* output.cc (Output_fill_debug_info::do_write): Use Swap_unaligned.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate. Here we just set
116 // the file size and hope that there is enough disk space. FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122 return ftruncate(o, offset + len);
123 }
124 #endif // !defined(HAVE_POSIX_FALLOCATE)
125
126 // Mingw does not have S_ISLNK.
127 #ifndef S_ISLNK
128 # define S_ISLNK(mode) 0
129 #endif
130
131 namespace gold
132 {
133
134 // Output_data variables.
135
136 bool Output_data::allocated_sizes_are_fixed;
137
138 // Output_data methods.
139
140 Output_data::~Output_data()
141 {
142 }
143
144 // Return the default alignment for the target size.
145
146 uint64_t
147 Output_data::default_alignment()
148 {
149 return Output_data::default_alignment_for_size(
150 parameters->target().get_size());
151 }
152
153 // Return the default alignment for a size--32 or 64.
154
155 uint64_t
156 Output_data::default_alignment_for_size(int size)
157 {
158 if (size == 32)
159 return 4;
160 else if (size == 64)
161 return 8;
162 else
163 gold_unreachable();
164 }
165
166 // Output_section_header methods. This currently assumes that the
167 // segment and section lists are complete at construction time.
168
169 Output_section_headers::Output_section_headers(
170 const Layout* layout,
171 const Layout::Segment_list* segment_list,
172 const Layout::Section_list* section_list,
173 const Layout::Section_list* unattached_section_list,
174 const Stringpool* secnamepool,
175 const Output_section* shstrtab_section)
176 : layout_(layout),
177 segment_list_(segment_list),
178 section_list_(section_list),
179 unattached_section_list_(unattached_section_list),
180 secnamepool_(secnamepool),
181 shstrtab_section_(shstrtab_section)
182 {
183 }
184
185 // Compute the current data size.
186
187 off_t
188 Output_section_headers::do_size() const
189 {
190 // Count all the sections. Start with 1 for the null section.
191 off_t count = 1;
192 if (!parameters->options().relocatable())
193 {
194 for (Layout::Segment_list::const_iterator p =
195 this->segment_list_->begin();
196 p != this->segment_list_->end();
197 ++p)
198 if ((*p)->type() == elfcpp::PT_LOAD)
199 count += (*p)->output_section_count();
200 }
201 else
202 {
203 for (Layout::Section_list::const_iterator p =
204 this->section_list_->begin();
205 p != this->section_list_->end();
206 ++p)
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208 ++count;
209 }
210 count += this->unattached_section_list_->size();
211
212 const int size = parameters->target().get_size();
213 int shdr_size;
214 if (size == 32)
215 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216 else if (size == 64)
217 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218 else
219 gold_unreachable();
220
221 return count * shdr_size;
222 }
223
224 // Write out the section headers.
225
226 void
227 Output_section_headers::do_write(Output_file* of)
228 {
229 switch (parameters->size_and_endianness())
230 {
231 #ifdef HAVE_TARGET_32_LITTLE
232 case Parameters::TARGET_32_LITTLE:
233 this->do_sized_write<32, false>(of);
234 break;
235 #endif
236 #ifdef HAVE_TARGET_32_BIG
237 case Parameters::TARGET_32_BIG:
238 this->do_sized_write<32, true>(of);
239 break;
240 #endif
241 #ifdef HAVE_TARGET_64_LITTLE
242 case Parameters::TARGET_64_LITTLE:
243 this->do_sized_write<64, false>(of);
244 break;
245 #endif
246 #ifdef HAVE_TARGET_64_BIG
247 case Parameters::TARGET_64_BIG:
248 this->do_sized_write<64, true>(of);
249 break;
250 #endif
251 default:
252 gold_unreachable();
253 }
254 }
255
256 template<int size, bool big_endian>
257 void
258 Output_section_headers::do_sized_write(Output_file* of)
259 {
260 off_t all_shdrs_size = this->data_size();
261 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264 unsigned char* v = view;
265
266 {
267 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268 oshdr.put_sh_name(0);
269 oshdr.put_sh_type(elfcpp::SHT_NULL);
270 oshdr.put_sh_flags(0);
271 oshdr.put_sh_addr(0);
272 oshdr.put_sh_offset(0);
273
274 size_t section_count = (this->data_size()
275 / elfcpp::Elf_sizes<size>::shdr_size);
276 if (section_count < elfcpp::SHN_LORESERVE)
277 oshdr.put_sh_size(0);
278 else
279 oshdr.put_sh_size(section_count);
280
281 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282 if (shstrndx < elfcpp::SHN_LORESERVE)
283 oshdr.put_sh_link(0);
284 else
285 oshdr.put_sh_link(shstrndx);
286
287 size_t segment_count = this->segment_list_->size();
288 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
290 oshdr.put_sh_addralign(0);
291 oshdr.put_sh_entsize(0);
292 }
293
294 v += shdr_size;
295
296 unsigned int shndx = 1;
297 if (!parameters->options().relocatable())
298 {
299 for (Layout::Segment_list::const_iterator p =
300 this->segment_list_->begin();
301 p != this->segment_list_->end();
302 ++p)
303 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304 this->secnamepool_,
305 v,
306 &shndx);
307 }
308 else
309 {
310 for (Layout::Section_list::const_iterator p =
311 this->section_list_->begin();
312 p != this->section_list_->end();
313 ++p)
314 {
315 // We do unallocated sections below, except that group
316 // sections have to come first.
317 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318 && (*p)->type() != elfcpp::SHT_GROUP)
319 continue;
320 gold_assert(shndx == (*p)->out_shndx());
321 elfcpp::Shdr_write<size, big_endian> oshdr(v);
322 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323 v += shdr_size;
324 ++shndx;
325 }
326 }
327
328 for (Layout::Section_list::const_iterator p =
329 this->unattached_section_list_->begin();
330 p != this->unattached_section_list_->end();
331 ++p)
332 {
333 // For a relocatable link, we did unallocated group sections
334 // above, since they have to come first.
335 if ((*p)->type() == elfcpp::SHT_GROUP
336 && parameters->options().relocatable())
337 continue;
338 gold_assert(shndx == (*p)->out_shndx());
339 elfcpp::Shdr_write<size, big_endian> oshdr(v);
340 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
341 v += shdr_size;
342 ++shndx;
343 }
344
345 of->write_output_view(this->offset(), all_shdrs_size, view);
346 }
347
348 // Output_segment_header methods.
349
350 Output_segment_headers::Output_segment_headers(
351 const Layout::Segment_list& segment_list)
352 : segment_list_(segment_list)
353 {
354 this->set_current_data_size_for_child(this->do_size());
355 }
356
357 void
358 Output_segment_headers::do_write(Output_file* of)
359 {
360 switch (parameters->size_and_endianness())
361 {
362 #ifdef HAVE_TARGET_32_LITTLE
363 case Parameters::TARGET_32_LITTLE:
364 this->do_sized_write<32, false>(of);
365 break;
366 #endif
367 #ifdef HAVE_TARGET_32_BIG
368 case Parameters::TARGET_32_BIG:
369 this->do_sized_write<32, true>(of);
370 break;
371 #endif
372 #ifdef HAVE_TARGET_64_LITTLE
373 case Parameters::TARGET_64_LITTLE:
374 this->do_sized_write<64, false>(of);
375 break;
376 #endif
377 #ifdef HAVE_TARGET_64_BIG
378 case Parameters::TARGET_64_BIG:
379 this->do_sized_write<64, true>(of);
380 break;
381 #endif
382 default:
383 gold_unreachable();
384 }
385 }
386
387 template<int size, bool big_endian>
388 void
389 Output_segment_headers::do_sized_write(Output_file* of)
390 {
391 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393 gold_assert(all_phdrs_size == this->data_size());
394 unsigned char* view = of->get_output_view(this->offset(),
395 all_phdrs_size);
396 unsigned char* v = view;
397 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398 p != this->segment_list_.end();
399 ++p)
400 {
401 elfcpp::Phdr_write<size, big_endian> ophdr(v);
402 (*p)->write_header(&ophdr);
403 v += phdr_size;
404 }
405
406 gold_assert(v - view == all_phdrs_size);
407
408 of->write_output_view(this->offset(), all_phdrs_size, view);
409 }
410
411 off_t
412 Output_segment_headers::do_size() const
413 {
414 const int size = parameters->target().get_size();
415 int phdr_size;
416 if (size == 32)
417 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418 else if (size == 64)
419 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420 else
421 gold_unreachable();
422
423 return this->segment_list_.size() * phdr_size;
424 }
425
426 // Output_file_header methods.
427
428 Output_file_header::Output_file_header(const Target* target,
429 const Symbol_table* symtab,
430 const Output_segment_headers* osh)
431 : target_(target),
432 symtab_(symtab),
433 segment_header_(osh),
434 section_header_(NULL),
435 shstrtab_(NULL)
436 {
437 this->set_data_size(this->do_size());
438 }
439
440 // Set the section table information for a file header.
441
442 void
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444 const Output_section* shstrtab)
445 {
446 this->section_header_ = shdrs;
447 this->shstrtab_ = shstrtab;
448 }
449
450 // Write out the file header.
451
452 void
453 Output_file_header::do_write(Output_file* of)
454 {
455 gold_assert(this->offset() == 0);
456
457 switch (parameters->size_and_endianness())
458 {
459 #ifdef HAVE_TARGET_32_LITTLE
460 case Parameters::TARGET_32_LITTLE:
461 this->do_sized_write<32, false>(of);
462 break;
463 #endif
464 #ifdef HAVE_TARGET_32_BIG
465 case Parameters::TARGET_32_BIG:
466 this->do_sized_write<32, true>(of);
467 break;
468 #endif
469 #ifdef HAVE_TARGET_64_LITTLE
470 case Parameters::TARGET_64_LITTLE:
471 this->do_sized_write<64, false>(of);
472 break;
473 #endif
474 #ifdef HAVE_TARGET_64_BIG
475 case Parameters::TARGET_64_BIG:
476 this->do_sized_write<64, true>(of);
477 break;
478 #endif
479 default:
480 gold_unreachable();
481 }
482 }
483
484 // Write out the file header with appropriate size and endianness.
485
486 template<int size, bool big_endian>
487 void
488 Output_file_header::do_sized_write(Output_file* of)
489 {
490 gold_assert(this->offset() == 0);
491
492 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493 unsigned char* view = of->get_output_view(0, ehdr_size);
494 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496 unsigned char e_ident[elfcpp::EI_NIDENT];
497 memset(e_ident, 0, elfcpp::EI_NIDENT);
498 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502 if (size == 32)
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504 else if (size == 64)
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506 else
507 gold_unreachable();
508 e_ident[elfcpp::EI_DATA] = (big_endian
509 ? elfcpp::ELFDATA2MSB
510 : elfcpp::ELFDATA2LSB);
511 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512 oehdr.put_e_ident(e_ident);
513
514 elfcpp::ET e_type;
515 if (parameters->options().relocatable())
516 e_type = elfcpp::ET_REL;
517 else if (parameters->options().output_is_position_independent())
518 e_type = elfcpp::ET_DYN;
519 else
520 e_type = elfcpp::ET_EXEC;
521 oehdr.put_e_type(e_type);
522
523 oehdr.put_e_machine(this->target_->machine_code());
524 oehdr.put_e_version(elfcpp::EV_CURRENT);
525
526 oehdr.put_e_entry(this->entry<size>());
527
528 if (this->segment_header_ == NULL)
529 oehdr.put_e_phoff(0);
530 else
531 oehdr.put_e_phoff(this->segment_header_->offset());
532
533 oehdr.put_e_shoff(this->section_header_->offset());
534 oehdr.put_e_flags(this->target_->processor_specific_flags());
535 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
537 if (this->segment_header_ == NULL)
538 {
539 oehdr.put_e_phentsize(0);
540 oehdr.put_e_phnum(0);
541 }
542 else
543 {
544 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545 size_t phnum = (this->segment_header_->data_size()
546 / elfcpp::Elf_sizes<size>::phdr_size);
547 if (phnum > elfcpp::PN_XNUM)
548 phnum = elfcpp::PN_XNUM;
549 oehdr.put_e_phnum(phnum);
550 }
551
552 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553 size_t section_count = (this->section_header_->data_size()
554 / elfcpp::Elf_sizes<size>::shdr_size);
555
556 if (section_count < elfcpp::SHN_LORESERVE)
557 oehdr.put_e_shnum(this->section_header_->data_size()
558 / elfcpp::Elf_sizes<size>::shdr_size);
559 else
560 oehdr.put_e_shnum(0);
561
562 unsigned int shstrndx = this->shstrtab_->out_shndx();
563 if (shstrndx < elfcpp::SHN_LORESERVE)
564 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565 else
566 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
568 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569 // the e_ident field.
570 parameters->target().adjust_elf_header(view, ehdr_size);
571
572 of->write_output_view(0, ehdr_size, view);
573 }
574
575 // Return the value to use for the entry address.
576
577 template<int size>
578 typename elfcpp::Elf_types<size>::Elf_Addr
579 Output_file_header::entry()
580 {
581 const bool should_issue_warning = (parameters->options().entry() != NULL
582 && !parameters->options().relocatable()
583 && !parameters->options().shared());
584 const char* entry = parameters->entry();
585 Symbol* sym = this->symtab_->lookup(entry);
586
587 typename Sized_symbol<size>::Value_type v;
588 if (sym != NULL)
589 {
590 Sized_symbol<size>* ssym;
591 ssym = this->symtab_->get_sized_symbol<size>(sym);
592 if (!ssym->is_defined() && should_issue_warning)
593 gold_warning("entry symbol '%s' exists but is not defined", entry);
594 v = ssym->value();
595 }
596 else
597 {
598 // We couldn't find the entry symbol. See if we can parse it as
599 // a number. This supports, e.g., -e 0x1000.
600 char* endptr;
601 v = strtoull(entry, &endptr, 0);
602 if (*endptr != '\0')
603 {
604 if (should_issue_warning)
605 gold_warning("cannot find entry symbol '%s'", entry);
606 v = 0;
607 }
608 }
609
610 return v;
611 }
612
613 // Compute the current data size.
614
615 off_t
616 Output_file_header::do_size() const
617 {
618 const int size = parameters->target().get_size();
619 if (size == 32)
620 return elfcpp::Elf_sizes<32>::ehdr_size;
621 else if (size == 64)
622 return elfcpp::Elf_sizes<64>::ehdr_size;
623 else
624 gold_unreachable();
625 }
626
627 // Output_data_const methods.
628
629 void
630 Output_data_const::do_write(Output_file* of)
631 {
632 of->write(this->offset(), this->data_.data(), this->data_.size());
633 }
634
635 // Output_data_const_buffer methods.
636
637 void
638 Output_data_const_buffer::do_write(Output_file* of)
639 {
640 of->write(this->offset(), this->p_, this->data_size());
641 }
642
643 // Output_section_data methods.
644
645 // Record the output section, and set the entry size and such.
646
647 void
648 Output_section_data::set_output_section(Output_section* os)
649 {
650 gold_assert(this->output_section_ == NULL);
651 this->output_section_ = os;
652 this->do_adjust_output_section(os);
653 }
654
655 // Return the section index of the output section.
656
657 unsigned int
658 Output_section_data::do_out_shndx() const
659 {
660 gold_assert(this->output_section_ != NULL);
661 return this->output_section_->out_shndx();
662 }
663
664 // Set the alignment, which means we may need to update the alignment
665 // of the output section.
666
667 void
668 Output_section_data::set_addralign(uint64_t addralign)
669 {
670 this->addralign_ = addralign;
671 if (this->output_section_ != NULL
672 && this->output_section_->addralign() < addralign)
673 this->output_section_->set_addralign(addralign);
674 }
675
676 // Output_data_strtab methods.
677
678 // Set the final data size.
679
680 void
681 Output_data_strtab::set_final_data_size()
682 {
683 this->strtab_->set_string_offsets();
684 this->set_data_size(this->strtab_->get_strtab_size());
685 }
686
687 // Write out a string table.
688
689 void
690 Output_data_strtab::do_write(Output_file* of)
691 {
692 this->strtab_->write(of, this->offset());
693 }
694
695 // Output_reloc methods.
696
697 // A reloc against a global symbol.
698
699 template<bool dynamic, int size, bool big_endian>
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701 Symbol* gsym,
702 unsigned int type,
703 Output_data* od,
704 Address address,
705 bool is_relative,
706 bool is_symbolless)
707 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708 is_relative_(is_relative), is_symbolless_(is_symbolless),
709 is_section_symbol_(false), shndx_(INVALID_CODE)
710 {
711 // this->type_ is a bitfield; make sure TYPE fits.
712 gold_assert(this->type_ == type);
713 this->u1_.gsym = gsym;
714 this->u2_.od = od;
715 if (dynamic)
716 this->set_needs_dynsym_index();
717 }
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721 Symbol* gsym,
722 unsigned int type,
723 Sized_relobj<size, big_endian>* relobj,
724 unsigned int shndx,
725 Address address,
726 bool is_relative,
727 bool is_symbolless)
728 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729 is_relative_(is_relative), is_symbolless_(is_symbolless),
730 is_section_symbol_(false), shndx_(shndx)
731 {
732 gold_assert(shndx != INVALID_CODE);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.relobj = relobj;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 }
740
741 // A reloc against a local symbol.
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index,
747 unsigned int type,
748 Output_data* od,
749 Address address,
750 bool is_relative,
751 bool is_symbolless,
752 bool is_section_symbol)
753 : address_(address), local_sym_index_(local_sym_index), type_(type),
754 is_relative_(is_relative), is_symbolless_(is_symbolless),
755 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
756 {
757 gold_assert(local_sym_index != GSYM_CODE
758 && local_sym_index != INVALID_CODE);
759 // this->type_ is a bitfield; make sure TYPE fits.
760 gold_assert(this->type_ == type);
761 this->u1_.relobj = relobj;
762 this->u2_.od = od;
763 if (dynamic)
764 this->set_needs_dynsym_index();
765 }
766
767 template<bool dynamic, int size, bool big_endian>
768 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
769 Sized_relobj<size, big_endian>* relobj,
770 unsigned int local_sym_index,
771 unsigned int type,
772 unsigned int shndx,
773 Address address,
774 bool is_relative,
775 bool is_symbolless,
776 bool is_section_symbol)
777 : address_(address), local_sym_index_(local_sym_index), type_(type),
778 is_relative_(is_relative), is_symbolless_(is_symbolless),
779 is_section_symbol_(is_section_symbol), shndx_(shndx)
780 {
781 gold_assert(local_sym_index != GSYM_CODE
782 && local_sym_index != INVALID_CODE);
783 gold_assert(shndx != INVALID_CODE);
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_ == type);
786 this->u1_.relobj = relobj;
787 this->u2_.relobj = relobj;
788 if (dynamic)
789 this->set_needs_dynsym_index();
790 }
791
792 // A reloc against the STT_SECTION symbol of an output section.
793
794 template<bool dynamic, int size, bool big_endian>
795 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
796 Output_section* os,
797 unsigned int type,
798 Output_data* od,
799 Address address)
800 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
801 is_relative_(false), is_symbolless_(false),
802 is_section_symbol_(true), shndx_(INVALID_CODE)
803 {
804 // this->type_ is a bitfield; make sure TYPE fits.
805 gold_assert(this->type_ == type);
806 this->u1_.os = os;
807 this->u2_.od = od;
808 if (dynamic)
809 this->set_needs_dynsym_index();
810 else
811 os->set_needs_symtab_index();
812 }
813
814 template<bool dynamic, int size, bool big_endian>
815 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
816 Output_section* os,
817 unsigned int type,
818 Sized_relobj<size, big_endian>* relobj,
819 unsigned int shndx,
820 Address address)
821 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
822 is_relative_(false), is_symbolless_(false),
823 is_section_symbol_(true), shndx_(shndx)
824 {
825 gold_assert(shndx != INVALID_CODE);
826 // this->type_ is a bitfield; make sure TYPE fits.
827 gold_assert(this->type_ == type);
828 this->u1_.os = os;
829 this->u2_.relobj = relobj;
830 if (dynamic)
831 this->set_needs_dynsym_index();
832 else
833 os->set_needs_symtab_index();
834 }
835
836 // An absolute relocation.
837
838 template<bool dynamic, int size, bool big_endian>
839 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
840 unsigned int type,
841 Output_data* od,
842 Address address)
843 : address_(address), local_sym_index_(0), type_(type),
844 is_relative_(false), is_symbolless_(false),
845 is_section_symbol_(false), shndx_(INVALID_CODE)
846 {
847 // this->type_ is a bitfield; make sure TYPE fits.
848 gold_assert(this->type_ == type);
849 this->u1_.relobj = NULL;
850 this->u2_.od = od;
851 }
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Sized_relobj<size, big_endian>* relobj,
857 unsigned int shndx,
858 Address address)
859 : address_(address), local_sym_index_(0), type_(type),
860 is_relative_(false), is_symbolless_(false),
861 is_section_symbol_(false), shndx_(shndx)
862 {
863 gold_assert(shndx != INVALID_CODE);
864 // this->type_ is a bitfield; make sure TYPE fits.
865 gold_assert(this->type_ == type);
866 this->u1_.relobj = NULL;
867 this->u2_.relobj = relobj;
868 }
869
870 // A target specific relocation.
871
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 unsigned int type,
875 void* arg,
876 Output_data* od,
877 Address address)
878 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
879 is_relative_(false), is_symbolless_(false),
880 is_section_symbol_(false), shndx_(INVALID_CODE)
881 {
882 // this->type_ is a bitfield; make sure TYPE fits.
883 gold_assert(this->type_ == type);
884 this->u1_.arg = arg;
885 this->u2_.od = od;
886 }
887
888 template<bool dynamic, int size, bool big_endian>
889 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
890 unsigned int type,
891 void* arg,
892 Sized_relobj<size, big_endian>* relobj,
893 unsigned int shndx,
894 Address address)
895 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896 is_relative_(false), is_symbolless_(false),
897 is_section_symbol_(false), shndx_(shndx)
898 {
899 gold_assert(shndx != INVALID_CODE);
900 // this->type_ is a bitfield; make sure TYPE fits.
901 gold_assert(this->type_ == type);
902 this->u1_.arg = arg;
903 this->u2_.relobj = relobj;
904 }
905
906 // Record that we need a dynamic symbol index for this relocation.
907
908 template<bool dynamic, int size, bool big_endian>
909 void
910 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
911 set_needs_dynsym_index()
912 {
913 if (this->is_symbolless_)
914 return;
915 switch (this->local_sym_index_)
916 {
917 case INVALID_CODE:
918 gold_unreachable();
919
920 case GSYM_CODE:
921 this->u1_.gsym->set_needs_dynsym_entry();
922 break;
923
924 case SECTION_CODE:
925 this->u1_.os->set_needs_dynsym_index();
926 break;
927
928 case TARGET_CODE:
929 // The target must take care of this if necessary.
930 break;
931
932 case 0:
933 break;
934
935 default:
936 {
937 const unsigned int lsi = this->local_sym_index_;
938 Sized_relobj_file<size, big_endian>* relobj =
939 this->u1_.relobj->sized_relobj();
940 gold_assert(relobj != NULL);
941 if (!this->is_section_symbol_)
942 relobj->set_needs_output_dynsym_entry(lsi);
943 else
944 relobj->output_section(lsi)->set_needs_dynsym_index();
945 }
946 break;
947 }
948 }
949
950 // Get the symbol index of a relocation.
951
952 template<bool dynamic, int size, bool big_endian>
953 unsigned int
954 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
955 const
956 {
957 unsigned int index;
958 if (this->is_symbolless_)
959 return 0;
960 switch (this->local_sym_index_)
961 {
962 case INVALID_CODE:
963 gold_unreachable();
964
965 case GSYM_CODE:
966 if (this->u1_.gsym == NULL)
967 index = 0;
968 else if (dynamic)
969 index = this->u1_.gsym->dynsym_index();
970 else
971 index = this->u1_.gsym->symtab_index();
972 break;
973
974 case SECTION_CODE:
975 if (dynamic)
976 index = this->u1_.os->dynsym_index();
977 else
978 index = this->u1_.os->symtab_index();
979 break;
980
981 case TARGET_CODE:
982 index = parameters->target().reloc_symbol_index(this->u1_.arg,
983 this->type_);
984 break;
985
986 case 0:
987 // Relocations without symbols use a symbol index of 0.
988 index = 0;
989 break;
990
991 default:
992 {
993 const unsigned int lsi = this->local_sym_index_;
994 Sized_relobj_file<size, big_endian>* relobj =
995 this->u1_.relobj->sized_relobj();
996 gold_assert(relobj != NULL);
997 if (!this->is_section_symbol_)
998 {
999 if (dynamic)
1000 index = relobj->dynsym_index(lsi);
1001 else
1002 index = relobj->symtab_index(lsi);
1003 }
1004 else
1005 {
1006 Output_section* os = relobj->output_section(lsi);
1007 gold_assert(os != NULL);
1008 if (dynamic)
1009 index = os->dynsym_index();
1010 else
1011 index = os->symtab_index();
1012 }
1013 }
1014 break;
1015 }
1016 gold_assert(index != -1U);
1017 return index;
1018 }
1019
1020 // For a local section symbol, get the address of the offset ADDEND
1021 // within the input section.
1022
1023 template<bool dynamic, int size, bool big_endian>
1024 typename elfcpp::Elf_types<size>::Elf_Addr
1025 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1026 local_section_offset(Addend addend) const
1027 {
1028 gold_assert(this->local_sym_index_ != GSYM_CODE
1029 && this->local_sym_index_ != SECTION_CODE
1030 && this->local_sym_index_ != TARGET_CODE
1031 && this->local_sym_index_ != INVALID_CODE
1032 && this->local_sym_index_ != 0
1033 && this->is_section_symbol_);
1034 const unsigned int lsi = this->local_sym_index_;
1035 Output_section* os = this->u1_.relobj->output_section(lsi);
1036 gold_assert(os != NULL);
1037 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1038 if (offset != invalid_address)
1039 return offset + addend;
1040 // This is a merge section.
1041 Sized_relobj_file<size, big_endian>* relobj =
1042 this->u1_.relobj->sized_relobj();
1043 gold_assert(relobj != NULL);
1044 offset = os->output_address(relobj, lsi, addend);
1045 gold_assert(offset != invalid_address);
1046 return offset;
1047 }
1048
1049 // Get the output address of a relocation.
1050
1051 template<bool dynamic, int size, bool big_endian>
1052 typename elfcpp::Elf_types<size>::Elf_Addr
1053 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1054 {
1055 Address address = this->address_;
1056 if (this->shndx_ != INVALID_CODE)
1057 {
1058 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1059 gold_assert(os != NULL);
1060 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1061 if (off != invalid_address)
1062 address += os->address() + off;
1063 else
1064 {
1065 Sized_relobj_file<size, big_endian>* relobj =
1066 this->u2_.relobj->sized_relobj();
1067 gold_assert(relobj != NULL);
1068 address = os->output_address(relobj, this->shndx_, address);
1069 gold_assert(address != invalid_address);
1070 }
1071 }
1072 else if (this->u2_.od != NULL)
1073 address += this->u2_.od->address();
1074 return address;
1075 }
1076
1077 // Write out the offset and info fields of a Rel or Rela relocation
1078 // entry.
1079
1080 template<bool dynamic, int size, bool big_endian>
1081 template<typename Write_rel>
1082 void
1083 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1084 Write_rel* wr) const
1085 {
1086 wr->put_r_offset(this->get_address());
1087 unsigned int sym_index = this->get_symbol_index();
1088 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1089 }
1090
1091 // Write out a Rel relocation.
1092
1093 template<bool dynamic, int size, bool big_endian>
1094 void
1095 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1096 unsigned char* pov) const
1097 {
1098 elfcpp::Rel_write<size, big_endian> orel(pov);
1099 this->write_rel(&orel);
1100 }
1101
1102 // Get the value of the symbol referred to by a Rel relocation.
1103
1104 template<bool dynamic, int size, bool big_endian>
1105 typename elfcpp::Elf_types<size>::Elf_Addr
1106 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1107 Addend addend) const
1108 {
1109 if (this->local_sym_index_ == GSYM_CODE)
1110 {
1111 const Sized_symbol<size>* sym;
1112 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1113 return sym->value() + addend;
1114 }
1115 gold_assert(this->local_sym_index_ != SECTION_CODE
1116 && this->local_sym_index_ != TARGET_CODE
1117 && this->local_sym_index_ != INVALID_CODE
1118 && this->local_sym_index_ != 0
1119 && !this->is_section_symbol_);
1120 const unsigned int lsi = this->local_sym_index_;
1121 Sized_relobj_file<size, big_endian>* relobj =
1122 this->u1_.relobj->sized_relobj();
1123 gold_assert(relobj != NULL);
1124 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1125 return symval->value(relobj, addend);
1126 }
1127
1128 // Reloc comparison. This function sorts the dynamic relocs for the
1129 // benefit of the dynamic linker. First we sort all relative relocs
1130 // to the front. Among relative relocs, we sort by output address.
1131 // Among non-relative relocs, we sort by symbol index, then by output
1132 // address.
1133
1134 template<bool dynamic, int size, bool big_endian>
1135 int
1136 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1137 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1138 const
1139 {
1140 if (this->is_relative_)
1141 {
1142 if (!r2.is_relative_)
1143 return -1;
1144 // Otherwise sort by reloc address below.
1145 }
1146 else if (r2.is_relative_)
1147 return 1;
1148 else
1149 {
1150 unsigned int sym1 = this->get_symbol_index();
1151 unsigned int sym2 = r2.get_symbol_index();
1152 if (sym1 < sym2)
1153 return -1;
1154 else if (sym1 > sym2)
1155 return 1;
1156 // Otherwise sort by reloc address.
1157 }
1158
1159 section_offset_type addr1 = this->get_address();
1160 section_offset_type addr2 = r2.get_address();
1161 if (addr1 < addr2)
1162 return -1;
1163 else if (addr1 > addr2)
1164 return 1;
1165
1166 // Final tie breaker, in order to generate the same output on any
1167 // host: reloc type.
1168 unsigned int type1 = this->type_;
1169 unsigned int type2 = r2.type_;
1170 if (type1 < type2)
1171 return -1;
1172 else if (type1 > type2)
1173 return 1;
1174
1175 // These relocs appear to be exactly the same.
1176 return 0;
1177 }
1178
1179 // Write out a Rela relocation.
1180
1181 template<bool dynamic, int size, bool big_endian>
1182 void
1183 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1184 unsigned char* pov) const
1185 {
1186 elfcpp::Rela_write<size, big_endian> orel(pov);
1187 this->rel_.write_rel(&orel);
1188 Addend addend = this->addend_;
1189 if (this->rel_.is_target_specific())
1190 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1191 this->rel_.type(), addend);
1192 else if (this->rel_.is_symbolless())
1193 addend = this->rel_.symbol_value(addend);
1194 else if (this->rel_.is_local_section_symbol())
1195 addend = this->rel_.local_section_offset(addend);
1196 orel.put_r_addend(addend);
1197 }
1198
1199 // Output_data_reloc_base methods.
1200
1201 // Adjust the output section.
1202
1203 template<int sh_type, bool dynamic, int size, bool big_endian>
1204 void
1205 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1206 ::do_adjust_output_section(Output_section* os)
1207 {
1208 if (sh_type == elfcpp::SHT_REL)
1209 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1210 else if (sh_type == elfcpp::SHT_RELA)
1211 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1212 else
1213 gold_unreachable();
1214
1215 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1216 // static link. The backends will generate a dynamic reloc section
1217 // to hold this. In that case we don't want to link to the dynsym
1218 // section, because there isn't one.
1219 if (!dynamic)
1220 os->set_should_link_to_symtab();
1221 else if (parameters->doing_static_link())
1222 ;
1223 else
1224 os->set_should_link_to_dynsym();
1225 }
1226
1227 // Write out relocation data.
1228
1229 template<int sh_type, bool dynamic, int size, bool big_endian>
1230 void
1231 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1232 Output_file* of)
1233 {
1234 const off_t off = this->offset();
1235 const off_t oview_size = this->data_size();
1236 unsigned char* const oview = of->get_output_view(off, oview_size);
1237
1238 if (this->sort_relocs())
1239 {
1240 gold_assert(dynamic);
1241 std::sort(this->relocs_.begin(), this->relocs_.end(),
1242 Sort_relocs_comparison());
1243 }
1244
1245 unsigned char* pov = oview;
1246 for (typename Relocs::const_iterator p = this->relocs_.begin();
1247 p != this->relocs_.end();
1248 ++p)
1249 {
1250 p->write(pov);
1251 pov += reloc_size;
1252 }
1253
1254 gold_assert(pov - oview == oview_size);
1255
1256 of->write_output_view(off, oview_size, oview);
1257
1258 // We no longer need the relocation entries.
1259 this->relocs_.clear();
1260 }
1261
1262 // Class Output_relocatable_relocs.
1263
1264 template<int sh_type, int size, bool big_endian>
1265 void
1266 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1267 {
1268 this->set_data_size(this->rr_->output_reloc_count()
1269 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1270 }
1271
1272 // class Output_data_group.
1273
1274 template<int size, bool big_endian>
1275 Output_data_group<size, big_endian>::Output_data_group(
1276 Sized_relobj_file<size, big_endian>* relobj,
1277 section_size_type entry_count,
1278 elfcpp::Elf_Word flags,
1279 std::vector<unsigned int>* input_shndxes)
1280 : Output_section_data(entry_count * 4, 4, false),
1281 relobj_(relobj),
1282 flags_(flags)
1283 {
1284 this->input_shndxes_.swap(*input_shndxes);
1285 }
1286
1287 // Write out the section group, which means translating the section
1288 // indexes to apply to the output file.
1289
1290 template<int size, bool big_endian>
1291 void
1292 Output_data_group<size, big_endian>::do_write(Output_file* of)
1293 {
1294 const off_t off = this->offset();
1295 const section_size_type oview_size =
1296 convert_to_section_size_type(this->data_size());
1297 unsigned char* const oview = of->get_output_view(off, oview_size);
1298
1299 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1300 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1301 ++contents;
1302
1303 for (std::vector<unsigned int>::const_iterator p =
1304 this->input_shndxes_.begin();
1305 p != this->input_shndxes_.end();
1306 ++p, ++contents)
1307 {
1308 Output_section* os = this->relobj_->output_section(*p);
1309
1310 unsigned int output_shndx;
1311 if (os != NULL)
1312 output_shndx = os->out_shndx();
1313 else
1314 {
1315 this->relobj_->error(_("section group retained but "
1316 "group element discarded"));
1317 output_shndx = 0;
1318 }
1319
1320 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1321 }
1322
1323 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1324 gold_assert(wrote == oview_size);
1325
1326 of->write_output_view(off, oview_size, oview);
1327
1328 // We no longer need this information.
1329 this->input_shndxes_.clear();
1330 }
1331
1332 // Output_data_got::Got_entry methods.
1333
1334 // Write out the entry.
1335
1336 template<int size, bool big_endian>
1337 void
1338 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1339 {
1340 Valtype val = 0;
1341
1342 switch (this->local_sym_index_)
1343 {
1344 case GSYM_CODE:
1345 {
1346 // If the symbol is resolved locally, we need to write out the
1347 // link-time value, which will be relocated dynamically by a
1348 // RELATIVE relocation.
1349 Symbol* gsym = this->u_.gsym;
1350 if (this->use_plt_offset_ && gsym->has_plt_offset())
1351 val = (parameters->target().plt_address_for_global(gsym)
1352 + gsym->plt_offset());
1353 else
1354 {
1355 Sized_symbol<size>* sgsym;
1356 // This cast is a bit ugly. We don't want to put a
1357 // virtual method in Symbol, because we want Symbol to be
1358 // as small as possible.
1359 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1360 val = sgsym->value();
1361 }
1362 }
1363 break;
1364
1365 case CONSTANT_CODE:
1366 val = this->u_.constant;
1367 break;
1368
1369 case RESERVED_CODE:
1370 // If we're doing an incremental update, don't touch this GOT entry.
1371 if (parameters->incremental_update())
1372 return;
1373 val = this->u_.constant;
1374 break;
1375
1376 default:
1377 {
1378 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1379 const unsigned int lsi = this->local_sym_index_;
1380 const Symbol_value<size>* symval = object->local_symbol(lsi);
1381 if (!this->use_plt_offset_)
1382 val = symval->value(this->u_.object, 0);
1383 else
1384 {
1385 uint64_t plt_address =
1386 parameters->target().plt_address_for_local(object, lsi);
1387 val = plt_address + object->local_plt_offset(lsi);
1388 }
1389 }
1390 break;
1391 }
1392
1393 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1394 }
1395
1396 // Output_data_got methods.
1397
1398 // Add an entry for a global symbol to the GOT. This returns true if
1399 // this is a new GOT entry, false if the symbol already had a GOT
1400 // entry.
1401
1402 template<int size, bool big_endian>
1403 bool
1404 Output_data_got<size, big_endian>::add_global(
1405 Symbol* gsym,
1406 unsigned int got_type)
1407 {
1408 if (gsym->has_got_offset(got_type))
1409 return false;
1410
1411 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1412 gsym->set_got_offset(got_type, got_offset);
1413 return true;
1414 }
1415
1416 // Like add_global, but use the PLT offset.
1417
1418 template<int size, bool big_endian>
1419 bool
1420 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1421 unsigned int got_type)
1422 {
1423 if (gsym->has_got_offset(got_type))
1424 return false;
1425
1426 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1427 gsym->set_got_offset(got_type, got_offset);
1428 return true;
1429 }
1430
1431 // Add an entry for a global symbol to the GOT, and add a dynamic
1432 // relocation of type R_TYPE for the GOT entry.
1433
1434 template<int size, bool big_endian>
1435 void
1436 Output_data_got<size, big_endian>::add_global_with_rel(
1437 Symbol* gsym,
1438 unsigned int got_type,
1439 Rel_dyn* rel_dyn,
1440 unsigned int r_type)
1441 {
1442 if (gsym->has_got_offset(got_type))
1443 return;
1444
1445 unsigned int got_offset = this->add_got_entry(Got_entry());
1446 gsym->set_got_offset(got_type, got_offset);
1447 rel_dyn->add_global(gsym, r_type, this, got_offset);
1448 }
1449
1450 template<int size, bool big_endian>
1451 void
1452 Output_data_got<size, big_endian>::add_global_with_rela(
1453 Symbol* gsym,
1454 unsigned int got_type,
1455 Rela_dyn* rela_dyn,
1456 unsigned int r_type)
1457 {
1458 if (gsym->has_got_offset(got_type))
1459 return;
1460
1461 unsigned int got_offset = this->add_got_entry(Got_entry());
1462 gsym->set_got_offset(got_type, got_offset);
1463 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a global symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1472 Symbol* gsym,
1473 unsigned int got_type,
1474 Rel_dyn* rel_dyn,
1475 unsigned int r_type_1,
1476 unsigned int r_type_2)
1477 {
1478 if (gsym->has_got_offset(got_type))
1479 return;
1480
1481 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1482 gsym->set_got_offset(got_type, got_offset);
1483 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1484
1485 if (r_type_2 != 0)
1486 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1487 }
1488
1489 template<int size, bool big_endian>
1490 void
1491 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1492 Symbol* gsym,
1493 unsigned int got_type,
1494 Rela_dyn* rela_dyn,
1495 unsigned int r_type_1,
1496 unsigned int r_type_2)
1497 {
1498 if (gsym->has_got_offset(got_type))
1499 return;
1500
1501 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1502 gsym->set_got_offset(got_type, got_offset);
1503 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1504
1505 if (r_type_2 != 0)
1506 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1507 }
1508
1509 // Add an entry for a local symbol to the GOT. This returns true if
1510 // this is a new GOT entry, false if the symbol already has a GOT
1511 // entry.
1512
1513 template<int size, bool big_endian>
1514 bool
1515 Output_data_got<size, big_endian>::add_local(
1516 Sized_relobj_file<size, big_endian>* object,
1517 unsigned int symndx,
1518 unsigned int got_type)
1519 {
1520 if (object->local_has_got_offset(symndx, got_type))
1521 return false;
1522
1523 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1524 false));
1525 object->set_local_got_offset(symndx, got_type, got_offset);
1526 return true;
1527 }
1528
1529 // Like add_local, but use the PLT offset.
1530
1531 template<int size, bool big_endian>
1532 bool
1533 Output_data_got<size, big_endian>::add_local_plt(
1534 Sized_relobj_file<size, big_endian>* object,
1535 unsigned int symndx,
1536 unsigned int got_type)
1537 {
1538 if (object->local_has_got_offset(symndx, got_type))
1539 return false;
1540
1541 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1542 true));
1543 object->set_local_got_offset(symndx, got_type, got_offset);
1544 return true;
1545 }
1546
1547 // Add an entry for a local symbol to the GOT, and add a dynamic
1548 // relocation of type R_TYPE for the GOT entry.
1549
1550 template<int size, bool big_endian>
1551 void
1552 Output_data_got<size, big_endian>::add_local_with_rel(
1553 Sized_relobj_file<size, big_endian>* object,
1554 unsigned int symndx,
1555 unsigned int got_type,
1556 Rel_dyn* rel_dyn,
1557 unsigned int r_type)
1558 {
1559 if (object->local_has_got_offset(symndx, got_type))
1560 return;
1561
1562 unsigned int got_offset = this->add_got_entry(Got_entry());
1563 object->set_local_got_offset(symndx, got_type, got_offset);
1564 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1565 }
1566
1567 template<int size, bool big_endian>
1568 void
1569 Output_data_got<size, big_endian>::add_local_with_rela(
1570 Sized_relobj_file<size, big_endian>* object,
1571 unsigned int symndx,
1572 unsigned int got_type,
1573 Rela_dyn* rela_dyn,
1574 unsigned int r_type)
1575 {
1576 if (object->local_has_got_offset(symndx, got_type))
1577 return;
1578
1579 unsigned int got_offset = this->add_got_entry(Got_entry());
1580 object->set_local_got_offset(symndx, got_type, got_offset);
1581 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1582 }
1583
1584 // Add a pair of entries for a local symbol to the GOT, and add
1585 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1586 // If R_TYPE_2 == 0, add the second entry with no relocation.
1587 template<int size, bool big_endian>
1588 void
1589 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1590 Sized_relobj_file<size, big_endian>* object,
1591 unsigned int symndx,
1592 unsigned int shndx,
1593 unsigned int got_type,
1594 Rel_dyn* rel_dyn,
1595 unsigned int r_type_1,
1596 unsigned int r_type_2)
1597 {
1598 if (object->local_has_got_offset(symndx, got_type))
1599 return;
1600
1601 unsigned int got_offset =
1602 this->add_got_entry_pair(Got_entry(),
1603 Got_entry(object, symndx, false));
1604 object->set_local_got_offset(symndx, got_type, got_offset);
1605 Output_section* os = object->output_section(shndx);
1606 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1607
1608 if (r_type_2 != 0)
1609 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1610 }
1611
1612 template<int size, bool big_endian>
1613 void
1614 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1615 Sized_relobj_file<size, big_endian>* object,
1616 unsigned int symndx,
1617 unsigned int shndx,
1618 unsigned int got_type,
1619 Rela_dyn* rela_dyn,
1620 unsigned int r_type_1,
1621 unsigned int r_type_2)
1622 {
1623 if (object->local_has_got_offset(symndx, got_type))
1624 return;
1625
1626 unsigned int got_offset =
1627 this->add_got_entry_pair(Got_entry(),
1628 Got_entry(object, symndx, false));
1629 object->set_local_got_offset(symndx, got_type, got_offset);
1630 Output_section* os = object->output_section(shndx);
1631 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1632
1633 if (r_type_2 != 0)
1634 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1635 }
1636
1637 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1638
1639 template<int size, bool big_endian>
1640 void
1641 Output_data_got<size, big_endian>::reserve_local(
1642 unsigned int i,
1643 Sized_relobj<size, big_endian>* object,
1644 unsigned int sym_index,
1645 unsigned int got_type)
1646 {
1647 this->reserve_slot(i);
1648 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1649 }
1650
1651 // Reserve a slot in the GOT for a global symbol.
1652
1653 template<int size, bool big_endian>
1654 void
1655 Output_data_got<size, big_endian>::reserve_global(
1656 unsigned int i,
1657 Symbol* gsym,
1658 unsigned int got_type)
1659 {
1660 this->reserve_slot(i);
1661 gsym->set_got_offset(got_type, this->got_offset(i));
1662 }
1663
1664 // Write out the GOT.
1665
1666 template<int size, bool big_endian>
1667 void
1668 Output_data_got<size, big_endian>::do_write(Output_file* of)
1669 {
1670 const int add = size / 8;
1671
1672 const off_t off = this->offset();
1673 const off_t oview_size = this->data_size();
1674 unsigned char* const oview = of->get_output_view(off, oview_size);
1675
1676 unsigned char* pov = oview;
1677 for (typename Got_entries::const_iterator p = this->entries_.begin();
1678 p != this->entries_.end();
1679 ++p)
1680 {
1681 p->write(pov);
1682 pov += add;
1683 }
1684
1685 gold_assert(pov - oview == oview_size);
1686
1687 of->write_output_view(off, oview_size, oview);
1688
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1691 }
1692
1693 // Create a new GOT entry and return its offset.
1694
1695 template<int size, bool big_endian>
1696 unsigned int
1697 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1698 {
1699 if (!this->is_data_size_valid())
1700 {
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1704 }
1705 else
1706 {
1707 // For an incremental update, find an available slot.
1708 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int size, bool big_endian>
1722 unsigned int
1723 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1724 Got_entry got_entry_2)
1725 {
1726 if (!this->is_data_size_valid())
1727 {
1728 unsigned int got_offset;
1729 this->entries_.push_back(got_entry_1);
1730 got_offset = this->last_got_offset();
1731 this->entries_.push_back(got_entry_2);
1732 this->set_got_size();
1733 return got_offset;
1734 }
1735 else
1736 {
1737 // For an incremental update, find an available pair of slots.
1738 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1739 if (got_offset == -1)
1740 gold_fallback(_("out of patch space (GOT);"
1741 " relink with --incremental-full"));
1742 unsigned int got_index = got_offset / (size / 8);
1743 gold_assert(got_index < this->entries_.size());
1744 this->entries_[got_index] = got_entry_1;
1745 this->entries_[got_index + 1] = got_entry_2;
1746 return static_cast<unsigned int>(got_offset);
1747 }
1748 }
1749
1750 // Output_data_dynamic::Dynamic_entry methods.
1751
1752 // Write out the entry.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Output_data_dynamic::Dynamic_entry::write(
1757 unsigned char* pov,
1758 const Stringpool* pool) const
1759 {
1760 typename elfcpp::Elf_types<size>::Elf_WXword val;
1761 switch (this->offset_)
1762 {
1763 case DYNAMIC_NUMBER:
1764 val = this->u_.val;
1765 break;
1766
1767 case DYNAMIC_SECTION_SIZE:
1768 val = this->u_.od->data_size();
1769 if (this->od2 != NULL)
1770 val += this->od2->data_size();
1771 break;
1772
1773 case DYNAMIC_SYMBOL:
1774 {
1775 const Sized_symbol<size>* s =
1776 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1777 val = s->value();
1778 }
1779 break;
1780
1781 case DYNAMIC_STRING:
1782 val = pool->get_offset(this->u_.str);
1783 break;
1784
1785 default:
1786 val = this->u_.od->address() + this->offset_;
1787 break;
1788 }
1789
1790 elfcpp::Dyn_write<size, big_endian> dw(pov);
1791 dw.put_d_tag(this->tag_);
1792 dw.put_d_val(val);
1793 }
1794
1795 // Output_data_dynamic methods.
1796
1797 // Adjust the output section to set the entry size.
1798
1799 void
1800 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801 {
1802 if (parameters->target().get_size() == 32)
1803 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1804 else if (parameters->target().get_size() == 64)
1805 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806 else
1807 gold_unreachable();
1808 }
1809
1810 // Set the final data size.
1811
1812 void
1813 Output_data_dynamic::set_final_data_size()
1814 {
1815 // Add the terminating entry if it hasn't been added.
1816 // Because of relaxation, we can run this multiple times.
1817 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818 {
1819 int extra = parameters->options().spare_dynamic_tags();
1820 for (int i = 0; i < extra; ++i)
1821 this->add_constant(elfcpp::DT_NULL, 0);
1822 this->add_constant(elfcpp::DT_NULL, 0);
1823 }
1824
1825 int dyn_size;
1826 if (parameters->target().get_size() == 32)
1827 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1828 else if (parameters->target().get_size() == 64)
1829 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830 else
1831 gold_unreachable();
1832 this->set_data_size(this->entries_.size() * dyn_size);
1833 }
1834
1835 // Write out the dynamic entries.
1836
1837 void
1838 Output_data_dynamic::do_write(Output_file* of)
1839 {
1840 switch (parameters->size_and_endianness())
1841 {
1842 #ifdef HAVE_TARGET_32_LITTLE
1843 case Parameters::TARGET_32_LITTLE:
1844 this->sized_write<32, false>(of);
1845 break;
1846 #endif
1847 #ifdef HAVE_TARGET_32_BIG
1848 case Parameters::TARGET_32_BIG:
1849 this->sized_write<32, true>(of);
1850 break;
1851 #endif
1852 #ifdef HAVE_TARGET_64_LITTLE
1853 case Parameters::TARGET_64_LITTLE:
1854 this->sized_write<64, false>(of);
1855 break;
1856 #endif
1857 #ifdef HAVE_TARGET_64_BIG
1858 case Parameters::TARGET_64_BIG:
1859 this->sized_write<64, true>(of);
1860 break;
1861 #endif
1862 default:
1863 gold_unreachable();
1864 }
1865 }
1866
1867 template<int size, bool big_endian>
1868 void
1869 Output_data_dynamic::sized_write(Output_file* of)
1870 {
1871 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
1873 const off_t offset = this->offset();
1874 const off_t oview_size = this->data_size();
1875 unsigned char* const oview = of->get_output_view(offset, oview_size);
1876
1877 unsigned char* pov = oview;
1878 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879 p != this->entries_.end();
1880 ++p)
1881 {
1882 p->write<size, big_endian>(pov, this->pool_);
1883 pov += dyn_size;
1884 }
1885
1886 gold_assert(pov - oview == oview_size);
1887
1888 of->write_output_view(offset, oview_size, oview);
1889
1890 // We no longer need the dynamic entries.
1891 this->entries_.clear();
1892 }
1893
1894 // Class Output_symtab_xindex.
1895
1896 void
1897 Output_symtab_xindex::do_write(Output_file* of)
1898 {
1899 const off_t offset = this->offset();
1900 const off_t oview_size = this->data_size();
1901 unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903 memset(oview, 0, oview_size);
1904
1905 if (parameters->target().is_big_endian())
1906 this->endian_do_write<true>(oview);
1907 else
1908 this->endian_do_write<false>(oview);
1909
1910 of->write_output_view(offset, oview_size, oview);
1911
1912 // We no longer need the data.
1913 this->entries_.clear();
1914 }
1915
1916 template<bool big_endian>
1917 void
1918 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919 {
1920 for (Xindex_entries::const_iterator p = this->entries_.begin();
1921 p != this->entries_.end();
1922 ++p)
1923 {
1924 unsigned int symndx = p->first;
1925 gold_assert(symndx * 4 < this->data_size());
1926 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927 }
1928 }
1929
1930 // Output_fill_debug_info methods.
1931
1932 // Return the minimum size needed for a dummy compilation unit header.
1933
1934 size_t
1935 Output_fill_debug_info::do_minimum_hole_size() const
1936 {
1937 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938 // address_size.
1939 const size_t len = 4 + 2 + 4 + 1;
1940 // For type units, add type_signature, type_offset.
1941 if (this->is_debug_types_)
1942 return len + 8 + 4;
1943 return len;
1944 }
1945
1946 // Write a dummy compilation unit header to fill a hole in the
1947 // .debug_info or .debug_types section.
1948
1949 void
1950 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951 {
1952 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1953 static_cast<long>(off), static_cast<long>(len));
1954
1955 gold_assert(len >= this->do_minimum_hole_size());
1956
1957 unsigned char* const oview = of->get_output_view(off, len);
1958 unsigned char* pov = oview;
1959
1960 // Write header fields: unit_length, version, debug_abbrev_offset,
1961 // address_size.
1962 if (this->is_big_endian())
1963 {
1964 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1965 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1966 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1967 }
1968 else
1969 {
1970 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1971 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1972 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1973 }
1974 pov += 4 + 2 + 4;
1975 *pov++ = 4;
1976
1977 // For type units, the additional header fields -- type_signature,
1978 // type_offset -- can be filled with zeroes.
1979
1980 // Fill the remainder of the free space with zeroes. The first
1981 // zero should tell the consumer there are no DIEs to read in this
1982 // compilation unit.
1983 if (pov < oview + len)
1984 memset(pov, 0, oview + len - pov);
1985
1986 of->write_output_view(off, len, oview);
1987 }
1988
1989 // Output_fill_debug_line methods.
1990
1991 // Return the minimum size needed for a dummy line number program header.
1992
1993 size_t
1994 Output_fill_debug_line::do_minimum_hole_size() const
1995 {
1996 // Line number program header fields: unit_length, version, header_length,
1997 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1998 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1999 const size_t len = 4 + 2 + 4 + this->header_length;
2000 return len;
2001 }
2002
2003 // Write a dummy line number program header to fill a hole in the
2004 // .debug_line section.
2005
2006 void
2007 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2008 {
2009 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2010 static_cast<long>(off), static_cast<long>(len));
2011
2012 gold_assert(len >= this->do_minimum_hole_size());
2013
2014 unsigned char* const oview = of->get_output_view(off, len);
2015 unsigned char* pov = oview;
2016
2017 // Write header fields: unit_length, version, header_length,
2018 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2019 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2020 // We set the header_length field to cover the entire hole, so the
2021 // line number program is empty.
2022 if (this->is_big_endian())
2023 {
2024 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2025 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2026 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2027 }
2028 else
2029 {
2030 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2031 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2032 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2033 }
2034 pov += 4 + 2 + 4;
2035 *pov++ = 1; // minimum_instruction_length
2036 *pov++ = 0; // default_is_stmt
2037 *pov++ = 0; // line_base
2038 *pov++ = 5; // line_range
2039 *pov++ = 13; // opcode_base
2040 *pov++ = 0; // standard_opcode_lengths[1]
2041 *pov++ = 1; // standard_opcode_lengths[2]
2042 *pov++ = 1; // standard_opcode_lengths[3]
2043 *pov++ = 1; // standard_opcode_lengths[4]
2044 *pov++ = 1; // standard_opcode_lengths[5]
2045 *pov++ = 0; // standard_opcode_lengths[6]
2046 *pov++ = 0; // standard_opcode_lengths[7]
2047 *pov++ = 0; // standard_opcode_lengths[8]
2048 *pov++ = 1; // standard_opcode_lengths[9]
2049 *pov++ = 0; // standard_opcode_lengths[10]
2050 *pov++ = 0; // standard_opcode_lengths[11]
2051 *pov++ = 1; // standard_opcode_lengths[12]
2052 *pov++ = 0; // include_directories (empty)
2053 *pov++ = 0; // filenames (empty)
2054
2055 // Some consumers don't check the header_length field, and simply
2056 // start reading the line number program immediately following the
2057 // header. For those consumers, we fill the remainder of the free
2058 // space with DW_LNS_set_basic_block opcodes. These are effectively
2059 // no-ops: the resulting line table program will not create any rows.
2060 if (pov < oview + len)
2061 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2062
2063 of->write_output_view(off, len, oview);
2064 }
2065
2066 // Output_section::Input_section methods.
2067
2068 // Return the current data size. For an input section we store the size here.
2069 // For an Output_section_data, we have to ask it for the size.
2070
2071 off_t
2072 Output_section::Input_section::current_data_size() const
2073 {
2074 if (this->is_input_section())
2075 return this->u1_.data_size;
2076 else
2077 {
2078 this->u2_.posd->pre_finalize_data_size();
2079 return this->u2_.posd->current_data_size();
2080 }
2081 }
2082
2083 // Return the data size. For an input section we store the size here.
2084 // For an Output_section_data, we have to ask it for the size.
2085
2086 off_t
2087 Output_section::Input_section::data_size() const
2088 {
2089 if (this->is_input_section())
2090 return this->u1_.data_size;
2091 else
2092 return this->u2_.posd->data_size();
2093 }
2094
2095 // Return the object for an input section.
2096
2097 Relobj*
2098 Output_section::Input_section::relobj() const
2099 {
2100 if (this->is_input_section())
2101 return this->u2_.object;
2102 else if (this->is_merge_section())
2103 {
2104 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2105 return this->u2_.pomb->first_relobj();
2106 }
2107 else if (this->is_relaxed_input_section())
2108 return this->u2_.poris->relobj();
2109 else
2110 gold_unreachable();
2111 }
2112
2113 // Return the input section index for an input section.
2114
2115 unsigned int
2116 Output_section::Input_section::shndx() const
2117 {
2118 if (this->is_input_section())
2119 return this->shndx_;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_shndx();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->shndx();
2127 else
2128 gold_unreachable();
2129 }
2130
2131 // Set the address and file offset.
2132
2133 void
2134 Output_section::Input_section::set_address_and_file_offset(
2135 uint64_t address,
2136 off_t file_offset,
2137 off_t section_file_offset)
2138 {
2139 if (this->is_input_section())
2140 this->u2_.object->set_section_offset(this->shndx_,
2141 file_offset - section_file_offset);
2142 else
2143 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2144 }
2145
2146 // Reset the address and file offset.
2147
2148 void
2149 Output_section::Input_section::reset_address_and_file_offset()
2150 {
2151 if (!this->is_input_section())
2152 this->u2_.posd->reset_address_and_file_offset();
2153 }
2154
2155 // Finalize the data size.
2156
2157 void
2158 Output_section::Input_section::finalize_data_size()
2159 {
2160 if (!this->is_input_section())
2161 this->u2_.posd->finalize_data_size();
2162 }
2163
2164 // Try to turn an input offset into an output offset. We want to
2165 // return the output offset relative to the start of this
2166 // Input_section in the output section.
2167
2168 inline bool
2169 Output_section::Input_section::output_offset(
2170 const Relobj* object,
2171 unsigned int shndx,
2172 section_offset_type offset,
2173 section_offset_type* poutput) const
2174 {
2175 if (!this->is_input_section())
2176 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2177 else
2178 {
2179 if (this->shndx_ != shndx || this->u2_.object != object)
2180 return false;
2181 *poutput = offset;
2182 return true;
2183 }
2184 }
2185
2186 // Return whether this is the merge section for the input section
2187 // SHNDX in OBJECT.
2188
2189 inline bool
2190 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2191 unsigned int shndx) const
2192 {
2193 if (this->is_input_section())
2194 return false;
2195 return this->u2_.posd->is_merge_section_for(object, shndx);
2196 }
2197
2198 // Write out the data. We don't have to do anything for an input
2199 // section--they are handled via Object::relocate--but this is where
2200 // we write out the data for an Output_section_data.
2201
2202 void
2203 Output_section::Input_section::write(Output_file* of)
2204 {
2205 if (!this->is_input_section())
2206 this->u2_.posd->write(of);
2207 }
2208
2209 // Write the data to a buffer. As for write(), we don't have to do
2210 // anything for an input section.
2211
2212 void
2213 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2214 {
2215 if (!this->is_input_section())
2216 this->u2_.posd->write_to_buffer(buffer);
2217 }
2218
2219 // Print to a map file.
2220
2221 void
2222 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2223 {
2224 switch (this->shndx_)
2225 {
2226 case OUTPUT_SECTION_CODE:
2227 case MERGE_DATA_SECTION_CODE:
2228 case MERGE_STRING_SECTION_CODE:
2229 this->u2_.posd->print_to_mapfile(mapfile);
2230 break;
2231
2232 case RELAXED_INPUT_SECTION_CODE:
2233 {
2234 Output_relaxed_input_section* relaxed_section =
2235 this->relaxed_input_section();
2236 mapfile->print_input_section(relaxed_section->relobj(),
2237 relaxed_section->shndx());
2238 }
2239 break;
2240 default:
2241 mapfile->print_input_section(this->u2_.object, this->shndx_);
2242 break;
2243 }
2244 }
2245
2246 // Output_section methods.
2247
2248 // Construct an Output_section. NAME will point into a Stringpool.
2249
2250 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2251 elfcpp::Elf_Xword flags)
2252 : name_(name),
2253 addralign_(0),
2254 entsize_(0),
2255 load_address_(0),
2256 link_section_(NULL),
2257 link_(0),
2258 info_section_(NULL),
2259 info_symndx_(NULL),
2260 info_(0),
2261 type_(type),
2262 flags_(flags),
2263 order_(ORDER_INVALID),
2264 out_shndx_(-1U),
2265 symtab_index_(0),
2266 dynsym_index_(0),
2267 input_sections_(),
2268 first_input_offset_(0),
2269 fills_(),
2270 postprocessing_buffer_(NULL),
2271 needs_symtab_index_(false),
2272 needs_dynsym_index_(false),
2273 should_link_to_symtab_(false),
2274 should_link_to_dynsym_(false),
2275 after_input_sections_(false),
2276 requires_postprocessing_(false),
2277 found_in_sections_clause_(false),
2278 has_load_address_(false),
2279 info_uses_section_index_(false),
2280 input_section_order_specified_(false),
2281 may_sort_attached_input_sections_(false),
2282 must_sort_attached_input_sections_(false),
2283 attached_input_sections_are_sorted_(false),
2284 is_relro_(false),
2285 is_small_section_(false),
2286 is_large_section_(false),
2287 generate_code_fills_at_write_(false),
2288 is_entsize_zero_(false),
2289 section_offsets_need_adjustment_(false),
2290 is_noload_(false),
2291 always_keeps_input_sections_(false),
2292 has_fixed_layout_(false),
2293 is_patch_space_allowed_(false),
2294 tls_offset_(0),
2295 checkpoint_(NULL),
2296 lookup_maps_(new Output_section_lookup_maps),
2297 free_list_(),
2298 free_space_fill_(NULL),
2299 patch_space_(0)
2300 {
2301 // An unallocated section has no address. Forcing this means that
2302 // we don't need special treatment for symbols defined in debug
2303 // sections.
2304 if ((flags & elfcpp::SHF_ALLOC) == 0)
2305 this->set_address(0);
2306 }
2307
2308 Output_section::~Output_section()
2309 {
2310 delete this->checkpoint_;
2311 }
2312
2313 // Set the entry size.
2314
2315 void
2316 Output_section::set_entsize(uint64_t v)
2317 {
2318 if (this->is_entsize_zero_)
2319 ;
2320 else if (this->entsize_ == 0)
2321 this->entsize_ = v;
2322 else if (this->entsize_ != v)
2323 {
2324 this->entsize_ = 0;
2325 this->is_entsize_zero_ = 1;
2326 }
2327 }
2328
2329 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2330 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2331 // relocation section which applies to this section, or 0 if none, or
2332 // -1U if more than one. Return the offset of the input section
2333 // within the output section. Return -1 if the input section will
2334 // receive special handling. In the normal case we don't always keep
2335 // track of input sections for an Output_section. Instead, each
2336 // Object keeps track of the Output_section for each of its input
2337 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2338 // track of input sections here; this is used when SECTIONS appears in
2339 // a linker script.
2340
2341 template<int size, bool big_endian>
2342 off_t
2343 Output_section::add_input_section(Layout* layout,
2344 Sized_relobj_file<size, big_endian>* object,
2345 unsigned int shndx,
2346 const char* secname,
2347 const elfcpp::Shdr<size, big_endian>& shdr,
2348 unsigned int reloc_shndx,
2349 bool have_sections_script)
2350 {
2351 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2352 if ((addralign & (addralign - 1)) != 0)
2353 {
2354 object->error(_("invalid alignment %lu for section \"%s\""),
2355 static_cast<unsigned long>(addralign), secname);
2356 addralign = 1;
2357 }
2358
2359 if (addralign > this->addralign_)
2360 this->addralign_ = addralign;
2361
2362 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2363 uint64_t entsize = shdr.get_sh_entsize();
2364
2365 // .debug_str is a mergeable string section, but is not always so
2366 // marked by compilers. Mark manually here so we can optimize.
2367 if (strcmp(secname, ".debug_str") == 0)
2368 {
2369 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2370 entsize = 1;
2371 }
2372
2373 this->update_flags_for_input_section(sh_flags);
2374 this->set_entsize(entsize);
2375
2376 // If this is a SHF_MERGE section, we pass all the input sections to
2377 // a Output_data_merge. We don't try to handle relocations for such
2378 // a section. We don't try to handle empty merge sections--they
2379 // mess up the mappings, and are useless anyhow.
2380 // FIXME: Need to handle merge sections during incremental update.
2381 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2382 && reloc_shndx == 0
2383 && shdr.get_sh_size() > 0
2384 && !parameters->incremental())
2385 {
2386 // Keep information about merged input sections for rebuilding fast
2387 // lookup maps if we have sections-script or we do relaxation.
2388 bool keeps_input_sections = (this->always_keeps_input_sections_
2389 || have_sections_script
2390 || parameters->target().may_relax());
2391
2392 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2393 addralign, keeps_input_sections))
2394 {
2395 // Tell the relocation routines that they need to call the
2396 // output_offset method to determine the final address.
2397 return -1;
2398 }
2399 }
2400
2401 section_size_type input_section_size = shdr.get_sh_size();
2402 section_size_type uncompressed_size;
2403 if (object->section_is_compressed(shndx, &uncompressed_size))
2404 input_section_size = uncompressed_size;
2405
2406 off_t offset_in_section;
2407 off_t aligned_offset_in_section;
2408 if (this->has_fixed_layout())
2409 {
2410 // For incremental updates, find a chunk of unused space in the section.
2411 offset_in_section = this->free_list_.allocate(input_section_size,
2412 addralign, 0);
2413 if (offset_in_section == -1)
2414 gold_fallback(_("out of patch space in section %s; "
2415 "relink with --incremental-full"),
2416 this->name());
2417 aligned_offset_in_section = offset_in_section;
2418 }
2419 else
2420 {
2421 offset_in_section = this->current_data_size_for_child();
2422 aligned_offset_in_section = align_address(offset_in_section,
2423 addralign);
2424 this->set_current_data_size_for_child(aligned_offset_in_section
2425 + input_section_size);
2426 }
2427
2428 // Determine if we want to delay code-fill generation until the output
2429 // section is written. When the target is relaxing, we want to delay fill
2430 // generating to avoid adjusting them during relaxation. Also, if we are
2431 // sorting input sections we must delay fill generation.
2432 if (!this->generate_code_fills_at_write_
2433 && !have_sections_script
2434 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2435 && parameters->target().has_code_fill()
2436 && (parameters->target().may_relax()
2437 || layout->is_section_ordering_specified()))
2438 {
2439 gold_assert(this->fills_.empty());
2440 this->generate_code_fills_at_write_ = true;
2441 }
2442
2443 if (aligned_offset_in_section > offset_in_section
2444 && !this->generate_code_fills_at_write_
2445 && !have_sections_script
2446 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2447 && parameters->target().has_code_fill())
2448 {
2449 // We need to add some fill data. Using fill_list_ when
2450 // possible is an optimization, since we will often have fill
2451 // sections without input sections.
2452 off_t fill_len = aligned_offset_in_section - offset_in_section;
2453 if (this->input_sections_.empty())
2454 this->fills_.push_back(Fill(offset_in_section, fill_len));
2455 else
2456 {
2457 std::string fill_data(parameters->target().code_fill(fill_len));
2458 Output_data_const* odc = new Output_data_const(fill_data, 1);
2459 this->input_sections_.push_back(Input_section(odc));
2460 }
2461 }
2462
2463 // We need to keep track of this section if we are already keeping
2464 // track of sections, or if we are relaxing. Also, if this is a
2465 // section which requires sorting, or which may require sorting in
2466 // the future, we keep track of the sections. If the
2467 // --section-ordering-file option is used to specify the order of
2468 // sections, we need to keep track of sections.
2469 if (this->always_keeps_input_sections_
2470 || have_sections_script
2471 || !this->input_sections_.empty()
2472 || this->may_sort_attached_input_sections()
2473 || this->must_sort_attached_input_sections()
2474 || parameters->options().user_set_Map()
2475 || parameters->target().may_relax()
2476 || layout->is_section_ordering_specified())
2477 {
2478 Input_section isecn(object, shndx, input_section_size, addralign);
2479 if (layout->is_section_ordering_specified())
2480 {
2481 unsigned int section_order_index =
2482 layout->find_section_order_index(std::string(secname));
2483 if (section_order_index != 0)
2484 {
2485 isecn.set_section_order_index(section_order_index);
2486 this->set_input_section_order_specified();
2487 }
2488 }
2489 if (this->has_fixed_layout())
2490 {
2491 // For incremental updates, finalize the address and offset now.
2492 uint64_t addr = this->address();
2493 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2494 aligned_offset_in_section,
2495 this->offset());
2496 }
2497 this->input_sections_.push_back(isecn);
2498 }
2499
2500 return aligned_offset_in_section;
2501 }
2502
2503 // Add arbitrary data to an output section.
2504
2505 void
2506 Output_section::add_output_section_data(Output_section_data* posd)
2507 {
2508 Input_section inp(posd);
2509 this->add_output_section_data(&inp);
2510
2511 if (posd->is_data_size_valid())
2512 {
2513 off_t offset_in_section;
2514 if (this->has_fixed_layout())
2515 {
2516 // For incremental updates, find a chunk of unused space.
2517 offset_in_section = this->free_list_.allocate(posd->data_size(),
2518 posd->addralign(), 0);
2519 if (offset_in_section == -1)
2520 gold_fallback(_("out of patch space in section %s; "
2521 "relink with --incremental-full"),
2522 this->name());
2523 // Finalize the address and offset now.
2524 uint64_t addr = this->address();
2525 off_t offset = this->offset();
2526 posd->set_address_and_file_offset(addr + offset_in_section,
2527 offset + offset_in_section);
2528 }
2529 else
2530 {
2531 offset_in_section = this->current_data_size_for_child();
2532 off_t aligned_offset_in_section = align_address(offset_in_section,
2533 posd->addralign());
2534 this->set_current_data_size_for_child(aligned_offset_in_section
2535 + posd->data_size());
2536 }
2537 }
2538 else if (this->has_fixed_layout())
2539 {
2540 // For incremental updates, arrange for the data to have a fixed layout.
2541 // This will mean that additions to the data must be allocated from
2542 // free space within the containing output section.
2543 uint64_t addr = this->address();
2544 posd->set_address(addr);
2545 posd->set_file_offset(0);
2546 // FIXME: This should eventually be unreachable.
2547 // gold_unreachable();
2548 }
2549 }
2550
2551 // Add a relaxed input section.
2552
2553 void
2554 Output_section::add_relaxed_input_section(Layout* layout,
2555 Output_relaxed_input_section* poris,
2556 const std::string& name)
2557 {
2558 Input_section inp(poris);
2559
2560 // If the --section-ordering-file option is used to specify the order of
2561 // sections, we need to keep track of sections.
2562 if (layout->is_section_ordering_specified())
2563 {
2564 unsigned int section_order_index =
2565 layout->find_section_order_index(name);
2566 if (section_order_index != 0)
2567 {
2568 inp.set_section_order_index(section_order_index);
2569 this->set_input_section_order_specified();
2570 }
2571 }
2572
2573 this->add_output_section_data(&inp);
2574 if (this->lookup_maps_->is_valid())
2575 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2576 poris->shndx(), poris);
2577
2578 // For a relaxed section, we use the current data size. Linker scripts
2579 // get all the input sections, including relaxed one from an output
2580 // section and add them back to them same output section to compute the
2581 // output section size. If we do not account for sizes of relaxed input
2582 // sections, an output section would be incorrectly sized.
2583 off_t offset_in_section = this->current_data_size_for_child();
2584 off_t aligned_offset_in_section = align_address(offset_in_section,
2585 poris->addralign());
2586 this->set_current_data_size_for_child(aligned_offset_in_section
2587 + poris->current_data_size());
2588 }
2589
2590 // Add arbitrary data to an output section by Input_section.
2591
2592 void
2593 Output_section::add_output_section_data(Input_section* inp)
2594 {
2595 if (this->input_sections_.empty())
2596 this->first_input_offset_ = this->current_data_size_for_child();
2597
2598 this->input_sections_.push_back(*inp);
2599
2600 uint64_t addralign = inp->addralign();
2601 if (addralign > this->addralign_)
2602 this->addralign_ = addralign;
2603
2604 inp->set_output_section(this);
2605 }
2606
2607 // Add a merge section to an output section.
2608
2609 void
2610 Output_section::add_output_merge_section(Output_section_data* posd,
2611 bool is_string, uint64_t entsize)
2612 {
2613 Input_section inp(posd, is_string, entsize);
2614 this->add_output_section_data(&inp);
2615 }
2616
2617 // Add an input section to a SHF_MERGE section.
2618
2619 bool
2620 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2621 uint64_t flags, uint64_t entsize,
2622 uint64_t addralign,
2623 bool keeps_input_sections)
2624 {
2625 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2626
2627 // We only merge strings if the alignment is not more than the
2628 // character size. This could be handled, but it's unusual.
2629 if (is_string && addralign > entsize)
2630 return false;
2631
2632 // We cannot restore merged input section states.
2633 gold_assert(this->checkpoint_ == NULL);
2634
2635 // Look up merge sections by required properties.
2636 // Currently, we only invalidate the lookup maps in script processing
2637 // and relaxation. We should not have done either when we reach here.
2638 // So we assume that the lookup maps are valid to simply code.
2639 gold_assert(this->lookup_maps_->is_valid());
2640 Merge_section_properties msp(is_string, entsize, addralign);
2641 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2642 bool is_new = false;
2643 if (pomb != NULL)
2644 {
2645 gold_assert(pomb->is_string() == is_string
2646 && pomb->entsize() == entsize
2647 && pomb->addralign() == addralign);
2648 }
2649 else
2650 {
2651 // Create a new Output_merge_data or Output_merge_string_data.
2652 if (!is_string)
2653 pomb = new Output_merge_data(entsize, addralign);
2654 else
2655 {
2656 switch (entsize)
2657 {
2658 case 1:
2659 pomb = new Output_merge_string<char>(addralign);
2660 break;
2661 case 2:
2662 pomb = new Output_merge_string<uint16_t>(addralign);
2663 break;
2664 case 4:
2665 pomb = new Output_merge_string<uint32_t>(addralign);
2666 break;
2667 default:
2668 return false;
2669 }
2670 }
2671 // If we need to do script processing or relaxation, we need to keep
2672 // the original input sections to rebuild the fast lookup maps.
2673 if (keeps_input_sections)
2674 pomb->set_keeps_input_sections();
2675 is_new = true;
2676 }
2677
2678 if (pomb->add_input_section(object, shndx))
2679 {
2680 // Add new merge section to this output section and link merge
2681 // section properties to new merge section in map.
2682 if (is_new)
2683 {
2684 this->add_output_merge_section(pomb, is_string, entsize);
2685 this->lookup_maps_->add_merge_section(msp, pomb);
2686 }
2687
2688 // Add input section to new merge section and link input section to new
2689 // merge section in map.
2690 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2691 return true;
2692 }
2693 else
2694 {
2695 // If add_input_section failed, delete new merge section to avoid
2696 // exporting empty merge sections in Output_section::get_input_section.
2697 if (is_new)
2698 delete pomb;
2699 return false;
2700 }
2701 }
2702
2703 // Build a relaxation map to speed up relaxation of existing input sections.
2704 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2705
2706 void
2707 Output_section::build_relaxation_map(
2708 const Input_section_list& input_sections,
2709 size_t limit,
2710 Relaxation_map* relaxation_map) const
2711 {
2712 for (size_t i = 0; i < limit; ++i)
2713 {
2714 const Input_section& is(input_sections[i]);
2715 if (is.is_input_section() || is.is_relaxed_input_section())
2716 {
2717 Section_id sid(is.relobj(), is.shndx());
2718 (*relaxation_map)[sid] = i;
2719 }
2720 }
2721 }
2722
2723 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2724 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2725 // indices of INPUT_SECTIONS.
2726
2727 void
2728 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2729 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2730 const Relaxation_map& map,
2731 Input_section_list* input_sections)
2732 {
2733 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2734 {
2735 Output_relaxed_input_section* poris = relaxed_sections[i];
2736 Section_id sid(poris->relobj(), poris->shndx());
2737 Relaxation_map::const_iterator p = map.find(sid);
2738 gold_assert(p != map.end());
2739 gold_assert((*input_sections)[p->second].is_input_section());
2740
2741 // Remember section order index of original input section
2742 // if it is set. Copy it to the relaxed input section.
2743 unsigned int soi =
2744 (*input_sections)[p->second].section_order_index();
2745 (*input_sections)[p->second] = Input_section(poris);
2746 (*input_sections)[p->second].set_section_order_index(soi);
2747 }
2748 }
2749
2750 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2751 // is a vector of pointers to Output_relaxed_input_section or its derived
2752 // classes. The relaxed sections must correspond to existing input sections.
2753
2754 void
2755 Output_section::convert_input_sections_to_relaxed_sections(
2756 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2757 {
2758 gold_assert(parameters->target().may_relax());
2759
2760 // We want to make sure that restore_states does not undo the effect of
2761 // this. If there is no checkpoint active, just search the current
2762 // input section list and replace the sections there. If there is
2763 // a checkpoint, also replace the sections there.
2764
2765 // By default, we look at the whole list.
2766 size_t limit = this->input_sections_.size();
2767
2768 if (this->checkpoint_ != NULL)
2769 {
2770 // Replace input sections with relaxed input section in the saved
2771 // copy of the input section list.
2772 if (this->checkpoint_->input_sections_saved())
2773 {
2774 Relaxation_map map;
2775 this->build_relaxation_map(
2776 *(this->checkpoint_->input_sections()),
2777 this->checkpoint_->input_sections()->size(),
2778 &map);
2779 this->convert_input_sections_in_list_to_relaxed_sections(
2780 relaxed_sections,
2781 map,
2782 this->checkpoint_->input_sections());
2783 }
2784 else
2785 {
2786 // We have not copied the input section list yet. Instead, just
2787 // look at the portion that would be saved.
2788 limit = this->checkpoint_->input_sections_size();
2789 }
2790 }
2791
2792 // Convert input sections in input_section_list.
2793 Relaxation_map map;
2794 this->build_relaxation_map(this->input_sections_, limit, &map);
2795 this->convert_input_sections_in_list_to_relaxed_sections(
2796 relaxed_sections,
2797 map,
2798 &this->input_sections_);
2799
2800 // Update fast look-up map.
2801 if (this->lookup_maps_->is_valid())
2802 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2803 {
2804 Output_relaxed_input_section* poris = relaxed_sections[i];
2805 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2806 poris->shndx(), poris);
2807 }
2808 }
2809
2810 // Update the output section flags based on input section flags.
2811
2812 void
2813 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2814 {
2815 // If we created the section with SHF_ALLOC clear, we set the
2816 // address. If we are now setting the SHF_ALLOC flag, we need to
2817 // undo that.
2818 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2819 && (flags & elfcpp::SHF_ALLOC) != 0)
2820 this->mark_address_invalid();
2821
2822 this->flags_ |= (flags
2823 & (elfcpp::SHF_WRITE
2824 | elfcpp::SHF_ALLOC
2825 | elfcpp::SHF_EXECINSTR));
2826
2827 if ((flags & elfcpp::SHF_MERGE) == 0)
2828 this->flags_ &=~ elfcpp::SHF_MERGE;
2829 else
2830 {
2831 if (this->current_data_size_for_child() == 0)
2832 this->flags_ |= elfcpp::SHF_MERGE;
2833 }
2834
2835 if ((flags & elfcpp::SHF_STRINGS) == 0)
2836 this->flags_ &=~ elfcpp::SHF_STRINGS;
2837 else
2838 {
2839 if (this->current_data_size_for_child() == 0)
2840 this->flags_ |= elfcpp::SHF_STRINGS;
2841 }
2842 }
2843
2844 // Find the merge section into which an input section with index SHNDX in
2845 // OBJECT has been added. Return NULL if none found.
2846
2847 Output_section_data*
2848 Output_section::find_merge_section(const Relobj* object,
2849 unsigned int shndx) const
2850 {
2851 if (!this->lookup_maps_->is_valid())
2852 this->build_lookup_maps();
2853 return this->lookup_maps_->find_merge_section(object, shndx);
2854 }
2855
2856 // Build the lookup maps for merge and relaxed sections. This is needs
2857 // to be declared as a const methods so that it is callable with a const
2858 // Output_section pointer. The method only updates states of the maps.
2859
2860 void
2861 Output_section::build_lookup_maps() const
2862 {
2863 this->lookup_maps_->clear();
2864 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2865 p != this->input_sections_.end();
2866 ++p)
2867 {
2868 if (p->is_merge_section())
2869 {
2870 Output_merge_base* pomb = p->output_merge_base();
2871 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2872 pomb->addralign());
2873 this->lookup_maps_->add_merge_section(msp, pomb);
2874 for (Output_merge_base::Input_sections::const_iterator is =
2875 pomb->input_sections_begin();
2876 is != pomb->input_sections_end();
2877 ++is)
2878 {
2879 const Const_section_id& csid = *is;
2880 this->lookup_maps_->add_merge_input_section(csid.first,
2881 csid.second, pomb);
2882 }
2883
2884 }
2885 else if (p->is_relaxed_input_section())
2886 {
2887 Output_relaxed_input_section* poris = p->relaxed_input_section();
2888 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2889 poris->shndx(), poris);
2890 }
2891 }
2892 }
2893
2894 // Find an relaxed input section corresponding to an input section
2895 // in OBJECT with index SHNDX.
2896
2897 const Output_relaxed_input_section*
2898 Output_section::find_relaxed_input_section(const Relobj* object,
2899 unsigned int shndx) const
2900 {
2901 if (!this->lookup_maps_->is_valid())
2902 this->build_lookup_maps();
2903 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2904 }
2905
2906 // Given an address OFFSET relative to the start of input section
2907 // SHNDX in OBJECT, return whether this address is being included in
2908 // the final link. This should only be called if SHNDX in OBJECT has
2909 // a special mapping.
2910
2911 bool
2912 Output_section::is_input_address_mapped(const Relobj* object,
2913 unsigned int shndx,
2914 off_t offset) const
2915 {
2916 // Look at the Output_section_data_maps first.
2917 const Output_section_data* posd = this->find_merge_section(object, shndx);
2918 if (posd == NULL)
2919 posd = this->find_relaxed_input_section(object, shndx);
2920
2921 if (posd != NULL)
2922 {
2923 section_offset_type output_offset;
2924 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2925 gold_assert(found);
2926 return output_offset != -1;
2927 }
2928
2929 // Fall back to the slow look-up.
2930 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2931 p != this->input_sections_.end();
2932 ++p)
2933 {
2934 section_offset_type output_offset;
2935 if (p->output_offset(object, shndx, offset, &output_offset))
2936 return output_offset != -1;
2937 }
2938
2939 // By default we assume that the address is mapped. This should
2940 // only be called after we have passed all sections to Layout. At
2941 // that point we should know what we are discarding.
2942 return true;
2943 }
2944
2945 // Given an address OFFSET relative to the start of input section
2946 // SHNDX in object OBJECT, return the output offset relative to the
2947 // start of the input section in the output section. This should only
2948 // be called if SHNDX in OBJECT has a special mapping.
2949
2950 section_offset_type
2951 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2952 section_offset_type offset) const
2953 {
2954 // This can only be called meaningfully when we know the data size
2955 // of this.
2956 gold_assert(this->is_data_size_valid());
2957
2958 // Look at the Output_section_data_maps first.
2959 const Output_section_data* posd = this->find_merge_section(object, shndx);
2960 if (posd == NULL)
2961 posd = this->find_relaxed_input_section(object, shndx);
2962 if (posd != NULL)
2963 {
2964 section_offset_type output_offset;
2965 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2966 gold_assert(found);
2967 return output_offset;
2968 }
2969
2970 // Fall back to the slow look-up.
2971 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2972 p != this->input_sections_.end();
2973 ++p)
2974 {
2975 section_offset_type output_offset;
2976 if (p->output_offset(object, shndx, offset, &output_offset))
2977 return output_offset;
2978 }
2979 gold_unreachable();
2980 }
2981
2982 // Return the output virtual address of OFFSET relative to the start
2983 // of input section SHNDX in object OBJECT.
2984
2985 uint64_t
2986 Output_section::output_address(const Relobj* object, unsigned int shndx,
2987 off_t offset) const
2988 {
2989 uint64_t addr = this->address() + this->first_input_offset_;
2990
2991 // Look at the Output_section_data_maps first.
2992 const Output_section_data* posd = this->find_merge_section(object, shndx);
2993 if (posd == NULL)
2994 posd = this->find_relaxed_input_section(object, shndx);
2995 if (posd != NULL && posd->is_address_valid())
2996 {
2997 section_offset_type output_offset;
2998 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2999 gold_assert(found);
3000 return posd->address() + output_offset;
3001 }
3002
3003 // Fall back to the slow look-up.
3004 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3005 p != this->input_sections_.end();
3006 ++p)
3007 {
3008 addr = align_address(addr, p->addralign());
3009 section_offset_type output_offset;
3010 if (p->output_offset(object, shndx, offset, &output_offset))
3011 {
3012 if (output_offset == -1)
3013 return -1ULL;
3014 return addr + output_offset;
3015 }
3016 addr += p->data_size();
3017 }
3018
3019 // If we get here, it means that we don't know the mapping for this
3020 // input section. This might happen in principle if
3021 // add_input_section were called before add_output_section_data.
3022 // But it should never actually happen.
3023
3024 gold_unreachable();
3025 }
3026
3027 // Find the output address of the start of the merged section for
3028 // input section SHNDX in object OBJECT.
3029
3030 bool
3031 Output_section::find_starting_output_address(const Relobj* object,
3032 unsigned int shndx,
3033 uint64_t* paddr) const
3034 {
3035 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3036 // Looking up the merge section map does not always work as we sometimes
3037 // find a merge section without its address set.
3038 uint64_t addr = this->address() + this->first_input_offset_;
3039 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3040 p != this->input_sections_.end();
3041 ++p)
3042 {
3043 addr = align_address(addr, p->addralign());
3044
3045 // It would be nice if we could use the existing output_offset
3046 // method to get the output offset of input offset 0.
3047 // Unfortunately we don't know for sure that input offset 0 is
3048 // mapped at all.
3049 if (p->is_merge_section_for(object, shndx))
3050 {
3051 *paddr = addr;
3052 return true;
3053 }
3054
3055 addr += p->data_size();
3056 }
3057
3058 // We couldn't find a merge output section for this input section.
3059 return false;
3060 }
3061
3062 // Update the data size of an Output_section.
3063
3064 void
3065 Output_section::update_data_size()
3066 {
3067 if (this->input_sections_.empty())
3068 return;
3069
3070 if (this->must_sort_attached_input_sections()
3071 || this->input_section_order_specified())
3072 this->sort_attached_input_sections();
3073
3074 off_t off = this->first_input_offset_;
3075 for (Input_section_list::iterator p = this->input_sections_.begin();
3076 p != this->input_sections_.end();
3077 ++p)
3078 {
3079 off = align_address(off, p->addralign());
3080 off += p->current_data_size();
3081 }
3082
3083 this->set_current_data_size_for_child(off);
3084 }
3085
3086 // Set the data size of an Output_section. This is where we handle
3087 // setting the addresses of any Output_section_data objects.
3088
3089 void
3090 Output_section::set_final_data_size()
3091 {
3092 off_t data_size;
3093
3094 if (this->input_sections_.empty())
3095 data_size = this->current_data_size_for_child();
3096 else
3097 {
3098 if (this->must_sort_attached_input_sections()
3099 || this->input_section_order_specified())
3100 this->sort_attached_input_sections();
3101
3102 uint64_t address = this->address();
3103 off_t startoff = this->offset();
3104 off_t off = startoff + this->first_input_offset_;
3105 for (Input_section_list::iterator p = this->input_sections_.begin();
3106 p != this->input_sections_.end();
3107 ++p)
3108 {
3109 off = align_address(off, p->addralign());
3110 p->set_address_and_file_offset(address + (off - startoff), off,
3111 startoff);
3112 off += p->data_size();
3113 }
3114 data_size = off - startoff;
3115 }
3116
3117 // For full incremental links, we want to allocate some patch space
3118 // in most sections for subsequent incremental updates.
3119 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3120 {
3121 double pct = parameters->options().incremental_patch();
3122 size_t extra = static_cast<size_t>(data_size * pct);
3123 if (this->free_space_fill_ != NULL
3124 && this->free_space_fill_->minimum_hole_size() > extra)
3125 extra = this->free_space_fill_->minimum_hole_size();
3126 off_t new_size = align_address(data_size + extra, this->addralign());
3127 this->patch_space_ = new_size - data_size;
3128 gold_debug(DEBUG_INCREMENTAL,
3129 "set_final_data_size: %08lx + %08lx: section %s",
3130 static_cast<long>(data_size),
3131 static_cast<long>(this->patch_space_),
3132 this->name());
3133 data_size = new_size;
3134 }
3135
3136 this->set_data_size(data_size);
3137 }
3138
3139 // Reset the address and file offset.
3140
3141 void
3142 Output_section::do_reset_address_and_file_offset()
3143 {
3144 // An unallocated section has no address. Forcing this means that
3145 // we don't need special treatment for symbols defined in debug
3146 // sections. We do the same in the constructor. This does not
3147 // apply to NOLOAD sections though.
3148 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3149 this->set_address(0);
3150
3151 for (Input_section_list::iterator p = this->input_sections_.begin();
3152 p != this->input_sections_.end();
3153 ++p)
3154 p->reset_address_and_file_offset();
3155
3156 // Remove any patch space that was added in set_final_data_size.
3157 if (this->patch_space_ > 0)
3158 {
3159 this->set_current_data_size_for_child(this->current_data_size_for_child()
3160 - this->patch_space_);
3161 this->patch_space_ = 0;
3162 }
3163 }
3164
3165 // Return true if address and file offset have the values after reset.
3166
3167 bool
3168 Output_section::do_address_and_file_offset_have_reset_values() const
3169 {
3170 if (this->is_offset_valid())
3171 return false;
3172
3173 // An unallocated section has address 0 after its construction or a reset.
3174 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3175 return this->is_address_valid() && this->address() == 0;
3176 else
3177 return !this->is_address_valid();
3178 }
3179
3180 // Set the TLS offset. Called only for SHT_TLS sections.
3181
3182 void
3183 Output_section::do_set_tls_offset(uint64_t tls_base)
3184 {
3185 this->tls_offset_ = this->address() - tls_base;
3186 }
3187
3188 // In a few cases we need to sort the input sections attached to an
3189 // output section. This is used to implement the type of constructor
3190 // priority ordering implemented by the GNU linker, in which the
3191 // priority becomes part of the section name and the sections are
3192 // sorted by name. We only do this for an output section if we see an
3193 // attached input section matching ".ctors.*", ".dtors.*",
3194 // ".init_array.*" or ".fini_array.*".
3195
3196 class Output_section::Input_section_sort_entry
3197 {
3198 public:
3199 Input_section_sort_entry()
3200 : input_section_(), index_(-1U), section_has_name_(false),
3201 section_name_()
3202 { }
3203
3204 Input_section_sort_entry(const Input_section& input_section,
3205 unsigned int index,
3206 bool must_sort_attached_input_sections)
3207 : input_section_(input_section), index_(index),
3208 section_has_name_(input_section.is_input_section()
3209 || input_section.is_relaxed_input_section())
3210 {
3211 if (this->section_has_name_
3212 && must_sort_attached_input_sections)
3213 {
3214 // This is only called single-threaded from Layout::finalize,
3215 // so it is OK to lock. Unfortunately we have no way to pass
3216 // in a Task token.
3217 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3218 Object* obj = (input_section.is_input_section()
3219 ? input_section.relobj()
3220 : input_section.relaxed_input_section()->relobj());
3221 Task_lock_obj<Object> tl(dummy_task, obj);
3222
3223 // This is a slow operation, which should be cached in
3224 // Layout::layout if this becomes a speed problem.
3225 this->section_name_ = obj->section_name(input_section.shndx());
3226 }
3227 }
3228
3229 // Return the Input_section.
3230 const Input_section&
3231 input_section() const
3232 {
3233 gold_assert(this->index_ != -1U);
3234 return this->input_section_;
3235 }
3236
3237 // The index of this entry in the original list. This is used to
3238 // make the sort stable.
3239 unsigned int
3240 index() const
3241 {
3242 gold_assert(this->index_ != -1U);
3243 return this->index_;
3244 }
3245
3246 // Whether there is a section name.
3247 bool
3248 section_has_name() const
3249 { return this->section_has_name_; }
3250
3251 // The section name.
3252 const std::string&
3253 section_name() const
3254 {
3255 gold_assert(this->section_has_name_);
3256 return this->section_name_;
3257 }
3258
3259 // Return true if the section name has a priority. This is assumed
3260 // to be true if it has a dot after the initial dot.
3261 bool
3262 has_priority() const
3263 {
3264 gold_assert(this->section_has_name_);
3265 return this->section_name_.find('.', 1) != std::string::npos;
3266 }
3267
3268 // Return the priority. Believe it or not, gcc encodes the priority
3269 // differently for .ctors/.dtors and .init_array/.fini_array
3270 // sections.
3271 unsigned int
3272 get_priority() const
3273 {
3274 gold_assert(this->section_has_name_);
3275 bool is_ctors;
3276 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3277 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3278 is_ctors = true;
3279 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3280 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3281 is_ctors = false;
3282 else
3283 return 0;
3284 char* end;
3285 unsigned long prio = strtoul((this->section_name_.c_str()
3286 + (is_ctors ? 7 : 12)),
3287 &end, 10);
3288 if (*end != '\0')
3289 return 0;
3290 else if (is_ctors)
3291 return 65535 - prio;
3292 else
3293 return prio;
3294 }
3295
3296 // Return true if this an input file whose base name matches
3297 // FILE_NAME. The base name must have an extension of ".o", and
3298 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3299 // This is to match crtbegin.o as well as crtbeginS.o without
3300 // getting confused by other possibilities. Overall matching the
3301 // file name this way is a dreadful hack, but the GNU linker does it
3302 // in order to better support gcc, and we need to be compatible.
3303 bool
3304 match_file_name(const char* file_name) const
3305 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3306
3307 // Returns 1 if THIS should appear before S in section order, -1 if S
3308 // appears before THIS and 0 if they are not comparable.
3309 int
3310 compare_section_ordering(const Input_section_sort_entry& s) const
3311 {
3312 unsigned int this_secn_index = this->input_section_.section_order_index();
3313 unsigned int s_secn_index = s.input_section().section_order_index();
3314 if (this_secn_index > 0 && s_secn_index > 0)
3315 {
3316 if (this_secn_index < s_secn_index)
3317 return 1;
3318 else if (this_secn_index > s_secn_index)
3319 return -1;
3320 }
3321 return 0;
3322 }
3323
3324 private:
3325 // The Input_section we are sorting.
3326 Input_section input_section_;
3327 // The index of this Input_section in the original list.
3328 unsigned int index_;
3329 // Whether this Input_section has a section name--it won't if this
3330 // is some random Output_section_data.
3331 bool section_has_name_;
3332 // The section name if there is one.
3333 std::string section_name_;
3334 };
3335
3336 // Return true if S1 should come before S2 in the output section.
3337
3338 bool
3339 Output_section::Input_section_sort_compare::operator()(
3340 const Output_section::Input_section_sort_entry& s1,
3341 const Output_section::Input_section_sort_entry& s2) const
3342 {
3343 // crtbegin.o must come first.
3344 bool s1_begin = s1.match_file_name("crtbegin");
3345 bool s2_begin = s2.match_file_name("crtbegin");
3346 if (s1_begin || s2_begin)
3347 {
3348 if (!s1_begin)
3349 return false;
3350 if (!s2_begin)
3351 return true;
3352 return s1.index() < s2.index();
3353 }
3354
3355 // crtend.o must come last.
3356 bool s1_end = s1.match_file_name("crtend");
3357 bool s2_end = s2.match_file_name("crtend");
3358 if (s1_end || s2_end)
3359 {
3360 if (!s1_end)
3361 return true;
3362 if (!s2_end)
3363 return false;
3364 return s1.index() < s2.index();
3365 }
3366
3367 // We sort all the sections with no names to the end.
3368 if (!s1.section_has_name() || !s2.section_has_name())
3369 {
3370 if (s1.section_has_name())
3371 return true;
3372 if (s2.section_has_name())
3373 return false;
3374 return s1.index() < s2.index();
3375 }
3376
3377 // A section with a priority follows a section without a priority.
3378 bool s1_has_priority = s1.has_priority();
3379 bool s2_has_priority = s2.has_priority();
3380 if (s1_has_priority && !s2_has_priority)
3381 return false;
3382 if (!s1_has_priority && s2_has_priority)
3383 return true;
3384
3385 // Check if a section order exists for these sections through a section
3386 // ordering file. If sequence_num is 0, an order does not exist.
3387 int sequence_num = s1.compare_section_ordering(s2);
3388 if (sequence_num != 0)
3389 return sequence_num == 1;
3390
3391 // Otherwise we sort by name.
3392 int compare = s1.section_name().compare(s2.section_name());
3393 if (compare != 0)
3394 return compare < 0;
3395
3396 // Otherwise we keep the input order.
3397 return s1.index() < s2.index();
3398 }
3399
3400 // Return true if S1 should come before S2 in an .init_array or .fini_array
3401 // output section.
3402
3403 bool
3404 Output_section::Input_section_sort_init_fini_compare::operator()(
3405 const Output_section::Input_section_sort_entry& s1,
3406 const Output_section::Input_section_sort_entry& s2) const
3407 {
3408 // We sort all the sections with no names to the end.
3409 if (!s1.section_has_name() || !s2.section_has_name())
3410 {
3411 if (s1.section_has_name())
3412 return true;
3413 if (s2.section_has_name())
3414 return false;
3415 return s1.index() < s2.index();
3416 }
3417
3418 // A section without a priority follows a section with a priority.
3419 // This is the reverse of .ctors and .dtors sections.
3420 bool s1_has_priority = s1.has_priority();
3421 bool s2_has_priority = s2.has_priority();
3422 if (s1_has_priority && !s2_has_priority)
3423 return true;
3424 if (!s1_has_priority && s2_has_priority)
3425 return false;
3426
3427 // .ctors and .dtors sections without priority come after
3428 // .init_array and .fini_array sections without priority.
3429 if (!s1_has_priority
3430 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3431 && s1.section_name() != s2.section_name())
3432 return false;
3433 if (!s2_has_priority
3434 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3435 && s2.section_name() != s1.section_name())
3436 return true;
3437
3438 // Sort by priority if we can.
3439 if (s1_has_priority)
3440 {
3441 unsigned int s1_prio = s1.get_priority();
3442 unsigned int s2_prio = s2.get_priority();
3443 if (s1_prio < s2_prio)
3444 return true;
3445 else if (s1_prio > s2_prio)
3446 return false;
3447 }
3448
3449 // Check if a section order exists for these sections through a section
3450 // ordering file. If sequence_num is 0, an order does not exist.
3451 int sequence_num = s1.compare_section_ordering(s2);
3452 if (sequence_num != 0)
3453 return sequence_num == 1;
3454
3455 // Otherwise we sort by name.
3456 int compare = s1.section_name().compare(s2.section_name());
3457 if (compare != 0)
3458 return compare < 0;
3459
3460 // Otherwise we keep the input order.
3461 return s1.index() < s2.index();
3462 }
3463
3464 // Return true if S1 should come before S2. Sections that do not match
3465 // any pattern in the section ordering file are placed ahead of the sections
3466 // that match some pattern.
3467
3468 bool
3469 Output_section::Input_section_sort_section_order_index_compare::operator()(
3470 const Output_section::Input_section_sort_entry& s1,
3471 const Output_section::Input_section_sort_entry& s2) const
3472 {
3473 unsigned int s1_secn_index = s1.input_section().section_order_index();
3474 unsigned int s2_secn_index = s2.input_section().section_order_index();
3475
3476 // Keep input order if section ordering cannot determine order.
3477 if (s1_secn_index == s2_secn_index)
3478 return s1.index() < s2.index();
3479
3480 return s1_secn_index < s2_secn_index;
3481 }
3482
3483 // This updates the section order index of input sections according to the
3484 // the order specified in the mapping from Section id to order index.
3485
3486 void
3487 Output_section::update_section_layout(
3488 const Section_layout_order& order_map)
3489 {
3490 for (Input_section_list::iterator p = this->input_sections_.begin();
3491 p != this->input_sections_.end();
3492 ++p)
3493 {
3494 if (p->is_input_section()
3495 || p->is_relaxed_input_section())
3496 {
3497 Object* obj = (p->is_input_section()
3498 ? p->relobj()
3499 : p->relaxed_input_section()->relobj());
3500 unsigned int shndx = p->shndx();
3501 Section_layout_order::const_iterator it
3502 = order_map.find(Section_id(obj, shndx));
3503 if (it == order_map.end())
3504 continue;
3505 unsigned int section_order_index = it->second;
3506 if (section_order_index != 0)
3507 {
3508 p->set_section_order_index(section_order_index);
3509 this->set_input_section_order_specified();
3510 }
3511 }
3512 }
3513 }
3514
3515 // Sort the input sections attached to an output section.
3516
3517 void
3518 Output_section::sort_attached_input_sections()
3519 {
3520 if (this->attached_input_sections_are_sorted_)
3521 return;
3522
3523 if (this->checkpoint_ != NULL
3524 && !this->checkpoint_->input_sections_saved())
3525 this->checkpoint_->save_input_sections();
3526
3527 // The only thing we know about an input section is the object and
3528 // the section index. We need the section name. Recomputing this
3529 // is slow but this is an unusual case. If this becomes a speed
3530 // problem we can cache the names as required in Layout::layout.
3531
3532 // We start by building a larger vector holding a copy of each
3533 // Input_section, plus its current index in the list and its name.
3534 std::vector<Input_section_sort_entry> sort_list;
3535
3536 unsigned int i = 0;
3537 for (Input_section_list::iterator p = this->input_sections_.begin();
3538 p != this->input_sections_.end();
3539 ++p, ++i)
3540 sort_list.push_back(Input_section_sort_entry(*p, i,
3541 this->must_sort_attached_input_sections()));
3542
3543 // Sort the input sections.
3544 if (this->must_sort_attached_input_sections())
3545 {
3546 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3547 || this->type() == elfcpp::SHT_INIT_ARRAY
3548 || this->type() == elfcpp::SHT_FINI_ARRAY)
3549 std::sort(sort_list.begin(), sort_list.end(),
3550 Input_section_sort_init_fini_compare());
3551 else
3552 std::sort(sort_list.begin(), sort_list.end(),
3553 Input_section_sort_compare());
3554 }
3555 else
3556 {
3557 gold_assert(this->input_section_order_specified());
3558 std::sort(sort_list.begin(), sort_list.end(),
3559 Input_section_sort_section_order_index_compare());
3560 }
3561
3562 // Copy the sorted input sections back to our list.
3563 this->input_sections_.clear();
3564 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3565 p != sort_list.end();
3566 ++p)
3567 this->input_sections_.push_back(p->input_section());
3568 sort_list.clear();
3569
3570 // Remember that we sorted the input sections, since we might get
3571 // called again.
3572 this->attached_input_sections_are_sorted_ = true;
3573 }
3574
3575 // Write the section header to *OSHDR.
3576
3577 template<int size, bool big_endian>
3578 void
3579 Output_section::write_header(const Layout* layout,
3580 const Stringpool* secnamepool,
3581 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3582 {
3583 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3584 oshdr->put_sh_type(this->type_);
3585
3586 elfcpp::Elf_Xword flags = this->flags_;
3587 if (this->info_section_ != NULL && this->info_uses_section_index_)
3588 flags |= elfcpp::SHF_INFO_LINK;
3589 oshdr->put_sh_flags(flags);
3590
3591 oshdr->put_sh_addr(this->address());
3592 oshdr->put_sh_offset(this->offset());
3593 oshdr->put_sh_size(this->data_size());
3594 if (this->link_section_ != NULL)
3595 oshdr->put_sh_link(this->link_section_->out_shndx());
3596 else if (this->should_link_to_symtab_)
3597 oshdr->put_sh_link(layout->symtab_section_shndx());
3598 else if (this->should_link_to_dynsym_)
3599 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3600 else
3601 oshdr->put_sh_link(this->link_);
3602
3603 elfcpp::Elf_Word info;
3604 if (this->info_section_ != NULL)
3605 {
3606 if (this->info_uses_section_index_)
3607 info = this->info_section_->out_shndx();
3608 else
3609 info = this->info_section_->symtab_index();
3610 }
3611 else if (this->info_symndx_ != NULL)
3612 info = this->info_symndx_->symtab_index();
3613 else
3614 info = this->info_;
3615 oshdr->put_sh_info(info);
3616
3617 oshdr->put_sh_addralign(this->addralign_);
3618 oshdr->put_sh_entsize(this->entsize_);
3619 }
3620
3621 // Write out the data. For input sections the data is written out by
3622 // Object::relocate, but we have to handle Output_section_data objects
3623 // here.
3624
3625 void
3626 Output_section::do_write(Output_file* of)
3627 {
3628 gold_assert(!this->requires_postprocessing());
3629
3630 // If the target performs relaxation, we delay filler generation until now.
3631 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3632
3633 off_t output_section_file_offset = this->offset();
3634 for (Fill_list::iterator p = this->fills_.begin();
3635 p != this->fills_.end();
3636 ++p)
3637 {
3638 std::string fill_data(parameters->target().code_fill(p->length()));
3639 of->write(output_section_file_offset + p->section_offset(),
3640 fill_data.data(), fill_data.size());
3641 }
3642
3643 off_t off = this->offset() + this->first_input_offset_;
3644 for (Input_section_list::iterator p = this->input_sections_.begin();
3645 p != this->input_sections_.end();
3646 ++p)
3647 {
3648 off_t aligned_off = align_address(off, p->addralign());
3649 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3650 {
3651 size_t fill_len = aligned_off - off;
3652 std::string fill_data(parameters->target().code_fill(fill_len));
3653 of->write(off, fill_data.data(), fill_data.size());
3654 }
3655
3656 p->write(of);
3657 off = aligned_off + p->data_size();
3658 }
3659
3660 // For incremental links, fill in unused chunks in debug sections
3661 // with dummy compilation unit headers.
3662 if (this->free_space_fill_ != NULL)
3663 {
3664 for (Free_list::Const_iterator p = this->free_list_.begin();
3665 p != this->free_list_.end();
3666 ++p)
3667 {
3668 off_t off = p->start_;
3669 size_t len = p->end_ - off;
3670 this->free_space_fill_->write(of, this->offset() + off, len);
3671 }
3672 if (this->patch_space_ > 0)
3673 {
3674 off_t off = this->current_data_size_for_child() - this->patch_space_;
3675 this->free_space_fill_->write(of, this->offset() + off,
3676 this->patch_space_);
3677 }
3678 }
3679 }
3680
3681 // If a section requires postprocessing, create the buffer to use.
3682
3683 void
3684 Output_section::create_postprocessing_buffer()
3685 {
3686 gold_assert(this->requires_postprocessing());
3687
3688 if (this->postprocessing_buffer_ != NULL)
3689 return;
3690
3691 if (!this->input_sections_.empty())
3692 {
3693 off_t off = this->first_input_offset_;
3694 for (Input_section_list::iterator p = this->input_sections_.begin();
3695 p != this->input_sections_.end();
3696 ++p)
3697 {
3698 off = align_address(off, p->addralign());
3699 p->finalize_data_size();
3700 off += p->data_size();
3701 }
3702 this->set_current_data_size_for_child(off);
3703 }
3704
3705 off_t buffer_size = this->current_data_size_for_child();
3706 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3707 }
3708
3709 // Write all the data of an Output_section into the postprocessing
3710 // buffer. This is used for sections which require postprocessing,
3711 // such as compression. Input sections are handled by
3712 // Object::Relocate.
3713
3714 void
3715 Output_section::write_to_postprocessing_buffer()
3716 {
3717 gold_assert(this->requires_postprocessing());
3718
3719 // If the target performs relaxation, we delay filler generation until now.
3720 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3721
3722 unsigned char* buffer = this->postprocessing_buffer();
3723 for (Fill_list::iterator p = this->fills_.begin();
3724 p != this->fills_.end();
3725 ++p)
3726 {
3727 std::string fill_data(parameters->target().code_fill(p->length()));
3728 memcpy(buffer + p->section_offset(), fill_data.data(),
3729 fill_data.size());
3730 }
3731
3732 off_t off = this->first_input_offset_;
3733 for (Input_section_list::iterator p = this->input_sections_.begin();
3734 p != this->input_sections_.end();
3735 ++p)
3736 {
3737 off_t aligned_off = align_address(off, p->addralign());
3738 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3739 {
3740 size_t fill_len = aligned_off - off;
3741 std::string fill_data(parameters->target().code_fill(fill_len));
3742 memcpy(buffer + off, fill_data.data(), fill_data.size());
3743 }
3744
3745 p->write_to_buffer(buffer + aligned_off);
3746 off = aligned_off + p->data_size();
3747 }
3748 }
3749
3750 // Get the input sections for linker script processing. We leave
3751 // behind the Output_section_data entries. Note that this may be
3752 // slightly incorrect for merge sections. We will leave them behind,
3753 // but it is possible that the script says that they should follow
3754 // some other input sections, as in:
3755 // .rodata { *(.rodata) *(.rodata.cst*) }
3756 // For that matter, we don't handle this correctly:
3757 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3758 // With luck this will never matter.
3759
3760 uint64_t
3761 Output_section::get_input_sections(
3762 uint64_t address,
3763 const std::string& fill,
3764 std::list<Input_section>* input_sections)
3765 {
3766 if (this->checkpoint_ != NULL
3767 && !this->checkpoint_->input_sections_saved())
3768 this->checkpoint_->save_input_sections();
3769
3770 // Invalidate fast look-up maps.
3771 this->lookup_maps_->invalidate();
3772
3773 uint64_t orig_address = address;
3774
3775 address = align_address(address, this->addralign());
3776
3777 Input_section_list remaining;
3778 for (Input_section_list::iterator p = this->input_sections_.begin();
3779 p != this->input_sections_.end();
3780 ++p)
3781 {
3782 if (p->is_input_section()
3783 || p->is_relaxed_input_section()
3784 || p->is_merge_section())
3785 input_sections->push_back(*p);
3786 else
3787 {
3788 uint64_t aligned_address = align_address(address, p->addralign());
3789 if (aligned_address != address && !fill.empty())
3790 {
3791 section_size_type length =
3792 convert_to_section_size_type(aligned_address - address);
3793 std::string this_fill;
3794 this_fill.reserve(length);
3795 while (this_fill.length() + fill.length() <= length)
3796 this_fill += fill;
3797 if (this_fill.length() < length)
3798 this_fill.append(fill, 0, length - this_fill.length());
3799
3800 Output_section_data* posd = new Output_data_const(this_fill, 0);
3801 remaining.push_back(Input_section(posd));
3802 }
3803 address = aligned_address;
3804
3805 remaining.push_back(*p);
3806
3807 p->finalize_data_size();
3808 address += p->data_size();
3809 }
3810 }
3811
3812 this->input_sections_.swap(remaining);
3813 this->first_input_offset_ = 0;
3814
3815 uint64_t data_size = address - orig_address;
3816 this->set_current_data_size_for_child(data_size);
3817 return data_size;
3818 }
3819
3820 // Add a script input section. SIS is an Output_section::Input_section,
3821 // which can be either a plain input section or a special input section like
3822 // a relaxed input section. For a special input section, its size must be
3823 // finalized.
3824
3825 void
3826 Output_section::add_script_input_section(const Input_section& sis)
3827 {
3828 uint64_t data_size = sis.data_size();
3829 uint64_t addralign = sis.addralign();
3830 if (addralign > this->addralign_)
3831 this->addralign_ = addralign;
3832
3833 off_t offset_in_section = this->current_data_size_for_child();
3834 off_t aligned_offset_in_section = align_address(offset_in_section,
3835 addralign);
3836
3837 this->set_current_data_size_for_child(aligned_offset_in_section
3838 + data_size);
3839
3840 this->input_sections_.push_back(sis);
3841
3842 // Update fast lookup maps if necessary.
3843 if (this->lookup_maps_->is_valid())
3844 {
3845 if (sis.is_merge_section())
3846 {
3847 Output_merge_base* pomb = sis.output_merge_base();
3848 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3849 pomb->addralign());
3850 this->lookup_maps_->add_merge_section(msp, pomb);
3851 for (Output_merge_base::Input_sections::const_iterator p =
3852 pomb->input_sections_begin();
3853 p != pomb->input_sections_end();
3854 ++p)
3855 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3856 pomb);
3857 }
3858 else if (sis.is_relaxed_input_section())
3859 {
3860 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3861 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3862 poris->shndx(), poris);
3863 }
3864 }
3865 }
3866
3867 // Save states for relaxation.
3868
3869 void
3870 Output_section::save_states()
3871 {
3872 gold_assert(this->checkpoint_ == NULL);
3873 Checkpoint_output_section* checkpoint =
3874 new Checkpoint_output_section(this->addralign_, this->flags_,
3875 this->input_sections_,
3876 this->first_input_offset_,
3877 this->attached_input_sections_are_sorted_);
3878 this->checkpoint_ = checkpoint;
3879 gold_assert(this->fills_.empty());
3880 }
3881
3882 void
3883 Output_section::discard_states()
3884 {
3885 gold_assert(this->checkpoint_ != NULL);
3886 delete this->checkpoint_;
3887 this->checkpoint_ = NULL;
3888 gold_assert(this->fills_.empty());
3889
3890 // Simply invalidate the fast lookup maps since we do not keep
3891 // track of them.
3892 this->lookup_maps_->invalidate();
3893 }
3894
3895 void
3896 Output_section::restore_states()
3897 {
3898 gold_assert(this->checkpoint_ != NULL);
3899 Checkpoint_output_section* checkpoint = this->checkpoint_;
3900
3901 this->addralign_ = checkpoint->addralign();
3902 this->flags_ = checkpoint->flags();
3903 this->first_input_offset_ = checkpoint->first_input_offset();
3904
3905 if (!checkpoint->input_sections_saved())
3906 {
3907 // If we have not copied the input sections, just resize it.
3908 size_t old_size = checkpoint->input_sections_size();
3909 gold_assert(this->input_sections_.size() >= old_size);
3910 this->input_sections_.resize(old_size);
3911 }
3912 else
3913 {
3914 // We need to copy the whole list. This is not efficient for
3915 // extremely large output with hundreads of thousands of input
3916 // objects. We may need to re-think how we should pass sections
3917 // to scripts.
3918 this->input_sections_ = *checkpoint->input_sections();
3919 }
3920
3921 this->attached_input_sections_are_sorted_ =
3922 checkpoint->attached_input_sections_are_sorted();
3923
3924 // Simply invalidate the fast lookup maps since we do not keep
3925 // track of them.
3926 this->lookup_maps_->invalidate();
3927 }
3928
3929 // Update the section offsets of input sections in this. This is required if
3930 // relaxation causes some input sections to change sizes.
3931
3932 void
3933 Output_section::adjust_section_offsets()
3934 {
3935 if (!this->section_offsets_need_adjustment_)
3936 return;
3937
3938 off_t off = 0;
3939 for (Input_section_list::iterator p = this->input_sections_.begin();
3940 p != this->input_sections_.end();
3941 ++p)
3942 {
3943 off = align_address(off, p->addralign());
3944 if (p->is_input_section())
3945 p->relobj()->set_section_offset(p->shndx(), off);
3946 off += p->data_size();
3947 }
3948
3949 this->section_offsets_need_adjustment_ = false;
3950 }
3951
3952 // Print to the map file.
3953
3954 void
3955 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3956 {
3957 mapfile->print_output_section(this);
3958
3959 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3960 p != this->input_sections_.end();
3961 ++p)
3962 p->print_to_mapfile(mapfile);
3963 }
3964
3965 // Print stats for merge sections to stderr.
3966
3967 void
3968 Output_section::print_merge_stats()
3969 {
3970 Input_section_list::iterator p;
3971 for (p = this->input_sections_.begin();
3972 p != this->input_sections_.end();
3973 ++p)
3974 p->print_merge_stats(this->name_);
3975 }
3976
3977 // Set a fixed layout for the section. Used for incremental update links.
3978
3979 void
3980 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3981 off_t sh_size, uint64_t sh_addralign)
3982 {
3983 this->addralign_ = sh_addralign;
3984 this->set_current_data_size(sh_size);
3985 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3986 this->set_address(sh_addr);
3987 this->set_file_offset(sh_offset);
3988 this->finalize_data_size();
3989 this->free_list_.init(sh_size, false);
3990 this->has_fixed_layout_ = true;
3991 }
3992
3993 // Reserve space within the fixed layout for the section. Used for
3994 // incremental update links.
3995
3996 void
3997 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3998 {
3999 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4000 }
4001
4002 // Allocate space from the free list for the section. Used for
4003 // incremental update links.
4004
4005 off_t
4006 Output_section::allocate(off_t len, uint64_t addralign)
4007 {
4008 return this->free_list_.allocate(len, addralign, 0);
4009 }
4010
4011 // Output segment methods.
4012
4013 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4014 : vaddr_(0),
4015 paddr_(0),
4016 memsz_(0),
4017 max_align_(0),
4018 min_p_align_(0),
4019 offset_(0),
4020 filesz_(0),
4021 type_(type),
4022 flags_(flags),
4023 is_max_align_known_(false),
4024 are_addresses_set_(false),
4025 is_large_data_segment_(false)
4026 {
4027 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4028 // the flags.
4029 if (type == elfcpp::PT_TLS)
4030 this->flags_ = elfcpp::PF_R;
4031 }
4032
4033 // Add an Output_section to a PT_LOAD Output_segment.
4034
4035 void
4036 Output_segment::add_output_section_to_load(Layout* layout,
4037 Output_section* os,
4038 elfcpp::Elf_Word seg_flags)
4039 {
4040 gold_assert(this->type() == elfcpp::PT_LOAD);
4041 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4042 gold_assert(!this->is_max_align_known_);
4043 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4044
4045 this->update_flags_for_output_section(seg_flags);
4046
4047 // We don't want to change the ordering if we have a linker script
4048 // with a SECTIONS clause.
4049 Output_section_order order = os->order();
4050 if (layout->script_options()->saw_sections_clause())
4051 order = static_cast<Output_section_order>(0);
4052 else
4053 gold_assert(order != ORDER_INVALID);
4054
4055 this->output_lists_[order].push_back(os);
4056 }
4057
4058 // Add an Output_section to a non-PT_LOAD Output_segment.
4059
4060 void
4061 Output_segment::add_output_section_to_nonload(Output_section* os,
4062 elfcpp::Elf_Word seg_flags)
4063 {
4064 gold_assert(this->type() != elfcpp::PT_LOAD);
4065 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4066 gold_assert(!this->is_max_align_known_);
4067
4068 this->update_flags_for_output_section(seg_flags);
4069
4070 this->output_lists_[0].push_back(os);
4071 }
4072
4073 // Remove an Output_section from this segment. It is an error if it
4074 // is not present.
4075
4076 void
4077 Output_segment::remove_output_section(Output_section* os)
4078 {
4079 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4080 {
4081 Output_data_list* pdl = &this->output_lists_[i];
4082 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4083 {
4084 if (*p == os)
4085 {
4086 pdl->erase(p);
4087 return;
4088 }
4089 }
4090 }
4091 gold_unreachable();
4092 }
4093
4094 // Add an Output_data (which need not be an Output_section) to the
4095 // start of a segment.
4096
4097 void
4098 Output_segment::add_initial_output_data(Output_data* od)
4099 {
4100 gold_assert(!this->is_max_align_known_);
4101 Output_data_list::iterator p = this->output_lists_[0].begin();
4102 this->output_lists_[0].insert(p, od);
4103 }
4104
4105 // Return true if this segment has any sections which hold actual
4106 // data, rather than being a BSS section.
4107
4108 bool
4109 Output_segment::has_any_data_sections() const
4110 {
4111 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4112 {
4113 const Output_data_list* pdl = &this->output_lists_[i];
4114 for (Output_data_list::const_iterator p = pdl->begin();
4115 p != pdl->end();
4116 ++p)
4117 {
4118 if (!(*p)->is_section())
4119 return true;
4120 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4121 return true;
4122 }
4123 }
4124 return false;
4125 }
4126
4127 // Return whether the first data section (not counting TLS sections)
4128 // is a relro section.
4129
4130 bool
4131 Output_segment::is_first_section_relro() const
4132 {
4133 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4134 {
4135 if (i == static_cast<int>(ORDER_TLS_DATA)
4136 || i == static_cast<int>(ORDER_TLS_BSS))
4137 continue;
4138 const Output_data_list* pdl = &this->output_lists_[i];
4139 if (!pdl->empty())
4140 {
4141 Output_data* p = pdl->front();
4142 return p->is_section() && p->output_section()->is_relro();
4143 }
4144 }
4145 return false;
4146 }
4147
4148 // Return the maximum alignment of the Output_data in Output_segment.
4149
4150 uint64_t
4151 Output_segment::maximum_alignment()
4152 {
4153 if (!this->is_max_align_known_)
4154 {
4155 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4156 {
4157 const Output_data_list* pdl = &this->output_lists_[i];
4158 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4159 if (addralign > this->max_align_)
4160 this->max_align_ = addralign;
4161 }
4162 this->is_max_align_known_ = true;
4163 }
4164
4165 return this->max_align_;
4166 }
4167
4168 // Return the maximum alignment of a list of Output_data.
4169
4170 uint64_t
4171 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4172 {
4173 uint64_t ret = 0;
4174 for (Output_data_list::const_iterator p = pdl->begin();
4175 p != pdl->end();
4176 ++p)
4177 {
4178 uint64_t addralign = (*p)->addralign();
4179 if (addralign > ret)
4180 ret = addralign;
4181 }
4182 return ret;
4183 }
4184
4185 // Return whether this segment has any dynamic relocs.
4186
4187 bool
4188 Output_segment::has_dynamic_reloc() const
4189 {
4190 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4191 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4192 return true;
4193 return false;
4194 }
4195
4196 // Return whether this Output_data_list has any dynamic relocs.
4197
4198 bool
4199 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4200 {
4201 for (Output_data_list::const_iterator p = pdl->begin();
4202 p != pdl->end();
4203 ++p)
4204 if ((*p)->has_dynamic_reloc())
4205 return true;
4206 return false;
4207 }
4208
4209 // Set the section addresses for an Output_segment. If RESET is true,
4210 // reset the addresses first. ADDR is the address and *POFF is the
4211 // file offset. Set the section indexes starting with *PSHNDX.
4212 // INCREASE_RELRO is the size of the portion of the first non-relro
4213 // section that should be included in the PT_GNU_RELRO segment.
4214 // If this segment has relro sections, and has been aligned for
4215 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4216 // the immediately following segment. Update *HAS_RELRO, *POFF,
4217 // and *PSHNDX.
4218
4219 uint64_t
4220 Output_segment::set_section_addresses(Layout* layout, bool reset,
4221 uint64_t addr,
4222 unsigned int* increase_relro,
4223 bool* has_relro,
4224 off_t* poff,
4225 unsigned int* pshndx)
4226 {
4227 gold_assert(this->type_ == elfcpp::PT_LOAD);
4228
4229 uint64_t last_relro_pad = 0;
4230 off_t orig_off = *poff;
4231
4232 bool in_tls = false;
4233
4234 // If we have relro sections, we need to pad forward now so that the
4235 // relro sections plus INCREASE_RELRO end on a common page boundary.
4236 if (parameters->options().relro()
4237 && this->is_first_section_relro()
4238 && (!this->are_addresses_set_ || reset))
4239 {
4240 uint64_t relro_size = 0;
4241 off_t off = *poff;
4242 uint64_t max_align = 0;
4243 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4244 {
4245 Output_data_list* pdl = &this->output_lists_[i];
4246 Output_data_list::iterator p;
4247 for (p = pdl->begin(); p != pdl->end(); ++p)
4248 {
4249 if (!(*p)->is_section())
4250 break;
4251 uint64_t align = (*p)->addralign();
4252 if (align > max_align)
4253 max_align = align;
4254 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4255 in_tls = true;
4256 else if (in_tls)
4257 {
4258 // Align the first non-TLS section to the alignment
4259 // of the TLS segment.
4260 align = max_align;
4261 in_tls = false;
4262 }
4263 relro_size = align_address(relro_size, align);
4264 // Ignore the size of the .tbss section.
4265 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4266 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4267 continue;
4268 if ((*p)->is_address_valid())
4269 relro_size += (*p)->data_size();
4270 else
4271 {
4272 // FIXME: This could be faster.
4273 (*p)->set_address_and_file_offset(addr + relro_size,
4274 off + relro_size);
4275 relro_size += (*p)->data_size();
4276 (*p)->reset_address_and_file_offset();
4277 }
4278 }
4279 if (p != pdl->end())
4280 break;
4281 }
4282 relro_size += *increase_relro;
4283 // Pad the total relro size to a multiple of the maximum
4284 // section alignment seen.
4285 uint64_t aligned_size = align_address(relro_size, max_align);
4286 // Note the amount of padding added after the last relro section.
4287 last_relro_pad = aligned_size - relro_size;
4288 *has_relro = true;
4289
4290 uint64_t page_align = parameters->target().common_pagesize();
4291
4292 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4293 uint64_t desired_align = page_align - (aligned_size % page_align);
4294 if (desired_align < *poff % page_align)
4295 *poff += page_align - *poff % page_align;
4296 *poff += desired_align - *poff % page_align;
4297 addr += *poff - orig_off;
4298 orig_off = *poff;
4299 }
4300
4301 if (!reset && this->are_addresses_set_)
4302 {
4303 gold_assert(this->paddr_ == addr);
4304 addr = this->vaddr_;
4305 }
4306 else
4307 {
4308 this->vaddr_ = addr;
4309 this->paddr_ = addr;
4310 this->are_addresses_set_ = true;
4311 }
4312
4313 in_tls = false;
4314
4315 this->offset_ = orig_off;
4316
4317 off_t off = 0;
4318 uint64_t ret;
4319 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4320 {
4321 if (i == static_cast<int>(ORDER_RELRO_LAST))
4322 {
4323 *poff += last_relro_pad;
4324 addr += last_relro_pad;
4325 if (this->output_lists_[i].empty())
4326 {
4327 // If there is nothing in the ORDER_RELRO_LAST list,
4328 // the padding will occur at the end of the relro
4329 // segment, and we need to add it to *INCREASE_RELRO.
4330 *increase_relro += last_relro_pad;
4331 }
4332 }
4333 addr = this->set_section_list_addresses(layout, reset,
4334 &this->output_lists_[i],
4335 addr, poff, pshndx, &in_tls);
4336 if (i < static_cast<int>(ORDER_SMALL_BSS))
4337 {
4338 this->filesz_ = *poff - orig_off;
4339 off = *poff;
4340 }
4341
4342 ret = addr;
4343 }
4344
4345 // If the last section was a TLS section, align upward to the
4346 // alignment of the TLS segment, so that the overall size of the TLS
4347 // segment is aligned.
4348 if (in_tls)
4349 {
4350 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4351 *poff = align_address(*poff, segment_align);
4352 }
4353
4354 this->memsz_ = *poff - orig_off;
4355
4356 // Ignore the file offset adjustments made by the BSS Output_data
4357 // objects.
4358 *poff = off;
4359
4360 return ret;
4361 }
4362
4363 // Set the addresses and file offsets in a list of Output_data
4364 // structures.
4365
4366 uint64_t
4367 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4368 Output_data_list* pdl,
4369 uint64_t addr, off_t* poff,
4370 unsigned int* pshndx,
4371 bool* in_tls)
4372 {
4373 off_t startoff = *poff;
4374 // For incremental updates, we may allocate non-fixed sections from
4375 // free space in the file. This keeps track of the high-water mark.
4376 off_t maxoff = startoff;
4377
4378 off_t off = startoff;
4379 for (Output_data_list::iterator p = pdl->begin();
4380 p != pdl->end();
4381 ++p)
4382 {
4383 if (reset)
4384 (*p)->reset_address_and_file_offset();
4385
4386 // When doing an incremental update or when using a linker script,
4387 // the section will most likely already have an address.
4388 if (!(*p)->is_address_valid())
4389 {
4390 uint64_t align = (*p)->addralign();
4391
4392 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4393 {
4394 // Give the first TLS section the alignment of the
4395 // entire TLS segment. Otherwise the TLS segment as a
4396 // whole may be misaligned.
4397 if (!*in_tls)
4398 {
4399 Output_segment* tls_segment = layout->tls_segment();
4400 gold_assert(tls_segment != NULL);
4401 uint64_t segment_align = tls_segment->maximum_alignment();
4402 gold_assert(segment_align >= align);
4403 align = segment_align;
4404
4405 *in_tls = true;
4406 }
4407 }
4408 else
4409 {
4410 // If this is the first section after the TLS segment,
4411 // align it to at least the alignment of the TLS
4412 // segment, so that the size of the overall TLS segment
4413 // is aligned.
4414 if (*in_tls)
4415 {
4416 uint64_t segment_align =
4417 layout->tls_segment()->maximum_alignment();
4418 if (segment_align > align)
4419 align = segment_align;
4420
4421 *in_tls = false;
4422 }
4423 }
4424
4425 if (!parameters->incremental_update())
4426 {
4427 off = align_address(off, align);
4428 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4429 }
4430 else
4431 {
4432 // Incremental update: allocate file space from free list.
4433 (*p)->pre_finalize_data_size();
4434 off_t current_size = (*p)->current_data_size();
4435 off = layout->allocate(current_size, align, startoff);
4436 if (off == -1)
4437 {
4438 gold_assert((*p)->output_section() != NULL);
4439 gold_fallback(_("out of patch space for section %s; "
4440 "relink with --incremental-full"),
4441 (*p)->output_section()->name());
4442 }
4443 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4444 if ((*p)->data_size() > current_size)
4445 {
4446 gold_assert((*p)->output_section() != NULL);
4447 gold_fallback(_("%s: section changed size; "
4448 "relink with --incremental-full"),
4449 (*p)->output_section()->name());
4450 }
4451 }
4452 }
4453 else if (parameters->incremental_update())
4454 {
4455 // For incremental updates, use the fixed offset for the
4456 // high-water mark computation.
4457 off = (*p)->offset();
4458 }
4459 else
4460 {
4461 // The script may have inserted a skip forward, but it
4462 // better not have moved backward.
4463 if ((*p)->address() >= addr + (off - startoff))
4464 off += (*p)->address() - (addr + (off - startoff));
4465 else
4466 {
4467 if (!layout->script_options()->saw_sections_clause())
4468 gold_unreachable();
4469 else
4470 {
4471 Output_section* os = (*p)->output_section();
4472
4473 // Cast to unsigned long long to avoid format warnings.
4474 unsigned long long previous_dot =
4475 static_cast<unsigned long long>(addr + (off - startoff));
4476 unsigned long long dot =
4477 static_cast<unsigned long long>((*p)->address());
4478
4479 if (os == NULL)
4480 gold_error(_("dot moves backward in linker script "
4481 "from 0x%llx to 0x%llx"), previous_dot, dot);
4482 else
4483 gold_error(_("address of section '%s' moves backward "
4484 "from 0x%llx to 0x%llx"),
4485 os->name(), previous_dot, dot);
4486 }
4487 }
4488 (*p)->set_file_offset(off);
4489 (*p)->finalize_data_size();
4490 }
4491
4492 if (parameters->incremental_update())
4493 gold_debug(DEBUG_INCREMENTAL,
4494 "set_section_list_addresses: %08lx %08lx %s",
4495 static_cast<long>(off),
4496 static_cast<long>((*p)->data_size()),
4497 ((*p)->output_section() != NULL
4498 ? (*p)->output_section()->name() : "(special)"));
4499
4500 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4501 // section. Such a section does not affect the size of a
4502 // PT_LOAD segment.
4503 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4504 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4505 off += (*p)->data_size();
4506
4507 if (off > maxoff)
4508 maxoff = off;
4509
4510 if ((*p)->is_section())
4511 {
4512 (*p)->set_out_shndx(*pshndx);
4513 ++*pshndx;
4514 }
4515 }
4516
4517 *poff = maxoff;
4518 return addr + (maxoff - startoff);
4519 }
4520
4521 // For a non-PT_LOAD segment, set the offset from the sections, if
4522 // any. Add INCREASE to the file size and the memory size.
4523
4524 void
4525 Output_segment::set_offset(unsigned int increase)
4526 {
4527 gold_assert(this->type_ != elfcpp::PT_LOAD);
4528
4529 gold_assert(!this->are_addresses_set_);
4530
4531 // A non-load section only uses output_lists_[0].
4532
4533 Output_data_list* pdl = &this->output_lists_[0];
4534
4535 if (pdl->empty())
4536 {
4537 gold_assert(increase == 0);
4538 this->vaddr_ = 0;
4539 this->paddr_ = 0;
4540 this->are_addresses_set_ = true;
4541 this->memsz_ = 0;
4542 this->min_p_align_ = 0;
4543 this->offset_ = 0;
4544 this->filesz_ = 0;
4545 return;
4546 }
4547
4548 // Find the first and last section by address.
4549 const Output_data* first = NULL;
4550 const Output_data* last_data = NULL;
4551 const Output_data* last_bss = NULL;
4552 for (Output_data_list::const_iterator p = pdl->begin();
4553 p != pdl->end();
4554 ++p)
4555 {
4556 if (first == NULL
4557 || (*p)->address() < first->address()
4558 || ((*p)->address() == first->address()
4559 && (*p)->data_size() < first->data_size()))
4560 first = *p;
4561 const Output_data** plast;
4562 if ((*p)->is_section()
4563 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4564 plast = &last_bss;
4565 else
4566 plast = &last_data;
4567 if (*plast == NULL
4568 || (*p)->address() > (*plast)->address()
4569 || ((*p)->address() == (*plast)->address()
4570 && (*p)->data_size() > (*plast)->data_size()))
4571 *plast = *p;
4572 }
4573
4574 this->vaddr_ = first->address();
4575 this->paddr_ = (first->has_load_address()
4576 ? first->load_address()
4577 : this->vaddr_);
4578 this->are_addresses_set_ = true;
4579 this->offset_ = first->offset();
4580
4581 if (last_data == NULL)
4582 this->filesz_ = 0;
4583 else
4584 this->filesz_ = (last_data->address()
4585 + last_data->data_size()
4586 - this->vaddr_);
4587
4588 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4589 this->memsz_ = (last->address()
4590 + last->data_size()
4591 - this->vaddr_);
4592
4593 this->filesz_ += increase;
4594 this->memsz_ += increase;
4595
4596 // If this is a RELRO segment, verify that the segment ends at a
4597 // page boundary.
4598 if (this->type_ == elfcpp::PT_GNU_RELRO)
4599 {
4600 uint64_t page_align = parameters->target().common_pagesize();
4601 uint64_t segment_end = this->vaddr_ + this->memsz_;
4602 if (parameters->incremental_update())
4603 {
4604 // The INCREASE_RELRO calculation is bypassed for an incremental
4605 // update, so we need to adjust the segment size manually here.
4606 segment_end = align_address(segment_end, page_align);
4607 this->memsz_ = segment_end - this->vaddr_;
4608 }
4609 else
4610 gold_assert(segment_end == align_address(segment_end, page_align));
4611 }
4612
4613 // If this is a TLS segment, align the memory size. The code in
4614 // set_section_list ensures that the section after the TLS segment
4615 // is aligned to give us room.
4616 if (this->type_ == elfcpp::PT_TLS)
4617 {
4618 uint64_t segment_align = this->maximum_alignment();
4619 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4620 this->memsz_ = align_address(this->memsz_, segment_align);
4621 }
4622 }
4623
4624 // Set the TLS offsets of the sections in the PT_TLS segment.
4625
4626 void
4627 Output_segment::set_tls_offsets()
4628 {
4629 gold_assert(this->type_ == elfcpp::PT_TLS);
4630
4631 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4632 p != this->output_lists_[0].end();
4633 ++p)
4634 (*p)->set_tls_offset(this->vaddr_);
4635 }
4636
4637 // Return the load address of the first section.
4638
4639 uint64_t
4640 Output_segment::first_section_load_address() const
4641 {
4642 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4643 {
4644 const Output_data_list* pdl = &this->output_lists_[i];
4645 for (Output_data_list::const_iterator p = pdl->begin();
4646 p != pdl->end();
4647 ++p)
4648 {
4649 if ((*p)->is_section())
4650 return ((*p)->has_load_address()
4651 ? (*p)->load_address()
4652 : (*p)->address());
4653 }
4654 }
4655 gold_unreachable();
4656 }
4657
4658 // Return the number of Output_sections in an Output_segment.
4659
4660 unsigned int
4661 Output_segment::output_section_count() const
4662 {
4663 unsigned int ret = 0;
4664 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4665 ret += this->output_section_count_list(&this->output_lists_[i]);
4666 return ret;
4667 }
4668
4669 // Return the number of Output_sections in an Output_data_list.
4670
4671 unsigned int
4672 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4673 {
4674 unsigned int count = 0;
4675 for (Output_data_list::const_iterator p = pdl->begin();
4676 p != pdl->end();
4677 ++p)
4678 {
4679 if ((*p)->is_section())
4680 ++count;
4681 }
4682 return count;
4683 }
4684
4685 // Return the section attached to the list segment with the lowest
4686 // load address. This is used when handling a PHDRS clause in a
4687 // linker script.
4688
4689 Output_section*
4690 Output_segment::section_with_lowest_load_address() const
4691 {
4692 Output_section* found = NULL;
4693 uint64_t found_lma = 0;
4694 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4695 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4696 &found_lma);
4697 return found;
4698 }
4699
4700 // Look through a list for a section with a lower load address.
4701
4702 void
4703 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4704 Output_section** found,
4705 uint64_t* found_lma) const
4706 {
4707 for (Output_data_list::const_iterator p = pdl->begin();
4708 p != pdl->end();
4709 ++p)
4710 {
4711 if (!(*p)->is_section())
4712 continue;
4713 Output_section* os = static_cast<Output_section*>(*p);
4714 uint64_t lma = (os->has_load_address()
4715 ? os->load_address()
4716 : os->address());
4717 if (*found == NULL || lma < *found_lma)
4718 {
4719 *found = os;
4720 *found_lma = lma;
4721 }
4722 }
4723 }
4724
4725 // Write the segment data into *OPHDR.
4726
4727 template<int size, bool big_endian>
4728 void
4729 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4730 {
4731 ophdr->put_p_type(this->type_);
4732 ophdr->put_p_offset(this->offset_);
4733 ophdr->put_p_vaddr(this->vaddr_);
4734 ophdr->put_p_paddr(this->paddr_);
4735 ophdr->put_p_filesz(this->filesz_);
4736 ophdr->put_p_memsz(this->memsz_);
4737 ophdr->put_p_flags(this->flags_);
4738 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4739 }
4740
4741 // Write the section headers into V.
4742
4743 template<int size, bool big_endian>
4744 unsigned char*
4745 Output_segment::write_section_headers(const Layout* layout,
4746 const Stringpool* secnamepool,
4747 unsigned char* v,
4748 unsigned int* pshndx) const
4749 {
4750 // Every section that is attached to a segment must be attached to a
4751 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4752 // segments.
4753 if (this->type_ != elfcpp::PT_LOAD)
4754 return v;
4755
4756 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4757 {
4758 const Output_data_list* pdl = &this->output_lists_[i];
4759 v = this->write_section_headers_list<size, big_endian>(layout,
4760 secnamepool,
4761 pdl,
4762 v, pshndx);
4763 }
4764
4765 return v;
4766 }
4767
4768 template<int size, bool big_endian>
4769 unsigned char*
4770 Output_segment::write_section_headers_list(const Layout* layout,
4771 const Stringpool* secnamepool,
4772 const Output_data_list* pdl,
4773 unsigned char* v,
4774 unsigned int* pshndx) const
4775 {
4776 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4777 for (Output_data_list::const_iterator p = pdl->begin();
4778 p != pdl->end();
4779 ++p)
4780 {
4781 if ((*p)->is_section())
4782 {
4783 const Output_section* ps = static_cast<const Output_section*>(*p);
4784 gold_assert(*pshndx == ps->out_shndx());
4785 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4786 ps->write_header(layout, secnamepool, &oshdr);
4787 v += shdr_size;
4788 ++*pshndx;
4789 }
4790 }
4791 return v;
4792 }
4793
4794 // Print the output sections to the map file.
4795
4796 void
4797 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4798 {
4799 if (this->type() != elfcpp::PT_LOAD)
4800 return;
4801 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4802 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4803 }
4804
4805 // Print an output section list to the map file.
4806
4807 void
4808 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4809 const Output_data_list* pdl) const
4810 {
4811 for (Output_data_list::const_iterator p = pdl->begin();
4812 p != pdl->end();
4813 ++p)
4814 (*p)->print_to_mapfile(mapfile);
4815 }
4816
4817 // Output_file methods.
4818
4819 Output_file::Output_file(const char* name)
4820 : name_(name),
4821 o_(-1),
4822 file_size_(0),
4823 base_(NULL),
4824 map_is_anonymous_(false),
4825 map_is_allocated_(false),
4826 is_temporary_(false)
4827 {
4828 }
4829
4830 // Try to open an existing file. Returns false if the file doesn't
4831 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4832 // NULL, open that file as the base for incremental linking, and
4833 // copy its contents to the new output file. This routine can
4834 // be called for incremental updates, in which case WRITABLE should
4835 // be true, or by the incremental-dump utility, in which case
4836 // WRITABLE should be false.
4837
4838 bool
4839 Output_file::open_base_file(const char* base_name, bool writable)
4840 {
4841 // The name "-" means "stdout".
4842 if (strcmp(this->name_, "-") == 0)
4843 return false;
4844
4845 bool use_base_file = base_name != NULL;
4846 if (!use_base_file)
4847 base_name = this->name_;
4848 else if (strcmp(base_name, this->name_) == 0)
4849 gold_fatal(_("%s: incremental base and output file name are the same"),
4850 base_name);
4851
4852 // Don't bother opening files with a size of zero.
4853 struct stat s;
4854 if (::stat(base_name, &s) != 0)
4855 {
4856 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4857 return false;
4858 }
4859 if (s.st_size == 0)
4860 {
4861 gold_info(_("%s: incremental base file is empty"), base_name);
4862 return false;
4863 }
4864
4865 // If we're using a base file, we want to open it read-only.
4866 if (use_base_file)
4867 writable = false;
4868
4869 int oflags = writable ? O_RDWR : O_RDONLY;
4870 int o = open_descriptor(-1, base_name, oflags, 0);
4871 if (o < 0)
4872 {
4873 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4874 return false;
4875 }
4876
4877 // If the base file and the output file are different, open a
4878 // new output file and read the contents from the base file into
4879 // the newly-mapped region.
4880 if (use_base_file)
4881 {
4882 this->open(s.st_size);
4883 ssize_t len = ::read(o, this->base_, s.st_size);
4884 if (len < 0)
4885 {
4886 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4887 return false;
4888 }
4889 if (len < s.st_size)
4890 {
4891 gold_info(_("%s: file too short"), base_name);
4892 return false;
4893 }
4894 ::close(o);
4895 return true;
4896 }
4897
4898 this->o_ = o;
4899 this->file_size_ = s.st_size;
4900
4901 if (!this->map_no_anonymous(writable))
4902 {
4903 release_descriptor(o, true);
4904 this->o_ = -1;
4905 this->file_size_ = 0;
4906 return false;
4907 }
4908
4909 return true;
4910 }
4911
4912 // Open the output file.
4913
4914 void
4915 Output_file::open(off_t file_size)
4916 {
4917 this->file_size_ = file_size;
4918
4919 // Unlink the file first; otherwise the open() may fail if the file
4920 // is busy (e.g. it's an executable that's currently being executed).
4921 //
4922 // However, the linker may be part of a system where a zero-length
4923 // file is created for it to write to, with tight permissions (gcc
4924 // 2.95 did something like this). Unlinking the file would work
4925 // around those permission controls, so we only unlink if the file
4926 // has a non-zero size. We also unlink only regular files to avoid
4927 // trouble with directories/etc.
4928 //
4929 // If we fail, continue; this command is merely a best-effort attempt
4930 // to improve the odds for open().
4931
4932 // We let the name "-" mean "stdout"
4933 if (!this->is_temporary_)
4934 {
4935 if (strcmp(this->name_, "-") == 0)
4936 this->o_ = STDOUT_FILENO;
4937 else
4938 {
4939 struct stat s;
4940 if (::stat(this->name_, &s) == 0
4941 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4942 {
4943 if (s.st_size != 0)
4944 ::unlink(this->name_);
4945 else if (!parameters->options().relocatable())
4946 {
4947 // If we don't unlink the existing file, add execute
4948 // permission where read permissions already exist
4949 // and where the umask permits.
4950 int mask = ::umask(0);
4951 ::umask(mask);
4952 s.st_mode |= (s.st_mode & 0444) >> 2;
4953 ::chmod(this->name_, s.st_mode & ~mask);
4954 }
4955 }
4956
4957 int mode = parameters->options().relocatable() ? 0666 : 0777;
4958 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4959 mode);
4960 if (o < 0)
4961 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4962 this->o_ = o;
4963 }
4964 }
4965
4966 this->map();
4967 }
4968
4969 // Resize the output file.
4970
4971 void
4972 Output_file::resize(off_t file_size)
4973 {
4974 // If the mmap is mapping an anonymous memory buffer, this is easy:
4975 // just mremap to the new size. If it's mapping to a file, we want
4976 // to unmap to flush to the file, then remap after growing the file.
4977 if (this->map_is_anonymous_)
4978 {
4979 void* base;
4980 if (!this->map_is_allocated_)
4981 {
4982 base = ::mremap(this->base_, this->file_size_, file_size,
4983 MREMAP_MAYMOVE);
4984 if (base == MAP_FAILED)
4985 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4986 }
4987 else
4988 {
4989 base = realloc(this->base_, file_size);
4990 if (base == NULL)
4991 gold_nomem();
4992 if (file_size > this->file_size_)
4993 memset(static_cast<char*>(base) + this->file_size_, 0,
4994 file_size - this->file_size_);
4995 }
4996 this->base_ = static_cast<unsigned char*>(base);
4997 this->file_size_ = file_size;
4998 }
4999 else
5000 {
5001 this->unmap();
5002 this->file_size_ = file_size;
5003 if (!this->map_no_anonymous(true))
5004 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5005 }
5006 }
5007
5008 // Map an anonymous block of memory which will later be written to the
5009 // file. Return whether the map succeeded.
5010
5011 bool
5012 Output_file::map_anonymous()
5013 {
5014 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5015 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5016 if (base == MAP_FAILED)
5017 {
5018 base = malloc(this->file_size_);
5019 if (base == NULL)
5020 return false;
5021 memset(base, 0, this->file_size_);
5022 this->map_is_allocated_ = true;
5023 }
5024 this->base_ = static_cast<unsigned char*>(base);
5025 this->map_is_anonymous_ = true;
5026 return true;
5027 }
5028
5029 // Map the file into memory. Return whether the mapping succeeded.
5030 // If WRITABLE is true, map with write access.
5031
5032 bool
5033 Output_file::map_no_anonymous(bool writable)
5034 {
5035 const int o = this->o_;
5036
5037 // If the output file is not a regular file, don't try to mmap it;
5038 // instead, we'll mmap a block of memory (an anonymous buffer), and
5039 // then later write the buffer to the file.
5040 void* base;
5041 struct stat statbuf;
5042 if (o == STDOUT_FILENO || o == STDERR_FILENO
5043 || ::fstat(o, &statbuf) != 0
5044 || !S_ISREG(statbuf.st_mode)
5045 || this->is_temporary_)
5046 return false;
5047
5048 // Ensure that we have disk space available for the file. If we
5049 // don't do this, it is possible that we will call munmap, close,
5050 // and exit with dirty buffers still in the cache with no assigned
5051 // disk blocks. If the disk is out of space at that point, the
5052 // output file will wind up incomplete, but we will have already
5053 // exited. The alternative to fallocate would be to use fdatasync,
5054 // but that would be a more significant performance hit.
5055 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5056 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5057
5058 // Map the file into memory.
5059 int prot = PROT_READ;
5060 if (writable)
5061 prot |= PROT_WRITE;
5062 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5063
5064 // The mmap call might fail because of file system issues: the file
5065 // system might not support mmap at all, or it might not support
5066 // mmap with PROT_WRITE.
5067 if (base == MAP_FAILED)
5068 return false;
5069
5070 this->map_is_anonymous_ = false;
5071 this->base_ = static_cast<unsigned char*>(base);
5072 return true;
5073 }
5074
5075 // Map the file into memory.
5076
5077 void
5078 Output_file::map()
5079 {
5080 if (this->map_no_anonymous(true))
5081 return;
5082
5083 // The mmap call might fail because of file system issues: the file
5084 // system might not support mmap at all, or it might not support
5085 // mmap with PROT_WRITE. I'm not sure which errno values we will
5086 // see in all cases, so if the mmap fails for any reason and we
5087 // don't care about file contents, try for an anonymous map.
5088 if (this->map_anonymous())
5089 return;
5090
5091 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5092 this->name_, static_cast<unsigned long>(this->file_size_),
5093 strerror(errno));
5094 }
5095
5096 // Unmap the file from memory.
5097
5098 void
5099 Output_file::unmap()
5100 {
5101 if (this->map_is_anonymous_)
5102 {
5103 // We've already written out the data, so there is no reason to
5104 // waste time unmapping or freeing the memory.
5105 }
5106 else
5107 {
5108 if (::munmap(this->base_, this->file_size_) < 0)
5109 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5110 }
5111 this->base_ = NULL;
5112 }
5113
5114 // Close the output file.
5115
5116 void
5117 Output_file::close()
5118 {
5119 // If the map isn't file-backed, we need to write it now.
5120 if (this->map_is_anonymous_ && !this->is_temporary_)
5121 {
5122 size_t bytes_to_write = this->file_size_;
5123 size_t offset = 0;
5124 while (bytes_to_write > 0)
5125 {
5126 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5127 bytes_to_write);
5128 if (bytes_written == 0)
5129 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5130 else if (bytes_written < 0)
5131 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5132 else
5133 {
5134 bytes_to_write -= bytes_written;
5135 offset += bytes_written;
5136 }
5137 }
5138 }
5139 this->unmap();
5140
5141 // We don't close stdout or stderr
5142 if (this->o_ != STDOUT_FILENO
5143 && this->o_ != STDERR_FILENO
5144 && !this->is_temporary_)
5145 if (::close(this->o_) < 0)
5146 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5147 this->o_ = -1;
5148 }
5149
5150 // Instantiate the templates we need. We could use the configure
5151 // script to restrict this to only the ones for implemented targets.
5152
5153 #ifdef HAVE_TARGET_32_LITTLE
5154 template
5155 off_t
5156 Output_section::add_input_section<32, false>(
5157 Layout* layout,
5158 Sized_relobj_file<32, false>* object,
5159 unsigned int shndx,
5160 const char* secname,
5161 const elfcpp::Shdr<32, false>& shdr,
5162 unsigned int reloc_shndx,
5163 bool have_sections_script);
5164 #endif
5165
5166 #ifdef HAVE_TARGET_32_BIG
5167 template
5168 off_t
5169 Output_section::add_input_section<32, true>(
5170 Layout* layout,
5171 Sized_relobj_file<32, true>* object,
5172 unsigned int shndx,
5173 const char* secname,
5174 const elfcpp::Shdr<32, true>& shdr,
5175 unsigned int reloc_shndx,
5176 bool have_sections_script);
5177 #endif
5178
5179 #ifdef HAVE_TARGET_64_LITTLE
5180 template
5181 off_t
5182 Output_section::add_input_section<64, false>(
5183 Layout* layout,
5184 Sized_relobj_file<64, false>* object,
5185 unsigned int shndx,
5186 const char* secname,
5187 const elfcpp::Shdr<64, false>& shdr,
5188 unsigned int reloc_shndx,
5189 bool have_sections_script);
5190 #endif
5191
5192 #ifdef HAVE_TARGET_64_BIG
5193 template
5194 off_t
5195 Output_section::add_input_section<64, true>(
5196 Layout* layout,
5197 Sized_relobj_file<64, true>* object,
5198 unsigned int shndx,
5199 const char* secname,
5200 const elfcpp::Shdr<64, true>& shdr,
5201 unsigned int reloc_shndx,
5202 bool have_sections_script);
5203 #endif
5204
5205 #ifdef HAVE_TARGET_32_LITTLE
5206 template
5207 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5208 #endif
5209
5210 #ifdef HAVE_TARGET_32_BIG
5211 template
5212 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5213 #endif
5214
5215 #ifdef HAVE_TARGET_64_LITTLE
5216 template
5217 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5218 #endif
5219
5220 #ifdef HAVE_TARGET_64_BIG
5221 template
5222 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5223 #endif
5224
5225 #ifdef HAVE_TARGET_32_LITTLE
5226 template
5227 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5228 #endif
5229
5230 #ifdef HAVE_TARGET_32_BIG
5231 template
5232 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5233 #endif
5234
5235 #ifdef HAVE_TARGET_64_LITTLE
5236 template
5237 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5238 #endif
5239
5240 #ifdef HAVE_TARGET_64_BIG
5241 template
5242 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5243 #endif
5244
5245 #ifdef HAVE_TARGET_32_LITTLE
5246 template
5247 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5248 #endif
5249
5250 #ifdef HAVE_TARGET_32_BIG
5251 template
5252 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5253 #endif
5254
5255 #ifdef HAVE_TARGET_64_LITTLE
5256 template
5257 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5258 #endif
5259
5260 #ifdef HAVE_TARGET_64_BIG
5261 template
5262 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5263 #endif
5264
5265 #ifdef HAVE_TARGET_32_LITTLE
5266 template
5267 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5268 #endif
5269
5270 #ifdef HAVE_TARGET_32_BIG
5271 template
5272 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5273 #endif
5274
5275 #ifdef HAVE_TARGET_64_LITTLE
5276 template
5277 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5278 #endif
5279
5280 #ifdef HAVE_TARGET_64_BIG
5281 template
5282 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5283 #endif
5284
5285 #ifdef HAVE_TARGET_32_LITTLE
5286 template
5287 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5288 #endif
5289
5290 #ifdef HAVE_TARGET_32_BIG
5291 template
5292 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5293 #endif
5294
5295 #ifdef HAVE_TARGET_64_LITTLE
5296 template
5297 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5298 #endif
5299
5300 #ifdef HAVE_TARGET_64_BIG
5301 template
5302 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5303 #endif
5304
5305 #ifdef HAVE_TARGET_32_LITTLE
5306 template
5307 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5308 #endif
5309
5310 #ifdef HAVE_TARGET_32_BIG
5311 template
5312 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5313 #endif
5314
5315 #ifdef HAVE_TARGET_64_LITTLE
5316 template
5317 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5318 #endif
5319
5320 #ifdef HAVE_TARGET_64_BIG
5321 template
5322 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_LITTLE
5326 template
5327 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5328 #endif
5329
5330 #ifdef HAVE_TARGET_32_BIG
5331 template
5332 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5333 #endif
5334
5335 #ifdef HAVE_TARGET_64_LITTLE
5336 template
5337 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_64_BIG
5341 template
5342 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_32_LITTLE
5346 template
5347 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_32_BIG
5351 template
5352 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_LITTLE
5356 template
5357 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_64_BIG
5361 template
5362 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_32_LITTLE
5366 template
5367 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_32_BIG
5371 template
5372 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_64_LITTLE
5376 template
5377 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_64_BIG
5381 template
5382 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_LITTLE
5386 template
5387 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_32_BIG
5391 template
5392 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_64_LITTLE
5396 template
5397 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_64_BIG
5401 template
5402 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_32_LITTLE
5406 template
5407 class Output_data_group<32, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_32_BIG
5411 template
5412 class Output_data_group<32, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 class Output_data_group<64, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_64_BIG
5421 template
5422 class Output_data_group<64, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_32_LITTLE
5426 template
5427 class Output_data_got<32, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_32_BIG
5431 template
5432 class Output_data_got<32, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_64_LITTLE
5436 template
5437 class Output_data_got<64, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_64_BIG
5441 template
5442 class Output_data_got<64, true>;
5443 #endif
5444
5445 } // End namespace gold.
This page took 0.136293 seconds and 5 git commands to generate.