2010-08-03 Ian Lance Taylor <iant@google.com>
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Return the object for an input section.
1753
1754 Relobj*
1755 Output_section::Input_section::relobj() const
1756 {
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768 }
1769
1770 // Return the input section index for an input section.
1771
1772 unsigned int
1773 Output_section::Input_section::shndx() const
1774 {
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786 }
1787
1788 // Set the address and file offset.
1789
1790 void
1791 Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
1795 {
1796 if (this->is_input_section())
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
1799 else
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801 }
1802
1803 // Reset the address and file offset.
1804
1805 void
1806 Output_section::Input_section::reset_address_and_file_offset()
1807 {
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810 }
1811
1812 // Finalize the data size.
1813
1814 void
1815 Output_section::Input_section::finalize_data_size()
1816 {
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
1819 }
1820
1821 // Try to turn an input offset into an output offset. We want to
1822 // return the output offset relative to the start of this
1823 // Input_section in the output section.
1824
1825 inline bool
1826 Output_section::Input_section::output_offset(
1827 const Relobj* object,
1828 unsigned int shndx,
1829 section_offset_type offset,
1830 section_offset_type *poutput) const
1831 {
1832 if (!this->is_input_section())
1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1834 else
1835 {
1836 if (this->shndx_ != shndx || this->u2_.object != object)
1837 return false;
1838 *poutput = offset;
1839 return true;
1840 }
1841 }
1842
1843 // Return whether this is the merge section for the input section
1844 // SHNDX in OBJECT.
1845
1846 inline bool
1847 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1848 unsigned int shndx) const
1849 {
1850 if (this->is_input_section())
1851 return false;
1852 return this->u2_.posd->is_merge_section_for(object, shndx);
1853 }
1854
1855 // Write out the data. We don't have to do anything for an input
1856 // section--they are handled via Object::relocate--but this is where
1857 // we write out the data for an Output_section_data.
1858
1859 void
1860 Output_section::Input_section::write(Output_file* of)
1861 {
1862 if (!this->is_input_section())
1863 this->u2_.posd->write(of);
1864 }
1865
1866 // Write the data to a buffer. As for write(), we don't have to do
1867 // anything for an input section.
1868
1869 void
1870 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871 {
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874 }
1875
1876 // Print to a map file.
1877
1878 void
1879 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880 {
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901 }
1902
1903 // Output_section methods.
1904
1905 // Construct an Output_section. NAME will point into a Stringpool.
1906
1907 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
1910 addralign_(0),
1911 entsize_(0),
1912 load_address_(0),
1913 link_section_(NULL),
1914 link_(0),
1915 info_section_(NULL),
1916 info_symndx_(NULL),
1917 info_(0),
1918 type_(type),
1919 flags_(flags),
1920 order_(ORDER_INVALID),
1921 out_shndx_(-1U),
1922 symtab_index_(0),
1923 dynsym_index_(0),
1924 input_sections_(),
1925 first_input_offset_(0),
1926 fills_(),
1927 postprocessing_buffer_(NULL),
1928 needs_symtab_index_(false),
1929 needs_dynsym_index_(false),
1930 should_link_to_symtab_(false),
1931 should_link_to_dynsym_(false),
1932 after_input_sections_(false),
1933 requires_postprocessing_(false),
1934 found_in_sections_clause_(false),
1935 has_load_address_(false),
1936 info_uses_section_index_(false),
1937 input_section_order_specified_(false),
1938 may_sort_attached_input_sections_(false),
1939 must_sort_attached_input_sections_(false),
1940 attached_input_sections_are_sorted_(false),
1941 is_relro_(false),
1942 is_small_section_(false),
1943 is_large_section_(false),
1944 generate_code_fills_at_write_(false),
1945 is_entsize_zero_(false),
1946 section_offsets_need_adjustment_(false),
1947 is_noload_(false),
1948 always_keeps_input_sections_(false),
1949 tls_offset_(0),
1950 checkpoint_(NULL),
1951 lookup_maps_(new Output_section_lookup_maps)
1952 {
1953 // An unallocated section has no address. Forcing this means that
1954 // we don't need special treatment for symbols defined in debug
1955 // sections.
1956 if ((flags & elfcpp::SHF_ALLOC) == 0)
1957 this->set_address(0);
1958 }
1959
1960 Output_section::~Output_section()
1961 {
1962 delete this->checkpoint_;
1963 }
1964
1965 // Set the entry size.
1966
1967 void
1968 Output_section::set_entsize(uint64_t v)
1969 {
1970 if (this->is_entsize_zero_)
1971 ;
1972 else if (this->entsize_ == 0)
1973 this->entsize_ = v;
1974 else if (this->entsize_ != v)
1975 {
1976 this->entsize_ = 0;
1977 this->is_entsize_zero_ = 1;
1978 }
1979 }
1980
1981 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1982 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1983 // relocation section which applies to this section, or 0 if none, or
1984 // -1U if more than one. Return the offset of the input section
1985 // within the output section. Return -1 if the input section will
1986 // receive special handling. In the normal case we don't always keep
1987 // track of input sections for an Output_section. Instead, each
1988 // Object keeps track of the Output_section for each of its input
1989 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1990 // track of input sections here; this is used when SECTIONS appears in
1991 // a linker script.
1992
1993 template<int size, bool big_endian>
1994 off_t
1995 Output_section::add_input_section(Layout* layout,
1996 Sized_relobj<size, big_endian>* object,
1997 unsigned int shndx,
1998 const char* secname,
1999 const elfcpp::Shdr<size, big_endian>& shdr,
2000 unsigned int reloc_shndx,
2001 bool have_sections_script)
2002 {
2003 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2004 if ((addralign & (addralign - 1)) != 0)
2005 {
2006 object->error(_("invalid alignment %lu for section \"%s\""),
2007 static_cast<unsigned long>(addralign), secname);
2008 addralign = 1;
2009 }
2010
2011 if (addralign > this->addralign_)
2012 this->addralign_ = addralign;
2013
2014 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2015 uint64_t entsize = shdr.get_sh_entsize();
2016
2017 // .debug_str is a mergeable string section, but is not always so
2018 // marked by compilers. Mark manually here so we can optimize.
2019 if (strcmp(secname, ".debug_str") == 0)
2020 {
2021 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2022 entsize = 1;
2023 }
2024
2025 this->update_flags_for_input_section(sh_flags);
2026 this->set_entsize(entsize);
2027
2028 // If this is a SHF_MERGE section, we pass all the input sections to
2029 // a Output_data_merge. We don't try to handle relocations for such
2030 // a section. We don't try to handle empty merge sections--they
2031 // mess up the mappings, and are useless anyhow.
2032 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2033 && reloc_shndx == 0
2034 && shdr.get_sh_size() > 0)
2035 {
2036 // Keep information about merged input sections for rebuilding fast
2037 // lookup maps if we have sections-script or we do relaxation.
2038 bool keeps_input_sections = (this->always_keeps_input_sections_
2039 || have_sections_script
2040 || parameters->target().may_relax());
2041
2042 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2043 addralign, keeps_input_sections))
2044 {
2045 // Tell the relocation routines that they need to call the
2046 // output_offset method to determine the final address.
2047 return -1;
2048 }
2049 }
2050
2051 off_t offset_in_section = this->current_data_size_for_child();
2052 off_t aligned_offset_in_section = align_address(offset_in_section,
2053 addralign);
2054
2055 // Determine if we want to delay code-fill generation until the output
2056 // section is written. When the target is relaxing, we want to delay fill
2057 // generating to avoid adjusting them during relaxation.
2058 if (!this->generate_code_fills_at_write_
2059 && !have_sections_script
2060 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2061 && parameters->target().has_code_fill()
2062 && parameters->target().may_relax())
2063 {
2064 gold_assert(this->fills_.empty());
2065 this->generate_code_fills_at_write_ = true;
2066 }
2067
2068 if (aligned_offset_in_section > offset_in_section
2069 && !this->generate_code_fills_at_write_
2070 && !have_sections_script
2071 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2072 && parameters->target().has_code_fill())
2073 {
2074 // We need to add some fill data. Using fill_list_ when
2075 // possible is an optimization, since we will often have fill
2076 // sections without input sections.
2077 off_t fill_len = aligned_offset_in_section - offset_in_section;
2078 if (this->input_sections_.empty())
2079 this->fills_.push_back(Fill(offset_in_section, fill_len));
2080 else
2081 {
2082 std::string fill_data(parameters->target().code_fill(fill_len));
2083 Output_data_const* odc = new Output_data_const(fill_data, 1);
2084 this->input_sections_.push_back(Input_section(odc));
2085 }
2086 }
2087
2088 section_size_type input_section_size = shdr.get_sh_size();
2089 section_size_type uncompressed_size;
2090 if (object->section_is_compressed(shndx, &uncompressed_size))
2091 input_section_size = uncompressed_size;
2092
2093 this->set_current_data_size_for_child(aligned_offset_in_section
2094 + input_section_size);
2095
2096 // We need to keep track of this section if we are already keeping
2097 // track of sections, or if we are relaxing. Also, if this is a
2098 // section which requires sorting, or which may require sorting in
2099 // the future, we keep track of the sections. If the
2100 // --section-ordering-file option is used to specify the order of
2101 // sections, we need to keep track of sections.
2102 if (this->always_keeps_input_sections_
2103 || have_sections_script
2104 || !this->input_sections_.empty()
2105 || this->may_sort_attached_input_sections()
2106 || this->must_sort_attached_input_sections()
2107 || parameters->options().user_set_Map()
2108 || parameters->target().may_relax()
2109 || parameters->options().section_ordering_file())
2110 {
2111 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2112 if (parameters->options().section_ordering_file())
2113 {
2114 unsigned int section_order_index =
2115 layout->find_section_order_index(std::string(secname));
2116 if (section_order_index != 0)
2117 {
2118 isecn.set_section_order_index(section_order_index);
2119 this->set_input_section_order_specified();
2120 }
2121 }
2122 this->input_sections_.push_back(isecn);
2123 }
2124
2125 return aligned_offset_in_section;
2126 }
2127
2128 // Add arbitrary data to an output section.
2129
2130 void
2131 Output_section::add_output_section_data(Output_section_data* posd)
2132 {
2133 Input_section inp(posd);
2134 this->add_output_section_data(&inp);
2135
2136 if (posd->is_data_size_valid())
2137 {
2138 off_t offset_in_section = this->current_data_size_for_child();
2139 off_t aligned_offset_in_section = align_address(offset_in_section,
2140 posd->addralign());
2141 this->set_current_data_size_for_child(aligned_offset_in_section
2142 + posd->data_size());
2143 }
2144 }
2145
2146 // Add a relaxed input section.
2147
2148 void
2149 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2150 {
2151 Input_section inp(poris);
2152 this->add_output_section_data(&inp);
2153 if (this->lookup_maps_->is_valid())
2154 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2155 poris->shndx(), poris);
2156
2157 // For a relaxed section, we use the current data size. Linker scripts
2158 // get all the input sections, including relaxed one from an output
2159 // section and add them back to them same output section to compute the
2160 // output section size. If we do not account for sizes of relaxed input
2161 // sections, an output section would be incorrectly sized.
2162 off_t offset_in_section = this->current_data_size_for_child();
2163 off_t aligned_offset_in_section = align_address(offset_in_section,
2164 poris->addralign());
2165 this->set_current_data_size_for_child(aligned_offset_in_section
2166 + poris->current_data_size());
2167 }
2168
2169 // Add arbitrary data to an output section by Input_section.
2170
2171 void
2172 Output_section::add_output_section_data(Input_section* inp)
2173 {
2174 if (this->input_sections_.empty())
2175 this->first_input_offset_ = this->current_data_size_for_child();
2176
2177 this->input_sections_.push_back(*inp);
2178
2179 uint64_t addralign = inp->addralign();
2180 if (addralign > this->addralign_)
2181 this->addralign_ = addralign;
2182
2183 inp->set_output_section(this);
2184 }
2185
2186 // Add a merge section to an output section.
2187
2188 void
2189 Output_section::add_output_merge_section(Output_section_data* posd,
2190 bool is_string, uint64_t entsize)
2191 {
2192 Input_section inp(posd, is_string, entsize);
2193 this->add_output_section_data(&inp);
2194 }
2195
2196 // Add an input section to a SHF_MERGE section.
2197
2198 bool
2199 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2200 uint64_t flags, uint64_t entsize,
2201 uint64_t addralign,
2202 bool keeps_input_sections)
2203 {
2204 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2205
2206 // We only merge strings if the alignment is not more than the
2207 // character size. This could be handled, but it's unusual.
2208 if (is_string && addralign > entsize)
2209 return false;
2210
2211 // We cannot restore merged input section states.
2212 gold_assert(this->checkpoint_ == NULL);
2213
2214 // Look up merge sections by required properties.
2215 // Currently, we only invalidate the lookup maps in script processing
2216 // and relaxation. We should not have done either when we reach here.
2217 // So we assume that the lookup maps are valid to simply code.
2218 gold_assert(this->lookup_maps_->is_valid());
2219 Merge_section_properties msp(is_string, entsize, addralign);
2220 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2221 bool is_new = false;
2222 if (pomb != NULL)
2223 {
2224 gold_assert(pomb->is_string() == is_string
2225 && pomb->entsize() == entsize
2226 && pomb->addralign() == addralign);
2227 }
2228 else
2229 {
2230 // Create a new Output_merge_data or Output_merge_string_data.
2231 if (!is_string)
2232 pomb = new Output_merge_data(entsize, addralign);
2233 else
2234 {
2235 switch (entsize)
2236 {
2237 case 1:
2238 pomb = new Output_merge_string<char>(addralign);
2239 break;
2240 case 2:
2241 pomb = new Output_merge_string<uint16_t>(addralign);
2242 break;
2243 case 4:
2244 pomb = new Output_merge_string<uint32_t>(addralign);
2245 break;
2246 default:
2247 return false;
2248 }
2249 }
2250 // If we need to do script processing or relaxation, we need to keep
2251 // the original input sections to rebuild the fast lookup maps.
2252 if (keeps_input_sections)
2253 pomb->set_keeps_input_sections();
2254 is_new = true;
2255 }
2256
2257 if (pomb->add_input_section(object, shndx))
2258 {
2259 // Add new merge section to this output section and link merge
2260 // section properties to new merge section in map.
2261 if (is_new)
2262 {
2263 this->add_output_merge_section(pomb, is_string, entsize);
2264 this->lookup_maps_->add_merge_section(msp, pomb);
2265 }
2266
2267 // Add input section to new merge section and link input section to new
2268 // merge section in map.
2269 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2270 return true;
2271 }
2272 else
2273 {
2274 // If add_input_section failed, delete new merge section to avoid
2275 // exporting empty merge sections in Output_section::get_input_section.
2276 if (is_new)
2277 delete pomb;
2278 return false;
2279 }
2280 }
2281
2282 // Build a relaxation map to speed up relaxation of existing input sections.
2283 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2284
2285 void
2286 Output_section::build_relaxation_map(
2287 const Input_section_list& input_sections,
2288 size_t limit,
2289 Relaxation_map* relaxation_map) const
2290 {
2291 for (size_t i = 0; i < limit; ++i)
2292 {
2293 const Input_section& is(input_sections[i]);
2294 if (is.is_input_section() || is.is_relaxed_input_section())
2295 {
2296 Section_id sid(is.relobj(), is.shndx());
2297 (*relaxation_map)[sid] = i;
2298 }
2299 }
2300 }
2301
2302 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2303 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2304 // indices of INPUT_SECTIONS.
2305
2306 void
2307 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2308 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2309 const Relaxation_map& map,
2310 Input_section_list* input_sections)
2311 {
2312 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2313 {
2314 Output_relaxed_input_section* poris = relaxed_sections[i];
2315 Section_id sid(poris->relobj(), poris->shndx());
2316 Relaxation_map::const_iterator p = map.find(sid);
2317 gold_assert(p != map.end());
2318 gold_assert((*input_sections)[p->second].is_input_section());
2319 (*input_sections)[p->second] = Input_section(poris);
2320 }
2321 }
2322
2323 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2324 // is a vector of pointers to Output_relaxed_input_section or its derived
2325 // classes. The relaxed sections must correspond to existing input sections.
2326
2327 void
2328 Output_section::convert_input_sections_to_relaxed_sections(
2329 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2330 {
2331 gold_assert(parameters->target().may_relax());
2332
2333 // We want to make sure that restore_states does not undo the effect of
2334 // this. If there is no checkpoint active, just search the current
2335 // input section list and replace the sections there. If there is
2336 // a checkpoint, also replace the sections there.
2337
2338 // By default, we look at the whole list.
2339 size_t limit = this->input_sections_.size();
2340
2341 if (this->checkpoint_ != NULL)
2342 {
2343 // Replace input sections with relaxed input section in the saved
2344 // copy of the input section list.
2345 if (this->checkpoint_->input_sections_saved())
2346 {
2347 Relaxation_map map;
2348 this->build_relaxation_map(
2349 *(this->checkpoint_->input_sections()),
2350 this->checkpoint_->input_sections()->size(),
2351 &map);
2352 this->convert_input_sections_in_list_to_relaxed_sections(
2353 relaxed_sections,
2354 map,
2355 this->checkpoint_->input_sections());
2356 }
2357 else
2358 {
2359 // We have not copied the input section list yet. Instead, just
2360 // look at the portion that would be saved.
2361 limit = this->checkpoint_->input_sections_size();
2362 }
2363 }
2364
2365 // Convert input sections in input_section_list.
2366 Relaxation_map map;
2367 this->build_relaxation_map(this->input_sections_, limit, &map);
2368 this->convert_input_sections_in_list_to_relaxed_sections(
2369 relaxed_sections,
2370 map,
2371 &this->input_sections_);
2372
2373 // Update fast look-up map.
2374 if (this->lookup_maps_->is_valid())
2375 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2376 {
2377 Output_relaxed_input_section* poris = relaxed_sections[i];
2378 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2379 poris->shndx(), poris);
2380 }
2381 }
2382
2383 // Update the output section flags based on input section flags.
2384
2385 void
2386 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2387 {
2388 // If we created the section with SHF_ALLOC clear, we set the
2389 // address. If we are now setting the SHF_ALLOC flag, we need to
2390 // undo that.
2391 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2392 && (flags & elfcpp::SHF_ALLOC) != 0)
2393 this->mark_address_invalid();
2394
2395 this->flags_ |= (flags
2396 & (elfcpp::SHF_WRITE
2397 | elfcpp::SHF_ALLOC
2398 | elfcpp::SHF_EXECINSTR));
2399
2400 if ((flags & elfcpp::SHF_MERGE) == 0)
2401 this->flags_ &=~ elfcpp::SHF_MERGE;
2402 else
2403 {
2404 if (this->current_data_size_for_child() == 0)
2405 this->flags_ |= elfcpp::SHF_MERGE;
2406 }
2407
2408 if ((flags & elfcpp::SHF_STRINGS) == 0)
2409 this->flags_ &=~ elfcpp::SHF_STRINGS;
2410 else
2411 {
2412 if (this->current_data_size_for_child() == 0)
2413 this->flags_ |= elfcpp::SHF_STRINGS;
2414 }
2415 }
2416
2417 // Find the merge section into which an input section with index SHNDX in
2418 // OBJECT has been added. Return NULL if none found.
2419
2420 Output_section_data*
2421 Output_section::find_merge_section(const Relobj* object,
2422 unsigned int shndx) const
2423 {
2424 if (!this->lookup_maps_->is_valid())
2425 this->build_lookup_maps();
2426 return this->lookup_maps_->find_merge_section(object, shndx);
2427 }
2428
2429 // Build the lookup maps for merge and relaxed sections. This is needs
2430 // to be declared as a const methods so that it is callable with a const
2431 // Output_section pointer. The method only updates states of the maps.
2432
2433 void
2434 Output_section::build_lookup_maps() const
2435 {
2436 this->lookup_maps_->clear();
2437 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2438 p != this->input_sections_.end();
2439 ++p)
2440 {
2441 if (p->is_merge_section())
2442 {
2443 Output_merge_base* pomb = p->output_merge_base();
2444 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2445 pomb->addralign());
2446 this->lookup_maps_->add_merge_section(msp, pomb);
2447 for (Output_merge_base::Input_sections::const_iterator is =
2448 pomb->input_sections_begin();
2449 is != pomb->input_sections_end();
2450 ++is)
2451 {
2452 const Const_section_id& csid = *is;
2453 this->lookup_maps_->add_merge_input_section(csid.first,
2454 csid.second, pomb);
2455 }
2456
2457 }
2458 else if (p->is_relaxed_input_section())
2459 {
2460 Output_relaxed_input_section* poris = p->relaxed_input_section();
2461 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2462 poris->shndx(), poris);
2463 }
2464 }
2465 }
2466
2467 // Find an relaxed input section corresponding to an input section
2468 // in OBJECT with index SHNDX.
2469
2470 const Output_relaxed_input_section*
2471 Output_section::find_relaxed_input_section(const Relobj* object,
2472 unsigned int shndx) const
2473 {
2474 if (!this->lookup_maps_->is_valid())
2475 this->build_lookup_maps();
2476 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2477 }
2478
2479 // Given an address OFFSET relative to the start of input section
2480 // SHNDX in OBJECT, return whether this address is being included in
2481 // the final link. This should only be called if SHNDX in OBJECT has
2482 // a special mapping.
2483
2484 bool
2485 Output_section::is_input_address_mapped(const Relobj* object,
2486 unsigned int shndx,
2487 off_t offset) const
2488 {
2489 // Look at the Output_section_data_maps first.
2490 const Output_section_data* posd = this->find_merge_section(object, shndx);
2491 if (posd == NULL)
2492 posd = this->find_relaxed_input_section(object, shndx);
2493
2494 if (posd != NULL)
2495 {
2496 section_offset_type output_offset;
2497 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2498 gold_assert(found);
2499 return output_offset != -1;
2500 }
2501
2502 // Fall back to the slow look-up.
2503 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2504 p != this->input_sections_.end();
2505 ++p)
2506 {
2507 section_offset_type output_offset;
2508 if (p->output_offset(object, shndx, offset, &output_offset))
2509 return output_offset != -1;
2510 }
2511
2512 // By default we assume that the address is mapped. This should
2513 // only be called after we have passed all sections to Layout. At
2514 // that point we should know what we are discarding.
2515 return true;
2516 }
2517
2518 // Given an address OFFSET relative to the start of input section
2519 // SHNDX in object OBJECT, return the output offset relative to the
2520 // start of the input section in the output section. This should only
2521 // be called if SHNDX in OBJECT has a special mapping.
2522
2523 section_offset_type
2524 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2525 section_offset_type offset) const
2526 {
2527 // This can only be called meaningfully when we know the data size
2528 // of this.
2529 gold_assert(this->is_data_size_valid());
2530
2531 // Look at the Output_section_data_maps first.
2532 const Output_section_data* posd = this->find_merge_section(object, shndx);
2533 if (posd == NULL)
2534 posd = this->find_relaxed_input_section(object, shndx);
2535 if (posd != NULL)
2536 {
2537 section_offset_type output_offset;
2538 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2539 gold_assert(found);
2540 return output_offset;
2541 }
2542
2543 // Fall back to the slow look-up.
2544 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2545 p != this->input_sections_.end();
2546 ++p)
2547 {
2548 section_offset_type output_offset;
2549 if (p->output_offset(object, shndx, offset, &output_offset))
2550 return output_offset;
2551 }
2552 gold_unreachable();
2553 }
2554
2555 // Return the output virtual address of OFFSET relative to the start
2556 // of input section SHNDX in object OBJECT.
2557
2558 uint64_t
2559 Output_section::output_address(const Relobj* object, unsigned int shndx,
2560 off_t offset) const
2561 {
2562 uint64_t addr = this->address() + this->first_input_offset_;
2563
2564 // Look at the Output_section_data_maps first.
2565 const Output_section_data* posd = this->find_merge_section(object, shndx);
2566 if (posd == NULL)
2567 posd = this->find_relaxed_input_section(object, shndx);
2568 if (posd != NULL && posd->is_address_valid())
2569 {
2570 section_offset_type output_offset;
2571 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2572 gold_assert(found);
2573 return posd->address() + output_offset;
2574 }
2575
2576 // Fall back to the slow look-up.
2577 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2578 p != this->input_sections_.end();
2579 ++p)
2580 {
2581 addr = align_address(addr, p->addralign());
2582 section_offset_type output_offset;
2583 if (p->output_offset(object, shndx, offset, &output_offset))
2584 {
2585 if (output_offset == -1)
2586 return -1ULL;
2587 return addr + output_offset;
2588 }
2589 addr += p->data_size();
2590 }
2591
2592 // If we get here, it means that we don't know the mapping for this
2593 // input section. This might happen in principle if
2594 // add_input_section were called before add_output_section_data.
2595 // But it should never actually happen.
2596
2597 gold_unreachable();
2598 }
2599
2600 // Find the output address of the start of the merged section for
2601 // input section SHNDX in object OBJECT.
2602
2603 bool
2604 Output_section::find_starting_output_address(const Relobj* object,
2605 unsigned int shndx,
2606 uint64_t* paddr) const
2607 {
2608 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2609 // Looking up the merge section map does not always work as we sometimes
2610 // find a merge section without its address set.
2611 uint64_t addr = this->address() + this->first_input_offset_;
2612 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2613 p != this->input_sections_.end();
2614 ++p)
2615 {
2616 addr = align_address(addr, p->addralign());
2617
2618 // It would be nice if we could use the existing output_offset
2619 // method to get the output offset of input offset 0.
2620 // Unfortunately we don't know for sure that input offset 0 is
2621 // mapped at all.
2622 if (p->is_merge_section_for(object, shndx))
2623 {
2624 *paddr = addr;
2625 return true;
2626 }
2627
2628 addr += p->data_size();
2629 }
2630
2631 // We couldn't find a merge output section for this input section.
2632 return false;
2633 }
2634
2635 // Set the data size of an Output_section. This is where we handle
2636 // setting the addresses of any Output_section_data objects.
2637
2638 void
2639 Output_section::set_final_data_size()
2640 {
2641 if (this->input_sections_.empty())
2642 {
2643 this->set_data_size(this->current_data_size_for_child());
2644 return;
2645 }
2646
2647 if (this->must_sort_attached_input_sections()
2648 || this->input_section_order_specified())
2649 this->sort_attached_input_sections();
2650
2651 uint64_t address = this->address();
2652 off_t startoff = this->offset();
2653 off_t off = startoff + this->first_input_offset_;
2654 for (Input_section_list::iterator p = this->input_sections_.begin();
2655 p != this->input_sections_.end();
2656 ++p)
2657 {
2658 off = align_address(off, p->addralign());
2659 p->set_address_and_file_offset(address + (off - startoff), off,
2660 startoff);
2661 off += p->data_size();
2662 }
2663
2664 this->set_data_size(off - startoff);
2665 }
2666
2667 // Reset the address and file offset.
2668
2669 void
2670 Output_section::do_reset_address_and_file_offset()
2671 {
2672 // An unallocated section has no address. Forcing this means that
2673 // we don't need special treatment for symbols defined in debug
2674 // sections. We do the same in the constructor. This does not
2675 // apply to NOLOAD sections though.
2676 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2677 this->set_address(0);
2678
2679 for (Input_section_list::iterator p = this->input_sections_.begin();
2680 p != this->input_sections_.end();
2681 ++p)
2682 p->reset_address_and_file_offset();
2683 }
2684
2685 // Return true if address and file offset have the values after reset.
2686
2687 bool
2688 Output_section::do_address_and_file_offset_have_reset_values() const
2689 {
2690 if (this->is_offset_valid())
2691 return false;
2692
2693 // An unallocated section has address 0 after its construction or a reset.
2694 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2695 return this->is_address_valid() && this->address() == 0;
2696 else
2697 return !this->is_address_valid();
2698 }
2699
2700 // Set the TLS offset. Called only for SHT_TLS sections.
2701
2702 void
2703 Output_section::do_set_tls_offset(uint64_t tls_base)
2704 {
2705 this->tls_offset_ = this->address() - tls_base;
2706 }
2707
2708 // In a few cases we need to sort the input sections attached to an
2709 // output section. This is used to implement the type of constructor
2710 // priority ordering implemented by the GNU linker, in which the
2711 // priority becomes part of the section name and the sections are
2712 // sorted by name. We only do this for an output section if we see an
2713 // attached input section matching ".ctor.*", ".dtor.*",
2714 // ".init_array.*" or ".fini_array.*".
2715
2716 class Output_section::Input_section_sort_entry
2717 {
2718 public:
2719 Input_section_sort_entry()
2720 : input_section_(), index_(-1U), section_has_name_(false),
2721 section_name_()
2722 { }
2723
2724 Input_section_sort_entry(const Input_section& input_section,
2725 unsigned int index,
2726 bool must_sort_attached_input_sections)
2727 : input_section_(input_section), index_(index),
2728 section_has_name_(input_section.is_input_section()
2729 || input_section.is_relaxed_input_section())
2730 {
2731 if (this->section_has_name_
2732 && must_sort_attached_input_sections)
2733 {
2734 // This is only called single-threaded from Layout::finalize,
2735 // so it is OK to lock. Unfortunately we have no way to pass
2736 // in a Task token.
2737 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2738 Object* obj = (input_section.is_input_section()
2739 ? input_section.relobj()
2740 : input_section.relaxed_input_section()->relobj());
2741 Task_lock_obj<Object> tl(dummy_task, obj);
2742
2743 // This is a slow operation, which should be cached in
2744 // Layout::layout if this becomes a speed problem.
2745 this->section_name_ = obj->section_name(input_section.shndx());
2746 }
2747 }
2748
2749 // Return the Input_section.
2750 const Input_section&
2751 input_section() const
2752 {
2753 gold_assert(this->index_ != -1U);
2754 return this->input_section_;
2755 }
2756
2757 // The index of this entry in the original list. This is used to
2758 // make the sort stable.
2759 unsigned int
2760 index() const
2761 {
2762 gold_assert(this->index_ != -1U);
2763 return this->index_;
2764 }
2765
2766 // Whether there is a section name.
2767 bool
2768 section_has_name() const
2769 { return this->section_has_name_; }
2770
2771 // The section name.
2772 const std::string&
2773 section_name() const
2774 {
2775 gold_assert(this->section_has_name_);
2776 return this->section_name_;
2777 }
2778
2779 // Return true if the section name has a priority. This is assumed
2780 // to be true if it has a dot after the initial dot.
2781 bool
2782 has_priority() const
2783 {
2784 gold_assert(this->section_has_name_);
2785 return this->section_name_.find('.', 1) != std::string::npos;
2786 }
2787
2788 // Return true if this an input file whose base name matches
2789 // FILE_NAME. The base name must have an extension of ".o", and
2790 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2791 // This is to match crtbegin.o as well as crtbeginS.o without
2792 // getting confused by other possibilities. Overall matching the
2793 // file name this way is a dreadful hack, but the GNU linker does it
2794 // in order to better support gcc, and we need to be compatible.
2795 bool
2796 match_file_name(const char* match_file_name) const
2797 {
2798 const std::string& file_name(this->input_section_.relobj()->name());
2799 const char* base_name = lbasename(file_name.c_str());
2800 size_t match_len = strlen(match_file_name);
2801 if (strncmp(base_name, match_file_name, match_len) != 0)
2802 return false;
2803 size_t base_len = strlen(base_name);
2804 if (base_len != match_len + 2 && base_len != match_len + 3)
2805 return false;
2806 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2807 }
2808
2809 // Returns 1 if THIS should appear before S in section order, -1 if S
2810 // appears before THIS and 0 if they are not comparable.
2811 int
2812 compare_section_ordering(const Input_section_sort_entry& s) const
2813 {
2814 unsigned int this_secn_index = this->input_section_.section_order_index();
2815 unsigned int s_secn_index = s.input_section().section_order_index();
2816 if (this_secn_index > 0 && s_secn_index > 0)
2817 {
2818 if (this_secn_index < s_secn_index)
2819 return 1;
2820 else if (this_secn_index > s_secn_index)
2821 return -1;
2822 }
2823 return 0;
2824 }
2825
2826 private:
2827 // The Input_section we are sorting.
2828 Input_section input_section_;
2829 // The index of this Input_section in the original list.
2830 unsigned int index_;
2831 // Whether this Input_section has a section name--it won't if this
2832 // is some random Output_section_data.
2833 bool section_has_name_;
2834 // The section name if there is one.
2835 std::string section_name_;
2836 };
2837
2838 // Return true if S1 should come before S2 in the output section.
2839
2840 bool
2841 Output_section::Input_section_sort_compare::operator()(
2842 const Output_section::Input_section_sort_entry& s1,
2843 const Output_section::Input_section_sort_entry& s2) const
2844 {
2845 // crtbegin.o must come first.
2846 bool s1_begin = s1.match_file_name("crtbegin");
2847 bool s2_begin = s2.match_file_name("crtbegin");
2848 if (s1_begin || s2_begin)
2849 {
2850 if (!s1_begin)
2851 return false;
2852 if (!s2_begin)
2853 return true;
2854 return s1.index() < s2.index();
2855 }
2856
2857 // crtend.o must come last.
2858 bool s1_end = s1.match_file_name("crtend");
2859 bool s2_end = s2.match_file_name("crtend");
2860 if (s1_end || s2_end)
2861 {
2862 if (!s1_end)
2863 return true;
2864 if (!s2_end)
2865 return false;
2866 return s1.index() < s2.index();
2867 }
2868
2869 // We sort all the sections with no names to the end.
2870 if (!s1.section_has_name() || !s2.section_has_name())
2871 {
2872 if (s1.section_has_name())
2873 return true;
2874 if (s2.section_has_name())
2875 return false;
2876 return s1.index() < s2.index();
2877 }
2878
2879 // A section with a priority follows a section without a priority.
2880 bool s1_has_priority = s1.has_priority();
2881 bool s2_has_priority = s2.has_priority();
2882 if (s1_has_priority && !s2_has_priority)
2883 return false;
2884 if (!s1_has_priority && s2_has_priority)
2885 return true;
2886
2887 // Check if a section order exists for these sections through a section
2888 // ordering file. If sequence_num is 0, an order does not exist.
2889 int sequence_num = s1.compare_section_ordering(s2);
2890 if (sequence_num != 0)
2891 return sequence_num == 1;
2892
2893 // Otherwise we sort by name.
2894 int compare = s1.section_name().compare(s2.section_name());
2895 if (compare != 0)
2896 return compare < 0;
2897
2898 // Otherwise we keep the input order.
2899 return s1.index() < s2.index();
2900 }
2901
2902 // Return true if S1 should come before S2 in an .init_array or .fini_array
2903 // output section.
2904
2905 bool
2906 Output_section::Input_section_sort_init_fini_compare::operator()(
2907 const Output_section::Input_section_sort_entry& s1,
2908 const Output_section::Input_section_sort_entry& s2) const
2909 {
2910 // We sort all the sections with no names to the end.
2911 if (!s1.section_has_name() || !s2.section_has_name())
2912 {
2913 if (s1.section_has_name())
2914 return true;
2915 if (s2.section_has_name())
2916 return false;
2917 return s1.index() < s2.index();
2918 }
2919
2920 // A section without a priority follows a section with a priority.
2921 // This is the reverse of .ctors and .dtors sections.
2922 bool s1_has_priority = s1.has_priority();
2923 bool s2_has_priority = s2.has_priority();
2924 if (s1_has_priority && !s2_has_priority)
2925 return true;
2926 if (!s1_has_priority && s2_has_priority)
2927 return false;
2928
2929 // Check if a section order exists for these sections through a section
2930 // ordering file. If sequence_num is 0, an order does not exist.
2931 int sequence_num = s1.compare_section_ordering(s2);
2932 if (sequence_num != 0)
2933 return sequence_num == 1;
2934
2935 // Otherwise we sort by name.
2936 int compare = s1.section_name().compare(s2.section_name());
2937 if (compare != 0)
2938 return compare < 0;
2939
2940 // Otherwise we keep the input order.
2941 return s1.index() < s2.index();
2942 }
2943
2944 // Return true if S1 should come before S2. Sections that do not match
2945 // any pattern in the section ordering file are placed ahead of the sections
2946 // that match some pattern.
2947
2948 bool
2949 Output_section::Input_section_sort_section_order_index_compare::operator()(
2950 const Output_section::Input_section_sort_entry& s1,
2951 const Output_section::Input_section_sort_entry& s2) const
2952 {
2953 unsigned int s1_secn_index = s1.input_section().section_order_index();
2954 unsigned int s2_secn_index = s2.input_section().section_order_index();
2955
2956 // Keep input order if section ordering cannot determine order.
2957 if (s1_secn_index == s2_secn_index)
2958 return s1.index() < s2.index();
2959
2960 return s1_secn_index < s2_secn_index;
2961 }
2962
2963 // Sort the input sections attached to an output section.
2964
2965 void
2966 Output_section::sort_attached_input_sections()
2967 {
2968 if (this->attached_input_sections_are_sorted_)
2969 return;
2970
2971 if (this->checkpoint_ != NULL
2972 && !this->checkpoint_->input_sections_saved())
2973 this->checkpoint_->save_input_sections();
2974
2975 // The only thing we know about an input section is the object and
2976 // the section index. We need the section name. Recomputing this
2977 // is slow but this is an unusual case. If this becomes a speed
2978 // problem we can cache the names as required in Layout::layout.
2979
2980 // We start by building a larger vector holding a copy of each
2981 // Input_section, plus its current index in the list and its name.
2982 std::vector<Input_section_sort_entry> sort_list;
2983
2984 unsigned int i = 0;
2985 for (Input_section_list::iterator p = this->input_sections_.begin();
2986 p != this->input_sections_.end();
2987 ++p, ++i)
2988 sort_list.push_back(Input_section_sort_entry(*p, i,
2989 this->must_sort_attached_input_sections()));
2990
2991 // Sort the input sections.
2992 if (this->must_sort_attached_input_sections())
2993 {
2994 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2995 || this->type() == elfcpp::SHT_INIT_ARRAY
2996 || this->type() == elfcpp::SHT_FINI_ARRAY)
2997 std::sort(sort_list.begin(), sort_list.end(),
2998 Input_section_sort_init_fini_compare());
2999 else
3000 std::sort(sort_list.begin(), sort_list.end(),
3001 Input_section_sort_compare());
3002 }
3003 else
3004 {
3005 gold_assert(parameters->options().section_ordering_file());
3006 std::sort(sort_list.begin(), sort_list.end(),
3007 Input_section_sort_section_order_index_compare());
3008 }
3009
3010 // Copy the sorted input sections back to our list.
3011 this->input_sections_.clear();
3012 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3013 p != sort_list.end();
3014 ++p)
3015 this->input_sections_.push_back(p->input_section());
3016 sort_list.clear();
3017
3018 // Remember that we sorted the input sections, since we might get
3019 // called again.
3020 this->attached_input_sections_are_sorted_ = true;
3021 }
3022
3023 // Write the section header to *OSHDR.
3024
3025 template<int size, bool big_endian>
3026 void
3027 Output_section::write_header(const Layout* layout,
3028 const Stringpool* secnamepool,
3029 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3030 {
3031 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3032 oshdr->put_sh_type(this->type_);
3033
3034 elfcpp::Elf_Xword flags = this->flags_;
3035 if (this->info_section_ != NULL && this->info_uses_section_index_)
3036 flags |= elfcpp::SHF_INFO_LINK;
3037 oshdr->put_sh_flags(flags);
3038
3039 oshdr->put_sh_addr(this->address());
3040 oshdr->put_sh_offset(this->offset());
3041 oshdr->put_sh_size(this->data_size());
3042 if (this->link_section_ != NULL)
3043 oshdr->put_sh_link(this->link_section_->out_shndx());
3044 else if (this->should_link_to_symtab_)
3045 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3046 else if (this->should_link_to_dynsym_)
3047 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3048 else
3049 oshdr->put_sh_link(this->link_);
3050
3051 elfcpp::Elf_Word info;
3052 if (this->info_section_ != NULL)
3053 {
3054 if (this->info_uses_section_index_)
3055 info = this->info_section_->out_shndx();
3056 else
3057 info = this->info_section_->symtab_index();
3058 }
3059 else if (this->info_symndx_ != NULL)
3060 info = this->info_symndx_->symtab_index();
3061 else
3062 info = this->info_;
3063 oshdr->put_sh_info(info);
3064
3065 oshdr->put_sh_addralign(this->addralign_);
3066 oshdr->put_sh_entsize(this->entsize_);
3067 }
3068
3069 // Write out the data. For input sections the data is written out by
3070 // Object::relocate, but we have to handle Output_section_data objects
3071 // here.
3072
3073 void
3074 Output_section::do_write(Output_file* of)
3075 {
3076 gold_assert(!this->requires_postprocessing());
3077
3078 // If the target performs relaxation, we delay filler generation until now.
3079 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3080
3081 off_t output_section_file_offset = this->offset();
3082 for (Fill_list::iterator p = this->fills_.begin();
3083 p != this->fills_.end();
3084 ++p)
3085 {
3086 std::string fill_data(parameters->target().code_fill(p->length()));
3087 of->write(output_section_file_offset + p->section_offset(),
3088 fill_data.data(), fill_data.size());
3089 }
3090
3091 off_t off = this->offset() + this->first_input_offset_;
3092 for (Input_section_list::iterator p = this->input_sections_.begin();
3093 p != this->input_sections_.end();
3094 ++p)
3095 {
3096 off_t aligned_off = align_address(off, p->addralign());
3097 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3098 {
3099 size_t fill_len = aligned_off - off;
3100 std::string fill_data(parameters->target().code_fill(fill_len));
3101 of->write(off, fill_data.data(), fill_data.size());
3102 }
3103
3104 p->write(of);
3105 off = aligned_off + p->data_size();
3106 }
3107 }
3108
3109 // If a section requires postprocessing, create the buffer to use.
3110
3111 void
3112 Output_section::create_postprocessing_buffer()
3113 {
3114 gold_assert(this->requires_postprocessing());
3115
3116 if (this->postprocessing_buffer_ != NULL)
3117 return;
3118
3119 if (!this->input_sections_.empty())
3120 {
3121 off_t off = this->first_input_offset_;
3122 for (Input_section_list::iterator p = this->input_sections_.begin();
3123 p != this->input_sections_.end();
3124 ++p)
3125 {
3126 off = align_address(off, p->addralign());
3127 p->finalize_data_size();
3128 off += p->data_size();
3129 }
3130 this->set_current_data_size_for_child(off);
3131 }
3132
3133 off_t buffer_size = this->current_data_size_for_child();
3134 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3135 }
3136
3137 // Write all the data of an Output_section into the postprocessing
3138 // buffer. This is used for sections which require postprocessing,
3139 // such as compression. Input sections are handled by
3140 // Object::Relocate.
3141
3142 void
3143 Output_section::write_to_postprocessing_buffer()
3144 {
3145 gold_assert(this->requires_postprocessing());
3146
3147 // If the target performs relaxation, we delay filler generation until now.
3148 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3149
3150 unsigned char* buffer = this->postprocessing_buffer();
3151 for (Fill_list::iterator p = this->fills_.begin();
3152 p != this->fills_.end();
3153 ++p)
3154 {
3155 std::string fill_data(parameters->target().code_fill(p->length()));
3156 memcpy(buffer + p->section_offset(), fill_data.data(),
3157 fill_data.size());
3158 }
3159
3160 off_t off = this->first_input_offset_;
3161 for (Input_section_list::iterator p = this->input_sections_.begin();
3162 p != this->input_sections_.end();
3163 ++p)
3164 {
3165 off_t aligned_off = align_address(off, p->addralign());
3166 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3167 {
3168 size_t fill_len = aligned_off - off;
3169 std::string fill_data(parameters->target().code_fill(fill_len));
3170 memcpy(buffer + off, fill_data.data(), fill_data.size());
3171 }
3172
3173 p->write_to_buffer(buffer + aligned_off);
3174 off = aligned_off + p->data_size();
3175 }
3176 }
3177
3178 // Get the input sections for linker script processing. We leave
3179 // behind the Output_section_data entries. Note that this may be
3180 // slightly incorrect for merge sections. We will leave them behind,
3181 // but it is possible that the script says that they should follow
3182 // some other input sections, as in:
3183 // .rodata { *(.rodata) *(.rodata.cst*) }
3184 // For that matter, we don't handle this correctly:
3185 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3186 // With luck this will never matter.
3187
3188 uint64_t
3189 Output_section::get_input_sections(
3190 uint64_t address,
3191 const std::string& fill,
3192 std::list<Input_section>* input_sections)
3193 {
3194 if (this->checkpoint_ != NULL
3195 && !this->checkpoint_->input_sections_saved())
3196 this->checkpoint_->save_input_sections();
3197
3198 // Invalidate fast look-up maps.
3199 this->lookup_maps_->invalidate();
3200
3201 uint64_t orig_address = address;
3202
3203 address = align_address(address, this->addralign());
3204
3205 Input_section_list remaining;
3206 for (Input_section_list::iterator p = this->input_sections_.begin();
3207 p != this->input_sections_.end();
3208 ++p)
3209 {
3210 if (p->is_input_section()
3211 || p->is_relaxed_input_section()
3212 || p->is_merge_section())
3213 input_sections->push_back(*p);
3214 else
3215 {
3216 uint64_t aligned_address = align_address(address, p->addralign());
3217 if (aligned_address != address && !fill.empty())
3218 {
3219 section_size_type length =
3220 convert_to_section_size_type(aligned_address - address);
3221 std::string this_fill;
3222 this_fill.reserve(length);
3223 while (this_fill.length() + fill.length() <= length)
3224 this_fill += fill;
3225 if (this_fill.length() < length)
3226 this_fill.append(fill, 0, length - this_fill.length());
3227
3228 Output_section_data* posd = new Output_data_const(this_fill, 0);
3229 remaining.push_back(Input_section(posd));
3230 }
3231 address = aligned_address;
3232
3233 remaining.push_back(*p);
3234
3235 p->finalize_data_size();
3236 address += p->data_size();
3237 }
3238 }
3239
3240 this->input_sections_.swap(remaining);
3241 this->first_input_offset_ = 0;
3242
3243 uint64_t data_size = address - orig_address;
3244 this->set_current_data_size_for_child(data_size);
3245 return data_size;
3246 }
3247
3248 // Add a script input section. SIS is an Output_section::Input_section,
3249 // which can be either a plain input section or a special input section like
3250 // a relaxed input section. For a special input section, its size must be
3251 // finalized.
3252
3253 void
3254 Output_section::add_script_input_section(const Input_section& sis)
3255 {
3256 uint64_t data_size = sis.data_size();
3257 uint64_t addralign = sis.addralign();
3258 if (addralign > this->addralign_)
3259 this->addralign_ = addralign;
3260
3261 off_t offset_in_section = this->current_data_size_for_child();
3262 off_t aligned_offset_in_section = align_address(offset_in_section,
3263 addralign);
3264
3265 this->set_current_data_size_for_child(aligned_offset_in_section
3266 + data_size);
3267
3268 this->input_sections_.push_back(sis);
3269
3270 // Update fast lookup maps if necessary.
3271 if (this->lookup_maps_->is_valid())
3272 {
3273 if (sis.is_merge_section())
3274 {
3275 Output_merge_base* pomb = sis.output_merge_base();
3276 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3277 pomb->addralign());
3278 this->lookup_maps_->add_merge_section(msp, pomb);
3279 for (Output_merge_base::Input_sections::const_iterator p =
3280 pomb->input_sections_begin();
3281 p != pomb->input_sections_end();
3282 ++p)
3283 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3284 pomb);
3285 }
3286 else if (sis.is_relaxed_input_section())
3287 {
3288 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3289 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3290 poris->shndx(), poris);
3291 }
3292 }
3293 }
3294
3295 // Save states for relaxation.
3296
3297 void
3298 Output_section::save_states()
3299 {
3300 gold_assert(this->checkpoint_ == NULL);
3301 Checkpoint_output_section* checkpoint =
3302 new Checkpoint_output_section(this->addralign_, this->flags_,
3303 this->input_sections_,
3304 this->first_input_offset_,
3305 this->attached_input_sections_are_sorted_);
3306 this->checkpoint_ = checkpoint;
3307 gold_assert(this->fills_.empty());
3308 }
3309
3310 void
3311 Output_section::discard_states()
3312 {
3313 gold_assert(this->checkpoint_ != NULL);
3314 delete this->checkpoint_;
3315 this->checkpoint_ = NULL;
3316 gold_assert(this->fills_.empty());
3317
3318 // Simply invalidate the fast lookup maps since we do not keep
3319 // track of them.
3320 this->lookup_maps_->invalidate();
3321 }
3322
3323 void
3324 Output_section::restore_states()
3325 {
3326 gold_assert(this->checkpoint_ != NULL);
3327 Checkpoint_output_section* checkpoint = this->checkpoint_;
3328
3329 this->addralign_ = checkpoint->addralign();
3330 this->flags_ = checkpoint->flags();
3331 this->first_input_offset_ = checkpoint->first_input_offset();
3332
3333 if (!checkpoint->input_sections_saved())
3334 {
3335 // If we have not copied the input sections, just resize it.
3336 size_t old_size = checkpoint->input_sections_size();
3337 gold_assert(this->input_sections_.size() >= old_size);
3338 this->input_sections_.resize(old_size);
3339 }
3340 else
3341 {
3342 // We need to copy the whole list. This is not efficient for
3343 // extremely large output with hundreads of thousands of input
3344 // objects. We may need to re-think how we should pass sections
3345 // to scripts.
3346 this->input_sections_ = *checkpoint->input_sections();
3347 }
3348
3349 this->attached_input_sections_are_sorted_ =
3350 checkpoint->attached_input_sections_are_sorted();
3351
3352 // Simply invalidate the fast lookup maps since we do not keep
3353 // track of them.
3354 this->lookup_maps_->invalidate();
3355 }
3356
3357 // Update the section offsets of input sections in this. This is required if
3358 // relaxation causes some input sections to change sizes.
3359
3360 void
3361 Output_section::adjust_section_offsets()
3362 {
3363 if (!this->section_offsets_need_adjustment_)
3364 return;
3365
3366 off_t off = 0;
3367 for (Input_section_list::iterator p = this->input_sections_.begin();
3368 p != this->input_sections_.end();
3369 ++p)
3370 {
3371 off = align_address(off, p->addralign());
3372 if (p->is_input_section())
3373 p->relobj()->set_section_offset(p->shndx(), off);
3374 off += p->data_size();
3375 }
3376
3377 this->section_offsets_need_adjustment_ = false;
3378 }
3379
3380 // Print to the map file.
3381
3382 void
3383 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3384 {
3385 mapfile->print_output_section(this);
3386
3387 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3388 p != this->input_sections_.end();
3389 ++p)
3390 p->print_to_mapfile(mapfile);
3391 }
3392
3393 // Print stats for merge sections to stderr.
3394
3395 void
3396 Output_section::print_merge_stats()
3397 {
3398 Input_section_list::iterator p;
3399 for (p = this->input_sections_.begin();
3400 p != this->input_sections_.end();
3401 ++p)
3402 p->print_merge_stats(this->name_);
3403 }
3404
3405 // Output segment methods.
3406
3407 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3408 : vaddr_(0),
3409 paddr_(0),
3410 memsz_(0),
3411 max_align_(0),
3412 min_p_align_(0),
3413 offset_(0),
3414 filesz_(0),
3415 type_(type),
3416 flags_(flags),
3417 is_max_align_known_(false),
3418 are_addresses_set_(false),
3419 is_large_data_segment_(false)
3420 {
3421 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3422 // the flags.
3423 if (type == elfcpp::PT_TLS)
3424 this->flags_ = elfcpp::PF_R;
3425 }
3426
3427 // Add an Output_section to a PT_LOAD Output_segment.
3428
3429 void
3430 Output_segment::add_output_section_to_load(Layout* layout,
3431 Output_section* os,
3432 elfcpp::Elf_Word seg_flags)
3433 {
3434 gold_assert(this->type() == elfcpp::PT_LOAD);
3435 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3436 gold_assert(!this->is_max_align_known_);
3437 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3438
3439 this->update_flags_for_output_section(seg_flags);
3440
3441 // We don't want to change the ordering if we have a linker script
3442 // with a SECTIONS clause.
3443 Output_section_order order = os->order();
3444 if (layout->script_options()->saw_sections_clause())
3445 order = static_cast<Output_section_order>(0);
3446 else
3447 gold_assert(order != ORDER_INVALID);
3448
3449 this->output_lists_[order].push_back(os);
3450 }
3451
3452 // Add an Output_section to a non-PT_LOAD Output_segment.
3453
3454 void
3455 Output_segment::add_output_section_to_nonload(Output_section* os,
3456 elfcpp::Elf_Word seg_flags)
3457 {
3458 gold_assert(this->type() != elfcpp::PT_LOAD);
3459 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3460 gold_assert(!this->is_max_align_known_);
3461
3462 this->update_flags_for_output_section(seg_flags);
3463
3464 this->output_lists_[0].push_back(os);
3465 }
3466
3467 // Remove an Output_section from this segment. It is an error if it
3468 // is not present.
3469
3470 void
3471 Output_segment::remove_output_section(Output_section* os)
3472 {
3473 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3474 {
3475 Output_data_list* pdl = &this->output_lists_[i];
3476 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3477 {
3478 if (*p == os)
3479 {
3480 pdl->erase(p);
3481 return;
3482 }
3483 }
3484 }
3485 gold_unreachable();
3486 }
3487
3488 // Add an Output_data (which need not be an Output_section) to the
3489 // start of a segment.
3490
3491 void
3492 Output_segment::add_initial_output_data(Output_data* od)
3493 {
3494 gold_assert(!this->is_max_align_known_);
3495 Output_data_list::iterator p = this->output_lists_[0].begin();
3496 this->output_lists_[0].insert(p, od);
3497 }
3498
3499 // Return true if this segment has any sections which hold actual
3500 // data, rather than being a BSS section.
3501
3502 bool
3503 Output_segment::has_any_data_sections() const
3504 {
3505 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3506 {
3507 const Output_data_list* pdl = &this->output_lists_[i];
3508 for (Output_data_list::const_iterator p = pdl->begin();
3509 p != pdl->end();
3510 ++p)
3511 {
3512 if (!(*p)->is_section())
3513 return true;
3514 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3515 return true;
3516 }
3517 }
3518 return false;
3519 }
3520
3521 // Return whether the first data section is a relro section.
3522
3523 bool
3524 Output_segment::is_first_section_relro() const
3525 {
3526 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3527 {
3528 const Output_data_list* pdl = &this->output_lists_[i];
3529 if (!pdl->empty())
3530 {
3531 Output_data* p = pdl->front();
3532 return p->is_section() && p->output_section()->is_relro();
3533 }
3534 }
3535 return false;
3536 }
3537
3538 // Return the maximum alignment of the Output_data in Output_segment.
3539
3540 uint64_t
3541 Output_segment::maximum_alignment()
3542 {
3543 if (!this->is_max_align_known_)
3544 {
3545 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3546 {
3547 const Output_data_list* pdl = &this->output_lists_[i];
3548 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3549 if (addralign > this->max_align_)
3550 this->max_align_ = addralign;
3551 }
3552 this->is_max_align_known_ = true;
3553 }
3554
3555 return this->max_align_;
3556 }
3557
3558 // Return the maximum alignment of a list of Output_data.
3559
3560 uint64_t
3561 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3562 {
3563 uint64_t ret = 0;
3564 for (Output_data_list::const_iterator p = pdl->begin();
3565 p != pdl->end();
3566 ++p)
3567 {
3568 uint64_t addralign = (*p)->addralign();
3569 if (addralign > ret)
3570 ret = addralign;
3571 }
3572 return ret;
3573 }
3574
3575 // Return whether this segment has any dynamic relocs.
3576
3577 bool
3578 Output_segment::has_dynamic_reloc() const
3579 {
3580 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3581 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3582 return true;
3583 return false;
3584 }
3585
3586 // Return whether this Output_data_list has any dynamic relocs.
3587
3588 bool
3589 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3590 {
3591 for (Output_data_list::const_iterator p = pdl->begin();
3592 p != pdl->end();
3593 ++p)
3594 if ((*p)->has_dynamic_reloc())
3595 return true;
3596 return false;
3597 }
3598
3599 // Set the section addresses for an Output_segment. If RESET is true,
3600 // reset the addresses first. ADDR is the address and *POFF is the
3601 // file offset. Set the section indexes starting with *PSHNDX.
3602 // Return the address of the immediately following segment. Update
3603 // *POFF and *PSHNDX.
3604
3605 uint64_t
3606 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3607 uint64_t addr,
3608 unsigned int increase_relro,
3609 off_t* poff,
3610 unsigned int* pshndx)
3611 {
3612 gold_assert(this->type_ == elfcpp::PT_LOAD);
3613
3614 off_t orig_off = *poff;
3615
3616 // If we have relro sections, we need to pad forward now so that the
3617 // relro sections plus INCREASE_RELRO end on a common page boundary.
3618 if (parameters->options().relro()
3619 && this->is_first_section_relro()
3620 && (!this->are_addresses_set_ || reset))
3621 {
3622 uint64_t relro_size = 0;
3623 off_t off = *poff;
3624 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3625 {
3626 Output_data_list* pdl = &this->output_lists_[i];
3627 Output_data_list::iterator p;
3628 for (p = pdl->begin(); p != pdl->end(); ++p)
3629 {
3630 if (!(*p)->is_section())
3631 break;
3632 Output_section* pos = (*p)->output_section();
3633 if (!pos->is_relro())
3634 break;
3635 if ((*p)->is_address_valid())
3636 relro_size += (*p)->data_size();
3637 else
3638 {
3639 // FIXME: This could be faster.
3640 (*p)->set_address_and_file_offset(addr + relro_size,
3641 off + relro_size);
3642 relro_size += (*p)->data_size();
3643 (*p)->reset_address_and_file_offset();
3644 }
3645 }
3646 if (p != pdl->end())
3647 break;
3648 }
3649 relro_size += increase_relro;
3650
3651 uint64_t page_align = parameters->target().common_pagesize();
3652
3653 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3654 uint64_t desired_align = page_align - (relro_size % page_align);
3655 if (desired_align < *poff % page_align)
3656 *poff += page_align - *poff % page_align;
3657 *poff += desired_align - *poff % page_align;
3658 addr += *poff - orig_off;
3659 orig_off = *poff;
3660 }
3661
3662 if (!reset && this->are_addresses_set_)
3663 {
3664 gold_assert(this->paddr_ == addr);
3665 addr = this->vaddr_;
3666 }
3667 else
3668 {
3669 this->vaddr_ = addr;
3670 this->paddr_ = addr;
3671 this->are_addresses_set_ = true;
3672 }
3673
3674 bool in_tls = false;
3675
3676 this->offset_ = orig_off;
3677
3678 off_t off = 0;
3679 uint64_t ret;
3680 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3681 {
3682 addr = this->set_section_list_addresses(layout, reset,
3683 &this->output_lists_[i],
3684 addr, poff, pshndx, &in_tls);
3685 if (i < static_cast<int>(ORDER_SMALL_BSS))
3686 {
3687 this->filesz_ = *poff - orig_off;
3688 off = *poff;
3689 }
3690
3691 ret = addr;
3692 }
3693
3694 // If the last section was a TLS section, align upward to the
3695 // alignment of the TLS segment, so that the overall size of the TLS
3696 // segment is aligned.
3697 if (in_tls)
3698 {
3699 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3700 *poff = align_address(*poff, segment_align);
3701 }
3702
3703 this->memsz_ = *poff - orig_off;
3704
3705 // Ignore the file offset adjustments made by the BSS Output_data
3706 // objects.
3707 *poff = off;
3708
3709 return ret;
3710 }
3711
3712 // Set the addresses and file offsets in a list of Output_data
3713 // structures.
3714
3715 uint64_t
3716 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3717 Output_data_list* pdl,
3718 uint64_t addr, off_t* poff,
3719 unsigned int* pshndx,
3720 bool* in_tls)
3721 {
3722 off_t startoff = *poff;
3723
3724 off_t off = startoff;
3725 for (Output_data_list::iterator p = pdl->begin();
3726 p != pdl->end();
3727 ++p)
3728 {
3729 if (reset)
3730 (*p)->reset_address_and_file_offset();
3731
3732 // When using a linker script the section will most likely
3733 // already have an address.
3734 if (!(*p)->is_address_valid())
3735 {
3736 uint64_t align = (*p)->addralign();
3737
3738 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3739 {
3740 // Give the first TLS section the alignment of the
3741 // entire TLS segment. Otherwise the TLS segment as a
3742 // whole may be misaligned.
3743 if (!*in_tls)
3744 {
3745 Output_segment* tls_segment = layout->tls_segment();
3746 gold_assert(tls_segment != NULL);
3747 uint64_t segment_align = tls_segment->maximum_alignment();
3748 gold_assert(segment_align >= align);
3749 align = segment_align;
3750
3751 *in_tls = true;
3752 }
3753 }
3754 else
3755 {
3756 // If this is the first section after the TLS segment,
3757 // align it to at least the alignment of the TLS
3758 // segment, so that the size of the overall TLS segment
3759 // is aligned.
3760 if (*in_tls)
3761 {
3762 uint64_t segment_align =
3763 layout->tls_segment()->maximum_alignment();
3764 if (segment_align > align)
3765 align = segment_align;
3766
3767 *in_tls = false;
3768 }
3769 }
3770
3771 off = align_address(off, align);
3772 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3773 }
3774 else
3775 {
3776 // The script may have inserted a skip forward, but it
3777 // better not have moved backward.
3778 if ((*p)->address() >= addr + (off - startoff))
3779 off += (*p)->address() - (addr + (off - startoff));
3780 else
3781 {
3782 if (!layout->script_options()->saw_sections_clause())
3783 gold_unreachable();
3784 else
3785 {
3786 Output_section* os = (*p)->output_section();
3787
3788 // Cast to unsigned long long to avoid format warnings.
3789 unsigned long long previous_dot =
3790 static_cast<unsigned long long>(addr + (off - startoff));
3791 unsigned long long dot =
3792 static_cast<unsigned long long>((*p)->address());
3793
3794 if (os == NULL)
3795 gold_error(_("dot moves backward in linker script "
3796 "from 0x%llx to 0x%llx"), previous_dot, dot);
3797 else
3798 gold_error(_("address of section '%s' moves backward "
3799 "from 0x%llx to 0x%llx"),
3800 os->name(), previous_dot, dot);
3801 }
3802 }
3803 (*p)->set_file_offset(off);
3804 (*p)->finalize_data_size();
3805 }
3806
3807 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3808 // section. Such a section does not affect the size of a
3809 // PT_LOAD segment.
3810 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3811 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3812 off += (*p)->data_size();
3813
3814 if ((*p)->is_section())
3815 {
3816 (*p)->set_out_shndx(*pshndx);
3817 ++*pshndx;
3818 }
3819 }
3820
3821 *poff = off;
3822 return addr + (off - startoff);
3823 }
3824
3825 // For a non-PT_LOAD segment, set the offset from the sections, if
3826 // any. Add INCREASE to the file size and the memory size.
3827
3828 void
3829 Output_segment::set_offset(unsigned int increase)
3830 {
3831 gold_assert(this->type_ != elfcpp::PT_LOAD);
3832
3833 gold_assert(!this->are_addresses_set_);
3834
3835 // A non-load section only uses output_lists_[0].
3836
3837 Output_data_list* pdl = &this->output_lists_[0];
3838
3839 if (pdl->empty())
3840 {
3841 gold_assert(increase == 0);
3842 this->vaddr_ = 0;
3843 this->paddr_ = 0;
3844 this->are_addresses_set_ = true;
3845 this->memsz_ = 0;
3846 this->min_p_align_ = 0;
3847 this->offset_ = 0;
3848 this->filesz_ = 0;
3849 return;
3850 }
3851
3852 // Find the first and last section by address.
3853 const Output_data* first = NULL;
3854 const Output_data* last_data = NULL;
3855 const Output_data* last_bss = NULL;
3856 for (Output_data_list::const_iterator p = pdl->begin();
3857 p != pdl->end();
3858 ++p)
3859 {
3860 if (first == NULL
3861 || (*p)->address() < first->address()
3862 || ((*p)->address() == first->address()
3863 && (*p)->data_size() < first->data_size()))
3864 first = *p;
3865 const Output_data** plast;
3866 if ((*p)->is_section()
3867 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
3868 plast = &last_bss;
3869 else
3870 plast = &last_data;
3871 if (*plast == NULL
3872 || (*p)->address() > (*plast)->address()
3873 || ((*p)->address() == (*plast)->address()
3874 && (*p)->data_size() > (*plast)->data_size()))
3875 *plast = *p;
3876 }
3877
3878 this->vaddr_ = first->address();
3879 this->paddr_ = (first->has_load_address()
3880 ? first->load_address()
3881 : this->vaddr_);
3882 this->are_addresses_set_ = true;
3883 this->offset_ = first->offset();
3884
3885 if (last_data == NULL)
3886 this->filesz_ = 0;
3887 else
3888 this->filesz_ = (last_data->address()
3889 + last_data->data_size()
3890 - this->vaddr_);
3891
3892 const Output_data* last = last_bss != NULL ? last_bss : last_data;
3893 this->memsz_ = (last->address()
3894 + last->data_size()
3895 - this->vaddr_);
3896
3897 this->filesz_ += increase;
3898 this->memsz_ += increase;
3899
3900 // If this is a TLS segment, align the memory size. The code in
3901 // set_section_list ensures that the section after the TLS segment
3902 // is aligned to give us room.
3903 if (this->type_ == elfcpp::PT_TLS)
3904 {
3905 uint64_t segment_align = this->maximum_alignment();
3906 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3907 this->memsz_ = align_address(this->memsz_, segment_align);
3908 }
3909 }
3910
3911 // Set the TLS offsets of the sections in the PT_TLS segment.
3912
3913 void
3914 Output_segment::set_tls_offsets()
3915 {
3916 gold_assert(this->type_ == elfcpp::PT_TLS);
3917
3918 for (Output_data_list::iterator p = this->output_lists_[0].begin();
3919 p != this->output_lists_[0].end();
3920 ++p)
3921 (*p)->set_tls_offset(this->vaddr_);
3922 }
3923
3924 // Return the load address of the first section.
3925
3926 uint64_t
3927 Output_segment::first_section_load_address() const
3928 {
3929 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3930 {
3931 const Output_data_list* pdl = &this->output_lists_[i];
3932 for (Output_data_list::const_iterator p = pdl->begin();
3933 p != pdl->end();
3934 ++p)
3935 {
3936 if ((*p)->is_section())
3937 return ((*p)->has_load_address()
3938 ? (*p)->load_address()
3939 : (*p)->address());
3940 }
3941 }
3942 gold_unreachable();
3943 }
3944
3945 // Return the number of Output_sections in an Output_segment.
3946
3947 unsigned int
3948 Output_segment::output_section_count() const
3949 {
3950 unsigned int ret = 0;
3951 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3952 ret += this->output_section_count_list(&this->output_lists_[i]);
3953 return ret;
3954 }
3955
3956 // Return the number of Output_sections in an Output_data_list.
3957
3958 unsigned int
3959 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3960 {
3961 unsigned int count = 0;
3962 for (Output_data_list::const_iterator p = pdl->begin();
3963 p != pdl->end();
3964 ++p)
3965 {
3966 if ((*p)->is_section())
3967 ++count;
3968 }
3969 return count;
3970 }
3971
3972 // Return the section attached to the list segment with the lowest
3973 // load address. This is used when handling a PHDRS clause in a
3974 // linker script.
3975
3976 Output_section*
3977 Output_segment::section_with_lowest_load_address() const
3978 {
3979 Output_section* found = NULL;
3980 uint64_t found_lma = 0;
3981 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3982 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
3983 &found_lma);
3984 return found;
3985 }
3986
3987 // Look through a list for a section with a lower load address.
3988
3989 void
3990 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3991 Output_section** found,
3992 uint64_t* found_lma) const
3993 {
3994 for (Output_data_list::const_iterator p = pdl->begin();
3995 p != pdl->end();
3996 ++p)
3997 {
3998 if (!(*p)->is_section())
3999 continue;
4000 Output_section* os = static_cast<Output_section*>(*p);
4001 uint64_t lma = (os->has_load_address()
4002 ? os->load_address()
4003 : os->address());
4004 if (*found == NULL || lma < *found_lma)
4005 {
4006 *found = os;
4007 *found_lma = lma;
4008 }
4009 }
4010 }
4011
4012 // Write the segment data into *OPHDR.
4013
4014 template<int size, bool big_endian>
4015 void
4016 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4017 {
4018 ophdr->put_p_type(this->type_);
4019 ophdr->put_p_offset(this->offset_);
4020 ophdr->put_p_vaddr(this->vaddr_);
4021 ophdr->put_p_paddr(this->paddr_);
4022 ophdr->put_p_filesz(this->filesz_);
4023 ophdr->put_p_memsz(this->memsz_);
4024 ophdr->put_p_flags(this->flags_);
4025 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4026 }
4027
4028 // Write the section headers into V.
4029
4030 template<int size, bool big_endian>
4031 unsigned char*
4032 Output_segment::write_section_headers(const Layout* layout,
4033 const Stringpool* secnamepool,
4034 unsigned char* v,
4035 unsigned int *pshndx) const
4036 {
4037 // Every section that is attached to a segment must be attached to a
4038 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4039 // segments.
4040 if (this->type_ != elfcpp::PT_LOAD)
4041 return v;
4042
4043 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4044 {
4045 const Output_data_list* pdl = &this->output_lists_[i];
4046 v = this->write_section_headers_list<size, big_endian>(layout,
4047 secnamepool,
4048 pdl,
4049 v, pshndx);
4050 }
4051
4052 return v;
4053 }
4054
4055 template<int size, bool big_endian>
4056 unsigned char*
4057 Output_segment::write_section_headers_list(const Layout* layout,
4058 const Stringpool* secnamepool,
4059 const Output_data_list* pdl,
4060 unsigned char* v,
4061 unsigned int* pshndx) const
4062 {
4063 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4064 for (Output_data_list::const_iterator p = pdl->begin();
4065 p != pdl->end();
4066 ++p)
4067 {
4068 if ((*p)->is_section())
4069 {
4070 const Output_section* ps = static_cast<const Output_section*>(*p);
4071 gold_assert(*pshndx == ps->out_shndx());
4072 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4073 ps->write_header(layout, secnamepool, &oshdr);
4074 v += shdr_size;
4075 ++*pshndx;
4076 }
4077 }
4078 return v;
4079 }
4080
4081 // Print the output sections to the map file.
4082
4083 void
4084 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4085 {
4086 if (this->type() != elfcpp::PT_LOAD)
4087 return;
4088 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4089 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4090 }
4091
4092 // Print an output section list to the map file.
4093
4094 void
4095 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4096 const Output_data_list* pdl) const
4097 {
4098 for (Output_data_list::const_iterator p = pdl->begin();
4099 p != pdl->end();
4100 ++p)
4101 (*p)->print_to_mapfile(mapfile);
4102 }
4103
4104 // Output_file methods.
4105
4106 Output_file::Output_file(const char* name)
4107 : name_(name),
4108 o_(-1),
4109 file_size_(0),
4110 base_(NULL),
4111 map_is_anonymous_(false),
4112 is_temporary_(false)
4113 {
4114 }
4115
4116 // Try to open an existing file. Returns false if the file doesn't
4117 // exist, has a size of 0 or can't be mmapped.
4118
4119 bool
4120 Output_file::open_for_modification()
4121 {
4122 // The name "-" means "stdout".
4123 if (strcmp(this->name_, "-") == 0)
4124 return false;
4125
4126 // Don't bother opening files with a size of zero.
4127 struct stat s;
4128 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4129 return false;
4130
4131 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4132 if (o < 0)
4133 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4134 this->o_ = o;
4135 this->file_size_ = s.st_size;
4136
4137 // If the file can't be mmapped, copying the content to an anonymous
4138 // map will probably negate the performance benefits of incremental
4139 // linking. This could be helped by using views and loading only
4140 // the necessary parts, but this is not supported as of now.
4141 if (!this->map_no_anonymous())
4142 {
4143 release_descriptor(o, true);
4144 this->o_ = -1;
4145 this->file_size_ = 0;
4146 return false;
4147 }
4148
4149 return true;
4150 }
4151
4152 // Open the output file.
4153
4154 void
4155 Output_file::open(off_t file_size)
4156 {
4157 this->file_size_ = file_size;
4158
4159 // Unlink the file first; otherwise the open() may fail if the file
4160 // is busy (e.g. it's an executable that's currently being executed).
4161 //
4162 // However, the linker may be part of a system where a zero-length
4163 // file is created for it to write to, with tight permissions (gcc
4164 // 2.95 did something like this). Unlinking the file would work
4165 // around those permission controls, so we only unlink if the file
4166 // has a non-zero size. We also unlink only regular files to avoid
4167 // trouble with directories/etc.
4168 //
4169 // If we fail, continue; this command is merely a best-effort attempt
4170 // to improve the odds for open().
4171
4172 // We let the name "-" mean "stdout"
4173 if (!this->is_temporary_)
4174 {
4175 if (strcmp(this->name_, "-") == 0)
4176 this->o_ = STDOUT_FILENO;
4177 else
4178 {
4179 struct stat s;
4180 if (::stat(this->name_, &s) == 0
4181 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4182 {
4183 if (s.st_size != 0)
4184 ::unlink(this->name_);
4185 else if (!parameters->options().relocatable())
4186 {
4187 // If we don't unlink the existing file, add execute
4188 // permission where read permissions already exist
4189 // and where the umask permits.
4190 int mask = ::umask(0);
4191 ::umask(mask);
4192 s.st_mode |= (s.st_mode & 0444) >> 2;
4193 ::chmod(this->name_, s.st_mode & ~mask);
4194 }
4195 }
4196
4197 int mode = parameters->options().relocatable() ? 0666 : 0777;
4198 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4199 mode);
4200 if (o < 0)
4201 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4202 this->o_ = o;
4203 }
4204 }
4205
4206 this->map();
4207 }
4208
4209 // Resize the output file.
4210
4211 void
4212 Output_file::resize(off_t file_size)
4213 {
4214 // If the mmap is mapping an anonymous memory buffer, this is easy:
4215 // just mremap to the new size. If it's mapping to a file, we want
4216 // to unmap to flush to the file, then remap after growing the file.
4217 if (this->map_is_anonymous_)
4218 {
4219 void* base = ::mremap(this->base_, this->file_size_, file_size,
4220 MREMAP_MAYMOVE);
4221 if (base == MAP_FAILED)
4222 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4223 this->base_ = static_cast<unsigned char*>(base);
4224 this->file_size_ = file_size;
4225 }
4226 else
4227 {
4228 this->unmap();
4229 this->file_size_ = file_size;
4230 if (!this->map_no_anonymous())
4231 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4232 }
4233 }
4234
4235 // Map an anonymous block of memory which will later be written to the
4236 // file. Return whether the map succeeded.
4237
4238 bool
4239 Output_file::map_anonymous()
4240 {
4241 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4242 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4243 if (base != MAP_FAILED)
4244 {
4245 this->map_is_anonymous_ = true;
4246 this->base_ = static_cast<unsigned char*>(base);
4247 return true;
4248 }
4249 return false;
4250 }
4251
4252 // Map the file into memory. Return whether the mapping succeeded.
4253
4254 bool
4255 Output_file::map_no_anonymous()
4256 {
4257 const int o = this->o_;
4258
4259 // If the output file is not a regular file, don't try to mmap it;
4260 // instead, we'll mmap a block of memory (an anonymous buffer), and
4261 // then later write the buffer to the file.
4262 void* base;
4263 struct stat statbuf;
4264 if (o == STDOUT_FILENO || o == STDERR_FILENO
4265 || ::fstat(o, &statbuf) != 0
4266 || !S_ISREG(statbuf.st_mode)
4267 || this->is_temporary_)
4268 return false;
4269
4270 // Ensure that we have disk space available for the file. If we
4271 // don't do this, it is possible that we will call munmap, close,
4272 // and exit with dirty buffers still in the cache with no assigned
4273 // disk blocks. If the disk is out of space at that point, the
4274 // output file will wind up incomplete, but we will have already
4275 // exited. The alternative to fallocate would be to use fdatasync,
4276 // but that would be a more significant performance hit.
4277 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4278 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4279
4280 // Map the file into memory.
4281 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4282 MAP_SHARED, o, 0);
4283
4284 // The mmap call might fail because of file system issues: the file
4285 // system might not support mmap at all, or it might not support
4286 // mmap with PROT_WRITE.
4287 if (base == MAP_FAILED)
4288 return false;
4289
4290 this->map_is_anonymous_ = false;
4291 this->base_ = static_cast<unsigned char*>(base);
4292 return true;
4293 }
4294
4295 // Map the file into memory.
4296
4297 void
4298 Output_file::map()
4299 {
4300 if (this->map_no_anonymous())
4301 return;
4302
4303 // The mmap call might fail because of file system issues: the file
4304 // system might not support mmap at all, or it might not support
4305 // mmap with PROT_WRITE. I'm not sure which errno values we will
4306 // see in all cases, so if the mmap fails for any reason and we
4307 // don't care about file contents, try for an anonymous map.
4308 if (this->map_anonymous())
4309 return;
4310
4311 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4312 this->name_, static_cast<unsigned long>(this->file_size_),
4313 strerror(errno));
4314 }
4315
4316 // Unmap the file from memory.
4317
4318 void
4319 Output_file::unmap()
4320 {
4321 if (::munmap(this->base_, this->file_size_) < 0)
4322 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4323 this->base_ = NULL;
4324 }
4325
4326 // Close the output file.
4327
4328 void
4329 Output_file::close()
4330 {
4331 // If the map isn't file-backed, we need to write it now.
4332 if (this->map_is_anonymous_ && !this->is_temporary_)
4333 {
4334 size_t bytes_to_write = this->file_size_;
4335 size_t offset = 0;
4336 while (bytes_to_write > 0)
4337 {
4338 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4339 bytes_to_write);
4340 if (bytes_written == 0)
4341 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4342 else if (bytes_written < 0)
4343 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4344 else
4345 {
4346 bytes_to_write -= bytes_written;
4347 offset += bytes_written;
4348 }
4349 }
4350 }
4351 this->unmap();
4352
4353 // We don't close stdout or stderr
4354 if (this->o_ != STDOUT_FILENO
4355 && this->o_ != STDERR_FILENO
4356 && !this->is_temporary_)
4357 if (::close(this->o_) < 0)
4358 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4359 this->o_ = -1;
4360 }
4361
4362 // Instantiate the templates we need. We could use the configure
4363 // script to restrict this to only the ones for implemented targets.
4364
4365 #ifdef HAVE_TARGET_32_LITTLE
4366 template
4367 off_t
4368 Output_section::add_input_section<32, false>(
4369 Layout* layout,
4370 Sized_relobj<32, false>* object,
4371 unsigned int shndx,
4372 const char* secname,
4373 const elfcpp::Shdr<32, false>& shdr,
4374 unsigned int reloc_shndx,
4375 bool have_sections_script);
4376 #endif
4377
4378 #ifdef HAVE_TARGET_32_BIG
4379 template
4380 off_t
4381 Output_section::add_input_section<32, true>(
4382 Layout* layout,
4383 Sized_relobj<32, true>* object,
4384 unsigned int shndx,
4385 const char* secname,
4386 const elfcpp::Shdr<32, true>& shdr,
4387 unsigned int reloc_shndx,
4388 bool have_sections_script);
4389 #endif
4390
4391 #ifdef HAVE_TARGET_64_LITTLE
4392 template
4393 off_t
4394 Output_section::add_input_section<64, false>(
4395 Layout* layout,
4396 Sized_relobj<64, false>* object,
4397 unsigned int shndx,
4398 const char* secname,
4399 const elfcpp::Shdr<64, false>& shdr,
4400 unsigned int reloc_shndx,
4401 bool have_sections_script);
4402 #endif
4403
4404 #ifdef HAVE_TARGET_64_BIG
4405 template
4406 off_t
4407 Output_section::add_input_section<64, true>(
4408 Layout* layout,
4409 Sized_relobj<64, true>* object,
4410 unsigned int shndx,
4411 const char* secname,
4412 const elfcpp::Shdr<64, true>& shdr,
4413 unsigned int reloc_shndx,
4414 bool have_sections_script);
4415 #endif
4416
4417 #ifdef HAVE_TARGET_32_LITTLE
4418 template
4419 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4420 #endif
4421
4422 #ifdef HAVE_TARGET_32_BIG
4423 template
4424 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4425 #endif
4426
4427 #ifdef HAVE_TARGET_64_LITTLE
4428 template
4429 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4430 #endif
4431
4432 #ifdef HAVE_TARGET_64_BIG
4433 template
4434 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4435 #endif
4436
4437 #ifdef HAVE_TARGET_32_LITTLE
4438 template
4439 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4440 #endif
4441
4442 #ifdef HAVE_TARGET_32_BIG
4443 template
4444 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4445 #endif
4446
4447 #ifdef HAVE_TARGET_64_LITTLE
4448 template
4449 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4450 #endif
4451
4452 #ifdef HAVE_TARGET_64_BIG
4453 template
4454 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4455 #endif
4456
4457 #ifdef HAVE_TARGET_32_LITTLE
4458 template
4459 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4460 #endif
4461
4462 #ifdef HAVE_TARGET_32_BIG
4463 template
4464 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4465 #endif
4466
4467 #ifdef HAVE_TARGET_64_LITTLE
4468 template
4469 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4470 #endif
4471
4472 #ifdef HAVE_TARGET_64_BIG
4473 template
4474 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4475 #endif
4476
4477 #ifdef HAVE_TARGET_32_LITTLE
4478 template
4479 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4480 #endif
4481
4482 #ifdef HAVE_TARGET_32_BIG
4483 template
4484 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4485 #endif
4486
4487 #ifdef HAVE_TARGET_64_LITTLE
4488 template
4489 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4490 #endif
4491
4492 #ifdef HAVE_TARGET_64_BIG
4493 template
4494 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4495 #endif
4496
4497 #ifdef HAVE_TARGET_32_LITTLE
4498 template
4499 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4500 #endif
4501
4502 #ifdef HAVE_TARGET_32_BIG
4503 template
4504 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4505 #endif
4506
4507 #ifdef HAVE_TARGET_64_LITTLE
4508 template
4509 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4510 #endif
4511
4512 #ifdef HAVE_TARGET_64_BIG
4513 template
4514 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4515 #endif
4516
4517 #ifdef HAVE_TARGET_32_LITTLE
4518 template
4519 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4520 #endif
4521
4522 #ifdef HAVE_TARGET_32_BIG
4523 template
4524 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4525 #endif
4526
4527 #ifdef HAVE_TARGET_64_LITTLE
4528 template
4529 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4530 #endif
4531
4532 #ifdef HAVE_TARGET_64_BIG
4533 template
4534 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4535 #endif
4536
4537 #ifdef HAVE_TARGET_32_LITTLE
4538 template
4539 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4540 #endif
4541
4542 #ifdef HAVE_TARGET_32_BIG
4543 template
4544 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4545 #endif
4546
4547 #ifdef HAVE_TARGET_64_LITTLE
4548 template
4549 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4550 #endif
4551
4552 #ifdef HAVE_TARGET_64_BIG
4553 template
4554 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4555 #endif
4556
4557 #ifdef HAVE_TARGET_32_LITTLE
4558 template
4559 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4560 #endif
4561
4562 #ifdef HAVE_TARGET_32_BIG
4563 template
4564 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4565 #endif
4566
4567 #ifdef HAVE_TARGET_64_LITTLE
4568 template
4569 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4570 #endif
4571
4572 #ifdef HAVE_TARGET_64_BIG
4573 template
4574 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4575 #endif
4576
4577 #ifdef HAVE_TARGET_32_LITTLE
4578 template
4579 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4580 #endif
4581
4582 #ifdef HAVE_TARGET_32_BIG
4583 template
4584 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4585 #endif
4586
4587 #ifdef HAVE_TARGET_64_LITTLE
4588 template
4589 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4590 #endif
4591
4592 #ifdef HAVE_TARGET_64_BIG
4593 template
4594 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4595 #endif
4596
4597 #ifdef HAVE_TARGET_32_LITTLE
4598 template
4599 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4600 #endif
4601
4602 #ifdef HAVE_TARGET_32_BIG
4603 template
4604 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4605 #endif
4606
4607 #ifdef HAVE_TARGET_64_LITTLE
4608 template
4609 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4610 #endif
4611
4612 #ifdef HAVE_TARGET_64_BIG
4613 template
4614 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4615 #endif
4616
4617 #ifdef HAVE_TARGET_32_LITTLE
4618 template
4619 class Output_data_group<32, false>;
4620 #endif
4621
4622 #ifdef HAVE_TARGET_32_BIG
4623 template
4624 class Output_data_group<32, true>;
4625 #endif
4626
4627 #ifdef HAVE_TARGET_64_LITTLE
4628 template
4629 class Output_data_group<64, false>;
4630 #endif
4631
4632 #ifdef HAVE_TARGET_64_BIG
4633 template
4634 class Output_data_group<64, true>;
4635 #endif
4636
4637 #ifdef HAVE_TARGET_32_LITTLE
4638 template
4639 class Output_data_got<32, false>;
4640 #endif
4641
4642 #ifdef HAVE_TARGET_32_BIG
4643 template
4644 class Output_data_got<32, true>;
4645 #endif
4646
4647 #ifdef HAVE_TARGET_64_LITTLE
4648 template
4649 class Output_data_got<64, false>;
4650 #endif
4651
4652 #ifdef HAVE_TARGET_64_BIG
4653 template
4654 class Output_data_got<64, true>;
4655 #endif
4656
4657 } // End namespace gold.
This page took 0.145673 seconds and 5 git commands to generate.