798 Local_got_offsets local_got_offsets_;
1799 // For each input section, the offset of the input section in its
1800 // output section. This is INVALID_ADDRESS if the input section requires a
1801 // special mapping.
1802 std::vector<Address> section_offsets_;
1803 // Table mapping discarded comdat sections to corresponding kept sections.
1804 Kept_comdat_section_table kept_comdat_sections_;
1805 // Whether this object has a GNU style .eh_frame section.
1806 bool has_eh_frame_;
1807 // The list of sections whose layout was deferred.
1808 std::vector<Deferred_layout> deferred_layout_;
1809 };
1810
1811 // A class to manage the list of all objects.
1812
1813 class Input_objects
1814 {
1815 public:
1816 Input_objects()
1817 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
1818 { }
1819
1820 // The type of the list of input relocateable objects.
1821 typedef std::vector<Relobj*> Relobj_list;
1822 typedef Relobj_list::const_iterator Relobj_iterator;
1823
1824 // The type of the list of input dynamic objects.
1825 typedef std::vector<Dynobj*> Dynobj_list;
1826 typedef Dynobj_list::const_iterator Dynobj_iterator;
1827
1828 // Add an object to the list. Return true if all is well, or false
1829 // if this object should be ignored.
1830 bool
1831 add_object(Object*);
1832
1833 // Start processing an archive.
1834 void
1835 archive_start(Archive*);
1836
1837 // Stop processing an archive.
1838 void
1839 archive_stop(Archive*);
1840
1841 // For each dynamic object, check whether we've seen all of its
1842 // explicit dependencies.
1843 void
1844 check_dynamic_dependencies() const;
1845
1846 // Return whether an object was found in the system library
1847 // directory.
1848 bool
1849 found_in_system_library_directory(const Object*) const;
1850
1851 // Print symbol counts.
1852 void
1853 print_symbol_counts(const Symbol_table*) const;
1854
1855 // Iterate over all regular objects.
1856
1857 Relobj_iterator
1858 relobj_begin() const
1859 { return this->relobj_list_.begin(); }
1860
1861 Relobj_iterator
1862 relobj_end() const
1863 { return this->relobj_list_.end(); }
1864
1865 // Iterate over all dynamic objects.
1866
1867 Dynobj_iterator
1868 dynobj_begin() const
1869 { return this->dynobj_list_.begin(); }
1870
1871 Dynobj_iterator
1872 dynobj_end() const
1873 { return this->dynobj_list_.end(); }
1874
1875 // Return whether we have seen any dynamic objects.
1876 bool
1877 any_dynamic() const
1878 { return !this->dynobj_list_.empty(); }
1879
1880 // Return the number of input objects.
1881 int
1882 number_of_input_objects() const
1883 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
1884
1885 private:
1886 Input_objects(const Input_objects&);
1887 Input_objects& operator=(const Input_objects&);
1888
1889 // The list of ordinary objects included in the link.
1890 Relobj_list relobj_list_;
1891 // The list of dynamic objects included in the link.
1892 Dynobj_list dynobj_list_;
1893 // SONAMEs that we have seen.
1894 Unordered_set<std::string> sonames_;
1895 // Manage cross-references if requested.
1896 Cref* cref_;
1897 };
1898
1899 // Some of the information we pass to the relocation routines. We
1900 // group this together to avoid passing a dozen different arguments.
1901
1902 template<int size, bool big_endian>
1903 struct Relocate_info
1904 {
1905 // Command line options.
1906 const General_options* options;
1907 // Symbol table.
1908 const Symbol_table* symtab;
1909 // Layout.
1910 const Layout* layout;
1911 // Object being relocated.
1912 Sized_relobj<size, big_endian>* object;
1913 // Section index of relocation section.
1914 unsigned int reloc_shndx;
1915 // Section index of section being relocated.
1916 unsigned int data_shndx;
1917
1918 // Return a string showing the location of a relocation. This is
1919 // only used for error messages.
1920 std::string
1921 location(size_t relnum, off_t reloffset) const;
1922 };
1923
1924 // Return whether INPUT_FILE contains an ELF object start at file
1925 // offset OFFSET. This sets *START to point to a view of the start of
1926 // the file. It sets *READ_SIZE to the number of bytes in the view.
1927
1928 extern bool
1929 is_elf_object(Input_file* input_file, off_t offset,
1930 const unsigned char** start, int *read_size);
1931
1932 // Return an Object appropriate for the input file. P is BYTES long,
1933 // and holds the ELF header. If PUNCONFIGURED is not NULL, then if
1934 // this sees an object the linker is not configured to support, it
1935 // sets *PUNCONFIGURED to true and returns NULL without giving an
1936 // error message.
1937
1938 extern Object*
1939 make_elf_object(const std::string& name, Input_file*,
1940 off_t offset, const unsigned char* p,
1941 section_offset_type bytes, bool* punconfigured);
1942
1943 } // end namespace gold
1944
1945 #endif // !defined(GOLD_OBJECT_H)
This page took 0.070806 seconds and 5 git commands to generate.