PR 6811
[deliverable/binutils-gdb.git] / gold / object.h
1 // object.h -- support for an object file for linking in gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OBJECT_H
24 #define GOLD_OBJECT_H
25
26 #include <string>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "elfcpp_file.h"
31 #include "fileread.h"
32 #include "target.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Task;
39 class Cref;
40 class Archive;
41 class Layout;
42 class Output_section;
43 class Output_file;
44 class Output_symtab_xindex;
45 class Pluginobj;
46 class Dynobj;
47 class Object_merge_map;
48 class Relocatable_relocs;
49 class Symbols_data;
50
51 template<typename Stringpool_char>
52 class Stringpool_template;
53
54 // Data to pass from read_symbols() to add_symbols().
55
56 struct Read_symbols_data
57 {
58 // Section headers.
59 File_view* section_headers;
60 // Section names.
61 File_view* section_names;
62 // Size of section name data in bytes.
63 section_size_type section_names_size;
64 // Symbol data.
65 File_view* symbols;
66 // Size of symbol data in bytes.
67 section_size_type symbols_size;
68 // Offset of external symbols within symbol data. This structure
69 // sometimes contains only external symbols, in which case this will
70 // be zero. Sometimes it contains all symbols.
71 section_offset_type external_symbols_offset;
72 // Symbol names.
73 File_view* symbol_names;
74 // Size of symbol name data in bytes.
75 section_size_type symbol_names_size;
76
77 // Version information. This is only used on dynamic objects.
78 // Version symbol data (from SHT_GNU_versym section).
79 File_view* versym;
80 section_size_type versym_size;
81 // Version definition data (from SHT_GNU_verdef section).
82 File_view* verdef;
83 section_size_type verdef_size;
84 unsigned int verdef_info;
85 // Needed version data (from SHT_GNU_verneed section).
86 File_view* verneed;
87 section_size_type verneed_size;
88 unsigned int verneed_info;
89 };
90
91 // Information used to print error messages.
92
93 struct Symbol_location_info
94 {
95 std::string source_file;
96 std::string enclosing_symbol_name;
97 int line_number;
98 };
99
100 // Data about a single relocation section. This is read in
101 // read_relocs and processed in scan_relocs.
102
103 struct Section_relocs
104 {
105 // Index of reloc section.
106 unsigned int reloc_shndx;
107 // Index of section that relocs apply to.
108 unsigned int data_shndx;
109 // Contents of reloc section.
110 File_view* contents;
111 // Reloc section type.
112 unsigned int sh_type;
113 // Number of reloc entries.
114 size_t reloc_count;
115 // Output section.
116 Output_section* output_section;
117 // Whether this section has special handling for offsets.
118 bool needs_special_offset_handling;
119 // Whether the data section is allocated (has the SHF_ALLOC flag set).
120 bool is_data_section_allocated;
121 };
122
123 // Relocations in an object file. This is read in read_relocs and
124 // processed in scan_relocs.
125
126 struct Read_relocs_data
127 {
128 typedef std::vector<Section_relocs> Relocs_list;
129 // The relocations.
130 Relocs_list relocs;
131 // The local symbols.
132 File_view* local_symbols;
133 };
134
135 // The Xindex class manages section indexes for objects with more than
136 // 0xff00 sections.
137
138 class Xindex
139 {
140 public:
141 Xindex(int large_shndx_offset)
142 : large_shndx_offset_(large_shndx_offset), symtab_xindex_()
143 { }
144
145 // Initialize the symtab_xindex_ array, given the object and the
146 // section index of the symbol table to use.
147 template<int size, bool big_endian>
148 void
149 initialize_symtab_xindex(Object*, unsigned int symtab_shndx);
150
151 // Read in the symtab_xindex_ array, given its section index.
152 // PSHDRS may optionally point to the section headers.
153 template<int size, bool big_endian>
154 void
155 read_symtab_xindex(Object*, unsigned int xindex_shndx,
156 const unsigned char* pshdrs);
157
158 // Symbol SYMNDX in OBJECT has a section of SHN_XINDEX; return the
159 // real section index.
160 unsigned int
161 sym_xindex_to_shndx(Object* object, unsigned int symndx);
162
163 private:
164 // The type of the array giving the real section index for symbols
165 // whose st_shndx field holds SHN_XINDEX.
166 typedef std::vector<unsigned int> Symtab_xindex;
167
168 // Adjust a section index if necessary. This should only be called
169 // for ordinary section indexes.
170 unsigned int
171 adjust_shndx(unsigned int shndx)
172 {
173 if (shndx >= elfcpp::SHN_LORESERVE)
174 shndx += this->large_shndx_offset_;
175 return shndx;
176 }
177
178 // Adjust to apply to large section indexes.
179 int large_shndx_offset_;
180 // The data from the SHT_SYMTAB_SHNDX section.
181 Symtab_xindex symtab_xindex_;
182 };
183
184 // Object is an abstract base class which represents either a 32-bit
185 // or a 64-bit input object. This can be a regular object file
186 // (ET_REL) or a shared object (ET_DYN).
187
188 class Object
189 {
190 public:
191 // NAME is the name of the object as we would report it to the user
192 // (e.g., libfoo.a(bar.o) if this is in an archive. INPUT_FILE is
193 // used to read the file. OFFSET is the offset within the input
194 // file--0 for a .o or .so file, something else for a .a file.
195 Object(const std::string& name, Input_file* input_file, bool is_dynamic,
196 off_t offset = 0)
197 : name_(name), input_file_(input_file), offset_(offset), shnum_(-1U),
198 is_dynamic_(is_dynamic), target_(NULL), xindex_(NULL)
199 { input_file->file().add_object(); }
200
201 virtual ~Object()
202 { this->input_file_->file().remove_object(); }
203
204 // Return the name of the object as we would report it to the tuser.
205 const std::string&
206 name() const
207 { return this->name_; }
208
209 // Get the offset into the file.
210 off_t
211 offset() const
212 { return this->offset_; }
213
214 // Return whether this is a dynamic object.
215 bool
216 is_dynamic() const
217 { return this->is_dynamic_; }
218
219 // Returns NULL for Objects that are not plugin objects. This method
220 // is overridden in the Pluginobj class.
221 Pluginobj*
222 pluginobj()
223 { return this->do_pluginobj(); }
224
225 // Return the target structure associated with this object.
226 Target*
227 target() const
228 { return this->target_; }
229
230 // Lock the underlying file.
231 void
232 lock(const Task* t)
233 { this->input_file()->file().lock(t); }
234
235 // Unlock the underlying file.
236 void
237 unlock(const Task* t)
238 { this->input_file()->file().unlock(t); }
239
240 // Return whether the underlying file is locked.
241 bool
242 is_locked() const
243 { return this->input_file()->file().is_locked(); }
244
245 // Return the token, so that the task can be queued.
246 Task_token*
247 token()
248 { return this->input_file()->file().token(); }
249
250 // Release the underlying file.
251 void
252 release()
253 { this->input_file_->file().release(); }
254
255 // Return whether we should just read symbols from this file.
256 bool
257 just_symbols() const
258 { return this->input_file()->just_symbols(); }
259
260 // Return the sized target structure associated with this object.
261 // This is like the target method but it returns a pointer of
262 // appropriate checked type.
263 template<int size, bool big_endian>
264 Sized_target<size, big_endian>*
265 sized_target() const;
266
267 // Get the number of sections.
268 unsigned int
269 shnum() const
270 { return this->shnum_; }
271
272 // Return a view of the contents of a section. Set *PLEN to the
273 // size. CACHE is a hint as in File_read::get_view.
274 const unsigned char*
275 section_contents(unsigned int shndx, section_size_type* plen, bool cache);
276
277 // Adjust a symbol's section index as needed. SYMNDX is the index
278 // of the symbol and SHNDX is the symbol's section from
279 // get_st_shndx. This returns the section index. It sets
280 // *IS_ORDINARY to indicate whether this is a normal section index,
281 // rather than a special code between SHN_LORESERVE and
282 // SHN_HIRESERVE.
283 unsigned int
284 adjust_sym_shndx(unsigned int symndx, unsigned int shndx, bool* is_ordinary)
285 {
286 if (shndx < elfcpp::SHN_LORESERVE)
287 *is_ordinary = true;
288 else if (shndx == elfcpp::SHN_XINDEX)
289 {
290 if (this->xindex_ == NULL)
291 this->xindex_ = this->do_initialize_xindex();
292 shndx = this->xindex_->sym_xindex_to_shndx(this, symndx);
293 *is_ordinary = true;
294 }
295 else
296 *is_ordinary = false;
297 return shndx;
298 }
299
300 // Return the size of a section given a section index.
301 uint64_t
302 section_size(unsigned int shndx)
303 { return this->do_section_size(shndx); }
304
305 // Return the name of a section given a section index.
306 std::string
307 section_name(unsigned int shndx)
308 { return this->do_section_name(shndx); }
309
310 // Return the section flags given a section index.
311 uint64_t
312 section_flags(unsigned int shndx)
313 { return this->do_section_flags(shndx); }
314
315 // Return the section address given a section index.
316 uint64_t
317 section_address(unsigned int shndx)
318 { return this->do_section_address(shndx); }
319
320 // Return the section type given a section index.
321 unsigned int
322 section_type(unsigned int shndx)
323 { return this->do_section_type(shndx); }
324
325 // Return the section link field given a section index.
326 unsigned int
327 section_link(unsigned int shndx)
328 { return this->do_section_link(shndx); }
329
330 // Return the section info field given a section index.
331 unsigned int
332 section_info(unsigned int shndx)
333 { return this->do_section_info(shndx); }
334
335 // Return the required section alignment given a section index.
336 uint64_t
337 section_addralign(unsigned int shndx)
338 { return this->do_section_addralign(shndx); }
339
340 // Read the symbol information.
341 void
342 read_symbols(Read_symbols_data* sd)
343 { return this->do_read_symbols(sd); }
344
345 // Pass sections which should be included in the link to the Layout
346 // object, and record where the sections go in the output file.
347 void
348 layout(Symbol_table* symtab, Layout* layout, Read_symbols_data* sd)
349 { this->do_layout(symtab, layout, sd); }
350
351 // Add symbol information to the global symbol table.
352 void
353 add_symbols(Symbol_table* symtab, Read_symbols_data* sd, Layout *layout)
354 { this->do_add_symbols(symtab, sd, layout); }
355
356 // Functions and types for the elfcpp::Elf_file interface. This
357 // permit us to use Object as the File template parameter for
358 // elfcpp::Elf_file.
359
360 // The View class is returned by view. It must support a single
361 // method, data(). This is trivial, because get_view does what we
362 // need.
363 class View
364 {
365 public:
366 View(const unsigned char* p)
367 : p_(p)
368 { }
369
370 const unsigned char*
371 data() const
372 { return this->p_; }
373
374 private:
375 const unsigned char* p_;
376 };
377
378 // Return a View.
379 View
380 view(off_t file_offset, section_size_type data_size)
381 { return View(this->get_view(file_offset, data_size, true, true)); }
382
383 // Report an error.
384 void
385 error(const char* format, ...) const ATTRIBUTE_PRINTF_2;
386
387 // A location in the file.
388 struct Location
389 {
390 off_t file_offset;
391 off_t data_size;
392
393 Location(off_t fo, section_size_type ds)
394 : file_offset(fo), data_size(ds)
395 { }
396 };
397
398 // Get a View given a Location.
399 View view(Location loc)
400 { return View(this->get_view(loc.file_offset, loc.data_size, true, true)); }
401
402 // Get a view into the underlying file.
403 const unsigned char*
404 get_view(off_t start, section_size_type size, bool aligned, bool cache)
405 {
406 return this->input_file()->file().get_view(this->offset_, start, size,
407 aligned, cache);
408 }
409
410 // Get a lasting view into the underlying file.
411 File_view*
412 get_lasting_view(off_t start, section_size_type size, bool aligned,
413 bool cache)
414 {
415 return this->input_file()->file().get_lasting_view(this->offset_, start,
416 size, aligned, cache);
417 }
418
419 // Read data from the underlying file.
420 void
421 read(off_t start, section_size_type size, void* p)
422 { this->input_file()->file().read(start + this->offset_, size, p); }
423
424 // Read multiple data from the underlying file.
425 void
426 read_multiple(const File_read::Read_multiple& rm)
427 { this->input_file()->file().read_multiple(this->offset_, rm); }
428
429 // Stop caching views in the underlying file.
430 void
431 clear_view_cache_marks()
432 { this->input_file()->file().clear_view_cache_marks(); }
433
434 // Get the number of global symbols defined by this object, and the
435 // number of the symbols whose final definition came from this
436 // object.
437 void
438 get_global_symbol_counts(const Symbol_table* symtab, size_t* defined,
439 size_t* used) const
440 { this->do_get_global_symbol_counts(symtab, defined, used); }
441
442 // Set the target.
443 void
444 set_target(Target* target)
445 { this->target_ = target; }
446
447 // Return whether this object was found in a system directory.
448 bool
449 is_in_system_directory() const
450 { return this->input_file()->is_in_system_directory(); }
451
452 protected:
453 // Returns NULL for Objects that are not plugin objects. This method
454 // is overridden in the Pluginobj class.
455 virtual Pluginobj*
456 do_pluginobj()
457 { return NULL; }
458
459 // Read the symbols--implemented by child class.
460 virtual void
461 do_read_symbols(Read_symbols_data*) = 0;
462
463 // Lay out sections--implemented by child class.
464 virtual void
465 do_layout(Symbol_table*, Layout*, Read_symbols_data*) = 0;
466
467 // Add symbol information to the global symbol table--implemented by
468 // child class.
469 virtual void
470 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*) = 0;
471
472 // Return the location of the contents of a section. Implemented by
473 // child class.
474 virtual Location
475 do_section_contents(unsigned int shndx) = 0;
476
477 // Get the size of a section--implemented by child class.
478 virtual uint64_t
479 do_section_size(unsigned int shndx) = 0;
480
481 // Get the name of a section--implemented by child class.
482 virtual std::string
483 do_section_name(unsigned int shndx) = 0;
484
485 // Get section flags--implemented by child class.
486 virtual uint64_t
487 do_section_flags(unsigned int shndx) = 0;
488
489 // Get section address--implemented by child class.
490 virtual uint64_t
491 do_section_address(unsigned int shndx) = 0;
492
493 // Get section type--implemented by child class.
494 virtual unsigned int
495 do_section_type(unsigned int shndx) = 0;
496
497 // Get section link field--implemented by child class.
498 virtual unsigned int
499 do_section_link(unsigned int shndx) = 0;
500
501 // Get section info field--implemented by child class.
502 virtual unsigned int
503 do_section_info(unsigned int shndx) = 0;
504
505 // Get section alignment--implemented by child class.
506 virtual uint64_t
507 do_section_addralign(unsigned int shndx) = 0;
508
509 // Return the Xindex structure to use.
510 virtual Xindex*
511 do_initialize_xindex() = 0;
512
513 // Implement get_global_symbol_counts--implemented by child class.
514 virtual void
515 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const = 0;
516
517 // Get the file. We pass on const-ness.
518 Input_file*
519 input_file()
520 { return this->input_file_; }
521
522 const Input_file*
523 input_file() const
524 { return this->input_file_; }
525
526 // Set the target.
527 void
528 set_target(int machine, int size, bool big_endian, int osabi,
529 int abiversion);
530
531 // Set the number of sections.
532 void
533 set_shnum(int shnum)
534 { this->shnum_ = shnum; }
535
536 // Functions used by both Sized_relobj and Sized_dynobj.
537
538 // Read the section data into a Read_symbols_data object.
539 template<int size, bool big_endian>
540 void
541 read_section_data(elfcpp::Elf_file<size, big_endian, Object>*,
542 Read_symbols_data*);
543
544 // Let the child class initialize the xindex object directly.
545 void
546 set_xindex(Xindex* xindex)
547 {
548 gold_assert(this->xindex_ == NULL);
549 this->xindex_ = xindex;
550 }
551
552 // If NAME is the name of a special .gnu.warning section, arrange
553 // for the warning to be issued. SHNDX is the section index.
554 // Return whether it is a warning section.
555 bool
556 handle_gnu_warning_section(const char* name, unsigned int shndx,
557 Symbol_table*);
558
559 private:
560 // This class may not be copied.
561 Object(const Object&);
562 Object& operator=(const Object&);
563
564 // Name of object as printed to user.
565 std::string name_;
566 // For reading the file.
567 Input_file* input_file_;
568 // Offset within the file--0 for an object file, non-0 for an
569 // archive.
570 off_t offset_;
571 // Number of input sections.
572 unsigned int shnum_;
573 // Whether this is a dynamic object.
574 bool is_dynamic_;
575 // Target functions--may be NULL if the target is not known.
576 Target* target_;
577 // Many sections for objects with more than SHN_LORESERVE sections.
578 Xindex* xindex_;
579 };
580
581 // Implement sized_target inline for efficiency. This approach breaks
582 // static type checking, but is made safe using asserts.
583
584 template<int size, bool big_endian>
585 inline Sized_target<size, big_endian>*
586 Object::sized_target() const
587 {
588 gold_assert(this->target_->get_size() == size);
589 gold_assert(this->target_->is_big_endian() ? big_endian : !big_endian);
590 return static_cast<Sized_target<size, big_endian>*>(this->target_);
591 }
592
593 // A regular object (ET_REL). This is an abstract base class itself.
594 // The implementation is the template class Sized_relobj.
595
596 class Relobj : public Object
597 {
598 public:
599 Relobj(const std::string& name, Input_file* input_file, off_t offset = 0)
600 : Object(name, input_file, false, offset),
601 output_sections_(),
602 map_to_relocatable_relocs_(NULL),
603 object_merge_map_(NULL),
604 relocs_must_follow_section_writes_(false)
605 { }
606
607 // During garbage collection, the Read_symbols_data pass for
608 // each object is stored as layout needs to be done after
609 // reloc processing.
610 Symbols_data*
611 get_symbols_data()
612 { return this->sd_; }
613
614 // Decides which section names have to be included in the worklist
615 // as roots.
616 bool
617 is_section_name_included(const char *name);
618
619 void
620 copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
621 unsigned int section_header_size);
622
623 void
624 set_symbols_data(Symbols_data* sd)
625 { this->sd_ = sd; }
626
627 // During garbage collection, the Read_relocs pass for all objects
628 // is done before scanning the relocs. In that case, this->rd_ is
629 // used to store the information from Read_relocs for each object.
630 // This data is also used to compute the list of relevant sections.
631 Read_relocs_data*
632 get_relocs_data()
633 { return this->rd_; }
634
635 void
636 set_relocs_data(Read_relocs_data* rd)
637 { this->rd_ = rd; }
638
639 virtual bool
640 is_output_section_offset_invalid(unsigned int shndx) const = 0;
641
642 // Read the relocs.
643 void
644 read_relocs(Read_relocs_data* rd)
645 { return this->do_read_relocs(rd); }
646
647 // Process the relocs, during garbage collection only.
648 void
649 gc_process_relocs(const General_options& options, Symbol_table* symtab,
650 Layout* layout, Read_relocs_data* rd)
651 { return this->do_gc_process_relocs(options, symtab, layout, rd); }
652
653 // Scan the relocs and adjust the symbol table.
654 void
655 scan_relocs(const General_options& options, Symbol_table* symtab,
656 Layout* layout, Read_relocs_data* rd)
657 { return this->do_scan_relocs(options, symtab, layout, rd); }
658
659 // The number of local symbols in the input symbol table.
660 virtual unsigned int
661 local_symbol_count() const
662 { return this->do_local_symbol_count(); }
663
664 // Initial local symbol processing: count the number of local symbols
665 // in the output symbol table and dynamic symbol table; add local symbol
666 // names to *POOL and *DYNPOOL.
667 void
668 count_local_symbols(Stringpool_template<char>* pool,
669 Stringpool_template<char>* dynpool)
670 { return this->do_count_local_symbols(pool, dynpool); }
671
672 // Set the values of the local symbols, set the output symbol table
673 // indexes for the local variables, and set the offset where local
674 // symbol information will be stored. Returns the new local symbol index.
675 unsigned int
676 finalize_local_symbols(unsigned int index, off_t off)
677 { return this->do_finalize_local_symbols(index, off); }
678
679 // Set the output dynamic symbol table indexes for the local variables.
680 unsigned int
681 set_local_dynsym_indexes(unsigned int index)
682 { return this->do_set_local_dynsym_indexes(index); }
683
684 // Set the offset where local dynamic symbol information will be stored.
685 unsigned int
686 set_local_dynsym_offset(off_t off)
687 { return this->do_set_local_dynsym_offset(off); }
688
689 // Relocate the input sections and write out the local symbols.
690 void
691 relocate(const General_options& options, const Symbol_table* symtab,
692 const Layout* layout, Output_file* of)
693 { return this->do_relocate(options, symtab, layout, of); }
694
695 // Return whether an input section is being included in the link.
696 bool
697 is_section_included(unsigned int shndx) const
698 {
699 gold_assert(shndx < this->output_sections_.size());
700 return this->output_sections_[shndx] != NULL;
701 }
702
703 // Given a section index, return the corresponding Output_section.
704 // The return value will be NULL if the section is not included in
705 // the link.
706 Output_section*
707 output_section(unsigned int shndx) const
708 {
709 gold_assert(shndx < this->output_sections_.size());
710 return this->output_sections_[shndx];
711 }
712
713 // Given a section index, return the offset in the Output_section.
714 // The return value will be -1U if the section is specially mapped,
715 // such as a merge section.
716 uint64_t
717 output_section_offset(unsigned int shndx) const
718 { return this->do_output_section_offset(shndx); }
719
720 // Set the offset of an input section within its output section.
721 void
722 set_section_offset(unsigned int shndx, uint64_t off)
723 { this->do_set_section_offset(shndx, off); }
724
725 // Return true if we need to wait for output sections to be written
726 // before we can apply relocations. This is true if the object has
727 // any relocations for sections which require special handling, such
728 // as the exception frame section.
729 bool
730 relocs_must_follow_section_writes() const
731 { return this->relocs_must_follow_section_writes_; }
732
733 // Return the object merge map.
734 Object_merge_map*
735 merge_map() const
736 { return this->object_merge_map_; }
737
738 // Set the object merge map.
739 void
740 set_merge_map(Object_merge_map* object_merge_map)
741 {
742 gold_assert(this->object_merge_map_ == NULL);
743 this->object_merge_map_ = object_merge_map;
744 }
745
746 // Record the relocatable reloc info for an input reloc section.
747 void
748 set_relocatable_relocs(unsigned int reloc_shndx, Relocatable_relocs* rr)
749 {
750 gold_assert(reloc_shndx < this->shnum());
751 (*this->map_to_relocatable_relocs_)[reloc_shndx] = rr;
752 }
753
754 // Get the relocatable reloc info for an input reloc section.
755 Relocatable_relocs*
756 relocatable_relocs(unsigned int reloc_shndx)
757 {
758 gold_assert(reloc_shndx < this->shnum());
759 return (*this->map_to_relocatable_relocs_)[reloc_shndx];
760 }
761
762 // Layout sections whose layout was deferred while waiting for
763 // input files from a plugin.
764 void
765 layout_deferred_sections(Layout* layout)
766 { this->do_layout_deferred_sections(layout); }
767
768 protected:
769 // The output section to be used for each input section, indexed by
770 // the input section number. The output section is NULL if the
771 // input section is to be discarded.
772 typedef std::vector<Output_section*> Output_sections;
773
774 // Read the relocs--implemented by child class.
775 virtual void
776 do_read_relocs(Read_relocs_data*) = 0;
777
778 // Process the relocs--implemented by child class.
779 virtual void
780 do_gc_process_relocs(const General_options&, Symbol_table*, Layout*,
781 Read_relocs_data*) = 0;
782
783 // Scan the relocs--implemented by child class.
784 virtual void
785 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
786 Read_relocs_data*) = 0;
787
788 // Return the number of local symbols--implemented by child class.
789 virtual unsigned int
790 do_local_symbol_count() const = 0;
791
792 // Count local symbols--implemented by child class.
793 virtual void
794 do_count_local_symbols(Stringpool_template<char>*,
795 Stringpool_template<char>*) = 0;
796
797 // Finalize the local symbols. Set the output symbol table indexes
798 // for the local variables, and set the offset where local symbol
799 // information will be stored.
800 virtual unsigned int
801 do_finalize_local_symbols(unsigned int, off_t) = 0;
802
803 // Set the output dynamic symbol table indexes for the local variables.
804 virtual unsigned int
805 do_set_local_dynsym_indexes(unsigned int) = 0;
806
807 // Set the offset where local dynamic symbol information will be stored.
808 virtual unsigned int
809 do_set_local_dynsym_offset(off_t) = 0;
810
811 // Relocate the input sections and write out the local
812 // symbols--implemented by child class.
813 virtual void
814 do_relocate(const General_options& options, const Symbol_table* symtab,
815 const Layout*, Output_file* of) = 0;
816
817 // Get the offset of a section--implemented by child class.
818 virtual uint64_t
819 do_output_section_offset(unsigned int shndx) const = 0;
820
821 // Set the offset of a section--implemented by child class.
822 virtual void
823 do_set_section_offset(unsigned int shndx, uint64_t off) = 0;
824
825 // Layout sections whose layout was deferred while waiting for
826 // input files from a plugin--implemented by child class.
827 virtual void
828 do_layout_deferred_sections(Layout*) = 0;
829
830 // Return the vector mapping input sections to output sections.
831 Output_sections&
832 output_sections()
833 { return this->output_sections_; }
834
835 const Output_sections&
836 output_sections() const
837 { return this->output_sections_; }
838
839 // Set the size of the relocatable relocs array.
840 void
841 size_relocatable_relocs()
842 {
843 this->map_to_relocatable_relocs_ =
844 new std::vector<Relocatable_relocs*>(this->shnum());
845 }
846
847 // Record that we must wait for the output sections to be written
848 // before applying relocations.
849 void
850 set_relocs_must_follow_section_writes()
851 { this->relocs_must_follow_section_writes_ = true; }
852
853 private:
854 // Mapping from input sections to output section.
855 Output_sections output_sections_;
856 // Mapping from input section index to the information recorded for
857 // the relocations. This is only used for a relocatable link.
858 std::vector<Relocatable_relocs*>* map_to_relocatable_relocs_;
859 // Mappings for merge sections. This is managed by the code in the
860 // Merge_map class.
861 Object_merge_map* object_merge_map_;
862 // Whether we need to wait for output sections to be written before
863 // we can apply relocations.
864 bool relocs_must_follow_section_writes_;
865 // Used to store the relocs data computed by the Read_relocs pass.
866 // Used during garbage collection of unused sections.
867 Read_relocs_data* rd_;
868 // Used to store the symbols data computed by the Read_symbols pass.
869 // Again used during garbage collection when laying out referenced
870 // sections.
871 gold::Symbols_data *sd_;
872 };
873
874 // This class is used to handle relocations against a section symbol
875 // in an SHF_MERGE section. For such a symbol, we need to know the
876 // addend of the relocation before we can determine the final value.
877 // The addend gives us the location in the input section, and we can
878 // determine how it is mapped to the output section. For a
879 // non-section symbol, we apply the addend to the final value of the
880 // symbol; that is done in finalize_local_symbols, and does not use
881 // this class.
882
883 template<int size>
884 class Merged_symbol_value
885 {
886 public:
887 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
888
889 // We use a hash table to map offsets in the input section to output
890 // addresses.
891 typedef Unordered_map<section_offset_type, Value> Output_addresses;
892
893 Merged_symbol_value(Value input_value, Value output_start_address)
894 : input_value_(input_value), output_start_address_(output_start_address),
895 output_addresses_()
896 { }
897
898 // Initialize the hash table.
899 void
900 initialize_input_to_output_map(const Relobj*, unsigned int input_shndx);
901
902 // Release the hash table to save space.
903 void
904 free_input_to_output_map()
905 { this->output_addresses_.clear(); }
906
907 // Get the output value corresponding to an addend. The object and
908 // input section index are passed in because the caller will have
909 // them; otherwise we could store them here.
910 Value
911 value(const Relobj* object, unsigned int input_shndx, Value addend) const
912 {
913 // This is a relocation against a section symbol. ADDEND is the
914 // offset in the section. The result should be the start of some
915 // merge area. If the object file wants something else, it should
916 // use a regular symbol rather than a section symbol.
917 // Unfortunately, PR 6658 shows a case in which the object file
918 // refers to the section symbol, but uses a negative ADDEND to
919 // compensate for a PC relative reloc. We can't handle the
920 // general case. However, we can handle the special case of a
921 // negative addend, by assuming that it refers to the start of the
922 // section. Of course, that means that we have to guess when
923 // ADDEND is negative. It is normal to see a 32-bit value here
924 // even when the template parameter size is 64, as 64-bit object
925 // file formats have 32-bit relocations. We know this is a merge
926 // section, so we know it has to fit into memory. So we assume
927 // that we won't see a value larger than a large 32-bit unsigned
928 // value. This will break objects with very very large merge
929 // sections; they probably break in other ways anyhow.
930 Value input_offset = this->input_value_;
931 if (addend < 0xffffff00)
932 {
933 input_offset += addend;
934 addend = 0;
935 }
936 typename Output_addresses::const_iterator p =
937 this->output_addresses_.find(input_offset);
938 if (p != this->output_addresses_.end())
939 return p->second + addend;
940
941 return (this->value_from_output_section(object, input_shndx, input_offset)
942 + addend);
943 }
944
945 private:
946 // Get the output value for an input offset if we couldn't find it
947 // in the hash table.
948 Value
949 value_from_output_section(const Relobj*, unsigned int input_shndx,
950 Value input_offset) const;
951
952 // The value of the section symbol in the input file. This is
953 // normally zero, but could in principle be something else.
954 Value input_value_;
955 // The start address of this merged section in the output file.
956 Value output_start_address_;
957 // A hash table which maps offsets in the input section to output
958 // addresses. This only maps specific offsets, not all offsets.
959 Output_addresses output_addresses_;
960 };
961
962 // This POD class is holds the value of a symbol. This is used for
963 // local symbols, and for all symbols during relocation processing.
964 // For special sections, such as SHF_MERGE sections, this calls a
965 // function to get the final symbol value.
966
967 template<int size>
968 class Symbol_value
969 {
970 public:
971 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value;
972
973 Symbol_value()
974 : output_symtab_index_(0), output_dynsym_index_(-1U), input_shndx_(0),
975 is_ordinary_shndx_(false), is_section_symbol_(false),
976 is_tls_symbol_(false), has_output_value_(true)
977 { this->u_.value = 0; }
978
979 // Get the value of this symbol. OBJECT is the object in which this
980 // symbol is defined, and ADDEND is an addend to add to the value.
981 template<bool big_endian>
982 Value
983 value(const Sized_relobj<size, big_endian>* object, Value addend) const
984 {
985 if (this->has_output_value_)
986 return this->u_.value + addend;
987 else
988 {
989 gold_assert(this->is_ordinary_shndx_);
990 return this->u_.merged_symbol_value->value(object, this->input_shndx_,
991 addend);
992 }
993 }
994
995 // Set the value of this symbol in the output symbol table.
996 void
997 set_output_value(Value value)
998 { this->u_.value = value; }
999
1000 // For a section symbol in a merged section, we need more
1001 // information.
1002 void
1003 set_merged_symbol_value(Merged_symbol_value<size>* msv)
1004 {
1005 gold_assert(this->is_section_symbol_);
1006 this->has_output_value_ = false;
1007 this->u_.merged_symbol_value = msv;
1008 }
1009
1010 // Initialize the input to output map for a section symbol in a
1011 // merged section. We also initialize the value of a non-section
1012 // symbol in a merged section.
1013 void
1014 initialize_input_to_output_map(const Relobj* object)
1015 {
1016 if (!this->has_output_value_)
1017 {
1018 gold_assert(this->is_section_symbol_ && this->is_ordinary_shndx_);
1019 Merged_symbol_value<size>* msv = this->u_.merged_symbol_value;
1020 msv->initialize_input_to_output_map(object, this->input_shndx_);
1021 }
1022 }
1023
1024 // Free the input to output map for a section symbol in a merged
1025 // section.
1026 void
1027 free_input_to_output_map()
1028 {
1029 if (!this->has_output_value_)
1030 this->u_.merged_symbol_value->free_input_to_output_map();
1031 }
1032
1033 // Set the value of the symbol from the input file. This is only
1034 // called by count_local_symbols, to communicate the value to
1035 // finalize_local_symbols.
1036 void
1037 set_input_value(Value value)
1038 { this->u_.value = value; }
1039
1040 // Return the input value. This is only called by
1041 // finalize_local_symbols and (in special cases) relocate_section.
1042 Value
1043 input_value() const
1044 { return this->u_.value; }
1045
1046 // Return whether this symbol should go into the output symbol
1047 // table.
1048 bool
1049 needs_output_symtab_entry() const
1050 { return this->output_symtab_index_ != -1U; }
1051
1052 // Return the index in the output symbol table.
1053 unsigned int
1054 output_symtab_index() const
1055 {
1056 gold_assert(this->output_symtab_index_ != 0);
1057 return this->output_symtab_index_;
1058 }
1059
1060 // Set the index in the output symbol table.
1061 void
1062 set_output_symtab_index(unsigned int i)
1063 {
1064 gold_assert(this->output_symtab_index_ == 0);
1065 this->output_symtab_index_ = i;
1066 }
1067
1068 // Record that this symbol should not go into the output symbol
1069 // table.
1070 void
1071 set_no_output_symtab_entry()
1072 {
1073 gold_assert(this->output_symtab_index_ == 0);
1074 this->output_symtab_index_ = -1U;
1075 }
1076
1077 // Set the index in the output dynamic symbol table.
1078 void
1079 set_needs_output_dynsym_entry()
1080 {
1081 gold_assert(!this->is_section_symbol());
1082 this->output_dynsym_index_ = 0;
1083 }
1084
1085 // Return whether this symbol should go into the output symbol
1086 // table.
1087 bool
1088 needs_output_dynsym_entry() const
1089 {
1090 return this->output_dynsym_index_ != -1U;
1091 }
1092
1093 // Record that this symbol should go into the dynamic symbol table.
1094 void
1095 set_output_dynsym_index(unsigned int i)
1096 {
1097 gold_assert(this->output_dynsym_index_ == 0);
1098 this->output_dynsym_index_ = i;
1099 }
1100
1101 // Return the index in the output dynamic symbol table.
1102 unsigned int
1103 output_dynsym_index() const
1104 {
1105 gold_assert(this->output_dynsym_index_ != 0
1106 && this->output_dynsym_index_ != -1U);
1107 return this->output_dynsym_index_;
1108 }
1109
1110 // Set the index of the input section in the input file.
1111 void
1112 set_input_shndx(unsigned int i, bool is_ordinary)
1113 {
1114 this->input_shndx_ = i;
1115 // input_shndx_ field is a bitfield, so make sure that the value
1116 // fits.
1117 gold_assert(this->input_shndx_ == i);
1118 this->is_ordinary_shndx_ = is_ordinary;
1119 }
1120
1121 // Return the index of the input section in the input file.
1122 unsigned int
1123 input_shndx(bool* is_ordinary) const
1124 {
1125 *is_ordinary = this->is_ordinary_shndx_;
1126 return this->input_shndx_;
1127 }
1128
1129 // Whether this is a section symbol.
1130 bool
1131 is_section_symbol() const
1132 { return this->is_section_symbol_; }
1133
1134 // Record that this is a section symbol.
1135 void
1136 set_is_section_symbol()
1137 {
1138 gold_assert(!this->needs_output_dynsym_entry());
1139 this->is_section_symbol_ = true;
1140 }
1141
1142 // Record that this is a TLS symbol.
1143 void
1144 set_is_tls_symbol()
1145 { this->is_tls_symbol_ = true; }
1146
1147 // Return TRUE if this is a TLS symbol.
1148 bool
1149 is_tls_symbol() const
1150 { return this->is_tls_symbol_; }
1151
1152 private:
1153 // The index of this local symbol in the output symbol table. This
1154 // will be -1 if the symbol should not go into the symbol table.
1155 unsigned int output_symtab_index_;
1156 // The index of this local symbol in the dynamic symbol table. This
1157 // will be -1 if the symbol should not go into the symbol table.
1158 unsigned int output_dynsym_index_;
1159 // The section index in the input file in which this symbol is
1160 // defined.
1161 unsigned int input_shndx_ : 28;
1162 // Whether the section index is an ordinary index, not a special
1163 // value.
1164 bool is_ordinary_shndx_ : 1;
1165 // Whether this is a STT_SECTION symbol.
1166 bool is_section_symbol_ : 1;
1167 // Whether this is a STT_TLS symbol.
1168 bool is_tls_symbol_ : 1;
1169 // Whether this symbol has a value for the output file. This is
1170 // normally set to true during Layout::finalize, by
1171 // finalize_local_symbols. It will be false for a section symbol in
1172 // a merge section, as for such symbols we can not determine the
1173 // value to use in a relocation until we see the addend.
1174 bool has_output_value_ : 1;
1175 union
1176 {
1177 // This is used if has_output_value_ is true. Between
1178 // count_local_symbols and finalize_local_symbols, this is the
1179 // value in the input file. After finalize_local_symbols, it is
1180 // the value in the output file.
1181 Value value;
1182 // This is used if has_output_value_ is false. It points to the
1183 // information we need to get the value for a merge section.
1184 Merged_symbol_value<size>* merged_symbol_value;
1185 } u_;
1186 };
1187
1188 // A GOT offset list. A symbol may have more than one GOT offset
1189 // (e.g., when mixing modules compiled with two different TLS models),
1190 // but will usually have at most one. GOT_TYPE identifies the type of
1191 // GOT entry; its values are specific to each target.
1192
1193 class Got_offset_list
1194 {
1195 public:
1196 Got_offset_list()
1197 : got_type_(-1U), got_offset_(0), got_next_(NULL)
1198 { }
1199
1200 Got_offset_list(unsigned int got_type, unsigned int got_offset)
1201 : got_type_(got_type), got_offset_(got_offset), got_next_(NULL)
1202 { }
1203
1204 ~Got_offset_list()
1205 {
1206 if (this->got_next_ != NULL)
1207 {
1208 delete this->got_next_;
1209 this->got_next_ = NULL;
1210 }
1211 }
1212
1213 // Initialize the fields to their default values.
1214 void
1215 init()
1216 {
1217 this->got_type_ = -1U;
1218 this->got_offset_ = 0;
1219 this->got_next_ = NULL;
1220 }
1221
1222 // Set the offset for the GOT entry of type GOT_TYPE.
1223 void
1224 set_offset(unsigned int got_type, unsigned int got_offset)
1225 {
1226 if (this->got_type_ == -1U)
1227 {
1228 this->got_type_ = got_type;
1229 this->got_offset_ = got_offset;
1230 }
1231 else
1232 {
1233 for (Got_offset_list* g = this; g != NULL; g = g->got_next_)
1234 {
1235 if (g->got_type_ == got_type)
1236 {
1237 g->got_offset_ = got_offset;
1238 return;
1239 }
1240 }
1241 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1242 g->got_next_ = this->got_next_;
1243 this->got_next_ = g;
1244 }
1245 }
1246
1247 // Return the offset for a GOT entry of type GOT_TYPE.
1248 unsigned int
1249 get_offset(unsigned int got_type) const
1250 {
1251 for (const Got_offset_list* g = this; g != NULL; g = g->got_next_)
1252 {
1253 if (g->got_type_ == got_type)
1254 return g->got_offset_;
1255 }
1256 return -1U;
1257 }
1258
1259 private:
1260 unsigned int got_type_;
1261 unsigned int got_offset_;
1262 Got_offset_list* got_next_;
1263 };
1264
1265 // A regular object file. This is size and endian specific.
1266
1267 template<int size, bool big_endian>
1268 class Sized_relobj : public Relobj
1269 {
1270 public:
1271 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1272 typedef std::vector<Symbol*> Symbols;
1273 typedef std::vector<Symbol_value<size> > Local_values;
1274
1275 static const Address invalid_address = static_cast<Address>(0) - 1;
1276
1277 Sized_relobj(const std::string& name, Input_file* input_file, off_t offset,
1278 const typename elfcpp::Ehdr<size, big_endian>&);
1279
1280 ~Sized_relobj();
1281
1282 // Checks if the offset of input section SHNDX within its output
1283 // section is invalid.
1284 bool
1285 is_output_section_offset_invalid(unsigned int shndx) const
1286 { return this->get_output_section_offset(shndx) == invalid_address; }
1287
1288 // Set up the object file based on the ELF header.
1289 void
1290 setup(const typename elfcpp::Ehdr<size, big_endian>&);
1291
1292 // Return the number of symbols. This is only valid after
1293 // Object::add_symbols has been called.
1294 unsigned int
1295 symbol_count() const
1296 { return this->local_symbol_count_ + this->symbols_.size(); }
1297
1298 // If SYM is the index of a global symbol in the object file's
1299 // symbol table, return the Symbol object. Otherwise, return NULL.
1300 Symbol*
1301 global_symbol(unsigned int sym) const
1302 {
1303 if (sym >= this->local_symbol_count_)
1304 {
1305 gold_assert(sym - this->local_symbol_count_ < this->symbols_.size());
1306 return this->symbols_[sym - this->local_symbol_count_];
1307 }
1308 return NULL;
1309 }
1310
1311 // Return the section index of symbol SYM. Set *VALUE to its value
1312 // in the object file. Set *IS_ORDINARY if this is an ordinary
1313 // section index, not a special code between SHN_LORESERVE and
1314 // SHN_HIRESERVE. Note that for a symbol which is not defined in
1315 // this object file, this will set *VALUE to 0 and return SHN_UNDEF;
1316 // it will not return the final value of the symbol in the link.
1317 unsigned int
1318 symbol_section_and_value(unsigned int sym, Address* value, bool* is_ordinary);
1319
1320 // Return a pointer to the Symbol_value structure which holds the
1321 // value of a local symbol.
1322 const Symbol_value<size>*
1323 local_symbol(unsigned int sym) const
1324 {
1325 gold_assert(sym < this->local_values_.size());
1326 return &this->local_values_[sym];
1327 }
1328
1329 // Return the index of local symbol SYM in the ordinary symbol
1330 // table. A value of -1U means that the symbol is not being output.
1331 unsigned int
1332 symtab_index(unsigned int sym) const
1333 {
1334 gold_assert(sym < this->local_values_.size());
1335 return this->local_values_[sym].output_symtab_index();
1336 }
1337
1338 // Return the index of local symbol SYM in the dynamic symbol
1339 // table. A value of -1U means that the symbol is not being output.
1340 unsigned int
1341 dynsym_index(unsigned int sym) const
1342 {
1343 gold_assert(sym < this->local_values_.size());
1344 return this->local_values_[sym].output_dynsym_index();
1345 }
1346
1347 // Return the input section index of local symbol SYM.
1348 unsigned int
1349 local_symbol_input_shndx(unsigned int sym, bool* is_ordinary) const
1350 {
1351 gold_assert(sym < this->local_values_.size());
1352 return this->local_values_[sym].input_shndx(is_ordinary);
1353 }
1354
1355 // Return the appropriate Sized_target structure.
1356 Sized_target<size, big_endian>*
1357 sized_target()
1358 { return this->Object::sized_target<size, big_endian>(); }
1359
1360 // Record that local symbol SYM needs a dynamic symbol entry.
1361 void
1362 set_needs_output_dynsym_entry(unsigned int sym)
1363 {
1364 gold_assert(sym < this->local_values_.size());
1365 this->local_values_[sym].set_needs_output_dynsym_entry();
1366 }
1367
1368 // Return whether the local symbol SYMNDX has a GOT offset.
1369 // For TLS symbols, the GOT entry will hold its tp-relative offset.
1370 bool
1371 local_has_got_offset(unsigned int symndx, unsigned int got_type) const
1372 {
1373 Local_got_offsets::const_iterator p =
1374 this->local_got_offsets_.find(symndx);
1375 return (p != this->local_got_offsets_.end()
1376 && p->second->get_offset(got_type) != -1U);
1377 }
1378
1379 // Return the GOT offset of the local symbol SYMNDX.
1380 unsigned int
1381 local_got_offset(unsigned int symndx, unsigned int got_type) const
1382 {
1383 Local_got_offsets::const_iterator p =
1384 this->local_got_offsets_.find(symndx);
1385 gold_assert(p != this->local_got_offsets_.end());
1386 unsigned int off = p->second->get_offset(got_type);
1387 gold_assert(off != -1U);
1388 return off;
1389 }
1390
1391 // Set the GOT offset of the local symbol SYMNDX to GOT_OFFSET.
1392 void
1393 set_local_got_offset(unsigned int symndx, unsigned int got_type,
1394 unsigned int got_offset)
1395 {
1396 Local_got_offsets::const_iterator p =
1397 this->local_got_offsets_.find(symndx);
1398 if (p != this->local_got_offsets_.end())
1399 p->second->set_offset(got_type, got_offset);
1400 else
1401 {
1402 Got_offset_list* g = new Got_offset_list(got_type, got_offset);
1403 std::pair<Local_got_offsets::iterator, bool> ins =
1404 this->local_got_offsets_.insert(std::make_pair(symndx, g));
1405 gold_assert(ins.second);
1406 }
1407 }
1408
1409 // Get the offset of input section SHNDX within its output section.
1410 // This is -1 if the input section requires a special mapping, such
1411 // as a merge section. The output section can be found in the
1412 // output_sections_ field of the parent class Relobj.
1413 Address
1414 get_output_section_offset(unsigned int shndx) const
1415 {
1416 gold_assert(shndx < this->section_offsets_.size());
1417 return this->section_offsets_[shndx];
1418 }
1419
1420 // Return the name of the symbol that spans the given offset in the
1421 // specified section in this object. This is used only for error
1422 // messages and is not particularly efficient.
1423 bool
1424 get_symbol_location_info(unsigned int shndx, off_t offset,
1425 Symbol_location_info* info);
1426
1427 // Look for a kept section corresponding to the given discarded section,
1428 // and return its output address. This is used only for relocations in
1429 // debugging sections.
1430 Address
1431 map_to_kept_section(unsigned int shndx, bool* found) const;
1432
1433 protected:
1434 // Read the symbols.
1435 void
1436 do_read_symbols(Read_symbols_data*);
1437
1438 // Return the number of local symbols.
1439 unsigned int
1440 do_local_symbol_count() const
1441 { return this->local_symbol_count_; }
1442
1443 // Lay out the input sections.
1444 void
1445 do_layout(Symbol_table*, Layout*, Read_symbols_data*);
1446
1447 // Layout sections whose layout was deferred while waiting for
1448 // input files from a plugin.
1449 void
1450 do_layout_deferred_sections(Layout*);
1451
1452 // Add the symbols to the symbol table.
1453 void
1454 do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*);
1455
1456 // Read the relocs.
1457 void
1458 do_read_relocs(Read_relocs_data*);
1459
1460 // Process the relocs to find list of referenced sections. Used only
1461 // during garbage collection.
1462 void
1463 do_gc_process_relocs(const General_options&, Symbol_table*, Layout*,
1464 Read_relocs_data*);
1465
1466 // Scan the relocs and adjust the symbol table.
1467 void
1468 do_scan_relocs(const General_options&, Symbol_table*, Layout*,
1469 Read_relocs_data*);
1470
1471 // Count the local symbols.
1472 void
1473 do_count_local_symbols(Stringpool_template<char>*,
1474 Stringpool_template<char>*);
1475
1476 // Finalize the local symbols.
1477 unsigned int
1478 do_finalize_local_symbols(unsigned int, off_t);
1479
1480 // Set the offset where local dynamic symbol information will be stored.
1481 unsigned int
1482 do_set_local_dynsym_indexes(unsigned int);
1483
1484 // Set the offset where local dynamic symbol information will be stored.
1485 unsigned int
1486 do_set_local_dynsym_offset(off_t);
1487
1488 // Relocate the input sections and write out the local symbols.
1489 void
1490 do_relocate(const General_options& options, const Symbol_table* symtab,
1491 const Layout*, Output_file* of);
1492
1493 // Get the size of a section.
1494 uint64_t
1495 do_section_size(unsigned int shndx)
1496 { return this->elf_file_.section_size(shndx); }
1497
1498 // Get the name of a section.
1499 std::string
1500 do_section_name(unsigned int shndx)
1501 { return this->elf_file_.section_name(shndx); }
1502
1503 // Return the location of the contents of a section.
1504 Object::Location
1505 do_section_contents(unsigned int shndx)
1506 { return this->elf_file_.section_contents(shndx); }
1507
1508 // Return section flags.
1509 uint64_t
1510 do_section_flags(unsigned int shndx)
1511 { return this->elf_file_.section_flags(shndx); }
1512
1513 // Return section address.
1514 uint64_t
1515 do_section_address(unsigned int shndx)
1516 { return this->elf_file_.section_addr(shndx); }
1517
1518 // Return section type.
1519 unsigned int
1520 do_section_type(unsigned int shndx)
1521 { return this->elf_file_.section_type(shndx); }
1522
1523 // Return the section link field.
1524 unsigned int
1525 do_section_link(unsigned int shndx)
1526 { return this->elf_file_.section_link(shndx); }
1527
1528 // Return the section info field.
1529 unsigned int
1530 do_section_info(unsigned int shndx)
1531 { return this->elf_file_.section_info(shndx); }
1532
1533 // Return the section alignment.
1534 uint64_t
1535 do_section_addralign(unsigned int shndx)
1536 { return this->elf_file_.section_addralign(shndx); }
1537
1538 // Return the Xindex structure to use.
1539 Xindex*
1540 do_initialize_xindex();
1541
1542 // Get symbol counts.
1543 void
1544 do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const;
1545
1546 // Get the offset of a section.
1547 uint64_t
1548 do_output_section_offset(unsigned int shndx) const
1549 {
1550 Address off = this->get_output_section_offset(shndx);
1551 if (off == invalid_address)
1552 return -1ULL;
1553 return off;
1554 }
1555
1556 // Set the offset of a section.
1557 void
1558 do_set_section_offset(unsigned int shndx, uint64_t off)
1559 {
1560 gold_assert(shndx < this->section_offsets_.size());
1561 this->section_offsets_[shndx] = convert_types<Address, uint64_t>(off);
1562 }
1563
1564 private:
1565 // For convenience.
1566 typedef Sized_relobj<size, big_endian> This;
1567 static const int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
1568 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1569 static const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1570 typedef elfcpp::Shdr<size, big_endian> Shdr;
1571
1572 // To keep track of discarded comdat sections, we need to map a member
1573 // section index to the object and section index of the corresponding
1574 // kept section.
1575 struct Kept_comdat_section
1576 {
1577 Kept_comdat_section(Sized_relobj<size, big_endian>* object,
1578 unsigned int shndx)
1579 : object_(object), shndx_(shndx)
1580 { }
1581 Sized_relobj<size, big_endian>* object_;
1582 unsigned int shndx_;
1583 };
1584 typedef std::map<unsigned int, Kept_comdat_section*>
1585 Kept_comdat_section_table;
1586
1587 // Information needed to keep track of kept comdat groups. This is
1588 // simply a map from the section name to its section index. This may
1589 // not be a one-to-one mapping, but we ignore that possibility since
1590 // this is used only to attempt to handle stray relocations from
1591 // non-comdat debug sections that refer to comdat loadable sections.
1592 typedef Unordered_map<std::string, unsigned int> Comdat_group;
1593
1594 // A map from group section index to the table of group members.
1595 typedef std::map<unsigned int, Comdat_group*> Comdat_group_table;
1596
1597 // Find a comdat group table given its group section SHNDX.
1598 Comdat_group*
1599 find_comdat_group(unsigned int shndx) const
1600 {
1601 Comdat_group_table::const_iterator p =
1602 this->comdat_groups_.find(shndx);
1603 if (p != this->comdat_groups_.end())
1604 return p->second;
1605 return NULL;
1606 }
1607
1608 // Record a new comdat group whose group section index is SHNDX.
1609 void
1610 add_comdat_group(unsigned int shndx, Comdat_group* group)
1611 { this->comdat_groups_[shndx] = group; }
1612
1613 // Adjust a section index if necessary.
1614 unsigned int
1615 adjust_shndx(unsigned int shndx)
1616 {
1617 if (shndx >= elfcpp::SHN_LORESERVE)
1618 shndx += this->elf_file_.large_shndx_offset();
1619 return shndx;
1620 }
1621
1622 // Find the SHT_SYMTAB section, given the section headers.
1623 void
1624 find_symtab(const unsigned char* pshdrs);
1625
1626 // Return whether SHDR has the right flags for a GNU style exception
1627 // frame section.
1628 bool
1629 check_eh_frame_flags(const elfcpp::Shdr<size, big_endian>* shdr) const;
1630
1631 // Return whether there is a section named .eh_frame which might be
1632 // a GNU style exception frame section.
1633 bool
1634 find_eh_frame(const unsigned char* pshdrs, const char* names,
1635 section_size_type names_size) const;
1636
1637 // Whether to include a section group in the link.
1638 bool
1639 include_section_group(Symbol_table*, Layout*, unsigned int, const char*,
1640 const unsigned char*, const char *, section_size_type,
1641 std::vector<bool>*);
1642
1643 // Whether to include a linkonce section in the link.
1644 bool
1645 include_linkonce_section(Layout*, unsigned int, const char*,
1646 const elfcpp::Shdr<size, big_endian>&);
1647
1648 // Layout an input section.
1649 void
1650 layout_section(Layout* layout, unsigned int shndx, const char* name,
1651 typename This::Shdr& shdr, unsigned int reloc_shndx,
1652 unsigned int reloc_type);
1653
1654 // Views and sizes when relocating.
1655 struct View_size
1656 {
1657 unsigned char* view;
1658 typename elfcpp::Elf_types<size>::Elf_Addr address;
1659 off_t offset;
1660 section_size_type view_size;
1661 bool is_input_output_view;
1662 bool is_postprocessing_view;
1663 };
1664
1665 typedef std::vector<View_size> Views;
1666
1667 // Write section data to the output file. Record the views and
1668 // sizes in VIEWS for use when relocating.
1669 void
1670 write_sections(const unsigned char* pshdrs, Output_file*, Views*);
1671
1672 // Relocate the sections in the output file.
1673 void
1674 relocate_sections(const General_options& options, const Symbol_table*,
1675 const Layout*, const unsigned char* pshdrs, Views*);
1676
1677 // Scan the input relocations for --emit-relocs.
1678 void
1679 emit_relocs_scan(const General_options&, Symbol_table*, Layout*,
1680 const unsigned char* plocal_syms,
1681 const Read_relocs_data::Relocs_list::iterator&);
1682
1683 // Scan the input relocations for --emit-relocs, templatized on the
1684 // type of the relocation section.
1685 template<int sh_type>
1686 void
1687 emit_relocs_scan_reltype(const General_options&, Symbol_table*, Layout*,
1688 const unsigned char* plocal_syms,
1689 const Read_relocs_data::Relocs_list::iterator&,
1690 Relocatable_relocs*);
1691
1692 // Emit the relocs for --emit-relocs.
1693 void
1694 emit_relocs(const Relocate_info<size, big_endian>*, unsigned int,
1695 unsigned int sh_type, const unsigned char* prelocs,
1696 size_t reloc_count, Output_section*, Address output_offset,
1697 unsigned char* view, Address address,
1698 section_size_type view_size,
1699 unsigned char* reloc_view, section_size_type reloc_view_size);
1700
1701 // Emit the relocs for --emit-relocs, templatized on the type of the
1702 // relocation section.
1703 template<int sh_type>
1704 void
1705 emit_relocs_reltype(const Relocate_info<size, big_endian>*, unsigned int,
1706 const unsigned char* prelocs, size_t reloc_count,
1707 Output_section*, Address output_offset,
1708 unsigned char* view, Address address,
1709 section_size_type view_size,
1710 unsigned char* reloc_view,
1711 section_size_type reloc_view_size);
1712
1713 // Initialize input to output maps for section symbols in merged
1714 // sections.
1715 void
1716 initialize_input_to_output_maps();
1717
1718 // Free the input to output maps for section symbols in merged
1719 // sections.
1720 void
1721 free_input_to_output_maps();
1722
1723 // Write out the local symbols.
1724 void
1725 write_local_symbols(Output_file*,
1726 const Stringpool_template<char>*,
1727 const Stringpool_template<char>*,
1728 Output_symtab_xindex*,
1729 Output_symtab_xindex*);
1730
1731 // Clear the local symbol information.
1732 void
1733 clear_local_symbols()
1734 {
1735 this->local_values_.clear();
1736 this->local_got_offsets_.clear();
1737 }
1738
1739 // Record a mapping from discarded section SHNDX to the corresponding
1740 // kept section.
1741 void
1742 set_kept_comdat_section(unsigned int shndx, Kept_comdat_section* kept)
1743 {
1744 this->kept_comdat_sections_[shndx] = kept;
1745 }
1746
1747 // Find the kept section corresponding to the discarded section SHNDX.
1748 Kept_comdat_section*
1749 get_kept_comdat_section(unsigned int shndx) const
1750 {
1751 typename Kept_comdat_section_table::const_iterator p =
1752 this->kept_comdat_sections_.find(shndx);
1753 if (p == this->kept_comdat_sections_.end())
1754 return NULL;
1755 return p->second;
1756 }
1757
1758 // The GOT offsets of local symbols. This map also stores GOT offsets
1759 // for tp-relative offsets for TLS symbols.
1760 typedef Unordered_map<unsigned int, Got_offset_list*> Local_got_offsets;
1761
1762 // The TLS GOT offsets of local symbols. The map stores the offsets
1763 // for either a single GOT entry that holds the module index of a TLS
1764 // symbol, or a pair of GOT entries containing the module index and
1765 // dtv-relative offset.
1766 struct Tls_got_entry
1767 {
1768 Tls_got_entry(int got_offset, bool have_pair)
1769 : got_offset_(got_offset),
1770 have_pair_(have_pair)
1771 { }
1772 int got_offset_;
1773 bool have_pair_;
1774 };
1775 typedef Unordered_map<unsigned int, Tls_got_entry> Local_tls_got_offsets;
1776
1777 // Saved information for sections whose layout was deferred.
1778 struct Deferred_layout
1779 {
1780 static const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1781 Deferred_layout(unsigned int shndx, const char* name,
1782 const unsigned char* pshdr,
1783 unsigned int reloc_shndx, unsigned int reloc_type)
1784 : shndx_(shndx), name_(name), reloc_shndx_(reloc_shndx),
1785 reloc_type_(reloc_type)
1786 {
1787 memcpy(this->shdr_data_, pshdr, shdr_size);
1788 }
1789 unsigned int shndx_;
1790 std::string name_;
1791 unsigned int reloc_shndx_;
1792 unsigned int reloc_type_;
1793 unsigned char shdr_data_[shdr_size];
1794 };
1795
1796 // General access to the ELF file.
1797 elfcpp::Elf_file<size, big_endian, Object> elf_file_;
1798 // Index of SHT_SYMTAB section.
1799 unsigned int symtab_shndx_;
1800 // The number of local symbols.
1801 unsigned int local_symbol_count_;
1802 // The number of local symbols which go into the output file.
1803 unsigned int output_local_symbol_count_;
1804 // The number of local symbols which go into the output file's dynamic
1805 // symbol table.
1806 unsigned int output_local_dynsym_count_;
1807 // The entries in the symbol table for the external symbols.
1808 Symbols symbols_;
1809 // Number of symbols defined in object file itself.
1810 size_t defined_count_;
1811 // File offset for local symbols.
1812 off_t local_symbol_offset_;
1813 // File offset for local dynamic symbols.
1814 off_t local_dynsym_offset_;
1815 // Values of local symbols.
1816 Local_values local_values_;
1817 // GOT offsets for local non-TLS symbols, and tp-relative offsets
1818 // for TLS symbols, indexed by symbol number.
1819 Local_got_offsets local_got_offsets_;
1820 // For each input section, the offset of the input section in its
1821 // output section. This is INVALID_ADDRESS if the input section requires a
1822 // special mapping.
1823 std::vector<Address> section_offsets_;
1824 // Table mapping discarded comdat sections to corresponding kept sections.
1825 Kept_comdat_section_table kept_comdat_sections_;
1826 // Table of kept comdat groups.
1827 Comdat_group_table comdat_groups_;
1828 // Whether this object has a GNU style .eh_frame section.
1829 bool has_eh_frame_;
1830 // The list of sections whose layout was deferred.
1831 std::vector<Deferred_layout> deferred_layout_;
1832 };
1833
1834 // A class to manage the list of all objects.
1835
1836 class Input_objects
1837 {
1838 public:
1839 Input_objects()
1840 : relobj_list_(), dynobj_list_(), sonames_(), cref_(NULL)
1841 { }
1842
1843 // The type of the list of input relocateable objects.
1844 typedef std::vector<Relobj*> Relobj_list;
1845 typedef Relobj_list::const_iterator Relobj_iterator;
1846
1847 // The type of the list of input dynamic objects.
1848 typedef std::vector<Dynobj*> Dynobj_list;
1849 typedef Dynobj_list::const_iterator Dynobj_iterator;
1850
1851 // Add an object to the list. Return true if all is well, or false
1852 // if this object should be ignored.
1853 bool
1854 add_object(Object*);
1855
1856 // Start processing an archive.
1857 void
1858 archive_start(Archive*);
1859
1860 // Stop processing an archive.
1861 void
1862 archive_stop(Archive*);
1863
1864 // For each dynamic object, check whether we've seen all of its
1865 // explicit dependencies.
1866 void
1867 check_dynamic_dependencies() const;
1868
1869 // Return whether an object was found in the system library
1870 // directory.
1871 bool
1872 found_in_system_library_directory(const Object*) const;
1873
1874 // Print symbol counts.
1875 void
1876 print_symbol_counts(const Symbol_table*) const;
1877
1878 // Iterate over all regular objects.
1879
1880 Relobj_iterator
1881 relobj_begin() const
1882 { return this->relobj_list_.begin(); }
1883
1884 Relobj_iterator
1885 relobj_end() const
1886 { return this->relobj_list_.end(); }
1887
1888 // Iterate over all dynamic objects.
1889
1890 Dynobj_iterator
1891 dynobj_begin() const
1892 { return this->dynobj_list_.begin(); }
1893
1894 Dynobj_iterator
1895 dynobj_end() const
1896 { return this->dynobj_list_.end(); }
1897
1898 // Return whether we have seen any dynamic objects.
1899 bool
1900 any_dynamic() const
1901 { return !this->dynobj_list_.empty(); }
1902
1903 // Return the number of input objects.
1904 int
1905 number_of_input_objects() const
1906 { return this->relobj_list_.size() + this->dynobj_list_.size(); }
1907
1908 private:
1909 Input_objects(const Input_objects&);
1910 Input_objects& operator=(const Input_objects&);
1911
1912 // The list of ordinary objects included in the link.
1913 Relobj_list relobj_list_;
1914 // The list of dynamic objects included in the link.
1915 Dynobj_list dynobj_list_;
1916 // SONAMEs that we have seen.
1917 Unordered_set<std::string> sonames_;
1918 // Manage cross-references if requested.
1919 Cref* cref_;
1920 };
1921
1922 // Some of the information we pass to the relocation routines. We
1923 // group this together to avoid passing a dozen different arguments.
1924
1925 template<int size, bool big_endian>
1926 struct Relocate_info
1927 {
1928 // Command line options.
1929 const General_options* options;
1930 // Symbol table.
1931 const Symbol_table* symtab;
1932 // Layout.
1933 const Layout* layout;
1934 // Object being relocated.
1935 Sized_relobj<size, big_endian>* object;
1936 // Section index of relocation section.
1937 unsigned int reloc_shndx;
1938 // Section index of section being relocated.
1939 unsigned int data_shndx;
1940
1941 // Return a string showing the location of a relocation. This is
1942 // only used for error messages.
1943 std::string
1944 location(size_t relnum, off_t reloffset) const;
1945 };
1946
1947 // Return an Object appropriate for the input file. P is BYTES long,
1948 // and holds the ELF header.
1949
1950 extern Object*
1951 make_elf_object(const std::string& name, Input_file*,
1952 off_t offset, const unsigned char* p,
1953 section_offset_type bytes);
1954
1955 } // end namespace gold
1956
1957 #endif // !defined(GOLD_OBJECT_H)
This page took 0.072724 seconds and 5 git commands to generate.