2010-05-23 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Return the object for an input section.
1753
1754 Relobj*
1755 Output_section::Input_section::relobj() const
1756 {
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768 }
1769
1770 // Return the input section index for an input section.
1771
1772 unsigned int
1773 Output_section::Input_section::shndx() const
1774 {
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786 }
1787
1788 // Set the address and file offset.
1789
1790 void
1791 Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
1795 {
1796 if (this->is_input_section())
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
1799 else
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801 }
1802
1803 // Reset the address and file offset.
1804
1805 void
1806 Output_section::Input_section::reset_address_and_file_offset()
1807 {
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810 }
1811
1812 // Finalize the data size.
1813
1814 void
1815 Output_section::Input_section::finalize_data_size()
1816 {
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
1819 }
1820
1821 // Try to turn an input offset into an output offset. We want to
1822 // return the output offset relative to the start of this
1823 // Input_section in the output section.
1824
1825 inline bool
1826 Output_section::Input_section::output_offset(
1827 const Relobj* object,
1828 unsigned int shndx,
1829 section_offset_type offset,
1830 section_offset_type *poutput) const
1831 {
1832 if (!this->is_input_section())
1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1834 else
1835 {
1836 if (this->shndx_ != shndx || this->u2_.object != object)
1837 return false;
1838 *poutput = offset;
1839 return true;
1840 }
1841 }
1842
1843 // Return whether this is the merge section for the input section
1844 // SHNDX in OBJECT.
1845
1846 inline bool
1847 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1848 unsigned int shndx) const
1849 {
1850 if (this->is_input_section())
1851 return false;
1852 return this->u2_.posd->is_merge_section_for(object, shndx);
1853 }
1854
1855 // Write out the data. We don't have to do anything for an input
1856 // section--they are handled via Object::relocate--but this is where
1857 // we write out the data for an Output_section_data.
1858
1859 void
1860 Output_section::Input_section::write(Output_file* of)
1861 {
1862 if (!this->is_input_section())
1863 this->u2_.posd->write(of);
1864 }
1865
1866 // Write the data to a buffer. As for write(), we don't have to do
1867 // anything for an input section.
1868
1869 void
1870 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871 {
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874 }
1875
1876 // Print to a map file.
1877
1878 void
1879 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880 {
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901 }
1902
1903 // Output_section methods.
1904
1905 // Construct an Output_section. NAME will point into a Stringpool.
1906
1907 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
1910 addralign_(0),
1911 entsize_(0),
1912 load_address_(0),
1913 link_section_(NULL),
1914 link_(0),
1915 info_section_(NULL),
1916 info_symndx_(NULL),
1917 info_(0),
1918 type_(type),
1919 flags_(flags),
1920 out_shndx_(-1U),
1921 symtab_index_(0),
1922 dynsym_index_(0),
1923 input_sections_(),
1924 first_input_offset_(0),
1925 fills_(),
1926 postprocessing_buffer_(NULL),
1927 needs_symtab_index_(false),
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
1930 should_link_to_dynsym_(false),
1931 after_input_sections_(false),
1932 requires_postprocessing_(false),
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
1935 info_uses_section_index_(false),
1936 may_sort_attached_input_sections_(false),
1937 must_sort_attached_input_sections_(false),
1938 attached_input_sections_are_sorted_(false),
1939 is_relro_(false),
1940 is_relro_local_(false),
1941 is_last_relro_(false),
1942 is_first_non_relro_(false),
1943 is_small_section_(false),
1944 is_large_section_(false),
1945 is_interp_(false),
1946 is_dynamic_linker_section_(false),
1947 generate_code_fills_at_write_(false),
1948 is_entsize_zero_(false),
1949 section_offsets_need_adjustment_(false),
1950 is_noload_(false),
1951 tls_offset_(0),
1952 checkpoint_(NULL),
1953 lookup_maps_(new Output_section_lookup_maps)
1954 {
1955 // An unallocated section has no address. Forcing this means that
1956 // we don't need special treatment for symbols defined in debug
1957 // sections.
1958 if ((flags & elfcpp::SHF_ALLOC) == 0)
1959 this->set_address(0);
1960 }
1961
1962 Output_section::~Output_section()
1963 {
1964 delete this->checkpoint_;
1965 }
1966
1967 // Set the entry size.
1968
1969 void
1970 Output_section::set_entsize(uint64_t v)
1971 {
1972 if (this->is_entsize_zero_)
1973 ;
1974 else if (this->entsize_ == 0)
1975 this->entsize_ = v;
1976 else if (this->entsize_ != v)
1977 {
1978 this->entsize_ = 0;
1979 this->is_entsize_zero_ = 1;
1980 }
1981 }
1982
1983 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1984 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1985 // relocation section which applies to this section, or 0 if none, or
1986 // -1U if more than one. Return the offset of the input section
1987 // within the output section. Return -1 if the input section will
1988 // receive special handling. In the normal case we don't always keep
1989 // track of input sections for an Output_section. Instead, each
1990 // Object keeps track of the Output_section for each of its input
1991 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1992 // track of input sections here; this is used when SECTIONS appears in
1993 // a linker script.
1994
1995 template<int size, bool big_endian>
1996 off_t
1997 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1998 unsigned int shndx,
1999 const char* secname,
2000 const elfcpp::Shdr<size, big_endian>& shdr,
2001 unsigned int reloc_shndx,
2002 bool have_sections_script)
2003 {
2004 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2005 if ((addralign & (addralign - 1)) != 0)
2006 {
2007 object->error(_("invalid alignment %lu for section \"%s\""),
2008 static_cast<unsigned long>(addralign), secname);
2009 addralign = 1;
2010 }
2011
2012 if (addralign > this->addralign_)
2013 this->addralign_ = addralign;
2014
2015 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2016 uint64_t entsize = shdr.get_sh_entsize();
2017
2018 // .debug_str is a mergeable string section, but is not always so
2019 // marked by compilers. Mark manually here so we can optimize.
2020 if (strcmp(secname, ".debug_str") == 0)
2021 {
2022 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2023 entsize = 1;
2024 }
2025
2026 this->update_flags_for_input_section(sh_flags);
2027 this->set_entsize(entsize);
2028
2029 // If this is a SHF_MERGE section, we pass all the input sections to
2030 // a Output_data_merge. We don't try to handle relocations for such
2031 // a section. We don't try to handle empty merge sections--they
2032 // mess up the mappings, and are useless anyhow.
2033 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2034 && reloc_shndx == 0
2035 && shdr.get_sh_size() > 0)
2036 {
2037 // Keep information about merged input sections for rebuilding fast
2038 // lookup maps if we have sections-script or we do relaxation.
2039 bool keeps_input_sections =
2040 have_sections_script || parameters->target().may_relax();
2041 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2042 addralign, keeps_input_sections))
2043 {
2044 // Tell the relocation routines that they need to call the
2045 // output_offset method to determine the final address.
2046 return -1;
2047 }
2048 }
2049
2050 off_t offset_in_section = this->current_data_size_for_child();
2051 off_t aligned_offset_in_section = align_address(offset_in_section,
2052 addralign);
2053
2054 // Determine if we want to delay code-fill generation until the output
2055 // section is written. When the target is relaxing, we want to delay fill
2056 // generating to avoid adjusting them during relaxation.
2057 if (!this->generate_code_fills_at_write_
2058 && !have_sections_script
2059 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2060 && parameters->target().has_code_fill()
2061 && parameters->target().may_relax())
2062 {
2063 gold_assert(this->fills_.empty());
2064 this->generate_code_fills_at_write_ = true;
2065 }
2066
2067 if (aligned_offset_in_section > offset_in_section
2068 && !this->generate_code_fills_at_write_
2069 && !have_sections_script
2070 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2071 && parameters->target().has_code_fill())
2072 {
2073 // We need to add some fill data. Using fill_list_ when
2074 // possible is an optimization, since we will often have fill
2075 // sections without input sections.
2076 off_t fill_len = aligned_offset_in_section - offset_in_section;
2077 if (this->input_sections_.empty())
2078 this->fills_.push_back(Fill(offset_in_section, fill_len));
2079 else
2080 {
2081 std::string fill_data(parameters->target().code_fill(fill_len));
2082 Output_data_const* odc = new Output_data_const(fill_data, 1);
2083 this->input_sections_.push_back(Input_section(odc));
2084 }
2085 }
2086
2087 this->set_current_data_size_for_child(aligned_offset_in_section
2088 + shdr.get_sh_size());
2089
2090 // We need to keep track of this section if we are already keeping
2091 // track of sections, or if we are relaxing. Also, if this is a
2092 // section which requires sorting, or which may require sorting in
2093 // the future, we keep track of the sections.
2094 if (have_sections_script
2095 || !this->input_sections_.empty()
2096 || this->may_sort_attached_input_sections()
2097 || this->must_sort_attached_input_sections()
2098 || parameters->options().user_set_Map()
2099 || parameters->target().may_relax())
2100 this->input_sections_.push_back(Input_section(object, shndx,
2101 shdr.get_sh_size(),
2102 addralign));
2103
2104 return aligned_offset_in_section;
2105 }
2106
2107 // Add arbitrary data to an output section.
2108
2109 void
2110 Output_section::add_output_section_data(Output_section_data* posd)
2111 {
2112 Input_section inp(posd);
2113 this->add_output_section_data(&inp);
2114
2115 if (posd->is_data_size_valid())
2116 {
2117 off_t offset_in_section = this->current_data_size_for_child();
2118 off_t aligned_offset_in_section = align_address(offset_in_section,
2119 posd->addralign());
2120 this->set_current_data_size_for_child(aligned_offset_in_section
2121 + posd->data_size());
2122 }
2123 }
2124
2125 // Add a relaxed input section.
2126
2127 void
2128 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2129 {
2130 Input_section inp(poris);
2131 this->add_output_section_data(&inp);
2132 if (this->lookup_maps_->is_valid())
2133 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2134 poris->shndx(), poris);
2135
2136 // For a relaxed section, we use the current data size. Linker scripts
2137 // get all the input sections, including relaxed one from an output
2138 // section and add them back to them same output section to compute the
2139 // output section size. If we do not account for sizes of relaxed input
2140 // sections, an output section would be incorrectly sized.
2141 off_t offset_in_section = this->current_data_size_for_child();
2142 off_t aligned_offset_in_section = align_address(offset_in_section,
2143 poris->addralign());
2144 this->set_current_data_size_for_child(aligned_offset_in_section
2145 + poris->current_data_size());
2146 }
2147
2148 // Add arbitrary data to an output section by Input_section.
2149
2150 void
2151 Output_section::add_output_section_data(Input_section* inp)
2152 {
2153 if (this->input_sections_.empty())
2154 this->first_input_offset_ = this->current_data_size_for_child();
2155
2156 this->input_sections_.push_back(*inp);
2157
2158 uint64_t addralign = inp->addralign();
2159 if (addralign > this->addralign_)
2160 this->addralign_ = addralign;
2161
2162 inp->set_output_section(this);
2163 }
2164
2165 // Add a merge section to an output section.
2166
2167 void
2168 Output_section::add_output_merge_section(Output_section_data* posd,
2169 bool is_string, uint64_t entsize)
2170 {
2171 Input_section inp(posd, is_string, entsize);
2172 this->add_output_section_data(&inp);
2173 }
2174
2175 // Add an input section to a SHF_MERGE section.
2176
2177 bool
2178 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2179 uint64_t flags, uint64_t entsize,
2180 uint64_t addralign,
2181 bool keeps_input_sections)
2182 {
2183 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2184
2185 // We only merge strings if the alignment is not more than the
2186 // character size. This could be handled, but it's unusual.
2187 if (is_string && addralign > entsize)
2188 return false;
2189
2190 // We cannot restore merged input section states.
2191 gold_assert(this->checkpoint_ == NULL);
2192
2193 // Look up merge sections by required properties.
2194 // Currently, we only invalidate the lookup maps in script processing
2195 // and relaxation. We should not have done either when we reach here.
2196 // So we assume that the lookup maps are valid to simply code.
2197 gold_assert(this->lookup_maps_->is_valid());
2198 Merge_section_properties msp(is_string, entsize, addralign);
2199 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2200 bool is_new = false;
2201 if (pomb != NULL)
2202 {
2203 gold_assert(pomb->is_string() == is_string
2204 && pomb->entsize() == entsize
2205 && pomb->addralign() == addralign);
2206 }
2207 else
2208 {
2209 // Create a new Output_merge_data or Output_merge_string_data.
2210 if (!is_string)
2211 pomb = new Output_merge_data(entsize, addralign);
2212 else
2213 {
2214 switch (entsize)
2215 {
2216 case 1:
2217 pomb = new Output_merge_string<char>(addralign);
2218 break;
2219 case 2:
2220 pomb = new Output_merge_string<uint16_t>(addralign);
2221 break;
2222 case 4:
2223 pomb = new Output_merge_string<uint32_t>(addralign);
2224 break;
2225 default:
2226 return false;
2227 }
2228 }
2229 // If we need to do script processing or relaxation, we need to keep
2230 // the original input sections to rebuild the fast lookup maps.
2231 if (keeps_input_sections)
2232 pomb->set_keeps_input_sections();
2233 is_new = true;
2234 }
2235
2236 if (pomb->add_input_section(object, shndx))
2237 {
2238 // Add new merge section to this output section and link merge
2239 // section properties to new merge section in map.
2240 if (is_new)
2241 {
2242 this->add_output_merge_section(pomb, is_string, entsize);
2243 this->lookup_maps_->add_merge_section(msp, pomb);
2244 }
2245
2246 // Add input section to new merge section and link input section to new
2247 // merge section in map.
2248 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2249 return true;
2250 }
2251 else
2252 {
2253 // If add_input_section failed, delete new merge section to avoid
2254 // exporting empty merge sections in Output_section::get_input_section.
2255 if (is_new)
2256 delete pomb;
2257 return false;
2258 }
2259 }
2260
2261 // Build a relaxation map to speed up relaxation of existing input sections.
2262 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2263
2264 void
2265 Output_section::build_relaxation_map(
2266 const Input_section_list& input_sections,
2267 size_t limit,
2268 Relaxation_map* relaxation_map) const
2269 {
2270 for (size_t i = 0; i < limit; ++i)
2271 {
2272 const Input_section& is(input_sections[i]);
2273 if (is.is_input_section() || is.is_relaxed_input_section())
2274 {
2275 Section_id sid(is.relobj(), is.shndx());
2276 (*relaxation_map)[sid] = i;
2277 }
2278 }
2279 }
2280
2281 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2282 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2283 // indices of INPUT_SECTIONS.
2284
2285 void
2286 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2287 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2288 const Relaxation_map& map,
2289 Input_section_list* input_sections)
2290 {
2291 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2292 {
2293 Output_relaxed_input_section* poris = relaxed_sections[i];
2294 Section_id sid(poris->relobj(), poris->shndx());
2295 Relaxation_map::const_iterator p = map.find(sid);
2296 gold_assert(p != map.end());
2297 gold_assert((*input_sections)[p->second].is_input_section());
2298 (*input_sections)[p->second] = Input_section(poris);
2299 }
2300 }
2301
2302 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2303 // is a vector of pointers to Output_relaxed_input_section or its derived
2304 // classes. The relaxed sections must correspond to existing input sections.
2305
2306 void
2307 Output_section::convert_input_sections_to_relaxed_sections(
2308 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2309 {
2310 gold_assert(parameters->target().may_relax());
2311
2312 // We want to make sure that restore_states does not undo the effect of
2313 // this. If there is no checkpoint active, just search the current
2314 // input section list and replace the sections there. If there is
2315 // a checkpoint, also replace the sections there.
2316
2317 // By default, we look at the whole list.
2318 size_t limit = this->input_sections_.size();
2319
2320 if (this->checkpoint_ != NULL)
2321 {
2322 // Replace input sections with relaxed input section in the saved
2323 // copy of the input section list.
2324 if (this->checkpoint_->input_sections_saved())
2325 {
2326 Relaxation_map map;
2327 this->build_relaxation_map(
2328 *(this->checkpoint_->input_sections()),
2329 this->checkpoint_->input_sections()->size(),
2330 &map);
2331 this->convert_input_sections_in_list_to_relaxed_sections(
2332 relaxed_sections,
2333 map,
2334 this->checkpoint_->input_sections());
2335 }
2336 else
2337 {
2338 // We have not copied the input section list yet. Instead, just
2339 // look at the portion that would be saved.
2340 limit = this->checkpoint_->input_sections_size();
2341 }
2342 }
2343
2344 // Convert input sections in input_section_list.
2345 Relaxation_map map;
2346 this->build_relaxation_map(this->input_sections_, limit, &map);
2347 this->convert_input_sections_in_list_to_relaxed_sections(
2348 relaxed_sections,
2349 map,
2350 &this->input_sections_);
2351
2352 // Update fast look-up map.
2353 if (this->lookup_maps_->is_valid())
2354 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2355 {
2356 Output_relaxed_input_section* poris = relaxed_sections[i];
2357 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2358 poris->shndx(), poris);
2359 }
2360 }
2361
2362 // Update the output section flags based on input section flags.
2363
2364 void
2365 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2366 {
2367 // If we created the section with SHF_ALLOC clear, we set the
2368 // address. If we are now setting the SHF_ALLOC flag, we need to
2369 // undo that.
2370 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2371 && (flags & elfcpp::SHF_ALLOC) != 0)
2372 this->mark_address_invalid();
2373
2374 this->flags_ |= (flags
2375 & (elfcpp::SHF_WRITE
2376 | elfcpp::SHF_ALLOC
2377 | elfcpp::SHF_EXECINSTR));
2378
2379 if ((flags & elfcpp::SHF_MERGE) == 0)
2380 this->flags_ &=~ elfcpp::SHF_MERGE;
2381 else
2382 {
2383 if (this->current_data_size_for_child() == 0)
2384 this->flags_ |= elfcpp::SHF_MERGE;
2385 }
2386
2387 if ((flags & elfcpp::SHF_STRINGS) == 0)
2388 this->flags_ &=~ elfcpp::SHF_STRINGS;
2389 else
2390 {
2391 if (this->current_data_size_for_child() == 0)
2392 this->flags_ |= elfcpp::SHF_STRINGS;
2393 }
2394 }
2395
2396 // Find the merge section into which an input section with index SHNDX in
2397 // OBJECT has been added. Return NULL if none found.
2398
2399 Output_section_data*
2400 Output_section::find_merge_section(const Relobj* object,
2401 unsigned int shndx) const
2402 {
2403 if (!this->lookup_maps_->is_valid())
2404 this->build_lookup_maps();
2405 return this->lookup_maps_->find_merge_section(object, shndx);
2406 }
2407
2408 // Build the lookup maps for merge and relaxed sections. This is needs
2409 // to be declared as a const methods so that it is callable with a const
2410 // Output_section pointer. The method only updates states of the maps.
2411
2412 void
2413 Output_section::build_lookup_maps() const
2414 {
2415 this->lookup_maps_->clear();
2416 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2417 p != this->input_sections_.end();
2418 ++p)
2419 {
2420 if (p->is_merge_section())
2421 {
2422 Output_merge_base* pomb = p->output_merge_base();
2423 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2424 pomb->addralign());
2425 this->lookup_maps_->add_merge_section(msp, pomb);
2426 for (Output_merge_base::Input_sections::const_iterator is =
2427 pomb->input_sections_begin();
2428 is != pomb->input_sections_end();
2429 ++is)
2430 {
2431 const Const_section_id& csid = *is;
2432 this->lookup_maps_->add_merge_input_section(csid.first,
2433 csid.second, pomb);
2434 }
2435
2436 }
2437 else if (p->is_relaxed_input_section())
2438 {
2439 Output_relaxed_input_section* poris = p->relaxed_input_section();
2440 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2441 poris->shndx(), poris);
2442 }
2443 }
2444 }
2445
2446 // Find an relaxed input section corresponding to an input section
2447 // in OBJECT with index SHNDX.
2448
2449 const Output_relaxed_input_section*
2450 Output_section::find_relaxed_input_section(const Relobj* object,
2451 unsigned int shndx) const
2452 {
2453 if (!this->lookup_maps_->is_valid())
2454 this->build_lookup_maps();
2455 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2456 }
2457
2458 // Given an address OFFSET relative to the start of input section
2459 // SHNDX in OBJECT, return whether this address is being included in
2460 // the final link. This should only be called if SHNDX in OBJECT has
2461 // a special mapping.
2462
2463 bool
2464 Output_section::is_input_address_mapped(const Relobj* object,
2465 unsigned int shndx,
2466 off_t offset) const
2467 {
2468 // Look at the Output_section_data_maps first.
2469 const Output_section_data* posd = this->find_merge_section(object, shndx);
2470 if (posd == NULL)
2471 posd = this->find_relaxed_input_section(object, shndx);
2472
2473 if (posd != NULL)
2474 {
2475 section_offset_type output_offset;
2476 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2477 gold_assert(found);
2478 return output_offset != -1;
2479 }
2480
2481 // Fall back to the slow look-up.
2482 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2483 p != this->input_sections_.end();
2484 ++p)
2485 {
2486 section_offset_type output_offset;
2487 if (p->output_offset(object, shndx, offset, &output_offset))
2488 return output_offset != -1;
2489 }
2490
2491 // By default we assume that the address is mapped. This should
2492 // only be called after we have passed all sections to Layout. At
2493 // that point we should know what we are discarding.
2494 return true;
2495 }
2496
2497 // Given an address OFFSET relative to the start of input section
2498 // SHNDX in object OBJECT, return the output offset relative to the
2499 // start of the input section in the output section. This should only
2500 // be called if SHNDX in OBJECT has a special mapping.
2501
2502 section_offset_type
2503 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2504 section_offset_type offset) const
2505 {
2506 // This can only be called meaningfully when we know the data size
2507 // of this.
2508 gold_assert(this->is_data_size_valid());
2509
2510 // Look at the Output_section_data_maps first.
2511 const Output_section_data* posd = this->find_merge_section(object, shndx);
2512 if (posd == NULL)
2513 posd = this->find_relaxed_input_section(object, shndx);
2514 if (posd != NULL)
2515 {
2516 section_offset_type output_offset;
2517 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2518 gold_assert(found);
2519 return output_offset;
2520 }
2521
2522 // Fall back to the slow look-up.
2523 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2524 p != this->input_sections_.end();
2525 ++p)
2526 {
2527 section_offset_type output_offset;
2528 if (p->output_offset(object, shndx, offset, &output_offset))
2529 return output_offset;
2530 }
2531 gold_unreachable();
2532 }
2533
2534 // Return the output virtual address of OFFSET relative to the start
2535 // of input section SHNDX in object OBJECT.
2536
2537 uint64_t
2538 Output_section::output_address(const Relobj* object, unsigned int shndx,
2539 off_t offset) const
2540 {
2541 uint64_t addr = this->address() + this->first_input_offset_;
2542
2543 // Look at the Output_section_data_maps first.
2544 const Output_section_data* posd = this->find_merge_section(object, shndx);
2545 if (posd == NULL)
2546 posd = this->find_relaxed_input_section(object, shndx);
2547 if (posd != NULL && posd->is_address_valid())
2548 {
2549 section_offset_type output_offset;
2550 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2551 gold_assert(found);
2552 return posd->address() + output_offset;
2553 }
2554
2555 // Fall back to the slow look-up.
2556 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2557 p != this->input_sections_.end();
2558 ++p)
2559 {
2560 addr = align_address(addr, p->addralign());
2561 section_offset_type output_offset;
2562 if (p->output_offset(object, shndx, offset, &output_offset))
2563 {
2564 if (output_offset == -1)
2565 return -1ULL;
2566 return addr + output_offset;
2567 }
2568 addr += p->data_size();
2569 }
2570
2571 // If we get here, it means that we don't know the mapping for this
2572 // input section. This might happen in principle if
2573 // add_input_section were called before add_output_section_data.
2574 // But it should never actually happen.
2575
2576 gold_unreachable();
2577 }
2578
2579 // Find the output address of the start of the merged section for
2580 // input section SHNDX in object OBJECT.
2581
2582 bool
2583 Output_section::find_starting_output_address(const Relobj* object,
2584 unsigned int shndx,
2585 uint64_t* paddr) const
2586 {
2587 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2588 // Looking up the merge section map does not always work as we sometimes
2589 // find a merge section without its address set.
2590 uint64_t addr = this->address() + this->first_input_offset_;
2591 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2592 p != this->input_sections_.end();
2593 ++p)
2594 {
2595 addr = align_address(addr, p->addralign());
2596
2597 // It would be nice if we could use the existing output_offset
2598 // method to get the output offset of input offset 0.
2599 // Unfortunately we don't know for sure that input offset 0 is
2600 // mapped at all.
2601 if (p->is_merge_section_for(object, shndx))
2602 {
2603 *paddr = addr;
2604 return true;
2605 }
2606
2607 addr += p->data_size();
2608 }
2609
2610 // We couldn't find a merge output section for this input section.
2611 return false;
2612 }
2613
2614 // Set the data size of an Output_section. This is where we handle
2615 // setting the addresses of any Output_section_data objects.
2616
2617 void
2618 Output_section::set_final_data_size()
2619 {
2620 if (this->input_sections_.empty())
2621 {
2622 this->set_data_size(this->current_data_size_for_child());
2623 return;
2624 }
2625
2626 if (this->must_sort_attached_input_sections())
2627 this->sort_attached_input_sections();
2628
2629 uint64_t address = this->address();
2630 off_t startoff = this->offset();
2631 off_t off = startoff + this->first_input_offset_;
2632 for (Input_section_list::iterator p = this->input_sections_.begin();
2633 p != this->input_sections_.end();
2634 ++p)
2635 {
2636 off = align_address(off, p->addralign());
2637 p->set_address_and_file_offset(address + (off - startoff), off,
2638 startoff);
2639 off += p->data_size();
2640 }
2641
2642 this->set_data_size(off - startoff);
2643 }
2644
2645 // Reset the address and file offset.
2646
2647 void
2648 Output_section::do_reset_address_and_file_offset()
2649 {
2650 // An unallocated section has no address. Forcing this means that
2651 // we don't need special treatment for symbols defined in debug
2652 // sections. We do the same in the constructor. This does not
2653 // apply to NOLOAD sections though.
2654 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2655 this->set_address(0);
2656
2657 for (Input_section_list::iterator p = this->input_sections_.begin();
2658 p != this->input_sections_.end();
2659 ++p)
2660 p->reset_address_and_file_offset();
2661 }
2662
2663 // Return true if address and file offset have the values after reset.
2664
2665 bool
2666 Output_section::do_address_and_file_offset_have_reset_values() const
2667 {
2668 if (this->is_offset_valid())
2669 return false;
2670
2671 // An unallocated section has address 0 after its construction or a reset.
2672 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2673 return this->is_address_valid() && this->address() == 0;
2674 else
2675 return !this->is_address_valid();
2676 }
2677
2678 // Set the TLS offset. Called only for SHT_TLS sections.
2679
2680 void
2681 Output_section::do_set_tls_offset(uint64_t tls_base)
2682 {
2683 this->tls_offset_ = this->address() - tls_base;
2684 }
2685
2686 // In a few cases we need to sort the input sections attached to an
2687 // output section. This is used to implement the type of constructor
2688 // priority ordering implemented by the GNU linker, in which the
2689 // priority becomes part of the section name and the sections are
2690 // sorted by name. We only do this for an output section if we see an
2691 // attached input section matching ".ctor.*", ".dtor.*",
2692 // ".init_array.*" or ".fini_array.*".
2693
2694 class Output_section::Input_section_sort_entry
2695 {
2696 public:
2697 Input_section_sort_entry()
2698 : input_section_(), index_(-1U), section_has_name_(false),
2699 section_name_()
2700 { }
2701
2702 Input_section_sort_entry(const Input_section& input_section,
2703 unsigned int index)
2704 : input_section_(input_section), index_(index),
2705 section_has_name_(input_section.is_input_section()
2706 || input_section.is_relaxed_input_section())
2707 {
2708 if (this->section_has_name_)
2709 {
2710 // This is only called single-threaded from Layout::finalize,
2711 // so it is OK to lock. Unfortunately we have no way to pass
2712 // in a Task token.
2713 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2714 Object* obj = (input_section.is_input_section()
2715 ? input_section.relobj()
2716 : input_section.relaxed_input_section()->relobj());
2717 Task_lock_obj<Object> tl(dummy_task, obj);
2718
2719 // This is a slow operation, which should be cached in
2720 // Layout::layout if this becomes a speed problem.
2721 this->section_name_ = obj->section_name(input_section.shndx());
2722 }
2723 }
2724
2725 // Return the Input_section.
2726 const Input_section&
2727 input_section() const
2728 {
2729 gold_assert(this->index_ != -1U);
2730 return this->input_section_;
2731 }
2732
2733 // The index of this entry in the original list. This is used to
2734 // make the sort stable.
2735 unsigned int
2736 index() const
2737 {
2738 gold_assert(this->index_ != -1U);
2739 return this->index_;
2740 }
2741
2742 // Whether there is a section name.
2743 bool
2744 section_has_name() const
2745 { return this->section_has_name_; }
2746
2747 // The section name.
2748 const std::string&
2749 section_name() const
2750 {
2751 gold_assert(this->section_has_name_);
2752 return this->section_name_;
2753 }
2754
2755 // Return true if the section name has a priority. This is assumed
2756 // to be true if it has a dot after the initial dot.
2757 bool
2758 has_priority() const
2759 {
2760 gold_assert(this->section_has_name_);
2761 return this->section_name_.find('.', 1) != std::string::npos;
2762 }
2763
2764 // Return true if this an input file whose base name matches
2765 // FILE_NAME. The base name must have an extension of ".o", and
2766 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2767 // This is to match crtbegin.o as well as crtbeginS.o without
2768 // getting confused by other possibilities. Overall matching the
2769 // file name this way is a dreadful hack, but the GNU linker does it
2770 // in order to better support gcc, and we need to be compatible.
2771 bool
2772 match_file_name(const char* match_file_name) const
2773 {
2774 const std::string& file_name(this->input_section_.relobj()->name());
2775 const char* base_name = lbasename(file_name.c_str());
2776 size_t match_len = strlen(match_file_name);
2777 if (strncmp(base_name, match_file_name, match_len) != 0)
2778 return false;
2779 size_t base_len = strlen(base_name);
2780 if (base_len != match_len + 2 && base_len != match_len + 3)
2781 return false;
2782 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2783 }
2784
2785 private:
2786 // The Input_section we are sorting.
2787 Input_section input_section_;
2788 // The index of this Input_section in the original list.
2789 unsigned int index_;
2790 // Whether this Input_section has a section name--it won't if this
2791 // is some random Output_section_data.
2792 bool section_has_name_;
2793 // The section name if there is one.
2794 std::string section_name_;
2795 };
2796
2797 // Return true if S1 should come before S2 in the output section.
2798
2799 bool
2800 Output_section::Input_section_sort_compare::operator()(
2801 const Output_section::Input_section_sort_entry& s1,
2802 const Output_section::Input_section_sort_entry& s2) const
2803 {
2804 // crtbegin.o must come first.
2805 bool s1_begin = s1.match_file_name("crtbegin");
2806 bool s2_begin = s2.match_file_name("crtbegin");
2807 if (s1_begin || s2_begin)
2808 {
2809 if (!s1_begin)
2810 return false;
2811 if (!s2_begin)
2812 return true;
2813 return s1.index() < s2.index();
2814 }
2815
2816 // crtend.o must come last.
2817 bool s1_end = s1.match_file_name("crtend");
2818 bool s2_end = s2.match_file_name("crtend");
2819 if (s1_end || s2_end)
2820 {
2821 if (!s1_end)
2822 return true;
2823 if (!s2_end)
2824 return false;
2825 return s1.index() < s2.index();
2826 }
2827
2828 // We sort all the sections with no names to the end.
2829 if (!s1.section_has_name() || !s2.section_has_name())
2830 {
2831 if (s1.section_has_name())
2832 return true;
2833 if (s2.section_has_name())
2834 return false;
2835 return s1.index() < s2.index();
2836 }
2837
2838 // A section with a priority follows a section without a priority.
2839 bool s1_has_priority = s1.has_priority();
2840 bool s2_has_priority = s2.has_priority();
2841 if (s1_has_priority && !s2_has_priority)
2842 return false;
2843 if (!s1_has_priority && s2_has_priority)
2844 return true;
2845
2846 // Otherwise we sort by name.
2847 int compare = s1.section_name().compare(s2.section_name());
2848 if (compare != 0)
2849 return compare < 0;
2850
2851 // Otherwise we keep the input order.
2852 return s1.index() < s2.index();
2853 }
2854
2855 // Return true if S1 should come before S2 in an .init_array or .fini_array
2856 // output section.
2857
2858 bool
2859 Output_section::Input_section_sort_init_fini_compare::operator()(
2860 const Output_section::Input_section_sort_entry& s1,
2861 const Output_section::Input_section_sort_entry& s2) const
2862 {
2863 // We sort all the sections with no names to the end.
2864 if (!s1.section_has_name() || !s2.section_has_name())
2865 {
2866 if (s1.section_has_name())
2867 return true;
2868 if (s2.section_has_name())
2869 return false;
2870 return s1.index() < s2.index();
2871 }
2872
2873 // A section without a priority follows a section with a priority.
2874 // This is the reverse of .ctors and .dtors sections.
2875 bool s1_has_priority = s1.has_priority();
2876 bool s2_has_priority = s2.has_priority();
2877 if (s1_has_priority && !s2_has_priority)
2878 return true;
2879 if (!s1_has_priority && s2_has_priority)
2880 return false;
2881
2882 // Otherwise we sort by name.
2883 int compare = s1.section_name().compare(s2.section_name());
2884 if (compare != 0)
2885 return compare < 0;
2886
2887 // Otherwise we keep the input order.
2888 return s1.index() < s2.index();
2889 }
2890
2891 // Sort the input sections attached to an output section.
2892
2893 void
2894 Output_section::sort_attached_input_sections()
2895 {
2896 if (this->attached_input_sections_are_sorted_)
2897 return;
2898
2899 if (this->checkpoint_ != NULL
2900 && !this->checkpoint_->input_sections_saved())
2901 this->checkpoint_->save_input_sections();
2902
2903 // The only thing we know about an input section is the object and
2904 // the section index. We need the section name. Recomputing this
2905 // is slow but this is an unusual case. If this becomes a speed
2906 // problem we can cache the names as required in Layout::layout.
2907
2908 // We start by building a larger vector holding a copy of each
2909 // Input_section, plus its current index in the list and its name.
2910 std::vector<Input_section_sort_entry> sort_list;
2911
2912 unsigned int i = 0;
2913 for (Input_section_list::iterator p = this->input_sections_.begin();
2914 p != this->input_sections_.end();
2915 ++p, ++i)
2916 sort_list.push_back(Input_section_sort_entry(*p, i));
2917
2918 // Sort the input sections.
2919 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2920 || this->type() == elfcpp::SHT_INIT_ARRAY
2921 || this->type() == elfcpp::SHT_FINI_ARRAY)
2922 std::sort(sort_list.begin(), sort_list.end(),
2923 Input_section_sort_init_fini_compare());
2924 else
2925 std::sort(sort_list.begin(), sort_list.end(),
2926 Input_section_sort_compare());
2927
2928 // Copy the sorted input sections back to our list.
2929 this->input_sections_.clear();
2930 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2931 p != sort_list.end();
2932 ++p)
2933 this->input_sections_.push_back(p->input_section());
2934
2935 // Remember that we sorted the input sections, since we might get
2936 // called again.
2937 this->attached_input_sections_are_sorted_ = true;
2938 }
2939
2940 // Write the section header to *OSHDR.
2941
2942 template<int size, bool big_endian>
2943 void
2944 Output_section::write_header(const Layout* layout,
2945 const Stringpool* secnamepool,
2946 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2947 {
2948 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2949 oshdr->put_sh_type(this->type_);
2950
2951 elfcpp::Elf_Xword flags = this->flags_;
2952 if (this->info_section_ != NULL && this->info_uses_section_index_)
2953 flags |= elfcpp::SHF_INFO_LINK;
2954 oshdr->put_sh_flags(flags);
2955
2956 oshdr->put_sh_addr(this->address());
2957 oshdr->put_sh_offset(this->offset());
2958 oshdr->put_sh_size(this->data_size());
2959 if (this->link_section_ != NULL)
2960 oshdr->put_sh_link(this->link_section_->out_shndx());
2961 else if (this->should_link_to_symtab_)
2962 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2963 else if (this->should_link_to_dynsym_)
2964 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2965 else
2966 oshdr->put_sh_link(this->link_);
2967
2968 elfcpp::Elf_Word info;
2969 if (this->info_section_ != NULL)
2970 {
2971 if (this->info_uses_section_index_)
2972 info = this->info_section_->out_shndx();
2973 else
2974 info = this->info_section_->symtab_index();
2975 }
2976 else if (this->info_symndx_ != NULL)
2977 info = this->info_symndx_->symtab_index();
2978 else
2979 info = this->info_;
2980 oshdr->put_sh_info(info);
2981
2982 oshdr->put_sh_addralign(this->addralign_);
2983 oshdr->put_sh_entsize(this->entsize_);
2984 }
2985
2986 // Write out the data. For input sections the data is written out by
2987 // Object::relocate, but we have to handle Output_section_data objects
2988 // here.
2989
2990 void
2991 Output_section::do_write(Output_file* of)
2992 {
2993 gold_assert(!this->requires_postprocessing());
2994
2995 // If the target performs relaxation, we delay filler generation until now.
2996 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2997
2998 off_t output_section_file_offset = this->offset();
2999 for (Fill_list::iterator p = this->fills_.begin();
3000 p != this->fills_.end();
3001 ++p)
3002 {
3003 std::string fill_data(parameters->target().code_fill(p->length()));
3004 of->write(output_section_file_offset + p->section_offset(),
3005 fill_data.data(), fill_data.size());
3006 }
3007
3008 off_t off = this->offset() + this->first_input_offset_;
3009 for (Input_section_list::iterator p = this->input_sections_.begin();
3010 p != this->input_sections_.end();
3011 ++p)
3012 {
3013 off_t aligned_off = align_address(off, p->addralign());
3014 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3015 {
3016 size_t fill_len = aligned_off - off;
3017 std::string fill_data(parameters->target().code_fill(fill_len));
3018 of->write(off, fill_data.data(), fill_data.size());
3019 }
3020
3021 p->write(of);
3022 off = aligned_off + p->data_size();
3023 }
3024 }
3025
3026 // If a section requires postprocessing, create the buffer to use.
3027
3028 void
3029 Output_section::create_postprocessing_buffer()
3030 {
3031 gold_assert(this->requires_postprocessing());
3032
3033 if (this->postprocessing_buffer_ != NULL)
3034 return;
3035
3036 if (!this->input_sections_.empty())
3037 {
3038 off_t off = this->first_input_offset_;
3039 for (Input_section_list::iterator p = this->input_sections_.begin();
3040 p != this->input_sections_.end();
3041 ++p)
3042 {
3043 off = align_address(off, p->addralign());
3044 p->finalize_data_size();
3045 off += p->data_size();
3046 }
3047 this->set_current_data_size_for_child(off);
3048 }
3049
3050 off_t buffer_size = this->current_data_size_for_child();
3051 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3052 }
3053
3054 // Write all the data of an Output_section into the postprocessing
3055 // buffer. This is used for sections which require postprocessing,
3056 // such as compression. Input sections are handled by
3057 // Object::Relocate.
3058
3059 void
3060 Output_section::write_to_postprocessing_buffer()
3061 {
3062 gold_assert(this->requires_postprocessing());
3063
3064 // If the target performs relaxation, we delay filler generation until now.
3065 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3066
3067 unsigned char* buffer = this->postprocessing_buffer();
3068 for (Fill_list::iterator p = this->fills_.begin();
3069 p != this->fills_.end();
3070 ++p)
3071 {
3072 std::string fill_data(parameters->target().code_fill(p->length()));
3073 memcpy(buffer + p->section_offset(), fill_data.data(),
3074 fill_data.size());
3075 }
3076
3077 off_t off = this->first_input_offset_;
3078 for (Input_section_list::iterator p = this->input_sections_.begin();
3079 p != this->input_sections_.end();
3080 ++p)
3081 {
3082 off_t aligned_off = align_address(off, p->addralign());
3083 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3084 {
3085 size_t fill_len = aligned_off - off;
3086 std::string fill_data(parameters->target().code_fill(fill_len));
3087 memcpy(buffer + off, fill_data.data(), fill_data.size());
3088 }
3089
3090 p->write_to_buffer(buffer + aligned_off);
3091 off = aligned_off + p->data_size();
3092 }
3093 }
3094
3095 // Get the input sections for linker script processing. We leave
3096 // behind the Output_section_data entries. Note that this may be
3097 // slightly incorrect for merge sections. We will leave them behind,
3098 // but it is possible that the script says that they should follow
3099 // some other input sections, as in:
3100 // .rodata { *(.rodata) *(.rodata.cst*) }
3101 // For that matter, we don't handle this correctly:
3102 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3103 // With luck this will never matter.
3104
3105 uint64_t
3106 Output_section::get_input_sections(
3107 uint64_t address,
3108 const std::string& fill,
3109 std::list<Input_section>* input_sections)
3110 {
3111 if (this->checkpoint_ != NULL
3112 && !this->checkpoint_->input_sections_saved())
3113 this->checkpoint_->save_input_sections();
3114
3115 // Invalidate fast look-up maps.
3116 this->lookup_maps_->invalidate();
3117
3118 uint64_t orig_address = address;
3119
3120 address = align_address(address, this->addralign());
3121
3122 Input_section_list remaining;
3123 for (Input_section_list::iterator p = this->input_sections_.begin();
3124 p != this->input_sections_.end();
3125 ++p)
3126 {
3127 if (p->is_input_section()
3128 || p->is_relaxed_input_section()
3129 || p->is_merge_section())
3130 input_sections->push_back(*p);
3131 else
3132 {
3133 uint64_t aligned_address = align_address(address, p->addralign());
3134 if (aligned_address != address && !fill.empty())
3135 {
3136 section_size_type length =
3137 convert_to_section_size_type(aligned_address - address);
3138 std::string this_fill;
3139 this_fill.reserve(length);
3140 while (this_fill.length() + fill.length() <= length)
3141 this_fill += fill;
3142 if (this_fill.length() < length)
3143 this_fill.append(fill, 0, length - this_fill.length());
3144
3145 Output_section_data* posd = new Output_data_const(this_fill, 0);
3146 remaining.push_back(Input_section(posd));
3147 }
3148 address = aligned_address;
3149
3150 remaining.push_back(*p);
3151
3152 p->finalize_data_size();
3153 address += p->data_size();
3154 }
3155 }
3156
3157 this->input_sections_.swap(remaining);
3158 this->first_input_offset_ = 0;
3159
3160 uint64_t data_size = address - orig_address;
3161 this->set_current_data_size_for_child(data_size);
3162 return data_size;
3163 }
3164
3165 // Add a script input section. SIS is an Output_section::Input_section,
3166 // which can be either a plain input section or a special input section like
3167 // a relaxed input section. For a special input section, its size must be
3168 // finalized.
3169
3170 void
3171 Output_section::add_script_input_section(const Input_section& sis)
3172 {
3173 uint64_t data_size = sis.data_size();
3174 uint64_t addralign = sis.addralign();
3175 if (addralign > this->addralign_)
3176 this->addralign_ = addralign;
3177
3178 off_t offset_in_section = this->current_data_size_for_child();
3179 off_t aligned_offset_in_section = align_address(offset_in_section,
3180 addralign);
3181
3182 this->set_current_data_size_for_child(aligned_offset_in_section
3183 + data_size);
3184
3185 this->input_sections_.push_back(sis);
3186
3187 // Update fast lookup maps if necessary.
3188 if (this->lookup_maps_->is_valid())
3189 {
3190 if (sis.is_merge_section())
3191 {
3192 Output_merge_base* pomb = sis.output_merge_base();
3193 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3194 pomb->addralign());
3195 this->lookup_maps_->add_merge_section(msp, pomb);
3196 for (Output_merge_base::Input_sections::const_iterator p =
3197 pomb->input_sections_begin();
3198 p != pomb->input_sections_end();
3199 ++p)
3200 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3201 pomb);
3202 }
3203 else if (sis.is_relaxed_input_section())
3204 {
3205 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3206 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3207 poris->shndx(), poris);
3208 }
3209 }
3210 }
3211
3212 // Save states for relaxation.
3213
3214 void
3215 Output_section::save_states()
3216 {
3217 gold_assert(this->checkpoint_ == NULL);
3218 Checkpoint_output_section* checkpoint =
3219 new Checkpoint_output_section(this->addralign_, this->flags_,
3220 this->input_sections_,
3221 this->first_input_offset_,
3222 this->attached_input_sections_are_sorted_);
3223 this->checkpoint_ = checkpoint;
3224 gold_assert(this->fills_.empty());
3225 }
3226
3227 void
3228 Output_section::discard_states()
3229 {
3230 gold_assert(this->checkpoint_ != NULL);
3231 delete this->checkpoint_;
3232 this->checkpoint_ = NULL;
3233 gold_assert(this->fills_.empty());
3234
3235 // Simply invalidate the fast lookup maps since we do not keep
3236 // track of them.
3237 this->lookup_maps_->invalidate();
3238 }
3239
3240 void
3241 Output_section::restore_states()
3242 {
3243 gold_assert(this->checkpoint_ != NULL);
3244 Checkpoint_output_section* checkpoint = this->checkpoint_;
3245
3246 this->addralign_ = checkpoint->addralign();
3247 this->flags_ = checkpoint->flags();
3248 this->first_input_offset_ = checkpoint->first_input_offset();
3249
3250 if (!checkpoint->input_sections_saved())
3251 {
3252 // If we have not copied the input sections, just resize it.
3253 size_t old_size = checkpoint->input_sections_size();
3254 gold_assert(this->input_sections_.size() >= old_size);
3255 this->input_sections_.resize(old_size);
3256 }
3257 else
3258 {
3259 // We need to copy the whole list. This is not efficient for
3260 // extremely large output with hundreads of thousands of input
3261 // objects. We may need to re-think how we should pass sections
3262 // to scripts.
3263 this->input_sections_ = *checkpoint->input_sections();
3264 }
3265
3266 this->attached_input_sections_are_sorted_ =
3267 checkpoint->attached_input_sections_are_sorted();
3268
3269 // Simply invalidate the fast lookup maps since we do not keep
3270 // track of them.
3271 this->lookup_maps_->invalidate();
3272 }
3273
3274 // Update the section offsets of input sections in this. This is required if
3275 // relaxation causes some input sections to change sizes.
3276
3277 void
3278 Output_section::adjust_section_offsets()
3279 {
3280 if (!this->section_offsets_need_adjustment_)
3281 return;
3282
3283 off_t off = 0;
3284 for (Input_section_list::iterator p = this->input_sections_.begin();
3285 p != this->input_sections_.end();
3286 ++p)
3287 {
3288 off = align_address(off, p->addralign());
3289 if (p->is_input_section())
3290 p->relobj()->set_section_offset(p->shndx(), off);
3291 off += p->data_size();
3292 }
3293
3294 this->section_offsets_need_adjustment_ = false;
3295 }
3296
3297 // Print to the map file.
3298
3299 void
3300 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3301 {
3302 mapfile->print_output_section(this);
3303
3304 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3305 p != this->input_sections_.end();
3306 ++p)
3307 p->print_to_mapfile(mapfile);
3308 }
3309
3310 // Print stats for merge sections to stderr.
3311
3312 void
3313 Output_section::print_merge_stats()
3314 {
3315 Input_section_list::iterator p;
3316 for (p = this->input_sections_.begin();
3317 p != this->input_sections_.end();
3318 ++p)
3319 p->print_merge_stats(this->name_);
3320 }
3321
3322 // Output segment methods.
3323
3324 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3325 : output_data_(),
3326 output_bss_(),
3327 vaddr_(0),
3328 paddr_(0),
3329 memsz_(0),
3330 max_align_(0),
3331 min_p_align_(0),
3332 offset_(0),
3333 filesz_(0),
3334 type_(type),
3335 flags_(flags),
3336 is_max_align_known_(false),
3337 are_addresses_set_(false),
3338 is_large_data_segment_(false)
3339 {
3340 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3341 // the flags.
3342 if (type == elfcpp::PT_TLS)
3343 this->flags_ = elfcpp::PF_R;
3344 }
3345
3346 // Add an Output_section to an Output_segment.
3347
3348 void
3349 Output_segment::add_output_section(Output_section* os,
3350 elfcpp::Elf_Word seg_flags,
3351 bool do_sort)
3352 {
3353 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3354 gold_assert(!this->is_max_align_known_);
3355 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3356 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3357
3358 this->update_flags_for_output_section(seg_flags);
3359
3360 Output_segment::Output_data_list* pdl;
3361 if (os->type() == elfcpp::SHT_NOBITS)
3362 pdl = &this->output_bss_;
3363 else
3364 pdl = &this->output_data_;
3365
3366 // Note that while there may be many input sections in an output
3367 // section, there are normally only a few output sections in an
3368 // output segment. The loops below are expected to be fast.
3369
3370 // So that PT_NOTE segments will work correctly, we need to ensure
3371 // that all SHT_NOTE sections are adjacent.
3372 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3373 {
3374 Output_segment::Output_data_list::iterator p = pdl->end();
3375 do
3376 {
3377 --p;
3378 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3379 {
3380 ++p;
3381 pdl->insert(p, os);
3382 return;
3383 }
3384 }
3385 while (p != pdl->begin());
3386 }
3387
3388 // Similarly, so that PT_TLS segments will work, we need to group
3389 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3390 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3391 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3392 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3393 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3394 // segment.
3395 if (this->type_ != elfcpp::PT_TLS
3396 && (os->flags() & elfcpp::SHF_TLS) != 0)
3397 {
3398 pdl = &this->output_data_;
3399 if (!pdl->empty())
3400 {
3401 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3402 bool sawtls = false;
3403 Output_segment::Output_data_list::iterator p = pdl->end();
3404 gold_assert(p != pdl->begin());
3405 do
3406 {
3407 --p;
3408 bool insert;
3409 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3410 {
3411 sawtls = true;
3412 // Put a NOBITS section after the first TLS section.
3413 // Put a PROGBITS section after the first
3414 // TLS/PROGBITS section.
3415 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3416 }
3417 else
3418 {
3419 // If we've gone past the TLS sections, but we've
3420 // seen a TLS section, then we need to insert this
3421 // section now.
3422 insert = sawtls;
3423 }
3424
3425 if (insert)
3426 {
3427 ++p;
3428 pdl->insert(p, os);
3429 return;
3430 }
3431 }
3432 while (p != pdl->begin());
3433 }
3434
3435 // There are no TLS sections yet; put this one at the requested
3436 // location in the section list.
3437 }
3438
3439 if (do_sort)
3440 {
3441 // For the PT_GNU_RELRO segment, we need to group relro
3442 // sections, and we need to put them before any non-relro
3443 // sections. Any relro local sections go before relro non-local
3444 // sections. One section may be marked as the last relro
3445 // section.
3446 if (os->is_relro())
3447 {
3448 gold_assert(pdl == &this->output_data_);
3449 Output_segment::Output_data_list::iterator p;
3450 for (p = pdl->begin(); p != pdl->end(); ++p)
3451 {
3452 if (!(*p)->is_section())
3453 break;
3454
3455 Output_section* pos = (*p)->output_section();
3456 if (!pos->is_relro()
3457 || (os->is_relro_local() && !pos->is_relro_local())
3458 || (!os->is_last_relro() && pos->is_last_relro()))
3459 break;
3460 }
3461
3462 pdl->insert(p, os);
3463 return;
3464 }
3465
3466 // One section may be marked as the first section which follows
3467 // the relro sections.
3468 if (os->is_first_non_relro())
3469 {
3470 gold_assert(pdl == &this->output_data_);
3471 Output_segment::Output_data_list::iterator p;
3472 for (p = pdl->begin(); p != pdl->end(); ++p)
3473 {
3474 if (!(*p)->is_section())
3475 break;
3476
3477 Output_section* pos = (*p)->output_section();
3478 if (!pos->is_relro())
3479 break;
3480 }
3481
3482 pdl->insert(p, os);
3483 return;
3484 }
3485 }
3486
3487 // Small data sections go at the end of the list of data sections.
3488 // If OS is not small, and there are small sections, we have to
3489 // insert it before the first small section.
3490 if (os->type() != elfcpp::SHT_NOBITS
3491 && !os->is_small_section()
3492 && !pdl->empty()
3493 && pdl->back()->is_section()
3494 && pdl->back()->output_section()->is_small_section())
3495 {
3496 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3497 p != pdl->end();
3498 ++p)
3499 {
3500 if ((*p)->is_section()
3501 && (*p)->output_section()->is_small_section())
3502 {
3503 pdl->insert(p, os);
3504 return;
3505 }
3506 }
3507 gold_unreachable();
3508 }
3509
3510 // A small BSS section goes at the start of the BSS sections, after
3511 // other small BSS sections.
3512 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3513 {
3514 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3515 p != pdl->end();
3516 ++p)
3517 {
3518 if (!(*p)->is_section()
3519 || !(*p)->output_section()->is_small_section())
3520 {
3521 pdl->insert(p, os);
3522 return;
3523 }
3524 }
3525 }
3526
3527 // A large BSS section goes at the end of the BSS sections, which
3528 // means that one that is not large must come before the first large
3529 // one.
3530 if (os->type() == elfcpp::SHT_NOBITS
3531 && !os->is_large_section()
3532 && !pdl->empty()
3533 && pdl->back()->is_section()
3534 && pdl->back()->output_section()->is_large_section())
3535 {
3536 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3537 p != pdl->end();
3538 ++p)
3539 {
3540 if ((*p)->is_section()
3541 && (*p)->output_section()->is_large_section())
3542 {
3543 pdl->insert(p, os);
3544 return;
3545 }
3546 }
3547 gold_unreachable();
3548 }
3549
3550 // We do some further output section sorting in order to make the
3551 // generated program run more efficiently. We should only do this
3552 // when not using a linker script, so it is controled by the DO_SORT
3553 // parameter.
3554 if (do_sort)
3555 {
3556 // FreeBSD requires the .interp section to be in the first page
3557 // of the executable. That is a more efficient location anyhow
3558 // for any OS, since it means that the kernel will have the data
3559 // handy after it reads the program headers.
3560 if (os->is_interp() && !pdl->empty())
3561 {
3562 pdl->insert(pdl->begin(), os);
3563 return;
3564 }
3565
3566 // Put loadable non-writable notes immediately after the .interp
3567 // sections, so that the PT_NOTE segment is on the first page of
3568 // the executable.
3569 if (os->type() == elfcpp::SHT_NOTE
3570 && (os->flags() & elfcpp::SHF_WRITE) == 0
3571 && !pdl->empty())
3572 {
3573 Output_segment::Output_data_list::iterator p = pdl->begin();
3574 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3575 ++p;
3576 pdl->insert(p, os);
3577 return;
3578 }
3579
3580 // If this section is used by the dynamic linker, and it is not
3581 // writable, then put it first, after the .interp section and
3582 // any loadable notes. This makes it more likely that the
3583 // dynamic linker will have to read less data from the disk.
3584 if (os->is_dynamic_linker_section()
3585 && !pdl->empty()
3586 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3587 {
3588 bool is_reloc = (os->type() == elfcpp::SHT_REL
3589 || os->type() == elfcpp::SHT_RELA);
3590 Output_segment::Output_data_list::iterator p = pdl->begin();
3591 while (p != pdl->end()
3592 && (*p)->is_section()
3593 && ((*p)->output_section()->is_dynamic_linker_section()
3594 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3595 {
3596 // Put reloc sections after the other ones. Putting the
3597 // dynamic reloc sections first confuses BFD, notably
3598 // objcopy and strip.
3599 if (!is_reloc
3600 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3601 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3602 break;
3603 ++p;
3604 }
3605 pdl->insert(p, os);
3606 return;
3607 }
3608 }
3609
3610 // If there were no constraints on the output section, just add it
3611 // to the end of the list.
3612 pdl->push_back(os);
3613 }
3614
3615 // Remove an Output_section from this segment. It is an error if it
3616 // is not present.
3617
3618 void
3619 Output_segment::remove_output_section(Output_section* os)
3620 {
3621 // We only need this for SHT_PROGBITS.
3622 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3623 for (Output_data_list::iterator p = this->output_data_.begin();
3624 p != this->output_data_.end();
3625 ++p)
3626 {
3627 if (*p == os)
3628 {
3629 this->output_data_.erase(p);
3630 return;
3631 }
3632 }
3633 gold_unreachable();
3634 }
3635
3636 // Add an Output_data (which need not be an Output_section) to the
3637 // start of a segment.
3638
3639 void
3640 Output_segment::add_initial_output_data(Output_data* od)
3641 {
3642 gold_assert(!this->is_max_align_known_);
3643 this->output_data_.push_front(od);
3644 }
3645
3646 // Return whether the first data section is a relro section.
3647
3648 bool
3649 Output_segment::is_first_section_relro() const
3650 {
3651 return (!this->output_data_.empty()
3652 && this->output_data_.front()->is_section()
3653 && this->output_data_.front()->output_section()->is_relro());
3654 }
3655
3656 // Return the maximum alignment of the Output_data in Output_segment.
3657
3658 uint64_t
3659 Output_segment::maximum_alignment()
3660 {
3661 if (!this->is_max_align_known_)
3662 {
3663 uint64_t addralign;
3664
3665 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3666 if (addralign > this->max_align_)
3667 this->max_align_ = addralign;
3668
3669 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3670 if (addralign > this->max_align_)
3671 this->max_align_ = addralign;
3672
3673 this->is_max_align_known_ = true;
3674 }
3675
3676 return this->max_align_;
3677 }
3678
3679 // Return the maximum alignment of a list of Output_data.
3680
3681 uint64_t
3682 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3683 {
3684 uint64_t ret = 0;
3685 for (Output_data_list::const_iterator p = pdl->begin();
3686 p != pdl->end();
3687 ++p)
3688 {
3689 uint64_t addralign = (*p)->addralign();
3690 if (addralign > ret)
3691 ret = addralign;
3692 }
3693 return ret;
3694 }
3695
3696 // Return the number of dynamic relocs applied to this segment.
3697
3698 unsigned int
3699 Output_segment::dynamic_reloc_count() const
3700 {
3701 return (this->dynamic_reloc_count_list(&this->output_data_)
3702 + this->dynamic_reloc_count_list(&this->output_bss_));
3703 }
3704
3705 // Return the number of dynamic relocs applied to an Output_data_list.
3706
3707 unsigned int
3708 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3709 {
3710 unsigned int count = 0;
3711 for (Output_data_list::const_iterator p = pdl->begin();
3712 p != pdl->end();
3713 ++p)
3714 count += (*p)->dynamic_reloc_count();
3715 return count;
3716 }
3717
3718 // Set the section addresses for an Output_segment. If RESET is true,
3719 // reset the addresses first. ADDR is the address and *POFF is the
3720 // file offset. Set the section indexes starting with *PSHNDX.
3721 // Return the address of the immediately following segment. Update
3722 // *POFF and *PSHNDX.
3723
3724 uint64_t
3725 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3726 uint64_t addr,
3727 unsigned int increase_relro,
3728 off_t* poff,
3729 unsigned int* pshndx)
3730 {
3731 gold_assert(this->type_ == elfcpp::PT_LOAD);
3732
3733 off_t orig_off = *poff;
3734
3735 // If we have relro sections, we need to pad forward now so that the
3736 // relro sections plus INCREASE_RELRO end on a common page boundary.
3737 if (parameters->options().relro()
3738 && this->is_first_section_relro()
3739 && (!this->are_addresses_set_ || reset))
3740 {
3741 uint64_t relro_size = 0;
3742 off_t off = *poff;
3743 for (Output_data_list::iterator p = this->output_data_.begin();
3744 p != this->output_data_.end();
3745 ++p)
3746 {
3747 if (!(*p)->is_section())
3748 break;
3749 Output_section* pos = (*p)->output_section();
3750 if (!pos->is_relro())
3751 break;
3752 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3753 if ((*p)->is_address_valid())
3754 relro_size += (*p)->data_size();
3755 else
3756 {
3757 // FIXME: This could be faster.
3758 (*p)->set_address_and_file_offset(addr + relro_size,
3759 off + relro_size);
3760 relro_size += (*p)->data_size();
3761 (*p)->reset_address_and_file_offset();
3762 }
3763 }
3764 relro_size += increase_relro;
3765
3766 uint64_t page_align = parameters->target().common_pagesize();
3767
3768 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3769 uint64_t desired_align = page_align - (relro_size % page_align);
3770 if (desired_align < *poff % page_align)
3771 *poff += page_align - *poff % page_align;
3772 *poff += desired_align - *poff % page_align;
3773 addr += *poff - orig_off;
3774 orig_off = *poff;
3775 }
3776
3777 if (!reset && this->are_addresses_set_)
3778 {
3779 gold_assert(this->paddr_ == addr);
3780 addr = this->vaddr_;
3781 }
3782 else
3783 {
3784 this->vaddr_ = addr;
3785 this->paddr_ = addr;
3786 this->are_addresses_set_ = true;
3787 }
3788
3789 bool in_tls = false;
3790
3791 this->offset_ = orig_off;
3792
3793 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3794 addr, poff, pshndx, &in_tls);
3795 this->filesz_ = *poff - orig_off;
3796
3797 off_t off = *poff;
3798
3799 uint64_t ret = this->set_section_list_addresses(layout, reset,
3800 &this->output_bss_,
3801 addr, poff, pshndx,
3802 &in_tls);
3803
3804 // If the last section was a TLS section, align upward to the
3805 // alignment of the TLS segment, so that the overall size of the TLS
3806 // segment is aligned.
3807 if (in_tls)
3808 {
3809 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3810 *poff = align_address(*poff, segment_align);
3811 }
3812
3813 this->memsz_ = *poff - orig_off;
3814
3815 // Ignore the file offset adjustments made by the BSS Output_data
3816 // objects.
3817 *poff = off;
3818
3819 return ret;
3820 }
3821
3822 // Set the addresses and file offsets in a list of Output_data
3823 // structures.
3824
3825 uint64_t
3826 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3827 Output_data_list* pdl,
3828 uint64_t addr, off_t* poff,
3829 unsigned int* pshndx,
3830 bool* in_tls)
3831 {
3832 off_t startoff = *poff;
3833
3834 off_t off = startoff;
3835 for (Output_data_list::iterator p = pdl->begin();
3836 p != pdl->end();
3837 ++p)
3838 {
3839 if (reset)
3840 (*p)->reset_address_and_file_offset();
3841
3842 // When using a linker script the section will most likely
3843 // already have an address.
3844 if (!(*p)->is_address_valid())
3845 {
3846 uint64_t align = (*p)->addralign();
3847
3848 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3849 {
3850 // Give the first TLS section the alignment of the
3851 // entire TLS segment. Otherwise the TLS segment as a
3852 // whole may be misaligned.
3853 if (!*in_tls)
3854 {
3855 Output_segment* tls_segment = layout->tls_segment();
3856 gold_assert(tls_segment != NULL);
3857 uint64_t segment_align = tls_segment->maximum_alignment();
3858 gold_assert(segment_align >= align);
3859 align = segment_align;
3860
3861 *in_tls = true;
3862 }
3863 }
3864 else
3865 {
3866 // If this is the first section after the TLS segment,
3867 // align it to at least the alignment of the TLS
3868 // segment, so that the size of the overall TLS segment
3869 // is aligned.
3870 if (*in_tls)
3871 {
3872 uint64_t segment_align =
3873 layout->tls_segment()->maximum_alignment();
3874 if (segment_align > align)
3875 align = segment_align;
3876
3877 *in_tls = false;
3878 }
3879 }
3880
3881 off = align_address(off, align);
3882 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3883 }
3884 else
3885 {
3886 // The script may have inserted a skip forward, but it
3887 // better not have moved backward.
3888 if ((*p)->address() >= addr + (off - startoff))
3889 off += (*p)->address() - (addr + (off - startoff));
3890 else
3891 {
3892 if (!layout->script_options()->saw_sections_clause())
3893 gold_unreachable();
3894 else
3895 {
3896 Output_section* os = (*p)->output_section();
3897
3898 // Cast to unsigned long long to avoid format warnings.
3899 unsigned long long previous_dot =
3900 static_cast<unsigned long long>(addr + (off - startoff));
3901 unsigned long long dot =
3902 static_cast<unsigned long long>((*p)->address());
3903
3904 if (os == NULL)
3905 gold_error(_("dot moves backward in linker script "
3906 "from 0x%llx to 0x%llx"), previous_dot, dot);
3907 else
3908 gold_error(_("address of section '%s' moves backward "
3909 "from 0x%llx to 0x%llx"),
3910 os->name(), previous_dot, dot);
3911 }
3912 }
3913 (*p)->set_file_offset(off);
3914 (*p)->finalize_data_size();
3915 }
3916
3917 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3918 // section. Such a section does not affect the size of a
3919 // PT_LOAD segment.
3920 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3921 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3922 off += (*p)->data_size();
3923
3924 if ((*p)->is_section())
3925 {
3926 (*p)->set_out_shndx(*pshndx);
3927 ++*pshndx;
3928 }
3929 }
3930
3931 *poff = off;
3932 return addr + (off - startoff);
3933 }
3934
3935 // For a non-PT_LOAD segment, set the offset from the sections, if
3936 // any. Add INCREASE to the file size and the memory size.
3937
3938 void
3939 Output_segment::set_offset(unsigned int increase)
3940 {
3941 gold_assert(this->type_ != elfcpp::PT_LOAD);
3942
3943 gold_assert(!this->are_addresses_set_);
3944
3945 if (this->output_data_.empty() && this->output_bss_.empty())
3946 {
3947 gold_assert(increase == 0);
3948 this->vaddr_ = 0;
3949 this->paddr_ = 0;
3950 this->are_addresses_set_ = true;
3951 this->memsz_ = 0;
3952 this->min_p_align_ = 0;
3953 this->offset_ = 0;
3954 this->filesz_ = 0;
3955 return;
3956 }
3957
3958 const Output_data* first;
3959 if (this->output_data_.empty())
3960 first = this->output_bss_.front();
3961 else
3962 first = this->output_data_.front();
3963 this->vaddr_ = first->address();
3964 this->paddr_ = (first->has_load_address()
3965 ? first->load_address()
3966 : this->vaddr_);
3967 this->are_addresses_set_ = true;
3968 this->offset_ = first->offset();
3969
3970 if (this->output_data_.empty())
3971 this->filesz_ = 0;
3972 else
3973 {
3974 const Output_data* last_data = this->output_data_.back();
3975 this->filesz_ = (last_data->address()
3976 + last_data->data_size()
3977 - this->vaddr_);
3978 }
3979
3980 const Output_data* last;
3981 if (this->output_bss_.empty())
3982 last = this->output_data_.back();
3983 else
3984 last = this->output_bss_.back();
3985 this->memsz_ = (last->address()
3986 + last->data_size()
3987 - this->vaddr_);
3988
3989 this->filesz_ += increase;
3990 this->memsz_ += increase;
3991
3992 // If this is a TLS segment, align the memory size. The code in
3993 // set_section_list ensures that the section after the TLS segment
3994 // is aligned to give us room.
3995 if (this->type_ == elfcpp::PT_TLS)
3996 {
3997 uint64_t segment_align = this->maximum_alignment();
3998 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3999 this->memsz_ = align_address(this->memsz_, segment_align);
4000 }
4001 }
4002
4003 // Set the TLS offsets of the sections in the PT_TLS segment.
4004
4005 void
4006 Output_segment::set_tls_offsets()
4007 {
4008 gold_assert(this->type_ == elfcpp::PT_TLS);
4009
4010 for (Output_data_list::iterator p = this->output_data_.begin();
4011 p != this->output_data_.end();
4012 ++p)
4013 (*p)->set_tls_offset(this->vaddr_);
4014
4015 for (Output_data_list::iterator p = this->output_bss_.begin();
4016 p != this->output_bss_.end();
4017 ++p)
4018 (*p)->set_tls_offset(this->vaddr_);
4019 }
4020
4021 // Return the address of the first section.
4022
4023 uint64_t
4024 Output_segment::first_section_load_address() const
4025 {
4026 for (Output_data_list::const_iterator p = this->output_data_.begin();
4027 p != this->output_data_.end();
4028 ++p)
4029 if ((*p)->is_section())
4030 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4031
4032 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4033 p != this->output_bss_.end();
4034 ++p)
4035 if ((*p)->is_section())
4036 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4037
4038 gold_unreachable();
4039 }
4040
4041 // Return the number of Output_sections in an Output_segment.
4042
4043 unsigned int
4044 Output_segment::output_section_count() const
4045 {
4046 return (this->output_section_count_list(&this->output_data_)
4047 + this->output_section_count_list(&this->output_bss_));
4048 }
4049
4050 // Return the number of Output_sections in an Output_data_list.
4051
4052 unsigned int
4053 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4054 {
4055 unsigned int count = 0;
4056 for (Output_data_list::const_iterator p = pdl->begin();
4057 p != pdl->end();
4058 ++p)
4059 {
4060 if ((*p)->is_section())
4061 ++count;
4062 }
4063 return count;
4064 }
4065
4066 // Return the section attached to the list segment with the lowest
4067 // load address. This is used when handling a PHDRS clause in a
4068 // linker script.
4069
4070 Output_section*
4071 Output_segment::section_with_lowest_load_address() const
4072 {
4073 Output_section* found = NULL;
4074 uint64_t found_lma = 0;
4075 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4076
4077 Output_section* found_data = found;
4078 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4079 if (found != found_data && found_data != NULL)
4080 {
4081 gold_error(_("nobits section %s may not precede progbits section %s "
4082 "in same segment"),
4083 found->name(), found_data->name());
4084 return NULL;
4085 }
4086
4087 return found;
4088 }
4089
4090 // Look through a list for a section with a lower load address.
4091
4092 void
4093 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4094 Output_section** found,
4095 uint64_t* found_lma) const
4096 {
4097 for (Output_data_list::const_iterator p = pdl->begin();
4098 p != pdl->end();
4099 ++p)
4100 {
4101 if (!(*p)->is_section())
4102 continue;
4103 Output_section* os = static_cast<Output_section*>(*p);
4104 uint64_t lma = (os->has_load_address()
4105 ? os->load_address()
4106 : os->address());
4107 if (*found == NULL || lma < *found_lma)
4108 {
4109 *found = os;
4110 *found_lma = lma;
4111 }
4112 }
4113 }
4114
4115 // Write the segment data into *OPHDR.
4116
4117 template<int size, bool big_endian>
4118 void
4119 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4120 {
4121 ophdr->put_p_type(this->type_);
4122 ophdr->put_p_offset(this->offset_);
4123 ophdr->put_p_vaddr(this->vaddr_);
4124 ophdr->put_p_paddr(this->paddr_);
4125 ophdr->put_p_filesz(this->filesz_);
4126 ophdr->put_p_memsz(this->memsz_);
4127 ophdr->put_p_flags(this->flags_);
4128 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4129 }
4130
4131 // Write the section headers into V.
4132
4133 template<int size, bool big_endian>
4134 unsigned char*
4135 Output_segment::write_section_headers(const Layout* layout,
4136 const Stringpool* secnamepool,
4137 unsigned char* v,
4138 unsigned int *pshndx) const
4139 {
4140 // Every section that is attached to a segment must be attached to a
4141 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4142 // segments.
4143 if (this->type_ != elfcpp::PT_LOAD)
4144 return v;
4145
4146 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4147 &this->output_data_,
4148 v, pshndx);
4149 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4150 &this->output_bss_,
4151 v, pshndx);
4152 return v;
4153 }
4154
4155 template<int size, bool big_endian>
4156 unsigned char*
4157 Output_segment::write_section_headers_list(const Layout* layout,
4158 const Stringpool* secnamepool,
4159 const Output_data_list* pdl,
4160 unsigned char* v,
4161 unsigned int* pshndx) const
4162 {
4163 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4164 for (Output_data_list::const_iterator p = pdl->begin();
4165 p != pdl->end();
4166 ++p)
4167 {
4168 if ((*p)->is_section())
4169 {
4170 const Output_section* ps = static_cast<const Output_section*>(*p);
4171 gold_assert(*pshndx == ps->out_shndx());
4172 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4173 ps->write_header(layout, secnamepool, &oshdr);
4174 v += shdr_size;
4175 ++*pshndx;
4176 }
4177 }
4178 return v;
4179 }
4180
4181 // Print the output sections to the map file.
4182
4183 void
4184 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4185 {
4186 if (this->type() != elfcpp::PT_LOAD)
4187 return;
4188 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4189 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4190 }
4191
4192 // Print an output section list to the map file.
4193
4194 void
4195 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4196 const Output_data_list* pdl) const
4197 {
4198 for (Output_data_list::const_iterator p = pdl->begin();
4199 p != pdl->end();
4200 ++p)
4201 (*p)->print_to_mapfile(mapfile);
4202 }
4203
4204 // Output_file methods.
4205
4206 Output_file::Output_file(const char* name)
4207 : name_(name),
4208 o_(-1),
4209 file_size_(0),
4210 base_(NULL),
4211 map_is_anonymous_(false),
4212 is_temporary_(false)
4213 {
4214 }
4215
4216 // Try to open an existing file. Returns false if the file doesn't
4217 // exist, has a size of 0 or can't be mmapped.
4218
4219 bool
4220 Output_file::open_for_modification()
4221 {
4222 // The name "-" means "stdout".
4223 if (strcmp(this->name_, "-") == 0)
4224 return false;
4225
4226 // Don't bother opening files with a size of zero.
4227 struct stat s;
4228 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4229 return false;
4230
4231 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4232 if (o < 0)
4233 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4234 this->o_ = o;
4235 this->file_size_ = s.st_size;
4236
4237 // If the file can't be mmapped, copying the content to an anonymous
4238 // map will probably negate the performance benefits of incremental
4239 // linking. This could be helped by using views and loading only
4240 // the necessary parts, but this is not supported as of now.
4241 if (!this->map_no_anonymous())
4242 {
4243 release_descriptor(o, true);
4244 this->o_ = -1;
4245 this->file_size_ = 0;
4246 return false;
4247 }
4248
4249 return true;
4250 }
4251
4252 // Open the output file.
4253
4254 void
4255 Output_file::open(off_t file_size)
4256 {
4257 this->file_size_ = file_size;
4258
4259 // Unlink the file first; otherwise the open() may fail if the file
4260 // is busy (e.g. it's an executable that's currently being executed).
4261 //
4262 // However, the linker may be part of a system where a zero-length
4263 // file is created for it to write to, with tight permissions (gcc
4264 // 2.95 did something like this). Unlinking the file would work
4265 // around those permission controls, so we only unlink if the file
4266 // has a non-zero size. We also unlink only regular files to avoid
4267 // trouble with directories/etc.
4268 //
4269 // If we fail, continue; this command is merely a best-effort attempt
4270 // to improve the odds for open().
4271
4272 // We let the name "-" mean "stdout"
4273 if (!this->is_temporary_)
4274 {
4275 if (strcmp(this->name_, "-") == 0)
4276 this->o_ = STDOUT_FILENO;
4277 else
4278 {
4279 struct stat s;
4280 if (::stat(this->name_, &s) == 0
4281 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4282 {
4283 if (s.st_size != 0)
4284 ::unlink(this->name_);
4285 else if (!parameters->options().relocatable())
4286 {
4287 // If we don't unlink the existing file, add execute
4288 // permission where read permissions already exist
4289 // and where the umask permits.
4290 int mask = ::umask(0);
4291 ::umask(mask);
4292 s.st_mode |= (s.st_mode & 0444) >> 2;
4293 ::chmod(this->name_, s.st_mode & ~mask);
4294 }
4295 }
4296
4297 int mode = parameters->options().relocatable() ? 0666 : 0777;
4298 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4299 mode);
4300 if (o < 0)
4301 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4302 this->o_ = o;
4303 }
4304 }
4305
4306 this->map();
4307 }
4308
4309 // Resize the output file.
4310
4311 void
4312 Output_file::resize(off_t file_size)
4313 {
4314 // If the mmap is mapping an anonymous memory buffer, this is easy:
4315 // just mremap to the new size. If it's mapping to a file, we want
4316 // to unmap to flush to the file, then remap after growing the file.
4317 if (this->map_is_anonymous_)
4318 {
4319 void* base = ::mremap(this->base_, this->file_size_, file_size,
4320 MREMAP_MAYMOVE);
4321 if (base == MAP_FAILED)
4322 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4323 this->base_ = static_cast<unsigned char*>(base);
4324 this->file_size_ = file_size;
4325 }
4326 else
4327 {
4328 this->unmap();
4329 this->file_size_ = file_size;
4330 if (!this->map_no_anonymous())
4331 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4332 }
4333 }
4334
4335 // Map an anonymous block of memory which will later be written to the
4336 // file. Return whether the map succeeded.
4337
4338 bool
4339 Output_file::map_anonymous()
4340 {
4341 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4342 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4343 if (base != MAP_FAILED)
4344 {
4345 this->map_is_anonymous_ = true;
4346 this->base_ = static_cast<unsigned char*>(base);
4347 return true;
4348 }
4349 return false;
4350 }
4351
4352 // Map the file into memory. Return whether the mapping succeeded.
4353
4354 bool
4355 Output_file::map_no_anonymous()
4356 {
4357 const int o = this->o_;
4358
4359 // If the output file is not a regular file, don't try to mmap it;
4360 // instead, we'll mmap a block of memory (an anonymous buffer), and
4361 // then later write the buffer to the file.
4362 void* base;
4363 struct stat statbuf;
4364 if (o == STDOUT_FILENO || o == STDERR_FILENO
4365 || ::fstat(o, &statbuf) != 0
4366 || !S_ISREG(statbuf.st_mode)
4367 || this->is_temporary_)
4368 return false;
4369
4370 // Ensure that we have disk space available for the file. If we
4371 // don't do this, it is possible that we will call munmap, close,
4372 // and exit with dirty buffers still in the cache with no assigned
4373 // disk blocks. If the disk is out of space at that point, the
4374 // output file will wind up incomplete, but we will have already
4375 // exited. The alternative to fallocate would be to use fdatasync,
4376 // but that would be a more significant performance hit.
4377 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4378 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4379
4380 // Map the file into memory.
4381 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4382 MAP_SHARED, o, 0);
4383
4384 // The mmap call might fail because of file system issues: the file
4385 // system might not support mmap at all, or it might not support
4386 // mmap with PROT_WRITE.
4387 if (base == MAP_FAILED)
4388 return false;
4389
4390 this->map_is_anonymous_ = false;
4391 this->base_ = static_cast<unsigned char*>(base);
4392 return true;
4393 }
4394
4395 // Map the file into memory.
4396
4397 void
4398 Output_file::map()
4399 {
4400 if (this->map_no_anonymous())
4401 return;
4402
4403 // The mmap call might fail because of file system issues: the file
4404 // system might not support mmap at all, or it might not support
4405 // mmap with PROT_WRITE. I'm not sure which errno values we will
4406 // see in all cases, so if the mmap fails for any reason and we
4407 // don't care about file contents, try for an anonymous map.
4408 if (this->map_anonymous())
4409 return;
4410
4411 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4412 this->name_, static_cast<unsigned long>(this->file_size_),
4413 strerror(errno));
4414 }
4415
4416 // Unmap the file from memory.
4417
4418 void
4419 Output_file::unmap()
4420 {
4421 if (::munmap(this->base_, this->file_size_) < 0)
4422 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4423 this->base_ = NULL;
4424 }
4425
4426 // Close the output file.
4427
4428 void
4429 Output_file::close()
4430 {
4431 // If the map isn't file-backed, we need to write it now.
4432 if (this->map_is_anonymous_ && !this->is_temporary_)
4433 {
4434 size_t bytes_to_write = this->file_size_;
4435 size_t offset = 0;
4436 while (bytes_to_write > 0)
4437 {
4438 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4439 bytes_to_write);
4440 if (bytes_written == 0)
4441 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4442 else if (bytes_written < 0)
4443 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4444 else
4445 {
4446 bytes_to_write -= bytes_written;
4447 offset += bytes_written;
4448 }
4449 }
4450 }
4451 this->unmap();
4452
4453 // We don't close stdout or stderr
4454 if (this->o_ != STDOUT_FILENO
4455 && this->o_ != STDERR_FILENO
4456 && !this->is_temporary_)
4457 if (::close(this->o_) < 0)
4458 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4459 this->o_ = -1;
4460 }
4461
4462 // Instantiate the templates we need. We could use the configure
4463 // script to restrict this to only the ones for implemented targets.
4464
4465 #ifdef HAVE_TARGET_32_LITTLE
4466 template
4467 off_t
4468 Output_section::add_input_section<32, false>(
4469 Sized_relobj<32, false>* object,
4470 unsigned int shndx,
4471 const char* secname,
4472 const elfcpp::Shdr<32, false>& shdr,
4473 unsigned int reloc_shndx,
4474 bool have_sections_script);
4475 #endif
4476
4477 #ifdef HAVE_TARGET_32_BIG
4478 template
4479 off_t
4480 Output_section::add_input_section<32, true>(
4481 Sized_relobj<32, true>* object,
4482 unsigned int shndx,
4483 const char* secname,
4484 const elfcpp::Shdr<32, true>& shdr,
4485 unsigned int reloc_shndx,
4486 bool have_sections_script);
4487 #endif
4488
4489 #ifdef HAVE_TARGET_64_LITTLE
4490 template
4491 off_t
4492 Output_section::add_input_section<64, false>(
4493 Sized_relobj<64, false>* object,
4494 unsigned int shndx,
4495 const char* secname,
4496 const elfcpp::Shdr<64, false>& shdr,
4497 unsigned int reloc_shndx,
4498 bool have_sections_script);
4499 #endif
4500
4501 #ifdef HAVE_TARGET_64_BIG
4502 template
4503 off_t
4504 Output_section::add_input_section<64, true>(
4505 Sized_relobj<64, true>* object,
4506 unsigned int shndx,
4507 const char* secname,
4508 const elfcpp::Shdr<64, true>& shdr,
4509 unsigned int reloc_shndx,
4510 bool have_sections_script);
4511 #endif
4512
4513 #ifdef HAVE_TARGET_32_LITTLE
4514 template
4515 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4516 #endif
4517
4518 #ifdef HAVE_TARGET_32_BIG
4519 template
4520 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4521 #endif
4522
4523 #ifdef HAVE_TARGET_64_LITTLE
4524 template
4525 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4526 #endif
4527
4528 #ifdef HAVE_TARGET_64_BIG
4529 template
4530 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4531 #endif
4532
4533 #ifdef HAVE_TARGET_32_LITTLE
4534 template
4535 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4536 #endif
4537
4538 #ifdef HAVE_TARGET_32_BIG
4539 template
4540 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4541 #endif
4542
4543 #ifdef HAVE_TARGET_64_LITTLE
4544 template
4545 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4546 #endif
4547
4548 #ifdef HAVE_TARGET_64_BIG
4549 template
4550 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4551 #endif
4552
4553 #ifdef HAVE_TARGET_32_LITTLE
4554 template
4555 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4556 #endif
4557
4558 #ifdef HAVE_TARGET_32_BIG
4559 template
4560 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4561 #endif
4562
4563 #ifdef HAVE_TARGET_64_LITTLE
4564 template
4565 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4566 #endif
4567
4568 #ifdef HAVE_TARGET_64_BIG
4569 template
4570 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4571 #endif
4572
4573 #ifdef HAVE_TARGET_32_LITTLE
4574 template
4575 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4576 #endif
4577
4578 #ifdef HAVE_TARGET_32_BIG
4579 template
4580 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4581 #endif
4582
4583 #ifdef HAVE_TARGET_64_LITTLE
4584 template
4585 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4586 #endif
4587
4588 #ifdef HAVE_TARGET_64_BIG
4589 template
4590 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4591 #endif
4592
4593 #ifdef HAVE_TARGET_32_LITTLE
4594 template
4595 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4596 #endif
4597
4598 #ifdef HAVE_TARGET_32_BIG
4599 template
4600 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4601 #endif
4602
4603 #ifdef HAVE_TARGET_64_LITTLE
4604 template
4605 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4606 #endif
4607
4608 #ifdef HAVE_TARGET_64_BIG
4609 template
4610 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4611 #endif
4612
4613 #ifdef HAVE_TARGET_32_LITTLE
4614 template
4615 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4616 #endif
4617
4618 #ifdef HAVE_TARGET_32_BIG
4619 template
4620 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4621 #endif
4622
4623 #ifdef HAVE_TARGET_64_LITTLE
4624 template
4625 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4626 #endif
4627
4628 #ifdef HAVE_TARGET_64_BIG
4629 template
4630 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4631 #endif
4632
4633 #ifdef HAVE_TARGET_32_LITTLE
4634 template
4635 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4636 #endif
4637
4638 #ifdef HAVE_TARGET_32_BIG
4639 template
4640 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4641 #endif
4642
4643 #ifdef HAVE_TARGET_64_LITTLE
4644 template
4645 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4646 #endif
4647
4648 #ifdef HAVE_TARGET_64_BIG
4649 template
4650 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4651 #endif
4652
4653 #ifdef HAVE_TARGET_32_LITTLE
4654 template
4655 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4656 #endif
4657
4658 #ifdef HAVE_TARGET_32_BIG
4659 template
4660 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4661 #endif
4662
4663 #ifdef HAVE_TARGET_64_LITTLE
4664 template
4665 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4666 #endif
4667
4668 #ifdef HAVE_TARGET_64_BIG
4669 template
4670 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4671 #endif
4672
4673 #ifdef HAVE_TARGET_32_LITTLE
4674 template
4675 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4676 #endif
4677
4678 #ifdef HAVE_TARGET_32_BIG
4679 template
4680 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4681 #endif
4682
4683 #ifdef HAVE_TARGET_64_LITTLE
4684 template
4685 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4686 #endif
4687
4688 #ifdef HAVE_TARGET_64_BIG
4689 template
4690 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4691 #endif
4692
4693 #ifdef HAVE_TARGET_32_LITTLE
4694 template
4695 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4696 #endif
4697
4698 #ifdef HAVE_TARGET_32_BIG
4699 template
4700 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4701 #endif
4702
4703 #ifdef HAVE_TARGET_64_LITTLE
4704 template
4705 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4706 #endif
4707
4708 #ifdef HAVE_TARGET_64_BIG
4709 template
4710 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4711 #endif
4712
4713 #ifdef HAVE_TARGET_32_LITTLE
4714 template
4715 class Output_data_group<32, false>;
4716 #endif
4717
4718 #ifdef HAVE_TARGET_32_BIG
4719 template
4720 class Output_data_group<32, true>;
4721 #endif
4722
4723 #ifdef HAVE_TARGET_64_LITTLE
4724 template
4725 class Output_data_group<64, false>;
4726 #endif
4727
4728 #ifdef HAVE_TARGET_64_BIG
4729 template
4730 class Output_data_group<64, true>;
4731 #endif
4732
4733 #ifdef HAVE_TARGET_32_LITTLE
4734 template
4735 class Output_data_got<32, false>;
4736 #endif
4737
4738 #ifdef HAVE_TARGET_32_BIG
4739 template
4740 class Output_data_got<32, true>;
4741 #endif
4742
4743 #ifdef HAVE_TARGET_64_LITTLE
4744 template
4745 class Output_data_got<64, false>;
4746 #endif
4747
4748 #ifdef HAVE_TARGET_64_BIG
4749 template
4750 class Output_data_got<64, true>;
4751 #endif
4752
4753 } // End namespace gold.
This page took 0.126008 seconds and 5 git commands to generate.