Handle case where posix_fallocate is not supported for a filesystem.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2017 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 if (len <= 0)
131 return 0;
132
133 #ifdef HAVE_POSIX_FALLOCATE
134 if (parameters->options().posix_fallocate())
135 {
136 int err = ::posix_fallocate(o, offset, len);
137 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
138 return err;
139 }
140 #endif // defined(HAVE_POSIX_FALLOCATE)
141
142 #ifdef HAVE_FALLOCATE
143 {
144 int err = ::fallocate(o, 0, offset, len);
145 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
146 return err;
147 }
148 #endif // defined(HAVE_FALLOCATE)
149
150 if (::ftruncate(o, offset + len) < 0)
151 return errno;
152 return 0;
153 }
154
155 // Output_data variables.
156
157 bool Output_data::allocated_sizes_are_fixed;
158
159 // Output_data methods.
160
161 Output_data::~Output_data()
162 {
163 }
164
165 // Return the default alignment for the target size.
166
167 uint64_t
168 Output_data::default_alignment()
169 {
170 return Output_data::default_alignment_for_size(
171 parameters->target().get_size());
172 }
173
174 // Return the default alignment for a size--32 or 64.
175
176 uint64_t
177 Output_data::default_alignment_for_size(int size)
178 {
179 if (size == 32)
180 return 4;
181 else if (size == 64)
182 return 8;
183 else
184 gold_unreachable();
185 }
186
187 // Output_section_header methods. This currently assumes that the
188 // segment and section lists are complete at construction time.
189
190 Output_section_headers::Output_section_headers(
191 const Layout* layout,
192 const Layout::Segment_list* segment_list,
193 const Layout::Section_list* section_list,
194 const Layout::Section_list* unattached_section_list,
195 const Stringpool* secnamepool,
196 const Output_section* shstrtab_section)
197 : layout_(layout),
198 segment_list_(segment_list),
199 section_list_(section_list),
200 unattached_section_list_(unattached_section_list),
201 secnamepool_(secnamepool),
202 shstrtab_section_(shstrtab_section)
203 {
204 }
205
206 // Compute the current data size.
207
208 off_t
209 Output_section_headers::do_size() const
210 {
211 // Count all the sections. Start with 1 for the null section.
212 off_t count = 1;
213 if (!parameters->options().relocatable())
214 {
215 for (Layout::Segment_list::const_iterator p =
216 this->segment_list_->begin();
217 p != this->segment_list_->end();
218 ++p)
219 if ((*p)->type() == elfcpp::PT_LOAD)
220 count += (*p)->output_section_count();
221 }
222 else
223 {
224 for (Layout::Section_list::const_iterator p =
225 this->section_list_->begin();
226 p != this->section_list_->end();
227 ++p)
228 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
229 ++count;
230 }
231 count += this->unattached_section_list_->size();
232
233 const int size = parameters->target().get_size();
234 int shdr_size;
235 if (size == 32)
236 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
237 else if (size == 64)
238 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
239 else
240 gold_unreachable();
241
242 return count * shdr_size;
243 }
244
245 // Write out the section headers.
246
247 void
248 Output_section_headers::do_write(Output_file* of)
249 {
250 switch (parameters->size_and_endianness())
251 {
252 #ifdef HAVE_TARGET_32_LITTLE
253 case Parameters::TARGET_32_LITTLE:
254 this->do_sized_write<32, false>(of);
255 break;
256 #endif
257 #ifdef HAVE_TARGET_32_BIG
258 case Parameters::TARGET_32_BIG:
259 this->do_sized_write<32, true>(of);
260 break;
261 #endif
262 #ifdef HAVE_TARGET_64_LITTLE
263 case Parameters::TARGET_64_LITTLE:
264 this->do_sized_write<64, false>(of);
265 break;
266 #endif
267 #ifdef HAVE_TARGET_64_BIG
268 case Parameters::TARGET_64_BIG:
269 this->do_sized_write<64, true>(of);
270 break;
271 #endif
272 default:
273 gold_unreachable();
274 }
275 }
276
277 template<int size, bool big_endian>
278 void
279 Output_section_headers::do_sized_write(Output_file* of)
280 {
281 off_t all_shdrs_size = this->data_size();
282 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
283
284 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
285 unsigned char* v = view;
286
287 {
288 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
289 oshdr.put_sh_name(0);
290 oshdr.put_sh_type(elfcpp::SHT_NULL);
291 oshdr.put_sh_flags(0);
292 oshdr.put_sh_addr(0);
293 oshdr.put_sh_offset(0);
294
295 size_t section_count = (this->data_size()
296 / elfcpp::Elf_sizes<size>::shdr_size);
297 if (section_count < elfcpp::SHN_LORESERVE)
298 oshdr.put_sh_size(0);
299 else
300 oshdr.put_sh_size(section_count);
301
302 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
303 if (shstrndx < elfcpp::SHN_LORESERVE)
304 oshdr.put_sh_link(0);
305 else
306 oshdr.put_sh_link(shstrndx);
307
308 size_t segment_count = this->segment_list_->size();
309 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
310
311 oshdr.put_sh_addralign(0);
312 oshdr.put_sh_entsize(0);
313 }
314
315 v += shdr_size;
316
317 unsigned int shndx = 1;
318 if (!parameters->options().relocatable())
319 {
320 for (Layout::Segment_list::const_iterator p =
321 this->segment_list_->begin();
322 p != this->segment_list_->end();
323 ++p)
324 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
325 this->secnamepool_,
326 v,
327 &shndx);
328 }
329 else
330 {
331 for (Layout::Section_list::const_iterator p =
332 this->section_list_->begin();
333 p != this->section_list_->end();
334 ++p)
335 {
336 // We do unallocated sections below, except that group
337 // sections have to come first.
338 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
339 && (*p)->type() != elfcpp::SHT_GROUP)
340 continue;
341 gold_assert(shndx == (*p)->out_shndx());
342 elfcpp::Shdr_write<size, big_endian> oshdr(v);
343 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
344 v += shdr_size;
345 ++shndx;
346 }
347 }
348
349 for (Layout::Section_list::const_iterator p =
350 this->unattached_section_list_->begin();
351 p != this->unattached_section_list_->end();
352 ++p)
353 {
354 // For a relocatable link, we did unallocated group sections
355 // above, since they have to come first.
356 if ((*p)->type() == elfcpp::SHT_GROUP
357 && parameters->options().relocatable())
358 continue;
359 gold_assert(shndx == (*p)->out_shndx());
360 elfcpp::Shdr_write<size, big_endian> oshdr(v);
361 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
362 v += shdr_size;
363 ++shndx;
364 }
365
366 of->write_output_view(this->offset(), all_shdrs_size, view);
367 }
368
369 // Output_segment_header methods.
370
371 Output_segment_headers::Output_segment_headers(
372 const Layout::Segment_list& segment_list)
373 : segment_list_(segment_list)
374 {
375 this->set_current_data_size_for_child(this->do_size());
376 }
377
378 void
379 Output_segment_headers::do_write(Output_file* of)
380 {
381 switch (parameters->size_and_endianness())
382 {
383 #ifdef HAVE_TARGET_32_LITTLE
384 case Parameters::TARGET_32_LITTLE:
385 this->do_sized_write<32, false>(of);
386 break;
387 #endif
388 #ifdef HAVE_TARGET_32_BIG
389 case Parameters::TARGET_32_BIG:
390 this->do_sized_write<32, true>(of);
391 break;
392 #endif
393 #ifdef HAVE_TARGET_64_LITTLE
394 case Parameters::TARGET_64_LITTLE:
395 this->do_sized_write<64, false>(of);
396 break;
397 #endif
398 #ifdef HAVE_TARGET_64_BIG
399 case Parameters::TARGET_64_BIG:
400 this->do_sized_write<64, true>(of);
401 break;
402 #endif
403 default:
404 gold_unreachable();
405 }
406 }
407
408 template<int size, bool big_endian>
409 void
410 Output_segment_headers::do_sized_write(Output_file* of)
411 {
412 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
413 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
414 gold_assert(all_phdrs_size == this->data_size());
415 unsigned char* view = of->get_output_view(this->offset(),
416 all_phdrs_size);
417 unsigned char* v = view;
418 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
419 p != this->segment_list_.end();
420 ++p)
421 {
422 elfcpp::Phdr_write<size, big_endian> ophdr(v);
423 (*p)->write_header(&ophdr);
424 v += phdr_size;
425 }
426
427 gold_assert(v - view == all_phdrs_size);
428
429 of->write_output_view(this->offset(), all_phdrs_size, view);
430 }
431
432 off_t
433 Output_segment_headers::do_size() const
434 {
435 const int size = parameters->target().get_size();
436 int phdr_size;
437 if (size == 32)
438 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
439 else if (size == 64)
440 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
441 else
442 gold_unreachable();
443
444 return this->segment_list_.size() * phdr_size;
445 }
446
447 // Output_file_header methods.
448
449 Output_file_header::Output_file_header(Target* target,
450 const Symbol_table* symtab,
451 const Output_segment_headers* osh)
452 : target_(target),
453 symtab_(symtab),
454 segment_header_(osh),
455 section_header_(NULL),
456 shstrtab_(NULL)
457 {
458 this->set_data_size(this->do_size());
459 }
460
461 // Set the section table information for a file header.
462
463 void
464 Output_file_header::set_section_info(const Output_section_headers* shdrs,
465 const Output_section* shstrtab)
466 {
467 this->section_header_ = shdrs;
468 this->shstrtab_ = shstrtab;
469 }
470
471 // Write out the file header.
472
473 void
474 Output_file_header::do_write(Output_file* of)
475 {
476 gold_assert(this->offset() == 0);
477
478 switch (parameters->size_and_endianness())
479 {
480 #ifdef HAVE_TARGET_32_LITTLE
481 case Parameters::TARGET_32_LITTLE:
482 this->do_sized_write<32, false>(of);
483 break;
484 #endif
485 #ifdef HAVE_TARGET_32_BIG
486 case Parameters::TARGET_32_BIG:
487 this->do_sized_write<32, true>(of);
488 break;
489 #endif
490 #ifdef HAVE_TARGET_64_LITTLE
491 case Parameters::TARGET_64_LITTLE:
492 this->do_sized_write<64, false>(of);
493 break;
494 #endif
495 #ifdef HAVE_TARGET_64_BIG
496 case Parameters::TARGET_64_BIG:
497 this->do_sized_write<64, true>(of);
498 break;
499 #endif
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Write out the file header with appropriate size and endianness.
506
507 template<int size, bool big_endian>
508 void
509 Output_file_header::do_sized_write(Output_file* of)
510 {
511 gold_assert(this->offset() == 0);
512
513 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
514 unsigned char* view = of->get_output_view(0, ehdr_size);
515 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
516
517 unsigned char e_ident[elfcpp::EI_NIDENT];
518 memset(e_ident, 0, elfcpp::EI_NIDENT);
519 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
520 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
521 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
522 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
523 if (size == 32)
524 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
525 else if (size == 64)
526 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
527 else
528 gold_unreachable();
529 e_ident[elfcpp::EI_DATA] = (big_endian
530 ? elfcpp::ELFDATA2MSB
531 : elfcpp::ELFDATA2LSB);
532 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
533 oehdr.put_e_ident(e_ident);
534
535 elfcpp::ET e_type;
536 if (parameters->options().relocatable())
537 e_type = elfcpp::ET_REL;
538 else if (parameters->options().output_is_position_independent())
539 e_type = elfcpp::ET_DYN;
540 else
541 e_type = elfcpp::ET_EXEC;
542 oehdr.put_e_type(e_type);
543
544 oehdr.put_e_machine(this->target_->machine_code());
545 oehdr.put_e_version(elfcpp::EV_CURRENT);
546
547 oehdr.put_e_entry(this->entry<size>());
548
549 if (this->segment_header_ == NULL)
550 oehdr.put_e_phoff(0);
551 else
552 oehdr.put_e_phoff(this->segment_header_->offset());
553
554 oehdr.put_e_shoff(this->section_header_->offset());
555 oehdr.put_e_flags(this->target_->processor_specific_flags());
556 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
557
558 if (this->segment_header_ == NULL)
559 {
560 oehdr.put_e_phentsize(0);
561 oehdr.put_e_phnum(0);
562 }
563 else
564 {
565 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
566 size_t phnum = (this->segment_header_->data_size()
567 / elfcpp::Elf_sizes<size>::phdr_size);
568 if (phnum > elfcpp::PN_XNUM)
569 phnum = elfcpp::PN_XNUM;
570 oehdr.put_e_phnum(phnum);
571 }
572
573 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
574 size_t section_count = (this->section_header_->data_size()
575 / elfcpp::Elf_sizes<size>::shdr_size);
576
577 if (section_count < elfcpp::SHN_LORESERVE)
578 oehdr.put_e_shnum(this->section_header_->data_size()
579 / elfcpp::Elf_sizes<size>::shdr_size);
580 else
581 oehdr.put_e_shnum(0);
582
583 unsigned int shstrndx = this->shstrtab_->out_shndx();
584 if (shstrndx < elfcpp::SHN_LORESERVE)
585 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
586 else
587 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
588
589 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
590 // the e_ident field.
591 this->target_->adjust_elf_header(view, ehdr_size);
592
593 of->write_output_view(0, ehdr_size, view);
594 }
595
596 // Return the value to use for the entry address.
597
598 template<int size>
599 typename elfcpp::Elf_types<size>::Elf_Addr
600 Output_file_header::entry()
601 {
602 const bool should_issue_warning = (parameters->options().entry() != NULL
603 && !parameters->options().relocatable()
604 && !parameters->options().shared());
605 const char* entry = parameters->entry();
606 Symbol* sym = this->symtab_->lookup(entry);
607
608 typename Sized_symbol<size>::Value_type v;
609 if (sym != NULL)
610 {
611 Sized_symbol<size>* ssym;
612 ssym = this->symtab_->get_sized_symbol<size>(sym);
613 if (!ssym->is_defined() && should_issue_warning)
614 gold_warning("entry symbol '%s' exists but is not defined", entry);
615 v = ssym->value();
616 }
617 else
618 {
619 // We couldn't find the entry symbol. See if we can parse it as
620 // a number. This supports, e.g., -e 0x1000.
621 char* endptr;
622 v = strtoull(entry, &endptr, 0);
623 if (*endptr != '\0')
624 {
625 if (should_issue_warning)
626 gold_warning("cannot find entry symbol '%s'", entry);
627 v = 0;
628 }
629 }
630
631 return v;
632 }
633
634 // Compute the current data size.
635
636 off_t
637 Output_file_header::do_size() const
638 {
639 const int size = parameters->target().get_size();
640 if (size == 32)
641 return elfcpp::Elf_sizes<32>::ehdr_size;
642 else if (size == 64)
643 return elfcpp::Elf_sizes<64>::ehdr_size;
644 else
645 gold_unreachable();
646 }
647
648 // Output_data_const methods.
649
650 void
651 Output_data_const::do_write(Output_file* of)
652 {
653 of->write(this->offset(), this->data_.data(), this->data_.size());
654 }
655
656 // Output_data_const_buffer methods.
657
658 void
659 Output_data_const_buffer::do_write(Output_file* of)
660 {
661 of->write(this->offset(), this->p_, this->data_size());
662 }
663
664 // Output_section_data methods.
665
666 // Record the output section, and set the entry size and such.
667
668 void
669 Output_section_data::set_output_section(Output_section* os)
670 {
671 gold_assert(this->output_section_ == NULL);
672 this->output_section_ = os;
673 this->do_adjust_output_section(os);
674 }
675
676 // Return the section index of the output section.
677
678 unsigned int
679 Output_section_data::do_out_shndx() const
680 {
681 gold_assert(this->output_section_ != NULL);
682 return this->output_section_->out_shndx();
683 }
684
685 // Set the alignment, which means we may need to update the alignment
686 // of the output section.
687
688 void
689 Output_section_data::set_addralign(uint64_t addralign)
690 {
691 this->addralign_ = addralign;
692 if (this->output_section_ != NULL
693 && this->output_section_->addralign() < addralign)
694 this->output_section_->set_addralign(addralign);
695 }
696
697 // Output_data_strtab methods.
698
699 // Set the final data size.
700
701 void
702 Output_data_strtab::set_final_data_size()
703 {
704 this->strtab_->set_string_offsets();
705 this->set_data_size(this->strtab_->get_strtab_size());
706 }
707
708 // Write out a string table.
709
710 void
711 Output_data_strtab::do_write(Output_file* of)
712 {
713 this->strtab_->write(of, this->offset());
714 }
715
716 // Output_reloc methods.
717
718 // A reloc against a global symbol.
719
720 template<bool dynamic, int size, bool big_endian>
721 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
722 Symbol* gsym,
723 unsigned int type,
724 Output_data* od,
725 Address address,
726 bool is_relative,
727 bool is_symbolless,
728 bool use_plt_offset)
729 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
730 is_relative_(is_relative), is_symbolless_(is_symbolless),
731 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
732 {
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.od = od;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 }
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Symbol* gsym,
744 unsigned int type,
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int shndx,
747 Address address,
748 bool is_relative,
749 bool is_symbolless,
750 bool use_plt_offset)
751 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
752 is_relative_(is_relative), is_symbolless_(is_symbolless),
753 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
754 {
755 gold_assert(shndx != INVALID_CODE);
756 // this->type_ is a bitfield; make sure TYPE fits.
757 gold_assert(this->type_ == type);
758 this->u1_.gsym = gsym;
759 this->u2_.relobj = relobj;
760 if (dynamic)
761 this->set_needs_dynsym_index();
762 }
763
764 // A reloc against a local symbol.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 Sized_relobj<size, big_endian>* relobj,
769 unsigned int local_sym_index,
770 unsigned int type,
771 Output_data* od,
772 Address address,
773 bool is_relative,
774 bool is_symbolless,
775 bool is_section_symbol,
776 bool use_plt_offset)
777 : address_(address), local_sym_index_(local_sym_index), type_(type),
778 is_relative_(is_relative), is_symbolless_(is_symbolless),
779 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
780 shndx_(INVALID_CODE)
781 {
782 gold_assert(local_sym_index != GSYM_CODE
783 && local_sym_index != INVALID_CODE);
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_ == type);
786 this->u1_.relobj = relobj;
787 this->u2_.od = od;
788 if (dynamic)
789 this->set_needs_dynsym_index();
790 }
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794 Sized_relobj<size, big_endian>* relobj,
795 unsigned int local_sym_index,
796 unsigned int type,
797 unsigned int shndx,
798 Address address,
799 bool is_relative,
800 bool is_symbolless,
801 bool is_section_symbol,
802 bool use_plt_offset)
803 : address_(address), local_sym_index_(local_sym_index), type_(type),
804 is_relative_(is_relative), is_symbolless_(is_symbolless),
805 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
806 shndx_(shndx)
807 {
808 gold_assert(local_sym_index != GSYM_CODE
809 && local_sym_index != INVALID_CODE);
810 gold_assert(shndx != INVALID_CODE);
811 // this->type_ is a bitfield; make sure TYPE fits.
812 gold_assert(this->type_ == type);
813 this->u1_.relobj = relobj;
814 this->u2_.relobj = relobj;
815 if (dynamic)
816 this->set_needs_dynsym_index();
817 }
818
819 // A reloc against the STT_SECTION symbol of an output section.
820
821 template<bool dynamic, int size, bool big_endian>
822 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
823 Output_section* os,
824 unsigned int type,
825 Output_data* od,
826 Address address,
827 bool is_relative)
828 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
829 is_relative_(is_relative), is_symbolless_(is_relative),
830 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
831 {
832 // this->type_ is a bitfield; make sure TYPE fits.
833 gold_assert(this->type_ == type);
834 this->u1_.os = os;
835 this->u2_.od = od;
836 if (dynamic)
837 this->set_needs_dynsym_index();
838 else
839 os->set_needs_symtab_index();
840 }
841
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844 Output_section* os,
845 unsigned int type,
846 Sized_relobj<size, big_endian>* relobj,
847 unsigned int shndx,
848 Address address,
849 bool is_relative)
850 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
851 is_relative_(is_relative), is_symbolless_(is_relative),
852 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
853 {
854 gold_assert(shndx != INVALID_CODE);
855 // this->type_ is a bitfield; make sure TYPE fits.
856 gold_assert(this->type_ == type);
857 this->u1_.os = os;
858 this->u2_.relobj = relobj;
859 if (dynamic)
860 this->set_needs_dynsym_index();
861 else
862 os->set_needs_symtab_index();
863 }
864
865 // An absolute or relative relocation.
866
867 template<bool dynamic, int size, bool big_endian>
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
869 unsigned int type,
870 Output_data* od,
871 Address address,
872 bool is_relative)
873 : address_(address), local_sym_index_(0), type_(type),
874 is_relative_(is_relative), is_symbolless_(false),
875 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
876 {
877 // this->type_ is a bitfield; make sure TYPE fits.
878 gold_assert(this->type_ == type);
879 this->u1_.relobj = NULL;
880 this->u2_.od = od;
881 }
882
883 template<bool dynamic, int size, bool big_endian>
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
885 unsigned int type,
886 Sized_relobj<size, big_endian>* relobj,
887 unsigned int shndx,
888 Address address,
889 bool is_relative)
890 : address_(address), local_sym_index_(0), type_(type),
891 is_relative_(is_relative), is_symbolless_(false),
892 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
893 {
894 gold_assert(shndx != INVALID_CODE);
895 // this->type_ is a bitfield; make sure TYPE fits.
896 gold_assert(this->type_ == type);
897 this->u1_.relobj = NULL;
898 this->u2_.relobj = relobj;
899 }
900
901 // A target specific relocation.
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Output_data* od,
908 Address address)
909 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
910 is_relative_(false), is_symbolless_(false),
911 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
912 {
913 // this->type_ is a bitfield; make sure TYPE fits.
914 gold_assert(this->type_ == type);
915 this->u1_.arg = arg;
916 this->u2_.od = od;
917 }
918
919 template<bool dynamic, int size, bool big_endian>
920 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
921 unsigned int type,
922 void* arg,
923 Sized_relobj<size, big_endian>* relobj,
924 unsigned int shndx,
925 Address address)
926 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
927 is_relative_(false), is_symbolless_(false),
928 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
929 {
930 gold_assert(shndx != INVALID_CODE);
931 // this->type_ is a bitfield; make sure TYPE fits.
932 gold_assert(this->type_ == type);
933 this->u1_.arg = arg;
934 this->u2_.relobj = relobj;
935 }
936
937 // Record that we need a dynamic symbol index for this relocation.
938
939 template<bool dynamic, int size, bool big_endian>
940 void
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 set_needs_dynsym_index()
943 {
944 if (this->is_symbolless_)
945 return;
946 switch (this->local_sym_index_)
947 {
948 case INVALID_CODE:
949 gold_unreachable();
950
951 case GSYM_CODE:
952 this->u1_.gsym->set_needs_dynsym_entry();
953 break;
954
955 case SECTION_CODE:
956 this->u1_.os->set_needs_dynsym_index();
957 break;
958
959 case TARGET_CODE:
960 // The target must take care of this if necessary.
961 break;
962
963 case 0:
964 break;
965
966 default:
967 {
968 const unsigned int lsi = this->local_sym_index_;
969 Sized_relobj_file<size, big_endian>* relobj =
970 this->u1_.relobj->sized_relobj();
971 gold_assert(relobj != NULL);
972 if (!this->is_section_symbol_)
973 relobj->set_needs_output_dynsym_entry(lsi);
974 else
975 relobj->output_section(lsi)->set_needs_dynsym_index();
976 }
977 break;
978 }
979 }
980
981 // Get the symbol index of a relocation.
982
983 template<bool dynamic, int size, bool big_endian>
984 unsigned int
985 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
986 const
987 {
988 unsigned int index;
989 if (this->is_symbolless_)
990 return 0;
991 switch (this->local_sym_index_)
992 {
993 case INVALID_CODE:
994 gold_unreachable();
995
996 case GSYM_CODE:
997 if (this->u1_.gsym == NULL)
998 index = 0;
999 else if (dynamic)
1000 index = this->u1_.gsym->dynsym_index();
1001 else
1002 index = this->u1_.gsym->symtab_index();
1003 break;
1004
1005 case SECTION_CODE:
1006 if (dynamic)
1007 index = this->u1_.os->dynsym_index();
1008 else
1009 index = this->u1_.os->symtab_index();
1010 break;
1011
1012 case TARGET_CODE:
1013 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1014 this->type_);
1015 break;
1016
1017 case 0:
1018 // Relocations without symbols use a symbol index of 0.
1019 index = 0;
1020 break;
1021
1022 default:
1023 {
1024 const unsigned int lsi = this->local_sym_index_;
1025 Sized_relobj_file<size, big_endian>* relobj =
1026 this->u1_.relobj->sized_relobj();
1027 gold_assert(relobj != NULL);
1028 if (!this->is_section_symbol_)
1029 {
1030 if (dynamic)
1031 index = relobj->dynsym_index(lsi);
1032 else
1033 index = relobj->symtab_index(lsi);
1034 }
1035 else
1036 {
1037 Output_section* os = relobj->output_section(lsi);
1038 gold_assert(os != NULL);
1039 if (dynamic)
1040 index = os->dynsym_index();
1041 else
1042 index = os->symtab_index();
1043 }
1044 }
1045 break;
1046 }
1047 gold_assert(index != -1U);
1048 return index;
1049 }
1050
1051 // For a local section symbol, get the address of the offset ADDEND
1052 // within the input section.
1053
1054 template<bool dynamic, int size, bool big_endian>
1055 typename elfcpp::Elf_types<size>::Elf_Addr
1056 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1057 local_section_offset(Addend addend) const
1058 {
1059 gold_assert(this->local_sym_index_ != GSYM_CODE
1060 && this->local_sym_index_ != SECTION_CODE
1061 && this->local_sym_index_ != TARGET_CODE
1062 && this->local_sym_index_ != INVALID_CODE
1063 && this->local_sym_index_ != 0
1064 && this->is_section_symbol_);
1065 const unsigned int lsi = this->local_sym_index_;
1066 Output_section* os = this->u1_.relobj->output_section(lsi);
1067 gold_assert(os != NULL);
1068 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1069 if (offset != invalid_address)
1070 return offset + addend;
1071 // This is a merge section.
1072 Sized_relobj_file<size, big_endian>* relobj =
1073 this->u1_.relobj->sized_relobj();
1074 gold_assert(relobj != NULL);
1075 offset = os->output_address(relobj, lsi, addend);
1076 gold_assert(offset != invalid_address);
1077 return offset;
1078 }
1079
1080 // Get the output address of a relocation.
1081
1082 template<bool dynamic, int size, bool big_endian>
1083 typename elfcpp::Elf_types<size>::Elf_Addr
1084 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1085 {
1086 Address address = this->address_;
1087 if (this->shndx_ != INVALID_CODE)
1088 {
1089 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1090 gold_assert(os != NULL);
1091 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1092 if (off != invalid_address)
1093 address += os->address() + off;
1094 else
1095 {
1096 Sized_relobj_file<size, big_endian>* relobj =
1097 this->u2_.relobj->sized_relobj();
1098 gold_assert(relobj != NULL);
1099 address = os->output_address(relobj, this->shndx_, address);
1100 gold_assert(address != invalid_address);
1101 }
1102 }
1103 else if (this->u2_.od != NULL)
1104 address += this->u2_.od->address();
1105 return address;
1106 }
1107
1108 // Write out the offset and info fields of a Rel or Rela relocation
1109 // entry.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 template<typename Write_rel>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1115 Write_rel* wr) const
1116 {
1117 wr->put_r_offset(this->get_address());
1118 unsigned int sym_index = this->get_symbol_index();
1119 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1120 }
1121
1122 // Write out a Rel relocation.
1123
1124 template<bool dynamic, int size, bool big_endian>
1125 void
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1127 unsigned char* pov) const
1128 {
1129 elfcpp::Rel_write<size, big_endian> orel(pov);
1130 this->write_rel(&orel);
1131 }
1132
1133 // Get the value of the symbol referred to by a Rel relocation.
1134
1135 template<bool dynamic, int size, bool big_endian>
1136 typename elfcpp::Elf_types<size>::Elf_Addr
1137 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1138 Addend addend) const
1139 {
1140 if (this->local_sym_index_ == GSYM_CODE)
1141 {
1142 const Sized_symbol<size>* sym;
1143 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1144 if (this->use_plt_offset_ && sym->has_plt_offset())
1145 return parameters->target().plt_address_for_global(sym);
1146 else
1147 return sym->value() + addend;
1148 }
1149 if (this->local_sym_index_ == SECTION_CODE)
1150 {
1151 gold_assert(!this->use_plt_offset_);
1152 return this->u1_.os->address() + addend;
1153 }
1154 gold_assert(this->local_sym_index_ != TARGET_CODE
1155 && this->local_sym_index_ != INVALID_CODE
1156 && this->local_sym_index_ != 0
1157 && !this->is_section_symbol_);
1158 const unsigned int lsi = this->local_sym_index_;
1159 Sized_relobj_file<size, big_endian>* relobj =
1160 this->u1_.relobj->sized_relobj();
1161 gold_assert(relobj != NULL);
1162 if (this->use_plt_offset_)
1163 return parameters->target().plt_address_for_local(relobj, lsi);
1164 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1165 return symval->value(relobj, addend);
1166 }
1167
1168 // Reloc comparison. This function sorts the dynamic relocs for the
1169 // benefit of the dynamic linker. First we sort all relative relocs
1170 // to the front. Among relative relocs, we sort by output address.
1171 // Among non-relative relocs, we sort by symbol index, then by output
1172 // address.
1173
1174 template<bool dynamic, int size, bool big_endian>
1175 int
1176 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1177 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1178 const
1179 {
1180 if (this->is_relative_)
1181 {
1182 if (!r2.is_relative_)
1183 return -1;
1184 // Otherwise sort by reloc address below.
1185 }
1186 else if (r2.is_relative_)
1187 return 1;
1188 else
1189 {
1190 unsigned int sym1 = this->get_symbol_index();
1191 unsigned int sym2 = r2.get_symbol_index();
1192 if (sym1 < sym2)
1193 return -1;
1194 else if (sym1 > sym2)
1195 return 1;
1196 // Otherwise sort by reloc address.
1197 }
1198
1199 section_offset_type addr1 = this->get_address();
1200 section_offset_type addr2 = r2.get_address();
1201 if (addr1 < addr2)
1202 return -1;
1203 else if (addr1 > addr2)
1204 return 1;
1205
1206 // Final tie breaker, in order to generate the same output on any
1207 // host: reloc type.
1208 unsigned int type1 = this->type_;
1209 unsigned int type2 = r2.type_;
1210 if (type1 < type2)
1211 return -1;
1212 else if (type1 > type2)
1213 return 1;
1214
1215 // These relocs appear to be exactly the same.
1216 return 0;
1217 }
1218
1219 // Write out a Rela relocation.
1220
1221 template<bool dynamic, int size, bool big_endian>
1222 void
1223 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1224 unsigned char* pov) const
1225 {
1226 elfcpp::Rela_write<size, big_endian> orel(pov);
1227 this->rel_.write_rel(&orel);
1228 Addend addend = this->addend_;
1229 if (this->rel_.is_target_specific())
1230 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1231 this->rel_.type(), addend);
1232 else if (this->rel_.is_symbolless())
1233 addend = this->rel_.symbol_value(addend);
1234 else if (this->rel_.is_local_section_symbol())
1235 addend = this->rel_.local_section_offset(addend);
1236 orel.put_r_addend(addend);
1237 }
1238
1239 // Output_data_reloc_base methods.
1240
1241 // Adjust the output section.
1242
1243 template<int sh_type, bool dynamic, int size, bool big_endian>
1244 void
1245 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1246 ::do_adjust_output_section(Output_section* os)
1247 {
1248 if (sh_type == elfcpp::SHT_REL)
1249 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250 else if (sh_type == elfcpp::SHT_RELA)
1251 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1252 else
1253 gold_unreachable();
1254
1255 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1256 // static link. The backends will generate a dynamic reloc section
1257 // to hold this. In that case we don't want to link to the dynsym
1258 // section, because there isn't one.
1259 if (!dynamic)
1260 os->set_should_link_to_symtab();
1261 else if (parameters->doing_static_link())
1262 ;
1263 else
1264 os->set_should_link_to_dynsym();
1265 }
1266
1267 // Standard relocation writer, which just calls Output_reloc::write().
1268
1269 template<int sh_type, bool dynamic, int size, bool big_endian>
1270 struct Output_reloc_writer
1271 {
1272 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1273 typedef std::vector<Output_reloc_type> Relocs;
1274
1275 static void
1276 write(typename Relocs::const_iterator p, unsigned char* pov)
1277 { p->write(pov); }
1278 };
1279
1280 // Write out relocation data.
1281
1282 template<int sh_type, bool dynamic, int size, bool big_endian>
1283 void
1284 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1285 Output_file* of)
1286 {
1287 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1288 this->do_write_generic<Writer>(of);
1289 }
1290
1291 // Class Output_relocatable_relocs.
1292
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300
1301 // class Output_data_group.
1302
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305 Sized_relobj_file<size, big_endian>* relobj,
1306 section_size_type entry_count,
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
1309 : Output_section_data(entry_count * 4, 4, false),
1310 relobj_(relobj),
1311 flags_(flags)
1312 {
1313 this->input_shndxes_.swap(*input_shndxes);
1314 }
1315
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330 ++contents;
1331
1332 for (std::vector<unsigned int>::const_iterator p =
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
1335 ++p, ++contents)
1336 {
1337 Output_section* os = this->relobj_->output_section(*p);
1338
1339 unsigned int output_shndx;
1340 if (os != NULL)
1341 output_shndx = os->out_shndx();
1342 else
1343 {
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1346 output_shndx = 0;
1347 }
1348
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350 }
1351
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1354
1355 of->write_output_view(off, oview_size, oview);
1356
1357 // We no longer need this information.
1358 this->input_shndxes_.clear();
1359 }
1360
1361 // Output_data_got::Got_entry methods.
1362
1363 // Write out the entry.
1364
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368 unsigned int got_indx,
1369 unsigned char* pov) const
1370 {
1371 Valtype val = 0;
1372
1373 switch (this->local_sym_index_)
1374 {
1375 case GSYM_CODE:
1376 {
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
1380 Symbol* gsym = this->u_.gsym;
1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382 val = parameters->target().plt_address_for_global(gsym);
1383 else
1384 {
1385 switch (parameters->size_and_endianness())
1386 {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1390 {
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 }
1398 break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1403 {
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 }
1408 break;
1409 #endif
1410 default:
1411 gold_unreachable();
1412 }
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
1415 val += parameters->target().tls_offset_for_global(gsym,
1416 got_indx);
1417 }
1418 }
1419 break;
1420
1421 case CONSTANT_CODE:
1422 val = this->u_.constant;
1423 break;
1424
1425 case RESERVED_CODE:
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1428 return;
1429 val = this->u_.constant;
1430 break;
1431
1432 default:
1433 {
1434 const Relobj* object = this->u_.object;
1435 const unsigned int lsi = this->local_sym_index_;
1436 bool is_tls = object->local_is_tls(lsi);
1437 if (this->use_plt_or_tls_offset_ && !is_tls)
1438 val = parameters->target().plt_address_for_local(object, lsi);
1439 else
1440 {
1441 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1445 got_indx);
1446 }
1447 }
1448 break;
1449 }
1450
1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453
1454 // Output_data_got methods.
1455
1456 // Add an entry for a global symbol to the GOT. This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463 Symbol* gsym,
1464 unsigned int got_type)
1465 {
1466 if (gsym->has_got_offset(got_type))
1467 return false;
1468
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
1471 return true;
1472 }
1473
1474 // Like add_global, but use the PLT offset.
1475
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
1480 {
1481 if (gsym->has_got_offset(got_type))
1482 return false;
1483
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
1486 return true;
1487 }
1488
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495 Symbol* gsym,
1496 unsigned int got_type,
1497 Output_data_reloc_generic* rel_dyn,
1498 unsigned int r_type)
1499 {
1500 if (gsym->has_got_offset(got_type))
1501 return;
1502
1503 unsigned int got_offset = this->add_got_entry(Got_entry());
1504 gsym->set_got_offset(got_type, got_offset);
1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514 Symbol* gsym,
1515 unsigned int got_type,
1516 Output_data_reloc_generic* rel_dyn,
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
1519 {
1520 if (gsym->has_got_offset(got_type))
1521 return;
1522
1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524 gsym->set_got_offset(got_type, got_offset);
1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526
1527 if (r_type_2 != 0)
1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
1529 got_offset + got_size / 8, 0);
1530 }
1531
1532 // Add an entry for a local symbol to the GOT. This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539 Relobj* object,
1540 unsigned int symndx,
1541 unsigned int got_type)
1542 {
1543 if (object->local_has_got_offset(symndx, got_type))
1544 return false;
1545
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 false));
1548 object->set_local_got_offset(symndx, got_type, got_offset);
1549 return true;
1550 }
1551
1552 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1553 // true if this is a new GOT entry, false if the symbol already has a GOT
1554 // entry.
1555
1556 template<int got_size, bool big_endian>
1557 bool
1558 Output_data_got<got_size, big_endian>::add_local(
1559 Relobj* object,
1560 unsigned int symndx,
1561 unsigned int got_type,
1562 uint64_t addend)
1563 {
1564 if (object->local_has_got_offset(symndx, got_type, addend))
1565 return false;
1566
1567 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1568 false, addend));
1569 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1570 return true;
1571 }
1572
1573 // Like add_local, but use the PLT offset.
1574
1575 template<int got_size, bool big_endian>
1576 bool
1577 Output_data_got<got_size, big_endian>::add_local_plt(
1578 Relobj* object,
1579 unsigned int symndx,
1580 unsigned int got_type)
1581 {
1582 if (object->local_has_got_offset(symndx, got_type))
1583 return false;
1584
1585 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1586 true));
1587 object->set_local_got_offset(symndx, got_type, got_offset);
1588 return true;
1589 }
1590
1591 // Add an entry for a local symbol to the GOT, and add a dynamic
1592 // relocation of type R_TYPE for the GOT entry.
1593
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int got_type,
1600 Output_data_reloc_generic* rel_dyn,
1601 unsigned int r_type)
1602 {
1603 if (object->local_has_got_offset(symndx, got_type))
1604 return;
1605
1606 unsigned int got_offset = this->add_got_entry(Got_entry());
1607 object->set_local_got_offset(symndx, got_type, got_offset);
1608 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1609 }
1610
1611 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1612 // relocation of type R_TYPE for the GOT entry.
1613
1614 template<int got_size, bool big_endian>
1615 void
1616 Output_data_got<got_size, big_endian>::add_local_with_rel(
1617 Relobj* object,
1618 unsigned int symndx,
1619 unsigned int got_type,
1620 Output_data_reloc_generic* rel_dyn,
1621 unsigned int r_type, uint64_t addend)
1622 {
1623 if (object->local_has_got_offset(symndx, got_type, addend))
1624 return;
1625
1626 unsigned int got_offset = this->add_got_entry(Got_entry());
1627 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1628 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1629 addend);
1630 }
1631
1632 // Add a pair of entries for a local symbol to the GOT, and add
1633 // a dynamic relocation of type R_TYPE using the section symbol of
1634 // the output section to which input section SHNDX maps, on the first.
1635 // The first got entry will have a value of zero, the second the
1636 // value of the local symbol.
1637 template<int got_size, bool big_endian>
1638 void
1639 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1640 Relobj* object,
1641 unsigned int symndx,
1642 unsigned int shndx,
1643 unsigned int got_type,
1644 Output_data_reloc_generic* rel_dyn,
1645 unsigned int r_type)
1646 {
1647 if (object->local_has_got_offset(symndx, got_type))
1648 return;
1649
1650 unsigned int got_offset =
1651 this->add_got_entry_pair(Got_entry(),
1652 Got_entry(object, symndx, false));
1653 object->set_local_got_offset(symndx, got_type, got_offset);
1654 Output_section* os = object->output_section(shndx);
1655 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1656 }
1657
1658 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1659 // a dynamic relocation of type R_TYPE using the section symbol of
1660 // the output section to which input section SHNDX maps, on the first.
1661 // The first got entry will have a value of zero, the second the
1662 // value of the local symbol.
1663 template<int got_size, bool big_endian>
1664 void
1665 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1666 Relobj* object,
1667 unsigned int symndx,
1668 unsigned int shndx,
1669 unsigned int got_type,
1670 Output_data_reloc_generic* rel_dyn,
1671 unsigned int r_type, uint64_t addend)
1672 {
1673 if (object->local_has_got_offset(symndx, got_type, addend))
1674 return;
1675
1676 unsigned int got_offset =
1677 this->add_got_entry_pair(Got_entry(),
1678 Got_entry(object, symndx, false, addend));
1679 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1680 Output_section* os = object->output_section(shndx);
1681 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1682 }
1683
1684 // Add a pair of entries for a local symbol to the GOT, and add
1685 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1686 // The first got entry will have a value of zero, the second the
1687 // value of the local symbol offset by Target::tls_offset_for_local.
1688 template<int got_size, bool big_endian>
1689 void
1690 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1691 Relobj* object,
1692 unsigned int symndx,
1693 unsigned int got_type,
1694 Output_data_reloc_generic* rel_dyn,
1695 unsigned int r_type)
1696 {
1697 if (object->local_has_got_offset(symndx, got_type))
1698 return;
1699
1700 unsigned int got_offset
1701 = this->add_got_entry_pair(Got_entry(),
1702 Got_entry(object, symndx, true));
1703 object->set_local_got_offset(symndx, got_type, got_offset);
1704 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1705 }
1706
1707 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1708
1709 template<int got_size, bool big_endian>
1710 void
1711 Output_data_got<got_size, big_endian>::reserve_local(
1712 unsigned int i,
1713 Relobj* object,
1714 unsigned int sym_index,
1715 unsigned int got_type)
1716 {
1717 this->do_reserve_slot(i);
1718 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1719 }
1720
1721 // Reserve a slot in the GOT for a global symbol.
1722
1723 template<int got_size, bool big_endian>
1724 void
1725 Output_data_got<got_size, big_endian>::reserve_global(
1726 unsigned int i,
1727 Symbol* gsym,
1728 unsigned int got_type)
1729 {
1730 this->do_reserve_slot(i);
1731 gsym->set_got_offset(got_type, this->got_offset(i));
1732 }
1733
1734 // Write out the GOT.
1735
1736 template<int got_size, bool big_endian>
1737 void
1738 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1739 {
1740 const int add = got_size / 8;
1741
1742 const off_t off = this->offset();
1743 const off_t oview_size = this->data_size();
1744 unsigned char* const oview = of->get_output_view(off, oview_size);
1745
1746 unsigned char* pov = oview;
1747 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1748 {
1749 this->entries_[i].write(i, pov);
1750 pov += add;
1751 }
1752
1753 gold_assert(pov - oview == oview_size);
1754
1755 of->write_output_view(off, oview_size, oview);
1756
1757 // We no longer need the GOT entries.
1758 this->entries_.clear();
1759 }
1760
1761 // Create a new GOT entry and return its offset.
1762
1763 template<int got_size, bool big_endian>
1764 unsigned int
1765 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1766 {
1767 if (!this->is_data_size_valid())
1768 {
1769 this->entries_.push_back(got_entry);
1770 this->set_got_size();
1771 return this->last_got_offset();
1772 }
1773 else
1774 {
1775 // For an incremental update, find an available slot.
1776 off_t got_offset = this->free_list_.allocate(got_size / 8,
1777 got_size / 8, 0);
1778 if (got_offset == -1)
1779 gold_fallback(_("out of patch space (GOT);"
1780 " relink with --incremental-full"));
1781 unsigned int got_index = got_offset / (got_size / 8);
1782 gold_assert(got_index < this->entries_.size());
1783 this->entries_[got_index] = got_entry;
1784 return static_cast<unsigned int>(got_offset);
1785 }
1786 }
1787
1788 // Create a pair of new GOT entries and return the offset of the first.
1789
1790 template<int got_size, bool big_endian>
1791 unsigned int
1792 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1793 Got_entry got_entry_1,
1794 Got_entry got_entry_2)
1795 {
1796 if (!this->is_data_size_valid())
1797 {
1798 unsigned int got_offset;
1799 this->entries_.push_back(got_entry_1);
1800 got_offset = this->last_got_offset();
1801 this->entries_.push_back(got_entry_2);
1802 this->set_got_size();
1803 return got_offset;
1804 }
1805 else
1806 {
1807 // For an incremental update, find an available pair of slots.
1808 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1809 got_size / 8, 0);
1810 if (got_offset == -1)
1811 gold_fallback(_("out of patch space (GOT);"
1812 " relink with --incremental-full"));
1813 unsigned int got_index = got_offset / (got_size / 8);
1814 gold_assert(got_index < this->entries_.size());
1815 this->entries_[got_index] = got_entry_1;
1816 this->entries_[got_index + 1] = got_entry_2;
1817 return static_cast<unsigned int>(got_offset);
1818 }
1819 }
1820
1821 // Replace GOT entry I with a new value.
1822
1823 template<int got_size, bool big_endian>
1824 void
1825 Output_data_got<got_size, big_endian>::replace_got_entry(
1826 unsigned int i,
1827 Got_entry got_entry)
1828 {
1829 gold_assert(i < this->entries_.size());
1830 this->entries_[i] = got_entry;
1831 }
1832
1833 // Output_data_dynamic::Dynamic_entry methods.
1834
1835 // Write out the entry.
1836
1837 template<int size, bool big_endian>
1838 void
1839 Output_data_dynamic::Dynamic_entry::write(
1840 unsigned char* pov,
1841 const Stringpool* pool) const
1842 {
1843 typename elfcpp::Elf_types<size>::Elf_WXword val;
1844 switch (this->offset_)
1845 {
1846 case DYNAMIC_NUMBER:
1847 val = this->u_.val;
1848 break;
1849
1850 case DYNAMIC_SECTION_SIZE:
1851 val = this->u_.od->data_size();
1852 if (this->od2 != NULL)
1853 val += this->od2->data_size();
1854 break;
1855
1856 case DYNAMIC_SYMBOL:
1857 {
1858 const Sized_symbol<size>* s =
1859 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1860 val = s->value();
1861 }
1862 break;
1863
1864 case DYNAMIC_STRING:
1865 val = pool->get_offset(this->u_.str);
1866 break;
1867
1868 case DYNAMIC_CUSTOM:
1869 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1870 break;
1871
1872 default:
1873 val = this->u_.od->address() + this->offset_;
1874 break;
1875 }
1876
1877 elfcpp::Dyn_write<size, big_endian> dw(pov);
1878 dw.put_d_tag(this->tag_);
1879 dw.put_d_val(val);
1880 }
1881
1882 // Output_data_dynamic methods.
1883
1884 // Adjust the output section to set the entry size.
1885
1886 void
1887 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1888 {
1889 if (parameters->target().get_size() == 32)
1890 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1891 else if (parameters->target().get_size() == 64)
1892 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1893 else
1894 gold_unreachable();
1895 }
1896
1897 // Get a dynamic entry offset.
1898
1899 unsigned int
1900 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1901 {
1902 int dyn_size;
1903
1904 if (parameters->target().get_size() == 32)
1905 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1906 else if (parameters->target().get_size() == 64)
1907 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1908 else
1909 gold_unreachable();
1910
1911 for (size_t i = 0; i < entries_.size(); ++i)
1912 if (entries_[i].tag() == tag)
1913 return i * dyn_size;
1914
1915 return -1U;
1916 }
1917
1918 // Set the final data size.
1919
1920 void
1921 Output_data_dynamic::set_final_data_size()
1922 {
1923 // Add the terminating entry if it hasn't been added.
1924 // Because of relaxation, we can run this multiple times.
1925 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1926 {
1927 int extra = parameters->options().spare_dynamic_tags();
1928 for (int i = 0; i < extra; ++i)
1929 this->add_constant(elfcpp::DT_NULL, 0);
1930 this->add_constant(elfcpp::DT_NULL, 0);
1931 }
1932
1933 int dyn_size;
1934 if (parameters->target().get_size() == 32)
1935 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1936 else if (parameters->target().get_size() == 64)
1937 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1938 else
1939 gold_unreachable();
1940 this->set_data_size(this->entries_.size() * dyn_size);
1941 }
1942
1943 // Write out the dynamic entries.
1944
1945 void
1946 Output_data_dynamic::do_write(Output_file* of)
1947 {
1948 switch (parameters->size_and_endianness())
1949 {
1950 #ifdef HAVE_TARGET_32_LITTLE
1951 case Parameters::TARGET_32_LITTLE:
1952 this->sized_write<32, false>(of);
1953 break;
1954 #endif
1955 #ifdef HAVE_TARGET_32_BIG
1956 case Parameters::TARGET_32_BIG:
1957 this->sized_write<32, true>(of);
1958 break;
1959 #endif
1960 #ifdef HAVE_TARGET_64_LITTLE
1961 case Parameters::TARGET_64_LITTLE:
1962 this->sized_write<64, false>(of);
1963 break;
1964 #endif
1965 #ifdef HAVE_TARGET_64_BIG
1966 case Parameters::TARGET_64_BIG:
1967 this->sized_write<64, true>(of);
1968 break;
1969 #endif
1970 default:
1971 gold_unreachable();
1972 }
1973 }
1974
1975 template<int size, bool big_endian>
1976 void
1977 Output_data_dynamic::sized_write(Output_file* of)
1978 {
1979 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1980
1981 const off_t offset = this->offset();
1982 const off_t oview_size = this->data_size();
1983 unsigned char* const oview = of->get_output_view(offset, oview_size);
1984
1985 unsigned char* pov = oview;
1986 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1987 p != this->entries_.end();
1988 ++p)
1989 {
1990 p->write<size, big_endian>(pov, this->pool_);
1991 pov += dyn_size;
1992 }
1993
1994 gold_assert(pov - oview == oview_size);
1995
1996 of->write_output_view(offset, oview_size, oview);
1997
1998 // We no longer need the dynamic entries.
1999 this->entries_.clear();
2000 }
2001
2002 // Class Output_symtab_xindex.
2003
2004 void
2005 Output_symtab_xindex::do_write(Output_file* of)
2006 {
2007 const off_t offset = this->offset();
2008 const off_t oview_size = this->data_size();
2009 unsigned char* const oview = of->get_output_view(offset, oview_size);
2010
2011 memset(oview, 0, oview_size);
2012
2013 if (parameters->target().is_big_endian())
2014 this->endian_do_write<true>(oview);
2015 else
2016 this->endian_do_write<false>(oview);
2017
2018 of->write_output_view(offset, oview_size, oview);
2019
2020 // We no longer need the data.
2021 this->entries_.clear();
2022 }
2023
2024 template<bool big_endian>
2025 void
2026 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2027 {
2028 for (Xindex_entries::const_iterator p = this->entries_.begin();
2029 p != this->entries_.end();
2030 ++p)
2031 {
2032 unsigned int symndx = p->first;
2033 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2034 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2035 }
2036 }
2037
2038 // Output_fill_debug_info methods.
2039
2040 // Return the minimum size needed for a dummy compilation unit header.
2041
2042 size_t
2043 Output_fill_debug_info::do_minimum_hole_size() const
2044 {
2045 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2046 // address_size.
2047 const size_t len = 4 + 2 + 4 + 1;
2048 // For type units, add type_signature, type_offset.
2049 if (this->is_debug_types_)
2050 return len + 8 + 4;
2051 return len;
2052 }
2053
2054 // Write a dummy compilation unit header to fill a hole in the
2055 // .debug_info or .debug_types section.
2056
2057 void
2058 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2059 {
2060 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2061 static_cast<long>(off), static_cast<long>(len));
2062
2063 gold_assert(len >= this->do_minimum_hole_size());
2064
2065 unsigned char* const oview = of->get_output_view(off, len);
2066 unsigned char* pov = oview;
2067
2068 // Write header fields: unit_length, version, debug_abbrev_offset,
2069 // address_size.
2070 if (this->is_big_endian())
2071 {
2072 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2073 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2074 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2075 }
2076 else
2077 {
2078 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2079 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2080 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2081 }
2082 pov += 4 + 2 + 4;
2083 *pov++ = 4;
2084
2085 // For type units, the additional header fields -- type_signature,
2086 // type_offset -- can be filled with zeroes.
2087
2088 // Fill the remainder of the free space with zeroes. The first
2089 // zero should tell the consumer there are no DIEs to read in this
2090 // compilation unit.
2091 if (pov < oview + len)
2092 memset(pov, 0, oview + len - pov);
2093
2094 of->write_output_view(off, len, oview);
2095 }
2096
2097 // Output_fill_debug_line methods.
2098
2099 // Return the minimum size needed for a dummy line number program header.
2100
2101 size_t
2102 Output_fill_debug_line::do_minimum_hole_size() const
2103 {
2104 // Line number program header fields: unit_length, version, header_length,
2105 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2106 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2107 const size_t len = 4 + 2 + 4 + this->header_length;
2108 return len;
2109 }
2110
2111 // Write a dummy line number program header to fill a hole in the
2112 // .debug_line section.
2113
2114 void
2115 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2116 {
2117 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2118 static_cast<long>(off), static_cast<long>(len));
2119
2120 gold_assert(len >= this->do_minimum_hole_size());
2121
2122 unsigned char* const oview = of->get_output_view(off, len);
2123 unsigned char* pov = oview;
2124
2125 // Write header fields: unit_length, version, header_length,
2126 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2127 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2128 // We set the header_length field to cover the entire hole, so the
2129 // line number program is empty.
2130 if (this->is_big_endian())
2131 {
2132 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2133 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2134 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2135 }
2136 else
2137 {
2138 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2139 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2140 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2141 }
2142 pov += 4 + 2 + 4;
2143 *pov++ = 1; // minimum_instruction_length
2144 *pov++ = 0; // default_is_stmt
2145 *pov++ = 0; // line_base
2146 *pov++ = 5; // line_range
2147 *pov++ = 13; // opcode_base
2148 *pov++ = 0; // standard_opcode_lengths[1]
2149 *pov++ = 1; // standard_opcode_lengths[2]
2150 *pov++ = 1; // standard_opcode_lengths[3]
2151 *pov++ = 1; // standard_opcode_lengths[4]
2152 *pov++ = 1; // standard_opcode_lengths[5]
2153 *pov++ = 0; // standard_opcode_lengths[6]
2154 *pov++ = 0; // standard_opcode_lengths[7]
2155 *pov++ = 0; // standard_opcode_lengths[8]
2156 *pov++ = 1; // standard_opcode_lengths[9]
2157 *pov++ = 0; // standard_opcode_lengths[10]
2158 *pov++ = 0; // standard_opcode_lengths[11]
2159 *pov++ = 1; // standard_opcode_lengths[12]
2160 *pov++ = 0; // include_directories (empty)
2161 *pov++ = 0; // filenames (empty)
2162
2163 // Some consumers don't check the header_length field, and simply
2164 // start reading the line number program immediately following the
2165 // header. For those consumers, we fill the remainder of the free
2166 // space with DW_LNS_set_basic_block opcodes. These are effectively
2167 // no-ops: the resulting line table program will not create any rows.
2168 if (pov < oview + len)
2169 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2170
2171 of->write_output_view(off, len, oview);
2172 }
2173
2174 // Output_section::Input_section methods.
2175
2176 // Return the current data size. For an input section we store the size here.
2177 // For an Output_section_data, we have to ask it for the size.
2178
2179 off_t
2180 Output_section::Input_section::current_data_size() const
2181 {
2182 if (this->is_input_section())
2183 return this->u1_.data_size;
2184 else
2185 {
2186 this->u2_.posd->pre_finalize_data_size();
2187 return this->u2_.posd->current_data_size();
2188 }
2189 }
2190
2191 // Return the data size. For an input section we store the size here.
2192 // For an Output_section_data, we have to ask it for the size.
2193
2194 off_t
2195 Output_section::Input_section::data_size() const
2196 {
2197 if (this->is_input_section())
2198 return this->u1_.data_size;
2199 else
2200 return this->u2_.posd->data_size();
2201 }
2202
2203 // Return the object for an input section.
2204
2205 Relobj*
2206 Output_section::Input_section::relobj() const
2207 {
2208 if (this->is_input_section())
2209 return this->u2_.object;
2210 else if (this->is_merge_section())
2211 {
2212 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2213 return this->u2_.pomb->first_relobj();
2214 }
2215 else if (this->is_relaxed_input_section())
2216 return this->u2_.poris->relobj();
2217 else
2218 gold_unreachable();
2219 }
2220
2221 // Return the input section index for an input section.
2222
2223 unsigned int
2224 Output_section::Input_section::shndx() const
2225 {
2226 if (this->is_input_section())
2227 return this->shndx_;
2228 else if (this->is_merge_section())
2229 {
2230 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2231 return this->u2_.pomb->first_shndx();
2232 }
2233 else if (this->is_relaxed_input_section())
2234 return this->u2_.poris->shndx();
2235 else
2236 gold_unreachable();
2237 }
2238
2239 // Set the address and file offset.
2240
2241 void
2242 Output_section::Input_section::set_address_and_file_offset(
2243 uint64_t address,
2244 off_t file_offset,
2245 off_t section_file_offset)
2246 {
2247 if (this->is_input_section())
2248 this->u2_.object->set_section_offset(this->shndx_,
2249 file_offset - section_file_offset);
2250 else
2251 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2252 }
2253
2254 // Reset the address and file offset.
2255
2256 void
2257 Output_section::Input_section::reset_address_and_file_offset()
2258 {
2259 if (!this->is_input_section())
2260 this->u2_.posd->reset_address_and_file_offset();
2261 }
2262
2263 // Finalize the data size.
2264
2265 void
2266 Output_section::Input_section::finalize_data_size()
2267 {
2268 if (!this->is_input_section())
2269 this->u2_.posd->finalize_data_size();
2270 }
2271
2272 // Try to turn an input offset into an output offset. We want to
2273 // return the output offset relative to the start of this
2274 // Input_section in the output section.
2275
2276 inline bool
2277 Output_section::Input_section::output_offset(
2278 const Relobj* object,
2279 unsigned int shndx,
2280 section_offset_type offset,
2281 section_offset_type* poutput) const
2282 {
2283 if (!this->is_input_section())
2284 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2285 else
2286 {
2287 if (this->shndx_ != shndx || this->u2_.object != object)
2288 return false;
2289 *poutput = offset;
2290 return true;
2291 }
2292 }
2293
2294 // Write out the data. We don't have to do anything for an input
2295 // section--they are handled via Object::relocate--but this is where
2296 // we write out the data for an Output_section_data.
2297
2298 void
2299 Output_section::Input_section::write(Output_file* of)
2300 {
2301 if (!this->is_input_section())
2302 this->u2_.posd->write(of);
2303 }
2304
2305 // Write the data to a buffer. As for write(), we don't have to do
2306 // anything for an input section.
2307
2308 void
2309 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2310 {
2311 if (!this->is_input_section())
2312 this->u2_.posd->write_to_buffer(buffer);
2313 }
2314
2315 // Print to a map file.
2316
2317 void
2318 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2319 {
2320 switch (this->shndx_)
2321 {
2322 case OUTPUT_SECTION_CODE:
2323 case MERGE_DATA_SECTION_CODE:
2324 case MERGE_STRING_SECTION_CODE:
2325 this->u2_.posd->print_to_mapfile(mapfile);
2326 break;
2327
2328 case RELAXED_INPUT_SECTION_CODE:
2329 {
2330 Output_relaxed_input_section* relaxed_section =
2331 this->relaxed_input_section();
2332 mapfile->print_input_section(relaxed_section->relobj(),
2333 relaxed_section->shndx());
2334 }
2335 break;
2336 default:
2337 mapfile->print_input_section(this->u2_.object, this->shndx_);
2338 break;
2339 }
2340 }
2341
2342 // Output_section methods.
2343
2344 // Construct an Output_section. NAME will point into a Stringpool.
2345
2346 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2347 elfcpp::Elf_Xword flags)
2348 : name_(name),
2349 addralign_(0),
2350 entsize_(0),
2351 load_address_(0),
2352 link_section_(NULL),
2353 link_(0),
2354 info_section_(NULL),
2355 info_symndx_(NULL),
2356 info_(0),
2357 type_(type),
2358 flags_(flags),
2359 order_(ORDER_INVALID),
2360 out_shndx_(-1U),
2361 symtab_index_(0),
2362 dynsym_index_(0),
2363 input_sections_(),
2364 first_input_offset_(0),
2365 fills_(),
2366 postprocessing_buffer_(NULL),
2367 needs_symtab_index_(false),
2368 needs_dynsym_index_(false),
2369 should_link_to_symtab_(false),
2370 should_link_to_dynsym_(false),
2371 after_input_sections_(false),
2372 requires_postprocessing_(false),
2373 found_in_sections_clause_(false),
2374 has_load_address_(false),
2375 info_uses_section_index_(false),
2376 input_section_order_specified_(false),
2377 may_sort_attached_input_sections_(false),
2378 must_sort_attached_input_sections_(false),
2379 attached_input_sections_are_sorted_(false),
2380 is_relro_(false),
2381 is_small_section_(false),
2382 is_large_section_(false),
2383 generate_code_fills_at_write_(false),
2384 is_entsize_zero_(false),
2385 section_offsets_need_adjustment_(false),
2386 is_noload_(false),
2387 always_keeps_input_sections_(false),
2388 has_fixed_layout_(false),
2389 is_patch_space_allowed_(false),
2390 is_unique_segment_(false),
2391 tls_offset_(0),
2392 extra_segment_flags_(0),
2393 segment_alignment_(0),
2394 checkpoint_(NULL),
2395 lookup_maps_(new Output_section_lookup_maps),
2396 free_list_(),
2397 free_space_fill_(NULL),
2398 patch_space_(0)
2399 {
2400 // An unallocated section has no address. Forcing this means that
2401 // we don't need special treatment for symbols defined in debug
2402 // sections.
2403 if ((flags & elfcpp::SHF_ALLOC) == 0)
2404 this->set_address(0);
2405 }
2406
2407 Output_section::~Output_section()
2408 {
2409 delete this->checkpoint_;
2410 }
2411
2412 // Set the entry size.
2413
2414 void
2415 Output_section::set_entsize(uint64_t v)
2416 {
2417 if (this->is_entsize_zero_)
2418 ;
2419 else if (this->entsize_ == 0)
2420 this->entsize_ = v;
2421 else if (this->entsize_ != v)
2422 {
2423 this->entsize_ = 0;
2424 this->is_entsize_zero_ = 1;
2425 }
2426 }
2427
2428 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2429 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2430 // relocation section which applies to this section, or 0 if none, or
2431 // -1U if more than one. Return the offset of the input section
2432 // within the output section. Return -1 if the input section will
2433 // receive special handling. In the normal case we don't always keep
2434 // track of input sections for an Output_section. Instead, each
2435 // Object keeps track of the Output_section for each of its input
2436 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2437 // track of input sections here; this is used when SECTIONS appears in
2438 // a linker script.
2439
2440 template<int size, bool big_endian>
2441 off_t
2442 Output_section::add_input_section(Layout* layout,
2443 Sized_relobj_file<size, big_endian>* object,
2444 unsigned int shndx,
2445 const char* secname,
2446 const elfcpp::Shdr<size, big_endian>& shdr,
2447 unsigned int reloc_shndx,
2448 bool have_sections_script)
2449 {
2450 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2451 if ((addralign & (addralign - 1)) != 0)
2452 {
2453 object->error(_("invalid alignment %lu for section \"%s\""),
2454 static_cast<unsigned long>(addralign), secname);
2455 addralign = 1;
2456 }
2457
2458 if (addralign > this->addralign_)
2459 this->addralign_ = addralign;
2460
2461 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2462 uint64_t entsize = shdr.get_sh_entsize();
2463
2464 // .debug_str is a mergeable string section, but is not always so
2465 // marked by compilers. Mark manually here so we can optimize.
2466 if (strcmp(secname, ".debug_str") == 0)
2467 {
2468 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2469 entsize = 1;
2470 }
2471
2472 this->update_flags_for_input_section(sh_flags);
2473 this->set_entsize(entsize);
2474
2475 // If this is a SHF_MERGE section, we pass all the input sections to
2476 // a Output_data_merge. We don't try to handle relocations for such
2477 // a section. We don't try to handle empty merge sections--they
2478 // mess up the mappings, and are useless anyhow.
2479 // FIXME: Need to handle merge sections during incremental update.
2480 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2481 && reloc_shndx == 0
2482 && shdr.get_sh_size() > 0
2483 && !parameters->incremental())
2484 {
2485 // Keep information about merged input sections for rebuilding fast
2486 // lookup maps if we have sections-script or we do relaxation.
2487 bool keeps_input_sections = (this->always_keeps_input_sections_
2488 || have_sections_script
2489 || parameters->target().may_relax());
2490
2491 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2492 addralign, keeps_input_sections))
2493 {
2494 // Tell the relocation routines that they need to call the
2495 // output_offset method to determine the final address.
2496 return -1;
2497 }
2498 }
2499
2500 section_size_type input_section_size = shdr.get_sh_size();
2501 section_size_type uncompressed_size;
2502 if (object->section_is_compressed(shndx, &uncompressed_size))
2503 input_section_size = uncompressed_size;
2504
2505 off_t offset_in_section;
2506
2507 if (this->has_fixed_layout())
2508 {
2509 // For incremental updates, find a chunk of unused space in the section.
2510 offset_in_section = this->free_list_.allocate(input_section_size,
2511 addralign, 0);
2512 if (offset_in_section == -1)
2513 gold_fallback(_("out of patch space in section %s; "
2514 "relink with --incremental-full"),
2515 this->name());
2516 return offset_in_section;
2517 }
2518
2519 offset_in_section = this->current_data_size_for_child();
2520 off_t aligned_offset_in_section = align_address(offset_in_section,
2521 addralign);
2522 this->set_current_data_size_for_child(aligned_offset_in_section
2523 + input_section_size);
2524
2525 // Determine if we want to delay code-fill generation until the output
2526 // section is written. When the target is relaxing, we want to delay fill
2527 // generating to avoid adjusting them during relaxation. Also, if we are
2528 // sorting input sections we must delay fill generation.
2529 if (!this->generate_code_fills_at_write_
2530 && !have_sections_script
2531 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2532 && parameters->target().has_code_fill()
2533 && (parameters->target().may_relax()
2534 || layout->is_section_ordering_specified()))
2535 {
2536 gold_assert(this->fills_.empty());
2537 this->generate_code_fills_at_write_ = true;
2538 }
2539
2540 if (aligned_offset_in_section > offset_in_section
2541 && !this->generate_code_fills_at_write_
2542 && !have_sections_script
2543 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2544 && parameters->target().has_code_fill())
2545 {
2546 // We need to add some fill data. Using fill_list_ when
2547 // possible is an optimization, since we will often have fill
2548 // sections without input sections.
2549 off_t fill_len = aligned_offset_in_section - offset_in_section;
2550 if (this->input_sections_.empty())
2551 this->fills_.push_back(Fill(offset_in_section, fill_len));
2552 else
2553 {
2554 std::string fill_data(parameters->target().code_fill(fill_len));
2555 Output_data_const* odc = new Output_data_const(fill_data, 1);
2556 this->input_sections_.push_back(Input_section(odc));
2557 }
2558 }
2559
2560 // We need to keep track of this section if we are already keeping
2561 // track of sections, or if we are relaxing. Also, if this is a
2562 // section which requires sorting, or which may require sorting in
2563 // the future, we keep track of the sections. If the
2564 // --section-ordering-file option is used to specify the order of
2565 // sections, we need to keep track of sections.
2566 if (this->always_keeps_input_sections_
2567 || have_sections_script
2568 || !this->input_sections_.empty()
2569 || this->may_sort_attached_input_sections()
2570 || this->must_sort_attached_input_sections()
2571 || parameters->options().user_set_Map()
2572 || parameters->target().may_relax()
2573 || layout->is_section_ordering_specified())
2574 {
2575 Input_section isecn(object, shndx, input_section_size, addralign);
2576 /* If section ordering is requested by specifying a ordering file,
2577 using --section-ordering-file, match the section name with
2578 a pattern. */
2579 if (parameters->options().section_ordering_file())
2580 {
2581 unsigned int section_order_index =
2582 layout->find_section_order_index(std::string(secname));
2583 if (section_order_index != 0)
2584 {
2585 isecn.set_section_order_index(section_order_index);
2586 this->set_input_section_order_specified();
2587 }
2588 }
2589 this->input_sections_.push_back(isecn);
2590 }
2591
2592 return aligned_offset_in_section;
2593 }
2594
2595 // Add arbitrary data to an output section.
2596
2597 void
2598 Output_section::add_output_section_data(Output_section_data* posd)
2599 {
2600 Input_section inp(posd);
2601 this->add_output_section_data(&inp);
2602
2603 if (posd->is_data_size_valid())
2604 {
2605 off_t offset_in_section;
2606 if (this->has_fixed_layout())
2607 {
2608 // For incremental updates, find a chunk of unused space.
2609 offset_in_section = this->free_list_.allocate(posd->data_size(),
2610 posd->addralign(), 0);
2611 if (offset_in_section == -1)
2612 gold_fallback(_("out of patch space in section %s; "
2613 "relink with --incremental-full"),
2614 this->name());
2615 // Finalize the address and offset now.
2616 uint64_t addr = this->address();
2617 off_t offset = this->offset();
2618 posd->set_address_and_file_offset(addr + offset_in_section,
2619 offset + offset_in_section);
2620 }
2621 else
2622 {
2623 offset_in_section = this->current_data_size_for_child();
2624 off_t aligned_offset_in_section = align_address(offset_in_section,
2625 posd->addralign());
2626 this->set_current_data_size_for_child(aligned_offset_in_section
2627 + posd->data_size());
2628 }
2629 }
2630 else if (this->has_fixed_layout())
2631 {
2632 // For incremental updates, arrange for the data to have a fixed layout.
2633 // This will mean that additions to the data must be allocated from
2634 // free space within the containing output section.
2635 uint64_t addr = this->address();
2636 posd->set_address(addr);
2637 posd->set_file_offset(0);
2638 // FIXME: This should eventually be unreachable.
2639 // gold_unreachable();
2640 }
2641 }
2642
2643 // Add a relaxed input section.
2644
2645 void
2646 Output_section::add_relaxed_input_section(Layout* layout,
2647 Output_relaxed_input_section* poris,
2648 const std::string& name)
2649 {
2650 Input_section inp(poris);
2651
2652 // If the --section-ordering-file option is used to specify the order of
2653 // sections, we need to keep track of sections.
2654 if (layout->is_section_ordering_specified())
2655 {
2656 unsigned int section_order_index =
2657 layout->find_section_order_index(name);
2658 if (section_order_index != 0)
2659 {
2660 inp.set_section_order_index(section_order_index);
2661 this->set_input_section_order_specified();
2662 }
2663 }
2664
2665 this->add_output_section_data(&inp);
2666 if (this->lookup_maps_->is_valid())
2667 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2668 poris->shndx(), poris);
2669
2670 // For a relaxed section, we use the current data size. Linker scripts
2671 // get all the input sections, including relaxed one from an output
2672 // section and add them back to the same output section to compute the
2673 // output section size. If we do not account for sizes of relaxed input
2674 // sections, an output section would be incorrectly sized.
2675 off_t offset_in_section = this->current_data_size_for_child();
2676 off_t aligned_offset_in_section = align_address(offset_in_section,
2677 poris->addralign());
2678 this->set_current_data_size_for_child(aligned_offset_in_section
2679 + poris->current_data_size());
2680 }
2681
2682 // Add arbitrary data to an output section by Input_section.
2683
2684 void
2685 Output_section::add_output_section_data(Input_section* inp)
2686 {
2687 if (this->input_sections_.empty())
2688 this->first_input_offset_ = this->current_data_size_for_child();
2689
2690 this->input_sections_.push_back(*inp);
2691
2692 uint64_t addralign = inp->addralign();
2693 if (addralign > this->addralign_)
2694 this->addralign_ = addralign;
2695
2696 inp->set_output_section(this);
2697 }
2698
2699 // Add a merge section to an output section.
2700
2701 void
2702 Output_section::add_output_merge_section(Output_section_data* posd,
2703 bool is_string, uint64_t entsize)
2704 {
2705 Input_section inp(posd, is_string, entsize);
2706 this->add_output_section_data(&inp);
2707 }
2708
2709 // Add an input section to a SHF_MERGE section.
2710
2711 bool
2712 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2713 uint64_t flags, uint64_t entsize,
2714 uint64_t addralign,
2715 bool keeps_input_sections)
2716 {
2717 // We cannot merge sections with entsize == 0.
2718 if (entsize == 0)
2719 return false;
2720
2721 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2722
2723 // We cannot restore merged input section states.
2724 gold_assert(this->checkpoint_ == NULL);
2725
2726 // Look up merge sections by required properties.
2727 // Currently, we only invalidate the lookup maps in script processing
2728 // and relaxation. We should not have done either when we reach here.
2729 // So we assume that the lookup maps are valid to simply code.
2730 gold_assert(this->lookup_maps_->is_valid());
2731 Merge_section_properties msp(is_string, entsize, addralign);
2732 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2733 bool is_new = false;
2734 if (pomb != NULL)
2735 {
2736 gold_assert(pomb->is_string() == is_string
2737 && pomb->entsize() == entsize
2738 && pomb->addralign() == addralign);
2739 }
2740 else
2741 {
2742 // Create a new Output_merge_data or Output_merge_string_data.
2743 if (!is_string)
2744 pomb = new Output_merge_data(entsize, addralign);
2745 else
2746 {
2747 switch (entsize)
2748 {
2749 case 1:
2750 pomb = new Output_merge_string<char>(addralign);
2751 break;
2752 case 2:
2753 pomb = new Output_merge_string<uint16_t>(addralign);
2754 break;
2755 case 4:
2756 pomb = new Output_merge_string<uint32_t>(addralign);
2757 break;
2758 default:
2759 return false;
2760 }
2761 }
2762 // If we need to do script processing or relaxation, we need to keep
2763 // the original input sections to rebuild the fast lookup maps.
2764 if (keeps_input_sections)
2765 pomb->set_keeps_input_sections();
2766 is_new = true;
2767 }
2768
2769 if (pomb->add_input_section(object, shndx))
2770 {
2771 // Add new merge section to this output section and link merge
2772 // section properties to new merge section in map.
2773 if (is_new)
2774 {
2775 this->add_output_merge_section(pomb, is_string, entsize);
2776 this->lookup_maps_->add_merge_section(msp, pomb);
2777 }
2778
2779 return true;
2780 }
2781 else
2782 {
2783 // If add_input_section failed, delete new merge section to avoid
2784 // exporting empty merge sections in Output_section::get_input_section.
2785 if (is_new)
2786 delete pomb;
2787 return false;
2788 }
2789 }
2790
2791 // Build a relaxation map to speed up relaxation of existing input sections.
2792 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2793
2794 void
2795 Output_section::build_relaxation_map(
2796 const Input_section_list& input_sections,
2797 size_t limit,
2798 Relaxation_map* relaxation_map) const
2799 {
2800 for (size_t i = 0; i < limit; ++i)
2801 {
2802 const Input_section& is(input_sections[i]);
2803 if (is.is_input_section() || is.is_relaxed_input_section())
2804 {
2805 Section_id sid(is.relobj(), is.shndx());
2806 (*relaxation_map)[sid] = i;
2807 }
2808 }
2809 }
2810
2811 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2812 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2813 // indices of INPUT_SECTIONS.
2814
2815 void
2816 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2817 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2818 const Relaxation_map& map,
2819 Input_section_list* input_sections)
2820 {
2821 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2822 {
2823 Output_relaxed_input_section* poris = relaxed_sections[i];
2824 Section_id sid(poris->relobj(), poris->shndx());
2825 Relaxation_map::const_iterator p = map.find(sid);
2826 gold_assert(p != map.end());
2827 gold_assert((*input_sections)[p->second].is_input_section());
2828
2829 // Remember section order index of original input section
2830 // if it is set. Copy it to the relaxed input section.
2831 unsigned int soi =
2832 (*input_sections)[p->second].section_order_index();
2833 (*input_sections)[p->second] = Input_section(poris);
2834 (*input_sections)[p->second].set_section_order_index(soi);
2835 }
2836 }
2837
2838 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2839 // is a vector of pointers to Output_relaxed_input_section or its derived
2840 // classes. The relaxed sections must correspond to existing input sections.
2841
2842 void
2843 Output_section::convert_input_sections_to_relaxed_sections(
2844 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2845 {
2846 gold_assert(parameters->target().may_relax());
2847
2848 // We want to make sure that restore_states does not undo the effect of
2849 // this. If there is no checkpoint active, just search the current
2850 // input section list and replace the sections there. If there is
2851 // a checkpoint, also replace the sections there.
2852
2853 // By default, we look at the whole list.
2854 size_t limit = this->input_sections_.size();
2855
2856 if (this->checkpoint_ != NULL)
2857 {
2858 // Replace input sections with relaxed input section in the saved
2859 // copy of the input section list.
2860 if (this->checkpoint_->input_sections_saved())
2861 {
2862 Relaxation_map map;
2863 this->build_relaxation_map(
2864 *(this->checkpoint_->input_sections()),
2865 this->checkpoint_->input_sections()->size(),
2866 &map);
2867 this->convert_input_sections_in_list_to_relaxed_sections(
2868 relaxed_sections,
2869 map,
2870 this->checkpoint_->input_sections());
2871 }
2872 else
2873 {
2874 // We have not copied the input section list yet. Instead, just
2875 // look at the portion that would be saved.
2876 limit = this->checkpoint_->input_sections_size();
2877 }
2878 }
2879
2880 // Convert input sections in input_section_list.
2881 Relaxation_map map;
2882 this->build_relaxation_map(this->input_sections_, limit, &map);
2883 this->convert_input_sections_in_list_to_relaxed_sections(
2884 relaxed_sections,
2885 map,
2886 &this->input_sections_);
2887
2888 // Update fast look-up map.
2889 if (this->lookup_maps_->is_valid())
2890 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2891 {
2892 Output_relaxed_input_section* poris = relaxed_sections[i];
2893 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2894 poris->shndx(), poris);
2895 }
2896 }
2897
2898 // Update the output section flags based on input section flags.
2899
2900 void
2901 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2902 {
2903 // If we created the section with SHF_ALLOC clear, we set the
2904 // address. If we are now setting the SHF_ALLOC flag, we need to
2905 // undo that.
2906 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2907 && (flags & elfcpp::SHF_ALLOC) != 0)
2908 this->mark_address_invalid();
2909
2910 this->flags_ |= (flags
2911 & (elfcpp::SHF_WRITE
2912 | elfcpp::SHF_ALLOC
2913 | elfcpp::SHF_EXECINSTR));
2914
2915 if ((flags & elfcpp::SHF_MERGE) == 0)
2916 this->flags_ &=~ elfcpp::SHF_MERGE;
2917 else
2918 {
2919 if (this->current_data_size_for_child() == 0)
2920 this->flags_ |= elfcpp::SHF_MERGE;
2921 }
2922
2923 if ((flags & elfcpp::SHF_STRINGS) == 0)
2924 this->flags_ &=~ elfcpp::SHF_STRINGS;
2925 else
2926 {
2927 if (this->current_data_size_for_child() == 0)
2928 this->flags_ |= elfcpp::SHF_STRINGS;
2929 }
2930 }
2931
2932 // Find the merge section into which an input section with index SHNDX in
2933 // OBJECT has been added. Return NULL if none found.
2934
2935 const Output_section_data*
2936 Output_section::find_merge_section(const Relobj* object,
2937 unsigned int shndx) const
2938 {
2939 return object->find_merge_section(shndx);
2940 }
2941
2942 // Build the lookup maps for relaxed sections. This needs
2943 // to be declared as a const method so that it is callable with a const
2944 // Output_section pointer. The method only updates states of the maps.
2945
2946 void
2947 Output_section::build_lookup_maps() const
2948 {
2949 this->lookup_maps_->clear();
2950 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2951 p != this->input_sections_.end();
2952 ++p)
2953 {
2954 if (p->is_relaxed_input_section())
2955 {
2956 Output_relaxed_input_section* poris = p->relaxed_input_section();
2957 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2958 poris->shndx(), poris);
2959 }
2960 }
2961 }
2962
2963 // Find an relaxed input section corresponding to an input section
2964 // in OBJECT with index SHNDX.
2965
2966 const Output_relaxed_input_section*
2967 Output_section::find_relaxed_input_section(const Relobj* object,
2968 unsigned int shndx) const
2969 {
2970 if (!this->lookup_maps_->is_valid())
2971 this->build_lookup_maps();
2972 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2973 }
2974
2975 // Given an address OFFSET relative to the start of input section
2976 // SHNDX in OBJECT, return whether this address is being included in
2977 // the final link. This should only be called if SHNDX in OBJECT has
2978 // a special mapping.
2979
2980 bool
2981 Output_section::is_input_address_mapped(const Relobj* object,
2982 unsigned int shndx,
2983 off_t offset) const
2984 {
2985 // Look at the Output_section_data_maps first.
2986 const Output_section_data* posd = this->find_merge_section(object, shndx);
2987 if (posd == NULL)
2988 posd = this->find_relaxed_input_section(object, shndx);
2989
2990 if (posd != NULL)
2991 {
2992 section_offset_type output_offset;
2993 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2994 // By default we assume that the address is mapped. See comment at the
2995 // end.
2996 if (!found)
2997 return true;
2998 return output_offset != -1;
2999 }
3000
3001 // Fall back to the slow look-up.
3002 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3003 p != this->input_sections_.end();
3004 ++p)
3005 {
3006 section_offset_type output_offset;
3007 if (p->output_offset(object, shndx, offset, &output_offset))
3008 return output_offset != -1;
3009 }
3010
3011 // By default we assume that the address is mapped. This should
3012 // only be called after we have passed all sections to Layout. At
3013 // that point we should know what we are discarding.
3014 return true;
3015 }
3016
3017 // Given an address OFFSET relative to the start of input section
3018 // SHNDX in object OBJECT, return the output offset relative to the
3019 // start of the input section in the output section. This should only
3020 // be called if SHNDX in OBJECT has a special mapping.
3021
3022 section_offset_type
3023 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3024 section_offset_type offset) const
3025 {
3026 // This can only be called meaningfully when we know the data size
3027 // of this.
3028 gold_assert(this->is_data_size_valid());
3029
3030 // Look at the Output_section_data_maps first.
3031 const Output_section_data* posd = this->find_merge_section(object, shndx);
3032 if (posd == NULL)
3033 posd = this->find_relaxed_input_section(object, shndx);
3034 if (posd != NULL)
3035 {
3036 section_offset_type output_offset;
3037 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3038 gold_assert(found);
3039 return output_offset;
3040 }
3041
3042 // Fall back to the slow look-up.
3043 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3044 p != this->input_sections_.end();
3045 ++p)
3046 {
3047 section_offset_type output_offset;
3048 if (p->output_offset(object, shndx, offset, &output_offset))
3049 return output_offset;
3050 }
3051 gold_unreachable();
3052 }
3053
3054 // Return the output virtual address of OFFSET relative to the start
3055 // of input section SHNDX in object OBJECT.
3056
3057 uint64_t
3058 Output_section::output_address(const Relobj* object, unsigned int shndx,
3059 off_t offset) const
3060 {
3061 uint64_t addr = this->address() + this->first_input_offset_;
3062
3063 // Look at the Output_section_data_maps first.
3064 const Output_section_data* posd = this->find_merge_section(object, shndx);
3065 if (posd == NULL)
3066 posd = this->find_relaxed_input_section(object, shndx);
3067 if (posd != NULL && posd->is_address_valid())
3068 {
3069 section_offset_type output_offset;
3070 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3071 gold_assert(found);
3072 return posd->address() + output_offset;
3073 }
3074
3075 // Fall back to the slow look-up.
3076 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3077 p != this->input_sections_.end();
3078 ++p)
3079 {
3080 addr = align_address(addr, p->addralign());
3081 section_offset_type output_offset;
3082 if (p->output_offset(object, shndx, offset, &output_offset))
3083 {
3084 if (output_offset == -1)
3085 return -1ULL;
3086 return addr + output_offset;
3087 }
3088 addr += p->data_size();
3089 }
3090
3091 // If we get here, it means that we don't know the mapping for this
3092 // input section. This might happen in principle if
3093 // add_input_section were called before add_output_section_data.
3094 // But it should never actually happen.
3095
3096 gold_unreachable();
3097 }
3098
3099 // Find the output address of the start of the merged section for
3100 // input section SHNDX in object OBJECT.
3101
3102 bool
3103 Output_section::find_starting_output_address(const Relobj* object,
3104 unsigned int shndx,
3105 uint64_t* paddr) const
3106 {
3107 const Output_section_data* data = this->find_merge_section(object, shndx);
3108 if (data == NULL)
3109 return false;
3110
3111 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3112 // Looking up the merge section map does not always work as we sometimes
3113 // find a merge section without its address set.
3114 uint64_t addr = this->address() + this->first_input_offset_;
3115 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3116 p != this->input_sections_.end();
3117 ++p)
3118 {
3119 addr = align_address(addr, p->addralign());
3120
3121 // It would be nice if we could use the existing output_offset
3122 // method to get the output offset of input offset 0.
3123 // Unfortunately we don't know for sure that input offset 0 is
3124 // mapped at all.
3125 if (!p->is_input_section() && p->output_section_data() == data)
3126 {
3127 *paddr = addr;
3128 return true;
3129 }
3130
3131 addr += p->data_size();
3132 }
3133
3134 // We couldn't find a merge output section for this input section.
3135 return false;
3136 }
3137
3138 // Update the data size of an Output_section.
3139
3140 void
3141 Output_section::update_data_size()
3142 {
3143 if (this->input_sections_.empty())
3144 return;
3145
3146 if (this->must_sort_attached_input_sections()
3147 || this->input_section_order_specified())
3148 this->sort_attached_input_sections();
3149
3150 off_t off = this->first_input_offset_;
3151 for (Input_section_list::iterator p = this->input_sections_.begin();
3152 p != this->input_sections_.end();
3153 ++p)
3154 {
3155 off = align_address(off, p->addralign());
3156 off += p->current_data_size();
3157 }
3158
3159 this->set_current_data_size_for_child(off);
3160 }
3161
3162 // Set the data size of an Output_section. This is where we handle
3163 // setting the addresses of any Output_section_data objects.
3164
3165 void
3166 Output_section::set_final_data_size()
3167 {
3168 off_t data_size;
3169
3170 if (this->input_sections_.empty())
3171 data_size = this->current_data_size_for_child();
3172 else
3173 {
3174 if (this->must_sort_attached_input_sections()
3175 || this->input_section_order_specified())
3176 this->sort_attached_input_sections();
3177
3178 uint64_t address = this->address();
3179 off_t startoff = this->offset();
3180 off_t off = this->first_input_offset_;
3181 for (Input_section_list::iterator p = this->input_sections_.begin();
3182 p != this->input_sections_.end();
3183 ++p)
3184 {
3185 off = align_address(off, p->addralign());
3186 p->set_address_and_file_offset(address + off, startoff + off,
3187 startoff);
3188 off += p->data_size();
3189 }
3190 data_size = off;
3191 }
3192
3193 // For full incremental links, we want to allocate some patch space
3194 // in most sections for subsequent incremental updates.
3195 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3196 {
3197 double pct = parameters->options().incremental_patch();
3198 size_t extra = static_cast<size_t>(data_size * pct);
3199 if (this->free_space_fill_ != NULL
3200 && this->free_space_fill_->minimum_hole_size() > extra)
3201 extra = this->free_space_fill_->minimum_hole_size();
3202 off_t new_size = align_address(data_size + extra, this->addralign());
3203 this->patch_space_ = new_size - data_size;
3204 gold_debug(DEBUG_INCREMENTAL,
3205 "set_final_data_size: %08lx + %08lx: section %s",
3206 static_cast<long>(data_size),
3207 static_cast<long>(this->patch_space_),
3208 this->name());
3209 data_size = new_size;
3210 }
3211
3212 this->set_data_size(data_size);
3213 }
3214
3215 // Reset the address and file offset.
3216
3217 void
3218 Output_section::do_reset_address_and_file_offset()
3219 {
3220 // An unallocated section has no address. Forcing this means that
3221 // we don't need special treatment for symbols defined in debug
3222 // sections. We do the same in the constructor. This does not
3223 // apply to NOLOAD sections though.
3224 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3225 this->set_address(0);
3226
3227 for (Input_section_list::iterator p = this->input_sections_.begin();
3228 p != this->input_sections_.end();
3229 ++p)
3230 p->reset_address_and_file_offset();
3231
3232 // Remove any patch space that was added in set_final_data_size.
3233 if (this->patch_space_ > 0)
3234 {
3235 this->set_current_data_size_for_child(this->current_data_size_for_child()
3236 - this->patch_space_);
3237 this->patch_space_ = 0;
3238 }
3239 }
3240
3241 // Return true if address and file offset have the values after reset.
3242
3243 bool
3244 Output_section::do_address_and_file_offset_have_reset_values() const
3245 {
3246 if (this->is_offset_valid())
3247 return false;
3248
3249 // An unallocated section has address 0 after its construction or a reset.
3250 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3251 return this->is_address_valid() && this->address() == 0;
3252 else
3253 return !this->is_address_valid();
3254 }
3255
3256 // Set the TLS offset. Called only for SHT_TLS sections.
3257
3258 void
3259 Output_section::do_set_tls_offset(uint64_t tls_base)
3260 {
3261 this->tls_offset_ = this->address() - tls_base;
3262 }
3263
3264 // In a few cases we need to sort the input sections attached to an
3265 // output section. This is used to implement the type of constructor
3266 // priority ordering implemented by the GNU linker, in which the
3267 // priority becomes part of the section name and the sections are
3268 // sorted by name. We only do this for an output section if we see an
3269 // attached input section matching ".ctors.*", ".dtors.*",
3270 // ".init_array.*" or ".fini_array.*".
3271
3272 class Output_section::Input_section_sort_entry
3273 {
3274 public:
3275 Input_section_sort_entry()
3276 : input_section_(), index_(-1U), section_name_()
3277 { }
3278
3279 Input_section_sort_entry(const Input_section& input_section,
3280 unsigned int index,
3281 bool must_sort_attached_input_sections,
3282 const char* output_section_name)
3283 : input_section_(input_section), index_(index), section_name_()
3284 {
3285 if ((input_section.is_input_section()
3286 || input_section.is_relaxed_input_section())
3287 && must_sort_attached_input_sections)
3288 {
3289 // This is only called single-threaded from Layout::finalize,
3290 // so it is OK to lock. Unfortunately we have no way to pass
3291 // in a Task token.
3292 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3293 Object* obj = (input_section.is_input_section()
3294 ? input_section.relobj()
3295 : input_section.relaxed_input_section()->relobj());
3296 Task_lock_obj<Object> tl(dummy_task, obj);
3297
3298 // This is a slow operation, which should be cached in
3299 // Layout::layout if this becomes a speed problem.
3300 this->section_name_ = obj->section_name(input_section.shndx());
3301 }
3302 else if (input_section.is_output_section_data()
3303 && must_sort_attached_input_sections)
3304 {
3305 // For linker-generated sections, use the output section name.
3306 this->section_name_.assign(output_section_name);
3307 }
3308 }
3309
3310 // Return the Input_section.
3311 const Input_section&
3312 input_section() const
3313 {
3314 gold_assert(this->index_ != -1U);
3315 return this->input_section_;
3316 }
3317
3318 // The index of this entry in the original list. This is used to
3319 // make the sort stable.
3320 unsigned int
3321 index() const
3322 {
3323 gold_assert(this->index_ != -1U);
3324 return this->index_;
3325 }
3326
3327 // The section name.
3328 const std::string&
3329 section_name() const
3330 {
3331 return this->section_name_;
3332 }
3333
3334 // Return true if the section name has a priority. This is assumed
3335 // to be true if it has a dot after the initial dot.
3336 bool
3337 has_priority() const
3338 {
3339 return this->section_name_.find('.', 1) != std::string::npos;
3340 }
3341
3342 // Return the priority. Believe it or not, gcc encodes the priority
3343 // differently for .ctors/.dtors and .init_array/.fini_array
3344 // sections.
3345 unsigned int
3346 get_priority() const
3347 {
3348 bool is_ctors;
3349 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3350 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3351 is_ctors = true;
3352 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3353 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3354 is_ctors = false;
3355 else
3356 return 0;
3357 char* end;
3358 unsigned long prio = strtoul((this->section_name_.c_str()
3359 + (is_ctors ? 7 : 12)),
3360 &end, 10);
3361 if (*end != '\0')
3362 return 0;
3363 else if (is_ctors)
3364 return 65535 - prio;
3365 else
3366 return prio;
3367 }
3368
3369 // Return true if this an input file whose base name matches
3370 // FILE_NAME. The base name must have an extension of ".o", and
3371 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3372 // This is to match crtbegin.o as well as crtbeginS.o without
3373 // getting confused by other possibilities. Overall matching the
3374 // file name this way is a dreadful hack, but the GNU linker does it
3375 // in order to better support gcc, and we need to be compatible.
3376 bool
3377 match_file_name(const char* file_name) const
3378 {
3379 if (this->input_section_.is_output_section_data())
3380 return false;
3381 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3382 }
3383
3384 // Returns 1 if THIS should appear before S in section order, -1 if S
3385 // appears before THIS and 0 if they are not comparable.
3386 int
3387 compare_section_ordering(const Input_section_sort_entry& s) const
3388 {
3389 unsigned int this_secn_index = this->input_section_.section_order_index();
3390 unsigned int s_secn_index = s.input_section().section_order_index();
3391 if (this_secn_index > 0 && s_secn_index > 0)
3392 {
3393 if (this_secn_index < s_secn_index)
3394 return 1;
3395 else if (this_secn_index > s_secn_index)
3396 return -1;
3397 }
3398 return 0;
3399 }
3400
3401 private:
3402 // The Input_section we are sorting.
3403 Input_section input_section_;
3404 // The index of this Input_section in the original list.
3405 unsigned int index_;
3406 // The section name if there is one.
3407 std::string section_name_;
3408 };
3409
3410 // Return true if S1 should come before S2 in the output section.
3411
3412 bool
3413 Output_section::Input_section_sort_compare::operator()(
3414 const Output_section::Input_section_sort_entry& s1,
3415 const Output_section::Input_section_sort_entry& s2) const
3416 {
3417 // crtbegin.o must come first.
3418 bool s1_begin = s1.match_file_name("crtbegin");
3419 bool s2_begin = s2.match_file_name("crtbegin");
3420 if (s1_begin || s2_begin)
3421 {
3422 if (!s1_begin)
3423 return false;
3424 if (!s2_begin)
3425 return true;
3426 return s1.index() < s2.index();
3427 }
3428
3429 // crtend.o must come last.
3430 bool s1_end = s1.match_file_name("crtend");
3431 bool s2_end = s2.match_file_name("crtend");
3432 if (s1_end || s2_end)
3433 {
3434 if (!s1_end)
3435 return true;
3436 if (!s2_end)
3437 return false;
3438 return s1.index() < s2.index();
3439 }
3440
3441 // A section with a priority follows a section without a priority.
3442 bool s1_has_priority = s1.has_priority();
3443 bool s2_has_priority = s2.has_priority();
3444 if (s1_has_priority && !s2_has_priority)
3445 return false;
3446 if (!s1_has_priority && s2_has_priority)
3447 return true;
3448
3449 // Check if a section order exists for these sections through a section
3450 // ordering file. If sequence_num is 0, an order does not exist.
3451 int sequence_num = s1.compare_section_ordering(s2);
3452 if (sequence_num != 0)
3453 return sequence_num == 1;
3454
3455 // Otherwise we sort by name.
3456 int compare = s1.section_name().compare(s2.section_name());
3457 if (compare != 0)
3458 return compare < 0;
3459
3460 // Otherwise we keep the input order.
3461 return s1.index() < s2.index();
3462 }
3463
3464 // Return true if S1 should come before S2 in an .init_array or .fini_array
3465 // output section.
3466
3467 bool
3468 Output_section::Input_section_sort_init_fini_compare::operator()(
3469 const Output_section::Input_section_sort_entry& s1,
3470 const Output_section::Input_section_sort_entry& s2) const
3471 {
3472 // A section without a priority follows a section with a priority.
3473 // This is the reverse of .ctors and .dtors sections.
3474 bool s1_has_priority = s1.has_priority();
3475 bool s2_has_priority = s2.has_priority();
3476 if (s1_has_priority && !s2_has_priority)
3477 return true;
3478 if (!s1_has_priority && s2_has_priority)
3479 return false;
3480
3481 // .ctors and .dtors sections without priority come after
3482 // .init_array and .fini_array sections without priority.
3483 if (!s1_has_priority
3484 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3485 && s1.section_name() != s2.section_name())
3486 return false;
3487 if (!s2_has_priority
3488 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3489 && s2.section_name() != s1.section_name())
3490 return true;
3491
3492 // Sort by priority if we can.
3493 if (s1_has_priority)
3494 {
3495 unsigned int s1_prio = s1.get_priority();
3496 unsigned int s2_prio = s2.get_priority();
3497 if (s1_prio < s2_prio)
3498 return true;
3499 else if (s1_prio > s2_prio)
3500 return false;
3501 }
3502
3503 // Check if a section order exists for these sections through a section
3504 // ordering file. If sequence_num is 0, an order does not exist.
3505 int sequence_num = s1.compare_section_ordering(s2);
3506 if (sequence_num != 0)
3507 return sequence_num == 1;
3508
3509 // Otherwise we sort by name.
3510 int compare = s1.section_name().compare(s2.section_name());
3511 if (compare != 0)
3512 return compare < 0;
3513
3514 // Otherwise we keep the input order.
3515 return s1.index() < s2.index();
3516 }
3517
3518 // Return true if S1 should come before S2. Sections that do not match
3519 // any pattern in the section ordering file are placed ahead of the sections
3520 // that match some pattern.
3521
3522 bool
3523 Output_section::Input_section_sort_section_order_index_compare::operator()(
3524 const Output_section::Input_section_sort_entry& s1,
3525 const Output_section::Input_section_sort_entry& s2) const
3526 {
3527 unsigned int s1_secn_index = s1.input_section().section_order_index();
3528 unsigned int s2_secn_index = s2.input_section().section_order_index();
3529
3530 // Keep input order if section ordering cannot determine order.
3531 if (s1_secn_index == s2_secn_index)
3532 return s1.index() < s2.index();
3533
3534 return s1_secn_index < s2_secn_index;
3535 }
3536
3537 // Return true if S1 should come before S2. This is the sort comparison
3538 // function for .text to sort sections with prefixes
3539 // .text.{unlikely,exit,startup,hot} before other sections.
3540
3541 bool
3542 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3543 ::operator()(
3544 const Output_section::Input_section_sort_entry& s1,
3545 const Output_section::Input_section_sort_entry& s2) const
3546 {
3547 // Some input section names have special ordering requirements.
3548 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3549 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3550 if (o1 != o2)
3551 {
3552 if (o1 < 0)
3553 return false;
3554 else if (o2 < 0)
3555 return true;
3556 else
3557 return o1 < o2;
3558 }
3559
3560 // Keep input order otherwise.
3561 return s1.index() < s2.index();
3562 }
3563
3564 // Return true if S1 should come before S2. This is the sort comparison
3565 // function for sections to sort them by name.
3566
3567 bool
3568 Output_section::Input_section_sort_section_name_compare
3569 ::operator()(
3570 const Output_section::Input_section_sort_entry& s1,
3571 const Output_section::Input_section_sort_entry& s2) const
3572 {
3573 // We sort by name.
3574 int compare = s1.section_name().compare(s2.section_name());
3575 if (compare != 0)
3576 return compare < 0;
3577
3578 // Keep input order otherwise.
3579 return s1.index() < s2.index();
3580 }
3581
3582 // This updates the section order index of input sections according to the
3583 // the order specified in the mapping from Section id to order index.
3584
3585 void
3586 Output_section::update_section_layout(
3587 const Section_layout_order* order_map)
3588 {
3589 for (Input_section_list::iterator p = this->input_sections_.begin();
3590 p != this->input_sections_.end();
3591 ++p)
3592 {
3593 if (p->is_input_section()
3594 || p->is_relaxed_input_section())
3595 {
3596 Relobj* obj = (p->is_input_section()
3597 ? p->relobj()
3598 : p->relaxed_input_section()->relobj());
3599 unsigned int shndx = p->shndx();
3600 Section_layout_order::const_iterator it
3601 = order_map->find(Section_id(obj, shndx));
3602 if (it == order_map->end())
3603 continue;
3604 unsigned int section_order_index = it->second;
3605 if (section_order_index != 0)
3606 {
3607 p->set_section_order_index(section_order_index);
3608 this->set_input_section_order_specified();
3609 }
3610 }
3611 }
3612 }
3613
3614 // Sort the input sections attached to an output section.
3615
3616 void
3617 Output_section::sort_attached_input_sections()
3618 {
3619 if (this->attached_input_sections_are_sorted_)
3620 return;
3621
3622 if (this->checkpoint_ != NULL
3623 && !this->checkpoint_->input_sections_saved())
3624 this->checkpoint_->save_input_sections();
3625
3626 // The only thing we know about an input section is the object and
3627 // the section index. We need the section name. Recomputing this
3628 // is slow but this is an unusual case. If this becomes a speed
3629 // problem we can cache the names as required in Layout::layout.
3630
3631 // We start by building a larger vector holding a copy of each
3632 // Input_section, plus its current index in the list and its name.
3633 std::vector<Input_section_sort_entry> sort_list;
3634
3635 unsigned int i = 0;
3636 for (Input_section_list::iterator p = this->input_sections_.begin();
3637 p != this->input_sections_.end();
3638 ++p, ++i)
3639 sort_list.push_back(Input_section_sort_entry(*p, i,
3640 this->must_sort_attached_input_sections(),
3641 this->name()));
3642
3643 // Sort the input sections.
3644 if (this->must_sort_attached_input_sections())
3645 {
3646 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3647 || this->type() == elfcpp::SHT_INIT_ARRAY
3648 || this->type() == elfcpp::SHT_FINI_ARRAY)
3649 std::sort(sort_list.begin(), sort_list.end(),
3650 Input_section_sort_init_fini_compare());
3651 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3652 std::sort(sort_list.begin(), sort_list.end(),
3653 Input_section_sort_section_name_compare());
3654 else if (strcmp(this->name(), ".text") == 0)
3655 std::sort(sort_list.begin(), sort_list.end(),
3656 Input_section_sort_section_prefix_special_ordering_compare());
3657 else
3658 std::sort(sort_list.begin(), sort_list.end(),
3659 Input_section_sort_compare());
3660 }
3661 else
3662 {
3663 gold_assert(this->input_section_order_specified());
3664 std::sort(sort_list.begin(), sort_list.end(),
3665 Input_section_sort_section_order_index_compare());
3666 }
3667
3668 // Copy the sorted input sections back to our list.
3669 this->input_sections_.clear();
3670 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3671 p != sort_list.end();
3672 ++p)
3673 this->input_sections_.push_back(p->input_section());
3674 sort_list.clear();
3675
3676 // Remember that we sorted the input sections, since we might get
3677 // called again.
3678 this->attached_input_sections_are_sorted_ = true;
3679 }
3680
3681 // Write the section header to *OSHDR.
3682
3683 template<int size, bool big_endian>
3684 void
3685 Output_section::write_header(const Layout* layout,
3686 const Stringpool* secnamepool,
3687 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3688 {
3689 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3690 oshdr->put_sh_type(this->type_);
3691
3692 elfcpp::Elf_Xword flags = this->flags_;
3693 if (this->info_section_ != NULL && this->info_uses_section_index_)
3694 flags |= elfcpp::SHF_INFO_LINK;
3695 oshdr->put_sh_flags(flags);
3696
3697 oshdr->put_sh_addr(this->address());
3698 oshdr->put_sh_offset(this->offset());
3699 oshdr->put_sh_size(this->data_size());
3700 if (this->link_section_ != NULL)
3701 oshdr->put_sh_link(this->link_section_->out_shndx());
3702 else if (this->should_link_to_symtab_)
3703 oshdr->put_sh_link(layout->symtab_section_shndx());
3704 else if (this->should_link_to_dynsym_)
3705 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3706 else
3707 oshdr->put_sh_link(this->link_);
3708
3709 elfcpp::Elf_Word info;
3710 if (this->info_section_ != NULL)
3711 {
3712 if (this->info_uses_section_index_)
3713 info = this->info_section_->out_shndx();
3714 else
3715 info = this->info_section_->symtab_index();
3716 }
3717 else if (this->info_symndx_ != NULL)
3718 info = this->info_symndx_->symtab_index();
3719 else
3720 info = this->info_;
3721 oshdr->put_sh_info(info);
3722
3723 oshdr->put_sh_addralign(this->addralign_);
3724 oshdr->put_sh_entsize(this->entsize_);
3725 }
3726
3727 // Write out the data. For input sections the data is written out by
3728 // Object::relocate, but we have to handle Output_section_data objects
3729 // here.
3730
3731 void
3732 Output_section::do_write(Output_file* of)
3733 {
3734 gold_assert(!this->requires_postprocessing());
3735
3736 // If the target performs relaxation, we delay filler generation until now.
3737 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3738
3739 off_t output_section_file_offset = this->offset();
3740 for (Fill_list::iterator p = this->fills_.begin();
3741 p != this->fills_.end();
3742 ++p)
3743 {
3744 std::string fill_data(parameters->target().code_fill(p->length()));
3745 of->write(output_section_file_offset + p->section_offset(),
3746 fill_data.data(), fill_data.size());
3747 }
3748
3749 off_t off = this->offset() + this->first_input_offset_;
3750 for (Input_section_list::iterator p = this->input_sections_.begin();
3751 p != this->input_sections_.end();
3752 ++p)
3753 {
3754 off_t aligned_off = align_address(off, p->addralign());
3755 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3756 {
3757 size_t fill_len = aligned_off - off;
3758 std::string fill_data(parameters->target().code_fill(fill_len));
3759 of->write(off, fill_data.data(), fill_data.size());
3760 }
3761
3762 p->write(of);
3763 off = aligned_off + p->data_size();
3764 }
3765
3766 // For incremental links, fill in unused chunks in debug sections
3767 // with dummy compilation unit headers.
3768 if (this->free_space_fill_ != NULL)
3769 {
3770 for (Free_list::Const_iterator p = this->free_list_.begin();
3771 p != this->free_list_.end();
3772 ++p)
3773 {
3774 off_t off = p->start_;
3775 size_t len = p->end_ - off;
3776 this->free_space_fill_->write(of, this->offset() + off, len);
3777 }
3778 if (this->patch_space_ > 0)
3779 {
3780 off_t off = this->current_data_size_for_child() - this->patch_space_;
3781 this->free_space_fill_->write(of, this->offset() + off,
3782 this->patch_space_);
3783 }
3784 }
3785 }
3786
3787 // If a section requires postprocessing, create the buffer to use.
3788
3789 void
3790 Output_section::create_postprocessing_buffer()
3791 {
3792 gold_assert(this->requires_postprocessing());
3793
3794 if (this->postprocessing_buffer_ != NULL)
3795 return;
3796
3797 if (!this->input_sections_.empty())
3798 {
3799 off_t off = this->first_input_offset_;
3800 for (Input_section_list::iterator p = this->input_sections_.begin();
3801 p != this->input_sections_.end();
3802 ++p)
3803 {
3804 off = align_address(off, p->addralign());
3805 p->finalize_data_size();
3806 off += p->data_size();
3807 }
3808 this->set_current_data_size_for_child(off);
3809 }
3810
3811 off_t buffer_size = this->current_data_size_for_child();
3812 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3813 }
3814
3815 // Write all the data of an Output_section into the postprocessing
3816 // buffer. This is used for sections which require postprocessing,
3817 // such as compression. Input sections are handled by
3818 // Object::Relocate.
3819
3820 void
3821 Output_section::write_to_postprocessing_buffer()
3822 {
3823 gold_assert(this->requires_postprocessing());
3824
3825 // If the target performs relaxation, we delay filler generation until now.
3826 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3827
3828 unsigned char* buffer = this->postprocessing_buffer();
3829 for (Fill_list::iterator p = this->fills_.begin();
3830 p != this->fills_.end();
3831 ++p)
3832 {
3833 std::string fill_data(parameters->target().code_fill(p->length()));
3834 memcpy(buffer + p->section_offset(), fill_data.data(),
3835 fill_data.size());
3836 }
3837
3838 off_t off = this->first_input_offset_;
3839 for (Input_section_list::iterator p = this->input_sections_.begin();
3840 p != this->input_sections_.end();
3841 ++p)
3842 {
3843 off_t aligned_off = align_address(off, p->addralign());
3844 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3845 {
3846 size_t fill_len = aligned_off - off;
3847 std::string fill_data(parameters->target().code_fill(fill_len));
3848 memcpy(buffer + off, fill_data.data(), fill_data.size());
3849 }
3850
3851 p->write_to_buffer(buffer + aligned_off);
3852 off = aligned_off + p->data_size();
3853 }
3854 }
3855
3856 // Get the input sections for linker script processing. We leave
3857 // behind the Output_section_data entries. Note that this may be
3858 // slightly incorrect for merge sections. We will leave them behind,
3859 // but it is possible that the script says that they should follow
3860 // some other input sections, as in:
3861 // .rodata { *(.rodata) *(.rodata.cst*) }
3862 // For that matter, we don't handle this correctly:
3863 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3864 // With luck this will never matter.
3865
3866 uint64_t
3867 Output_section::get_input_sections(
3868 uint64_t address,
3869 const std::string& fill,
3870 std::list<Input_section>* input_sections)
3871 {
3872 if (this->checkpoint_ != NULL
3873 && !this->checkpoint_->input_sections_saved())
3874 this->checkpoint_->save_input_sections();
3875
3876 // Invalidate fast look-up maps.
3877 this->lookup_maps_->invalidate();
3878
3879 uint64_t orig_address = address;
3880
3881 address = align_address(address, this->addralign());
3882
3883 Input_section_list remaining;
3884 for (Input_section_list::iterator p = this->input_sections_.begin();
3885 p != this->input_sections_.end();
3886 ++p)
3887 {
3888 if (p->is_input_section()
3889 || p->is_relaxed_input_section()
3890 || p->is_merge_section())
3891 input_sections->push_back(*p);
3892 else
3893 {
3894 uint64_t aligned_address = align_address(address, p->addralign());
3895 if (aligned_address != address && !fill.empty())
3896 {
3897 section_size_type length =
3898 convert_to_section_size_type(aligned_address - address);
3899 std::string this_fill;
3900 this_fill.reserve(length);
3901 while (this_fill.length() + fill.length() <= length)
3902 this_fill += fill;
3903 if (this_fill.length() < length)
3904 this_fill.append(fill, 0, length - this_fill.length());
3905
3906 Output_section_data* posd = new Output_data_const(this_fill, 0);
3907 remaining.push_back(Input_section(posd));
3908 }
3909 address = aligned_address;
3910
3911 remaining.push_back(*p);
3912
3913 p->finalize_data_size();
3914 address += p->data_size();
3915 }
3916 }
3917
3918 this->input_sections_.swap(remaining);
3919 this->first_input_offset_ = 0;
3920
3921 uint64_t data_size = address - orig_address;
3922 this->set_current_data_size_for_child(data_size);
3923 return data_size;
3924 }
3925
3926 // Add a script input section. SIS is an Output_section::Input_section,
3927 // which can be either a plain input section or a special input section like
3928 // a relaxed input section. For a special input section, its size must be
3929 // finalized.
3930
3931 void
3932 Output_section::add_script_input_section(const Input_section& sis)
3933 {
3934 uint64_t data_size = sis.data_size();
3935 uint64_t addralign = sis.addralign();
3936 if (addralign > this->addralign_)
3937 this->addralign_ = addralign;
3938
3939 off_t offset_in_section = this->current_data_size_for_child();
3940 off_t aligned_offset_in_section = align_address(offset_in_section,
3941 addralign);
3942
3943 this->set_current_data_size_for_child(aligned_offset_in_section
3944 + data_size);
3945
3946 this->input_sections_.push_back(sis);
3947
3948 // Update fast lookup maps if necessary.
3949 if (this->lookup_maps_->is_valid())
3950 {
3951 if (sis.is_relaxed_input_section())
3952 {
3953 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3954 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3955 poris->shndx(), poris);
3956 }
3957 }
3958 }
3959
3960 // Save states for relaxation.
3961
3962 void
3963 Output_section::save_states()
3964 {
3965 gold_assert(this->checkpoint_ == NULL);
3966 Checkpoint_output_section* checkpoint =
3967 new Checkpoint_output_section(this->addralign_, this->flags_,
3968 this->input_sections_,
3969 this->first_input_offset_,
3970 this->attached_input_sections_are_sorted_);
3971 this->checkpoint_ = checkpoint;
3972 gold_assert(this->fills_.empty());
3973 }
3974
3975 void
3976 Output_section::discard_states()
3977 {
3978 gold_assert(this->checkpoint_ != NULL);
3979 delete this->checkpoint_;
3980 this->checkpoint_ = NULL;
3981 gold_assert(this->fills_.empty());
3982
3983 // Simply invalidate the fast lookup maps since we do not keep
3984 // track of them.
3985 this->lookup_maps_->invalidate();
3986 }
3987
3988 void
3989 Output_section::restore_states()
3990 {
3991 gold_assert(this->checkpoint_ != NULL);
3992 Checkpoint_output_section* checkpoint = this->checkpoint_;
3993
3994 this->addralign_ = checkpoint->addralign();
3995 this->flags_ = checkpoint->flags();
3996 this->first_input_offset_ = checkpoint->first_input_offset();
3997
3998 if (!checkpoint->input_sections_saved())
3999 {
4000 // If we have not copied the input sections, just resize it.
4001 size_t old_size = checkpoint->input_sections_size();
4002 gold_assert(this->input_sections_.size() >= old_size);
4003 this->input_sections_.resize(old_size);
4004 }
4005 else
4006 {
4007 // We need to copy the whole list. This is not efficient for
4008 // extremely large output with hundreads of thousands of input
4009 // objects. We may need to re-think how we should pass sections
4010 // to scripts.
4011 this->input_sections_ = *checkpoint->input_sections();
4012 }
4013
4014 this->attached_input_sections_are_sorted_ =
4015 checkpoint->attached_input_sections_are_sorted();
4016
4017 // Simply invalidate the fast lookup maps since we do not keep
4018 // track of them.
4019 this->lookup_maps_->invalidate();
4020 }
4021
4022 // Update the section offsets of input sections in this. This is required if
4023 // relaxation causes some input sections to change sizes.
4024
4025 void
4026 Output_section::adjust_section_offsets()
4027 {
4028 if (!this->section_offsets_need_adjustment_)
4029 return;
4030
4031 off_t off = 0;
4032 for (Input_section_list::iterator p = this->input_sections_.begin();
4033 p != this->input_sections_.end();
4034 ++p)
4035 {
4036 off = align_address(off, p->addralign());
4037 if (p->is_input_section())
4038 p->relobj()->set_section_offset(p->shndx(), off);
4039 off += p->data_size();
4040 }
4041
4042 this->section_offsets_need_adjustment_ = false;
4043 }
4044
4045 // Print to the map file.
4046
4047 void
4048 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4049 {
4050 mapfile->print_output_section(this);
4051
4052 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4053 p != this->input_sections_.end();
4054 ++p)
4055 p->print_to_mapfile(mapfile);
4056 }
4057
4058 // Print stats for merge sections to stderr.
4059
4060 void
4061 Output_section::print_merge_stats()
4062 {
4063 Input_section_list::iterator p;
4064 for (p = this->input_sections_.begin();
4065 p != this->input_sections_.end();
4066 ++p)
4067 p->print_merge_stats(this->name_);
4068 }
4069
4070 // Set a fixed layout for the section. Used for incremental update links.
4071
4072 void
4073 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4074 off_t sh_size, uint64_t sh_addralign)
4075 {
4076 this->addralign_ = sh_addralign;
4077 this->set_current_data_size(sh_size);
4078 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4079 this->set_address(sh_addr);
4080 this->set_file_offset(sh_offset);
4081 this->finalize_data_size();
4082 this->free_list_.init(sh_size, false);
4083 this->has_fixed_layout_ = true;
4084 }
4085
4086 // Reserve space within the fixed layout for the section. Used for
4087 // incremental update links.
4088
4089 void
4090 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4091 {
4092 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4093 }
4094
4095 // Allocate space from the free list for the section. Used for
4096 // incremental update links.
4097
4098 off_t
4099 Output_section::allocate(off_t len, uint64_t addralign)
4100 {
4101 return this->free_list_.allocate(len, addralign, 0);
4102 }
4103
4104 // Output segment methods.
4105
4106 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4107 : vaddr_(0),
4108 paddr_(0),
4109 memsz_(0),
4110 max_align_(0),
4111 min_p_align_(0),
4112 offset_(0),
4113 filesz_(0),
4114 type_(type),
4115 flags_(flags),
4116 is_max_align_known_(false),
4117 are_addresses_set_(false),
4118 is_large_data_segment_(false),
4119 is_unique_segment_(false)
4120 {
4121 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4122 // the flags.
4123 if (type == elfcpp::PT_TLS)
4124 this->flags_ = elfcpp::PF_R;
4125 }
4126
4127 // Add an Output_section to a PT_LOAD Output_segment.
4128
4129 void
4130 Output_segment::add_output_section_to_load(Layout* layout,
4131 Output_section* os,
4132 elfcpp::Elf_Word seg_flags)
4133 {
4134 gold_assert(this->type() == elfcpp::PT_LOAD);
4135 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4136 gold_assert(!this->is_max_align_known_);
4137 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4138
4139 this->update_flags_for_output_section(seg_flags);
4140
4141 // We don't want to change the ordering if we have a linker script
4142 // with a SECTIONS clause.
4143 Output_section_order order = os->order();
4144 if (layout->script_options()->saw_sections_clause())
4145 order = static_cast<Output_section_order>(0);
4146 else
4147 gold_assert(order != ORDER_INVALID);
4148
4149 this->output_lists_[order].push_back(os);
4150 }
4151
4152 // Add an Output_section to a non-PT_LOAD Output_segment.
4153
4154 void
4155 Output_segment::add_output_section_to_nonload(Output_section* os,
4156 elfcpp::Elf_Word seg_flags)
4157 {
4158 gold_assert(this->type() != elfcpp::PT_LOAD);
4159 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4160 gold_assert(!this->is_max_align_known_);
4161
4162 this->update_flags_for_output_section(seg_flags);
4163
4164 this->output_lists_[0].push_back(os);
4165 }
4166
4167 // Remove an Output_section from this segment. It is an error if it
4168 // is not present.
4169
4170 void
4171 Output_segment::remove_output_section(Output_section* os)
4172 {
4173 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4174 {
4175 Output_data_list* pdl = &this->output_lists_[i];
4176 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4177 {
4178 if (*p == os)
4179 {
4180 pdl->erase(p);
4181 return;
4182 }
4183 }
4184 }
4185 gold_unreachable();
4186 }
4187
4188 // Add an Output_data (which need not be an Output_section) to the
4189 // start of a segment.
4190
4191 void
4192 Output_segment::add_initial_output_data(Output_data* od)
4193 {
4194 gold_assert(!this->is_max_align_known_);
4195 Output_data_list::iterator p = this->output_lists_[0].begin();
4196 this->output_lists_[0].insert(p, od);
4197 }
4198
4199 // Return true if this segment has any sections which hold actual
4200 // data, rather than being a BSS section.
4201
4202 bool
4203 Output_segment::has_any_data_sections() const
4204 {
4205 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4206 {
4207 const Output_data_list* pdl = &this->output_lists_[i];
4208 for (Output_data_list::const_iterator p = pdl->begin();
4209 p != pdl->end();
4210 ++p)
4211 {
4212 if (!(*p)->is_section())
4213 return true;
4214 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4215 return true;
4216 }
4217 }
4218 return false;
4219 }
4220
4221 // Return whether the first data section (not counting TLS sections)
4222 // is a relro section.
4223
4224 bool
4225 Output_segment::is_first_section_relro() const
4226 {
4227 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4228 {
4229 if (i == static_cast<int>(ORDER_TLS_BSS))
4230 continue;
4231 const Output_data_list* pdl = &this->output_lists_[i];
4232 if (!pdl->empty())
4233 {
4234 Output_data* p = pdl->front();
4235 return p->is_section() && p->output_section()->is_relro();
4236 }
4237 }
4238 return false;
4239 }
4240
4241 // Return the maximum alignment of the Output_data in Output_segment.
4242
4243 uint64_t
4244 Output_segment::maximum_alignment()
4245 {
4246 if (!this->is_max_align_known_)
4247 {
4248 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4249 {
4250 const Output_data_list* pdl = &this->output_lists_[i];
4251 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4252 if (addralign > this->max_align_)
4253 this->max_align_ = addralign;
4254 }
4255 this->is_max_align_known_ = true;
4256 }
4257
4258 return this->max_align_;
4259 }
4260
4261 // Return the maximum alignment of a list of Output_data.
4262
4263 uint64_t
4264 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4265 {
4266 uint64_t ret = 0;
4267 for (Output_data_list::const_iterator p = pdl->begin();
4268 p != pdl->end();
4269 ++p)
4270 {
4271 uint64_t addralign = (*p)->addralign();
4272 if (addralign > ret)
4273 ret = addralign;
4274 }
4275 return ret;
4276 }
4277
4278 // Return whether this segment has any dynamic relocs.
4279
4280 bool
4281 Output_segment::has_dynamic_reloc() const
4282 {
4283 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4284 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4285 return true;
4286 return false;
4287 }
4288
4289 // Return whether this Output_data_list has any dynamic relocs.
4290
4291 bool
4292 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4293 {
4294 for (Output_data_list::const_iterator p = pdl->begin();
4295 p != pdl->end();
4296 ++p)
4297 if ((*p)->has_dynamic_reloc())
4298 return true;
4299 return false;
4300 }
4301
4302 // Set the section addresses for an Output_segment. If RESET is true,
4303 // reset the addresses first. ADDR is the address and *POFF is the
4304 // file offset. Set the section indexes starting with *PSHNDX.
4305 // INCREASE_RELRO is the size of the portion of the first non-relro
4306 // section that should be included in the PT_GNU_RELRO segment.
4307 // If this segment has relro sections, and has been aligned for
4308 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4309 // the immediately following segment. Update *HAS_RELRO, *POFF,
4310 // and *PSHNDX.
4311
4312 uint64_t
4313 Output_segment::set_section_addresses(const Target* target,
4314 Layout* layout, bool reset,
4315 uint64_t addr,
4316 unsigned int* increase_relro,
4317 bool* has_relro,
4318 off_t* poff,
4319 unsigned int* pshndx)
4320 {
4321 gold_assert(this->type_ == elfcpp::PT_LOAD);
4322
4323 uint64_t last_relro_pad = 0;
4324 off_t orig_off = *poff;
4325
4326 bool in_tls = false;
4327
4328 // If we have relro sections, we need to pad forward now so that the
4329 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4330 if (parameters->options().relro()
4331 && this->is_first_section_relro()
4332 && (!this->are_addresses_set_ || reset))
4333 {
4334 uint64_t relro_size = 0;
4335 off_t off = *poff;
4336 uint64_t max_align = 0;
4337 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4338 {
4339 Output_data_list* pdl = &this->output_lists_[i];
4340 Output_data_list::iterator p;
4341 for (p = pdl->begin(); p != pdl->end(); ++p)
4342 {
4343 if (!(*p)->is_section())
4344 break;
4345 uint64_t align = (*p)->addralign();
4346 if (align > max_align)
4347 max_align = align;
4348 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4349 in_tls = true;
4350 else if (in_tls)
4351 {
4352 // Align the first non-TLS section to the alignment
4353 // of the TLS segment.
4354 align = max_align;
4355 in_tls = false;
4356 }
4357 // Ignore the size of the .tbss section.
4358 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4359 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4360 continue;
4361 relro_size = align_address(relro_size, align);
4362 if ((*p)->is_address_valid())
4363 relro_size += (*p)->data_size();
4364 else
4365 {
4366 // FIXME: This could be faster.
4367 (*p)->set_address_and_file_offset(relro_size,
4368 relro_size);
4369 relro_size += (*p)->data_size();
4370 (*p)->reset_address_and_file_offset();
4371 }
4372 }
4373 if (p != pdl->end())
4374 break;
4375 }
4376 relro_size += *increase_relro;
4377 // Pad the total relro size to a multiple of the maximum
4378 // section alignment seen.
4379 uint64_t aligned_size = align_address(relro_size, max_align);
4380 // Note the amount of padding added after the last relro section.
4381 last_relro_pad = aligned_size - relro_size;
4382 *has_relro = true;
4383
4384 uint64_t page_align = parameters->target().abi_pagesize();
4385
4386 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4387 uint64_t desired_align = page_align - (aligned_size % page_align);
4388 if (desired_align < off % page_align)
4389 off += page_align;
4390 off += desired_align - off % page_align;
4391 addr += off - orig_off;
4392 orig_off = off;
4393 *poff = off;
4394 }
4395
4396 if (!reset && this->are_addresses_set_)
4397 {
4398 gold_assert(this->paddr_ == addr);
4399 addr = this->vaddr_;
4400 }
4401 else
4402 {
4403 this->vaddr_ = addr;
4404 this->paddr_ = addr;
4405 this->are_addresses_set_ = true;
4406 }
4407
4408 in_tls = false;
4409
4410 this->offset_ = orig_off;
4411
4412 off_t off = 0;
4413 off_t foff = *poff;
4414 uint64_t ret = 0;
4415 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4416 {
4417 if (i == static_cast<int>(ORDER_RELRO_LAST))
4418 {
4419 *poff += last_relro_pad;
4420 foff += last_relro_pad;
4421 addr += last_relro_pad;
4422 if (this->output_lists_[i].empty())
4423 {
4424 // If there is nothing in the ORDER_RELRO_LAST list,
4425 // the padding will occur at the end of the relro
4426 // segment, and we need to add it to *INCREASE_RELRO.
4427 *increase_relro += last_relro_pad;
4428 }
4429 }
4430 addr = this->set_section_list_addresses(layout, reset,
4431 &this->output_lists_[i],
4432 addr, poff, &foff, pshndx,
4433 &in_tls);
4434
4435 // FOFF tracks the last offset used for the file image,
4436 // and *POFF tracks the last offset used for the memory image.
4437 // When not using a linker script, bss sections should all
4438 // be processed in the ORDER_SMALL_BSS and later buckets.
4439 gold_assert(*poff == foff
4440 || i == static_cast<int>(ORDER_TLS_BSS)
4441 || i >= static_cast<int>(ORDER_SMALL_BSS)
4442 || layout->script_options()->saw_sections_clause());
4443
4444 this->filesz_ = foff - orig_off;
4445 off = foff;
4446
4447 ret = addr;
4448 }
4449
4450 // If the last section was a TLS section, align upward to the
4451 // alignment of the TLS segment, so that the overall size of the TLS
4452 // segment is aligned.
4453 if (in_tls)
4454 {
4455 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4456 *poff = align_address(*poff, segment_align);
4457 }
4458
4459 this->memsz_ = *poff - orig_off;
4460
4461 // Ignore the file offset adjustments made by the BSS Output_data
4462 // objects.
4463 *poff = off;
4464
4465 // If code segments must contain only code, and this code segment is
4466 // page-aligned in the file, then fill it out to a whole page with
4467 // code fill (the tail of the segment will not be within any section).
4468 // Thus the entire code segment can be mapped from the file as whole
4469 // pages and that mapping will contain only valid instructions.
4470 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4471 {
4472 uint64_t abi_pagesize = target->abi_pagesize();
4473 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4474 {
4475 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4476
4477 std::string fill_data;
4478 if (target->has_code_fill())
4479 fill_data = target->code_fill(fill_size);
4480 else
4481 fill_data.resize(fill_size); // Zero fill.
4482
4483 Output_data_const* fill = new Output_data_const(fill_data, 0);
4484 fill->set_address(this->vaddr_ + this->memsz_);
4485 fill->set_file_offset(off);
4486 layout->add_relax_output(fill);
4487
4488 off += fill_size;
4489 gold_assert(off % abi_pagesize == 0);
4490 ret += fill_size;
4491 gold_assert(ret % abi_pagesize == 0);
4492
4493 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4494 this->memsz_ = this->filesz_ += fill_size;
4495
4496 *poff = off;
4497 }
4498 }
4499
4500 return ret;
4501 }
4502
4503 // Set the addresses and file offsets in a list of Output_data
4504 // structures.
4505
4506 uint64_t
4507 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4508 Output_data_list* pdl,
4509 uint64_t addr, off_t* poff,
4510 off_t* pfoff,
4511 unsigned int* pshndx,
4512 bool* in_tls)
4513 {
4514 off_t startoff = *poff;
4515 // For incremental updates, we may allocate non-fixed sections from
4516 // free space in the file. This keeps track of the high-water mark.
4517 off_t maxoff = startoff;
4518
4519 off_t off = startoff;
4520 off_t foff = *pfoff;
4521 for (Output_data_list::iterator p = pdl->begin();
4522 p != pdl->end();
4523 ++p)
4524 {
4525 bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4526 bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4527
4528 if (reset)
4529 (*p)->reset_address_and_file_offset();
4530
4531 // When doing an incremental update or when using a linker script,
4532 // the section will most likely already have an address.
4533 if (!(*p)->is_address_valid())
4534 {
4535 uint64_t align = (*p)->addralign();
4536
4537 if (is_tls)
4538 {
4539 // Give the first TLS section the alignment of the
4540 // entire TLS segment. Otherwise the TLS segment as a
4541 // whole may be misaligned.
4542 if (!*in_tls)
4543 {
4544 Output_segment* tls_segment = layout->tls_segment();
4545 gold_assert(tls_segment != NULL);
4546 uint64_t segment_align = tls_segment->maximum_alignment();
4547 gold_assert(segment_align >= align);
4548 align = segment_align;
4549
4550 *in_tls = true;
4551 }
4552 }
4553 else
4554 {
4555 // If this is the first section after the TLS segment,
4556 // align it to at least the alignment of the TLS
4557 // segment, so that the size of the overall TLS segment
4558 // is aligned.
4559 if (*in_tls)
4560 {
4561 uint64_t segment_align =
4562 layout->tls_segment()->maximum_alignment();
4563 if (segment_align > align)
4564 align = segment_align;
4565
4566 *in_tls = false;
4567 }
4568 }
4569
4570 if (!parameters->incremental_update())
4571 {
4572 gold_assert(off == foff || is_bss);
4573 off = align_address(off, align);
4574 if (is_tls || !is_bss)
4575 foff = off;
4576 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4577 }
4578 else
4579 {
4580 // Incremental update: allocate file space from free list.
4581 (*p)->pre_finalize_data_size();
4582 off_t current_size = (*p)->current_data_size();
4583 off = layout->allocate(current_size, align, startoff);
4584 foff = off;
4585 if (off == -1)
4586 {
4587 gold_assert((*p)->output_section() != NULL);
4588 gold_fallback(_("out of patch space for section %s; "
4589 "relink with --incremental-full"),
4590 (*p)->output_section()->name());
4591 }
4592 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4593 if ((*p)->data_size() > current_size)
4594 {
4595 gold_assert((*p)->output_section() != NULL);
4596 gold_fallback(_("%s: section changed size; "
4597 "relink with --incremental-full"),
4598 (*p)->output_section()->name());
4599 }
4600 }
4601 }
4602 else if (parameters->incremental_update())
4603 {
4604 // For incremental updates, use the fixed offset for the
4605 // high-water mark computation.
4606 off = (*p)->offset();
4607 foff = off;
4608 }
4609 else
4610 {
4611 // The script may have inserted a skip forward, but it
4612 // better not have moved backward.
4613 if ((*p)->address() >= addr + (off - startoff))
4614 {
4615 if (!is_bss && off > foff)
4616 gold_warning(_("script places BSS section in the middle "
4617 "of a LOAD segment; space will be allocated "
4618 "in the file"));
4619 off += (*p)->address() - (addr + (off - startoff));
4620 if (is_tls || !is_bss)
4621 foff = off;
4622 }
4623 else
4624 {
4625 if (!layout->script_options()->saw_sections_clause())
4626 gold_unreachable();
4627 else
4628 {
4629 Output_section* os = (*p)->output_section();
4630
4631 // Cast to unsigned long long to avoid format warnings.
4632 unsigned long long previous_dot =
4633 static_cast<unsigned long long>(addr + (off - startoff));
4634 unsigned long long dot =
4635 static_cast<unsigned long long>((*p)->address());
4636
4637 if (os == NULL)
4638 gold_error(_("dot moves backward in linker script "
4639 "from 0x%llx to 0x%llx"), previous_dot, dot);
4640 else
4641 gold_error(_("address of section '%s' moves backward "
4642 "from 0x%llx to 0x%llx"),
4643 os->name(), previous_dot, dot);
4644 }
4645 }
4646 (*p)->set_file_offset(foff);
4647 (*p)->finalize_data_size();
4648 }
4649
4650 if (parameters->incremental_update())
4651 gold_debug(DEBUG_INCREMENTAL,
4652 "set_section_list_addresses: %08lx %08lx %s",
4653 static_cast<long>(off),
4654 static_cast<long>((*p)->data_size()),
4655 ((*p)->output_section() != NULL
4656 ? (*p)->output_section()->name() : "(special)"));
4657
4658 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4659 // section. Such a section does not affect the size of a
4660 // PT_LOAD segment.
4661 if (!is_tls || !is_bss)
4662 off += (*p)->data_size();
4663
4664 // We don't allocate space in the file for SHT_NOBITS sections,
4665 // unless a script has force-placed one in the middle of a segment.
4666 if (!is_bss)
4667 foff = off;
4668
4669 if (off > maxoff)
4670 maxoff = off;
4671
4672 if ((*p)->is_section())
4673 {
4674 (*p)->set_out_shndx(*pshndx);
4675 ++*pshndx;
4676 }
4677 }
4678
4679 *poff = maxoff;
4680 *pfoff = foff;
4681 return addr + (maxoff - startoff);
4682 }
4683
4684 // For a non-PT_LOAD segment, set the offset from the sections, if
4685 // any. Add INCREASE to the file size and the memory size.
4686
4687 void
4688 Output_segment::set_offset(unsigned int increase)
4689 {
4690 gold_assert(this->type_ != elfcpp::PT_LOAD);
4691
4692 gold_assert(!this->are_addresses_set_);
4693
4694 // A non-load section only uses output_lists_[0].
4695
4696 Output_data_list* pdl = &this->output_lists_[0];
4697
4698 if (pdl->empty())
4699 {
4700 gold_assert(increase == 0);
4701 this->vaddr_ = 0;
4702 this->paddr_ = 0;
4703 this->are_addresses_set_ = true;
4704 this->memsz_ = 0;
4705 this->min_p_align_ = 0;
4706 this->offset_ = 0;
4707 this->filesz_ = 0;
4708 return;
4709 }
4710
4711 // Find the first and last section by address.
4712 const Output_data* first = NULL;
4713 const Output_data* last_data = NULL;
4714 const Output_data* last_bss = NULL;
4715 for (Output_data_list::const_iterator p = pdl->begin();
4716 p != pdl->end();
4717 ++p)
4718 {
4719 if (first == NULL
4720 || (*p)->address() < first->address()
4721 || ((*p)->address() == first->address()
4722 && (*p)->data_size() < first->data_size()))
4723 first = *p;
4724 const Output_data** plast;
4725 if ((*p)->is_section()
4726 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4727 plast = &last_bss;
4728 else
4729 plast = &last_data;
4730 if (*plast == NULL
4731 || (*p)->address() > (*plast)->address()
4732 || ((*p)->address() == (*plast)->address()
4733 && (*p)->data_size() > (*plast)->data_size()))
4734 *plast = *p;
4735 }
4736
4737 this->vaddr_ = first->address();
4738 this->paddr_ = (first->has_load_address()
4739 ? first->load_address()
4740 : this->vaddr_);
4741 this->are_addresses_set_ = true;
4742 this->offset_ = first->offset();
4743
4744 if (last_data == NULL)
4745 this->filesz_ = 0;
4746 else
4747 this->filesz_ = (last_data->address()
4748 + last_data->data_size()
4749 - this->vaddr_);
4750
4751 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4752 this->memsz_ = (last->address()
4753 + last->data_size()
4754 - this->vaddr_);
4755
4756 this->filesz_ += increase;
4757 this->memsz_ += increase;
4758
4759 // If this is a RELRO segment, verify that the segment ends at a
4760 // page boundary.
4761 if (this->type_ == elfcpp::PT_GNU_RELRO)
4762 {
4763 uint64_t page_align = parameters->target().abi_pagesize();
4764 uint64_t segment_end = this->vaddr_ + this->memsz_;
4765 if (parameters->incremental_update())
4766 {
4767 // The INCREASE_RELRO calculation is bypassed for an incremental
4768 // update, so we need to adjust the segment size manually here.
4769 segment_end = align_address(segment_end, page_align);
4770 this->memsz_ = segment_end - this->vaddr_;
4771 }
4772 else
4773 gold_assert(segment_end == align_address(segment_end, page_align));
4774 }
4775
4776 // If this is a TLS segment, align the memory size. The code in
4777 // set_section_list ensures that the section after the TLS segment
4778 // is aligned to give us room.
4779 if (this->type_ == elfcpp::PT_TLS)
4780 {
4781 uint64_t segment_align = this->maximum_alignment();
4782 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4783 this->memsz_ = align_address(this->memsz_, segment_align);
4784 }
4785 }
4786
4787 // Set the TLS offsets of the sections in the PT_TLS segment.
4788
4789 void
4790 Output_segment::set_tls_offsets()
4791 {
4792 gold_assert(this->type_ == elfcpp::PT_TLS);
4793
4794 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4795 p != this->output_lists_[0].end();
4796 ++p)
4797 (*p)->set_tls_offset(this->vaddr_);
4798 }
4799
4800 // Return the first section.
4801
4802 Output_section*
4803 Output_segment::first_section() const
4804 {
4805 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4806 {
4807 const Output_data_list* pdl = &this->output_lists_[i];
4808 for (Output_data_list::const_iterator p = pdl->begin();
4809 p != pdl->end();
4810 ++p)
4811 {
4812 if ((*p)->is_section())
4813 return (*p)->output_section();
4814 }
4815 }
4816 return NULL;
4817 }
4818
4819 // Return the number of Output_sections in an Output_segment.
4820
4821 unsigned int
4822 Output_segment::output_section_count() const
4823 {
4824 unsigned int ret = 0;
4825 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4826 ret += this->output_section_count_list(&this->output_lists_[i]);
4827 return ret;
4828 }
4829
4830 // Return the number of Output_sections in an Output_data_list.
4831
4832 unsigned int
4833 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4834 {
4835 unsigned int count = 0;
4836 for (Output_data_list::const_iterator p = pdl->begin();
4837 p != pdl->end();
4838 ++p)
4839 {
4840 if ((*p)->is_section())
4841 ++count;
4842 }
4843 return count;
4844 }
4845
4846 // Return the section attached to the list segment with the lowest
4847 // load address. This is used when handling a PHDRS clause in a
4848 // linker script.
4849
4850 Output_section*
4851 Output_segment::section_with_lowest_load_address() const
4852 {
4853 Output_section* found = NULL;
4854 uint64_t found_lma = 0;
4855 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4856 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4857 &found_lma);
4858 return found;
4859 }
4860
4861 // Look through a list for a section with a lower load address.
4862
4863 void
4864 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4865 Output_section** found,
4866 uint64_t* found_lma) const
4867 {
4868 for (Output_data_list::const_iterator p = pdl->begin();
4869 p != pdl->end();
4870 ++p)
4871 {
4872 if (!(*p)->is_section())
4873 continue;
4874 Output_section* os = static_cast<Output_section*>(*p);
4875 uint64_t lma = (os->has_load_address()
4876 ? os->load_address()
4877 : os->address());
4878 if (*found == NULL || lma < *found_lma)
4879 {
4880 *found = os;
4881 *found_lma = lma;
4882 }
4883 }
4884 }
4885
4886 // Write the segment data into *OPHDR.
4887
4888 template<int size, bool big_endian>
4889 void
4890 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4891 {
4892 ophdr->put_p_type(this->type_);
4893 ophdr->put_p_offset(this->offset_);
4894 ophdr->put_p_vaddr(this->vaddr_);
4895 ophdr->put_p_paddr(this->paddr_);
4896 ophdr->put_p_filesz(this->filesz_);
4897 ophdr->put_p_memsz(this->memsz_);
4898 ophdr->put_p_flags(this->flags_);
4899 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4900 }
4901
4902 // Write the section headers into V.
4903
4904 template<int size, bool big_endian>
4905 unsigned char*
4906 Output_segment::write_section_headers(const Layout* layout,
4907 const Stringpool* secnamepool,
4908 unsigned char* v,
4909 unsigned int* pshndx) const
4910 {
4911 // Every section that is attached to a segment must be attached to a
4912 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4913 // segments.
4914 if (this->type_ != elfcpp::PT_LOAD)
4915 return v;
4916
4917 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4918 {
4919 const Output_data_list* pdl = &this->output_lists_[i];
4920 v = this->write_section_headers_list<size, big_endian>(layout,
4921 secnamepool,
4922 pdl,
4923 v, pshndx);
4924 }
4925
4926 return v;
4927 }
4928
4929 template<int size, bool big_endian>
4930 unsigned char*
4931 Output_segment::write_section_headers_list(const Layout* layout,
4932 const Stringpool* secnamepool,
4933 const Output_data_list* pdl,
4934 unsigned char* v,
4935 unsigned int* pshndx) const
4936 {
4937 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4938 for (Output_data_list::const_iterator p = pdl->begin();
4939 p != pdl->end();
4940 ++p)
4941 {
4942 if ((*p)->is_section())
4943 {
4944 const Output_section* ps = static_cast<const Output_section*>(*p);
4945 gold_assert(*pshndx == ps->out_shndx());
4946 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4947 ps->write_header(layout, secnamepool, &oshdr);
4948 v += shdr_size;
4949 ++*pshndx;
4950 }
4951 }
4952 return v;
4953 }
4954
4955 // Print the output sections to the map file.
4956
4957 void
4958 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4959 {
4960 if (this->type() != elfcpp::PT_LOAD)
4961 return;
4962 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4963 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4964 }
4965
4966 // Print an output section list to the map file.
4967
4968 void
4969 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4970 const Output_data_list* pdl) const
4971 {
4972 for (Output_data_list::const_iterator p = pdl->begin();
4973 p != pdl->end();
4974 ++p)
4975 (*p)->print_to_mapfile(mapfile);
4976 }
4977
4978 // Output_file methods.
4979
4980 Output_file::Output_file(const char* name)
4981 : name_(name),
4982 o_(-1),
4983 file_size_(0),
4984 base_(NULL),
4985 map_is_anonymous_(false),
4986 map_is_allocated_(false),
4987 is_temporary_(false)
4988 {
4989 }
4990
4991 // Try to open an existing file. Returns false if the file doesn't
4992 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4993 // NULL, open that file as the base for incremental linking, and
4994 // copy its contents to the new output file. This routine can
4995 // be called for incremental updates, in which case WRITABLE should
4996 // be true, or by the incremental-dump utility, in which case
4997 // WRITABLE should be false.
4998
4999 bool
5000 Output_file::open_base_file(const char* base_name, bool writable)
5001 {
5002 // The name "-" means "stdout".
5003 if (strcmp(this->name_, "-") == 0)
5004 return false;
5005
5006 bool use_base_file = base_name != NULL;
5007 if (!use_base_file)
5008 base_name = this->name_;
5009 else if (strcmp(base_name, this->name_) == 0)
5010 gold_fatal(_("%s: incremental base and output file name are the same"),
5011 base_name);
5012
5013 // Don't bother opening files with a size of zero.
5014 struct stat s;
5015 if (::stat(base_name, &s) != 0)
5016 {
5017 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5018 return false;
5019 }
5020 if (s.st_size == 0)
5021 {
5022 gold_info(_("%s: incremental base file is empty"), base_name);
5023 return false;
5024 }
5025
5026 // If we're using a base file, we want to open it read-only.
5027 if (use_base_file)
5028 writable = false;
5029
5030 int oflags = writable ? O_RDWR : O_RDONLY;
5031 int o = open_descriptor(-1, base_name, oflags, 0);
5032 if (o < 0)
5033 {
5034 gold_info(_("%s: open: %s"), base_name, strerror(errno));
5035 return false;
5036 }
5037
5038 // If the base file and the output file are different, open a
5039 // new output file and read the contents from the base file into
5040 // the newly-mapped region.
5041 if (use_base_file)
5042 {
5043 this->open(s.st_size);
5044 ssize_t bytes_to_read = s.st_size;
5045 unsigned char* p = this->base_;
5046 while (bytes_to_read > 0)
5047 {
5048 ssize_t len = ::read(o, p, bytes_to_read);
5049 if (len < 0)
5050 {
5051 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5052 return false;
5053 }
5054 if (len == 0)
5055 {
5056 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5057 base_name,
5058 static_cast<long long>(s.st_size - bytes_to_read),
5059 static_cast<long long>(s.st_size));
5060 return false;
5061 }
5062 p += len;
5063 bytes_to_read -= len;
5064 }
5065 ::close(o);
5066 return true;
5067 }
5068
5069 this->o_ = o;
5070 this->file_size_ = s.st_size;
5071
5072 if (!this->map_no_anonymous(writable))
5073 {
5074 release_descriptor(o, true);
5075 this->o_ = -1;
5076 this->file_size_ = 0;
5077 return false;
5078 }
5079
5080 return true;
5081 }
5082
5083 // Open the output file.
5084
5085 void
5086 Output_file::open(off_t file_size)
5087 {
5088 this->file_size_ = file_size;
5089
5090 // Unlink the file first; otherwise the open() may fail if the file
5091 // is busy (e.g. it's an executable that's currently being executed).
5092 //
5093 // However, the linker may be part of a system where a zero-length
5094 // file is created for it to write to, with tight permissions (gcc
5095 // 2.95 did something like this). Unlinking the file would work
5096 // around those permission controls, so we only unlink if the file
5097 // has a non-zero size. We also unlink only regular files to avoid
5098 // trouble with directories/etc.
5099 //
5100 // If we fail, continue; this command is merely a best-effort attempt
5101 // to improve the odds for open().
5102
5103 // We let the name "-" mean "stdout"
5104 if (!this->is_temporary_)
5105 {
5106 if (strcmp(this->name_, "-") == 0)
5107 this->o_ = STDOUT_FILENO;
5108 else
5109 {
5110 struct stat s;
5111 if (::stat(this->name_, &s) == 0
5112 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5113 {
5114 if (s.st_size != 0)
5115 ::unlink(this->name_);
5116 else if (!parameters->options().relocatable())
5117 {
5118 // If we don't unlink the existing file, add execute
5119 // permission where read permissions already exist
5120 // and where the umask permits.
5121 int mask = ::umask(0);
5122 ::umask(mask);
5123 s.st_mode |= (s.st_mode & 0444) >> 2;
5124 ::chmod(this->name_, s.st_mode & ~mask);
5125 }
5126 }
5127
5128 int mode = parameters->options().relocatable() ? 0666 : 0777;
5129 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5130 mode);
5131 if (o < 0)
5132 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5133 this->o_ = o;
5134 }
5135 }
5136
5137 this->map();
5138 }
5139
5140 // Resize the output file.
5141
5142 void
5143 Output_file::resize(off_t file_size)
5144 {
5145 // If the mmap is mapping an anonymous memory buffer, this is easy:
5146 // just mremap to the new size. If it's mapping to a file, we want
5147 // to unmap to flush to the file, then remap after growing the file.
5148 if (this->map_is_anonymous_)
5149 {
5150 void* base;
5151 if (!this->map_is_allocated_)
5152 {
5153 base = ::mremap(this->base_, this->file_size_, file_size,
5154 MREMAP_MAYMOVE);
5155 if (base == MAP_FAILED)
5156 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5157 }
5158 else
5159 {
5160 base = realloc(this->base_, file_size);
5161 if (base == NULL)
5162 gold_nomem();
5163 if (file_size > this->file_size_)
5164 memset(static_cast<char*>(base) + this->file_size_, 0,
5165 file_size - this->file_size_);
5166 }
5167 this->base_ = static_cast<unsigned char*>(base);
5168 this->file_size_ = file_size;
5169 }
5170 else
5171 {
5172 this->unmap();
5173 this->file_size_ = file_size;
5174 if (!this->map_no_anonymous(true))
5175 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5176 }
5177 }
5178
5179 // Map an anonymous block of memory which will later be written to the
5180 // file. Return whether the map succeeded.
5181
5182 bool
5183 Output_file::map_anonymous()
5184 {
5185 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5186 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5187 if (base == MAP_FAILED)
5188 {
5189 base = malloc(this->file_size_);
5190 if (base == NULL)
5191 return false;
5192 memset(base, 0, this->file_size_);
5193 this->map_is_allocated_ = true;
5194 }
5195 this->base_ = static_cast<unsigned char*>(base);
5196 this->map_is_anonymous_ = true;
5197 return true;
5198 }
5199
5200 // Map the file into memory. Return whether the mapping succeeded.
5201 // If WRITABLE is true, map with write access.
5202
5203 bool
5204 Output_file::map_no_anonymous(bool writable)
5205 {
5206 const int o = this->o_;
5207
5208 // If the output file is not a regular file, don't try to mmap it;
5209 // instead, we'll mmap a block of memory (an anonymous buffer), and
5210 // then later write the buffer to the file.
5211 void* base;
5212 struct stat statbuf;
5213 if (o == STDOUT_FILENO || o == STDERR_FILENO
5214 || ::fstat(o, &statbuf) != 0
5215 || !S_ISREG(statbuf.st_mode)
5216 || this->is_temporary_)
5217 return false;
5218
5219 // Ensure that we have disk space available for the file. If we
5220 // don't do this, it is possible that we will call munmap, close,
5221 // and exit with dirty buffers still in the cache with no assigned
5222 // disk blocks. If the disk is out of space at that point, the
5223 // output file will wind up incomplete, but we will have already
5224 // exited. The alternative to fallocate would be to use fdatasync,
5225 // but that would be a more significant performance hit.
5226 if (writable)
5227 {
5228 int err = gold_fallocate(o, 0, this->file_size_);
5229 if (err != 0)
5230 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5231 }
5232
5233 // Map the file into memory.
5234 int prot = PROT_READ;
5235 if (writable)
5236 prot |= PROT_WRITE;
5237 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5238
5239 // The mmap call might fail because of file system issues: the file
5240 // system might not support mmap at all, or it might not support
5241 // mmap with PROT_WRITE.
5242 if (base == MAP_FAILED)
5243 return false;
5244
5245 this->map_is_anonymous_ = false;
5246 this->base_ = static_cast<unsigned char*>(base);
5247 return true;
5248 }
5249
5250 // Map the file into memory.
5251
5252 void
5253 Output_file::map()
5254 {
5255 if (parameters->options().mmap_output_file()
5256 && this->map_no_anonymous(true))
5257 return;
5258
5259 // The mmap call might fail because of file system issues: the file
5260 // system might not support mmap at all, or it might not support
5261 // mmap with PROT_WRITE. I'm not sure which errno values we will
5262 // see in all cases, so if the mmap fails for any reason and we
5263 // don't care about file contents, try for an anonymous map.
5264 if (this->map_anonymous())
5265 return;
5266
5267 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5268 this->name_, static_cast<unsigned long>(this->file_size_),
5269 strerror(errno));
5270 }
5271
5272 // Unmap the file from memory.
5273
5274 void
5275 Output_file::unmap()
5276 {
5277 if (this->map_is_anonymous_)
5278 {
5279 // We've already written out the data, so there is no reason to
5280 // waste time unmapping or freeing the memory.
5281 }
5282 else
5283 {
5284 if (::munmap(this->base_, this->file_size_) < 0)
5285 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5286 }
5287 this->base_ = NULL;
5288 }
5289
5290 // Close the output file.
5291
5292 void
5293 Output_file::close()
5294 {
5295 // If the map isn't file-backed, we need to write it now.
5296 if (this->map_is_anonymous_ && !this->is_temporary_)
5297 {
5298 size_t bytes_to_write = this->file_size_;
5299 size_t offset = 0;
5300 while (bytes_to_write > 0)
5301 {
5302 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5303 bytes_to_write);
5304 if (bytes_written == 0)
5305 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5306 else if (bytes_written < 0)
5307 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5308 else
5309 {
5310 bytes_to_write -= bytes_written;
5311 offset += bytes_written;
5312 }
5313 }
5314 }
5315 this->unmap();
5316
5317 // We don't close stdout or stderr
5318 if (this->o_ != STDOUT_FILENO
5319 && this->o_ != STDERR_FILENO
5320 && !this->is_temporary_)
5321 if (::close(this->o_) < 0)
5322 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5323 this->o_ = -1;
5324 }
5325
5326 // Instantiate the templates we need. We could use the configure
5327 // script to restrict this to only the ones for implemented targets.
5328
5329 #ifdef HAVE_TARGET_32_LITTLE
5330 template
5331 off_t
5332 Output_section::add_input_section<32, false>(
5333 Layout* layout,
5334 Sized_relobj_file<32, false>* object,
5335 unsigned int shndx,
5336 const char* secname,
5337 const elfcpp::Shdr<32, false>& shdr,
5338 unsigned int reloc_shndx,
5339 bool have_sections_script);
5340 #endif
5341
5342 #ifdef HAVE_TARGET_32_BIG
5343 template
5344 off_t
5345 Output_section::add_input_section<32, true>(
5346 Layout* layout,
5347 Sized_relobj_file<32, true>* object,
5348 unsigned int shndx,
5349 const char* secname,
5350 const elfcpp::Shdr<32, true>& shdr,
5351 unsigned int reloc_shndx,
5352 bool have_sections_script);
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_LITTLE
5356 template
5357 off_t
5358 Output_section::add_input_section<64, false>(
5359 Layout* layout,
5360 Sized_relobj_file<64, false>* object,
5361 unsigned int shndx,
5362 const char* secname,
5363 const elfcpp::Shdr<64, false>& shdr,
5364 unsigned int reloc_shndx,
5365 bool have_sections_script);
5366 #endif
5367
5368 #ifdef HAVE_TARGET_64_BIG
5369 template
5370 off_t
5371 Output_section::add_input_section<64, true>(
5372 Layout* layout,
5373 Sized_relobj_file<64, true>* object,
5374 unsigned int shndx,
5375 const char* secname,
5376 const elfcpp::Shdr<64, true>& shdr,
5377 unsigned int reloc_shndx,
5378 bool have_sections_script);
5379 #endif
5380
5381 #ifdef HAVE_TARGET_32_LITTLE
5382 template
5383 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_32_BIG
5387 template
5388 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_64_LITTLE
5392 template
5393 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_64_BIG
5397 template
5398 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_32_LITTLE
5402 template
5403 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_32_BIG
5407 template
5408 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_64_LITTLE
5412 template
5413 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_64_BIG
5417 template
5418 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_32_LITTLE
5422 template
5423 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_32_BIG
5427 template
5428 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_64_LITTLE
5432 template
5433 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_64_BIG
5437 template
5438 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_32_LITTLE
5442 template
5443 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_32_BIG
5447 template
5448 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_64_LITTLE
5452 template
5453 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_64_BIG
5457 template
5458 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_32_LITTLE
5462 template
5463 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_32_BIG
5467 template
5468 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5469 #endif
5470
5471 #ifdef HAVE_TARGET_64_LITTLE
5472 template
5473 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5474 #endif
5475
5476 #ifdef HAVE_TARGET_64_BIG
5477 template
5478 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5479 #endif
5480
5481 #ifdef HAVE_TARGET_32_LITTLE
5482 template
5483 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5484 #endif
5485
5486 #ifdef HAVE_TARGET_32_BIG
5487 template
5488 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5489 #endif
5490
5491 #ifdef HAVE_TARGET_64_LITTLE
5492 template
5493 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5494 #endif
5495
5496 #ifdef HAVE_TARGET_64_BIG
5497 template
5498 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5499 #endif
5500
5501 #ifdef HAVE_TARGET_32_LITTLE
5502 template
5503 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5504 #endif
5505
5506 #ifdef HAVE_TARGET_32_BIG
5507 template
5508 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5509 #endif
5510
5511 #ifdef HAVE_TARGET_64_LITTLE
5512 template
5513 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5514 #endif
5515
5516 #ifdef HAVE_TARGET_64_BIG
5517 template
5518 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5519 #endif
5520
5521 #ifdef HAVE_TARGET_32_LITTLE
5522 template
5523 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5524 #endif
5525
5526 #ifdef HAVE_TARGET_32_BIG
5527 template
5528 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5529 #endif
5530
5531 #ifdef HAVE_TARGET_64_LITTLE
5532 template
5533 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5534 #endif
5535
5536 #ifdef HAVE_TARGET_64_BIG
5537 template
5538 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5539 #endif
5540
5541 #ifdef HAVE_TARGET_32_LITTLE
5542 template
5543 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5544 #endif
5545
5546 #ifdef HAVE_TARGET_32_BIG
5547 template
5548 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5549 #endif
5550
5551 #ifdef HAVE_TARGET_64_LITTLE
5552 template
5553 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5554 #endif
5555
5556 #ifdef HAVE_TARGET_64_BIG
5557 template
5558 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5559 #endif
5560
5561 #ifdef HAVE_TARGET_32_LITTLE
5562 template
5563 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5564 #endif
5565
5566 #ifdef HAVE_TARGET_32_BIG
5567 template
5568 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5569 #endif
5570
5571 #ifdef HAVE_TARGET_64_LITTLE
5572 template
5573 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5574 #endif
5575
5576 #ifdef HAVE_TARGET_64_BIG
5577 template
5578 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5579 #endif
5580
5581 #ifdef HAVE_TARGET_32_LITTLE
5582 template
5583 class Output_data_group<32, false>;
5584 #endif
5585
5586 #ifdef HAVE_TARGET_32_BIG
5587 template
5588 class Output_data_group<32, true>;
5589 #endif
5590
5591 #ifdef HAVE_TARGET_64_LITTLE
5592 template
5593 class Output_data_group<64, false>;
5594 #endif
5595
5596 #ifdef HAVE_TARGET_64_BIG
5597 template
5598 class Output_data_group<64, true>;
5599 #endif
5600
5601 template
5602 class Output_data_got<32, false>;
5603
5604 template
5605 class Output_data_got<32, true>;
5606
5607 template
5608 class Output_data_got<64, false>;
5609
5610 template
5611 class Output_data_got<64, true>;
5612
5613 } // End namespace gold.
This page took 0.22899 seconds and 5 git commands to generate.