* i386.cc (Output_data_plt_i386::address_for_global,
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstring>
28 #include <cerrno>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33
34 #ifdef HAVE_SYS_MMAN_H
35 #include <sys/mman.h>
36 #endif
37
38 #include "libiberty.h"
39
40 #include "dwarf.h"
41 #include "parameters.h"
42 #include "object.h"
43 #include "symtab.h"
44 #include "reloc.h"
45 #include "merge.h"
46 #include "descriptors.h"
47 #include "layout.h"
48 #include "output.h"
49
50 // For systems without mmap support.
51 #ifndef HAVE_MMAP
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
55 # ifndef MAP_FAILED
56 # define MAP_FAILED (reinterpret_cast<void*>(-1))
57 # endif
58 # ifndef PROT_READ
59 # define PROT_READ 0
60 # endif
61 # ifndef PROT_WRITE
62 # define PROT_WRITE 0
63 # endif
64 # ifndef MAP_PRIVATE
65 # define MAP_PRIVATE 0
66 # endif
67 # ifndef MAP_ANONYMOUS
68 # define MAP_ANONYMOUS 0
69 # endif
70 # ifndef MAP_SHARED
71 # define MAP_SHARED 0
72 # endif
73
74 # ifndef ENOSYS
75 # define ENOSYS EINVAL
76 # endif
77
78 static void *
79 gold_mmap(void *, size_t, int, int, int, off_t)
80 {
81 errno = ENOSYS;
82 return MAP_FAILED;
83 }
84
85 static int
86 gold_munmap(void *, size_t)
87 {
88 errno = ENOSYS;
89 return -1;
90 }
91
92 static void *
93 gold_mremap(void *, size_t, size_t, int)
94 {
95 errno = ENOSYS;
96 return MAP_FAILED;
97 }
98
99 #endif
100
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
104 #endif
105
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS MAP_ANON
109 #endif
110
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
113 #endif
114
115 // Mingw does not have S_ISLNK.
116 #ifndef S_ISLNK
117 # define S_ISLNK(mode) 0
118 #endif
119
120 namespace gold
121 {
122
123 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly. If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
127
128 static int
129 gold_fallocate(int o, off_t offset, off_t len)
130 {
131 #ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
137 return 0;
138 #endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
140 return errno;
141 return 0;
142 }
143
144 // Output_data variables.
145
146 bool Output_data::allocated_sizes_are_fixed;
147
148 // Output_data methods.
149
150 Output_data::~Output_data()
151 {
152 }
153
154 // Return the default alignment for the target size.
155
156 uint64_t
157 Output_data::default_alignment()
158 {
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
161 }
162
163 // Return the default alignment for a size--32 or 64.
164
165 uint64_t
166 Output_data::default_alignment_for_size(int size)
167 {
168 if (size == 32)
169 return 4;
170 else if (size == 64)
171 return 8;
172 else
173 gold_unreachable();
174 }
175
176 // Output_section_header methods. This currently assumes that the
177 // segment and section lists are complete at construction time.
178
179 Output_section_headers::Output_section_headers(
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
182 const Layout::Section_list* section_list,
183 const Layout::Section_list* unattached_section_list,
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
186 : layout_(layout),
187 segment_list_(segment_list),
188 section_list_(section_list),
189 unattached_section_list_(unattached_section_list),
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
192 {
193 }
194
195 // Compute the current data size.
196
197 off_t
198 Output_section_headers::do_size() const
199 {
200 // Count all the sections. Start with 1 for the null section.
201 off_t count = 1;
202 if (!parameters->options().relocatable())
203 {
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
207 ++p)
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
210 }
211 else
212 {
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
216 ++p)
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218 ++count;
219 }
220 count += this->unattached_section_list_->size();
221
222 const int size = parameters->target().get_size();
223 int shdr_size;
224 if (size == 32)
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 else if (size == 64)
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228 else
229 gold_unreachable();
230
231 return count * shdr_size;
232 }
233
234 // Write out the section headers.
235
236 void
237 Output_section_headers::do_write(Output_file* of)
238 {
239 switch (parameters->size_and_endianness())
240 {
241 #ifdef HAVE_TARGET_32_LITTLE
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
244 break;
245 #endif
246 #ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
249 break;
250 #endif
251 #ifdef HAVE_TARGET_64_LITTLE
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
254 break;
255 #endif
256 #ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
259 break;
260 #endif
261 default:
262 gold_unreachable();
263 }
264 }
265
266 template<int size, bool big_endian>
267 void
268 Output_section_headers::do_sized_write(Output_file* of)
269 {
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
275
276 {
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
283
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
288 else
289 oshdr.put_sh_size(section_count);
290
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
294 else
295 oshdr.put_sh_link(shstrndx);
296
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
302 }
303
304 v += shdr_size;
305
306 unsigned int shndx = 1;
307 if (!parameters->options().relocatable())
308 {
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
312 ++p)
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314 this->secnamepool_,
315 v,
316 &shndx);
317 }
318 else
319 {
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
323 ++p)
324 {
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
329 continue;
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333 v += shdr_size;
334 ++shndx;
335 }
336 }
337
338 for (Layout::Section_list::const_iterator p =
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
341 ++p)
342 {
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
346 && parameters->options().relocatable())
347 continue;
348 gold_assert(shndx == (*p)->out_shndx());
349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
351 v += shdr_size;
352 ++shndx;
353 }
354
355 of->write_output_view(this->offset(), all_shdrs_size, view);
356 }
357
358 // Output_segment_header methods.
359
360 Output_segment_headers::Output_segment_headers(
361 const Layout::Segment_list& segment_list)
362 : segment_list_(segment_list)
363 {
364 this->set_current_data_size_for_child(this->do_size());
365 }
366
367 void
368 Output_segment_headers::do_write(Output_file* of)
369 {
370 switch (parameters->size_and_endianness())
371 {
372 #ifdef HAVE_TARGET_32_LITTLE
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
375 break;
376 #endif
377 #ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
380 break;
381 #endif
382 #ifdef HAVE_TARGET_64_LITTLE
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
385 break;
386 #endif
387 #ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
390 break;
391 #endif
392 default:
393 gold_unreachable();
394 }
395 }
396
397 template<int size, bool big_endian>
398 void
399 Output_segment_headers::do_sized_write(Output_file* of)
400 {
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403 gold_assert(all_phdrs_size == this->data_size());
404 unsigned char* view = of->get_output_view(this->offset(),
405 all_phdrs_size);
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
409 ++p)
410 {
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
413 v += phdr_size;
414 }
415
416 gold_assert(v - view == all_phdrs_size);
417
418 of->write_output_view(this->offset(), all_phdrs_size, view);
419 }
420
421 off_t
422 Output_segment_headers::do_size() const
423 {
424 const int size = parameters->target().get_size();
425 int phdr_size;
426 if (size == 32)
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 else if (size == 64)
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430 else
431 gold_unreachable();
432
433 return this->segment_list_.size() * phdr_size;
434 }
435
436 // Output_file_header methods.
437
438 Output_file_header::Output_file_header(const Target* target,
439 const Symbol_table* symtab,
440 const Output_segment_headers* osh)
441 : target_(target),
442 symtab_(symtab),
443 segment_header_(osh),
444 section_header_(NULL),
445 shstrtab_(NULL)
446 {
447 this->set_data_size(this->do_size());
448 }
449
450 // Set the section table information for a file header.
451
452 void
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
455 {
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
458 }
459
460 // Write out the file header.
461
462 void
463 Output_file_header::do_write(Output_file* of)
464 {
465 gold_assert(this->offset() == 0);
466
467 switch (parameters->size_and_endianness())
468 {
469 #ifdef HAVE_TARGET_32_LITTLE
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
472 break;
473 #endif
474 #ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
477 break;
478 #endif
479 #ifdef HAVE_TARGET_64_LITTLE
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
482 break;
483 #endif
484 #ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
487 break;
488 #endif
489 default:
490 gold_unreachable();
491 }
492 }
493
494 // Write out the file header with appropriate size and endianness.
495
496 template<int size, bool big_endian>
497 void
498 Output_file_header::do_sized_write(Output_file* of)
499 {
500 gold_assert(this->offset() == 0);
501
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 if (size == 32)
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 else if (size == 64)
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516 else
517 gold_unreachable();
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522 oehdr.put_e_ident(e_ident);
523
524 elfcpp::ET e_type;
525 if (parameters->options().relocatable())
526 e_type = elfcpp::ET_REL;
527 else if (parameters->options().output_is_position_independent())
528 e_type = elfcpp::ET_DYN;
529 else
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
532
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
535
536 oehdr.put_e_entry(this->entry<size>());
537
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
540 else
541 oehdr.put_e_phoff(this->segment_header_->offset());
542
543 oehdr.put_e_shoff(this->section_header_->offset());
544 oehdr.put_e_flags(this->target_->processor_specific_flags());
545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546
547 if (this->segment_header_ == NULL)
548 {
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
551 }
552 else
553 {
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
560 }
561
562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
565
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
569 else
570 oehdr.put_e_shnum(0);
571
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 else
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
581
582 of->write_output_view(0, ehdr_size, view);
583 }
584
585 // Return the value to use for the entry address.
586
587 template<int size>
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
590 {
591 const bool should_issue_warning = (parameters->options().entry() != NULL
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
594 const char* entry = parameters->entry();
595 Symbol* sym = this->symtab_->lookup(entry);
596
597 typename Sized_symbol<size>::Value_type v;
598 if (sym != NULL)
599 {
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
603 gold_warning("entry symbol '%s' exists but is not defined", entry);
604 v = ssym->value();
605 }
606 else
607 {
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
610 char* endptr;
611 v = strtoull(entry, &endptr, 0);
612 if (*endptr != '\0')
613 {
614 if (should_issue_warning)
615 gold_warning("cannot find entry symbol '%s'", entry);
616 v = 0;
617 }
618 }
619
620 return v;
621 }
622
623 // Compute the current data size.
624
625 off_t
626 Output_file_header::do_size() const
627 {
628 const int size = parameters->target().get_size();
629 if (size == 32)
630 return elfcpp::Elf_sizes<32>::ehdr_size;
631 else if (size == 64)
632 return elfcpp::Elf_sizes<64>::ehdr_size;
633 else
634 gold_unreachable();
635 }
636
637 // Output_data_const methods.
638
639 void
640 Output_data_const::do_write(Output_file* of)
641 {
642 of->write(this->offset(), this->data_.data(), this->data_.size());
643 }
644
645 // Output_data_const_buffer methods.
646
647 void
648 Output_data_const_buffer::do_write(Output_file* of)
649 {
650 of->write(this->offset(), this->p_, this->data_size());
651 }
652
653 // Output_section_data methods.
654
655 // Record the output section, and set the entry size and such.
656
657 void
658 Output_section_data::set_output_section(Output_section* os)
659 {
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
663 }
664
665 // Return the section index of the output section.
666
667 unsigned int
668 Output_section_data::do_out_shndx() const
669 {
670 gold_assert(this->output_section_ != NULL);
671 return this->output_section_->out_shndx();
672 }
673
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
676
677 void
678 Output_section_data::set_addralign(uint64_t addralign)
679 {
680 this->addralign_ = addralign;
681 if (this->output_section_ != NULL
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
684 }
685
686 // Output_data_strtab methods.
687
688 // Set the final data size.
689
690 void
691 Output_data_strtab::set_final_data_size()
692 {
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
695 }
696
697 // Write out a string table.
698
699 void
700 Output_data_strtab::do_write(Output_file* of)
701 {
702 this->strtab_->write(of, this->offset());
703 }
704
705 // Output_reloc methods.
706
707 // A reloc against a global symbol.
708
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711 Symbol* gsym,
712 unsigned int type,
713 Output_data* od,
714 Address address,
715 bool is_relative,
716 bool is_symbolless,
717 bool use_plt_offset)
718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719 is_relative_(is_relative), is_symbolless_(is_symbolless),
720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 {
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
724 this->u1_.gsym = gsym;
725 this->u2_.od = od;
726 if (dynamic)
727 this->set_needs_dynsym_index();
728 }
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Symbol* gsym,
733 unsigned int type,
734 Sized_relobj<size, big_endian>* relobj,
735 unsigned int shndx,
736 Address address,
737 bool is_relative,
738 bool is_symbolless,
739 bool use_plt_offset)
740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741 is_relative_(is_relative), is_symbolless_(is_symbolless),
742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 {
744 gold_assert(shndx != INVALID_CODE);
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
749 if (dynamic)
750 this->set_needs_dynsym_index();
751 }
752
753 // A reloc against a local symbol.
754
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
759 unsigned int type,
760 Output_data* od,
761 Address address,
762 bool is_relative,
763 bool is_symbolless,
764 bool is_section_symbol,
765 bool use_plt_offset)
766 : address_(address), local_sym_index_(local_sym_index), type_(type),
767 is_relative_(is_relative), is_symbolless_(is_symbolless),
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769 shndx_(INVALID_CODE)
770 {
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
775 this->u1_.relobj = relobj;
776 this->u2_.od = od;
777 if (dynamic)
778 this->set_needs_dynsym_index();
779 }
780
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
785 unsigned int type,
786 unsigned int shndx,
787 Address address,
788 bool is_relative,
789 bool is_symbolless,
790 bool is_section_symbol,
791 bool use_plt_offset)
792 : address_(address), local_sym_index_(local_sym_index), type_(type),
793 is_relative_(is_relative), is_symbolless_(is_symbolless),
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795 shndx_(shndx)
796 {
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
804 if (dynamic)
805 this->set_needs_dynsym_index();
806 }
807
808 // A reloc against the STT_SECTION symbol of an output section.
809
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812 Output_section* os,
813 unsigned int type,
814 Output_data* od,
815 Address address,
816 bool is_relative)
817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818 is_relative_(is_relative), is_symbolless_(is_relative),
819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 {
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
823 this->u1_.os = os;
824 this->u2_.od = od;
825 if (dynamic)
826 this->set_needs_dynsym_index();
827 else
828 os->set_needs_symtab_index();
829 }
830
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Output_section* os,
834 unsigned int type,
835 Sized_relobj<size, big_endian>* relobj,
836 unsigned int shndx,
837 Address address,
838 bool is_relative)
839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840 is_relative_(is_relative), is_symbolless_(is_relative),
841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 {
843 gold_assert(shndx != INVALID_CODE);
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
846 this->u1_.os = os;
847 this->u2_.relobj = relobj;
848 if (dynamic)
849 this->set_needs_dynsym_index();
850 else
851 os->set_needs_symtab_index();
852 }
853
854 // An absolute relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 unsigned int type,
859 Output_data* od,
860 Address address)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(false), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address)
877 : address_(address), local_sym_index_(0), type_(type),
878 is_relative_(false), is_symbolless_(false),
879 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
880 {
881 gold_assert(shndx != INVALID_CODE);
882 // this->type_ is a bitfield; make sure TYPE fits.
883 gold_assert(this->type_ == type);
884 this->u1_.relobj = NULL;
885 this->u2_.relobj = relobj;
886 }
887
888 // A target specific relocation.
889
890 template<bool dynamic, int size, bool big_endian>
891 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
892 unsigned int type,
893 void* arg,
894 Output_data* od,
895 Address address)
896 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
897 is_relative_(false), is_symbolless_(false),
898 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
899 {
900 // this->type_ is a bitfield; make sure TYPE fits.
901 gold_assert(this->type_ == type);
902 this->u1_.arg = arg;
903 this->u2_.od = od;
904 }
905
906 template<bool dynamic, int size, bool big_endian>
907 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
908 unsigned int type,
909 void* arg,
910 Sized_relobj<size, big_endian>* relobj,
911 unsigned int shndx,
912 Address address)
913 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
914 is_relative_(false), is_symbolless_(false),
915 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
916 {
917 gold_assert(shndx != INVALID_CODE);
918 // this->type_ is a bitfield; make sure TYPE fits.
919 gold_assert(this->type_ == type);
920 this->u1_.arg = arg;
921 this->u2_.relobj = relobj;
922 }
923
924 // Record that we need a dynamic symbol index for this relocation.
925
926 template<bool dynamic, int size, bool big_endian>
927 void
928 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
929 set_needs_dynsym_index()
930 {
931 if (this->is_symbolless_)
932 return;
933 switch (this->local_sym_index_)
934 {
935 case INVALID_CODE:
936 gold_unreachable();
937
938 case GSYM_CODE:
939 this->u1_.gsym->set_needs_dynsym_entry();
940 break;
941
942 case SECTION_CODE:
943 this->u1_.os->set_needs_dynsym_index();
944 break;
945
946 case TARGET_CODE:
947 // The target must take care of this if necessary.
948 break;
949
950 case 0:
951 break;
952
953 default:
954 {
955 const unsigned int lsi = this->local_sym_index_;
956 Sized_relobj_file<size, big_endian>* relobj =
957 this->u1_.relobj->sized_relobj();
958 gold_assert(relobj != NULL);
959 if (!this->is_section_symbol_)
960 relobj->set_needs_output_dynsym_entry(lsi);
961 else
962 relobj->output_section(lsi)->set_needs_dynsym_index();
963 }
964 break;
965 }
966 }
967
968 // Get the symbol index of a relocation.
969
970 template<bool dynamic, int size, bool big_endian>
971 unsigned int
972 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
973 const
974 {
975 unsigned int index;
976 if (this->is_symbolless_)
977 return 0;
978 switch (this->local_sym_index_)
979 {
980 case INVALID_CODE:
981 gold_unreachable();
982
983 case GSYM_CODE:
984 if (this->u1_.gsym == NULL)
985 index = 0;
986 else if (dynamic)
987 index = this->u1_.gsym->dynsym_index();
988 else
989 index = this->u1_.gsym->symtab_index();
990 break;
991
992 case SECTION_CODE:
993 if (dynamic)
994 index = this->u1_.os->dynsym_index();
995 else
996 index = this->u1_.os->symtab_index();
997 break;
998
999 case TARGET_CODE:
1000 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1001 this->type_);
1002 break;
1003
1004 case 0:
1005 // Relocations without symbols use a symbol index of 0.
1006 index = 0;
1007 break;
1008
1009 default:
1010 {
1011 const unsigned int lsi = this->local_sym_index_;
1012 Sized_relobj_file<size, big_endian>* relobj =
1013 this->u1_.relobj->sized_relobj();
1014 gold_assert(relobj != NULL);
1015 if (!this->is_section_symbol_)
1016 {
1017 if (dynamic)
1018 index = relobj->dynsym_index(lsi);
1019 else
1020 index = relobj->symtab_index(lsi);
1021 }
1022 else
1023 {
1024 Output_section* os = relobj->output_section(lsi);
1025 gold_assert(os != NULL);
1026 if (dynamic)
1027 index = os->dynsym_index();
1028 else
1029 index = os->symtab_index();
1030 }
1031 }
1032 break;
1033 }
1034 gold_assert(index != -1U);
1035 return index;
1036 }
1037
1038 // For a local section symbol, get the address of the offset ADDEND
1039 // within the input section.
1040
1041 template<bool dynamic, int size, bool big_endian>
1042 typename elfcpp::Elf_types<size>::Elf_Addr
1043 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1044 local_section_offset(Addend addend) const
1045 {
1046 gold_assert(this->local_sym_index_ != GSYM_CODE
1047 && this->local_sym_index_ != SECTION_CODE
1048 && this->local_sym_index_ != TARGET_CODE
1049 && this->local_sym_index_ != INVALID_CODE
1050 && this->local_sym_index_ != 0
1051 && this->is_section_symbol_);
1052 const unsigned int lsi = this->local_sym_index_;
1053 Output_section* os = this->u1_.relobj->output_section(lsi);
1054 gold_assert(os != NULL);
1055 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1056 if (offset != invalid_address)
1057 return offset + addend;
1058 // This is a merge section.
1059 Sized_relobj_file<size, big_endian>* relobj =
1060 this->u1_.relobj->sized_relobj();
1061 gold_assert(relobj != NULL);
1062 offset = os->output_address(relobj, lsi, addend);
1063 gold_assert(offset != invalid_address);
1064 return offset;
1065 }
1066
1067 // Get the output address of a relocation.
1068
1069 template<bool dynamic, int size, bool big_endian>
1070 typename elfcpp::Elf_types<size>::Elf_Addr
1071 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1072 {
1073 Address address = this->address_;
1074 if (this->shndx_ != INVALID_CODE)
1075 {
1076 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1077 gold_assert(os != NULL);
1078 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1079 if (off != invalid_address)
1080 address += os->address() + off;
1081 else
1082 {
1083 Sized_relobj_file<size, big_endian>* relobj =
1084 this->u2_.relobj->sized_relobj();
1085 gold_assert(relobj != NULL);
1086 address = os->output_address(relobj, this->shndx_, address);
1087 gold_assert(address != invalid_address);
1088 }
1089 }
1090 else if (this->u2_.od != NULL)
1091 address += this->u2_.od->address();
1092 return address;
1093 }
1094
1095 // Write out the offset and info fields of a Rel or Rela relocation
1096 // entry.
1097
1098 template<bool dynamic, int size, bool big_endian>
1099 template<typename Write_rel>
1100 void
1101 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1102 Write_rel* wr) const
1103 {
1104 wr->put_r_offset(this->get_address());
1105 unsigned int sym_index = this->get_symbol_index();
1106 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1107 }
1108
1109 // Write out a Rel relocation.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 void
1113 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1114 unsigned char* pov) const
1115 {
1116 elfcpp::Rel_write<size, big_endian> orel(pov);
1117 this->write_rel(&orel);
1118 }
1119
1120 // Get the value of the symbol referred to by a Rel relocation.
1121
1122 template<bool dynamic, int size, bool big_endian>
1123 typename elfcpp::Elf_types<size>::Elf_Addr
1124 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1125 Addend addend) const
1126 {
1127 if (this->local_sym_index_ == GSYM_CODE)
1128 {
1129 const Sized_symbol<size>* sym;
1130 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1131 if (this->use_plt_offset_ && sym->has_plt_offset())
1132 return parameters->target().plt_address_for_global(sym);
1133 else
1134 return sym->value() + addend;
1135 }
1136 if (this->local_sym_index_ == SECTION_CODE)
1137 {
1138 gold_assert(!this->use_plt_offset_);
1139 return this->u1_.os->address() + addend;
1140 }
1141 gold_assert(this->local_sym_index_ != TARGET_CODE
1142 && this->local_sym_index_ != INVALID_CODE
1143 && this->local_sym_index_ != 0
1144 && !this->is_section_symbol_);
1145 const unsigned int lsi = this->local_sym_index_;
1146 Sized_relobj_file<size, big_endian>* relobj =
1147 this->u1_.relobj->sized_relobj();
1148 gold_assert(relobj != NULL);
1149 if (this->use_plt_offset_)
1150 return parameters->target().plt_address_for_local(relobj, lsi);
1151 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1152 return symval->value(relobj, addend);
1153 }
1154
1155 // Reloc comparison. This function sorts the dynamic relocs for the
1156 // benefit of the dynamic linker. First we sort all relative relocs
1157 // to the front. Among relative relocs, we sort by output address.
1158 // Among non-relative relocs, we sort by symbol index, then by output
1159 // address.
1160
1161 template<bool dynamic, int size, bool big_endian>
1162 int
1163 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1164 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1165 const
1166 {
1167 if (this->is_relative_)
1168 {
1169 if (!r2.is_relative_)
1170 return -1;
1171 // Otherwise sort by reloc address below.
1172 }
1173 else if (r2.is_relative_)
1174 return 1;
1175 else
1176 {
1177 unsigned int sym1 = this->get_symbol_index();
1178 unsigned int sym2 = r2.get_symbol_index();
1179 if (sym1 < sym2)
1180 return -1;
1181 else if (sym1 > sym2)
1182 return 1;
1183 // Otherwise sort by reloc address.
1184 }
1185
1186 section_offset_type addr1 = this->get_address();
1187 section_offset_type addr2 = r2.get_address();
1188 if (addr1 < addr2)
1189 return -1;
1190 else if (addr1 > addr2)
1191 return 1;
1192
1193 // Final tie breaker, in order to generate the same output on any
1194 // host: reloc type.
1195 unsigned int type1 = this->type_;
1196 unsigned int type2 = r2.type_;
1197 if (type1 < type2)
1198 return -1;
1199 else if (type1 > type2)
1200 return 1;
1201
1202 // These relocs appear to be exactly the same.
1203 return 0;
1204 }
1205
1206 // Write out a Rela relocation.
1207
1208 template<bool dynamic, int size, bool big_endian>
1209 void
1210 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1211 unsigned char* pov) const
1212 {
1213 elfcpp::Rela_write<size, big_endian> orel(pov);
1214 this->rel_.write_rel(&orel);
1215 Addend addend = this->addend_;
1216 if (this->rel_.is_target_specific())
1217 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1218 this->rel_.type(), addend);
1219 else if (this->rel_.is_symbolless())
1220 addend = this->rel_.symbol_value(addend);
1221 else if (this->rel_.is_local_section_symbol())
1222 addend = this->rel_.local_section_offset(addend);
1223 orel.put_r_addend(addend);
1224 }
1225
1226 // Output_data_reloc_base methods.
1227
1228 // Adjust the output section.
1229
1230 template<int sh_type, bool dynamic, int size, bool big_endian>
1231 void
1232 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1233 ::do_adjust_output_section(Output_section* os)
1234 {
1235 if (sh_type == elfcpp::SHT_REL)
1236 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1237 else if (sh_type == elfcpp::SHT_RELA)
1238 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1239 else
1240 gold_unreachable();
1241
1242 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1243 // static link. The backends will generate a dynamic reloc section
1244 // to hold this. In that case we don't want to link to the dynsym
1245 // section, because there isn't one.
1246 if (!dynamic)
1247 os->set_should_link_to_symtab();
1248 else if (parameters->doing_static_link())
1249 ;
1250 else
1251 os->set_should_link_to_dynsym();
1252 }
1253
1254 // Write out relocation data.
1255
1256 template<int sh_type, bool dynamic, int size, bool big_endian>
1257 void
1258 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1259 Output_file* of)
1260 {
1261 const off_t off = this->offset();
1262 const off_t oview_size = this->data_size();
1263 unsigned char* const oview = of->get_output_view(off, oview_size);
1264
1265 if (this->sort_relocs())
1266 {
1267 gold_assert(dynamic);
1268 std::sort(this->relocs_.begin(), this->relocs_.end(),
1269 Sort_relocs_comparison());
1270 }
1271
1272 unsigned char* pov = oview;
1273 for (typename Relocs::const_iterator p = this->relocs_.begin();
1274 p != this->relocs_.end();
1275 ++p)
1276 {
1277 p->write(pov);
1278 pov += reloc_size;
1279 }
1280
1281 gold_assert(pov - oview == oview_size);
1282
1283 of->write_output_view(off, oview_size, oview);
1284
1285 // We no longer need the relocation entries.
1286 this->relocs_.clear();
1287 }
1288
1289 // Class Output_relocatable_relocs.
1290
1291 template<int sh_type, int size, bool big_endian>
1292 void
1293 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1294 {
1295 this->set_data_size(this->rr_->output_reloc_count()
1296 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1297 }
1298
1299 // class Output_data_group.
1300
1301 template<int size, bool big_endian>
1302 Output_data_group<size, big_endian>::Output_data_group(
1303 Sized_relobj_file<size, big_endian>* relobj,
1304 section_size_type entry_count,
1305 elfcpp::Elf_Word flags,
1306 std::vector<unsigned int>* input_shndxes)
1307 : Output_section_data(entry_count * 4, 4, false),
1308 relobj_(relobj),
1309 flags_(flags)
1310 {
1311 this->input_shndxes_.swap(*input_shndxes);
1312 }
1313
1314 // Write out the section group, which means translating the section
1315 // indexes to apply to the output file.
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_group<size, big_endian>::do_write(Output_file* of)
1320 {
1321 const off_t off = this->offset();
1322 const section_size_type oview_size =
1323 convert_to_section_size_type(this->data_size());
1324 unsigned char* const oview = of->get_output_view(off, oview_size);
1325
1326 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1327 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1328 ++contents;
1329
1330 for (std::vector<unsigned int>::const_iterator p =
1331 this->input_shndxes_.begin();
1332 p != this->input_shndxes_.end();
1333 ++p, ++contents)
1334 {
1335 Output_section* os = this->relobj_->output_section(*p);
1336
1337 unsigned int output_shndx;
1338 if (os != NULL)
1339 output_shndx = os->out_shndx();
1340 else
1341 {
1342 this->relobj_->error(_("section group retained but "
1343 "group element discarded"));
1344 output_shndx = 0;
1345 }
1346
1347 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1348 }
1349
1350 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1351 gold_assert(wrote == oview_size);
1352
1353 of->write_output_view(off, oview_size, oview);
1354
1355 // We no longer need this information.
1356 this->input_shndxes_.clear();
1357 }
1358
1359 // Output_data_got::Got_entry methods.
1360
1361 // Write out the entry.
1362
1363 template<int got_size, bool big_endian>
1364 void
1365 Output_data_got<got_size, big_endian>::Got_entry::write(
1366 unsigned int got_indx,
1367 unsigned char* pov) const
1368 {
1369 Valtype val = 0;
1370
1371 switch (this->local_sym_index_)
1372 {
1373 case GSYM_CODE:
1374 {
1375 // If the symbol is resolved locally, we need to write out the
1376 // link-time value, which will be relocated dynamically by a
1377 // RELATIVE relocation.
1378 Symbol* gsym = this->u_.gsym;
1379 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1380 val = parameters->target().plt_address_for_global(gsym);
1381 else
1382 {
1383 switch (parameters->size_and_endianness())
1384 {
1385 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1386 case Parameters::TARGET_32_LITTLE:
1387 case Parameters::TARGET_32_BIG:
1388 {
1389 // This cast is ugly. We don't want to put a
1390 // virtual method in Symbol, because we want Symbol
1391 // to be as small as possible.
1392 Sized_symbol<32>::Value_type v;
1393 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1394 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1395 }
1396 break;
1397 #endif
1398 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1399 case Parameters::TARGET_64_LITTLE:
1400 case Parameters::TARGET_64_BIG:
1401 {
1402 Sized_symbol<64>::Value_type v;
1403 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1404 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1405 }
1406 break;
1407 #endif
1408 default:
1409 gold_unreachable();
1410 }
1411 if (this->use_plt_or_tls_offset_
1412 && gsym->type() == elfcpp::STT_TLS)
1413 val += parameters->target().tls_offset_for_global(gsym,
1414 got_indx);
1415 }
1416 }
1417 break;
1418
1419 case CONSTANT_CODE:
1420 val = this->u_.constant;
1421 break;
1422
1423 case RESERVED_CODE:
1424 // If we're doing an incremental update, don't touch this GOT entry.
1425 if (parameters->incremental_update())
1426 return;
1427 val = this->u_.constant;
1428 break;
1429
1430 default:
1431 {
1432 const Relobj* object = this->u_.object;
1433 const unsigned int lsi = this->local_sym_index_;
1434 bool is_tls = object->local_is_tls(lsi);
1435 if (this->use_plt_or_tls_offset_ && !is_tls)
1436 val = parameters->target().plt_address_for_local(object, lsi);
1437 else
1438 {
1439 uint64_t lval = object->local_symbol_value(lsi, 0);
1440 val = convert_types<Valtype, uint64_t>(lval);
1441 if (this->use_plt_or_tls_offset_ && is_tls)
1442 val += parameters->target().tls_offset_for_local(object, lsi,
1443 got_indx);
1444 }
1445 }
1446 break;
1447 }
1448
1449 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1450 }
1451
1452 // Output_data_got methods.
1453
1454 // Add an entry for a global symbol to the GOT. This returns true if
1455 // this is a new GOT entry, false if the symbol already had a GOT
1456 // entry.
1457
1458 template<int got_size, bool big_endian>
1459 bool
1460 Output_data_got<got_size, big_endian>::add_global(
1461 Symbol* gsym,
1462 unsigned int got_type)
1463 {
1464 if (gsym->has_got_offset(got_type))
1465 return false;
1466
1467 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1468 gsym->set_got_offset(got_type, got_offset);
1469 return true;
1470 }
1471
1472 // Like add_global, but use the PLT offset.
1473
1474 template<int got_size, bool big_endian>
1475 bool
1476 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1477 unsigned int got_type)
1478 {
1479 if (gsym->has_got_offset(got_type))
1480 return false;
1481
1482 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1483 gsym->set_got_offset(got_type, got_offset);
1484 return true;
1485 }
1486
1487 // Add an entry for a global symbol to the GOT, and add a dynamic
1488 // relocation of type R_TYPE for the GOT entry.
1489
1490 template<int got_size, bool big_endian>
1491 void
1492 Output_data_got<got_size, big_endian>::add_global_with_rel(
1493 Symbol* gsym,
1494 unsigned int got_type,
1495 Output_data_reloc_generic* rel_dyn,
1496 unsigned int r_type)
1497 {
1498 if (gsym->has_got_offset(got_type))
1499 return;
1500
1501 unsigned int got_offset = this->add_got_entry(Got_entry());
1502 gsym->set_got_offset(got_type, got_offset);
1503 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1504 }
1505
1506 // Add a pair of entries for a global symbol to the GOT, and add
1507 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1508 // If R_TYPE_2 == 0, add the second entry with no relocation.
1509 template<int got_size, bool big_endian>
1510 void
1511 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1512 Symbol* gsym,
1513 unsigned int got_type,
1514 Output_data_reloc_generic* rel_dyn,
1515 unsigned int r_type_1,
1516 unsigned int r_type_2)
1517 {
1518 if (gsym->has_got_offset(got_type))
1519 return;
1520
1521 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1522 gsym->set_got_offset(got_type, got_offset);
1523 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1524
1525 if (r_type_2 != 0)
1526 rel_dyn->add_global_generic(gsym, r_type_2, this,
1527 got_offset + got_size / 8, 0);
1528 }
1529
1530 // Add an entry for a local symbol to the GOT. This returns true if
1531 // this is a new GOT entry, false if the symbol already has a GOT
1532 // entry.
1533
1534 template<int got_size, bool big_endian>
1535 bool
1536 Output_data_got<got_size, big_endian>::add_local(
1537 Relobj* object,
1538 unsigned int symndx,
1539 unsigned int got_type)
1540 {
1541 if (object->local_has_got_offset(symndx, got_type))
1542 return false;
1543
1544 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1545 false));
1546 object->set_local_got_offset(symndx, got_type, got_offset);
1547 return true;
1548 }
1549
1550 // Like add_local, but use the PLT offset.
1551
1552 template<int got_size, bool big_endian>
1553 bool
1554 Output_data_got<got_size, big_endian>::add_local_plt(
1555 Relobj* object,
1556 unsigned int symndx,
1557 unsigned int got_type)
1558 {
1559 if (object->local_has_got_offset(symndx, got_type))
1560 return false;
1561
1562 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1563 true));
1564 object->set_local_got_offset(symndx, got_type, got_offset);
1565 return true;
1566 }
1567
1568 // Add an entry for a local symbol to the GOT, and add a dynamic
1569 // relocation of type R_TYPE for the GOT entry.
1570
1571 template<int got_size, bool big_endian>
1572 void
1573 Output_data_got<got_size, big_endian>::add_local_with_rel(
1574 Relobj* object,
1575 unsigned int symndx,
1576 unsigned int got_type,
1577 Output_data_reloc_generic* rel_dyn,
1578 unsigned int r_type)
1579 {
1580 if (object->local_has_got_offset(symndx, got_type))
1581 return;
1582
1583 unsigned int got_offset = this->add_got_entry(Got_entry());
1584 object->set_local_got_offset(symndx, got_type, got_offset);
1585 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1586 }
1587
1588 // Add a pair of entries for a local symbol to the GOT, and add
1589 // a dynamic relocation of type R_TYPE using the section symbol of
1590 // the output section to which input section SHNDX maps, on the first.
1591 // The first got entry will have a value of zero, the second the
1592 // value of the local symbol.
1593 template<int got_size, bool big_endian>
1594 void
1595 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1596 Relobj* object,
1597 unsigned int symndx,
1598 unsigned int shndx,
1599 unsigned int got_type,
1600 Output_data_reloc_generic* rel_dyn,
1601 unsigned int r_type)
1602 {
1603 if (object->local_has_got_offset(symndx, got_type))
1604 return;
1605
1606 unsigned int got_offset =
1607 this->add_got_entry_pair(Got_entry(),
1608 Got_entry(object, symndx, false));
1609 object->set_local_got_offset(symndx, got_type, got_offset);
1610 Output_section* os = object->output_section(shndx);
1611 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1612 }
1613
1614 // Add a pair of entries for a local symbol to the GOT, and add
1615 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1616 // The first got entry will have a value of zero, the second the
1617 // value of the local symbol offset by Target::tls_offset_for_local.
1618 template<int got_size, bool big_endian>
1619 void
1620 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1621 Relobj* object,
1622 unsigned int symndx,
1623 unsigned int got_type,
1624 Output_data_reloc_generic* rel_dyn,
1625 unsigned int r_type)
1626 {
1627 if (object->local_has_got_offset(symndx, got_type))
1628 return;
1629
1630 unsigned int got_offset
1631 = this->add_got_entry_pair(Got_entry(),
1632 Got_entry(object, symndx, true));
1633 object->set_local_got_offset(symndx, got_type, got_offset);
1634 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1635 }
1636
1637 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639 template<int got_size, bool big_endian>
1640 void
1641 Output_data_got<got_size, big_endian>::reserve_local(
1642 unsigned int i,
1643 Relobj* object,
1644 unsigned int sym_index,
1645 unsigned int got_type)
1646 {
1647 this->do_reserve_slot(i);
1648 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649 }
1650
1651 // Reserve a slot in the GOT for a global symbol.
1652
1653 template<int got_size, bool big_endian>
1654 void
1655 Output_data_got<got_size, big_endian>::reserve_global(
1656 unsigned int i,
1657 Symbol* gsym,
1658 unsigned int got_type)
1659 {
1660 this->do_reserve_slot(i);
1661 gsym->set_got_offset(got_type, this->got_offset(i));
1662 }
1663
1664 // Write out the GOT.
1665
1666 template<int got_size, bool big_endian>
1667 void
1668 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1669 {
1670 const int add = got_size / 8;
1671
1672 const off_t off = this->offset();
1673 const off_t oview_size = this->data_size();
1674 unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676 unsigned char* pov = oview;
1677 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1678 {
1679 this->entries_[i].write(i, pov);
1680 pov += add;
1681 }
1682
1683 gold_assert(pov - oview == oview_size);
1684
1685 of->write_output_view(off, oview_size, oview);
1686
1687 // We no longer need the GOT entries.
1688 this->entries_.clear();
1689 }
1690
1691 // Create a new GOT entry and return its offset.
1692
1693 template<int got_size, bool big_endian>
1694 unsigned int
1695 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1696 {
1697 if (!this->is_data_size_valid())
1698 {
1699 this->entries_.push_back(got_entry);
1700 this->set_got_size();
1701 return this->last_got_offset();
1702 }
1703 else
1704 {
1705 // For an incremental update, find an available slot.
1706 off_t got_offset = this->free_list_.allocate(got_size / 8,
1707 got_size / 8, 0);
1708 if (got_offset == -1)
1709 gold_fallback(_("out of patch space (GOT);"
1710 " relink with --incremental-full"));
1711 unsigned int got_index = got_offset / (got_size / 8);
1712 gold_assert(got_index < this->entries_.size());
1713 this->entries_[got_index] = got_entry;
1714 return static_cast<unsigned int>(got_offset);
1715 }
1716 }
1717
1718 // Create a pair of new GOT entries and return the offset of the first.
1719
1720 template<int got_size, bool big_endian>
1721 unsigned int
1722 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1723 Got_entry got_entry_1,
1724 Got_entry got_entry_2)
1725 {
1726 if (!this->is_data_size_valid())
1727 {
1728 unsigned int got_offset;
1729 this->entries_.push_back(got_entry_1);
1730 got_offset = this->last_got_offset();
1731 this->entries_.push_back(got_entry_2);
1732 this->set_got_size();
1733 return got_offset;
1734 }
1735 else
1736 {
1737 // For an incremental update, find an available pair of slots.
1738 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1739 got_size / 8, 0);
1740 if (got_offset == -1)
1741 gold_fallback(_("out of patch space (GOT);"
1742 " relink with --incremental-full"));
1743 unsigned int got_index = got_offset / (got_size / 8);
1744 gold_assert(got_index < this->entries_.size());
1745 this->entries_[got_index] = got_entry_1;
1746 this->entries_[got_index + 1] = got_entry_2;
1747 return static_cast<unsigned int>(got_offset);
1748 }
1749 }
1750
1751 // Replace GOT entry I with a new value.
1752
1753 template<int got_size, bool big_endian>
1754 void
1755 Output_data_got<got_size, big_endian>::replace_got_entry(
1756 unsigned int i,
1757 Got_entry got_entry)
1758 {
1759 gold_assert(i < this->entries_.size());
1760 this->entries_[i] = got_entry;
1761 }
1762
1763 // Output_data_dynamic::Dynamic_entry methods.
1764
1765 // Write out the entry.
1766
1767 template<int size, bool big_endian>
1768 void
1769 Output_data_dynamic::Dynamic_entry::write(
1770 unsigned char* pov,
1771 const Stringpool* pool) const
1772 {
1773 typename elfcpp::Elf_types<size>::Elf_WXword val;
1774 switch (this->offset_)
1775 {
1776 case DYNAMIC_NUMBER:
1777 val = this->u_.val;
1778 break;
1779
1780 case DYNAMIC_SECTION_SIZE:
1781 val = this->u_.od->data_size();
1782 if (this->od2 != NULL)
1783 val += this->od2->data_size();
1784 break;
1785
1786 case DYNAMIC_SYMBOL:
1787 {
1788 const Sized_symbol<size>* s =
1789 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1790 val = s->value();
1791 }
1792 break;
1793
1794 case DYNAMIC_STRING:
1795 val = pool->get_offset(this->u_.str);
1796 break;
1797
1798 default:
1799 val = this->u_.od->address() + this->offset_;
1800 break;
1801 }
1802
1803 elfcpp::Dyn_write<size, big_endian> dw(pov);
1804 dw.put_d_tag(this->tag_);
1805 dw.put_d_val(val);
1806 }
1807
1808 // Output_data_dynamic methods.
1809
1810 // Adjust the output section to set the entry size.
1811
1812 void
1813 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1814 {
1815 if (parameters->target().get_size() == 32)
1816 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1817 else if (parameters->target().get_size() == 64)
1818 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1819 else
1820 gold_unreachable();
1821 }
1822
1823 // Set the final data size.
1824
1825 void
1826 Output_data_dynamic::set_final_data_size()
1827 {
1828 // Add the terminating entry if it hasn't been added.
1829 // Because of relaxation, we can run this multiple times.
1830 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1831 {
1832 int extra = parameters->options().spare_dynamic_tags();
1833 for (int i = 0; i < extra; ++i)
1834 this->add_constant(elfcpp::DT_NULL, 0);
1835 this->add_constant(elfcpp::DT_NULL, 0);
1836 }
1837
1838 int dyn_size;
1839 if (parameters->target().get_size() == 32)
1840 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1841 else if (parameters->target().get_size() == 64)
1842 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1843 else
1844 gold_unreachable();
1845 this->set_data_size(this->entries_.size() * dyn_size);
1846 }
1847
1848 // Write out the dynamic entries.
1849
1850 void
1851 Output_data_dynamic::do_write(Output_file* of)
1852 {
1853 switch (parameters->size_and_endianness())
1854 {
1855 #ifdef HAVE_TARGET_32_LITTLE
1856 case Parameters::TARGET_32_LITTLE:
1857 this->sized_write<32, false>(of);
1858 break;
1859 #endif
1860 #ifdef HAVE_TARGET_32_BIG
1861 case Parameters::TARGET_32_BIG:
1862 this->sized_write<32, true>(of);
1863 break;
1864 #endif
1865 #ifdef HAVE_TARGET_64_LITTLE
1866 case Parameters::TARGET_64_LITTLE:
1867 this->sized_write<64, false>(of);
1868 break;
1869 #endif
1870 #ifdef HAVE_TARGET_64_BIG
1871 case Parameters::TARGET_64_BIG:
1872 this->sized_write<64, true>(of);
1873 break;
1874 #endif
1875 default:
1876 gold_unreachable();
1877 }
1878 }
1879
1880 template<int size, bool big_endian>
1881 void
1882 Output_data_dynamic::sized_write(Output_file* of)
1883 {
1884 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1885
1886 const off_t offset = this->offset();
1887 const off_t oview_size = this->data_size();
1888 unsigned char* const oview = of->get_output_view(offset, oview_size);
1889
1890 unsigned char* pov = oview;
1891 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1892 p != this->entries_.end();
1893 ++p)
1894 {
1895 p->write<size, big_endian>(pov, this->pool_);
1896 pov += dyn_size;
1897 }
1898
1899 gold_assert(pov - oview == oview_size);
1900
1901 of->write_output_view(offset, oview_size, oview);
1902
1903 // We no longer need the dynamic entries.
1904 this->entries_.clear();
1905 }
1906
1907 // Class Output_symtab_xindex.
1908
1909 void
1910 Output_symtab_xindex::do_write(Output_file* of)
1911 {
1912 const off_t offset = this->offset();
1913 const off_t oview_size = this->data_size();
1914 unsigned char* const oview = of->get_output_view(offset, oview_size);
1915
1916 memset(oview, 0, oview_size);
1917
1918 if (parameters->target().is_big_endian())
1919 this->endian_do_write<true>(oview);
1920 else
1921 this->endian_do_write<false>(oview);
1922
1923 of->write_output_view(offset, oview_size, oview);
1924
1925 // We no longer need the data.
1926 this->entries_.clear();
1927 }
1928
1929 template<bool big_endian>
1930 void
1931 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1932 {
1933 for (Xindex_entries::const_iterator p = this->entries_.begin();
1934 p != this->entries_.end();
1935 ++p)
1936 {
1937 unsigned int symndx = p->first;
1938 gold_assert(symndx * 4 < this->data_size());
1939 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1940 }
1941 }
1942
1943 // Output_fill_debug_info methods.
1944
1945 // Return the minimum size needed for a dummy compilation unit header.
1946
1947 size_t
1948 Output_fill_debug_info::do_minimum_hole_size() const
1949 {
1950 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1951 // address_size.
1952 const size_t len = 4 + 2 + 4 + 1;
1953 // For type units, add type_signature, type_offset.
1954 if (this->is_debug_types_)
1955 return len + 8 + 4;
1956 return len;
1957 }
1958
1959 // Write a dummy compilation unit header to fill a hole in the
1960 // .debug_info or .debug_types section.
1961
1962 void
1963 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1964 {
1965 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1966 static_cast<long>(off), static_cast<long>(len));
1967
1968 gold_assert(len >= this->do_minimum_hole_size());
1969
1970 unsigned char* const oview = of->get_output_view(off, len);
1971 unsigned char* pov = oview;
1972
1973 // Write header fields: unit_length, version, debug_abbrev_offset,
1974 // address_size.
1975 if (this->is_big_endian())
1976 {
1977 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1978 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1979 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1980 }
1981 else
1982 {
1983 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1984 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1985 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1986 }
1987 pov += 4 + 2 + 4;
1988 *pov++ = 4;
1989
1990 // For type units, the additional header fields -- type_signature,
1991 // type_offset -- can be filled with zeroes.
1992
1993 // Fill the remainder of the free space with zeroes. The first
1994 // zero should tell the consumer there are no DIEs to read in this
1995 // compilation unit.
1996 if (pov < oview + len)
1997 memset(pov, 0, oview + len - pov);
1998
1999 of->write_output_view(off, len, oview);
2000 }
2001
2002 // Output_fill_debug_line methods.
2003
2004 // Return the minimum size needed for a dummy line number program header.
2005
2006 size_t
2007 Output_fill_debug_line::do_minimum_hole_size() const
2008 {
2009 // Line number program header fields: unit_length, version, header_length,
2010 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2011 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2012 const size_t len = 4 + 2 + 4 + this->header_length;
2013 return len;
2014 }
2015
2016 // Write a dummy line number program header to fill a hole in the
2017 // .debug_line section.
2018
2019 void
2020 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2021 {
2022 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2023 static_cast<long>(off), static_cast<long>(len));
2024
2025 gold_assert(len >= this->do_minimum_hole_size());
2026
2027 unsigned char* const oview = of->get_output_view(off, len);
2028 unsigned char* pov = oview;
2029
2030 // Write header fields: unit_length, version, header_length,
2031 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2032 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2033 // We set the header_length field to cover the entire hole, so the
2034 // line number program is empty.
2035 if (this->is_big_endian())
2036 {
2037 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2038 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2040 }
2041 else
2042 {
2043 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2044 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2046 }
2047 pov += 4 + 2 + 4;
2048 *pov++ = 1; // minimum_instruction_length
2049 *pov++ = 0; // default_is_stmt
2050 *pov++ = 0; // line_base
2051 *pov++ = 5; // line_range
2052 *pov++ = 13; // opcode_base
2053 *pov++ = 0; // standard_opcode_lengths[1]
2054 *pov++ = 1; // standard_opcode_lengths[2]
2055 *pov++ = 1; // standard_opcode_lengths[3]
2056 *pov++ = 1; // standard_opcode_lengths[4]
2057 *pov++ = 1; // standard_opcode_lengths[5]
2058 *pov++ = 0; // standard_opcode_lengths[6]
2059 *pov++ = 0; // standard_opcode_lengths[7]
2060 *pov++ = 0; // standard_opcode_lengths[8]
2061 *pov++ = 1; // standard_opcode_lengths[9]
2062 *pov++ = 0; // standard_opcode_lengths[10]
2063 *pov++ = 0; // standard_opcode_lengths[11]
2064 *pov++ = 1; // standard_opcode_lengths[12]
2065 *pov++ = 0; // include_directories (empty)
2066 *pov++ = 0; // filenames (empty)
2067
2068 // Some consumers don't check the header_length field, and simply
2069 // start reading the line number program immediately following the
2070 // header. For those consumers, we fill the remainder of the free
2071 // space with DW_LNS_set_basic_block opcodes. These are effectively
2072 // no-ops: the resulting line table program will not create any rows.
2073 if (pov < oview + len)
2074 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2075
2076 of->write_output_view(off, len, oview);
2077 }
2078
2079 // Output_section::Input_section methods.
2080
2081 // Return the current data size. For an input section we store the size here.
2082 // For an Output_section_data, we have to ask it for the size.
2083
2084 off_t
2085 Output_section::Input_section::current_data_size() const
2086 {
2087 if (this->is_input_section())
2088 return this->u1_.data_size;
2089 else
2090 {
2091 this->u2_.posd->pre_finalize_data_size();
2092 return this->u2_.posd->current_data_size();
2093 }
2094 }
2095
2096 // Return the data size. For an input section we store the size here.
2097 // For an Output_section_data, we have to ask it for the size.
2098
2099 off_t
2100 Output_section::Input_section::data_size() const
2101 {
2102 if (this->is_input_section())
2103 return this->u1_.data_size;
2104 else
2105 return this->u2_.posd->data_size();
2106 }
2107
2108 // Return the object for an input section.
2109
2110 Relobj*
2111 Output_section::Input_section::relobj() const
2112 {
2113 if (this->is_input_section())
2114 return this->u2_.object;
2115 else if (this->is_merge_section())
2116 {
2117 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2118 return this->u2_.pomb->first_relobj();
2119 }
2120 else if (this->is_relaxed_input_section())
2121 return this->u2_.poris->relobj();
2122 else
2123 gold_unreachable();
2124 }
2125
2126 // Return the input section index for an input section.
2127
2128 unsigned int
2129 Output_section::Input_section::shndx() const
2130 {
2131 if (this->is_input_section())
2132 return this->shndx_;
2133 else if (this->is_merge_section())
2134 {
2135 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2136 return this->u2_.pomb->first_shndx();
2137 }
2138 else if (this->is_relaxed_input_section())
2139 return this->u2_.poris->shndx();
2140 else
2141 gold_unreachable();
2142 }
2143
2144 // Set the address and file offset.
2145
2146 void
2147 Output_section::Input_section::set_address_and_file_offset(
2148 uint64_t address,
2149 off_t file_offset,
2150 off_t section_file_offset)
2151 {
2152 if (this->is_input_section())
2153 this->u2_.object->set_section_offset(this->shndx_,
2154 file_offset - section_file_offset);
2155 else
2156 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2157 }
2158
2159 // Reset the address and file offset.
2160
2161 void
2162 Output_section::Input_section::reset_address_and_file_offset()
2163 {
2164 if (!this->is_input_section())
2165 this->u2_.posd->reset_address_and_file_offset();
2166 }
2167
2168 // Finalize the data size.
2169
2170 void
2171 Output_section::Input_section::finalize_data_size()
2172 {
2173 if (!this->is_input_section())
2174 this->u2_.posd->finalize_data_size();
2175 }
2176
2177 // Try to turn an input offset into an output offset. We want to
2178 // return the output offset relative to the start of this
2179 // Input_section in the output section.
2180
2181 inline bool
2182 Output_section::Input_section::output_offset(
2183 const Relobj* object,
2184 unsigned int shndx,
2185 section_offset_type offset,
2186 section_offset_type* poutput) const
2187 {
2188 if (!this->is_input_section())
2189 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2190 else
2191 {
2192 if (this->shndx_ != shndx || this->u2_.object != object)
2193 return false;
2194 *poutput = offset;
2195 return true;
2196 }
2197 }
2198
2199 // Return whether this is the merge section for the input section
2200 // SHNDX in OBJECT.
2201
2202 inline bool
2203 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2204 unsigned int shndx) const
2205 {
2206 if (this->is_input_section())
2207 return false;
2208 return this->u2_.posd->is_merge_section_for(object, shndx);
2209 }
2210
2211 // Write out the data. We don't have to do anything for an input
2212 // section--they are handled via Object::relocate--but this is where
2213 // we write out the data for an Output_section_data.
2214
2215 void
2216 Output_section::Input_section::write(Output_file* of)
2217 {
2218 if (!this->is_input_section())
2219 this->u2_.posd->write(of);
2220 }
2221
2222 // Write the data to a buffer. As for write(), we don't have to do
2223 // anything for an input section.
2224
2225 void
2226 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2227 {
2228 if (!this->is_input_section())
2229 this->u2_.posd->write_to_buffer(buffer);
2230 }
2231
2232 // Print to a map file.
2233
2234 void
2235 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2236 {
2237 switch (this->shndx_)
2238 {
2239 case OUTPUT_SECTION_CODE:
2240 case MERGE_DATA_SECTION_CODE:
2241 case MERGE_STRING_SECTION_CODE:
2242 this->u2_.posd->print_to_mapfile(mapfile);
2243 break;
2244
2245 case RELAXED_INPUT_SECTION_CODE:
2246 {
2247 Output_relaxed_input_section* relaxed_section =
2248 this->relaxed_input_section();
2249 mapfile->print_input_section(relaxed_section->relobj(),
2250 relaxed_section->shndx());
2251 }
2252 break;
2253 default:
2254 mapfile->print_input_section(this->u2_.object, this->shndx_);
2255 break;
2256 }
2257 }
2258
2259 // Output_section methods.
2260
2261 // Construct an Output_section. NAME will point into a Stringpool.
2262
2263 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2264 elfcpp::Elf_Xword flags)
2265 : name_(name),
2266 addralign_(0),
2267 entsize_(0),
2268 load_address_(0),
2269 link_section_(NULL),
2270 link_(0),
2271 info_section_(NULL),
2272 info_symndx_(NULL),
2273 info_(0),
2274 type_(type),
2275 flags_(flags),
2276 order_(ORDER_INVALID),
2277 out_shndx_(-1U),
2278 symtab_index_(0),
2279 dynsym_index_(0),
2280 input_sections_(),
2281 first_input_offset_(0),
2282 fills_(),
2283 postprocessing_buffer_(NULL),
2284 needs_symtab_index_(false),
2285 needs_dynsym_index_(false),
2286 should_link_to_symtab_(false),
2287 should_link_to_dynsym_(false),
2288 after_input_sections_(false),
2289 requires_postprocessing_(false),
2290 found_in_sections_clause_(false),
2291 has_load_address_(false),
2292 info_uses_section_index_(false),
2293 input_section_order_specified_(false),
2294 may_sort_attached_input_sections_(false),
2295 must_sort_attached_input_sections_(false),
2296 attached_input_sections_are_sorted_(false),
2297 is_relro_(false),
2298 is_small_section_(false),
2299 is_large_section_(false),
2300 generate_code_fills_at_write_(false),
2301 is_entsize_zero_(false),
2302 section_offsets_need_adjustment_(false),
2303 is_noload_(false),
2304 always_keeps_input_sections_(false),
2305 has_fixed_layout_(false),
2306 is_patch_space_allowed_(false),
2307 is_unique_segment_(false),
2308 tls_offset_(0),
2309 extra_segment_flags_(0),
2310 segment_alignment_(0),
2311 checkpoint_(NULL),
2312 lookup_maps_(new Output_section_lookup_maps),
2313 free_list_(),
2314 free_space_fill_(NULL),
2315 patch_space_(0)
2316 {
2317 // An unallocated section has no address. Forcing this means that
2318 // we don't need special treatment for symbols defined in debug
2319 // sections.
2320 if ((flags & elfcpp::SHF_ALLOC) == 0)
2321 this->set_address(0);
2322 }
2323
2324 Output_section::~Output_section()
2325 {
2326 delete this->checkpoint_;
2327 }
2328
2329 // Set the entry size.
2330
2331 void
2332 Output_section::set_entsize(uint64_t v)
2333 {
2334 if (this->is_entsize_zero_)
2335 ;
2336 else if (this->entsize_ == 0)
2337 this->entsize_ = v;
2338 else if (this->entsize_ != v)
2339 {
2340 this->entsize_ = 0;
2341 this->is_entsize_zero_ = 1;
2342 }
2343 }
2344
2345 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2346 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2347 // relocation section which applies to this section, or 0 if none, or
2348 // -1U if more than one. Return the offset of the input section
2349 // within the output section. Return -1 if the input section will
2350 // receive special handling. In the normal case we don't always keep
2351 // track of input sections for an Output_section. Instead, each
2352 // Object keeps track of the Output_section for each of its input
2353 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2354 // track of input sections here; this is used when SECTIONS appears in
2355 // a linker script.
2356
2357 template<int size, bool big_endian>
2358 off_t
2359 Output_section::add_input_section(Layout* layout,
2360 Sized_relobj_file<size, big_endian>* object,
2361 unsigned int shndx,
2362 const char* secname,
2363 const elfcpp::Shdr<size, big_endian>& shdr,
2364 unsigned int reloc_shndx,
2365 bool have_sections_script)
2366 {
2367 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2368 if ((addralign & (addralign - 1)) != 0)
2369 {
2370 object->error(_("invalid alignment %lu for section \"%s\""),
2371 static_cast<unsigned long>(addralign), secname);
2372 addralign = 1;
2373 }
2374
2375 if (addralign > this->addralign_)
2376 this->addralign_ = addralign;
2377
2378 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2379 uint64_t entsize = shdr.get_sh_entsize();
2380
2381 // .debug_str is a mergeable string section, but is not always so
2382 // marked by compilers. Mark manually here so we can optimize.
2383 if (strcmp(secname, ".debug_str") == 0)
2384 {
2385 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2386 entsize = 1;
2387 }
2388
2389 this->update_flags_for_input_section(sh_flags);
2390 this->set_entsize(entsize);
2391
2392 // If this is a SHF_MERGE section, we pass all the input sections to
2393 // a Output_data_merge. We don't try to handle relocations for such
2394 // a section. We don't try to handle empty merge sections--they
2395 // mess up the mappings, and are useless anyhow.
2396 // FIXME: Need to handle merge sections during incremental update.
2397 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2398 && reloc_shndx == 0
2399 && shdr.get_sh_size() > 0
2400 && !parameters->incremental())
2401 {
2402 // Keep information about merged input sections for rebuilding fast
2403 // lookup maps if we have sections-script or we do relaxation.
2404 bool keeps_input_sections = (this->always_keeps_input_sections_
2405 || have_sections_script
2406 || parameters->target().may_relax());
2407
2408 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2409 addralign, keeps_input_sections))
2410 {
2411 // Tell the relocation routines that they need to call the
2412 // output_offset method to determine the final address.
2413 return -1;
2414 }
2415 }
2416
2417 section_size_type input_section_size = shdr.get_sh_size();
2418 section_size_type uncompressed_size;
2419 if (object->section_is_compressed(shndx, &uncompressed_size))
2420 input_section_size = uncompressed_size;
2421
2422 off_t offset_in_section;
2423 off_t aligned_offset_in_section;
2424 if (this->has_fixed_layout())
2425 {
2426 // For incremental updates, find a chunk of unused space in the section.
2427 offset_in_section = this->free_list_.allocate(input_section_size,
2428 addralign, 0);
2429 if (offset_in_section == -1)
2430 gold_fallback(_("out of patch space in section %s; "
2431 "relink with --incremental-full"),
2432 this->name());
2433 aligned_offset_in_section = offset_in_section;
2434 }
2435 else
2436 {
2437 offset_in_section = this->current_data_size_for_child();
2438 aligned_offset_in_section = align_address(offset_in_section,
2439 addralign);
2440 this->set_current_data_size_for_child(aligned_offset_in_section
2441 + input_section_size);
2442 }
2443
2444 // Determine if we want to delay code-fill generation until the output
2445 // section is written. When the target is relaxing, we want to delay fill
2446 // generating to avoid adjusting them during relaxation. Also, if we are
2447 // sorting input sections we must delay fill generation.
2448 if (!this->generate_code_fills_at_write_
2449 && !have_sections_script
2450 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2451 && parameters->target().has_code_fill()
2452 && (parameters->target().may_relax()
2453 || layout->is_section_ordering_specified()))
2454 {
2455 gold_assert(this->fills_.empty());
2456 this->generate_code_fills_at_write_ = true;
2457 }
2458
2459 if (aligned_offset_in_section > offset_in_section
2460 && !this->generate_code_fills_at_write_
2461 && !have_sections_script
2462 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2463 && parameters->target().has_code_fill())
2464 {
2465 // We need to add some fill data. Using fill_list_ when
2466 // possible is an optimization, since we will often have fill
2467 // sections without input sections.
2468 off_t fill_len = aligned_offset_in_section - offset_in_section;
2469 if (this->input_sections_.empty())
2470 this->fills_.push_back(Fill(offset_in_section, fill_len));
2471 else
2472 {
2473 std::string fill_data(parameters->target().code_fill(fill_len));
2474 Output_data_const* odc = new Output_data_const(fill_data, 1);
2475 this->input_sections_.push_back(Input_section(odc));
2476 }
2477 }
2478
2479 // We need to keep track of this section if we are already keeping
2480 // track of sections, or if we are relaxing. Also, if this is a
2481 // section which requires sorting, or which may require sorting in
2482 // the future, we keep track of the sections. If the
2483 // --section-ordering-file option is used to specify the order of
2484 // sections, we need to keep track of sections.
2485 if (this->always_keeps_input_sections_
2486 || have_sections_script
2487 || !this->input_sections_.empty()
2488 || this->may_sort_attached_input_sections()
2489 || this->must_sort_attached_input_sections()
2490 || parameters->options().user_set_Map()
2491 || parameters->target().may_relax()
2492 || layout->is_section_ordering_specified())
2493 {
2494 Input_section isecn(object, shndx, input_section_size, addralign);
2495 /* If section ordering is requested by specifying a ordering file,
2496 using --section-ordering-file, match the section name with
2497 a pattern. */
2498 if (parameters->options().section_ordering_file())
2499 {
2500 unsigned int section_order_index =
2501 layout->find_section_order_index(std::string(secname));
2502 if (section_order_index != 0)
2503 {
2504 isecn.set_section_order_index(section_order_index);
2505 this->set_input_section_order_specified();
2506 }
2507 }
2508 if (this->has_fixed_layout())
2509 {
2510 // For incremental updates, finalize the address and offset now.
2511 uint64_t addr = this->address();
2512 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2513 aligned_offset_in_section,
2514 this->offset());
2515 }
2516 this->input_sections_.push_back(isecn);
2517 }
2518
2519 return aligned_offset_in_section;
2520 }
2521
2522 // Add arbitrary data to an output section.
2523
2524 void
2525 Output_section::add_output_section_data(Output_section_data* posd)
2526 {
2527 Input_section inp(posd);
2528 this->add_output_section_data(&inp);
2529
2530 if (posd->is_data_size_valid())
2531 {
2532 off_t offset_in_section;
2533 if (this->has_fixed_layout())
2534 {
2535 // For incremental updates, find a chunk of unused space.
2536 offset_in_section = this->free_list_.allocate(posd->data_size(),
2537 posd->addralign(), 0);
2538 if (offset_in_section == -1)
2539 gold_fallback(_("out of patch space in section %s; "
2540 "relink with --incremental-full"),
2541 this->name());
2542 // Finalize the address and offset now.
2543 uint64_t addr = this->address();
2544 off_t offset = this->offset();
2545 posd->set_address_and_file_offset(addr + offset_in_section,
2546 offset + offset_in_section);
2547 }
2548 else
2549 {
2550 offset_in_section = this->current_data_size_for_child();
2551 off_t aligned_offset_in_section = align_address(offset_in_section,
2552 posd->addralign());
2553 this->set_current_data_size_for_child(aligned_offset_in_section
2554 + posd->data_size());
2555 }
2556 }
2557 else if (this->has_fixed_layout())
2558 {
2559 // For incremental updates, arrange for the data to have a fixed layout.
2560 // This will mean that additions to the data must be allocated from
2561 // free space within the containing output section.
2562 uint64_t addr = this->address();
2563 posd->set_address(addr);
2564 posd->set_file_offset(0);
2565 // FIXME: This should eventually be unreachable.
2566 // gold_unreachable();
2567 }
2568 }
2569
2570 // Add a relaxed input section.
2571
2572 void
2573 Output_section::add_relaxed_input_section(Layout* layout,
2574 Output_relaxed_input_section* poris,
2575 const std::string& name)
2576 {
2577 Input_section inp(poris);
2578
2579 // If the --section-ordering-file option is used to specify the order of
2580 // sections, we need to keep track of sections.
2581 if (layout->is_section_ordering_specified())
2582 {
2583 unsigned int section_order_index =
2584 layout->find_section_order_index(name);
2585 if (section_order_index != 0)
2586 {
2587 inp.set_section_order_index(section_order_index);
2588 this->set_input_section_order_specified();
2589 }
2590 }
2591
2592 this->add_output_section_data(&inp);
2593 if (this->lookup_maps_->is_valid())
2594 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2595 poris->shndx(), poris);
2596
2597 // For a relaxed section, we use the current data size. Linker scripts
2598 // get all the input sections, including relaxed one from an output
2599 // section and add them back to the same output section to compute the
2600 // output section size. If we do not account for sizes of relaxed input
2601 // sections, an output section would be incorrectly sized.
2602 off_t offset_in_section = this->current_data_size_for_child();
2603 off_t aligned_offset_in_section = align_address(offset_in_section,
2604 poris->addralign());
2605 this->set_current_data_size_for_child(aligned_offset_in_section
2606 + poris->current_data_size());
2607 }
2608
2609 // Add arbitrary data to an output section by Input_section.
2610
2611 void
2612 Output_section::add_output_section_data(Input_section* inp)
2613 {
2614 if (this->input_sections_.empty())
2615 this->first_input_offset_ = this->current_data_size_for_child();
2616
2617 this->input_sections_.push_back(*inp);
2618
2619 uint64_t addralign = inp->addralign();
2620 if (addralign > this->addralign_)
2621 this->addralign_ = addralign;
2622
2623 inp->set_output_section(this);
2624 }
2625
2626 // Add a merge section to an output section.
2627
2628 void
2629 Output_section::add_output_merge_section(Output_section_data* posd,
2630 bool is_string, uint64_t entsize)
2631 {
2632 Input_section inp(posd, is_string, entsize);
2633 this->add_output_section_data(&inp);
2634 }
2635
2636 // Add an input section to a SHF_MERGE section.
2637
2638 bool
2639 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2640 uint64_t flags, uint64_t entsize,
2641 uint64_t addralign,
2642 bool keeps_input_sections)
2643 {
2644 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2645
2646 // We only merge strings if the alignment is not more than the
2647 // character size. This could be handled, but it's unusual.
2648 if (is_string && addralign > entsize)
2649 return false;
2650
2651 // We cannot restore merged input section states.
2652 gold_assert(this->checkpoint_ == NULL);
2653
2654 // Look up merge sections by required properties.
2655 // Currently, we only invalidate the lookup maps in script processing
2656 // and relaxation. We should not have done either when we reach here.
2657 // So we assume that the lookup maps are valid to simply code.
2658 gold_assert(this->lookup_maps_->is_valid());
2659 Merge_section_properties msp(is_string, entsize, addralign);
2660 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2661 bool is_new = false;
2662 if (pomb != NULL)
2663 {
2664 gold_assert(pomb->is_string() == is_string
2665 && pomb->entsize() == entsize
2666 && pomb->addralign() == addralign);
2667 }
2668 else
2669 {
2670 // Create a new Output_merge_data or Output_merge_string_data.
2671 if (!is_string)
2672 pomb = new Output_merge_data(entsize, addralign);
2673 else
2674 {
2675 switch (entsize)
2676 {
2677 case 1:
2678 pomb = new Output_merge_string<char>(addralign);
2679 break;
2680 case 2:
2681 pomb = new Output_merge_string<uint16_t>(addralign);
2682 break;
2683 case 4:
2684 pomb = new Output_merge_string<uint32_t>(addralign);
2685 break;
2686 default:
2687 return false;
2688 }
2689 }
2690 // If we need to do script processing or relaxation, we need to keep
2691 // the original input sections to rebuild the fast lookup maps.
2692 if (keeps_input_sections)
2693 pomb->set_keeps_input_sections();
2694 is_new = true;
2695 }
2696
2697 if (pomb->add_input_section(object, shndx))
2698 {
2699 // Add new merge section to this output section and link merge
2700 // section properties to new merge section in map.
2701 if (is_new)
2702 {
2703 this->add_output_merge_section(pomb, is_string, entsize);
2704 this->lookup_maps_->add_merge_section(msp, pomb);
2705 }
2706
2707 // Add input section to new merge section and link input section to new
2708 // merge section in map.
2709 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2710 return true;
2711 }
2712 else
2713 {
2714 // If add_input_section failed, delete new merge section to avoid
2715 // exporting empty merge sections in Output_section::get_input_section.
2716 if (is_new)
2717 delete pomb;
2718 return false;
2719 }
2720 }
2721
2722 // Build a relaxation map to speed up relaxation of existing input sections.
2723 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2724
2725 void
2726 Output_section::build_relaxation_map(
2727 const Input_section_list& input_sections,
2728 size_t limit,
2729 Relaxation_map* relaxation_map) const
2730 {
2731 for (size_t i = 0; i < limit; ++i)
2732 {
2733 const Input_section& is(input_sections[i]);
2734 if (is.is_input_section() || is.is_relaxed_input_section())
2735 {
2736 Section_id sid(is.relobj(), is.shndx());
2737 (*relaxation_map)[sid] = i;
2738 }
2739 }
2740 }
2741
2742 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2743 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2744 // indices of INPUT_SECTIONS.
2745
2746 void
2747 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2748 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2749 const Relaxation_map& map,
2750 Input_section_list* input_sections)
2751 {
2752 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2753 {
2754 Output_relaxed_input_section* poris = relaxed_sections[i];
2755 Section_id sid(poris->relobj(), poris->shndx());
2756 Relaxation_map::const_iterator p = map.find(sid);
2757 gold_assert(p != map.end());
2758 gold_assert((*input_sections)[p->second].is_input_section());
2759
2760 // Remember section order index of original input section
2761 // if it is set. Copy it to the relaxed input section.
2762 unsigned int soi =
2763 (*input_sections)[p->second].section_order_index();
2764 (*input_sections)[p->second] = Input_section(poris);
2765 (*input_sections)[p->second].set_section_order_index(soi);
2766 }
2767 }
2768
2769 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2770 // is a vector of pointers to Output_relaxed_input_section or its derived
2771 // classes. The relaxed sections must correspond to existing input sections.
2772
2773 void
2774 Output_section::convert_input_sections_to_relaxed_sections(
2775 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2776 {
2777 gold_assert(parameters->target().may_relax());
2778
2779 // We want to make sure that restore_states does not undo the effect of
2780 // this. If there is no checkpoint active, just search the current
2781 // input section list and replace the sections there. If there is
2782 // a checkpoint, also replace the sections there.
2783
2784 // By default, we look at the whole list.
2785 size_t limit = this->input_sections_.size();
2786
2787 if (this->checkpoint_ != NULL)
2788 {
2789 // Replace input sections with relaxed input section in the saved
2790 // copy of the input section list.
2791 if (this->checkpoint_->input_sections_saved())
2792 {
2793 Relaxation_map map;
2794 this->build_relaxation_map(
2795 *(this->checkpoint_->input_sections()),
2796 this->checkpoint_->input_sections()->size(),
2797 &map);
2798 this->convert_input_sections_in_list_to_relaxed_sections(
2799 relaxed_sections,
2800 map,
2801 this->checkpoint_->input_sections());
2802 }
2803 else
2804 {
2805 // We have not copied the input section list yet. Instead, just
2806 // look at the portion that would be saved.
2807 limit = this->checkpoint_->input_sections_size();
2808 }
2809 }
2810
2811 // Convert input sections in input_section_list.
2812 Relaxation_map map;
2813 this->build_relaxation_map(this->input_sections_, limit, &map);
2814 this->convert_input_sections_in_list_to_relaxed_sections(
2815 relaxed_sections,
2816 map,
2817 &this->input_sections_);
2818
2819 // Update fast look-up map.
2820 if (this->lookup_maps_->is_valid())
2821 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2822 {
2823 Output_relaxed_input_section* poris = relaxed_sections[i];
2824 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2825 poris->shndx(), poris);
2826 }
2827 }
2828
2829 // Update the output section flags based on input section flags.
2830
2831 void
2832 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2833 {
2834 // If we created the section with SHF_ALLOC clear, we set the
2835 // address. If we are now setting the SHF_ALLOC flag, we need to
2836 // undo that.
2837 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2838 && (flags & elfcpp::SHF_ALLOC) != 0)
2839 this->mark_address_invalid();
2840
2841 this->flags_ |= (flags
2842 & (elfcpp::SHF_WRITE
2843 | elfcpp::SHF_ALLOC
2844 | elfcpp::SHF_EXECINSTR));
2845
2846 if ((flags & elfcpp::SHF_MERGE) == 0)
2847 this->flags_ &=~ elfcpp::SHF_MERGE;
2848 else
2849 {
2850 if (this->current_data_size_for_child() == 0)
2851 this->flags_ |= elfcpp::SHF_MERGE;
2852 }
2853
2854 if ((flags & elfcpp::SHF_STRINGS) == 0)
2855 this->flags_ &=~ elfcpp::SHF_STRINGS;
2856 else
2857 {
2858 if (this->current_data_size_for_child() == 0)
2859 this->flags_ |= elfcpp::SHF_STRINGS;
2860 }
2861 }
2862
2863 // Find the merge section into which an input section with index SHNDX in
2864 // OBJECT has been added. Return NULL if none found.
2865
2866 Output_section_data*
2867 Output_section::find_merge_section(const Relobj* object,
2868 unsigned int shndx) const
2869 {
2870 if (!this->lookup_maps_->is_valid())
2871 this->build_lookup_maps();
2872 return this->lookup_maps_->find_merge_section(object, shndx);
2873 }
2874
2875 // Build the lookup maps for merge and relaxed sections. This is needs
2876 // to be declared as a const methods so that it is callable with a const
2877 // Output_section pointer. The method only updates states of the maps.
2878
2879 void
2880 Output_section::build_lookup_maps() const
2881 {
2882 this->lookup_maps_->clear();
2883 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2884 p != this->input_sections_.end();
2885 ++p)
2886 {
2887 if (p->is_merge_section())
2888 {
2889 Output_merge_base* pomb = p->output_merge_base();
2890 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2891 pomb->addralign());
2892 this->lookup_maps_->add_merge_section(msp, pomb);
2893 for (Output_merge_base::Input_sections::const_iterator is =
2894 pomb->input_sections_begin();
2895 is != pomb->input_sections_end();
2896 ++is)
2897 {
2898 const Const_section_id& csid = *is;
2899 this->lookup_maps_->add_merge_input_section(csid.first,
2900 csid.second, pomb);
2901 }
2902
2903 }
2904 else if (p->is_relaxed_input_section())
2905 {
2906 Output_relaxed_input_section* poris = p->relaxed_input_section();
2907 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2908 poris->shndx(), poris);
2909 }
2910 }
2911 }
2912
2913 // Find an relaxed input section corresponding to an input section
2914 // in OBJECT with index SHNDX.
2915
2916 const Output_relaxed_input_section*
2917 Output_section::find_relaxed_input_section(const Relobj* object,
2918 unsigned int shndx) const
2919 {
2920 if (!this->lookup_maps_->is_valid())
2921 this->build_lookup_maps();
2922 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2923 }
2924
2925 // Given an address OFFSET relative to the start of input section
2926 // SHNDX in OBJECT, return whether this address is being included in
2927 // the final link. This should only be called if SHNDX in OBJECT has
2928 // a special mapping.
2929
2930 bool
2931 Output_section::is_input_address_mapped(const Relobj* object,
2932 unsigned int shndx,
2933 off_t offset) const
2934 {
2935 // Look at the Output_section_data_maps first.
2936 const Output_section_data* posd = this->find_merge_section(object, shndx);
2937 if (posd == NULL)
2938 posd = this->find_relaxed_input_section(object, shndx);
2939
2940 if (posd != NULL)
2941 {
2942 section_offset_type output_offset;
2943 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2944 gold_assert(found);
2945 return output_offset != -1;
2946 }
2947
2948 // Fall back to the slow look-up.
2949 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2950 p != this->input_sections_.end();
2951 ++p)
2952 {
2953 section_offset_type output_offset;
2954 if (p->output_offset(object, shndx, offset, &output_offset))
2955 return output_offset != -1;
2956 }
2957
2958 // By default we assume that the address is mapped. This should
2959 // only be called after we have passed all sections to Layout. At
2960 // that point we should know what we are discarding.
2961 return true;
2962 }
2963
2964 // Given an address OFFSET relative to the start of input section
2965 // SHNDX in object OBJECT, return the output offset relative to the
2966 // start of the input section in the output section. This should only
2967 // be called if SHNDX in OBJECT has a special mapping.
2968
2969 section_offset_type
2970 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2971 section_offset_type offset) const
2972 {
2973 // This can only be called meaningfully when we know the data size
2974 // of this.
2975 gold_assert(this->is_data_size_valid());
2976
2977 // Look at the Output_section_data_maps first.
2978 const Output_section_data* posd = this->find_merge_section(object, shndx);
2979 if (posd == NULL)
2980 posd = this->find_relaxed_input_section(object, shndx);
2981 if (posd != NULL)
2982 {
2983 section_offset_type output_offset;
2984 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2985 gold_assert(found);
2986 return output_offset;
2987 }
2988
2989 // Fall back to the slow look-up.
2990 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2991 p != this->input_sections_.end();
2992 ++p)
2993 {
2994 section_offset_type output_offset;
2995 if (p->output_offset(object, shndx, offset, &output_offset))
2996 return output_offset;
2997 }
2998 gold_unreachable();
2999 }
3000
3001 // Return the output virtual address of OFFSET relative to the start
3002 // of input section SHNDX in object OBJECT.
3003
3004 uint64_t
3005 Output_section::output_address(const Relobj* object, unsigned int shndx,
3006 off_t offset) const
3007 {
3008 uint64_t addr = this->address() + this->first_input_offset_;
3009
3010 // Look at the Output_section_data_maps first.
3011 const Output_section_data* posd = this->find_merge_section(object, shndx);
3012 if (posd == NULL)
3013 posd = this->find_relaxed_input_section(object, shndx);
3014 if (posd != NULL && posd->is_address_valid())
3015 {
3016 section_offset_type output_offset;
3017 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3018 gold_assert(found);
3019 return posd->address() + output_offset;
3020 }
3021
3022 // Fall back to the slow look-up.
3023 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3024 p != this->input_sections_.end();
3025 ++p)
3026 {
3027 addr = align_address(addr, p->addralign());
3028 section_offset_type output_offset;
3029 if (p->output_offset(object, shndx, offset, &output_offset))
3030 {
3031 if (output_offset == -1)
3032 return -1ULL;
3033 return addr + output_offset;
3034 }
3035 addr += p->data_size();
3036 }
3037
3038 // If we get here, it means that we don't know the mapping for this
3039 // input section. This might happen in principle if
3040 // add_input_section were called before add_output_section_data.
3041 // But it should never actually happen.
3042
3043 gold_unreachable();
3044 }
3045
3046 // Find the output address of the start of the merged section for
3047 // input section SHNDX in object OBJECT.
3048
3049 bool
3050 Output_section::find_starting_output_address(const Relobj* object,
3051 unsigned int shndx,
3052 uint64_t* paddr) const
3053 {
3054 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3055 // Looking up the merge section map does not always work as we sometimes
3056 // find a merge section without its address set.
3057 uint64_t addr = this->address() + this->first_input_offset_;
3058 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3059 p != this->input_sections_.end();
3060 ++p)
3061 {
3062 addr = align_address(addr, p->addralign());
3063
3064 // It would be nice if we could use the existing output_offset
3065 // method to get the output offset of input offset 0.
3066 // Unfortunately we don't know for sure that input offset 0 is
3067 // mapped at all.
3068 if (p->is_merge_section_for(object, shndx))
3069 {
3070 *paddr = addr;
3071 return true;
3072 }
3073
3074 addr += p->data_size();
3075 }
3076
3077 // We couldn't find a merge output section for this input section.
3078 return false;
3079 }
3080
3081 // Update the data size of an Output_section.
3082
3083 void
3084 Output_section::update_data_size()
3085 {
3086 if (this->input_sections_.empty())
3087 return;
3088
3089 if (this->must_sort_attached_input_sections()
3090 || this->input_section_order_specified())
3091 this->sort_attached_input_sections();
3092
3093 off_t off = this->first_input_offset_;
3094 for (Input_section_list::iterator p = this->input_sections_.begin();
3095 p != this->input_sections_.end();
3096 ++p)
3097 {
3098 off = align_address(off, p->addralign());
3099 off += p->current_data_size();
3100 }
3101
3102 this->set_current_data_size_for_child(off);
3103 }
3104
3105 // Set the data size of an Output_section. This is where we handle
3106 // setting the addresses of any Output_section_data objects.
3107
3108 void
3109 Output_section::set_final_data_size()
3110 {
3111 off_t data_size;
3112
3113 if (this->input_sections_.empty())
3114 data_size = this->current_data_size_for_child();
3115 else
3116 {
3117 if (this->must_sort_attached_input_sections()
3118 || this->input_section_order_specified())
3119 this->sort_attached_input_sections();
3120
3121 uint64_t address = this->address();
3122 off_t startoff = this->offset();
3123 off_t off = startoff + this->first_input_offset_;
3124 for (Input_section_list::iterator p = this->input_sections_.begin();
3125 p != this->input_sections_.end();
3126 ++p)
3127 {
3128 off = align_address(off, p->addralign());
3129 p->set_address_and_file_offset(address + (off - startoff), off,
3130 startoff);
3131 off += p->data_size();
3132 }
3133 data_size = off - startoff;
3134 }
3135
3136 // For full incremental links, we want to allocate some patch space
3137 // in most sections for subsequent incremental updates.
3138 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3139 {
3140 double pct = parameters->options().incremental_patch();
3141 size_t extra = static_cast<size_t>(data_size * pct);
3142 if (this->free_space_fill_ != NULL
3143 && this->free_space_fill_->minimum_hole_size() > extra)
3144 extra = this->free_space_fill_->minimum_hole_size();
3145 off_t new_size = align_address(data_size + extra, this->addralign());
3146 this->patch_space_ = new_size - data_size;
3147 gold_debug(DEBUG_INCREMENTAL,
3148 "set_final_data_size: %08lx + %08lx: section %s",
3149 static_cast<long>(data_size),
3150 static_cast<long>(this->patch_space_),
3151 this->name());
3152 data_size = new_size;
3153 }
3154
3155 this->set_data_size(data_size);
3156 }
3157
3158 // Reset the address and file offset.
3159
3160 void
3161 Output_section::do_reset_address_and_file_offset()
3162 {
3163 // An unallocated section has no address. Forcing this means that
3164 // we don't need special treatment for symbols defined in debug
3165 // sections. We do the same in the constructor. This does not
3166 // apply to NOLOAD sections though.
3167 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3168 this->set_address(0);
3169
3170 for (Input_section_list::iterator p = this->input_sections_.begin();
3171 p != this->input_sections_.end();
3172 ++p)
3173 p->reset_address_and_file_offset();
3174
3175 // Remove any patch space that was added in set_final_data_size.
3176 if (this->patch_space_ > 0)
3177 {
3178 this->set_current_data_size_for_child(this->current_data_size_for_child()
3179 - this->patch_space_);
3180 this->patch_space_ = 0;
3181 }
3182 }
3183
3184 // Return true if address and file offset have the values after reset.
3185
3186 bool
3187 Output_section::do_address_and_file_offset_have_reset_values() const
3188 {
3189 if (this->is_offset_valid())
3190 return false;
3191
3192 // An unallocated section has address 0 after its construction or a reset.
3193 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3194 return this->is_address_valid() && this->address() == 0;
3195 else
3196 return !this->is_address_valid();
3197 }
3198
3199 // Set the TLS offset. Called only for SHT_TLS sections.
3200
3201 void
3202 Output_section::do_set_tls_offset(uint64_t tls_base)
3203 {
3204 this->tls_offset_ = this->address() - tls_base;
3205 }
3206
3207 // In a few cases we need to sort the input sections attached to an
3208 // output section. This is used to implement the type of constructor
3209 // priority ordering implemented by the GNU linker, in which the
3210 // priority becomes part of the section name and the sections are
3211 // sorted by name. We only do this for an output section if we see an
3212 // attached input section matching ".ctors.*", ".dtors.*",
3213 // ".init_array.*" or ".fini_array.*".
3214
3215 class Output_section::Input_section_sort_entry
3216 {
3217 public:
3218 Input_section_sort_entry()
3219 : input_section_(), index_(-1U), section_has_name_(false),
3220 section_name_()
3221 { }
3222
3223 Input_section_sort_entry(const Input_section& input_section,
3224 unsigned int index,
3225 bool must_sort_attached_input_sections)
3226 : input_section_(input_section), index_(index),
3227 section_has_name_(input_section.is_input_section()
3228 || input_section.is_relaxed_input_section())
3229 {
3230 if (this->section_has_name_
3231 && must_sort_attached_input_sections)
3232 {
3233 // This is only called single-threaded from Layout::finalize,
3234 // so it is OK to lock. Unfortunately we have no way to pass
3235 // in a Task token.
3236 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3237 Object* obj = (input_section.is_input_section()
3238 ? input_section.relobj()
3239 : input_section.relaxed_input_section()->relobj());
3240 Task_lock_obj<Object> tl(dummy_task, obj);
3241
3242 // This is a slow operation, which should be cached in
3243 // Layout::layout if this becomes a speed problem.
3244 this->section_name_ = obj->section_name(input_section.shndx());
3245 }
3246 }
3247
3248 // Return the Input_section.
3249 const Input_section&
3250 input_section() const
3251 {
3252 gold_assert(this->index_ != -1U);
3253 return this->input_section_;
3254 }
3255
3256 // The index of this entry in the original list. This is used to
3257 // make the sort stable.
3258 unsigned int
3259 index() const
3260 {
3261 gold_assert(this->index_ != -1U);
3262 return this->index_;
3263 }
3264
3265 // Whether there is a section name.
3266 bool
3267 section_has_name() const
3268 { return this->section_has_name_; }
3269
3270 // The section name.
3271 const std::string&
3272 section_name() const
3273 {
3274 gold_assert(this->section_has_name_);
3275 return this->section_name_;
3276 }
3277
3278 // Return true if the section name has a priority. This is assumed
3279 // to be true if it has a dot after the initial dot.
3280 bool
3281 has_priority() const
3282 {
3283 gold_assert(this->section_has_name_);
3284 return this->section_name_.find('.', 1) != std::string::npos;
3285 }
3286
3287 // Return the priority. Believe it or not, gcc encodes the priority
3288 // differently for .ctors/.dtors and .init_array/.fini_array
3289 // sections.
3290 unsigned int
3291 get_priority() const
3292 {
3293 gold_assert(this->section_has_name_);
3294 bool is_ctors;
3295 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3296 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3297 is_ctors = true;
3298 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3299 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3300 is_ctors = false;
3301 else
3302 return 0;
3303 char* end;
3304 unsigned long prio = strtoul((this->section_name_.c_str()
3305 + (is_ctors ? 7 : 12)),
3306 &end, 10);
3307 if (*end != '\0')
3308 return 0;
3309 else if (is_ctors)
3310 return 65535 - prio;
3311 else
3312 return prio;
3313 }
3314
3315 // Return true if this an input file whose base name matches
3316 // FILE_NAME. The base name must have an extension of ".o", and
3317 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3318 // This is to match crtbegin.o as well as crtbeginS.o without
3319 // getting confused by other possibilities. Overall matching the
3320 // file name this way is a dreadful hack, but the GNU linker does it
3321 // in order to better support gcc, and we need to be compatible.
3322 bool
3323 match_file_name(const char* file_name) const
3324 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3325
3326 // Returns 1 if THIS should appear before S in section order, -1 if S
3327 // appears before THIS and 0 if they are not comparable.
3328 int
3329 compare_section_ordering(const Input_section_sort_entry& s) const
3330 {
3331 unsigned int this_secn_index = this->input_section_.section_order_index();
3332 unsigned int s_secn_index = s.input_section().section_order_index();
3333 if (this_secn_index > 0 && s_secn_index > 0)
3334 {
3335 if (this_secn_index < s_secn_index)
3336 return 1;
3337 else if (this_secn_index > s_secn_index)
3338 return -1;
3339 }
3340 return 0;
3341 }
3342
3343 private:
3344 // The Input_section we are sorting.
3345 Input_section input_section_;
3346 // The index of this Input_section in the original list.
3347 unsigned int index_;
3348 // Whether this Input_section has a section name--it won't if this
3349 // is some random Output_section_data.
3350 bool section_has_name_;
3351 // The section name if there is one.
3352 std::string section_name_;
3353 };
3354
3355 // Return true if S1 should come before S2 in the output section.
3356
3357 bool
3358 Output_section::Input_section_sort_compare::operator()(
3359 const Output_section::Input_section_sort_entry& s1,
3360 const Output_section::Input_section_sort_entry& s2) const
3361 {
3362 // crtbegin.o must come first.
3363 bool s1_begin = s1.match_file_name("crtbegin");
3364 bool s2_begin = s2.match_file_name("crtbegin");
3365 if (s1_begin || s2_begin)
3366 {
3367 if (!s1_begin)
3368 return false;
3369 if (!s2_begin)
3370 return true;
3371 return s1.index() < s2.index();
3372 }
3373
3374 // crtend.o must come last.
3375 bool s1_end = s1.match_file_name("crtend");
3376 bool s2_end = s2.match_file_name("crtend");
3377 if (s1_end || s2_end)
3378 {
3379 if (!s1_end)
3380 return true;
3381 if (!s2_end)
3382 return false;
3383 return s1.index() < s2.index();
3384 }
3385
3386 // We sort all the sections with no names to the end.
3387 if (!s1.section_has_name() || !s2.section_has_name())
3388 {
3389 if (s1.section_has_name())
3390 return true;
3391 if (s2.section_has_name())
3392 return false;
3393 return s1.index() < s2.index();
3394 }
3395
3396 // A section with a priority follows a section without a priority.
3397 bool s1_has_priority = s1.has_priority();
3398 bool s2_has_priority = s2.has_priority();
3399 if (s1_has_priority && !s2_has_priority)
3400 return false;
3401 if (!s1_has_priority && s2_has_priority)
3402 return true;
3403
3404 // Check if a section order exists for these sections through a section
3405 // ordering file. If sequence_num is 0, an order does not exist.
3406 int sequence_num = s1.compare_section_ordering(s2);
3407 if (sequence_num != 0)
3408 return sequence_num == 1;
3409
3410 // Otherwise we sort by name.
3411 int compare = s1.section_name().compare(s2.section_name());
3412 if (compare != 0)
3413 return compare < 0;
3414
3415 // Otherwise we keep the input order.
3416 return s1.index() < s2.index();
3417 }
3418
3419 // Return true if S1 should come before S2 in an .init_array or .fini_array
3420 // output section.
3421
3422 bool
3423 Output_section::Input_section_sort_init_fini_compare::operator()(
3424 const Output_section::Input_section_sort_entry& s1,
3425 const Output_section::Input_section_sort_entry& s2) const
3426 {
3427 // We sort all the sections with no names to the end.
3428 if (!s1.section_has_name() || !s2.section_has_name())
3429 {
3430 if (s1.section_has_name())
3431 return true;
3432 if (s2.section_has_name())
3433 return false;
3434 return s1.index() < s2.index();
3435 }
3436
3437 // A section without a priority follows a section with a priority.
3438 // This is the reverse of .ctors and .dtors sections.
3439 bool s1_has_priority = s1.has_priority();
3440 bool s2_has_priority = s2.has_priority();
3441 if (s1_has_priority && !s2_has_priority)
3442 return true;
3443 if (!s1_has_priority && s2_has_priority)
3444 return false;
3445
3446 // .ctors and .dtors sections without priority come after
3447 // .init_array and .fini_array sections without priority.
3448 if (!s1_has_priority
3449 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3450 && s1.section_name() != s2.section_name())
3451 return false;
3452 if (!s2_has_priority
3453 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3454 && s2.section_name() != s1.section_name())
3455 return true;
3456
3457 // Sort by priority if we can.
3458 if (s1_has_priority)
3459 {
3460 unsigned int s1_prio = s1.get_priority();
3461 unsigned int s2_prio = s2.get_priority();
3462 if (s1_prio < s2_prio)
3463 return true;
3464 else if (s1_prio > s2_prio)
3465 return false;
3466 }
3467
3468 // Check if a section order exists for these sections through a section
3469 // ordering file. If sequence_num is 0, an order does not exist.
3470 int sequence_num = s1.compare_section_ordering(s2);
3471 if (sequence_num != 0)
3472 return sequence_num == 1;
3473
3474 // Otherwise we sort by name.
3475 int compare = s1.section_name().compare(s2.section_name());
3476 if (compare != 0)
3477 return compare < 0;
3478
3479 // Otherwise we keep the input order.
3480 return s1.index() < s2.index();
3481 }
3482
3483 // Return true if S1 should come before S2. Sections that do not match
3484 // any pattern in the section ordering file are placed ahead of the sections
3485 // that match some pattern.
3486
3487 bool
3488 Output_section::Input_section_sort_section_order_index_compare::operator()(
3489 const Output_section::Input_section_sort_entry& s1,
3490 const Output_section::Input_section_sort_entry& s2) const
3491 {
3492 unsigned int s1_secn_index = s1.input_section().section_order_index();
3493 unsigned int s2_secn_index = s2.input_section().section_order_index();
3494
3495 // Keep input order if section ordering cannot determine order.
3496 if (s1_secn_index == s2_secn_index)
3497 return s1.index() < s2.index();
3498
3499 return s1_secn_index < s2_secn_index;
3500 }
3501
3502 // This updates the section order index of input sections according to the
3503 // the order specified in the mapping from Section id to order index.
3504
3505 void
3506 Output_section::update_section_layout(
3507 const Section_layout_order* order_map)
3508 {
3509 for (Input_section_list::iterator p = this->input_sections_.begin();
3510 p != this->input_sections_.end();
3511 ++p)
3512 {
3513 if (p->is_input_section()
3514 || p->is_relaxed_input_section())
3515 {
3516 Object* obj = (p->is_input_section()
3517 ? p->relobj()
3518 : p->relaxed_input_section()->relobj());
3519 unsigned int shndx = p->shndx();
3520 Section_layout_order::const_iterator it
3521 = order_map->find(Section_id(obj, shndx));
3522 if (it == order_map->end())
3523 continue;
3524 unsigned int section_order_index = it->second;
3525 if (section_order_index != 0)
3526 {
3527 p->set_section_order_index(section_order_index);
3528 this->set_input_section_order_specified();
3529 }
3530 }
3531 }
3532 }
3533
3534 // Sort the input sections attached to an output section.
3535
3536 void
3537 Output_section::sort_attached_input_sections()
3538 {
3539 if (this->attached_input_sections_are_sorted_)
3540 return;
3541
3542 if (this->checkpoint_ != NULL
3543 && !this->checkpoint_->input_sections_saved())
3544 this->checkpoint_->save_input_sections();
3545
3546 // The only thing we know about an input section is the object and
3547 // the section index. We need the section name. Recomputing this
3548 // is slow but this is an unusual case. If this becomes a speed
3549 // problem we can cache the names as required in Layout::layout.
3550
3551 // We start by building a larger vector holding a copy of each
3552 // Input_section, plus its current index in the list and its name.
3553 std::vector<Input_section_sort_entry> sort_list;
3554
3555 unsigned int i = 0;
3556 for (Input_section_list::iterator p = this->input_sections_.begin();
3557 p != this->input_sections_.end();
3558 ++p, ++i)
3559 sort_list.push_back(Input_section_sort_entry(*p, i,
3560 this->must_sort_attached_input_sections()));
3561
3562 // Sort the input sections.
3563 if (this->must_sort_attached_input_sections())
3564 {
3565 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3566 || this->type() == elfcpp::SHT_INIT_ARRAY
3567 || this->type() == elfcpp::SHT_FINI_ARRAY)
3568 std::sort(sort_list.begin(), sort_list.end(),
3569 Input_section_sort_init_fini_compare());
3570 else
3571 std::sort(sort_list.begin(), sort_list.end(),
3572 Input_section_sort_compare());
3573 }
3574 else
3575 {
3576 gold_assert(this->input_section_order_specified());
3577 std::sort(sort_list.begin(), sort_list.end(),
3578 Input_section_sort_section_order_index_compare());
3579 }
3580
3581 // Copy the sorted input sections back to our list.
3582 this->input_sections_.clear();
3583 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3584 p != sort_list.end();
3585 ++p)
3586 this->input_sections_.push_back(p->input_section());
3587 sort_list.clear();
3588
3589 // Remember that we sorted the input sections, since we might get
3590 // called again.
3591 this->attached_input_sections_are_sorted_ = true;
3592 }
3593
3594 // Write the section header to *OSHDR.
3595
3596 template<int size, bool big_endian>
3597 void
3598 Output_section::write_header(const Layout* layout,
3599 const Stringpool* secnamepool,
3600 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3601 {
3602 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3603 oshdr->put_sh_type(this->type_);
3604
3605 elfcpp::Elf_Xword flags = this->flags_;
3606 if (this->info_section_ != NULL && this->info_uses_section_index_)
3607 flags |= elfcpp::SHF_INFO_LINK;
3608 oshdr->put_sh_flags(flags);
3609
3610 oshdr->put_sh_addr(this->address());
3611 oshdr->put_sh_offset(this->offset());
3612 oshdr->put_sh_size(this->data_size());
3613 if (this->link_section_ != NULL)
3614 oshdr->put_sh_link(this->link_section_->out_shndx());
3615 else if (this->should_link_to_symtab_)
3616 oshdr->put_sh_link(layout->symtab_section_shndx());
3617 else if (this->should_link_to_dynsym_)
3618 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3619 else
3620 oshdr->put_sh_link(this->link_);
3621
3622 elfcpp::Elf_Word info;
3623 if (this->info_section_ != NULL)
3624 {
3625 if (this->info_uses_section_index_)
3626 info = this->info_section_->out_shndx();
3627 else
3628 info = this->info_section_->symtab_index();
3629 }
3630 else if (this->info_symndx_ != NULL)
3631 info = this->info_symndx_->symtab_index();
3632 else
3633 info = this->info_;
3634 oshdr->put_sh_info(info);
3635
3636 oshdr->put_sh_addralign(this->addralign_);
3637 oshdr->put_sh_entsize(this->entsize_);
3638 }
3639
3640 // Write out the data. For input sections the data is written out by
3641 // Object::relocate, but we have to handle Output_section_data objects
3642 // here.
3643
3644 void
3645 Output_section::do_write(Output_file* of)
3646 {
3647 gold_assert(!this->requires_postprocessing());
3648
3649 // If the target performs relaxation, we delay filler generation until now.
3650 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3651
3652 off_t output_section_file_offset = this->offset();
3653 for (Fill_list::iterator p = this->fills_.begin();
3654 p != this->fills_.end();
3655 ++p)
3656 {
3657 std::string fill_data(parameters->target().code_fill(p->length()));
3658 of->write(output_section_file_offset + p->section_offset(),
3659 fill_data.data(), fill_data.size());
3660 }
3661
3662 off_t off = this->offset() + this->first_input_offset_;
3663 for (Input_section_list::iterator p = this->input_sections_.begin();
3664 p != this->input_sections_.end();
3665 ++p)
3666 {
3667 off_t aligned_off = align_address(off, p->addralign());
3668 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3669 {
3670 size_t fill_len = aligned_off - off;
3671 std::string fill_data(parameters->target().code_fill(fill_len));
3672 of->write(off, fill_data.data(), fill_data.size());
3673 }
3674
3675 p->write(of);
3676 off = aligned_off + p->data_size();
3677 }
3678
3679 // For incremental links, fill in unused chunks in debug sections
3680 // with dummy compilation unit headers.
3681 if (this->free_space_fill_ != NULL)
3682 {
3683 for (Free_list::Const_iterator p = this->free_list_.begin();
3684 p != this->free_list_.end();
3685 ++p)
3686 {
3687 off_t off = p->start_;
3688 size_t len = p->end_ - off;
3689 this->free_space_fill_->write(of, this->offset() + off, len);
3690 }
3691 if (this->patch_space_ > 0)
3692 {
3693 off_t off = this->current_data_size_for_child() - this->patch_space_;
3694 this->free_space_fill_->write(of, this->offset() + off,
3695 this->patch_space_);
3696 }
3697 }
3698 }
3699
3700 // If a section requires postprocessing, create the buffer to use.
3701
3702 void
3703 Output_section::create_postprocessing_buffer()
3704 {
3705 gold_assert(this->requires_postprocessing());
3706
3707 if (this->postprocessing_buffer_ != NULL)
3708 return;
3709
3710 if (!this->input_sections_.empty())
3711 {
3712 off_t off = this->first_input_offset_;
3713 for (Input_section_list::iterator p = this->input_sections_.begin();
3714 p != this->input_sections_.end();
3715 ++p)
3716 {
3717 off = align_address(off, p->addralign());
3718 p->finalize_data_size();
3719 off += p->data_size();
3720 }
3721 this->set_current_data_size_for_child(off);
3722 }
3723
3724 off_t buffer_size = this->current_data_size_for_child();
3725 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3726 }
3727
3728 // Write all the data of an Output_section into the postprocessing
3729 // buffer. This is used for sections which require postprocessing,
3730 // such as compression. Input sections are handled by
3731 // Object::Relocate.
3732
3733 void
3734 Output_section::write_to_postprocessing_buffer()
3735 {
3736 gold_assert(this->requires_postprocessing());
3737
3738 // If the target performs relaxation, we delay filler generation until now.
3739 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3740
3741 unsigned char* buffer = this->postprocessing_buffer();
3742 for (Fill_list::iterator p = this->fills_.begin();
3743 p != this->fills_.end();
3744 ++p)
3745 {
3746 std::string fill_data(parameters->target().code_fill(p->length()));
3747 memcpy(buffer + p->section_offset(), fill_data.data(),
3748 fill_data.size());
3749 }
3750
3751 off_t off = this->first_input_offset_;
3752 for (Input_section_list::iterator p = this->input_sections_.begin();
3753 p != this->input_sections_.end();
3754 ++p)
3755 {
3756 off_t aligned_off = align_address(off, p->addralign());
3757 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3758 {
3759 size_t fill_len = aligned_off - off;
3760 std::string fill_data(parameters->target().code_fill(fill_len));
3761 memcpy(buffer + off, fill_data.data(), fill_data.size());
3762 }
3763
3764 p->write_to_buffer(buffer + aligned_off);
3765 off = aligned_off + p->data_size();
3766 }
3767 }
3768
3769 // Get the input sections for linker script processing. We leave
3770 // behind the Output_section_data entries. Note that this may be
3771 // slightly incorrect for merge sections. We will leave them behind,
3772 // but it is possible that the script says that they should follow
3773 // some other input sections, as in:
3774 // .rodata { *(.rodata) *(.rodata.cst*) }
3775 // For that matter, we don't handle this correctly:
3776 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3777 // With luck this will never matter.
3778
3779 uint64_t
3780 Output_section::get_input_sections(
3781 uint64_t address,
3782 const std::string& fill,
3783 std::list<Input_section>* input_sections)
3784 {
3785 if (this->checkpoint_ != NULL
3786 && !this->checkpoint_->input_sections_saved())
3787 this->checkpoint_->save_input_sections();
3788
3789 // Invalidate fast look-up maps.
3790 this->lookup_maps_->invalidate();
3791
3792 uint64_t orig_address = address;
3793
3794 address = align_address(address, this->addralign());
3795
3796 Input_section_list remaining;
3797 for (Input_section_list::iterator p = this->input_sections_.begin();
3798 p != this->input_sections_.end();
3799 ++p)
3800 {
3801 if (p->is_input_section()
3802 || p->is_relaxed_input_section()
3803 || p->is_merge_section())
3804 input_sections->push_back(*p);
3805 else
3806 {
3807 uint64_t aligned_address = align_address(address, p->addralign());
3808 if (aligned_address != address && !fill.empty())
3809 {
3810 section_size_type length =
3811 convert_to_section_size_type(aligned_address - address);
3812 std::string this_fill;
3813 this_fill.reserve(length);
3814 while (this_fill.length() + fill.length() <= length)
3815 this_fill += fill;
3816 if (this_fill.length() < length)
3817 this_fill.append(fill, 0, length - this_fill.length());
3818
3819 Output_section_data* posd = new Output_data_const(this_fill, 0);
3820 remaining.push_back(Input_section(posd));
3821 }
3822 address = aligned_address;
3823
3824 remaining.push_back(*p);
3825
3826 p->finalize_data_size();
3827 address += p->data_size();
3828 }
3829 }
3830
3831 this->input_sections_.swap(remaining);
3832 this->first_input_offset_ = 0;
3833
3834 uint64_t data_size = address - orig_address;
3835 this->set_current_data_size_for_child(data_size);
3836 return data_size;
3837 }
3838
3839 // Add a script input section. SIS is an Output_section::Input_section,
3840 // which can be either a plain input section or a special input section like
3841 // a relaxed input section. For a special input section, its size must be
3842 // finalized.
3843
3844 void
3845 Output_section::add_script_input_section(const Input_section& sis)
3846 {
3847 uint64_t data_size = sis.data_size();
3848 uint64_t addralign = sis.addralign();
3849 if (addralign > this->addralign_)
3850 this->addralign_ = addralign;
3851
3852 off_t offset_in_section = this->current_data_size_for_child();
3853 off_t aligned_offset_in_section = align_address(offset_in_section,
3854 addralign);
3855
3856 this->set_current_data_size_for_child(aligned_offset_in_section
3857 + data_size);
3858
3859 this->input_sections_.push_back(sis);
3860
3861 // Update fast lookup maps if necessary.
3862 if (this->lookup_maps_->is_valid())
3863 {
3864 if (sis.is_merge_section())
3865 {
3866 Output_merge_base* pomb = sis.output_merge_base();
3867 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3868 pomb->addralign());
3869 this->lookup_maps_->add_merge_section(msp, pomb);
3870 for (Output_merge_base::Input_sections::const_iterator p =
3871 pomb->input_sections_begin();
3872 p != pomb->input_sections_end();
3873 ++p)
3874 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3875 pomb);
3876 }
3877 else if (sis.is_relaxed_input_section())
3878 {
3879 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3880 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3881 poris->shndx(), poris);
3882 }
3883 }
3884 }
3885
3886 // Save states for relaxation.
3887
3888 void
3889 Output_section::save_states()
3890 {
3891 gold_assert(this->checkpoint_ == NULL);
3892 Checkpoint_output_section* checkpoint =
3893 new Checkpoint_output_section(this->addralign_, this->flags_,
3894 this->input_sections_,
3895 this->first_input_offset_,
3896 this->attached_input_sections_are_sorted_);
3897 this->checkpoint_ = checkpoint;
3898 gold_assert(this->fills_.empty());
3899 }
3900
3901 void
3902 Output_section::discard_states()
3903 {
3904 gold_assert(this->checkpoint_ != NULL);
3905 delete this->checkpoint_;
3906 this->checkpoint_ = NULL;
3907 gold_assert(this->fills_.empty());
3908
3909 // Simply invalidate the fast lookup maps since we do not keep
3910 // track of them.
3911 this->lookup_maps_->invalidate();
3912 }
3913
3914 void
3915 Output_section::restore_states()
3916 {
3917 gold_assert(this->checkpoint_ != NULL);
3918 Checkpoint_output_section* checkpoint = this->checkpoint_;
3919
3920 this->addralign_ = checkpoint->addralign();
3921 this->flags_ = checkpoint->flags();
3922 this->first_input_offset_ = checkpoint->first_input_offset();
3923
3924 if (!checkpoint->input_sections_saved())
3925 {
3926 // If we have not copied the input sections, just resize it.
3927 size_t old_size = checkpoint->input_sections_size();
3928 gold_assert(this->input_sections_.size() >= old_size);
3929 this->input_sections_.resize(old_size);
3930 }
3931 else
3932 {
3933 // We need to copy the whole list. This is not efficient for
3934 // extremely large output with hundreads of thousands of input
3935 // objects. We may need to re-think how we should pass sections
3936 // to scripts.
3937 this->input_sections_ = *checkpoint->input_sections();
3938 }
3939
3940 this->attached_input_sections_are_sorted_ =
3941 checkpoint->attached_input_sections_are_sorted();
3942
3943 // Simply invalidate the fast lookup maps since we do not keep
3944 // track of them.
3945 this->lookup_maps_->invalidate();
3946 }
3947
3948 // Update the section offsets of input sections in this. This is required if
3949 // relaxation causes some input sections to change sizes.
3950
3951 void
3952 Output_section::adjust_section_offsets()
3953 {
3954 if (!this->section_offsets_need_adjustment_)
3955 return;
3956
3957 off_t off = 0;
3958 for (Input_section_list::iterator p = this->input_sections_.begin();
3959 p != this->input_sections_.end();
3960 ++p)
3961 {
3962 off = align_address(off, p->addralign());
3963 if (p->is_input_section())
3964 p->relobj()->set_section_offset(p->shndx(), off);
3965 off += p->data_size();
3966 }
3967
3968 this->section_offsets_need_adjustment_ = false;
3969 }
3970
3971 // Print to the map file.
3972
3973 void
3974 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3975 {
3976 mapfile->print_output_section(this);
3977
3978 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3979 p != this->input_sections_.end();
3980 ++p)
3981 p->print_to_mapfile(mapfile);
3982 }
3983
3984 // Print stats for merge sections to stderr.
3985
3986 void
3987 Output_section::print_merge_stats()
3988 {
3989 Input_section_list::iterator p;
3990 for (p = this->input_sections_.begin();
3991 p != this->input_sections_.end();
3992 ++p)
3993 p->print_merge_stats(this->name_);
3994 }
3995
3996 // Set a fixed layout for the section. Used for incremental update links.
3997
3998 void
3999 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4000 off_t sh_size, uint64_t sh_addralign)
4001 {
4002 this->addralign_ = sh_addralign;
4003 this->set_current_data_size(sh_size);
4004 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4005 this->set_address(sh_addr);
4006 this->set_file_offset(sh_offset);
4007 this->finalize_data_size();
4008 this->free_list_.init(sh_size, false);
4009 this->has_fixed_layout_ = true;
4010 }
4011
4012 // Reserve space within the fixed layout for the section. Used for
4013 // incremental update links.
4014
4015 void
4016 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4017 {
4018 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4019 }
4020
4021 // Allocate space from the free list for the section. Used for
4022 // incremental update links.
4023
4024 off_t
4025 Output_section::allocate(off_t len, uint64_t addralign)
4026 {
4027 return this->free_list_.allocate(len, addralign, 0);
4028 }
4029
4030 // Output segment methods.
4031
4032 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4033 : vaddr_(0),
4034 paddr_(0),
4035 memsz_(0),
4036 max_align_(0),
4037 min_p_align_(0),
4038 offset_(0),
4039 filesz_(0),
4040 type_(type),
4041 flags_(flags),
4042 is_max_align_known_(false),
4043 are_addresses_set_(false),
4044 is_large_data_segment_(false),
4045 is_unique_segment_(false)
4046 {
4047 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4048 // the flags.
4049 if (type == elfcpp::PT_TLS)
4050 this->flags_ = elfcpp::PF_R;
4051 }
4052
4053 // Add an Output_section to a PT_LOAD Output_segment.
4054
4055 void
4056 Output_segment::add_output_section_to_load(Layout* layout,
4057 Output_section* os,
4058 elfcpp::Elf_Word seg_flags)
4059 {
4060 gold_assert(this->type() == elfcpp::PT_LOAD);
4061 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4062 gold_assert(!this->is_max_align_known_);
4063 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4064
4065 this->update_flags_for_output_section(seg_flags);
4066
4067 // We don't want to change the ordering if we have a linker script
4068 // with a SECTIONS clause.
4069 Output_section_order order = os->order();
4070 if (layout->script_options()->saw_sections_clause())
4071 order = static_cast<Output_section_order>(0);
4072 else
4073 gold_assert(order != ORDER_INVALID);
4074
4075 this->output_lists_[order].push_back(os);
4076 }
4077
4078 // Add an Output_section to a non-PT_LOAD Output_segment.
4079
4080 void
4081 Output_segment::add_output_section_to_nonload(Output_section* os,
4082 elfcpp::Elf_Word seg_flags)
4083 {
4084 gold_assert(this->type() != elfcpp::PT_LOAD);
4085 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4086 gold_assert(!this->is_max_align_known_);
4087
4088 this->update_flags_for_output_section(seg_flags);
4089
4090 this->output_lists_[0].push_back(os);
4091 }
4092
4093 // Remove an Output_section from this segment. It is an error if it
4094 // is not present.
4095
4096 void
4097 Output_segment::remove_output_section(Output_section* os)
4098 {
4099 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4100 {
4101 Output_data_list* pdl = &this->output_lists_[i];
4102 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4103 {
4104 if (*p == os)
4105 {
4106 pdl->erase(p);
4107 return;
4108 }
4109 }
4110 }
4111 gold_unreachable();
4112 }
4113
4114 // Add an Output_data (which need not be an Output_section) to the
4115 // start of a segment.
4116
4117 void
4118 Output_segment::add_initial_output_data(Output_data* od)
4119 {
4120 gold_assert(!this->is_max_align_known_);
4121 Output_data_list::iterator p = this->output_lists_[0].begin();
4122 this->output_lists_[0].insert(p, od);
4123 }
4124
4125 // Return true if this segment has any sections which hold actual
4126 // data, rather than being a BSS section.
4127
4128 bool
4129 Output_segment::has_any_data_sections() const
4130 {
4131 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4132 {
4133 const Output_data_list* pdl = &this->output_lists_[i];
4134 for (Output_data_list::const_iterator p = pdl->begin();
4135 p != pdl->end();
4136 ++p)
4137 {
4138 if (!(*p)->is_section())
4139 return true;
4140 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4141 return true;
4142 }
4143 }
4144 return false;
4145 }
4146
4147 // Return whether the first data section (not counting TLS sections)
4148 // is a relro section.
4149
4150 bool
4151 Output_segment::is_first_section_relro() const
4152 {
4153 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4154 {
4155 if (i == static_cast<int>(ORDER_TLS_DATA)
4156 || i == static_cast<int>(ORDER_TLS_BSS))
4157 continue;
4158 const Output_data_list* pdl = &this->output_lists_[i];
4159 if (!pdl->empty())
4160 {
4161 Output_data* p = pdl->front();
4162 return p->is_section() && p->output_section()->is_relro();
4163 }
4164 }
4165 return false;
4166 }
4167
4168 // Return the maximum alignment of the Output_data in Output_segment.
4169
4170 uint64_t
4171 Output_segment::maximum_alignment()
4172 {
4173 if (!this->is_max_align_known_)
4174 {
4175 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4176 {
4177 const Output_data_list* pdl = &this->output_lists_[i];
4178 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4179 if (addralign > this->max_align_)
4180 this->max_align_ = addralign;
4181 }
4182 this->is_max_align_known_ = true;
4183 }
4184
4185 return this->max_align_;
4186 }
4187
4188 // Return the maximum alignment of a list of Output_data.
4189
4190 uint64_t
4191 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4192 {
4193 uint64_t ret = 0;
4194 for (Output_data_list::const_iterator p = pdl->begin();
4195 p != pdl->end();
4196 ++p)
4197 {
4198 uint64_t addralign = (*p)->addralign();
4199 if (addralign > ret)
4200 ret = addralign;
4201 }
4202 return ret;
4203 }
4204
4205 // Return whether this segment has any dynamic relocs.
4206
4207 bool
4208 Output_segment::has_dynamic_reloc() const
4209 {
4210 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4211 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4212 return true;
4213 return false;
4214 }
4215
4216 // Return whether this Output_data_list has any dynamic relocs.
4217
4218 bool
4219 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4220 {
4221 for (Output_data_list::const_iterator p = pdl->begin();
4222 p != pdl->end();
4223 ++p)
4224 if ((*p)->has_dynamic_reloc())
4225 return true;
4226 return false;
4227 }
4228
4229 // Set the section addresses for an Output_segment. If RESET is true,
4230 // reset the addresses first. ADDR is the address and *POFF is the
4231 // file offset. Set the section indexes starting with *PSHNDX.
4232 // INCREASE_RELRO is the size of the portion of the first non-relro
4233 // section that should be included in the PT_GNU_RELRO segment.
4234 // If this segment has relro sections, and has been aligned for
4235 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4236 // the immediately following segment. Update *HAS_RELRO, *POFF,
4237 // and *PSHNDX.
4238
4239 uint64_t
4240 Output_segment::set_section_addresses(Layout* layout, bool reset,
4241 uint64_t addr,
4242 unsigned int* increase_relro,
4243 bool* has_relro,
4244 off_t* poff,
4245 unsigned int* pshndx)
4246 {
4247 gold_assert(this->type_ == elfcpp::PT_LOAD);
4248
4249 uint64_t last_relro_pad = 0;
4250 off_t orig_off = *poff;
4251
4252 bool in_tls = false;
4253
4254 // If we have relro sections, we need to pad forward now so that the
4255 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4256 if (parameters->options().relro()
4257 && this->is_first_section_relro()
4258 && (!this->are_addresses_set_ || reset))
4259 {
4260 uint64_t relro_size = 0;
4261 off_t off = *poff;
4262 uint64_t max_align = 0;
4263 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4264 {
4265 Output_data_list* pdl = &this->output_lists_[i];
4266 Output_data_list::iterator p;
4267 for (p = pdl->begin(); p != pdl->end(); ++p)
4268 {
4269 if (!(*p)->is_section())
4270 break;
4271 uint64_t align = (*p)->addralign();
4272 if (align > max_align)
4273 max_align = align;
4274 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4275 in_tls = true;
4276 else if (in_tls)
4277 {
4278 // Align the first non-TLS section to the alignment
4279 // of the TLS segment.
4280 align = max_align;
4281 in_tls = false;
4282 }
4283 relro_size = align_address(relro_size, align);
4284 // Ignore the size of the .tbss section.
4285 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4286 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4287 continue;
4288 if ((*p)->is_address_valid())
4289 relro_size += (*p)->data_size();
4290 else
4291 {
4292 // FIXME: This could be faster.
4293 (*p)->set_address_and_file_offset(addr + relro_size,
4294 off + relro_size);
4295 relro_size += (*p)->data_size();
4296 (*p)->reset_address_and_file_offset();
4297 }
4298 }
4299 if (p != pdl->end())
4300 break;
4301 }
4302 relro_size += *increase_relro;
4303 // Pad the total relro size to a multiple of the maximum
4304 // section alignment seen.
4305 uint64_t aligned_size = align_address(relro_size, max_align);
4306 // Note the amount of padding added after the last relro section.
4307 last_relro_pad = aligned_size - relro_size;
4308 *has_relro = true;
4309
4310 uint64_t page_align = parameters->target().abi_pagesize();
4311
4312 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4313 uint64_t desired_align = page_align - (aligned_size % page_align);
4314 if (desired_align < *poff % page_align)
4315 *poff += page_align - *poff % page_align;
4316 *poff += desired_align - *poff % page_align;
4317 addr += *poff - orig_off;
4318 orig_off = *poff;
4319 }
4320
4321 if (!reset && this->are_addresses_set_)
4322 {
4323 gold_assert(this->paddr_ == addr);
4324 addr = this->vaddr_;
4325 }
4326 else
4327 {
4328 this->vaddr_ = addr;
4329 this->paddr_ = addr;
4330 this->are_addresses_set_ = true;
4331 }
4332
4333 in_tls = false;
4334
4335 this->offset_ = orig_off;
4336
4337 off_t off = 0;
4338 uint64_t ret;
4339 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4340 {
4341 if (i == static_cast<int>(ORDER_RELRO_LAST))
4342 {
4343 *poff += last_relro_pad;
4344 addr += last_relro_pad;
4345 if (this->output_lists_[i].empty())
4346 {
4347 // If there is nothing in the ORDER_RELRO_LAST list,
4348 // the padding will occur at the end of the relro
4349 // segment, and we need to add it to *INCREASE_RELRO.
4350 *increase_relro += last_relro_pad;
4351 }
4352 }
4353 addr = this->set_section_list_addresses(layout, reset,
4354 &this->output_lists_[i],
4355 addr, poff, pshndx, &in_tls);
4356 if (i < static_cast<int>(ORDER_SMALL_BSS))
4357 {
4358 this->filesz_ = *poff - orig_off;
4359 off = *poff;
4360 }
4361
4362 ret = addr;
4363 }
4364
4365 // If the last section was a TLS section, align upward to the
4366 // alignment of the TLS segment, so that the overall size of the TLS
4367 // segment is aligned.
4368 if (in_tls)
4369 {
4370 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4371 *poff = align_address(*poff, segment_align);
4372 }
4373
4374 this->memsz_ = *poff - orig_off;
4375
4376 // Ignore the file offset adjustments made by the BSS Output_data
4377 // objects.
4378 *poff = off;
4379
4380 return ret;
4381 }
4382
4383 // Set the addresses and file offsets in a list of Output_data
4384 // structures.
4385
4386 uint64_t
4387 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4388 Output_data_list* pdl,
4389 uint64_t addr, off_t* poff,
4390 unsigned int* pshndx,
4391 bool* in_tls)
4392 {
4393 off_t startoff = *poff;
4394 // For incremental updates, we may allocate non-fixed sections from
4395 // free space in the file. This keeps track of the high-water mark.
4396 off_t maxoff = startoff;
4397
4398 off_t off = startoff;
4399 for (Output_data_list::iterator p = pdl->begin();
4400 p != pdl->end();
4401 ++p)
4402 {
4403 if (reset)
4404 (*p)->reset_address_and_file_offset();
4405
4406 // When doing an incremental update or when using a linker script,
4407 // the section will most likely already have an address.
4408 if (!(*p)->is_address_valid())
4409 {
4410 uint64_t align = (*p)->addralign();
4411
4412 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4413 {
4414 // Give the first TLS section the alignment of the
4415 // entire TLS segment. Otherwise the TLS segment as a
4416 // whole may be misaligned.
4417 if (!*in_tls)
4418 {
4419 Output_segment* tls_segment = layout->tls_segment();
4420 gold_assert(tls_segment != NULL);
4421 uint64_t segment_align = tls_segment->maximum_alignment();
4422 gold_assert(segment_align >= align);
4423 align = segment_align;
4424
4425 *in_tls = true;
4426 }
4427 }
4428 else
4429 {
4430 // If this is the first section after the TLS segment,
4431 // align it to at least the alignment of the TLS
4432 // segment, so that the size of the overall TLS segment
4433 // is aligned.
4434 if (*in_tls)
4435 {
4436 uint64_t segment_align =
4437 layout->tls_segment()->maximum_alignment();
4438 if (segment_align > align)
4439 align = segment_align;
4440
4441 *in_tls = false;
4442 }
4443 }
4444
4445 if (!parameters->incremental_update())
4446 {
4447 off = align_address(off, align);
4448 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4449 }
4450 else
4451 {
4452 // Incremental update: allocate file space from free list.
4453 (*p)->pre_finalize_data_size();
4454 off_t current_size = (*p)->current_data_size();
4455 off = layout->allocate(current_size, align, startoff);
4456 if (off == -1)
4457 {
4458 gold_assert((*p)->output_section() != NULL);
4459 gold_fallback(_("out of patch space for section %s; "
4460 "relink with --incremental-full"),
4461 (*p)->output_section()->name());
4462 }
4463 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4464 if ((*p)->data_size() > current_size)
4465 {
4466 gold_assert((*p)->output_section() != NULL);
4467 gold_fallback(_("%s: section changed size; "
4468 "relink with --incremental-full"),
4469 (*p)->output_section()->name());
4470 }
4471 }
4472 }
4473 else if (parameters->incremental_update())
4474 {
4475 // For incremental updates, use the fixed offset for the
4476 // high-water mark computation.
4477 off = (*p)->offset();
4478 }
4479 else
4480 {
4481 // The script may have inserted a skip forward, but it
4482 // better not have moved backward.
4483 if ((*p)->address() >= addr + (off - startoff))
4484 off += (*p)->address() - (addr + (off - startoff));
4485 else
4486 {
4487 if (!layout->script_options()->saw_sections_clause())
4488 gold_unreachable();
4489 else
4490 {
4491 Output_section* os = (*p)->output_section();
4492
4493 // Cast to unsigned long long to avoid format warnings.
4494 unsigned long long previous_dot =
4495 static_cast<unsigned long long>(addr + (off - startoff));
4496 unsigned long long dot =
4497 static_cast<unsigned long long>((*p)->address());
4498
4499 if (os == NULL)
4500 gold_error(_("dot moves backward in linker script "
4501 "from 0x%llx to 0x%llx"), previous_dot, dot);
4502 else
4503 gold_error(_("address of section '%s' moves backward "
4504 "from 0x%llx to 0x%llx"),
4505 os->name(), previous_dot, dot);
4506 }
4507 }
4508 (*p)->set_file_offset(off);
4509 (*p)->finalize_data_size();
4510 }
4511
4512 if (parameters->incremental_update())
4513 gold_debug(DEBUG_INCREMENTAL,
4514 "set_section_list_addresses: %08lx %08lx %s",
4515 static_cast<long>(off),
4516 static_cast<long>((*p)->data_size()),
4517 ((*p)->output_section() != NULL
4518 ? (*p)->output_section()->name() : "(special)"));
4519
4520 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4521 // section. Such a section does not affect the size of a
4522 // PT_LOAD segment.
4523 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4524 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4525 off += (*p)->data_size();
4526
4527 if (off > maxoff)
4528 maxoff = off;
4529
4530 if ((*p)->is_section())
4531 {
4532 (*p)->set_out_shndx(*pshndx);
4533 ++*pshndx;
4534 }
4535 }
4536
4537 *poff = maxoff;
4538 return addr + (maxoff - startoff);
4539 }
4540
4541 // For a non-PT_LOAD segment, set the offset from the sections, if
4542 // any. Add INCREASE to the file size and the memory size.
4543
4544 void
4545 Output_segment::set_offset(unsigned int increase)
4546 {
4547 gold_assert(this->type_ != elfcpp::PT_LOAD);
4548
4549 gold_assert(!this->are_addresses_set_);
4550
4551 // A non-load section only uses output_lists_[0].
4552
4553 Output_data_list* pdl = &this->output_lists_[0];
4554
4555 if (pdl->empty())
4556 {
4557 gold_assert(increase == 0);
4558 this->vaddr_ = 0;
4559 this->paddr_ = 0;
4560 this->are_addresses_set_ = true;
4561 this->memsz_ = 0;
4562 this->min_p_align_ = 0;
4563 this->offset_ = 0;
4564 this->filesz_ = 0;
4565 return;
4566 }
4567
4568 // Find the first and last section by address.
4569 const Output_data* first = NULL;
4570 const Output_data* last_data = NULL;
4571 const Output_data* last_bss = NULL;
4572 for (Output_data_list::const_iterator p = pdl->begin();
4573 p != pdl->end();
4574 ++p)
4575 {
4576 if (first == NULL
4577 || (*p)->address() < first->address()
4578 || ((*p)->address() == first->address()
4579 && (*p)->data_size() < first->data_size()))
4580 first = *p;
4581 const Output_data** plast;
4582 if ((*p)->is_section()
4583 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4584 plast = &last_bss;
4585 else
4586 plast = &last_data;
4587 if (*plast == NULL
4588 || (*p)->address() > (*plast)->address()
4589 || ((*p)->address() == (*plast)->address()
4590 && (*p)->data_size() > (*plast)->data_size()))
4591 *plast = *p;
4592 }
4593
4594 this->vaddr_ = first->address();
4595 this->paddr_ = (first->has_load_address()
4596 ? first->load_address()
4597 : this->vaddr_);
4598 this->are_addresses_set_ = true;
4599 this->offset_ = first->offset();
4600
4601 if (last_data == NULL)
4602 this->filesz_ = 0;
4603 else
4604 this->filesz_ = (last_data->address()
4605 + last_data->data_size()
4606 - this->vaddr_);
4607
4608 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4609 this->memsz_ = (last->address()
4610 + last->data_size()
4611 - this->vaddr_);
4612
4613 this->filesz_ += increase;
4614 this->memsz_ += increase;
4615
4616 // If this is a RELRO segment, verify that the segment ends at a
4617 // page boundary.
4618 if (this->type_ == elfcpp::PT_GNU_RELRO)
4619 {
4620 uint64_t page_align = parameters->target().abi_pagesize();
4621 uint64_t segment_end = this->vaddr_ + this->memsz_;
4622 if (parameters->incremental_update())
4623 {
4624 // The INCREASE_RELRO calculation is bypassed for an incremental
4625 // update, so we need to adjust the segment size manually here.
4626 segment_end = align_address(segment_end, page_align);
4627 this->memsz_ = segment_end - this->vaddr_;
4628 }
4629 else
4630 gold_assert(segment_end == align_address(segment_end, page_align));
4631 }
4632
4633 // If this is a TLS segment, align the memory size. The code in
4634 // set_section_list ensures that the section after the TLS segment
4635 // is aligned to give us room.
4636 if (this->type_ == elfcpp::PT_TLS)
4637 {
4638 uint64_t segment_align = this->maximum_alignment();
4639 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4640 this->memsz_ = align_address(this->memsz_, segment_align);
4641 }
4642 }
4643
4644 // Set the TLS offsets of the sections in the PT_TLS segment.
4645
4646 void
4647 Output_segment::set_tls_offsets()
4648 {
4649 gold_assert(this->type_ == elfcpp::PT_TLS);
4650
4651 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4652 p != this->output_lists_[0].end();
4653 ++p)
4654 (*p)->set_tls_offset(this->vaddr_);
4655 }
4656
4657 // Return the first section.
4658
4659 Output_section*
4660 Output_segment::first_section() const
4661 {
4662 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4663 {
4664 const Output_data_list* pdl = &this->output_lists_[i];
4665 for (Output_data_list::const_iterator p = pdl->begin();
4666 p != pdl->end();
4667 ++p)
4668 {
4669 if ((*p)->is_section())
4670 return (*p)->output_section();
4671 }
4672 }
4673 gold_unreachable();
4674 }
4675
4676 // Return the number of Output_sections in an Output_segment.
4677
4678 unsigned int
4679 Output_segment::output_section_count() const
4680 {
4681 unsigned int ret = 0;
4682 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4683 ret += this->output_section_count_list(&this->output_lists_[i]);
4684 return ret;
4685 }
4686
4687 // Return the number of Output_sections in an Output_data_list.
4688
4689 unsigned int
4690 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4691 {
4692 unsigned int count = 0;
4693 for (Output_data_list::const_iterator p = pdl->begin();
4694 p != pdl->end();
4695 ++p)
4696 {
4697 if ((*p)->is_section())
4698 ++count;
4699 }
4700 return count;
4701 }
4702
4703 // Return the section attached to the list segment with the lowest
4704 // load address. This is used when handling a PHDRS clause in a
4705 // linker script.
4706
4707 Output_section*
4708 Output_segment::section_with_lowest_load_address() const
4709 {
4710 Output_section* found = NULL;
4711 uint64_t found_lma = 0;
4712 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4713 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4714 &found_lma);
4715 return found;
4716 }
4717
4718 // Look through a list for a section with a lower load address.
4719
4720 void
4721 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4722 Output_section** found,
4723 uint64_t* found_lma) const
4724 {
4725 for (Output_data_list::const_iterator p = pdl->begin();
4726 p != pdl->end();
4727 ++p)
4728 {
4729 if (!(*p)->is_section())
4730 continue;
4731 Output_section* os = static_cast<Output_section*>(*p);
4732 uint64_t lma = (os->has_load_address()
4733 ? os->load_address()
4734 : os->address());
4735 if (*found == NULL || lma < *found_lma)
4736 {
4737 *found = os;
4738 *found_lma = lma;
4739 }
4740 }
4741 }
4742
4743 // Write the segment data into *OPHDR.
4744
4745 template<int size, bool big_endian>
4746 void
4747 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4748 {
4749 ophdr->put_p_type(this->type_);
4750 ophdr->put_p_offset(this->offset_);
4751 ophdr->put_p_vaddr(this->vaddr_);
4752 ophdr->put_p_paddr(this->paddr_);
4753 ophdr->put_p_filesz(this->filesz_);
4754 ophdr->put_p_memsz(this->memsz_);
4755 ophdr->put_p_flags(this->flags_);
4756 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4757 }
4758
4759 // Write the section headers into V.
4760
4761 template<int size, bool big_endian>
4762 unsigned char*
4763 Output_segment::write_section_headers(const Layout* layout,
4764 const Stringpool* secnamepool,
4765 unsigned char* v,
4766 unsigned int* pshndx) const
4767 {
4768 // Every section that is attached to a segment must be attached to a
4769 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4770 // segments.
4771 if (this->type_ != elfcpp::PT_LOAD)
4772 return v;
4773
4774 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4775 {
4776 const Output_data_list* pdl = &this->output_lists_[i];
4777 v = this->write_section_headers_list<size, big_endian>(layout,
4778 secnamepool,
4779 pdl,
4780 v, pshndx);
4781 }
4782
4783 return v;
4784 }
4785
4786 template<int size, bool big_endian>
4787 unsigned char*
4788 Output_segment::write_section_headers_list(const Layout* layout,
4789 const Stringpool* secnamepool,
4790 const Output_data_list* pdl,
4791 unsigned char* v,
4792 unsigned int* pshndx) const
4793 {
4794 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4795 for (Output_data_list::const_iterator p = pdl->begin();
4796 p != pdl->end();
4797 ++p)
4798 {
4799 if ((*p)->is_section())
4800 {
4801 const Output_section* ps = static_cast<const Output_section*>(*p);
4802 gold_assert(*pshndx == ps->out_shndx());
4803 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4804 ps->write_header(layout, secnamepool, &oshdr);
4805 v += shdr_size;
4806 ++*pshndx;
4807 }
4808 }
4809 return v;
4810 }
4811
4812 // Print the output sections to the map file.
4813
4814 void
4815 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4816 {
4817 if (this->type() != elfcpp::PT_LOAD)
4818 return;
4819 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4820 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4821 }
4822
4823 // Print an output section list to the map file.
4824
4825 void
4826 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4827 const Output_data_list* pdl) const
4828 {
4829 for (Output_data_list::const_iterator p = pdl->begin();
4830 p != pdl->end();
4831 ++p)
4832 (*p)->print_to_mapfile(mapfile);
4833 }
4834
4835 // Output_file methods.
4836
4837 Output_file::Output_file(const char* name)
4838 : name_(name),
4839 o_(-1),
4840 file_size_(0),
4841 base_(NULL),
4842 map_is_anonymous_(false),
4843 map_is_allocated_(false),
4844 is_temporary_(false)
4845 {
4846 }
4847
4848 // Try to open an existing file. Returns false if the file doesn't
4849 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4850 // NULL, open that file as the base for incremental linking, and
4851 // copy its contents to the new output file. This routine can
4852 // be called for incremental updates, in which case WRITABLE should
4853 // be true, or by the incremental-dump utility, in which case
4854 // WRITABLE should be false.
4855
4856 bool
4857 Output_file::open_base_file(const char* base_name, bool writable)
4858 {
4859 // The name "-" means "stdout".
4860 if (strcmp(this->name_, "-") == 0)
4861 return false;
4862
4863 bool use_base_file = base_name != NULL;
4864 if (!use_base_file)
4865 base_name = this->name_;
4866 else if (strcmp(base_name, this->name_) == 0)
4867 gold_fatal(_("%s: incremental base and output file name are the same"),
4868 base_name);
4869
4870 // Don't bother opening files with a size of zero.
4871 struct stat s;
4872 if (::stat(base_name, &s) != 0)
4873 {
4874 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4875 return false;
4876 }
4877 if (s.st_size == 0)
4878 {
4879 gold_info(_("%s: incremental base file is empty"), base_name);
4880 return false;
4881 }
4882
4883 // If we're using a base file, we want to open it read-only.
4884 if (use_base_file)
4885 writable = false;
4886
4887 int oflags = writable ? O_RDWR : O_RDONLY;
4888 int o = open_descriptor(-1, base_name, oflags, 0);
4889 if (o < 0)
4890 {
4891 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4892 return false;
4893 }
4894
4895 // If the base file and the output file are different, open a
4896 // new output file and read the contents from the base file into
4897 // the newly-mapped region.
4898 if (use_base_file)
4899 {
4900 this->open(s.st_size);
4901 ssize_t bytes_to_read = s.st_size;
4902 unsigned char* p = this->base_;
4903 while (bytes_to_read > 0)
4904 {
4905 ssize_t len = ::read(o, p, bytes_to_read);
4906 if (len < 0)
4907 {
4908 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4909 return false;
4910 }
4911 if (len == 0)
4912 {
4913 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4914 base_name,
4915 static_cast<long long>(s.st_size - bytes_to_read),
4916 static_cast<long long>(s.st_size));
4917 return false;
4918 }
4919 p += len;
4920 bytes_to_read -= len;
4921 }
4922 ::close(o);
4923 return true;
4924 }
4925
4926 this->o_ = o;
4927 this->file_size_ = s.st_size;
4928
4929 if (!this->map_no_anonymous(writable))
4930 {
4931 release_descriptor(o, true);
4932 this->o_ = -1;
4933 this->file_size_ = 0;
4934 return false;
4935 }
4936
4937 return true;
4938 }
4939
4940 // Open the output file.
4941
4942 void
4943 Output_file::open(off_t file_size)
4944 {
4945 this->file_size_ = file_size;
4946
4947 // Unlink the file first; otherwise the open() may fail if the file
4948 // is busy (e.g. it's an executable that's currently being executed).
4949 //
4950 // However, the linker may be part of a system where a zero-length
4951 // file is created for it to write to, with tight permissions (gcc
4952 // 2.95 did something like this). Unlinking the file would work
4953 // around those permission controls, so we only unlink if the file
4954 // has a non-zero size. We also unlink only regular files to avoid
4955 // trouble with directories/etc.
4956 //
4957 // If we fail, continue; this command is merely a best-effort attempt
4958 // to improve the odds for open().
4959
4960 // We let the name "-" mean "stdout"
4961 if (!this->is_temporary_)
4962 {
4963 if (strcmp(this->name_, "-") == 0)
4964 this->o_ = STDOUT_FILENO;
4965 else
4966 {
4967 struct stat s;
4968 if (::stat(this->name_, &s) == 0
4969 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4970 {
4971 if (s.st_size != 0)
4972 ::unlink(this->name_);
4973 else if (!parameters->options().relocatable())
4974 {
4975 // If we don't unlink the existing file, add execute
4976 // permission where read permissions already exist
4977 // and where the umask permits.
4978 int mask = ::umask(0);
4979 ::umask(mask);
4980 s.st_mode |= (s.st_mode & 0444) >> 2;
4981 ::chmod(this->name_, s.st_mode & ~mask);
4982 }
4983 }
4984
4985 int mode = parameters->options().relocatable() ? 0666 : 0777;
4986 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4987 mode);
4988 if (o < 0)
4989 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4990 this->o_ = o;
4991 }
4992 }
4993
4994 this->map();
4995 }
4996
4997 // Resize the output file.
4998
4999 void
5000 Output_file::resize(off_t file_size)
5001 {
5002 // If the mmap is mapping an anonymous memory buffer, this is easy:
5003 // just mremap to the new size. If it's mapping to a file, we want
5004 // to unmap to flush to the file, then remap after growing the file.
5005 if (this->map_is_anonymous_)
5006 {
5007 void* base;
5008 if (!this->map_is_allocated_)
5009 {
5010 base = ::mremap(this->base_, this->file_size_, file_size,
5011 MREMAP_MAYMOVE);
5012 if (base == MAP_FAILED)
5013 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5014 }
5015 else
5016 {
5017 base = realloc(this->base_, file_size);
5018 if (base == NULL)
5019 gold_nomem();
5020 if (file_size > this->file_size_)
5021 memset(static_cast<char*>(base) + this->file_size_, 0,
5022 file_size - this->file_size_);
5023 }
5024 this->base_ = static_cast<unsigned char*>(base);
5025 this->file_size_ = file_size;
5026 }
5027 else
5028 {
5029 this->unmap();
5030 this->file_size_ = file_size;
5031 if (!this->map_no_anonymous(true))
5032 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5033 }
5034 }
5035
5036 // Map an anonymous block of memory which will later be written to the
5037 // file. Return whether the map succeeded.
5038
5039 bool
5040 Output_file::map_anonymous()
5041 {
5042 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5043 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5044 if (base == MAP_FAILED)
5045 {
5046 base = malloc(this->file_size_);
5047 if (base == NULL)
5048 return false;
5049 memset(base, 0, this->file_size_);
5050 this->map_is_allocated_ = true;
5051 }
5052 this->base_ = static_cast<unsigned char*>(base);
5053 this->map_is_anonymous_ = true;
5054 return true;
5055 }
5056
5057 // Map the file into memory. Return whether the mapping succeeded.
5058 // If WRITABLE is true, map with write access.
5059
5060 bool
5061 Output_file::map_no_anonymous(bool writable)
5062 {
5063 const int o = this->o_;
5064
5065 // If the output file is not a regular file, don't try to mmap it;
5066 // instead, we'll mmap a block of memory (an anonymous buffer), and
5067 // then later write the buffer to the file.
5068 void* base;
5069 struct stat statbuf;
5070 if (o == STDOUT_FILENO || o == STDERR_FILENO
5071 || ::fstat(o, &statbuf) != 0
5072 || !S_ISREG(statbuf.st_mode)
5073 || this->is_temporary_)
5074 return false;
5075
5076 // Ensure that we have disk space available for the file. If we
5077 // don't do this, it is possible that we will call munmap, close,
5078 // and exit with dirty buffers still in the cache with no assigned
5079 // disk blocks. If the disk is out of space at that point, the
5080 // output file will wind up incomplete, but we will have already
5081 // exited. The alternative to fallocate would be to use fdatasync,
5082 // but that would be a more significant performance hit.
5083 if (writable)
5084 {
5085 int err = gold_fallocate(o, 0, this->file_size_);
5086 if (err != 0)
5087 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5088 }
5089
5090 // Map the file into memory.
5091 int prot = PROT_READ;
5092 if (writable)
5093 prot |= PROT_WRITE;
5094 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5095
5096 // The mmap call might fail because of file system issues: the file
5097 // system might not support mmap at all, or it might not support
5098 // mmap with PROT_WRITE.
5099 if (base == MAP_FAILED)
5100 return false;
5101
5102 this->map_is_anonymous_ = false;
5103 this->base_ = static_cast<unsigned char*>(base);
5104 return true;
5105 }
5106
5107 // Map the file into memory.
5108
5109 void
5110 Output_file::map()
5111 {
5112 if (parameters->options().mmap_output_file()
5113 && this->map_no_anonymous(true))
5114 return;
5115
5116 // The mmap call might fail because of file system issues: the file
5117 // system might not support mmap at all, or it might not support
5118 // mmap with PROT_WRITE. I'm not sure which errno values we will
5119 // see in all cases, so if the mmap fails for any reason and we
5120 // don't care about file contents, try for an anonymous map.
5121 if (this->map_anonymous())
5122 return;
5123
5124 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5125 this->name_, static_cast<unsigned long>(this->file_size_),
5126 strerror(errno));
5127 }
5128
5129 // Unmap the file from memory.
5130
5131 void
5132 Output_file::unmap()
5133 {
5134 if (this->map_is_anonymous_)
5135 {
5136 // We've already written out the data, so there is no reason to
5137 // waste time unmapping or freeing the memory.
5138 }
5139 else
5140 {
5141 if (::munmap(this->base_, this->file_size_) < 0)
5142 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5143 }
5144 this->base_ = NULL;
5145 }
5146
5147 // Close the output file.
5148
5149 void
5150 Output_file::close()
5151 {
5152 // If the map isn't file-backed, we need to write it now.
5153 if (this->map_is_anonymous_ && !this->is_temporary_)
5154 {
5155 size_t bytes_to_write = this->file_size_;
5156 size_t offset = 0;
5157 while (bytes_to_write > 0)
5158 {
5159 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5160 bytes_to_write);
5161 if (bytes_written == 0)
5162 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5163 else if (bytes_written < 0)
5164 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5165 else
5166 {
5167 bytes_to_write -= bytes_written;
5168 offset += bytes_written;
5169 }
5170 }
5171 }
5172 this->unmap();
5173
5174 // We don't close stdout or stderr
5175 if (this->o_ != STDOUT_FILENO
5176 && this->o_ != STDERR_FILENO
5177 && !this->is_temporary_)
5178 if (::close(this->o_) < 0)
5179 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5180 this->o_ = -1;
5181 }
5182
5183 // Instantiate the templates we need. We could use the configure
5184 // script to restrict this to only the ones for implemented targets.
5185
5186 #ifdef HAVE_TARGET_32_LITTLE
5187 template
5188 off_t
5189 Output_section::add_input_section<32, false>(
5190 Layout* layout,
5191 Sized_relobj_file<32, false>* object,
5192 unsigned int shndx,
5193 const char* secname,
5194 const elfcpp::Shdr<32, false>& shdr,
5195 unsigned int reloc_shndx,
5196 bool have_sections_script);
5197 #endif
5198
5199 #ifdef HAVE_TARGET_32_BIG
5200 template
5201 off_t
5202 Output_section::add_input_section<32, true>(
5203 Layout* layout,
5204 Sized_relobj_file<32, true>* object,
5205 unsigned int shndx,
5206 const char* secname,
5207 const elfcpp::Shdr<32, true>& shdr,
5208 unsigned int reloc_shndx,
5209 bool have_sections_script);
5210 #endif
5211
5212 #ifdef HAVE_TARGET_64_LITTLE
5213 template
5214 off_t
5215 Output_section::add_input_section<64, false>(
5216 Layout* layout,
5217 Sized_relobj_file<64, false>* object,
5218 unsigned int shndx,
5219 const char* secname,
5220 const elfcpp::Shdr<64, false>& shdr,
5221 unsigned int reloc_shndx,
5222 bool have_sections_script);
5223 #endif
5224
5225 #ifdef HAVE_TARGET_64_BIG
5226 template
5227 off_t
5228 Output_section::add_input_section<64, true>(
5229 Layout* layout,
5230 Sized_relobj_file<64, true>* object,
5231 unsigned int shndx,
5232 const char* secname,
5233 const elfcpp::Shdr<64, true>& shdr,
5234 unsigned int reloc_shndx,
5235 bool have_sections_script);
5236 #endif
5237
5238 #ifdef HAVE_TARGET_32_LITTLE
5239 template
5240 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5241 #endif
5242
5243 #ifdef HAVE_TARGET_32_BIG
5244 template
5245 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5246 #endif
5247
5248 #ifdef HAVE_TARGET_64_LITTLE
5249 template
5250 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5251 #endif
5252
5253 #ifdef HAVE_TARGET_64_BIG
5254 template
5255 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5256 #endif
5257
5258 #ifdef HAVE_TARGET_32_LITTLE
5259 template
5260 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_BIG
5264 template
5265 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_LITTLE
5269 template
5270 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_BIG
5274 template
5275 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_32_LITTLE
5279 template
5280 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_32_BIG
5284 template
5285 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_64_LITTLE
5289 template
5290 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_BIG
5294 template
5295 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_32_LITTLE
5299 template
5300 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_BIG
5304 template
5305 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_64_LITTLE
5309 template
5310 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_BIG
5314 template
5315 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_32_LITTLE
5319 template
5320 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_32_BIG
5324 template
5325 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_64_LITTLE
5329 template
5330 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_64_BIG
5334 template
5335 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_32_LITTLE
5339 template
5340 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_32_BIG
5344 template
5345 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_64_LITTLE
5349 template
5350 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_64_BIG
5354 template
5355 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_32_LITTLE
5359 template
5360 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_BIG
5364 template
5365 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_64_LITTLE
5369 template
5370 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_BIG
5374 template
5375 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_32_LITTLE
5379 template
5380 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_BIG
5384 template
5385 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_64_LITTLE
5389 template
5390 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_BIG
5394 template
5395 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_32_LITTLE
5399 template
5400 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_BIG
5404 template
5405 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_LITTLE
5409 template
5410 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_BIG
5414 template
5415 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_32_LITTLE
5419 template
5420 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_BIG
5424 template
5425 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_64_LITTLE
5429 template
5430 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_BIG
5434 template
5435 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_32_LITTLE
5439 template
5440 class Output_data_group<32, false>;
5441 #endif
5442
5443 #ifdef HAVE_TARGET_32_BIG
5444 template
5445 class Output_data_group<32, true>;
5446 #endif
5447
5448 #ifdef HAVE_TARGET_64_LITTLE
5449 template
5450 class Output_data_group<64, false>;
5451 #endif
5452
5453 #ifdef HAVE_TARGET_64_BIG
5454 template
5455 class Output_data_group<64, true>;
5456 #endif
5457
5458 template
5459 class Output_data_got<32, false>;
5460
5461 template
5462 class Output_data_got<32, true>;
5463
5464 template
5465 class Output_data_got<64, false>;
5466
5467 template
5468 class Output_data_got<64, true>;
5469
5470 } // End namespace gold.
This page took 0.247314 seconds and 5 git commands to generate.