* output.h (Output_reloc<SHT_REL>::Output_reloc): Add
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty()
1626 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1627 this->add_constant(elfcpp::DT_NULL, 0);
1628
1629 int dyn_size;
1630 if (parameters->target().get_size() == 32)
1631 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1632 else if (parameters->target().get_size() == 64)
1633 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1634 else
1635 gold_unreachable();
1636 this->set_data_size(this->entries_.size() * dyn_size);
1637 }
1638
1639 // Write out the dynamic entries.
1640
1641 void
1642 Output_data_dynamic::do_write(Output_file* of)
1643 {
1644 switch (parameters->size_and_endianness())
1645 {
1646 #ifdef HAVE_TARGET_32_LITTLE
1647 case Parameters::TARGET_32_LITTLE:
1648 this->sized_write<32, false>(of);
1649 break;
1650 #endif
1651 #ifdef HAVE_TARGET_32_BIG
1652 case Parameters::TARGET_32_BIG:
1653 this->sized_write<32, true>(of);
1654 break;
1655 #endif
1656 #ifdef HAVE_TARGET_64_LITTLE
1657 case Parameters::TARGET_64_LITTLE:
1658 this->sized_write<64, false>(of);
1659 break;
1660 #endif
1661 #ifdef HAVE_TARGET_64_BIG
1662 case Parameters::TARGET_64_BIG:
1663 this->sized_write<64, true>(of);
1664 break;
1665 #endif
1666 default:
1667 gold_unreachable();
1668 }
1669 }
1670
1671 template<int size, bool big_endian>
1672 void
1673 Output_data_dynamic::sized_write(Output_file* of)
1674 {
1675 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1676
1677 const off_t offset = this->offset();
1678 const off_t oview_size = this->data_size();
1679 unsigned char* const oview = of->get_output_view(offset, oview_size);
1680
1681 unsigned char* pov = oview;
1682 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1683 p != this->entries_.end();
1684 ++p)
1685 {
1686 p->write<size, big_endian>(pov, this->pool_);
1687 pov += dyn_size;
1688 }
1689
1690 gold_assert(pov - oview == oview_size);
1691
1692 of->write_output_view(offset, oview_size, oview);
1693
1694 // We no longer need the dynamic entries.
1695 this->entries_.clear();
1696 }
1697
1698 // Class Output_symtab_xindex.
1699
1700 void
1701 Output_symtab_xindex::do_write(Output_file* of)
1702 {
1703 const off_t offset = this->offset();
1704 const off_t oview_size = this->data_size();
1705 unsigned char* const oview = of->get_output_view(offset, oview_size);
1706
1707 memset(oview, 0, oview_size);
1708
1709 if (parameters->target().is_big_endian())
1710 this->endian_do_write<true>(oview);
1711 else
1712 this->endian_do_write<false>(oview);
1713
1714 of->write_output_view(offset, oview_size, oview);
1715
1716 // We no longer need the data.
1717 this->entries_.clear();
1718 }
1719
1720 template<bool big_endian>
1721 void
1722 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1723 {
1724 for (Xindex_entries::const_iterator p = this->entries_.begin();
1725 p != this->entries_.end();
1726 ++p)
1727 {
1728 unsigned int symndx = p->first;
1729 gold_assert(symndx * 4 < this->data_size());
1730 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1731 }
1732 }
1733
1734 // Output_section::Input_section methods.
1735
1736 // Return the data size. For an input section we store the size here.
1737 // For an Output_section_data, we have to ask it for the size.
1738
1739 off_t
1740 Output_section::Input_section::data_size() const
1741 {
1742 if (this->is_input_section())
1743 return this->u1_.data_size;
1744 else
1745 return this->u2_.posd->data_size();
1746 }
1747
1748 // Set the address and file offset.
1749
1750 void
1751 Output_section::Input_section::set_address_and_file_offset(
1752 uint64_t address,
1753 off_t file_offset,
1754 off_t section_file_offset)
1755 {
1756 if (this->is_input_section())
1757 this->u2_.object->set_section_offset(this->shndx_,
1758 file_offset - section_file_offset);
1759 else
1760 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1761 }
1762
1763 // Reset the address and file offset.
1764
1765 void
1766 Output_section::Input_section::reset_address_and_file_offset()
1767 {
1768 if (!this->is_input_section())
1769 this->u2_.posd->reset_address_and_file_offset();
1770 }
1771
1772 // Finalize the data size.
1773
1774 void
1775 Output_section::Input_section::finalize_data_size()
1776 {
1777 if (!this->is_input_section())
1778 this->u2_.posd->finalize_data_size();
1779 }
1780
1781 // Try to turn an input offset into an output offset. We want to
1782 // return the output offset relative to the start of this
1783 // Input_section in the output section.
1784
1785 inline bool
1786 Output_section::Input_section::output_offset(
1787 const Relobj* object,
1788 unsigned int shndx,
1789 section_offset_type offset,
1790 section_offset_type *poutput) const
1791 {
1792 if (!this->is_input_section())
1793 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1794 else
1795 {
1796 if (this->shndx_ != shndx || this->u2_.object != object)
1797 return false;
1798 *poutput = offset;
1799 return true;
1800 }
1801 }
1802
1803 // Return whether this is the merge section for the input section
1804 // SHNDX in OBJECT.
1805
1806 inline bool
1807 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1808 unsigned int shndx) const
1809 {
1810 if (this->is_input_section())
1811 return false;
1812 return this->u2_.posd->is_merge_section_for(object, shndx);
1813 }
1814
1815 // Write out the data. We don't have to do anything for an input
1816 // section--they are handled via Object::relocate--but this is where
1817 // we write out the data for an Output_section_data.
1818
1819 void
1820 Output_section::Input_section::write(Output_file* of)
1821 {
1822 if (!this->is_input_section())
1823 this->u2_.posd->write(of);
1824 }
1825
1826 // Write the data to a buffer. As for write(), we don't have to do
1827 // anything for an input section.
1828
1829 void
1830 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1831 {
1832 if (!this->is_input_section())
1833 this->u2_.posd->write_to_buffer(buffer);
1834 }
1835
1836 // Print to a map file.
1837
1838 void
1839 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1840 {
1841 switch (this->shndx_)
1842 {
1843 case OUTPUT_SECTION_CODE:
1844 case MERGE_DATA_SECTION_CODE:
1845 case MERGE_STRING_SECTION_CODE:
1846 this->u2_.posd->print_to_mapfile(mapfile);
1847 break;
1848
1849 case RELAXED_INPUT_SECTION_CODE:
1850 {
1851 Output_relaxed_input_section* relaxed_section =
1852 this->relaxed_input_section();
1853 mapfile->print_input_section(relaxed_section->relobj(),
1854 relaxed_section->shndx());
1855 }
1856 break;
1857 default:
1858 mapfile->print_input_section(this->u2_.object, this->shndx_);
1859 break;
1860 }
1861 }
1862
1863 // Output_section methods.
1864
1865 // Construct an Output_section. NAME will point into a Stringpool.
1866
1867 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1868 elfcpp::Elf_Xword flags)
1869 : name_(name),
1870 addralign_(0),
1871 entsize_(0),
1872 load_address_(0),
1873 link_section_(NULL),
1874 link_(0),
1875 info_section_(NULL),
1876 info_symndx_(NULL),
1877 info_(0),
1878 type_(type),
1879 flags_(flags),
1880 out_shndx_(-1U),
1881 symtab_index_(0),
1882 dynsym_index_(0),
1883 input_sections_(),
1884 first_input_offset_(0),
1885 fills_(),
1886 postprocessing_buffer_(NULL),
1887 needs_symtab_index_(false),
1888 needs_dynsym_index_(false),
1889 should_link_to_symtab_(false),
1890 should_link_to_dynsym_(false),
1891 after_input_sections_(false),
1892 requires_postprocessing_(false),
1893 found_in_sections_clause_(false),
1894 has_load_address_(false),
1895 info_uses_section_index_(false),
1896 may_sort_attached_input_sections_(false),
1897 must_sort_attached_input_sections_(false),
1898 attached_input_sections_are_sorted_(false),
1899 is_relro_(false),
1900 is_relro_local_(false),
1901 is_last_relro_(false),
1902 is_first_non_relro_(false),
1903 is_small_section_(false),
1904 is_large_section_(false),
1905 is_interp_(false),
1906 is_dynamic_linker_section_(false),
1907 generate_code_fills_at_write_(false),
1908 is_entsize_zero_(false),
1909 section_offsets_need_adjustment_(false),
1910 tls_offset_(0),
1911 checkpoint_(NULL),
1912 merge_section_map_(),
1913 merge_section_by_properties_map_(),
1914 relaxed_input_section_map_(),
1915 is_relaxed_input_section_map_valid_(true)
1916 {
1917 // An unallocated section has no address. Forcing this means that
1918 // we don't need special treatment for symbols defined in debug
1919 // sections.
1920 if ((flags & elfcpp::SHF_ALLOC) == 0)
1921 this->set_address(0);
1922 }
1923
1924 Output_section::~Output_section()
1925 {
1926 delete this->checkpoint_;
1927 }
1928
1929 // Set the entry size.
1930
1931 void
1932 Output_section::set_entsize(uint64_t v)
1933 {
1934 if (this->is_entsize_zero_)
1935 ;
1936 else if (this->entsize_ == 0)
1937 this->entsize_ = v;
1938 else if (this->entsize_ != v)
1939 {
1940 this->entsize_ = 0;
1941 this->is_entsize_zero_ = 1;
1942 }
1943 }
1944
1945 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1946 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1947 // relocation section which applies to this section, or 0 if none, or
1948 // -1U if more than one. Return the offset of the input section
1949 // within the output section. Return -1 if the input section will
1950 // receive special handling. In the normal case we don't always keep
1951 // track of input sections for an Output_section. Instead, each
1952 // Object keeps track of the Output_section for each of its input
1953 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1954 // track of input sections here; this is used when SECTIONS appears in
1955 // a linker script.
1956
1957 template<int size, bool big_endian>
1958 off_t
1959 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1960 unsigned int shndx,
1961 const char* secname,
1962 const elfcpp::Shdr<size, big_endian>& shdr,
1963 unsigned int reloc_shndx,
1964 bool have_sections_script)
1965 {
1966 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1967 if ((addralign & (addralign - 1)) != 0)
1968 {
1969 object->error(_("invalid alignment %lu for section \"%s\""),
1970 static_cast<unsigned long>(addralign), secname);
1971 addralign = 1;
1972 }
1973
1974 if (addralign > this->addralign_)
1975 this->addralign_ = addralign;
1976
1977 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1978 uint64_t entsize = shdr.get_sh_entsize();
1979
1980 // .debug_str is a mergeable string section, but is not always so
1981 // marked by compilers. Mark manually here so we can optimize.
1982 if (strcmp(secname, ".debug_str") == 0)
1983 {
1984 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1985 entsize = 1;
1986 }
1987
1988 this->update_flags_for_input_section(sh_flags);
1989 this->set_entsize(entsize);
1990
1991 // If this is a SHF_MERGE section, we pass all the input sections to
1992 // a Output_data_merge. We don't try to handle relocations for such
1993 // a section. We don't try to handle empty merge sections--they
1994 // mess up the mappings, and are useless anyhow.
1995 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1996 && reloc_shndx == 0
1997 && shdr.get_sh_size() > 0)
1998 {
1999 if (this->add_merge_input_section(object, shndx, sh_flags,
2000 entsize, addralign))
2001 {
2002 // Tell the relocation routines that they need to call the
2003 // output_offset method to determine the final address.
2004 return -1;
2005 }
2006 }
2007
2008 off_t offset_in_section = this->current_data_size_for_child();
2009 off_t aligned_offset_in_section = align_address(offset_in_section,
2010 addralign);
2011
2012 // Determine if we want to delay code-fill generation until the output
2013 // section is written. When the target is relaxing, we want to delay fill
2014 // generating to avoid adjusting them during relaxation.
2015 if (!this->generate_code_fills_at_write_
2016 && !have_sections_script
2017 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2018 && parameters->target().has_code_fill()
2019 && parameters->target().may_relax())
2020 {
2021 gold_assert(this->fills_.empty());
2022 this->generate_code_fills_at_write_ = true;
2023 }
2024
2025 if (aligned_offset_in_section > offset_in_section
2026 && !this->generate_code_fills_at_write_
2027 && !have_sections_script
2028 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2029 && parameters->target().has_code_fill())
2030 {
2031 // We need to add some fill data. Using fill_list_ when
2032 // possible is an optimization, since we will often have fill
2033 // sections without input sections.
2034 off_t fill_len = aligned_offset_in_section - offset_in_section;
2035 if (this->input_sections_.empty())
2036 this->fills_.push_back(Fill(offset_in_section, fill_len));
2037 else
2038 {
2039 std::string fill_data(parameters->target().code_fill(fill_len));
2040 Output_data_const* odc = new Output_data_const(fill_data, 1);
2041 this->input_sections_.push_back(Input_section(odc));
2042 }
2043 }
2044
2045 this->set_current_data_size_for_child(aligned_offset_in_section
2046 + shdr.get_sh_size());
2047
2048 // We need to keep track of this section if we are already keeping
2049 // track of sections, or if we are relaxing. Also, if this is a
2050 // section which requires sorting, or which may require sorting in
2051 // the future, we keep track of the sections.
2052 if (have_sections_script
2053 || !this->input_sections_.empty()
2054 || this->may_sort_attached_input_sections()
2055 || this->must_sort_attached_input_sections()
2056 || parameters->options().user_set_Map()
2057 || parameters->target().may_relax())
2058 this->input_sections_.push_back(Input_section(object, shndx,
2059 shdr.get_sh_size(),
2060 addralign));
2061
2062 return aligned_offset_in_section;
2063 }
2064
2065 // Add arbitrary data to an output section.
2066
2067 void
2068 Output_section::add_output_section_data(Output_section_data* posd)
2069 {
2070 Input_section inp(posd);
2071 this->add_output_section_data(&inp);
2072
2073 if (posd->is_data_size_valid())
2074 {
2075 off_t offset_in_section = this->current_data_size_for_child();
2076 off_t aligned_offset_in_section = align_address(offset_in_section,
2077 posd->addralign());
2078 this->set_current_data_size_for_child(aligned_offset_in_section
2079 + posd->data_size());
2080 }
2081 }
2082
2083 // Add a relaxed input section.
2084
2085 void
2086 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2087 {
2088 Input_section inp(poris);
2089 this->add_output_section_data(&inp);
2090 if (this->is_relaxed_input_section_map_valid_)
2091 {
2092 Const_section_id csid(poris->relobj(), poris->shndx());
2093 this->relaxed_input_section_map_[csid] = poris;
2094 }
2095
2096 // For a relaxed section, we use the current data size. Linker scripts
2097 // get all the input sections, including relaxed one from an output
2098 // section and add them back to them same output section to compute the
2099 // output section size. If we do not account for sizes of relaxed input
2100 // sections, an output section would be incorrectly sized.
2101 off_t offset_in_section = this->current_data_size_for_child();
2102 off_t aligned_offset_in_section = align_address(offset_in_section,
2103 poris->addralign());
2104 this->set_current_data_size_for_child(aligned_offset_in_section
2105 + poris->current_data_size());
2106 }
2107
2108 // Add arbitrary data to an output section by Input_section.
2109
2110 void
2111 Output_section::add_output_section_data(Input_section* inp)
2112 {
2113 if (this->input_sections_.empty())
2114 this->first_input_offset_ = this->current_data_size_for_child();
2115
2116 this->input_sections_.push_back(*inp);
2117
2118 uint64_t addralign = inp->addralign();
2119 if (addralign > this->addralign_)
2120 this->addralign_ = addralign;
2121
2122 inp->set_output_section(this);
2123 }
2124
2125 // Add a merge section to an output section.
2126
2127 void
2128 Output_section::add_output_merge_section(Output_section_data* posd,
2129 bool is_string, uint64_t entsize)
2130 {
2131 Input_section inp(posd, is_string, entsize);
2132 this->add_output_section_data(&inp);
2133 }
2134
2135 // Add an input section to a SHF_MERGE section.
2136
2137 bool
2138 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2139 uint64_t flags, uint64_t entsize,
2140 uint64_t addralign)
2141 {
2142 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2143
2144 // We only merge strings if the alignment is not more than the
2145 // character size. This could be handled, but it's unusual.
2146 if (is_string && addralign > entsize)
2147 return false;
2148
2149 // We cannot restore merged input section states.
2150 gold_assert(this->checkpoint_ == NULL);
2151
2152 // Look up merge sections by required properties.
2153 Merge_section_properties msp(is_string, entsize, addralign);
2154 Merge_section_by_properties_map::const_iterator p =
2155 this->merge_section_by_properties_map_.find(msp);
2156 if (p != this->merge_section_by_properties_map_.end())
2157 {
2158 Output_merge_base* merge_section = p->second;
2159 merge_section->add_input_section(object, shndx);
2160 gold_assert(merge_section->is_string() == is_string
2161 && merge_section->entsize() == entsize
2162 && merge_section->addralign() == addralign);
2163
2164 // Link input section to found merge section.
2165 Const_section_id csid(object, shndx);
2166 this->merge_section_map_[csid] = merge_section;
2167 return true;
2168 }
2169
2170 // We handle the actual constant merging in Output_merge_data or
2171 // Output_merge_string_data.
2172 Output_merge_base* pomb;
2173 if (!is_string)
2174 pomb = new Output_merge_data(entsize, addralign);
2175 else
2176 {
2177 switch (entsize)
2178 {
2179 case 1:
2180 pomb = new Output_merge_string<char>(addralign);
2181 break;
2182 case 2:
2183 pomb = new Output_merge_string<uint16_t>(addralign);
2184 break;
2185 case 4:
2186 pomb = new Output_merge_string<uint32_t>(addralign);
2187 break;
2188 default:
2189 return false;
2190 }
2191 }
2192
2193 // Add new merge section to this output section and link merge section
2194 // properties to new merge section in map.
2195 this->add_output_merge_section(pomb, is_string, entsize);
2196 this->merge_section_by_properties_map_[msp] = pomb;
2197
2198 // Add input section to new merge section and link input section to new
2199 // merge section in map.
2200 pomb->add_input_section(object, shndx);
2201 Const_section_id csid(object, shndx);
2202 this->merge_section_map_[csid] = pomb;
2203
2204 return true;
2205 }
2206
2207 // Build a relaxation map to speed up relaxation of existing input sections.
2208 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2209
2210 void
2211 Output_section::build_relaxation_map(
2212 const Input_section_list& input_sections,
2213 size_t limit,
2214 Relaxation_map* relaxation_map) const
2215 {
2216 for (size_t i = 0; i < limit; ++i)
2217 {
2218 const Input_section& is(input_sections[i]);
2219 if (is.is_input_section() || is.is_relaxed_input_section())
2220 {
2221 Section_id sid(is.relobj(), is.shndx());
2222 (*relaxation_map)[sid] = i;
2223 }
2224 }
2225 }
2226
2227 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2228 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2229 // indices of INPUT_SECTIONS.
2230
2231 void
2232 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2233 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2234 const Relaxation_map& map,
2235 Input_section_list* input_sections)
2236 {
2237 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2238 {
2239 Output_relaxed_input_section* poris = relaxed_sections[i];
2240 Section_id sid(poris->relobj(), poris->shndx());
2241 Relaxation_map::const_iterator p = map.find(sid);
2242 gold_assert(p != map.end());
2243 gold_assert((*input_sections)[p->second].is_input_section());
2244 (*input_sections)[p->second] = Input_section(poris);
2245 }
2246 }
2247
2248 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2249 // is a vector of pointers to Output_relaxed_input_section or its derived
2250 // classes. The relaxed sections must correspond to existing input sections.
2251
2252 void
2253 Output_section::convert_input_sections_to_relaxed_sections(
2254 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2255 {
2256 gold_assert(parameters->target().may_relax());
2257
2258 // We want to make sure that restore_states does not undo the effect of
2259 // this. If there is no checkpoint active, just search the current
2260 // input section list and replace the sections there. If there is
2261 // a checkpoint, also replace the sections there.
2262
2263 // By default, we look at the whole list.
2264 size_t limit = this->input_sections_.size();
2265
2266 if (this->checkpoint_ != NULL)
2267 {
2268 // Replace input sections with relaxed input section in the saved
2269 // copy of the input section list.
2270 if (this->checkpoint_->input_sections_saved())
2271 {
2272 Relaxation_map map;
2273 this->build_relaxation_map(
2274 *(this->checkpoint_->input_sections()),
2275 this->checkpoint_->input_sections()->size(),
2276 &map);
2277 this->convert_input_sections_in_list_to_relaxed_sections(
2278 relaxed_sections,
2279 map,
2280 this->checkpoint_->input_sections());
2281 }
2282 else
2283 {
2284 // We have not copied the input section list yet. Instead, just
2285 // look at the portion that would be saved.
2286 limit = this->checkpoint_->input_sections_size();
2287 }
2288 }
2289
2290 // Convert input sections in input_section_list.
2291 Relaxation_map map;
2292 this->build_relaxation_map(this->input_sections_, limit, &map);
2293 this->convert_input_sections_in_list_to_relaxed_sections(
2294 relaxed_sections,
2295 map,
2296 &this->input_sections_);
2297
2298 // Update fast look-up map.
2299 if (this->is_relaxed_input_section_map_valid_)
2300 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2301 {
2302 Output_relaxed_input_section* poris = relaxed_sections[i];
2303 Const_section_id csid(poris->relobj(), poris->shndx());
2304 this->relaxed_input_section_map_[csid] = poris;
2305 }
2306 }
2307
2308 // Update the output section flags based on input section flags.
2309
2310 void
2311 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2312 {
2313 // If we created the section with SHF_ALLOC clear, we set the
2314 // address. If we are now setting the SHF_ALLOC flag, we need to
2315 // undo that.
2316 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2317 && (flags & elfcpp::SHF_ALLOC) != 0)
2318 this->mark_address_invalid();
2319
2320 this->flags_ |= (flags
2321 & (elfcpp::SHF_WRITE
2322 | elfcpp::SHF_ALLOC
2323 | elfcpp::SHF_EXECINSTR));
2324
2325 if ((flags & elfcpp::SHF_MERGE) == 0)
2326 this->flags_ &=~ elfcpp::SHF_MERGE;
2327 else
2328 {
2329 if (this->current_data_size_for_child() == 0)
2330 this->flags_ |= elfcpp::SHF_MERGE;
2331 }
2332
2333 if ((flags & elfcpp::SHF_STRINGS) == 0)
2334 this->flags_ &=~ elfcpp::SHF_STRINGS;
2335 else
2336 {
2337 if (this->current_data_size_for_child() == 0)
2338 this->flags_ |= elfcpp::SHF_STRINGS;
2339 }
2340 }
2341
2342 // Find the merge section into which an input section with index SHNDX in
2343 // OBJECT has been added. Return NULL if none found.
2344
2345 Output_section_data*
2346 Output_section::find_merge_section(const Relobj* object,
2347 unsigned int shndx) const
2348 {
2349 Const_section_id csid(object, shndx);
2350 Output_section_data_by_input_section_map::const_iterator p =
2351 this->merge_section_map_.find(csid);
2352 if (p != this->merge_section_map_.end())
2353 {
2354 Output_section_data* posd = p->second;
2355 gold_assert(posd->is_merge_section_for(object, shndx));
2356 return posd;
2357 }
2358 else
2359 return NULL;
2360 }
2361
2362 // Find an relaxed input section corresponding to an input section
2363 // in OBJECT with index SHNDX.
2364
2365 const Output_relaxed_input_section*
2366 Output_section::find_relaxed_input_section(const Relobj* object,
2367 unsigned int shndx) const
2368 {
2369 // Be careful that the map may not be valid due to input section export
2370 // to scripts or a check-point restore.
2371 if (!this->is_relaxed_input_section_map_valid_)
2372 {
2373 // Rebuild the map as needed.
2374 this->relaxed_input_section_map_.clear();
2375 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2376 p != this->input_sections_.end();
2377 ++p)
2378 if (p->is_relaxed_input_section())
2379 {
2380 Const_section_id csid(p->relobj(), p->shndx());
2381 this->relaxed_input_section_map_[csid] =
2382 p->relaxed_input_section();
2383 }
2384 this->is_relaxed_input_section_map_valid_ = true;
2385 }
2386
2387 Const_section_id csid(object, shndx);
2388 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2389 this->relaxed_input_section_map_.find(csid);
2390 if (p != this->relaxed_input_section_map_.end())
2391 return p->second;
2392 else
2393 return NULL;
2394 }
2395
2396 // Given an address OFFSET relative to the start of input section
2397 // SHNDX in OBJECT, return whether this address is being included in
2398 // the final link. This should only be called if SHNDX in OBJECT has
2399 // a special mapping.
2400
2401 bool
2402 Output_section::is_input_address_mapped(const Relobj* object,
2403 unsigned int shndx,
2404 off_t offset) const
2405 {
2406 // Look at the Output_section_data_maps first.
2407 const Output_section_data* posd = this->find_merge_section(object, shndx);
2408 if (posd == NULL)
2409 posd = this->find_relaxed_input_section(object, shndx);
2410
2411 if (posd != NULL)
2412 {
2413 section_offset_type output_offset;
2414 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2415 gold_assert(found);
2416 return output_offset != -1;
2417 }
2418
2419 // Fall back to the slow look-up.
2420 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2421 p != this->input_sections_.end();
2422 ++p)
2423 {
2424 section_offset_type output_offset;
2425 if (p->output_offset(object, shndx, offset, &output_offset))
2426 return output_offset != -1;
2427 }
2428
2429 // By default we assume that the address is mapped. This should
2430 // only be called after we have passed all sections to Layout. At
2431 // that point we should know what we are discarding.
2432 return true;
2433 }
2434
2435 // Given an address OFFSET relative to the start of input section
2436 // SHNDX in object OBJECT, return the output offset relative to the
2437 // start of the input section in the output section. This should only
2438 // be called if SHNDX in OBJECT has a special mapping.
2439
2440 section_offset_type
2441 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2442 section_offset_type offset) const
2443 {
2444 // This can only be called meaningfully when we know the data size
2445 // of this.
2446 gold_assert(this->is_data_size_valid());
2447
2448 // Look at the Output_section_data_maps first.
2449 const Output_section_data* posd = this->find_merge_section(object, shndx);
2450 if (posd == NULL)
2451 posd = this->find_relaxed_input_section(object, shndx);
2452 if (posd != NULL)
2453 {
2454 section_offset_type output_offset;
2455 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2456 gold_assert(found);
2457 return output_offset;
2458 }
2459
2460 // Fall back to the slow look-up.
2461 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2462 p != this->input_sections_.end();
2463 ++p)
2464 {
2465 section_offset_type output_offset;
2466 if (p->output_offset(object, shndx, offset, &output_offset))
2467 return output_offset;
2468 }
2469 gold_unreachable();
2470 }
2471
2472 // Return the output virtual address of OFFSET relative to the start
2473 // of input section SHNDX in object OBJECT.
2474
2475 uint64_t
2476 Output_section::output_address(const Relobj* object, unsigned int shndx,
2477 off_t offset) const
2478 {
2479 uint64_t addr = this->address() + this->first_input_offset_;
2480
2481 // Look at the Output_section_data_maps first.
2482 const Output_section_data* posd = this->find_merge_section(object, shndx);
2483 if (posd == NULL)
2484 posd = this->find_relaxed_input_section(object, shndx);
2485 if (posd != NULL && posd->is_address_valid())
2486 {
2487 section_offset_type output_offset;
2488 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2489 gold_assert(found);
2490 return posd->address() + output_offset;
2491 }
2492
2493 // Fall back to the slow look-up.
2494 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2495 p != this->input_sections_.end();
2496 ++p)
2497 {
2498 addr = align_address(addr, p->addralign());
2499 section_offset_type output_offset;
2500 if (p->output_offset(object, shndx, offset, &output_offset))
2501 {
2502 if (output_offset == -1)
2503 return -1ULL;
2504 return addr + output_offset;
2505 }
2506 addr += p->data_size();
2507 }
2508
2509 // If we get here, it means that we don't know the mapping for this
2510 // input section. This might happen in principle if
2511 // add_input_section were called before add_output_section_data.
2512 // But it should never actually happen.
2513
2514 gold_unreachable();
2515 }
2516
2517 // Find the output address of the start of the merged section for
2518 // input section SHNDX in object OBJECT.
2519
2520 bool
2521 Output_section::find_starting_output_address(const Relobj* object,
2522 unsigned int shndx,
2523 uint64_t* paddr) const
2524 {
2525 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2526 // Looking up the merge section map does not always work as we sometimes
2527 // find a merge section without its address set.
2528 uint64_t addr = this->address() + this->first_input_offset_;
2529 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2530 p != this->input_sections_.end();
2531 ++p)
2532 {
2533 addr = align_address(addr, p->addralign());
2534
2535 // It would be nice if we could use the existing output_offset
2536 // method to get the output offset of input offset 0.
2537 // Unfortunately we don't know for sure that input offset 0 is
2538 // mapped at all.
2539 if (p->is_merge_section_for(object, shndx))
2540 {
2541 *paddr = addr;
2542 return true;
2543 }
2544
2545 addr += p->data_size();
2546 }
2547
2548 // We couldn't find a merge output section for this input section.
2549 return false;
2550 }
2551
2552 // Set the data size of an Output_section. This is where we handle
2553 // setting the addresses of any Output_section_data objects.
2554
2555 void
2556 Output_section::set_final_data_size()
2557 {
2558 if (this->input_sections_.empty())
2559 {
2560 this->set_data_size(this->current_data_size_for_child());
2561 return;
2562 }
2563
2564 if (this->must_sort_attached_input_sections())
2565 this->sort_attached_input_sections();
2566
2567 uint64_t address = this->address();
2568 off_t startoff = this->offset();
2569 off_t off = startoff + this->first_input_offset_;
2570 for (Input_section_list::iterator p = this->input_sections_.begin();
2571 p != this->input_sections_.end();
2572 ++p)
2573 {
2574 off = align_address(off, p->addralign());
2575 p->set_address_and_file_offset(address + (off - startoff), off,
2576 startoff);
2577 off += p->data_size();
2578 }
2579
2580 this->set_data_size(off - startoff);
2581 }
2582
2583 // Reset the address and file offset.
2584
2585 void
2586 Output_section::do_reset_address_and_file_offset()
2587 {
2588 // An unallocated section has no address. Forcing this means that
2589 // we don't need special treatment for symbols defined in debug
2590 // sections. We do the same in the constructor.
2591 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2592 this->set_address(0);
2593
2594 for (Input_section_list::iterator p = this->input_sections_.begin();
2595 p != this->input_sections_.end();
2596 ++p)
2597 p->reset_address_and_file_offset();
2598 }
2599
2600 // Return true if address and file offset have the values after reset.
2601
2602 bool
2603 Output_section::do_address_and_file_offset_have_reset_values() const
2604 {
2605 if (this->is_offset_valid())
2606 return false;
2607
2608 // An unallocated section has address 0 after its construction or a reset.
2609 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2610 return this->is_address_valid() && this->address() == 0;
2611 else
2612 return !this->is_address_valid();
2613 }
2614
2615 // Set the TLS offset. Called only for SHT_TLS sections.
2616
2617 void
2618 Output_section::do_set_tls_offset(uint64_t tls_base)
2619 {
2620 this->tls_offset_ = this->address() - tls_base;
2621 }
2622
2623 // In a few cases we need to sort the input sections attached to an
2624 // output section. This is used to implement the type of constructor
2625 // priority ordering implemented by the GNU linker, in which the
2626 // priority becomes part of the section name and the sections are
2627 // sorted by name. We only do this for an output section if we see an
2628 // attached input section matching ".ctor.*", ".dtor.*",
2629 // ".init_array.*" or ".fini_array.*".
2630
2631 class Output_section::Input_section_sort_entry
2632 {
2633 public:
2634 Input_section_sort_entry()
2635 : input_section_(), index_(-1U), section_has_name_(false),
2636 section_name_()
2637 { }
2638
2639 Input_section_sort_entry(const Input_section& input_section,
2640 unsigned int index)
2641 : input_section_(input_section), index_(index),
2642 section_has_name_(input_section.is_input_section()
2643 || input_section.is_relaxed_input_section())
2644 {
2645 if (this->section_has_name_)
2646 {
2647 // This is only called single-threaded from Layout::finalize,
2648 // so it is OK to lock. Unfortunately we have no way to pass
2649 // in a Task token.
2650 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2651 Object* obj = (input_section.is_input_section()
2652 ? input_section.relobj()
2653 : input_section.relaxed_input_section()->relobj());
2654 Task_lock_obj<Object> tl(dummy_task, obj);
2655
2656 // This is a slow operation, which should be cached in
2657 // Layout::layout if this becomes a speed problem.
2658 this->section_name_ = obj->section_name(input_section.shndx());
2659 }
2660 }
2661
2662 // Return the Input_section.
2663 const Input_section&
2664 input_section() const
2665 {
2666 gold_assert(this->index_ != -1U);
2667 return this->input_section_;
2668 }
2669
2670 // The index of this entry in the original list. This is used to
2671 // make the sort stable.
2672 unsigned int
2673 index() const
2674 {
2675 gold_assert(this->index_ != -1U);
2676 return this->index_;
2677 }
2678
2679 // Whether there is a section name.
2680 bool
2681 section_has_name() const
2682 { return this->section_has_name_; }
2683
2684 // The section name.
2685 const std::string&
2686 section_name() const
2687 {
2688 gold_assert(this->section_has_name_);
2689 return this->section_name_;
2690 }
2691
2692 // Return true if the section name has a priority. This is assumed
2693 // to be true if it has a dot after the initial dot.
2694 bool
2695 has_priority() const
2696 {
2697 gold_assert(this->section_has_name_);
2698 return this->section_name_.find('.', 1);
2699 }
2700
2701 // Return true if this an input file whose base name matches
2702 // FILE_NAME. The base name must have an extension of ".o", and
2703 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2704 // This is to match crtbegin.o as well as crtbeginS.o without
2705 // getting confused by other possibilities. Overall matching the
2706 // file name this way is a dreadful hack, but the GNU linker does it
2707 // in order to better support gcc, and we need to be compatible.
2708 bool
2709 match_file_name(const char* match_file_name) const
2710 {
2711 const std::string& file_name(this->input_section_.relobj()->name());
2712 const char* base_name = lbasename(file_name.c_str());
2713 size_t match_len = strlen(match_file_name);
2714 if (strncmp(base_name, match_file_name, match_len) != 0)
2715 return false;
2716 size_t base_len = strlen(base_name);
2717 if (base_len != match_len + 2 && base_len != match_len + 3)
2718 return false;
2719 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2720 }
2721
2722 private:
2723 // The Input_section we are sorting.
2724 Input_section input_section_;
2725 // The index of this Input_section in the original list.
2726 unsigned int index_;
2727 // Whether this Input_section has a section name--it won't if this
2728 // is some random Output_section_data.
2729 bool section_has_name_;
2730 // The section name if there is one.
2731 std::string section_name_;
2732 };
2733
2734 // Return true if S1 should come before S2 in the output section.
2735
2736 bool
2737 Output_section::Input_section_sort_compare::operator()(
2738 const Output_section::Input_section_sort_entry& s1,
2739 const Output_section::Input_section_sort_entry& s2) const
2740 {
2741 // crtbegin.o must come first.
2742 bool s1_begin = s1.match_file_name("crtbegin");
2743 bool s2_begin = s2.match_file_name("crtbegin");
2744 if (s1_begin || s2_begin)
2745 {
2746 if (!s1_begin)
2747 return false;
2748 if (!s2_begin)
2749 return true;
2750 return s1.index() < s2.index();
2751 }
2752
2753 // crtend.o must come last.
2754 bool s1_end = s1.match_file_name("crtend");
2755 bool s2_end = s2.match_file_name("crtend");
2756 if (s1_end || s2_end)
2757 {
2758 if (!s1_end)
2759 return true;
2760 if (!s2_end)
2761 return false;
2762 return s1.index() < s2.index();
2763 }
2764
2765 // We sort all the sections with no names to the end.
2766 if (!s1.section_has_name() || !s2.section_has_name())
2767 {
2768 if (s1.section_has_name())
2769 return true;
2770 if (s2.section_has_name())
2771 return false;
2772 return s1.index() < s2.index();
2773 }
2774
2775 // A section with a priority follows a section without a priority.
2776 // The GNU linker does this for all but .init_array sections; until
2777 // further notice we'll assume that that is an mistake.
2778 bool s1_has_priority = s1.has_priority();
2779 bool s2_has_priority = s2.has_priority();
2780 if (s1_has_priority && !s2_has_priority)
2781 return false;
2782 if (!s1_has_priority && s2_has_priority)
2783 return true;
2784
2785 // Otherwise we sort by name.
2786 int compare = s1.section_name().compare(s2.section_name());
2787 if (compare != 0)
2788 return compare < 0;
2789
2790 // Otherwise we keep the input order.
2791 return s1.index() < s2.index();
2792 }
2793
2794 // Sort the input sections attached to an output section.
2795
2796 void
2797 Output_section::sort_attached_input_sections()
2798 {
2799 if (this->attached_input_sections_are_sorted_)
2800 return;
2801
2802 if (this->checkpoint_ != NULL
2803 && !this->checkpoint_->input_sections_saved())
2804 this->checkpoint_->save_input_sections();
2805
2806 // The only thing we know about an input section is the object and
2807 // the section index. We need the section name. Recomputing this
2808 // is slow but this is an unusual case. If this becomes a speed
2809 // problem we can cache the names as required in Layout::layout.
2810
2811 // We start by building a larger vector holding a copy of each
2812 // Input_section, plus its current index in the list and its name.
2813 std::vector<Input_section_sort_entry> sort_list;
2814
2815 unsigned int i = 0;
2816 for (Input_section_list::iterator p = this->input_sections_.begin();
2817 p != this->input_sections_.end();
2818 ++p, ++i)
2819 sort_list.push_back(Input_section_sort_entry(*p, i));
2820
2821 // Sort the input sections.
2822 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2823
2824 // Copy the sorted input sections back to our list.
2825 this->input_sections_.clear();
2826 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2827 p != sort_list.end();
2828 ++p)
2829 this->input_sections_.push_back(p->input_section());
2830
2831 // Remember that we sorted the input sections, since we might get
2832 // called again.
2833 this->attached_input_sections_are_sorted_ = true;
2834 }
2835
2836 // Write the section header to *OSHDR.
2837
2838 template<int size, bool big_endian>
2839 void
2840 Output_section::write_header(const Layout* layout,
2841 const Stringpool* secnamepool,
2842 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2843 {
2844 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2845 oshdr->put_sh_type(this->type_);
2846
2847 elfcpp::Elf_Xword flags = this->flags_;
2848 if (this->info_section_ != NULL && this->info_uses_section_index_)
2849 flags |= elfcpp::SHF_INFO_LINK;
2850 oshdr->put_sh_flags(flags);
2851
2852 oshdr->put_sh_addr(this->address());
2853 oshdr->put_sh_offset(this->offset());
2854 oshdr->put_sh_size(this->data_size());
2855 if (this->link_section_ != NULL)
2856 oshdr->put_sh_link(this->link_section_->out_shndx());
2857 else if (this->should_link_to_symtab_)
2858 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2859 else if (this->should_link_to_dynsym_)
2860 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2861 else
2862 oshdr->put_sh_link(this->link_);
2863
2864 elfcpp::Elf_Word info;
2865 if (this->info_section_ != NULL)
2866 {
2867 if (this->info_uses_section_index_)
2868 info = this->info_section_->out_shndx();
2869 else
2870 info = this->info_section_->symtab_index();
2871 }
2872 else if (this->info_symndx_ != NULL)
2873 info = this->info_symndx_->symtab_index();
2874 else
2875 info = this->info_;
2876 oshdr->put_sh_info(info);
2877
2878 oshdr->put_sh_addralign(this->addralign_);
2879 oshdr->put_sh_entsize(this->entsize_);
2880 }
2881
2882 // Write out the data. For input sections the data is written out by
2883 // Object::relocate, but we have to handle Output_section_data objects
2884 // here.
2885
2886 void
2887 Output_section::do_write(Output_file* of)
2888 {
2889 gold_assert(!this->requires_postprocessing());
2890
2891 // If the target performs relaxation, we delay filler generation until now.
2892 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2893
2894 off_t output_section_file_offset = this->offset();
2895 for (Fill_list::iterator p = this->fills_.begin();
2896 p != this->fills_.end();
2897 ++p)
2898 {
2899 std::string fill_data(parameters->target().code_fill(p->length()));
2900 of->write(output_section_file_offset + p->section_offset(),
2901 fill_data.data(), fill_data.size());
2902 }
2903
2904 off_t off = this->offset() + this->first_input_offset_;
2905 for (Input_section_list::iterator p = this->input_sections_.begin();
2906 p != this->input_sections_.end();
2907 ++p)
2908 {
2909 off_t aligned_off = align_address(off, p->addralign());
2910 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2911 {
2912 size_t fill_len = aligned_off - off;
2913 std::string fill_data(parameters->target().code_fill(fill_len));
2914 of->write(off, fill_data.data(), fill_data.size());
2915 }
2916
2917 p->write(of);
2918 off = aligned_off + p->data_size();
2919 }
2920 }
2921
2922 // If a section requires postprocessing, create the buffer to use.
2923
2924 void
2925 Output_section::create_postprocessing_buffer()
2926 {
2927 gold_assert(this->requires_postprocessing());
2928
2929 if (this->postprocessing_buffer_ != NULL)
2930 return;
2931
2932 if (!this->input_sections_.empty())
2933 {
2934 off_t off = this->first_input_offset_;
2935 for (Input_section_list::iterator p = this->input_sections_.begin();
2936 p != this->input_sections_.end();
2937 ++p)
2938 {
2939 off = align_address(off, p->addralign());
2940 p->finalize_data_size();
2941 off += p->data_size();
2942 }
2943 this->set_current_data_size_for_child(off);
2944 }
2945
2946 off_t buffer_size = this->current_data_size_for_child();
2947 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2948 }
2949
2950 // Write all the data of an Output_section into the postprocessing
2951 // buffer. This is used for sections which require postprocessing,
2952 // such as compression. Input sections are handled by
2953 // Object::Relocate.
2954
2955 void
2956 Output_section::write_to_postprocessing_buffer()
2957 {
2958 gold_assert(this->requires_postprocessing());
2959
2960 // If the target performs relaxation, we delay filler generation until now.
2961 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2962
2963 unsigned char* buffer = this->postprocessing_buffer();
2964 for (Fill_list::iterator p = this->fills_.begin();
2965 p != this->fills_.end();
2966 ++p)
2967 {
2968 std::string fill_data(parameters->target().code_fill(p->length()));
2969 memcpy(buffer + p->section_offset(), fill_data.data(),
2970 fill_data.size());
2971 }
2972
2973 off_t off = this->first_input_offset_;
2974 for (Input_section_list::iterator p = this->input_sections_.begin();
2975 p != this->input_sections_.end();
2976 ++p)
2977 {
2978 off_t aligned_off = align_address(off, p->addralign());
2979 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2980 {
2981 size_t fill_len = aligned_off - off;
2982 std::string fill_data(parameters->target().code_fill(fill_len));
2983 memcpy(buffer + off, fill_data.data(), fill_data.size());
2984 }
2985
2986 p->write_to_buffer(buffer + aligned_off);
2987 off = aligned_off + p->data_size();
2988 }
2989 }
2990
2991 // Get the input sections for linker script processing. We leave
2992 // behind the Output_section_data entries. Note that this may be
2993 // slightly incorrect for merge sections. We will leave them behind,
2994 // but it is possible that the script says that they should follow
2995 // some other input sections, as in:
2996 // .rodata { *(.rodata) *(.rodata.cst*) }
2997 // For that matter, we don't handle this correctly:
2998 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2999 // With luck this will never matter.
3000
3001 uint64_t
3002 Output_section::get_input_sections(
3003 uint64_t address,
3004 const std::string& fill,
3005 std::list<Simple_input_section>* input_sections)
3006 {
3007 if (this->checkpoint_ != NULL
3008 && !this->checkpoint_->input_sections_saved())
3009 this->checkpoint_->save_input_sections();
3010
3011 // Invalidate the relaxed input section map.
3012 this->is_relaxed_input_section_map_valid_ = false;
3013
3014 uint64_t orig_address = address;
3015
3016 address = align_address(address, this->addralign());
3017
3018 Input_section_list remaining;
3019 for (Input_section_list::iterator p = this->input_sections_.begin();
3020 p != this->input_sections_.end();
3021 ++p)
3022 {
3023 if (p->is_input_section())
3024 input_sections->push_back(Simple_input_section(p->relobj(),
3025 p->shndx()));
3026 else if (p->is_relaxed_input_section())
3027 input_sections->push_back(
3028 Simple_input_section(p->relaxed_input_section()));
3029 else
3030 {
3031 uint64_t aligned_address = align_address(address, p->addralign());
3032 if (aligned_address != address && !fill.empty())
3033 {
3034 section_size_type length =
3035 convert_to_section_size_type(aligned_address - address);
3036 std::string this_fill;
3037 this_fill.reserve(length);
3038 while (this_fill.length() + fill.length() <= length)
3039 this_fill += fill;
3040 if (this_fill.length() < length)
3041 this_fill.append(fill, 0, length - this_fill.length());
3042
3043 Output_section_data* posd = new Output_data_const(this_fill, 0);
3044 remaining.push_back(Input_section(posd));
3045 }
3046 address = aligned_address;
3047
3048 remaining.push_back(*p);
3049
3050 p->finalize_data_size();
3051 address += p->data_size();
3052 }
3053 }
3054
3055 this->input_sections_.swap(remaining);
3056 this->first_input_offset_ = 0;
3057
3058 uint64_t data_size = address - orig_address;
3059 this->set_current_data_size_for_child(data_size);
3060 return data_size;
3061 }
3062
3063 // Add an simple input section.
3064
3065 void
3066 Output_section::add_simple_input_section(const Simple_input_section& sis,
3067 off_t data_size,
3068 uint64_t addralign)
3069 {
3070 if (addralign > this->addralign_)
3071 this->addralign_ = addralign;
3072
3073 off_t offset_in_section = this->current_data_size_for_child();
3074 off_t aligned_offset_in_section = align_address(offset_in_section,
3075 addralign);
3076
3077 this->set_current_data_size_for_child(aligned_offset_in_section
3078 + data_size);
3079
3080 Input_section is =
3081 (sis.is_relaxed_input_section()
3082 ? Input_section(sis.relaxed_input_section())
3083 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3084 this->input_sections_.push_back(is);
3085 }
3086
3087 // Save states for relaxation.
3088
3089 void
3090 Output_section::save_states()
3091 {
3092 gold_assert(this->checkpoint_ == NULL);
3093 Checkpoint_output_section* checkpoint =
3094 new Checkpoint_output_section(this->addralign_, this->flags_,
3095 this->input_sections_,
3096 this->first_input_offset_,
3097 this->attached_input_sections_are_sorted_);
3098 this->checkpoint_ = checkpoint;
3099 gold_assert(this->fills_.empty());
3100 }
3101
3102 void
3103 Output_section::discard_states()
3104 {
3105 gold_assert(this->checkpoint_ != NULL);
3106 delete this->checkpoint_;
3107 this->checkpoint_ = NULL;
3108 gold_assert(this->fills_.empty());
3109
3110 // Simply invalidate the relaxed input section map since we do not keep
3111 // track of it.
3112 this->is_relaxed_input_section_map_valid_ = false;
3113 }
3114
3115 void
3116 Output_section::restore_states()
3117 {
3118 gold_assert(this->checkpoint_ != NULL);
3119 Checkpoint_output_section* checkpoint = this->checkpoint_;
3120
3121 this->addralign_ = checkpoint->addralign();
3122 this->flags_ = checkpoint->flags();
3123 this->first_input_offset_ = checkpoint->first_input_offset();
3124
3125 if (!checkpoint->input_sections_saved())
3126 {
3127 // If we have not copied the input sections, just resize it.
3128 size_t old_size = checkpoint->input_sections_size();
3129 gold_assert(this->input_sections_.size() >= old_size);
3130 this->input_sections_.resize(old_size);
3131 }
3132 else
3133 {
3134 // We need to copy the whole list. This is not efficient for
3135 // extremely large output with hundreads of thousands of input
3136 // objects. We may need to re-think how we should pass sections
3137 // to scripts.
3138 this->input_sections_ = *checkpoint->input_sections();
3139 }
3140
3141 this->attached_input_sections_are_sorted_ =
3142 checkpoint->attached_input_sections_are_sorted();
3143
3144 // Simply invalidate the relaxed input section map since we do not keep
3145 // track of it.
3146 this->is_relaxed_input_section_map_valid_ = false;
3147 }
3148
3149 // Update the section offsets of input sections in this. This is required if
3150 // relaxation causes some input sections to change sizes.
3151
3152 void
3153 Output_section::adjust_section_offsets()
3154 {
3155 if (!this->section_offsets_need_adjustment_)
3156 return;
3157
3158 off_t off = 0;
3159 for (Input_section_list::iterator p = this->input_sections_.begin();
3160 p != this->input_sections_.end();
3161 ++p)
3162 {
3163 off = align_address(off, p->addralign());
3164 if (p->is_input_section())
3165 p->relobj()->set_section_offset(p->shndx(), off);
3166 off += p->data_size();
3167 }
3168
3169 this->section_offsets_need_adjustment_ = false;
3170 }
3171
3172 // Print to the map file.
3173
3174 void
3175 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3176 {
3177 mapfile->print_output_section(this);
3178
3179 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3180 p != this->input_sections_.end();
3181 ++p)
3182 p->print_to_mapfile(mapfile);
3183 }
3184
3185 // Print stats for merge sections to stderr.
3186
3187 void
3188 Output_section::print_merge_stats()
3189 {
3190 Input_section_list::iterator p;
3191 for (p = this->input_sections_.begin();
3192 p != this->input_sections_.end();
3193 ++p)
3194 p->print_merge_stats(this->name_);
3195 }
3196
3197 // Output segment methods.
3198
3199 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3200 : output_data_(),
3201 output_bss_(),
3202 vaddr_(0),
3203 paddr_(0),
3204 memsz_(0),
3205 max_align_(0),
3206 min_p_align_(0),
3207 offset_(0),
3208 filesz_(0),
3209 type_(type),
3210 flags_(flags),
3211 is_max_align_known_(false),
3212 are_addresses_set_(false),
3213 is_large_data_segment_(false)
3214 {
3215 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3216 // the flags.
3217 if (type == elfcpp::PT_TLS)
3218 this->flags_ = elfcpp::PF_R;
3219 }
3220
3221 // Add an Output_section to an Output_segment.
3222
3223 void
3224 Output_segment::add_output_section(Output_section* os,
3225 elfcpp::Elf_Word seg_flags,
3226 bool do_sort)
3227 {
3228 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3229 gold_assert(!this->is_max_align_known_);
3230 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3231 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3232
3233 this->update_flags_for_output_section(seg_flags);
3234
3235 Output_segment::Output_data_list* pdl;
3236 if (os->type() == elfcpp::SHT_NOBITS)
3237 pdl = &this->output_bss_;
3238 else
3239 pdl = &this->output_data_;
3240
3241 // Note that while there may be many input sections in an output
3242 // section, there are normally only a few output sections in an
3243 // output segment. The loops below are expected to be fast.
3244
3245 // So that PT_NOTE segments will work correctly, we need to ensure
3246 // that all SHT_NOTE sections are adjacent.
3247 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3248 {
3249 Output_segment::Output_data_list::iterator p = pdl->end();
3250 do
3251 {
3252 --p;
3253 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3254 {
3255 ++p;
3256 pdl->insert(p, os);
3257 return;
3258 }
3259 }
3260 while (p != pdl->begin());
3261 }
3262
3263 // Similarly, so that PT_TLS segments will work, we need to group
3264 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3265 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3266 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3267 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3268 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3269 // segment.
3270 if (this->type_ != elfcpp::PT_TLS
3271 && (os->flags() & elfcpp::SHF_TLS) != 0)
3272 {
3273 pdl = &this->output_data_;
3274 if (!pdl->empty())
3275 {
3276 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3277 bool sawtls = false;
3278 Output_segment::Output_data_list::iterator p = pdl->end();
3279 gold_assert(p != pdl->begin());
3280 do
3281 {
3282 --p;
3283 bool insert;
3284 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3285 {
3286 sawtls = true;
3287 // Put a NOBITS section after the first TLS section.
3288 // Put a PROGBITS section after the first
3289 // TLS/PROGBITS section.
3290 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3291 }
3292 else
3293 {
3294 // If we've gone past the TLS sections, but we've
3295 // seen a TLS section, then we need to insert this
3296 // section now.
3297 insert = sawtls;
3298 }
3299
3300 if (insert)
3301 {
3302 ++p;
3303 pdl->insert(p, os);
3304 return;
3305 }
3306 }
3307 while (p != pdl->begin());
3308 }
3309
3310 // There are no TLS sections yet; put this one at the requested
3311 // location in the section list.
3312 }
3313
3314 if (do_sort)
3315 {
3316 // For the PT_GNU_RELRO segment, we need to group relro
3317 // sections, and we need to put them before any non-relro
3318 // sections. Any relro local sections go before relro non-local
3319 // sections. One section may be marked as the last relro
3320 // section.
3321 if (os->is_relro())
3322 {
3323 gold_assert(pdl == &this->output_data_);
3324 Output_segment::Output_data_list::iterator p;
3325 for (p = pdl->begin(); p != pdl->end(); ++p)
3326 {
3327 if (!(*p)->is_section())
3328 break;
3329
3330 Output_section* pos = (*p)->output_section();
3331 if (!pos->is_relro()
3332 || (os->is_relro_local() && !pos->is_relro_local())
3333 || (!os->is_last_relro() && pos->is_last_relro()))
3334 break;
3335 }
3336
3337 pdl->insert(p, os);
3338 return;
3339 }
3340
3341 // One section may be marked as the first section which follows
3342 // the relro sections.
3343 if (os->is_first_non_relro())
3344 {
3345 gold_assert(pdl == &this->output_data_);
3346 Output_segment::Output_data_list::iterator p;
3347 for (p = pdl->begin(); p != pdl->end(); ++p)
3348 {
3349 if (!(*p)->is_section())
3350 break;
3351
3352 Output_section* pos = (*p)->output_section();
3353 if (!pos->is_relro())
3354 break;
3355 }
3356
3357 pdl->insert(p, os);
3358 return;
3359 }
3360 }
3361
3362 // Small data sections go at the end of the list of data sections.
3363 // If OS is not small, and there are small sections, we have to
3364 // insert it before the first small section.
3365 if (os->type() != elfcpp::SHT_NOBITS
3366 && !os->is_small_section()
3367 && !pdl->empty()
3368 && pdl->back()->is_section()
3369 && pdl->back()->output_section()->is_small_section())
3370 {
3371 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3372 p != pdl->end();
3373 ++p)
3374 {
3375 if ((*p)->is_section()
3376 && (*p)->output_section()->is_small_section())
3377 {
3378 pdl->insert(p, os);
3379 return;
3380 }
3381 }
3382 gold_unreachable();
3383 }
3384
3385 // A small BSS section goes at the start of the BSS sections, after
3386 // other small BSS sections.
3387 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3388 {
3389 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3390 p != pdl->end();
3391 ++p)
3392 {
3393 if (!(*p)->is_section()
3394 || !(*p)->output_section()->is_small_section())
3395 {
3396 pdl->insert(p, os);
3397 return;
3398 }
3399 }
3400 }
3401
3402 // A large BSS section goes at the end of the BSS sections, which
3403 // means that one that is not large must come before the first large
3404 // one.
3405 if (os->type() == elfcpp::SHT_NOBITS
3406 && !os->is_large_section()
3407 && !pdl->empty()
3408 && pdl->back()->is_section()
3409 && pdl->back()->output_section()->is_large_section())
3410 {
3411 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3412 p != pdl->end();
3413 ++p)
3414 {
3415 if ((*p)->is_section()
3416 && (*p)->output_section()->is_large_section())
3417 {
3418 pdl->insert(p, os);
3419 return;
3420 }
3421 }
3422 gold_unreachable();
3423 }
3424
3425 // We do some further output section sorting in order to make the
3426 // generated program run more efficiently. We should only do this
3427 // when not using a linker script, so it is controled by the DO_SORT
3428 // parameter.
3429 if (do_sort)
3430 {
3431 // FreeBSD requires the .interp section to be in the first page
3432 // of the executable. That is a more efficient location anyhow
3433 // for any OS, since it means that the kernel will have the data
3434 // handy after it reads the program headers.
3435 if (os->is_interp() && !pdl->empty())
3436 {
3437 pdl->insert(pdl->begin(), os);
3438 return;
3439 }
3440
3441 // Put loadable non-writable notes immediately after the .interp
3442 // sections, so that the PT_NOTE segment is on the first page of
3443 // the executable.
3444 if (os->type() == elfcpp::SHT_NOTE
3445 && (os->flags() & elfcpp::SHF_WRITE) == 0
3446 && !pdl->empty())
3447 {
3448 Output_segment::Output_data_list::iterator p = pdl->begin();
3449 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3450 ++p;
3451 pdl->insert(p, os);
3452 return;
3453 }
3454
3455 // If this section is used by the dynamic linker, and it is not
3456 // writable, then put it first, after the .interp section and
3457 // any loadable notes. This makes it more likely that the
3458 // dynamic linker will have to read less data from the disk.
3459 if (os->is_dynamic_linker_section()
3460 && !pdl->empty()
3461 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3462 {
3463 bool is_reloc = (os->type() == elfcpp::SHT_REL
3464 || os->type() == elfcpp::SHT_RELA);
3465 Output_segment::Output_data_list::iterator p = pdl->begin();
3466 while (p != pdl->end()
3467 && (*p)->is_section()
3468 && ((*p)->output_section()->is_dynamic_linker_section()
3469 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3470 {
3471 // Put reloc sections after the other ones. Putting the
3472 // dynamic reloc sections first confuses BFD, notably
3473 // objcopy and strip.
3474 if (!is_reloc
3475 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3476 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3477 break;
3478 ++p;
3479 }
3480 pdl->insert(p, os);
3481 return;
3482 }
3483 }
3484
3485 // If there were no constraints on the output section, just add it
3486 // to the end of the list.
3487 pdl->push_back(os);
3488 }
3489
3490 // Remove an Output_section from this segment. It is an error if it
3491 // is not present.
3492
3493 void
3494 Output_segment::remove_output_section(Output_section* os)
3495 {
3496 // We only need this for SHT_PROGBITS.
3497 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3498 for (Output_data_list::iterator p = this->output_data_.begin();
3499 p != this->output_data_.end();
3500 ++p)
3501 {
3502 if (*p == os)
3503 {
3504 this->output_data_.erase(p);
3505 return;
3506 }
3507 }
3508 gold_unreachable();
3509 }
3510
3511 // Add an Output_data (which need not be an Output_section) to the
3512 // start of a segment.
3513
3514 void
3515 Output_segment::add_initial_output_data(Output_data* od)
3516 {
3517 gold_assert(!this->is_max_align_known_);
3518 this->output_data_.push_front(od);
3519 }
3520
3521 // Return whether the first data section is a relro section.
3522
3523 bool
3524 Output_segment::is_first_section_relro() const
3525 {
3526 return (!this->output_data_.empty()
3527 && this->output_data_.front()->is_section()
3528 && this->output_data_.front()->output_section()->is_relro());
3529 }
3530
3531 // Return the maximum alignment of the Output_data in Output_segment.
3532
3533 uint64_t
3534 Output_segment::maximum_alignment()
3535 {
3536 if (!this->is_max_align_known_)
3537 {
3538 uint64_t addralign;
3539
3540 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3541 if (addralign > this->max_align_)
3542 this->max_align_ = addralign;
3543
3544 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3545 if (addralign > this->max_align_)
3546 this->max_align_ = addralign;
3547
3548 this->is_max_align_known_ = true;
3549 }
3550
3551 return this->max_align_;
3552 }
3553
3554 // Return the maximum alignment of a list of Output_data.
3555
3556 uint64_t
3557 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3558 {
3559 uint64_t ret = 0;
3560 for (Output_data_list::const_iterator p = pdl->begin();
3561 p != pdl->end();
3562 ++p)
3563 {
3564 uint64_t addralign = (*p)->addralign();
3565 if (addralign > ret)
3566 ret = addralign;
3567 }
3568 return ret;
3569 }
3570
3571 // Return the number of dynamic relocs applied to this segment.
3572
3573 unsigned int
3574 Output_segment::dynamic_reloc_count() const
3575 {
3576 return (this->dynamic_reloc_count_list(&this->output_data_)
3577 + this->dynamic_reloc_count_list(&this->output_bss_));
3578 }
3579
3580 // Return the number of dynamic relocs applied to an Output_data_list.
3581
3582 unsigned int
3583 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3584 {
3585 unsigned int count = 0;
3586 for (Output_data_list::const_iterator p = pdl->begin();
3587 p != pdl->end();
3588 ++p)
3589 count += (*p)->dynamic_reloc_count();
3590 return count;
3591 }
3592
3593 // Set the section addresses for an Output_segment. If RESET is true,
3594 // reset the addresses first. ADDR is the address and *POFF is the
3595 // file offset. Set the section indexes starting with *PSHNDX.
3596 // Return the address of the immediately following segment. Update
3597 // *POFF and *PSHNDX.
3598
3599 uint64_t
3600 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3601 uint64_t addr,
3602 unsigned int increase_relro,
3603 off_t* poff,
3604 unsigned int* pshndx)
3605 {
3606 gold_assert(this->type_ == elfcpp::PT_LOAD);
3607
3608 off_t orig_off = *poff;
3609
3610 // If we have relro sections, we need to pad forward now so that the
3611 // relro sections plus INCREASE_RELRO end on a common page boundary.
3612 if (parameters->options().relro()
3613 && this->is_first_section_relro()
3614 && (!this->are_addresses_set_ || reset))
3615 {
3616 uint64_t relro_size = 0;
3617 off_t off = *poff;
3618 for (Output_data_list::iterator p = this->output_data_.begin();
3619 p != this->output_data_.end();
3620 ++p)
3621 {
3622 if (!(*p)->is_section())
3623 break;
3624 Output_section* pos = (*p)->output_section();
3625 if (!pos->is_relro())
3626 break;
3627 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3628 if ((*p)->is_address_valid())
3629 relro_size += (*p)->data_size();
3630 else
3631 {
3632 // FIXME: This could be faster.
3633 (*p)->set_address_and_file_offset(addr + relro_size,
3634 off + relro_size);
3635 relro_size += (*p)->data_size();
3636 (*p)->reset_address_and_file_offset();
3637 }
3638 }
3639 relro_size += increase_relro;
3640
3641 uint64_t page_align = parameters->target().common_pagesize();
3642
3643 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3644 uint64_t desired_align = page_align - (relro_size % page_align);
3645 if (desired_align < *poff % page_align)
3646 *poff += page_align - *poff % page_align;
3647 *poff += desired_align - *poff % page_align;
3648 addr += *poff - orig_off;
3649 orig_off = *poff;
3650 }
3651
3652 if (!reset && this->are_addresses_set_)
3653 {
3654 gold_assert(this->paddr_ == addr);
3655 addr = this->vaddr_;
3656 }
3657 else
3658 {
3659 this->vaddr_ = addr;
3660 this->paddr_ = addr;
3661 this->are_addresses_set_ = true;
3662 }
3663
3664 bool in_tls = false;
3665
3666 this->offset_ = orig_off;
3667
3668 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3669 addr, poff, pshndx, &in_tls);
3670 this->filesz_ = *poff - orig_off;
3671
3672 off_t off = *poff;
3673
3674 uint64_t ret = this->set_section_list_addresses(layout, reset,
3675 &this->output_bss_,
3676 addr, poff, pshndx,
3677 &in_tls);
3678
3679 // If the last section was a TLS section, align upward to the
3680 // alignment of the TLS segment, so that the overall size of the TLS
3681 // segment is aligned.
3682 if (in_tls)
3683 {
3684 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3685 *poff = align_address(*poff, segment_align);
3686 }
3687
3688 this->memsz_ = *poff - orig_off;
3689
3690 // Ignore the file offset adjustments made by the BSS Output_data
3691 // objects.
3692 *poff = off;
3693
3694 return ret;
3695 }
3696
3697 // Set the addresses and file offsets in a list of Output_data
3698 // structures.
3699
3700 uint64_t
3701 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3702 Output_data_list* pdl,
3703 uint64_t addr, off_t* poff,
3704 unsigned int* pshndx,
3705 bool* in_tls)
3706 {
3707 off_t startoff = *poff;
3708
3709 off_t off = startoff;
3710 for (Output_data_list::iterator p = pdl->begin();
3711 p != pdl->end();
3712 ++p)
3713 {
3714 if (reset)
3715 (*p)->reset_address_and_file_offset();
3716
3717 // When using a linker script the section will most likely
3718 // already have an address.
3719 if (!(*p)->is_address_valid())
3720 {
3721 uint64_t align = (*p)->addralign();
3722
3723 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3724 {
3725 // Give the first TLS section the alignment of the
3726 // entire TLS segment. Otherwise the TLS segment as a
3727 // whole may be misaligned.
3728 if (!*in_tls)
3729 {
3730 Output_segment* tls_segment = layout->tls_segment();
3731 gold_assert(tls_segment != NULL);
3732 uint64_t segment_align = tls_segment->maximum_alignment();
3733 gold_assert(segment_align >= align);
3734 align = segment_align;
3735
3736 *in_tls = true;
3737 }
3738 }
3739 else
3740 {
3741 // If this is the first section after the TLS segment,
3742 // align it to at least the alignment of the TLS
3743 // segment, so that the size of the overall TLS segment
3744 // is aligned.
3745 if (*in_tls)
3746 {
3747 uint64_t segment_align =
3748 layout->tls_segment()->maximum_alignment();
3749 if (segment_align > align)
3750 align = segment_align;
3751
3752 *in_tls = false;
3753 }
3754 }
3755
3756 off = align_address(off, align);
3757 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3758 }
3759 else
3760 {
3761 // The script may have inserted a skip forward, but it
3762 // better not have moved backward.
3763 if ((*p)->address() >= addr + (off - startoff))
3764 off += (*p)->address() - (addr + (off - startoff));
3765 else
3766 {
3767 if (!layout->script_options()->saw_sections_clause())
3768 gold_unreachable();
3769 else
3770 {
3771 Output_section* os = (*p)->output_section();
3772
3773 // Cast to unsigned long long to avoid format warnings.
3774 unsigned long long previous_dot =
3775 static_cast<unsigned long long>(addr + (off - startoff));
3776 unsigned long long dot =
3777 static_cast<unsigned long long>((*p)->address());
3778
3779 if (os == NULL)
3780 gold_error(_("dot moves backward in linker script "
3781 "from 0x%llx to 0x%llx"), previous_dot, dot);
3782 else
3783 gold_error(_("address of section '%s' moves backward "
3784 "from 0x%llx to 0x%llx"),
3785 os->name(), previous_dot, dot);
3786 }
3787 }
3788 (*p)->set_file_offset(off);
3789 (*p)->finalize_data_size();
3790 }
3791
3792 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3793 // section. Such a section does not affect the size of a
3794 // PT_LOAD segment.
3795 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3796 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3797 off += (*p)->data_size();
3798
3799 if ((*p)->is_section())
3800 {
3801 (*p)->set_out_shndx(*pshndx);
3802 ++*pshndx;
3803 }
3804 }
3805
3806 *poff = off;
3807 return addr + (off - startoff);
3808 }
3809
3810 // For a non-PT_LOAD segment, set the offset from the sections, if
3811 // any. Add INCREASE to the file size and the memory size.
3812
3813 void
3814 Output_segment::set_offset(unsigned int increase)
3815 {
3816 gold_assert(this->type_ != elfcpp::PT_LOAD);
3817
3818 gold_assert(!this->are_addresses_set_);
3819
3820 if (this->output_data_.empty() && this->output_bss_.empty())
3821 {
3822 gold_assert(increase == 0);
3823 this->vaddr_ = 0;
3824 this->paddr_ = 0;
3825 this->are_addresses_set_ = true;
3826 this->memsz_ = 0;
3827 this->min_p_align_ = 0;
3828 this->offset_ = 0;
3829 this->filesz_ = 0;
3830 return;
3831 }
3832
3833 const Output_data* first;
3834 if (this->output_data_.empty())
3835 first = this->output_bss_.front();
3836 else
3837 first = this->output_data_.front();
3838 this->vaddr_ = first->address();
3839 this->paddr_ = (first->has_load_address()
3840 ? first->load_address()
3841 : this->vaddr_);
3842 this->are_addresses_set_ = true;
3843 this->offset_ = first->offset();
3844
3845 if (this->output_data_.empty())
3846 this->filesz_ = 0;
3847 else
3848 {
3849 const Output_data* last_data = this->output_data_.back();
3850 this->filesz_ = (last_data->address()
3851 + last_data->data_size()
3852 - this->vaddr_);
3853 }
3854
3855 const Output_data* last;
3856 if (this->output_bss_.empty())
3857 last = this->output_data_.back();
3858 else
3859 last = this->output_bss_.back();
3860 this->memsz_ = (last->address()
3861 + last->data_size()
3862 - this->vaddr_);
3863
3864 this->filesz_ += increase;
3865 this->memsz_ += increase;
3866
3867 // If this is a TLS segment, align the memory size. The code in
3868 // set_section_list ensures that the section after the TLS segment
3869 // is aligned to give us room.
3870 if (this->type_ == elfcpp::PT_TLS)
3871 {
3872 uint64_t segment_align = this->maximum_alignment();
3873 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3874 this->memsz_ = align_address(this->memsz_, segment_align);
3875 }
3876 }
3877
3878 // Set the TLS offsets of the sections in the PT_TLS segment.
3879
3880 void
3881 Output_segment::set_tls_offsets()
3882 {
3883 gold_assert(this->type_ == elfcpp::PT_TLS);
3884
3885 for (Output_data_list::iterator p = this->output_data_.begin();
3886 p != this->output_data_.end();
3887 ++p)
3888 (*p)->set_tls_offset(this->vaddr_);
3889
3890 for (Output_data_list::iterator p = this->output_bss_.begin();
3891 p != this->output_bss_.end();
3892 ++p)
3893 (*p)->set_tls_offset(this->vaddr_);
3894 }
3895
3896 // Return the address of the first section.
3897
3898 uint64_t
3899 Output_segment::first_section_load_address() const
3900 {
3901 for (Output_data_list::const_iterator p = this->output_data_.begin();
3902 p != this->output_data_.end();
3903 ++p)
3904 if ((*p)->is_section())
3905 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3906
3907 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3908 p != this->output_bss_.end();
3909 ++p)
3910 if ((*p)->is_section())
3911 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3912
3913 gold_unreachable();
3914 }
3915
3916 // Return the number of Output_sections in an Output_segment.
3917
3918 unsigned int
3919 Output_segment::output_section_count() const
3920 {
3921 return (this->output_section_count_list(&this->output_data_)
3922 + this->output_section_count_list(&this->output_bss_));
3923 }
3924
3925 // Return the number of Output_sections in an Output_data_list.
3926
3927 unsigned int
3928 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3929 {
3930 unsigned int count = 0;
3931 for (Output_data_list::const_iterator p = pdl->begin();
3932 p != pdl->end();
3933 ++p)
3934 {
3935 if ((*p)->is_section())
3936 ++count;
3937 }
3938 return count;
3939 }
3940
3941 // Return the section attached to the list segment with the lowest
3942 // load address. This is used when handling a PHDRS clause in a
3943 // linker script.
3944
3945 Output_section*
3946 Output_segment::section_with_lowest_load_address() const
3947 {
3948 Output_section* found = NULL;
3949 uint64_t found_lma = 0;
3950 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3951
3952 Output_section* found_data = found;
3953 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3954 if (found != found_data && found_data != NULL)
3955 {
3956 gold_error(_("nobits section %s may not precede progbits section %s "
3957 "in same segment"),
3958 found->name(), found_data->name());
3959 return NULL;
3960 }
3961
3962 return found;
3963 }
3964
3965 // Look through a list for a section with a lower load address.
3966
3967 void
3968 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3969 Output_section** found,
3970 uint64_t* found_lma) const
3971 {
3972 for (Output_data_list::const_iterator p = pdl->begin();
3973 p != pdl->end();
3974 ++p)
3975 {
3976 if (!(*p)->is_section())
3977 continue;
3978 Output_section* os = static_cast<Output_section*>(*p);
3979 uint64_t lma = (os->has_load_address()
3980 ? os->load_address()
3981 : os->address());
3982 if (*found == NULL || lma < *found_lma)
3983 {
3984 *found = os;
3985 *found_lma = lma;
3986 }
3987 }
3988 }
3989
3990 // Write the segment data into *OPHDR.
3991
3992 template<int size, bool big_endian>
3993 void
3994 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3995 {
3996 ophdr->put_p_type(this->type_);
3997 ophdr->put_p_offset(this->offset_);
3998 ophdr->put_p_vaddr(this->vaddr_);
3999 ophdr->put_p_paddr(this->paddr_);
4000 ophdr->put_p_filesz(this->filesz_);
4001 ophdr->put_p_memsz(this->memsz_);
4002 ophdr->put_p_flags(this->flags_);
4003 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4004 }
4005
4006 // Write the section headers into V.
4007
4008 template<int size, bool big_endian>
4009 unsigned char*
4010 Output_segment::write_section_headers(const Layout* layout,
4011 const Stringpool* secnamepool,
4012 unsigned char* v,
4013 unsigned int *pshndx) const
4014 {
4015 // Every section that is attached to a segment must be attached to a
4016 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4017 // segments.
4018 if (this->type_ != elfcpp::PT_LOAD)
4019 return v;
4020
4021 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4022 &this->output_data_,
4023 v, pshndx);
4024 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4025 &this->output_bss_,
4026 v, pshndx);
4027 return v;
4028 }
4029
4030 template<int size, bool big_endian>
4031 unsigned char*
4032 Output_segment::write_section_headers_list(const Layout* layout,
4033 const Stringpool* secnamepool,
4034 const Output_data_list* pdl,
4035 unsigned char* v,
4036 unsigned int* pshndx) const
4037 {
4038 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4039 for (Output_data_list::const_iterator p = pdl->begin();
4040 p != pdl->end();
4041 ++p)
4042 {
4043 if ((*p)->is_section())
4044 {
4045 const Output_section* ps = static_cast<const Output_section*>(*p);
4046 gold_assert(*pshndx == ps->out_shndx());
4047 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4048 ps->write_header(layout, secnamepool, &oshdr);
4049 v += shdr_size;
4050 ++*pshndx;
4051 }
4052 }
4053 return v;
4054 }
4055
4056 // Print the output sections to the map file.
4057
4058 void
4059 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4060 {
4061 if (this->type() != elfcpp::PT_LOAD)
4062 return;
4063 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4064 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4065 }
4066
4067 // Print an output section list to the map file.
4068
4069 void
4070 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4071 const Output_data_list* pdl) const
4072 {
4073 for (Output_data_list::const_iterator p = pdl->begin();
4074 p != pdl->end();
4075 ++p)
4076 (*p)->print_to_mapfile(mapfile);
4077 }
4078
4079 // Output_file methods.
4080
4081 Output_file::Output_file(const char* name)
4082 : name_(name),
4083 o_(-1),
4084 file_size_(0),
4085 base_(NULL),
4086 map_is_anonymous_(false),
4087 is_temporary_(false)
4088 {
4089 }
4090
4091 // Try to open an existing file. Returns false if the file doesn't
4092 // exist, has a size of 0 or can't be mmapped.
4093
4094 bool
4095 Output_file::open_for_modification()
4096 {
4097 // The name "-" means "stdout".
4098 if (strcmp(this->name_, "-") == 0)
4099 return false;
4100
4101 // Don't bother opening files with a size of zero.
4102 struct stat s;
4103 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4104 return false;
4105
4106 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4107 if (o < 0)
4108 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4109 this->o_ = o;
4110 this->file_size_ = s.st_size;
4111
4112 // If the file can't be mmapped, copying the content to an anonymous
4113 // map will probably negate the performance benefits of incremental
4114 // linking. This could be helped by using views and loading only
4115 // the necessary parts, but this is not supported as of now.
4116 if (!this->map_no_anonymous())
4117 {
4118 release_descriptor(o, true);
4119 this->o_ = -1;
4120 this->file_size_ = 0;
4121 return false;
4122 }
4123
4124 return true;
4125 }
4126
4127 // Open the output file.
4128
4129 void
4130 Output_file::open(off_t file_size)
4131 {
4132 this->file_size_ = file_size;
4133
4134 // Unlink the file first; otherwise the open() may fail if the file
4135 // is busy (e.g. it's an executable that's currently being executed).
4136 //
4137 // However, the linker may be part of a system where a zero-length
4138 // file is created for it to write to, with tight permissions (gcc
4139 // 2.95 did something like this). Unlinking the file would work
4140 // around those permission controls, so we only unlink if the file
4141 // has a non-zero size. We also unlink only regular files to avoid
4142 // trouble with directories/etc.
4143 //
4144 // If we fail, continue; this command is merely a best-effort attempt
4145 // to improve the odds for open().
4146
4147 // We let the name "-" mean "stdout"
4148 if (!this->is_temporary_)
4149 {
4150 if (strcmp(this->name_, "-") == 0)
4151 this->o_ = STDOUT_FILENO;
4152 else
4153 {
4154 struct stat s;
4155 if (::stat(this->name_, &s) == 0
4156 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4157 {
4158 if (s.st_size != 0)
4159 ::unlink(this->name_);
4160 else if (!parameters->options().relocatable())
4161 {
4162 // If we don't unlink the existing file, add execute
4163 // permission where read permissions already exist
4164 // and where the umask permits.
4165 int mask = ::umask(0);
4166 ::umask(mask);
4167 s.st_mode |= (s.st_mode & 0444) >> 2;
4168 ::chmod(this->name_, s.st_mode & ~mask);
4169 }
4170 }
4171
4172 int mode = parameters->options().relocatable() ? 0666 : 0777;
4173 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4174 mode);
4175 if (o < 0)
4176 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4177 this->o_ = o;
4178 }
4179 }
4180
4181 this->map();
4182 }
4183
4184 // Resize the output file.
4185
4186 void
4187 Output_file::resize(off_t file_size)
4188 {
4189 // If the mmap is mapping an anonymous memory buffer, this is easy:
4190 // just mremap to the new size. If it's mapping to a file, we want
4191 // to unmap to flush to the file, then remap after growing the file.
4192 if (this->map_is_anonymous_)
4193 {
4194 void* base = ::mremap(this->base_, this->file_size_, file_size,
4195 MREMAP_MAYMOVE);
4196 if (base == MAP_FAILED)
4197 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4198 this->base_ = static_cast<unsigned char*>(base);
4199 this->file_size_ = file_size;
4200 }
4201 else
4202 {
4203 this->unmap();
4204 this->file_size_ = file_size;
4205 if (!this->map_no_anonymous())
4206 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4207 }
4208 }
4209
4210 // Map an anonymous block of memory which will later be written to the
4211 // file. Return whether the map succeeded.
4212
4213 bool
4214 Output_file::map_anonymous()
4215 {
4216 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4217 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4218 if (base != MAP_FAILED)
4219 {
4220 this->map_is_anonymous_ = true;
4221 this->base_ = static_cast<unsigned char*>(base);
4222 return true;
4223 }
4224 return false;
4225 }
4226
4227 // Map the file into memory. Return whether the mapping succeeded.
4228
4229 bool
4230 Output_file::map_no_anonymous()
4231 {
4232 const int o = this->o_;
4233
4234 // If the output file is not a regular file, don't try to mmap it;
4235 // instead, we'll mmap a block of memory (an anonymous buffer), and
4236 // then later write the buffer to the file.
4237 void* base;
4238 struct stat statbuf;
4239 if (o == STDOUT_FILENO || o == STDERR_FILENO
4240 || ::fstat(o, &statbuf) != 0
4241 || !S_ISREG(statbuf.st_mode)
4242 || this->is_temporary_)
4243 return false;
4244
4245 // Ensure that we have disk space available for the file. If we
4246 // don't do this, it is possible that we will call munmap, close,
4247 // and exit with dirty buffers still in the cache with no assigned
4248 // disk blocks. If the disk is out of space at that point, the
4249 // output file will wind up incomplete, but we will have already
4250 // exited. The alternative to fallocate would be to use fdatasync,
4251 // but that would be a more significant performance hit.
4252 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4253 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4254
4255 // Map the file into memory.
4256 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4257 MAP_SHARED, o, 0);
4258
4259 // The mmap call might fail because of file system issues: the file
4260 // system might not support mmap at all, or it might not support
4261 // mmap with PROT_WRITE.
4262 if (base == MAP_FAILED)
4263 return false;
4264
4265 this->map_is_anonymous_ = false;
4266 this->base_ = static_cast<unsigned char*>(base);
4267 return true;
4268 }
4269
4270 // Map the file into memory.
4271
4272 void
4273 Output_file::map()
4274 {
4275 if (this->map_no_anonymous())
4276 return;
4277
4278 // The mmap call might fail because of file system issues: the file
4279 // system might not support mmap at all, or it might not support
4280 // mmap with PROT_WRITE. I'm not sure which errno values we will
4281 // see in all cases, so if the mmap fails for any reason and we
4282 // don't care about file contents, try for an anonymous map.
4283 if (this->map_anonymous())
4284 return;
4285
4286 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4287 this->name_, static_cast<unsigned long>(this->file_size_),
4288 strerror(errno));
4289 }
4290
4291 // Unmap the file from memory.
4292
4293 void
4294 Output_file::unmap()
4295 {
4296 if (::munmap(this->base_, this->file_size_) < 0)
4297 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4298 this->base_ = NULL;
4299 }
4300
4301 // Close the output file.
4302
4303 void
4304 Output_file::close()
4305 {
4306 // If the map isn't file-backed, we need to write it now.
4307 if (this->map_is_anonymous_ && !this->is_temporary_)
4308 {
4309 size_t bytes_to_write = this->file_size_;
4310 size_t offset = 0;
4311 while (bytes_to_write > 0)
4312 {
4313 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4314 bytes_to_write);
4315 if (bytes_written == 0)
4316 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4317 else if (bytes_written < 0)
4318 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4319 else
4320 {
4321 bytes_to_write -= bytes_written;
4322 offset += bytes_written;
4323 }
4324 }
4325 }
4326 this->unmap();
4327
4328 // We don't close stdout or stderr
4329 if (this->o_ != STDOUT_FILENO
4330 && this->o_ != STDERR_FILENO
4331 && !this->is_temporary_)
4332 if (::close(this->o_) < 0)
4333 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4334 this->o_ = -1;
4335 }
4336
4337 // Instantiate the templates we need. We could use the configure
4338 // script to restrict this to only the ones for implemented targets.
4339
4340 #ifdef HAVE_TARGET_32_LITTLE
4341 template
4342 off_t
4343 Output_section::add_input_section<32, false>(
4344 Sized_relobj<32, false>* object,
4345 unsigned int shndx,
4346 const char* secname,
4347 const elfcpp::Shdr<32, false>& shdr,
4348 unsigned int reloc_shndx,
4349 bool have_sections_script);
4350 #endif
4351
4352 #ifdef HAVE_TARGET_32_BIG
4353 template
4354 off_t
4355 Output_section::add_input_section<32, true>(
4356 Sized_relobj<32, true>* object,
4357 unsigned int shndx,
4358 const char* secname,
4359 const elfcpp::Shdr<32, true>& shdr,
4360 unsigned int reloc_shndx,
4361 bool have_sections_script);
4362 #endif
4363
4364 #ifdef HAVE_TARGET_64_LITTLE
4365 template
4366 off_t
4367 Output_section::add_input_section<64, false>(
4368 Sized_relobj<64, false>* object,
4369 unsigned int shndx,
4370 const char* secname,
4371 const elfcpp::Shdr<64, false>& shdr,
4372 unsigned int reloc_shndx,
4373 bool have_sections_script);
4374 #endif
4375
4376 #ifdef HAVE_TARGET_64_BIG
4377 template
4378 off_t
4379 Output_section::add_input_section<64, true>(
4380 Sized_relobj<64, true>* object,
4381 unsigned int shndx,
4382 const char* secname,
4383 const elfcpp::Shdr<64, true>& shdr,
4384 unsigned int reloc_shndx,
4385 bool have_sections_script);
4386 #endif
4387
4388 #ifdef HAVE_TARGET_32_LITTLE
4389 template
4390 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4391 #endif
4392
4393 #ifdef HAVE_TARGET_32_BIG
4394 template
4395 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4396 #endif
4397
4398 #ifdef HAVE_TARGET_64_LITTLE
4399 template
4400 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4401 #endif
4402
4403 #ifdef HAVE_TARGET_64_BIG
4404 template
4405 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4406 #endif
4407
4408 #ifdef HAVE_TARGET_32_LITTLE
4409 template
4410 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4411 #endif
4412
4413 #ifdef HAVE_TARGET_32_BIG
4414 template
4415 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4416 #endif
4417
4418 #ifdef HAVE_TARGET_64_LITTLE
4419 template
4420 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4421 #endif
4422
4423 #ifdef HAVE_TARGET_64_BIG
4424 template
4425 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4426 #endif
4427
4428 #ifdef HAVE_TARGET_32_LITTLE
4429 template
4430 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4431 #endif
4432
4433 #ifdef HAVE_TARGET_32_BIG
4434 template
4435 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4436 #endif
4437
4438 #ifdef HAVE_TARGET_64_LITTLE
4439 template
4440 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4441 #endif
4442
4443 #ifdef HAVE_TARGET_64_BIG
4444 template
4445 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4446 #endif
4447
4448 #ifdef HAVE_TARGET_32_LITTLE
4449 template
4450 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4451 #endif
4452
4453 #ifdef HAVE_TARGET_32_BIG
4454 template
4455 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4456 #endif
4457
4458 #ifdef HAVE_TARGET_64_LITTLE
4459 template
4460 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4461 #endif
4462
4463 #ifdef HAVE_TARGET_64_BIG
4464 template
4465 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4466 #endif
4467
4468 #ifdef HAVE_TARGET_32_LITTLE
4469 template
4470 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4471 #endif
4472
4473 #ifdef HAVE_TARGET_32_BIG
4474 template
4475 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4476 #endif
4477
4478 #ifdef HAVE_TARGET_64_LITTLE
4479 template
4480 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4481 #endif
4482
4483 #ifdef HAVE_TARGET_64_BIG
4484 template
4485 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4486 #endif
4487
4488 #ifdef HAVE_TARGET_32_LITTLE
4489 template
4490 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4491 #endif
4492
4493 #ifdef HAVE_TARGET_32_BIG
4494 template
4495 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4496 #endif
4497
4498 #ifdef HAVE_TARGET_64_LITTLE
4499 template
4500 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4501 #endif
4502
4503 #ifdef HAVE_TARGET_64_BIG
4504 template
4505 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4506 #endif
4507
4508 #ifdef HAVE_TARGET_32_LITTLE
4509 template
4510 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4511 #endif
4512
4513 #ifdef HAVE_TARGET_32_BIG
4514 template
4515 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4516 #endif
4517
4518 #ifdef HAVE_TARGET_64_LITTLE
4519 template
4520 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4521 #endif
4522
4523 #ifdef HAVE_TARGET_64_BIG
4524 template
4525 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4526 #endif
4527
4528 #ifdef HAVE_TARGET_32_LITTLE
4529 template
4530 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4531 #endif
4532
4533 #ifdef HAVE_TARGET_32_BIG
4534 template
4535 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4536 #endif
4537
4538 #ifdef HAVE_TARGET_64_LITTLE
4539 template
4540 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4541 #endif
4542
4543 #ifdef HAVE_TARGET_64_BIG
4544 template
4545 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4546 #endif
4547
4548 #ifdef HAVE_TARGET_32_LITTLE
4549 template
4550 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4551 #endif
4552
4553 #ifdef HAVE_TARGET_32_BIG
4554 template
4555 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4556 #endif
4557
4558 #ifdef HAVE_TARGET_64_LITTLE
4559 template
4560 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4561 #endif
4562
4563 #ifdef HAVE_TARGET_64_BIG
4564 template
4565 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4566 #endif
4567
4568 #ifdef HAVE_TARGET_32_LITTLE
4569 template
4570 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4571 #endif
4572
4573 #ifdef HAVE_TARGET_32_BIG
4574 template
4575 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4576 #endif
4577
4578 #ifdef HAVE_TARGET_64_LITTLE
4579 template
4580 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4581 #endif
4582
4583 #ifdef HAVE_TARGET_64_BIG
4584 template
4585 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4586 #endif
4587
4588 #ifdef HAVE_TARGET_32_LITTLE
4589 template
4590 class Output_data_group<32, false>;
4591 #endif
4592
4593 #ifdef HAVE_TARGET_32_BIG
4594 template
4595 class Output_data_group<32, true>;
4596 #endif
4597
4598 #ifdef HAVE_TARGET_64_LITTLE
4599 template
4600 class Output_data_group<64, false>;
4601 #endif
4602
4603 #ifdef HAVE_TARGET_64_BIG
4604 template
4605 class Output_data_group<64, true>;
4606 #endif
4607
4608 #ifdef HAVE_TARGET_32_LITTLE
4609 template
4610 class Output_data_got<32, false>;
4611 #endif
4612
4613 #ifdef HAVE_TARGET_32_BIG
4614 template
4615 class Output_data_got<32, true>;
4616 #endif
4617
4618 #ifdef HAVE_TARGET_64_LITTLE
4619 template
4620 class Output_data_got<64, false>;
4621 #endif
4622
4623 #ifdef HAVE_TARGET_64_BIG
4624 template
4625 class Output_data_got<64, true>;
4626 #endif
4627
4628 } // End namespace gold.
This page took 0.186789 seconds and 5 git commands to generate.