Group text sections with prefixes .text.unlikely,.text.hot and .text.startup
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 // Free Software Foundation, Inc.
5 // Written by Ian Lance Taylor <iant@google.com>.
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <cstdlib>
27 #include <cstring>
28 #include <cerrno>
29 #include <fcntl.h>
30 #include <unistd.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33
34 #ifdef HAVE_SYS_MMAN_H
35 #include <sys/mman.h>
36 #endif
37
38 #include "libiberty.h"
39
40 #include "dwarf.h"
41 #include "parameters.h"
42 #include "object.h"
43 #include "symtab.h"
44 #include "reloc.h"
45 #include "merge.h"
46 #include "descriptors.h"
47 #include "layout.h"
48 #include "output.h"
49
50 // For systems without mmap support.
51 #ifndef HAVE_MMAP
52 # define mmap gold_mmap
53 # define munmap gold_munmap
54 # define mremap gold_mremap
55 # ifndef MAP_FAILED
56 # define MAP_FAILED (reinterpret_cast<void*>(-1))
57 # endif
58 # ifndef PROT_READ
59 # define PROT_READ 0
60 # endif
61 # ifndef PROT_WRITE
62 # define PROT_WRITE 0
63 # endif
64 # ifndef MAP_PRIVATE
65 # define MAP_PRIVATE 0
66 # endif
67 # ifndef MAP_ANONYMOUS
68 # define MAP_ANONYMOUS 0
69 # endif
70 # ifndef MAP_SHARED
71 # define MAP_SHARED 0
72 # endif
73
74 # ifndef ENOSYS
75 # define ENOSYS EINVAL
76 # endif
77
78 static void *
79 gold_mmap(void *, size_t, int, int, int, off_t)
80 {
81 errno = ENOSYS;
82 return MAP_FAILED;
83 }
84
85 static int
86 gold_munmap(void *, size_t)
87 {
88 errno = ENOSYS;
89 return -1;
90 }
91
92 static void *
93 gold_mremap(void *, size_t, size_t, int)
94 {
95 errno = ENOSYS;
96 return MAP_FAILED;
97 }
98
99 #endif
100
101 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
102 # define mremap gold_mremap
103 extern "C" void *gold_mremap(void *, size_t, size_t, int);
104 #endif
105
106 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
107 #ifndef MAP_ANONYMOUS
108 # define MAP_ANONYMOUS MAP_ANON
109 #endif
110
111 #ifndef MREMAP_MAYMOVE
112 # define MREMAP_MAYMOVE 1
113 #endif
114
115 // Mingw does not have S_ISLNK.
116 #ifndef S_ISLNK
117 # define S_ISLNK(mode) 0
118 #endif
119
120 namespace gold
121 {
122
123 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
124 // or the --no-posix-fallocate option is set, we try the fallocate
125 // system call directly. If that fails, we use ftruncate to set
126 // the file size and hope that there is enough disk space.
127
128 static int
129 gold_fallocate(int o, off_t offset, off_t len)
130 {
131 #ifdef HAVE_POSIX_FALLOCATE
132 if (parameters->options().posix_fallocate())
133 return ::posix_fallocate(o, offset, len);
134 #endif // defined(HAVE_POSIX_FALLOCATE)
135 #ifdef HAVE_FALLOCATE
136 if (::fallocate(o, 0, offset, len) == 0)
137 return 0;
138 #endif // defined(HAVE_FALLOCATE)
139 if (::ftruncate(o, offset + len) < 0)
140 return errno;
141 return 0;
142 }
143
144 // Output_data variables.
145
146 bool Output_data::allocated_sizes_are_fixed;
147
148 // Output_data methods.
149
150 Output_data::~Output_data()
151 {
152 }
153
154 // Return the default alignment for the target size.
155
156 uint64_t
157 Output_data::default_alignment()
158 {
159 return Output_data::default_alignment_for_size(
160 parameters->target().get_size());
161 }
162
163 // Return the default alignment for a size--32 or 64.
164
165 uint64_t
166 Output_data::default_alignment_for_size(int size)
167 {
168 if (size == 32)
169 return 4;
170 else if (size == 64)
171 return 8;
172 else
173 gold_unreachable();
174 }
175
176 // Output_section_header methods. This currently assumes that the
177 // segment and section lists are complete at construction time.
178
179 Output_section_headers::Output_section_headers(
180 const Layout* layout,
181 const Layout::Segment_list* segment_list,
182 const Layout::Section_list* section_list,
183 const Layout::Section_list* unattached_section_list,
184 const Stringpool* secnamepool,
185 const Output_section* shstrtab_section)
186 : layout_(layout),
187 segment_list_(segment_list),
188 section_list_(section_list),
189 unattached_section_list_(unattached_section_list),
190 secnamepool_(secnamepool),
191 shstrtab_section_(shstrtab_section)
192 {
193 }
194
195 // Compute the current data size.
196
197 off_t
198 Output_section_headers::do_size() const
199 {
200 // Count all the sections. Start with 1 for the null section.
201 off_t count = 1;
202 if (!parameters->options().relocatable())
203 {
204 for (Layout::Segment_list::const_iterator p =
205 this->segment_list_->begin();
206 p != this->segment_list_->end();
207 ++p)
208 if ((*p)->type() == elfcpp::PT_LOAD)
209 count += (*p)->output_section_count();
210 }
211 else
212 {
213 for (Layout::Section_list::const_iterator p =
214 this->section_list_->begin();
215 p != this->section_list_->end();
216 ++p)
217 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
218 ++count;
219 }
220 count += this->unattached_section_list_->size();
221
222 const int size = parameters->target().get_size();
223 int shdr_size;
224 if (size == 32)
225 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
226 else if (size == 64)
227 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
228 else
229 gold_unreachable();
230
231 return count * shdr_size;
232 }
233
234 // Write out the section headers.
235
236 void
237 Output_section_headers::do_write(Output_file* of)
238 {
239 switch (parameters->size_and_endianness())
240 {
241 #ifdef HAVE_TARGET_32_LITTLE
242 case Parameters::TARGET_32_LITTLE:
243 this->do_sized_write<32, false>(of);
244 break;
245 #endif
246 #ifdef HAVE_TARGET_32_BIG
247 case Parameters::TARGET_32_BIG:
248 this->do_sized_write<32, true>(of);
249 break;
250 #endif
251 #ifdef HAVE_TARGET_64_LITTLE
252 case Parameters::TARGET_64_LITTLE:
253 this->do_sized_write<64, false>(of);
254 break;
255 #endif
256 #ifdef HAVE_TARGET_64_BIG
257 case Parameters::TARGET_64_BIG:
258 this->do_sized_write<64, true>(of);
259 break;
260 #endif
261 default:
262 gold_unreachable();
263 }
264 }
265
266 template<int size, bool big_endian>
267 void
268 Output_section_headers::do_sized_write(Output_file* of)
269 {
270 off_t all_shdrs_size = this->data_size();
271 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
272
273 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
274 unsigned char* v = view;
275
276 {
277 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
278 oshdr.put_sh_name(0);
279 oshdr.put_sh_type(elfcpp::SHT_NULL);
280 oshdr.put_sh_flags(0);
281 oshdr.put_sh_addr(0);
282 oshdr.put_sh_offset(0);
283
284 size_t section_count = (this->data_size()
285 / elfcpp::Elf_sizes<size>::shdr_size);
286 if (section_count < elfcpp::SHN_LORESERVE)
287 oshdr.put_sh_size(0);
288 else
289 oshdr.put_sh_size(section_count);
290
291 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
292 if (shstrndx < elfcpp::SHN_LORESERVE)
293 oshdr.put_sh_link(0);
294 else
295 oshdr.put_sh_link(shstrndx);
296
297 size_t segment_count = this->segment_list_->size();
298 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
299
300 oshdr.put_sh_addralign(0);
301 oshdr.put_sh_entsize(0);
302 }
303
304 v += shdr_size;
305
306 unsigned int shndx = 1;
307 if (!parameters->options().relocatable())
308 {
309 for (Layout::Segment_list::const_iterator p =
310 this->segment_list_->begin();
311 p != this->segment_list_->end();
312 ++p)
313 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
314 this->secnamepool_,
315 v,
316 &shndx);
317 }
318 else
319 {
320 for (Layout::Section_list::const_iterator p =
321 this->section_list_->begin();
322 p != this->section_list_->end();
323 ++p)
324 {
325 // We do unallocated sections below, except that group
326 // sections have to come first.
327 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
328 && (*p)->type() != elfcpp::SHT_GROUP)
329 continue;
330 gold_assert(shndx == (*p)->out_shndx());
331 elfcpp::Shdr_write<size, big_endian> oshdr(v);
332 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
333 v += shdr_size;
334 ++shndx;
335 }
336 }
337
338 for (Layout::Section_list::const_iterator p =
339 this->unattached_section_list_->begin();
340 p != this->unattached_section_list_->end();
341 ++p)
342 {
343 // For a relocatable link, we did unallocated group sections
344 // above, since they have to come first.
345 if ((*p)->type() == elfcpp::SHT_GROUP
346 && parameters->options().relocatable())
347 continue;
348 gold_assert(shndx == (*p)->out_shndx());
349 elfcpp::Shdr_write<size, big_endian> oshdr(v);
350 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
351 v += shdr_size;
352 ++shndx;
353 }
354
355 of->write_output_view(this->offset(), all_shdrs_size, view);
356 }
357
358 // Output_segment_header methods.
359
360 Output_segment_headers::Output_segment_headers(
361 const Layout::Segment_list& segment_list)
362 : segment_list_(segment_list)
363 {
364 this->set_current_data_size_for_child(this->do_size());
365 }
366
367 void
368 Output_segment_headers::do_write(Output_file* of)
369 {
370 switch (parameters->size_and_endianness())
371 {
372 #ifdef HAVE_TARGET_32_LITTLE
373 case Parameters::TARGET_32_LITTLE:
374 this->do_sized_write<32, false>(of);
375 break;
376 #endif
377 #ifdef HAVE_TARGET_32_BIG
378 case Parameters::TARGET_32_BIG:
379 this->do_sized_write<32, true>(of);
380 break;
381 #endif
382 #ifdef HAVE_TARGET_64_LITTLE
383 case Parameters::TARGET_64_LITTLE:
384 this->do_sized_write<64, false>(of);
385 break;
386 #endif
387 #ifdef HAVE_TARGET_64_BIG
388 case Parameters::TARGET_64_BIG:
389 this->do_sized_write<64, true>(of);
390 break;
391 #endif
392 default:
393 gold_unreachable();
394 }
395 }
396
397 template<int size, bool big_endian>
398 void
399 Output_segment_headers::do_sized_write(Output_file* of)
400 {
401 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
402 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
403 gold_assert(all_phdrs_size == this->data_size());
404 unsigned char* view = of->get_output_view(this->offset(),
405 all_phdrs_size);
406 unsigned char* v = view;
407 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
408 p != this->segment_list_.end();
409 ++p)
410 {
411 elfcpp::Phdr_write<size, big_endian> ophdr(v);
412 (*p)->write_header(&ophdr);
413 v += phdr_size;
414 }
415
416 gold_assert(v - view == all_phdrs_size);
417
418 of->write_output_view(this->offset(), all_phdrs_size, view);
419 }
420
421 off_t
422 Output_segment_headers::do_size() const
423 {
424 const int size = parameters->target().get_size();
425 int phdr_size;
426 if (size == 32)
427 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
428 else if (size == 64)
429 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
430 else
431 gold_unreachable();
432
433 return this->segment_list_.size() * phdr_size;
434 }
435
436 // Output_file_header methods.
437
438 Output_file_header::Output_file_header(const Target* target,
439 const Symbol_table* symtab,
440 const Output_segment_headers* osh)
441 : target_(target),
442 symtab_(symtab),
443 segment_header_(osh),
444 section_header_(NULL),
445 shstrtab_(NULL)
446 {
447 this->set_data_size(this->do_size());
448 }
449
450 // Set the section table information for a file header.
451
452 void
453 Output_file_header::set_section_info(const Output_section_headers* shdrs,
454 const Output_section* shstrtab)
455 {
456 this->section_header_ = shdrs;
457 this->shstrtab_ = shstrtab;
458 }
459
460 // Write out the file header.
461
462 void
463 Output_file_header::do_write(Output_file* of)
464 {
465 gold_assert(this->offset() == 0);
466
467 switch (parameters->size_and_endianness())
468 {
469 #ifdef HAVE_TARGET_32_LITTLE
470 case Parameters::TARGET_32_LITTLE:
471 this->do_sized_write<32, false>(of);
472 break;
473 #endif
474 #ifdef HAVE_TARGET_32_BIG
475 case Parameters::TARGET_32_BIG:
476 this->do_sized_write<32, true>(of);
477 break;
478 #endif
479 #ifdef HAVE_TARGET_64_LITTLE
480 case Parameters::TARGET_64_LITTLE:
481 this->do_sized_write<64, false>(of);
482 break;
483 #endif
484 #ifdef HAVE_TARGET_64_BIG
485 case Parameters::TARGET_64_BIG:
486 this->do_sized_write<64, true>(of);
487 break;
488 #endif
489 default:
490 gold_unreachable();
491 }
492 }
493
494 // Write out the file header with appropriate size and endianness.
495
496 template<int size, bool big_endian>
497 void
498 Output_file_header::do_sized_write(Output_file* of)
499 {
500 gold_assert(this->offset() == 0);
501
502 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
503 unsigned char* view = of->get_output_view(0, ehdr_size);
504 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
505
506 unsigned char e_ident[elfcpp::EI_NIDENT];
507 memset(e_ident, 0, elfcpp::EI_NIDENT);
508 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
509 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
510 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
511 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
512 if (size == 32)
513 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
514 else if (size == 64)
515 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
516 else
517 gold_unreachable();
518 e_ident[elfcpp::EI_DATA] = (big_endian
519 ? elfcpp::ELFDATA2MSB
520 : elfcpp::ELFDATA2LSB);
521 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
522 oehdr.put_e_ident(e_ident);
523
524 elfcpp::ET e_type;
525 if (parameters->options().relocatable())
526 e_type = elfcpp::ET_REL;
527 else if (parameters->options().output_is_position_independent())
528 e_type = elfcpp::ET_DYN;
529 else
530 e_type = elfcpp::ET_EXEC;
531 oehdr.put_e_type(e_type);
532
533 oehdr.put_e_machine(this->target_->machine_code());
534 oehdr.put_e_version(elfcpp::EV_CURRENT);
535
536 oehdr.put_e_entry(this->entry<size>());
537
538 if (this->segment_header_ == NULL)
539 oehdr.put_e_phoff(0);
540 else
541 oehdr.put_e_phoff(this->segment_header_->offset());
542
543 oehdr.put_e_shoff(this->section_header_->offset());
544 oehdr.put_e_flags(this->target_->processor_specific_flags());
545 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
546
547 if (this->segment_header_ == NULL)
548 {
549 oehdr.put_e_phentsize(0);
550 oehdr.put_e_phnum(0);
551 }
552 else
553 {
554 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
555 size_t phnum = (this->segment_header_->data_size()
556 / elfcpp::Elf_sizes<size>::phdr_size);
557 if (phnum > elfcpp::PN_XNUM)
558 phnum = elfcpp::PN_XNUM;
559 oehdr.put_e_phnum(phnum);
560 }
561
562 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
563 size_t section_count = (this->section_header_->data_size()
564 / elfcpp::Elf_sizes<size>::shdr_size);
565
566 if (section_count < elfcpp::SHN_LORESERVE)
567 oehdr.put_e_shnum(this->section_header_->data_size()
568 / elfcpp::Elf_sizes<size>::shdr_size);
569 else
570 oehdr.put_e_shnum(0);
571
572 unsigned int shstrndx = this->shstrtab_->out_shndx();
573 if (shstrndx < elfcpp::SHN_LORESERVE)
574 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
575 else
576 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
577
578 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
579 // the e_ident field.
580 parameters->target().adjust_elf_header(view, ehdr_size);
581
582 of->write_output_view(0, ehdr_size, view);
583 }
584
585 // Return the value to use for the entry address.
586
587 template<int size>
588 typename elfcpp::Elf_types<size>::Elf_Addr
589 Output_file_header::entry()
590 {
591 const bool should_issue_warning = (parameters->options().entry() != NULL
592 && !parameters->options().relocatable()
593 && !parameters->options().shared());
594 const char* entry = parameters->entry();
595 Symbol* sym = this->symtab_->lookup(entry);
596
597 typename Sized_symbol<size>::Value_type v;
598 if (sym != NULL)
599 {
600 Sized_symbol<size>* ssym;
601 ssym = this->symtab_->get_sized_symbol<size>(sym);
602 if (!ssym->is_defined() && should_issue_warning)
603 gold_warning("entry symbol '%s' exists but is not defined", entry);
604 v = ssym->value();
605 }
606 else
607 {
608 // We couldn't find the entry symbol. See if we can parse it as
609 // a number. This supports, e.g., -e 0x1000.
610 char* endptr;
611 v = strtoull(entry, &endptr, 0);
612 if (*endptr != '\0')
613 {
614 if (should_issue_warning)
615 gold_warning("cannot find entry symbol '%s'", entry);
616 v = 0;
617 }
618 }
619
620 return v;
621 }
622
623 // Compute the current data size.
624
625 off_t
626 Output_file_header::do_size() const
627 {
628 const int size = parameters->target().get_size();
629 if (size == 32)
630 return elfcpp::Elf_sizes<32>::ehdr_size;
631 else if (size == 64)
632 return elfcpp::Elf_sizes<64>::ehdr_size;
633 else
634 gold_unreachable();
635 }
636
637 // Output_data_const methods.
638
639 void
640 Output_data_const::do_write(Output_file* of)
641 {
642 of->write(this->offset(), this->data_.data(), this->data_.size());
643 }
644
645 // Output_data_const_buffer methods.
646
647 void
648 Output_data_const_buffer::do_write(Output_file* of)
649 {
650 of->write(this->offset(), this->p_, this->data_size());
651 }
652
653 // Output_section_data methods.
654
655 // Record the output section, and set the entry size and such.
656
657 void
658 Output_section_data::set_output_section(Output_section* os)
659 {
660 gold_assert(this->output_section_ == NULL);
661 this->output_section_ = os;
662 this->do_adjust_output_section(os);
663 }
664
665 // Return the section index of the output section.
666
667 unsigned int
668 Output_section_data::do_out_shndx() const
669 {
670 gold_assert(this->output_section_ != NULL);
671 return this->output_section_->out_shndx();
672 }
673
674 // Set the alignment, which means we may need to update the alignment
675 // of the output section.
676
677 void
678 Output_section_data::set_addralign(uint64_t addralign)
679 {
680 this->addralign_ = addralign;
681 if (this->output_section_ != NULL
682 && this->output_section_->addralign() < addralign)
683 this->output_section_->set_addralign(addralign);
684 }
685
686 // Output_data_strtab methods.
687
688 // Set the final data size.
689
690 void
691 Output_data_strtab::set_final_data_size()
692 {
693 this->strtab_->set_string_offsets();
694 this->set_data_size(this->strtab_->get_strtab_size());
695 }
696
697 // Write out a string table.
698
699 void
700 Output_data_strtab::do_write(Output_file* of)
701 {
702 this->strtab_->write(of, this->offset());
703 }
704
705 // Output_reloc methods.
706
707 // A reloc against a global symbol.
708
709 template<bool dynamic, int size, bool big_endian>
710 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
711 Symbol* gsym,
712 unsigned int type,
713 Output_data* od,
714 Address address,
715 bool is_relative,
716 bool is_symbolless,
717 bool use_plt_offset)
718 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
719 is_relative_(is_relative), is_symbolless_(is_symbolless),
720 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
721 {
722 // this->type_ is a bitfield; make sure TYPE fits.
723 gold_assert(this->type_ == type);
724 this->u1_.gsym = gsym;
725 this->u2_.od = od;
726 if (dynamic)
727 this->set_needs_dynsym_index();
728 }
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Symbol* gsym,
733 unsigned int type,
734 Sized_relobj<size, big_endian>* relobj,
735 unsigned int shndx,
736 Address address,
737 bool is_relative,
738 bool is_symbolless,
739 bool use_plt_offset)
740 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
741 is_relative_(is_relative), is_symbolless_(is_symbolless),
742 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
743 {
744 gold_assert(shndx != INVALID_CODE);
745 // this->type_ is a bitfield; make sure TYPE fits.
746 gold_assert(this->type_ == type);
747 this->u1_.gsym = gsym;
748 this->u2_.relobj = relobj;
749 if (dynamic)
750 this->set_needs_dynsym_index();
751 }
752
753 // A reloc against a local symbol.
754
755 template<bool dynamic, int size, bool big_endian>
756 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
757 Sized_relobj<size, big_endian>* relobj,
758 unsigned int local_sym_index,
759 unsigned int type,
760 Output_data* od,
761 Address address,
762 bool is_relative,
763 bool is_symbolless,
764 bool is_section_symbol,
765 bool use_plt_offset)
766 : address_(address), local_sym_index_(local_sym_index), type_(type),
767 is_relative_(is_relative), is_symbolless_(is_symbolless),
768 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
769 shndx_(INVALID_CODE)
770 {
771 gold_assert(local_sym_index != GSYM_CODE
772 && local_sym_index != INVALID_CODE);
773 // this->type_ is a bitfield; make sure TYPE fits.
774 gold_assert(this->type_ == type);
775 this->u1_.relobj = relobj;
776 this->u2_.od = od;
777 if (dynamic)
778 this->set_needs_dynsym_index();
779 }
780
781 template<bool dynamic, int size, bool big_endian>
782 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int local_sym_index,
785 unsigned int type,
786 unsigned int shndx,
787 Address address,
788 bool is_relative,
789 bool is_symbolless,
790 bool is_section_symbol,
791 bool use_plt_offset)
792 : address_(address), local_sym_index_(local_sym_index), type_(type),
793 is_relative_(is_relative), is_symbolless_(is_symbolless),
794 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
795 shndx_(shndx)
796 {
797 gold_assert(local_sym_index != GSYM_CODE
798 && local_sym_index != INVALID_CODE);
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = relobj;
803 this->u2_.relobj = relobj;
804 if (dynamic)
805 this->set_needs_dynsym_index();
806 }
807
808 // A reloc against the STT_SECTION symbol of an output section.
809
810 template<bool dynamic, int size, bool big_endian>
811 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
812 Output_section* os,
813 unsigned int type,
814 Output_data* od,
815 Address address,
816 bool is_relative)
817 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
818 is_relative_(is_relative), is_symbolless_(is_relative),
819 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
820 {
821 // this->type_ is a bitfield; make sure TYPE fits.
822 gold_assert(this->type_ == type);
823 this->u1_.os = os;
824 this->u2_.od = od;
825 if (dynamic)
826 this->set_needs_dynsym_index();
827 else
828 os->set_needs_symtab_index();
829 }
830
831 template<bool dynamic, int size, bool big_endian>
832 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
833 Output_section* os,
834 unsigned int type,
835 Sized_relobj<size, big_endian>* relobj,
836 unsigned int shndx,
837 Address address,
838 bool is_relative)
839 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
840 is_relative_(is_relative), is_symbolless_(is_relative),
841 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
842 {
843 gold_assert(shndx != INVALID_CODE);
844 // this->type_ is a bitfield; make sure TYPE fits.
845 gold_assert(this->type_ == type);
846 this->u1_.os = os;
847 this->u2_.relobj = relobj;
848 if (dynamic)
849 this->set_needs_dynsym_index();
850 else
851 os->set_needs_symtab_index();
852 }
853
854 // An absolute or relative relocation.
855
856 template<bool dynamic, int size, bool big_endian>
857 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
858 unsigned int type,
859 Output_data* od,
860 Address address,
861 bool is_relative)
862 : address_(address), local_sym_index_(0), type_(type),
863 is_relative_(is_relative), is_symbolless_(false),
864 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
865 {
866 // this->type_ is a bitfield; make sure TYPE fits.
867 gold_assert(this->type_ == type);
868 this->u1_.relobj = NULL;
869 this->u2_.od = od;
870 }
871
872 template<bool dynamic, int size, bool big_endian>
873 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
874 unsigned int type,
875 Sized_relobj<size, big_endian>* relobj,
876 unsigned int shndx,
877 Address address,
878 bool is_relative)
879 : address_(address), local_sym_index_(0), type_(type),
880 is_relative_(is_relative), is_symbolless_(false),
881 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
882 {
883 gold_assert(shndx != INVALID_CODE);
884 // this->type_ is a bitfield; make sure TYPE fits.
885 gold_assert(this->type_ == type);
886 this->u1_.relobj = NULL;
887 this->u2_.relobj = relobj;
888 }
889
890 // A target specific relocation.
891
892 template<bool dynamic, int size, bool big_endian>
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
894 unsigned int type,
895 void* arg,
896 Output_data* od,
897 Address address)
898 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
899 is_relative_(false), is_symbolless_(false),
900 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
901 {
902 // this->type_ is a bitfield; make sure TYPE fits.
903 gold_assert(this->type_ == type);
904 this->u1_.arg = arg;
905 this->u2_.od = od;
906 }
907
908 template<bool dynamic, int size, bool big_endian>
909 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
910 unsigned int type,
911 void* arg,
912 Sized_relobj<size, big_endian>* relobj,
913 unsigned int shndx,
914 Address address)
915 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
916 is_relative_(false), is_symbolless_(false),
917 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
918 {
919 gold_assert(shndx != INVALID_CODE);
920 // this->type_ is a bitfield; make sure TYPE fits.
921 gold_assert(this->type_ == type);
922 this->u1_.arg = arg;
923 this->u2_.relobj = relobj;
924 }
925
926 // Record that we need a dynamic symbol index for this relocation.
927
928 template<bool dynamic, int size, bool big_endian>
929 void
930 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
931 set_needs_dynsym_index()
932 {
933 if (this->is_symbolless_)
934 return;
935 switch (this->local_sym_index_)
936 {
937 case INVALID_CODE:
938 gold_unreachable();
939
940 case GSYM_CODE:
941 this->u1_.gsym->set_needs_dynsym_entry();
942 break;
943
944 case SECTION_CODE:
945 this->u1_.os->set_needs_dynsym_index();
946 break;
947
948 case TARGET_CODE:
949 // The target must take care of this if necessary.
950 break;
951
952 case 0:
953 break;
954
955 default:
956 {
957 const unsigned int lsi = this->local_sym_index_;
958 Sized_relobj_file<size, big_endian>* relobj =
959 this->u1_.relobj->sized_relobj();
960 gold_assert(relobj != NULL);
961 if (!this->is_section_symbol_)
962 relobj->set_needs_output_dynsym_entry(lsi);
963 else
964 relobj->output_section(lsi)->set_needs_dynsym_index();
965 }
966 break;
967 }
968 }
969
970 // Get the symbol index of a relocation.
971
972 template<bool dynamic, int size, bool big_endian>
973 unsigned int
974 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
975 const
976 {
977 unsigned int index;
978 if (this->is_symbolless_)
979 return 0;
980 switch (this->local_sym_index_)
981 {
982 case INVALID_CODE:
983 gold_unreachable();
984
985 case GSYM_CODE:
986 if (this->u1_.gsym == NULL)
987 index = 0;
988 else if (dynamic)
989 index = this->u1_.gsym->dynsym_index();
990 else
991 index = this->u1_.gsym->symtab_index();
992 break;
993
994 case SECTION_CODE:
995 if (dynamic)
996 index = this->u1_.os->dynsym_index();
997 else
998 index = this->u1_.os->symtab_index();
999 break;
1000
1001 case TARGET_CODE:
1002 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1003 this->type_);
1004 break;
1005
1006 case 0:
1007 // Relocations without symbols use a symbol index of 0.
1008 index = 0;
1009 break;
1010
1011 default:
1012 {
1013 const unsigned int lsi = this->local_sym_index_;
1014 Sized_relobj_file<size, big_endian>* relobj =
1015 this->u1_.relobj->sized_relobj();
1016 gold_assert(relobj != NULL);
1017 if (!this->is_section_symbol_)
1018 {
1019 if (dynamic)
1020 index = relobj->dynsym_index(lsi);
1021 else
1022 index = relobj->symtab_index(lsi);
1023 }
1024 else
1025 {
1026 Output_section* os = relobj->output_section(lsi);
1027 gold_assert(os != NULL);
1028 if (dynamic)
1029 index = os->dynsym_index();
1030 else
1031 index = os->symtab_index();
1032 }
1033 }
1034 break;
1035 }
1036 gold_assert(index != -1U);
1037 return index;
1038 }
1039
1040 // For a local section symbol, get the address of the offset ADDEND
1041 // within the input section.
1042
1043 template<bool dynamic, int size, bool big_endian>
1044 typename elfcpp::Elf_types<size>::Elf_Addr
1045 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1046 local_section_offset(Addend addend) const
1047 {
1048 gold_assert(this->local_sym_index_ != GSYM_CODE
1049 && this->local_sym_index_ != SECTION_CODE
1050 && this->local_sym_index_ != TARGET_CODE
1051 && this->local_sym_index_ != INVALID_CODE
1052 && this->local_sym_index_ != 0
1053 && this->is_section_symbol_);
1054 const unsigned int lsi = this->local_sym_index_;
1055 Output_section* os = this->u1_.relobj->output_section(lsi);
1056 gold_assert(os != NULL);
1057 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1058 if (offset != invalid_address)
1059 return offset + addend;
1060 // This is a merge section.
1061 Sized_relobj_file<size, big_endian>* relobj =
1062 this->u1_.relobj->sized_relobj();
1063 gold_assert(relobj != NULL);
1064 offset = os->output_address(relobj, lsi, addend);
1065 gold_assert(offset != invalid_address);
1066 return offset;
1067 }
1068
1069 // Get the output address of a relocation.
1070
1071 template<bool dynamic, int size, bool big_endian>
1072 typename elfcpp::Elf_types<size>::Elf_Addr
1073 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1074 {
1075 Address address = this->address_;
1076 if (this->shndx_ != INVALID_CODE)
1077 {
1078 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1079 gold_assert(os != NULL);
1080 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1081 if (off != invalid_address)
1082 address += os->address() + off;
1083 else
1084 {
1085 Sized_relobj_file<size, big_endian>* relobj =
1086 this->u2_.relobj->sized_relobj();
1087 gold_assert(relobj != NULL);
1088 address = os->output_address(relobj, this->shndx_, address);
1089 gold_assert(address != invalid_address);
1090 }
1091 }
1092 else if (this->u2_.od != NULL)
1093 address += this->u2_.od->address();
1094 return address;
1095 }
1096
1097 // Write out the offset and info fields of a Rel or Rela relocation
1098 // entry.
1099
1100 template<bool dynamic, int size, bool big_endian>
1101 template<typename Write_rel>
1102 void
1103 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1104 Write_rel* wr) const
1105 {
1106 wr->put_r_offset(this->get_address());
1107 unsigned int sym_index = this->get_symbol_index();
1108 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1109 }
1110
1111 // Write out a Rel relocation.
1112
1113 template<bool dynamic, int size, bool big_endian>
1114 void
1115 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1116 unsigned char* pov) const
1117 {
1118 elfcpp::Rel_write<size, big_endian> orel(pov);
1119 this->write_rel(&orel);
1120 }
1121
1122 // Get the value of the symbol referred to by a Rel relocation.
1123
1124 template<bool dynamic, int size, bool big_endian>
1125 typename elfcpp::Elf_types<size>::Elf_Addr
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1127 Addend addend) const
1128 {
1129 if (this->local_sym_index_ == GSYM_CODE)
1130 {
1131 const Sized_symbol<size>* sym;
1132 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1133 if (this->use_plt_offset_ && sym->has_plt_offset())
1134 return parameters->target().plt_address_for_global(sym);
1135 else
1136 return sym->value() + addend;
1137 }
1138 if (this->local_sym_index_ == SECTION_CODE)
1139 {
1140 gold_assert(!this->use_plt_offset_);
1141 return this->u1_.os->address() + addend;
1142 }
1143 gold_assert(this->local_sym_index_ != TARGET_CODE
1144 && this->local_sym_index_ != INVALID_CODE
1145 && this->local_sym_index_ != 0
1146 && !this->is_section_symbol_);
1147 const unsigned int lsi = this->local_sym_index_;
1148 Sized_relobj_file<size, big_endian>* relobj =
1149 this->u1_.relobj->sized_relobj();
1150 gold_assert(relobj != NULL);
1151 if (this->use_plt_offset_)
1152 return parameters->target().plt_address_for_local(relobj, lsi);
1153 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1154 return symval->value(relobj, addend);
1155 }
1156
1157 // Reloc comparison. This function sorts the dynamic relocs for the
1158 // benefit of the dynamic linker. First we sort all relative relocs
1159 // to the front. Among relative relocs, we sort by output address.
1160 // Among non-relative relocs, we sort by symbol index, then by output
1161 // address.
1162
1163 template<bool dynamic, int size, bool big_endian>
1164 int
1165 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1166 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1167 const
1168 {
1169 if (this->is_relative_)
1170 {
1171 if (!r2.is_relative_)
1172 return -1;
1173 // Otherwise sort by reloc address below.
1174 }
1175 else if (r2.is_relative_)
1176 return 1;
1177 else
1178 {
1179 unsigned int sym1 = this->get_symbol_index();
1180 unsigned int sym2 = r2.get_symbol_index();
1181 if (sym1 < sym2)
1182 return -1;
1183 else if (sym1 > sym2)
1184 return 1;
1185 // Otherwise sort by reloc address.
1186 }
1187
1188 section_offset_type addr1 = this->get_address();
1189 section_offset_type addr2 = r2.get_address();
1190 if (addr1 < addr2)
1191 return -1;
1192 else if (addr1 > addr2)
1193 return 1;
1194
1195 // Final tie breaker, in order to generate the same output on any
1196 // host: reloc type.
1197 unsigned int type1 = this->type_;
1198 unsigned int type2 = r2.type_;
1199 if (type1 < type2)
1200 return -1;
1201 else if (type1 > type2)
1202 return 1;
1203
1204 // These relocs appear to be exactly the same.
1205 return 0;
1206 }
1207
1208 // Write out a Rela relocation.
1209
1210 template<bool dynamic, int size, bool big_endian>
1211 void
1212 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1213 unsigned char* pov) const
1214 {
1215 elfcpp::Rela_write<size, big_endian> orel(pov);
1216 this->rel_.write_rel(&orel);
1217 Addend addend = this->addend_;
1218 if (this->rel_.is_target_specific())
1219 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1220 this->rel_.type(), addend);
1221 else if (this->rel_.is_symbolless())
1222 addend = this->rel_.symbol_value(addend);
1223 else if (this->rel_.is_local_section_symbol())
1224 addend = this->rel_.local_section_offset(addend);
1225 orel.put_r_addend(addend);
1226 }
1227
1228 // Output_data_reloc_base methods.
1229
1230 // Adjust the output section.
1231
1232 template<int sh_type, bool dynamic, int size, bool big_endian>
1233 void
1234 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1235 ::do_adjust_output_section(Output_section* os)
1236 {
1237 if (sh_type == elfcpp::SHT_REL)
1238 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1239 else if (sh_type == elfcpp::SHT_RELA)
1240 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1241 else
1242 gold_unreachable();
1243
1244 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1245 // static link. The backends will generate a dynamic reloc section
1246 // to hold this. In that case we don't want to link to the dynsym
1247 // section, because there isn't one.
1248 if (!dynamic)
1249 os->set_should_link_to_symtab();
1250 else if (parameters->doing_static_link())
1251 ;
1252 else
1253 os->set_should_link_to_dynsym();
1254 }
1255
1256 // Write out relocation data.
1257
1258 template<int sh_type, bool dynamic, int size, bool big_endian>
1259 void
1260 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1261 Output_file* of)
1262 {
1263 const off_t off = this->offset();
1264 const off_t oview_size = this->data_size();
1265 unsigned char* const oview = of->get_output_view(off, oview_size);
1266
1267 if (this->sort_relocs())
1268 {
1269 gold_assert(dynamic);
1270 std::sort(this->relocs_.begin(), this->relocs_.end(),
1271 Sort_relocs_comparison());
1272 }
1273
1274 unsigned char* pov = oview;
1275 for (typename Relocs::const_iterator p = this->relocs_.begin();
1276 p != this->relocs_.end();
1277 ++p)
1278 {
1279 p->write(pov);
1280 pov += reloc_size;
1281 }
1282
1283 gold_assert(pov - oview == oview_size);
1284
1285 of->write_output_view(off, oview_size, oview);
1286
1287 // We no longer need the relocation entries.
1288 this->relocs_.clear();
1289 }
1290
1291 // Class Output_relocatable_relocs.
1292
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300
1301 // class Output_data_group.
1302
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305 Sized_relobj_file<size, big_endian>* relobj,
1306 section_size_type entry_count,
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
1309 : Output_section_data(entry_count * 4, 4, false),
1310 relobj_(relobj),
1311 flags_(flags)
1312 {
1313 this->input_shndxes_.swap(*input_shndxes);
1314 }
1315
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330 ++contents;
1331
1332 for (std::vector<unsigned int>::const_iterator p =
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
1335 ++p, ++contents)
1336 {
1337 Output_section* os = this->relobj_->output_section(*p);
1338
1339 unsigned int output_shndx;
1340 if (os != NULL)
1341 output_shndx = os->out_shndx();
1342 else
1343 {
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1346 output_shndx = 0;
1347 }
1348
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350 }
1351
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1354
1355 of->write_output_view(off, oview_size, oview);
1356
1357 // We no longer need this information.
1358 this->input_shndxes_.clear();
1359 }
1360
1361 // Output_data_got::Got_entry methods.
1362
1363 // Write out the entry.
1364
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368 unsigned int got_indx,
1369 unsigned char* pov) const
1370 {
1371 Valtype val = 0;
1372
1373 switch (this->local_sym_index_)
1374 {
1375 case GSYM_CODE:
1376 {
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
1380 Symbol* gsym = this->u_.gsym;
1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382 val = parameters->target().plt_address_for_global(gsym);
1383 else
1384 {
1385 switch (parameters->size_and_endianness())
1386 {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1390 {
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 }
1398 break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1403 {
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 }
1408 break;
1409 #endif
1410 default:
1411 gold_unreachable();
1412 }
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
1415 val += parameters->target().tls_offset_for_global(gsym,
1416 got_indx);
1417 }
1418 }
1419 break;
1420
1421 case CONSTANT_CODE:
1422 val = this->u_.constant;
1423 break;
1424
1425 case RESERVED_CODE:
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1428 return;
1429 val = this->u_.constant;
1430 break;
1431
1432 default:
1433 {
1434 const Relobj* object = this->u_.object;
1435 const unsigned int lsi = this->local_sym_index_;
1436 bool is_tls = object->local_is_tls(lsi);
1437 if (this->use_plt_or_tls_offset_ && !is_tls)
1438 val = parameters->target().plt_address_for_local(object, lsi);
1439 else
1440 {
1441 uint64_t lval = object->local_symbol_value(lsi, 0);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1445 got_indx);
1446 }
1447 }
1448 break;
1449 }
1450
1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453
1454 // Output_data_got methods.
1455
1456 // Add an entry for a global symbol to the GOT. This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463 Symbol* gsym,
1464 unsigned int got_type)
1465 {
1466 if (gsym->has_got_offset(got_type))
1467 return false;
1468
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
1471 return true;
1472 }
1473
1474 // Like add_global, but use the PLT offset.
1475
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
1480 {
1481 if (gsym->has_got_offset(got_type))
1482 return false;
1483
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
1486 return true;
1487 }
1488
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495 Symbol* gsym,
1496 unsigned int got_type,
1497 Output_data_reloc_generic* rel_dyn,
1498 unsigned int r_type)
1499 {
1500 if (gsym->has_got_offset(got_type))
1501 return;
1502
1503 unsigned int got_offset = this->add_got_entry(Got_entry());
1504 gsym->set_got_offset(got_type, got_offset);
1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514 Symbol* gsym,
1515 unsigned int got_type,
1516 Output_data_reloc_generic* rel_dyn,
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
1519 {
1520 if (gsym->has_got_offset(got_type))
1521 return;
1522
1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524 gsym->set_got_offset(got_type, got_offset);
1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526
1527 if (r_type_2 != 0)
1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
1529 got_offset + got_size / 8, 0);
1530 }
1531
1532 // Add an entry for a local symbol to the GOT. This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539 Relobj* object,
1540 unsigned int symndx,
1541 unsigned int got_type)
1542 {
1543 if (object->local_has_got_offset(symndx, got_type))
1544 return false;
1545
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 false));
1548 object->set_local_got_offset(symndx, got_type, got_offset);
1549 return true;
1550 }
1551
1552 // Like add_local, but use the PLT offset.
1553
1554 template<int got_size, bool big_endian>
1555 bool
1556 Output_data_got<got_size, big_endian>::add_local_plt(
1557 Relobj* object,
1558 unsigned int symndx,
1559 unsigned int got_type)
1560 {
1561 if (object->local_has_got_offset(symndx, got_type))
1562 return false;
1563
1564 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1565 true));
1566 object->set_local_got_offset(symndx, got_type, got_offset);
1567 return true;
1568 }
1569
1570 // Add an entry for a local symbol to the GOT, and add a dynamic
1571 // relocation of type R_TYPE for the GOT entry.
1572
1573 template<int got_size, bool big_endian>
1574 void
1575 Output_data_got<got_size, big_endian>::add_local_with_rel(
1576 Relobj* object,
1577 unsigned int symndx,
1578 unsigned int got_type,
1579 Output_data_reloc_generic* rel_dyn,
1580 unsigned int r_type)
1581 {
1582 if (object->local_has_got_offset(symndx, got_type))
1583 return;
1584
1585 unsigned int got_offset = this->add_got_entry(Got_entry());
1586 object->set_local_got_offset(symndx, got_type, got_offset);
1587 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1588 }
1589
1590 // Add a pair of entries for a local symbol to the GOT, and add
1591 // a dynamic relocation of type R_TYPE using the section symbol of
1592 // the output section to which input section SHNDX maps, on the first.
1593 // The first got entry will have a value of zero, the second the
1594 // value of the local symbol.
1595 template<int got_size, bool big_endian>
1596 void
1597 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1598 Relobj* object,
1599 unsigned int symndx,
1600 unsigned int shndx,
1601 unsigned int got_type,
1602 Output_data_reloc_generic* rel_dyn,
1603 unsigned int r_type)
1604 {
1605 if (object->local_has_got_offset(symndx, got_type))
1606 return;
1607
1608 unsigned int got_offset =
1609 this->add_got_entry_pair(Got_entry(),
1610 Got_entry(object, symndx, false));
1611 object->set_local_got_offset(symndx, got_type, got_offset);
1612 Output_section* os = object->output_section(shndx);
1613 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1614 }
1615
1616 // Add a pair of entries for a local symbol to the GOT, and add
1617 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1618 // The first got entry will have a value of zero, the second the
1619 // value of the local symbol offset by Target::tls_offset_for_local.
1620 template<int got_size, bool big_endian>
1621 void
1622 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1623 Relobj* object,
1624 unsigned int symndx,
1625 unsigned int got_type,
1626 Output_data_reloc_generic* rel_dyn,
1627 unsigned int r_type)
1628 {
1629 if (object->local_has_got_offset(symndx, got_type))
1630 return;
1631
1632 unsigned int got_offset
1633 = this->add_got_entry_pair(Got_entry(),
1634 Got_entry(object, symndx, true));
1635 object->set_local_got_offset(symndx, got_type, got_offset);
1636 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1637 }
1638
1639 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1640
1641 template<int got_size, bool big_endian>
1642 void
1643 Output_data_got<got_size, big_endian>::reserve_local(
1644 unsigned int i,
1645 Relobj* object,
1646 unsigned int sym_index,
1647 unsigned int got_type)
1648 {
1649 this->do_reserve_slot(i);
1650 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1651 }
1652
1653 // Reserve a slot in the GOT for a global symbol.
1654
1655 template<int got_size, bool big_endian>
1656 void
1657 Output_data_got<got_size, big_endian>::reserve_global(
1658 unsigned int i,
1659 Symbol* gsym,
1660 unsigned int got_type)
1661 {
1662 this->do_reserve_slot(i);
1663 gsym->set_got_offset(got_type, this->got_offset(i));
1664 }
1665
1666 // Write out the GOT.
1667
1668 template<int got_size, bool big_endian>
1669 void
1670 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1671 {
1672 const int add = got_size / 8;
1673
1674 const off_t off = this->offset();
1675 const off_t oview_size = this->data_size();
1676 unsigned char* const oview = of->get_output_view(off, oview_size);
1677
1678 unsigned char* pov = oview;
1679 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1680 {
1681 this->entries_[i].write(i, pov);
1682 pov += add;
1683 }
1684
1685 gold_assert(pov - oview == oview_size);
1686
1687 of->write_output_view(off, oview_size, oview);
1688
1689 // We no longer need the GOT entries.
1690 this->entries_.clear();
1691 }
1692
1693 // Create a new GOT entry and return its offset.
1694
1695 template<int got_size, bool big_endian>
1696 unsigned int
1697 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1698 {
1699 if (!this->is_data_size_valid())
1700 {
1701 this->entries_.push_back(got_entry);
1702 this->set_got_size();
1703 return this->last_got_offset();
1704 }
1705 else
1706 {
1707 // For an incremental update, find an available slot.
1708 off_t got_offset = this->free_list_.allocate(got_size / 8,
1709 got_size / 8, 0);
1710 if (got_offset == -1)
1711 gold_fallback(_("out of patch space (GOT);"
1712 " relink with --incremental-full"));
1713 unsigned int got_index = got_offset / (got_size / 8);
1714 gold_assert(got_index < this->entries_.size());
1715 this->entries_[got_index] = got_entry;
1716 return static_cast<unsigned int>(got_offset);
1717 }
1718 }
1719
1720 // Create a pair of new GOT entries and return the offset of the first.
1721
1722 template<int got_size, bool big_endian>
1723 unsigned int
1724 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1725 Got_entry got_entry_1,
1726 Got_entry got_entry_2)
1727 {
1728 if (!this->is_data_size_valid())
1729 {
1730 unsigned int got_offset;
1731 this->entries_.push_back(got_entry_1);
1732 got_offset = this->last_got_offset();
1733 this->entries_.push_back(got_entry_2);
1734 this->set_got_size();
1735 return got_offset;
1736 }
1737 else
1738 {
1739 // For an incremental update, find an available pair of slots.
1740 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1741 got_size / 8, 0);
1742 if (got_offset == -1)
1743 gold_fallback(_("out of patch space (GOT);"
1744 " relink with --incremental-full"));
1745 unsigned int got_index = got_offset / (got_size / 8);
1746 gold_assert(got_index < this->entries_.size());
1747 this->entries_[got_index] = got_entry_1;
1748 this->entries_[got_index + 1] = got_entry_2;
1749 return static_cast<unsigned int>(got_offset);
1750 }
1751 }
1752
1753 // Replace GOT entry I with a new value.
1754
1755 template<int got_size, bool big_endian>
1756 void
1757 Output_data_got<got_size, big_endian>::replace_got_entry(
1758 unsigned int i,
1759 Got_entry got_entry)
1760 {
1761 gold_assert(i < this->entries_.size());
1762 this->entries_[i] = got_entry;
1763 }
1764
1765 // Output_data_dynamic::Dynamic_entry methods.
1766
1767 // Write out the entry.
1768
1769 template<int size, bool big_endian>
1770 void
1771 Output_data_dynamic::Dynamic_entry::write(
1772 unsigned char* pov,
1773 const Stringpool* pool) const
1774 {
1775 typename elfcpp::Elf_types<size>::Elf_WXword val;
1776 switch (this->offset_)
1777 {
1778 case DYNAMIC_NUMBER:
1779 val = this->u_.val;
1780 break;
1781
1782 case DYNAMIC_SECTION_SIZE:
1783 val = this->u_.od->data_size();
1784 if (this->od2 != NULL)
1785 val += this->od2->data_size();
1786 break;
1787
1788 case DYNAMIC_SYMBOL:
1789 {
1790 const Sized_symbol<size>* s =
1791 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1792 val = s->value();
1793 }
1794 break;
1795
1796 case DYNAMIC_STRING:
1797 val = pool->get_offset(this->u_.str);
1798 break;
1799
1800 default:
1801 val = this->u_.od->address() + this->offset_;
1802 break;
1803 }
1804
1805 elfcpp::Dyn_write<size, big_endian> dw(pov);
1806 dw.put_d_tag(this->tag_);
1807 dw.put_d_val(val);
1808 }
1809
1810 // Output_data_dynamic methods.
1811
1812 // Adjust the output section to set the entry size.
1813
1814 void
1815 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1816 {
1817 if (parameters->target().get_size() == 32)
1818 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1819 else if (parameters->target().get_size() == 64)
1820 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1821 else
1822 gold_unreachable();
1823 }
1824
1825 // Set the final data size.
1826
1827 void
1828 Output_data_dynamic::set_final_data_size()
1829 {
1830 // Add the terminating entry if it hasn't been added.
1831 // Because of relaxation, we can run this multiple times.
1832 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1833 {
1834 int extra = parameters->options().spare_dynamic_tags();
1835 for (int i = 0; i < extra; ++i)
1836 this->add_constant(elfcpp::DT_NULL, 0);
1837 this->add_constant(elfcpp::DT_NULL, 0);
1838 }
1839
1840 int dyn_size;
1841 if (parameters->target().get_size() == 32)
1842 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1843 else if (parameters->target().get_size() == 64)
1844 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1845 else
1846 gold_unreachable();
1847 this->set_data_size(this->entries_.size() * dyn_size);
1848 }
1849
1850 // Write out the dynamic entries.
1851
1852 void
1853 Output_data_dynamic::do_write(Output_file* of)
1854 {
1855 switch (parameters->size_and_endianness())
1856 {
1857 #ifdef HAVE_TARGET_32_LITTLE
1858 case Parameters::TARGET_32_LITTLE:
1859 this->sized_write<32, false>(of);
1860 break;
1861 #endif
1862 #ifdef HAVE_TARGET_32_BIG
1863 case Parameters::TARGET_32_BIG:
1864 this->sized_write<32, true>(of);
1865 break;
1866 #endif
1867 #ifdef HAVE_TARGET_64_LITTLE
1868 case Parameters::TARGET_64_LITTLE:
1869 this->sized_write<64, false>(of);
1870 break;
1871 #endif
1872 #ifdef HAVE_TARGET_64_BIG
1873 case Parameters::TARGET_64_BIG:
1874 this->sized_write<64, true>(of);
1875 break;
1876 #endif
1877 default:
1878 gold_unreachable();
1879 }
1880 }
1881
1882 template<int size, bool big_endian>
1883 void
1884 Output_data_dynamic::sized_write(Output_file* of)
1885 {
1886 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1887
1888 const off_t offset = this->offset();
1889 const off_t oview_size = this->data_size();
1890 unsigned char* const oview = of->get_output_view(offset, oview_size);
1891
1892 unsigned char* pov = oview;
1893 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1894 p != this->entries_.end();
1895 ++p)
1896 {
1897 p->write<size, big_endian>(pov, this->pool_);
1898 pov += dyn_size;
1899 }
1900
1901 gold_assert(pov - oview == oview_size);
1902
1903 of->write_output_view(offset, oview_size, oview);
1904
1905 // We no longer need the dynamic entries.
1906 this->entries_.clear();
1907 }
1908
1909 // Class Output_symtab_xindex.
1910
1911 void
1912 Output_symtab_xindex::do_write(Output_file* of)
1913 {
1914 const off_t offset = this->offset();
1915 const off_t oview_size = this->data_size();
1916 unsigned char* const oview = of->get_output_view(offset, oview_size);
1917
1918 memset(oview, 0, oview_size);
1919
1920 if (parameters->target().is_big_endian())
1921 this->endian_do_write<true>(oview);
1922 else
1923 this->endian_do_write<false>(oview);
1924
1925 of->write_output_view(offset, oview_size, oview);
1926
1927 // We no longer need the data.
1928 this->entries_.clear();
1929 }
1930
1931 template<bool big_endian>
1932 void
1933 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1934 {
1935 for (Xindex_entries::const_iterator p = this->entries_.begin();
1936 p != this->entries_.end();
1937 ++p)
1938 {
1939 unsigned int symndx = p->first;
1940 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1941 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1942 }
1943 }
1944
1945 // Output_fill_debug_info methods.
1946
1947 // Return the minimum size needed for a dummy compilation unit header.
1948
1949 size_t
1950 Output_fill_debug_info::do_minimum_hole_size() const
1951 {
1952 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1953 // address_size.
1954 const size_t len = 4 + 2 + 4 + 1;
1955 // For type units, add type_signature, type_offset.
1956 if (this->is_debug_types_)
1957 return len + 8 + 4;
1958 return len;
1959 }
1960
1961 // Write a dummy compilation unit header to fill a hole in the
1962 // .debug_info or .debug_types section.
1963
1964 void
1965 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1966 {
1967 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1968 static_cast<long>(off), static_cast<long>(len));
1969
1970 gold_assert(len >= this->do_minimum_hole_size());
1971
1972 unsigned char* const oview = of->get_output_view(off, len);
1973 unsigned char* pov = oview;
1974
1975 // Write header fields: unit_length, version, debug_abbrev_offset,
1976 // address_size.
1977 if (this->is_big_endian())
1978 {
1979 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1980 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1981 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1982 }
1983 else
1984 {
1985 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1986 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1987 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1988 }
1989 pov += 4 + 2 + 4;
1990 *pov++ = 4;
1991
1992 // For type units, the additional header fields -- type_signature,
1993 // type_offset -- can be filled with zeroes.
1994
1995 // Fill the remainder of the free space with zeroes. The first
1996 // zero should tell the consumer there are no DIEs to read in this
1997 // compilation unit.
1998 if (pov < oview + len)
1999 memset(pov, 0, oview + len - pov);
2000
2001 of->write_output_view(off, len, oview);
2002 }
2003
2004 // Output_fill_debug_line methods.
2005
2006 // Return the minimum size needed for a dummy line number program header.
2007
2008 size_t
2009 Output_fill_debug_line::do_minimum_hole_size() const
2010 {
2011 // Line number program header fields: unit_length, version, header_length,
2012 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2013 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2014 const size_t len = 4 + 2 + 4 + this->header_length;
2015 return len;
2016 }
2017
2018 // Write a dummy line number program header to fill a hole in the
2019 // .debug_line section.
2020
2021 void
2022 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2023 {
2024 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2025 static_cast<long>(off), static_cast<long>(len));
2026
2027 gold_assert(len >= this->do_minimum_hole_size());
2028
2029 unsigned char* const oview = of->get_output_view(off, len);
2030 unsigned char* pov = oview;
2031
2032 // Write header fields: unit_length, version, header_length,
2033 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2034 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2035 // We set the header_length field to cover the entire hole, so the
2036 // line number program is empty.
2037 if (this->is_big_endian())
2038 {
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2040 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2041 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2042 }
2043 else
2044 {
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2046 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2047 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2048 }
2049 pov += 4 + 2 + 4;
2050 *pov++ = 1; // minimum_instruction_length
2051 *pov++ = 0; // default_is_stmt
2052 *pov++ = 0; // line_base
2053 *pov++ = 5; // line_range
2054 *pov++ = 13; // opcode_base
2055 *pov++ = 0; // standard_opcode_lengths[1]
2056 *pov++ = 1; // standard_opcode_lengths[2]
2057 *pov++ = 1; // standard_opcode_lengths[3]
2058 *pov++ = 1; // standard_opcode_lengths[4]
2059 *pov++ = 1; // standard_opcode_lengths[5]
2060 *pov++ = 0; // standard_opcode_lengths[6]
2061 *pov++ = 0; // standard_opcode_lengths[7]
2062 *pov++ = 0; // standard_opcode_lengths[8]
2063 *pov++ = 1; // standard_opcode_lengths[9]
2064 *pov++ = 0; // standard_opcode_lengths[10]
2065 *pov++ = 0; // standard_opcode_lengths[11]
2066 *pov++ = 1; // standard_opcode_lengths[12]
2067 *pov++ = 0; // include_directories (empty)
2068 *pov++ = 0; // filenames (empty)
2069
2070 // Some consumers don't check the header_length field, and simply
2071 // start reading the line number program immediately following the
2072 // header. For those consumers, we fill the remainder of the free
2073 // space with DW_LNS_set_basic_block opcodes. These are effectively
2074 // no-ops: the resulting line table program will not create any rows.
2075 if (pov < oview + len)
2076 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2077
2078 of->write_output_view(off, len, oview);
2079 }
2080
2081 // Output_section::Input_section methods.
2082
2083 // Return the current data size. For an input section we store the size here.
2084 // For an Output_section_data, we have to ask it for the size.
2085
2086 off_t
2087 Output_section::Input_section::current_data_size() const
2088 {
2089 if (this->is_input_section())
2090 return this->u1_.data_size;
2091 else
2092 {
2093 this->u2_.posd->pre_finalize_data_size();
2094 return this->u2_.posd->current_data_size();
2095 }
2096 }
2097
2098 // Return the data size. For an input section we store the size here.
2099 // For an Output_section_data, we have to ask it for the size.
2100
2101 off_t
2102 Output_section::Input_section::data_size() const
2103 {
2104 if (this->is_input_section())
2105 return this->u1_.data_size;
2106 else
2107 return this->u2_.posd->data_size();
2108 }
2109
2110 // Return the object for an input section.
2111
2112 Relobj*
2113 Output_section::Input_section::relobj() const
2114 {
2115 if (this->is_input_section())
2116 return this->u2_.object;
2117 else if (this->is_merge_section())
2118 {
2119 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2120 return this->u2_.pomb->first_relobj();
2121 }
2122 else if (this->is_relaxed_input_section())
2123 return this->u2_.poris->relobj();
2124 else
2125 gold_unreachable();
2126 }
2127
2128 // Return the input section index for an input section.
2129
2130 unsigned int
2131 Output_section::Input_section::shndx() const
2132 {
2133 if (this->is_input_section())
2134 return this->shndx_;
2135 else if (this->is_merge_section())
2136 {
2137 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2138 return this->u2_.pomb->first_shndx();
2139 }
2140 else if (this->is_relaxed_input_section())
2141 return this->u2_.poris->shndx();
2142 else
2143 gold_unreachable();
2144 }
2145
2146 // Set the address and file offset.
2147
2148 void
2149 Output_section::Input_section::set_address_and_file_offset(
2150 uint64_t address,
2151 off_t file_offset,
2152 off_t section_file_offset)
2153 {
2154 if (this->is_input_section())
2155 this->u2_.object->set_section_offset(this->shndx_,
2156 file_offset - section_file_offset);
2157 else
2158 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2159 }
2160
2161 // Reset the address and file offset.
2162
2163 void
2164 Output_section::Input_section::reset_address_and_file_offset()
2165 {
2166 if (!this->is_input_section())
2167 this->u2_.posd->reset_address_and_file_offset();
2168 }
2169
2170 // Finalize the data size.
2171
2172 void
2173 Output_section::Input_section::finalize_data_size()
2174 {
2175 if (!this->is_input_section())
2176 this->u2_.posd->finalize_data_size();
2177 }
2178
2179 // Try to turn an input offset into an output offset. We want to
2180 // return the output offset relative to the start of this
2181 // Input_section in the output section.
2182
2183 inline bool
2184 Output_section::Input_section::output_offset(
2185 const Relobj* object,
2186 unsigned int shndx,
2187 section_offset_type offset,
2188 section_offset_type* poutput) const
2189 {
2190 if (!this->is_input_section())
2191 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2192 else
2193 {
2194 if (this->shndx_ != shndx || this->u2_.object != object)
2195 return false;
2196 *poutput = offset;
2197 return true;
2198 }
2199 }
2200
2201 // Return whether this is the merge section for the input section
2202 // SHNDX in OBJECT.
2203
2204 inline bool
2205 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2206 unsigned int shndx) const
2207 {
2208 if (this->is_input_section())
2209 return false;
2210 return this->u2_.posd->is_merge_section_for(object, shndx);
2211 }
2212
2213 // Write out the data. We don't have to do anything for an input
2214 // section--they are handled via Object::relocate--but this is where
2215 // we write out the data for an Output_section_data.
2216
2217 void
2218 Output_section::Input_section::write(Output_file* of)
2219 {
2220 if (!this->is_input_section())
2221 this->u2_.posd->write(of);
2222 }
2223
2224 // Write the data to a buffer. As for write(), we don't have to do
2225 // anything for an input section.
2226
2227 void
2228 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2229 {
2230 if (!this->is_input_section())
2231 this->u2_.posd->write_to_buffer(buffer);
2232 }
2233
2234 // Print to a map file.
2235
2236 void
2237 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2238 {
2239 switch (this->shndx_)
2240 {
2241 case OUTPUT_SECTION_CODE:
2242 case MERGE_DATA_SECTION_CODE:
2243 case MERGE_STRING_SECTION_CODE:
2244 this->u2_.posd->print_to_mapfile(mapfile);
2245 break;
2246
2247 case RELAXED_INPUT_SECTION_CODE:
2248 {
2249 Output_relaxed_input_section* relaxed_section =
2250 this->relaxed_input_section();
2251 mapfile->print_input_section(relaxed_section->relobj(),
2252 relaxed_section->shndx());
2253 }
2254 break;
2255 default:
2256 mapfile->print_input_section(this->u2_.object, this->shndx_);
2257 break;
2258 }
2259 }
2260
2261 // Output_section methods.
2262
2263 // Construct an Output_section. NAME will point into a Stringpool.
2264
2265 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2266 elfcpp::Elf_Xword flags)
2267 : name_(name),
2268 addralign_(0),
2269 entsize_(0),
2270 load_address_(0),
2271 link_section_(NULL),
2272 link_(0),
2273 info_section_(NULL),
2274 info_symndx_(NULL),
2275 info_(0),
2276 type_(type),
2277 flags_(flags),
2278 order_(ORDER_INVALID),
2279 out_shndx_(-1U),
2280 symtab_index_(0),
2281 dynsym_index_(0),
2282 input_sections_(),
2283 first_input_offset_(0),
2284 fills_(),
2285 postprocessing_buffer_(NULL),
2286 needs_symtab_index_(false),
2287 needs_dynsym_index_(false),
2288 should_link_to_symtab_(false),
2289 should_link_to_dynsym_(false),
2290 after_input_sections_(false),
2291 requires_postprocessing_(false),
2292 found_in_sections_clause_(false),
2293 has_load_address_(false),
2294 info_uses_section_index_(false),
2295 input_section_order_specified_(false),
2296 may_sort_attached_input_sections_(false),
2297 must_sort_attached_input_sections_(false),
2298 attached_input_sections_are_sorted_(false),
2299 is_relro_(false),
2300 is_small_section_(false),
2301 is_large_section_(false),
2302 generate_code_fills_at_write_(false),
2303 is_entsize_zero_(false),
2304 section_offsets_need_adjustment_(false),
2305 is_noload_(false),
2306 always_keeps_input_sections_(false),
2307 has_fixed_layout_(false),
2308 is_patch_space_allowed_(false),
2309 is_unique_segment_(false),
2310 tls_offset_(0),
2311 extra_segment_flags_(0),
2312 segment_alignment_(0),
2313 checkpoint_(NULL),
2314 lookup_maps_(new Output_section_lookup_maps),
2315 free_list_(),
2316 free_space_fill_(NULL),
2317 patch_space_(0)
2318 {
2319 // An unallocated section has no address. Forcing this means that
2320 // we don't need special treatment for symbols defined in debug
2321 // sections.
2322 if ((flags & elfcpp::SHF_ALLOC) == 0)
2323 this->set_address(0);
2324 }
2325
2326 Output_section::~Output_section()
2327 {
2328 delete this->checkpoint_;
2329 }
2330
2331 // Set the entry size.
2332
2333 void
2334 Output_section::set_entsize(uint64_t v)
2335 {
2336 if (this->is_entsize_zero_)
2337 ;
2338 else if (this->entsize_ == 0)
2339 this->entsize_ = v;
2340 else if (this->entsize_ != v)
2341 {
2342 this->entsize_ = 0;
2343 this->is_entsize_zero_ = 1;
2344 }
2345 }
2346
2347 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2348 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2349 // relocation section which applies to this section, or 0 if none, or
2350 // -1U if more than one. Return the offset of the input section
2351 // within the output section. Return -1 if the input section will
2352 // receive special handling. In the normal case we don't always keep
2353 // track of input sections for an Output_section. Instead, each
2354 // Object keeps track of the Output_section for each of its input
2355 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2356 // track of input sections here; this is used when SECTIONS appears in
2357 // a linker script.
2358
2359 template<int size, bool big_endian>
2360 off_t
2361 Output_section::add_input_section(Layout* layout,
2362 Sized_relobj_file<size, big_endian>* object,
2363 unsigned int shndx,
2364 const char* secname,
2365 const elfcpp::Shdr<size, big_endian>& shdr,
2366 unsigned int reloc_shndx,
2367 bool have_sections_script)
2368 {
2369 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2370 if ((addralign & (addralign - 1)) != 0)
2371 {
2372 object->error(_("invalid alignment %lu for section \"%s\""),
2373 static_cast<unsigned long>(addralign), secname);
2374 addralign = 1;
2375 }
2376
2377 if (addralign > this->addralign_)
2378 this->addralign_ = addralign;
2379
2380 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2381 uint64_t entsize = shdr.get_sh_entsize();
2382
2383 // .debug_str is a mergeable string section, but is not always so
2384 // marked by compilers. Mark manually here so we can optimize.
2385 if (strcmp(secname, ".debug_str") == 0)
2386 {
2387 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2388 entsize = 1;
2389 }
2390
2391 this->update_flags_for_input_section(sh_flags);
2392 this->set_entsize(entsize);
2393
2394 // If this is a SHF_MERGE section, we pass all the input sections to
2395 // a Output_data_merge. We don't try to handle relocations for such
2396 // a section. We don't try to handle empty merge sections--they
2397 // mess up the mappings, and are useless anyhow.
2398 // FIXME: Need to handle merge sections during incremental update.
2399 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2400 && reloc_shndx == 0
2401 && shdr.get_sh_size() > 0
2402 && !parameters->incremental())
2403 {
2404 // Keep information about merged input sections for rebuilding fast
2405 // lookup maps if we have sections-script or we do relaxation.
2406 bool keeps_input_sections = (this->always_keeps_input_sections_
2407 || have_sections_script
2408 || parameters->target().may_relax());
2409
2410 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2411 addralign, keeps_input_sections))
2412 {
2413 // Tell the relocation routines that they need to call the
2414 // output_offset method to determine the final address.
2415 return -1;
2416 }
2417 }
2418
2419 section_size_type input_section_size = shdr.get_sh_size();
2420 section_size_type uncompressed_size;
2421 if (object->section_is_compressed(shndx, &uncompressed_size))
2422 input_section_size = uncompressed_size;
2423
2424 off_t offset_in_section;
2425 off_t aligned_offset_in_section;
2426 if (this->has_fixed_layout())
2427 {
2428 // For incremental updates, find a chunk of unused space in the section.
2429 offset_in_section = this->free_list_.allocate(input_section_size,
2430 addralign, 0);
2431 if (offset_in_section == -1)
2432 gold_fallback(_("out of patch space in section %s; "
2433 "relink with --incremental-full"),
2434 this->name());
2435 aligned_offset_in_section = offset_in_section;
2436 }
2437 else
2438 {
2439 offset_in_section = this->current_data_size_for_child();
2440 aligned_offset_in_section = align_address(offset_in_section,
2441 addralign);
2442 this->set_current_data_size_for_child(aligned_offset_in_section
2443 + input_section_size);
2444 }
2445
2446 // Determine if we want to delay code-fill generation until the output
2447 // section is written. When the target is relaxing, we want to delay fill
2448 // generating to avoid adjusting them during relaxation. Also, if we are
2449 // sorting input sections we must delay fill generation.
2450 if (!this->generate_code_fills_at_write_
2451 && !have_sections_script
2452 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2453 && parameters->target().has_code_fill()
2454 && (parameters->target().may_relax()
2455 || layout->is_section_ordering_specified()))
2456 {
2457 gold_assert(this->fills_.empty());
2458 this->generate_code_fills_at_write_ = true;
2459 }
2460
2461 if (aligned_offset_in_section > offset_in_section
2462 && !this->generate_code_fills_at_write_
2463 && !have_sections_script
2464 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2465 && parameters->target().has_code_fill())
2466 {
2467 // We need to add some fill data. Using fill_list_ when
2468 // possible is an optimization, since we will often have fill
2469 // sections without input sections.
2470 off_t fill_len = aligned_offset_in_section - offset_in_section;
2471 if (this->input_sections_.empty())
2472 this->fills_.push_back(Fill(offset_in_section, fill_len));
2473 else
2474 {
2475 std::string fill_data(parameters->target().code_fill(fill_len));
2476 Output_data_const* odc = new Output_data_const(fill_data, 1);
2477 this->input_sections_.push_back(Input_section(odc));
2478 }
2479 }
2480
2481 // The GNU linker groups input sections whose names match .text.unlikely.*.
2482 // This is used to get better code layout. We are compatible.
2483 // Additionally, it could also be beneficial to group .text.hot.*,
2484 // .text.startup.* prefixed input sections. Function
2485 // "is_section_name_prefix_grouped" in layout.cc determines the input
2486 // section prefixes that must be grouped.
2487 if (!have_sections_script
2488 && !parameters->options().relocatable()
2489 && !this->input_section_order_specified()
2490 && !this->must_sort_attached_input_sections()
2491 && layout->is_section_name_prefix_grouped(secname))
2492 this->set_input_section_order_specified();
2493
2494 // We need to keep track of this section if we are already keeping
2495 // track of sections, or if we are relaxing. Also, if this is a
2496 // section which requires sorting, or which may require sorting in
2497 // the future, we keep track of the sections. If the
2498 // --section-ordering-file option is used to specify the order of
2499 // sections, we need to keep track of sections.
2500 if (this->always_keeps_input_sections_
2501 || have_sections_script
2502 || !this->input_sections_.empty()
2503 || this->may_sort_attached_input_sections()
2504 || this->must_sort_attached_input_sections()
2505 || parameters->options().user_set_Map()
2506 || parameters->target().may_relax()
2507 || layout->is_section_ordering_specified()
2508 || this->input_section_order_specified())
2509 {
2510 Input_section isecn(object, shndx, input_section_size, addralign);
2511 /* If section ordering is requested by specifying a ordering file,
2512 using --section-ordering-file, match the section name with
2513 a pattern. */
2514 if (parameters->options().section_ordering_file())
2515 {
2516 unsigned int section_order_index =
2517 layout->find_section_order_index(std::string(secname));
2518 if (section_order_index != 0)
2519 {
2520 isecn.set_section_order_index(section_order_index);
2521 this->set_input_section_order_specified();
2522 }
2523 }
2524 if (this->has_fixed_layout())
2525 {
2526 // For incremental updates, finalize the address and offset now.
2527 uint64_t addr = this->address();
2528 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2529 aligned_offset_in_section,
2530 this->offset());
2531 }
2532 this->input_sections_.push_back(isecn);
2533 }
2534
2535 return aligned_offset_in_section;
2536 }
2537
2538 // Add arbitrary data to an output section.
2539
2540 void
2541 Output_section::add_output_section_data(Output_section_data* posd)
2542 {
2543 Input_section inp(posd);
2544 this->add_output_section_data(&inp);
2545
2546 if (posd->is_data_size_valid())
2547 {
2548 off_t offset_in_section;
2549 if (this->has_fixed_layout())
2550 {
2551 // For incremental updates, find a chunk of unused space.
2552 offset_in_section = this->free_list_.allocate(posd->data_size(),
2553 posd->addralign(), 0);
2554 if (offset_in_section == -1)
2555 gold_fallback(_("out of patch space in section %s; "
2556 "relink with --incremental-full"),
2557 this->name());
2558 // Finalize the address and offset now.
2559 uint64_t addr = this->address();
2560 off_t offset = this->offset();
2561 posd->set_address_and_file_offset(addr + offset_in_section,
2562 offset + offset_in_section);
2563 }
2564 else
2565 {
2566 offset_in_section = this->current_data_size_for_child();
2567 off_t aligned_offset_in_section = align_address(offset_in_section,
2568 posd->addralign());
2569 this->set_current_data_size_for_child(aligned_offset_in_section
2570 + posd->data_size());
2571 }
2572 }
2573 else if (this->has_fixed_layout())
2574 {
2575 // For incremental updates, arrange for the data to have a fixed layout.
2576 // This will mean that additions to the data must be allocated from
2577 // free space within the containing output section.
2578 uint64_t addr = this->address();
2579 posd->set_address(addr);
2580 posd->set_file_offset(0);
2581 // FIXME: This should eventually be unreachable.
2582 // gold_unreachable();
2583 }
2584 }
2585
2586 // Add a relaxed input section.
2587
2588 void
2589 Output_section::add_relaxed_input_section(Layout* layout,
2590 Output_relaxed_input_section* poris,
2591 const std::string& name)
2592 {
2593 Input_section inp(poris);
2594
2595 // If the --section-ordering-file option is used to specify the order of
2596 // sections, we need to keep track of sections.
2597 if (layout->is_section_ordering_specified())
2598 {
2599 unsigned int section_order_index =
2600 layout->find_section_order_index(name);
2601 if (section_order_index != 0)
2602 {
2603 inp.set_section_order_index(section_order_index);
2604 this->set_input_section_order_specified();
2605 }
2606 }
2607
2608 this->add_output_section_data(&inp);
2609 if (this->lookup_maps_->is_valid())
2610 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2611 poris->shndx(), poris);
2612
2613 // For a relaxed section, we use the current data size. Linker scripts
2614 // get all the input sections, including relaxed one from an output
2615 // section and add them back to the same output section to compute the
2616 // output section size. If we do not account for sizes of relaxed input
2617 // sections, an output section would be incorrectly sized.
2618 off_t offset_in_section = this->current_data_size_for_child();
2619 off_t aligned_offset_in_section = align_address(offset_in_section,
2620 poris->addralign());
2621 this->set_current_data_size_for_child(aligned_offset_in_section
2622 + poris->current_data_size());
2623 }
2624
2625 // Add arbitrary data to an output section by Input_section.
2626
2627 void
2628 Output_section::add_output_section_data(Input_section* inp)
2629 {
2630 if (this->input_sections_.empty())
2631 this->first_input_offset_ = this->current_data_size_for_child();
2632
2633 this->input_sections_.push_back(*inp);
2634
2635 uint64_t addralign = inp->addralign();
2636 if (addralign > this->addralign_)
2637 this->addralign_ = addralign;
2638
2639 inp->set_output_section(this);
2640 }
2641
2642 // Add a merge section to an output section.
2643
2644 void
2645 Output_section::add_output_merge_section(Output_section_data* posd,
2646 bool is_string, uint64_t entsize)
2647 {
2648 Input_section inp(posd, is_string, entsize);
2649 this->add_output_section_data(&inp);
2650 }
2651
2652 // Add an input section to a SHF_MERGE section.
2653
2654 bool
2655 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2656 uint64_t flags, uint64_t entsize,
2657 uint64_t addralign,
2658 bool keeps_input_sections)
2659 {
2660 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2661
2662 // We only merge strings if the alignment is not more than the
2663 // character size. This could be handled, but it's unusual.
2664 if (is_string && addralign > entsize)
2665 return false;
2666
2667 // We cannot restore merged input section states.
2668 gold_assert(this->checkpoint_ == NULL);
2669
2670 // Look up merge sections by required properties.
2671 // Currently, we only invalidate the lookup maps in script processing
2672 // and relaxation. We should not have done either when we reach here.
2673 // So we assume that the lookup maps are valid to simply code.
2674 gold_assert(this->lookup_maps_->is_valid());
2675 Merge_section_properties msp(is_string, entsize, addralign);
2676 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2677 bool is_new = false;
2678 if (pomb != NULL)
2679 {
2680 gold_assert(pomb->is_string() == is_string
2681 && pomb->entsize() == entsize
2682 && pomb->addralign() == addralign);
2683 }
2684 else
2685 {
2686 // Create a new Output_merge_data or Output_merge_string_data.
2687 if (!is_string)
2688 pomb = new Output_merge_data(entsize, addralign);
2689 else
2690 {
2691 switch (entsize)
2692 {
2693 case 1:
2694 pomb = new Output_merge_string<char>(addralign);
2695 break;
2696 case 2:
2697 pomb = new Output_merge_string<uint16_t>(addralign);
2698 break;
2699 case 4:
2700 pomb = new Output_merge_string<uint32_t>(addralign);
2701 break;
2702 default:
2703 return false;
2704 }
2705 }
2706 // If we need to do script processing or relaxation, we need to keep
2707 // the original input sections to rebuild the fast lookup maps.
2708 if (keeps_input_sections)
2709 pomb->set_keeps_input_sections();
2710 is_new = true;
2711 }
2712
2713 if (pomb->add_input_section(object, shndx))
2714 {
2715 // Add new merge section to this output section and link merge
2716 // section properties to new merge section in map.
2717 if (is_new)
2718 {
2719 this->add_output_merge_section(pomb, is_string, entsize);
2720 this->lookup_maps_->add_merge_section(msp, pomb);
2721 }
2722
2723 // Add input section to new merge section and link input section to new
2724 // merge section in map.
2725 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2726 return true;
2727 }
2728 else
2729 {
2730 // If add_input_section failed, delete new merge section to avoid
2731 // exporting empty merge sections in Output_section::get_input_section.
2732 if (is_new)
2733 delete pomb;
2734 return false;
2735 }
2736 }
2737
2738 // Build a relaxation map to speed up relaxation of existing input sections.
2739 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2740
2741 void
2742 Output_section::build_relaxation_map(
2743 const Input_section_list& input_sections,
2744 size_t limit,
2745 Relaxation_map* relaxation_map) const
2746 {
2747 for (size_t i = 0; i < limit; ++i)
2748 {
2749 const Input_section& is(input_sections[i]);
2750 if (is.is_input_section() || is.is_relaxed_input_section())
2751 {
2752 Section_id sid(is.relobj(), is.shndx());
2753 (*relaxation_map)[sid] = i;
2754 }
2755 }
2756 }
2757
2758 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2759 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2760 // indices of INPUT_SECTIONS.
2761
2762 void
2763 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2764 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2765 const Relaxation_map& map,
2766 Input_section_list* input_sections)
2767 {
2768 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2769 {
2770 Output_relaxed_input_section* poris = relaxed_sections[i];
2771 Section_id sid(poris->relobj(), poris->shndx());
2772 Relaxation_map::const_iterator p = map.find(sid);
2773 gold_assert(p != map.end());
2774 gold_assert((*input_sections)[p->second].is_input_section());
2775
2776 // Remember section order index of original input section
2777 // if it is set. Copy it to the relaxed input section.
2778 unsigned int soi =
2779 (*input_sections)[p->second].section_order_index();
2780 (*input_sections)[p->second] = Input_section(poris);
2781 (*input_sections)[p->second].set_section_order_index(soi);
2782 }
2783 }
2784
2785 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2786 // is a vector of pointers to Output_relaxed_input_section or its derived
2787 // classes. The relaxed sections must correspond to existing input sections.
2788
2789 void
2790 Output_section::convert_input_sections_to_relaxed_sections(
2791 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2792 {
2793 gold_assert(parameters->target().may_relax());
2794
2795 // We want to make sure that restore_states does not undo the effect of
2796 // this. If there is no checkpoint active, just search the current
2797 // input section list and replace the sections there. If there is
2798 // a checkpoint, also replace the sections there.
2799
2800 // By default, we look at the whole list.
2801 size_t limit = this->input_sections_.size();
2802
2803 if (this->checkpoint_ != NULL)
2804 {
2805 // Replace input sections with relaxed input section in the saved
2806 // copy of the input section list.
2807 if (this->checkpoint_->input_sections_saved())
2808 {
2809 Relaxation_map map;
2810 this->build_relaxation_map(
2811 *(this->checkpoint_->input_sections()),
2812 this->checkpoint_->input_sections()->size(),
2813 &map);
2814 this->convert_input_sections_in_list_to_relaxed_sections(
2815 relaxed_sections,
2816 map,
2817 this->checkpoint_->input_sections());
2818 }
2819 else
2820 {
2821 // We have not copied the input section list yet. Instead, just
2822 // look at the portion that would be saved.
2823 limit = this->checkpoint_->input_sections_size();
2824 }
2825 }
2826
2827 // Convert input sections in input_section_list.
2828 Relaxation_map map;
2829 this->build_relaxation_map(this->input_sections_, limit, &map);
2830 this->convert_input_sections_in_list_to_relaxed_sections(
2831 relaxed_sections,
2832 map,
2833 &this->input_sections_);
2834
2835 // Update fast look-up map.
2836 if (this->lookup_maps_->is_valid())
2837 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2838 {
2839 Output_relaxed_input_section* poris = relaxed_sections[i];
2840 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2841 poris->shndx(), poris);
2842 }
2843 }
2844
2845 // Update the output section flags based on input section flags.
2846
2847 void
2848 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2849 {
2850 // If we created the section with SHF_ALLOC clear, we set the
2851 // address. If we are now setting the SHF_ALLOC flag, we need to
2852 // undo that.
2853 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2854 && (flags & elfcpp::SHF_ALLOC) != 0)
2855 this->mark_address_invalid();
2856
2857 this->flags_ |= (flags
2858 & (elfcpp::SHF_WRITE
2859 | elfcpp::SHF_ALLOC
2860 | elfcpp::SHF_EXECINSTR));
2861
2862 if ((flags & elfcpp::SHF_MERGE) == 0)
2863 this->flags_ &=~ elfcpp::SHF_MERGE;
2864 else
2865 {
2866 if (this->current_data_size_for_child() == 0)
2867 this->flags_ |= elfcpp::SHF_MERGE;
2868 }
2869
2870 if ((flags & elfcpp::SHF_STRINGS) == 0)
2871 this->flags_ &=~ elfcpp::SHF_STRINGS;
2872 else
2873 {
2874 if (this->current_data_size_for_child() == 0)
2875 this->flags_ |= elfcpp::SHF_STRINGS;
2876 }
2877 }
2878
2879 // Find the merge section into which an input section with index SHNDX in
2880 // OBJECT has been added. Return NULL if none found.
2881
2882 Output_section_data*
2883 Output_section::find_merge_section(const Relobj* object,
2884 unsigned int shndx) const
2885 {
2886 if (!this->lookup_maps_->is_valid())
2887 this->build_lookup_maps();
2888 return this->lookup_maps_->find_merge_section(object, shndx);
2889 }
2890
2891 // Build the lookup maps for merge and relaxed sections. This is needs
2892 // to be declared as a const methods so that it is callable with a const
2893 // Output_section pointer. The method only updates states of the maps.
2894
2895 void
2896 Output_section::build_lookup_maps() const
2897 {
2898 this->lookup_maps_->clear();
2899 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2900 p != this->input_sections_.end();
2901 ++p)
2902 {
2903 if (p->is_merge_section())
2904 {
2905 Output_merge_base* pomb = p->output_merge_base();
2906 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2907 pomb->addralign());
2908 this->lookup_maps_->add_merge_section(msp, pomb);
2909 for (Output_merge_base::Input_sections::const_iterator is =
2910 pomb->input_sections_begin();
2911 is != pomb->input_sections_end();
2912 ++is)
2913 {
2914 const Const_section_id& csid = *is;
2915 this->lookup_maps_->add_merge_input_section(csid.first,
2916 csid.second, pomb);
2917 }
2918
2919 }
2920 else if (p->is_relaxed_input_section())
2921 {
2922 Output_relaxed_input_section* poris = p->relaxed_input_section();
2923 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2924 poris->shndx(), poris);
2925 }
2926 }
2927 }
2928
2929 // Find an relaxed input section corresponding to an input section
2930 // in OBJECT with index SHNDX.
2931
2932 const Output_relaxed_input_section*
2933 Output_section::find_relaxed_input_section(const Relobj* object,
2934 unsigned int shndx) const
2935 {
2936 if (!this->lookup_maps_->is_valid())
2937 this->build_lookup_maps();
2938 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2939 }
2940
2941 // Given an address OFFSET relative to the start of input section
2942 // SHNDX in OBJECT, return whether this address is being included in
2943 // the final link. This should only be called if SHNDX in OBJECT has
2944 // a special mapping.
2945
2946 bool
2947 Output_section::is_input_address_mapped(const Relobj* object,
2948 unsigned int shndx,
2949 off_t offset) const
2950 {
2951 // Look at the Output_section_data_maps first.
2952 const Output_section_data* posd = this->find_merge_section(object, shndx);
2953 if (posd == NULL)
2954 posd = this->find_relaxed_input_section(object, shndx);
2955
2956 if (posd != NULL)
2957 {
2958 section_offset_type output_offset;
2959 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2960 gold_assert(found);
2961 return output_offset != -1;
2962 }
2963
2964 // Fall back to the slow look-up.
2965 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2966 p != this->input_sections_.end();
2967 ++p)
2968 {
2969 section_offset_type output_offset;
2970 if (p->output_offset(object, shndx, offset, &output_offset))
2971 return output_offset != -1;
2972 }
2973
2974 // By default we assume that the address is mapped. This should
2975 // only be called after we have passed all sections to Layout. At
2976 // that point we should know what we are discarding.
2977 return true;
2978 }
2979
2980 // Given an address OFFSET relative to the start of input section
2981 // SHNDX in object OBJECT, return the output offset relative to the
2982 // start of the input section in the output section. This should only
2983 // be called if SHNDX in OBJECT has a special mapping.
2984
2985 section_offset_type
2986 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2987 section_offset_type offset) const
2988 {
2989 // This can only be called meaningfully when we know the data size
2990 // of this.
2991 gold_assert(this->is_data_size_valid());
2992
2993 // Look at the Output_section_data_maps first.
2994 const Output_section_data* posd = this->find_merge_section(object, shndx);
2995 if (posd == NULL)
2996 posd = this->find_relaxed_input_section(object, shndx);
2997 if (posd != NULL)
2998 {
2999 section_offset_type output_offset;
3000 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3001 gold_assert(found);
3002 return output_offset;
3003 }
3004
3005 // Fall back to the slow look-up.
3006 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3007 p != this->input_sections_.end();
3008 ++p)
3009 {
3010 section_offset_type output_offset;
3011 if (p->output_offset(object, shndx, offset, &output_offset))
3012 return output_offset;
3013 }
3014 gold_unreachable();
3015 }
3016
3017 // Return the output virtual address of OFFSET relative to the start
3018 // of input section SHNDX in object OBJECT.
3019
3020 uint64_t
3021 Output_section::output_address(const Relobj* object, unsigned int shndx,
3022 off_t offset) const
3023 {
3024 uint64_t addr = this->address() + this->first_input_offset_;
3025
3026 // Look at the Output_section_data_maps first.
3027 const Output_section_data* posd = this->find_merge_section(object, shndx);
3028 if (posd == NULL)
3029 posd = this->find_relaxed_input_section(object, shndx);
3030 if (posd != NULL && posd->is_address_valid())
3031 {
3032 section_offset_type output_offset;
3033 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3034 gold_assert(found);
3035 return posd->address() + output_offset;
3036 }
3037
3038 // Fall back to the slow look-up.
3039 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3040 p != this->input_sections_.end();
3041 ++p)
3042 {
3043 addr = align_address(addr, p->addralign());
3044 section_offset_type output_offset;
3045 if (p->output_offset(object, shndx, offset, &output_offset))
3046 {
3047 if (output_offset == -1)
3048 return -1ULL;
3049 return addr + output_offset;
3050 }
3051 addr += p->data_size();
3052 }
3053
3054 // If we get here, it means that we don't know the mapping for this
3055 // input section. This might happen in principle if
3056 // add_input_section were called before add_output_section_data.
3057 // But it should never actually happen.
3058
3059 gold_unreachable();
3060 }
3061
3062 // Find the output address of the start of the merged section for
3063 // input section SHNDX in object OBJECT.
3064
3065 bool
3066 Output_section::find_starting_output_address(const Relobj* object,
3067 unsigned int shndx,
3068 uint64_t* paddr) const
3069 {
3070 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3071 // Looking up the merge section map does not always work as we sometimes
3072 // find a merge section without its address set.
3073 uint64_t addr = this->address() + this->first_input_offset_;
3074 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3075 p != this->input_sections_.end();
3076 ++p)
3077 {
3078 addr = align_address(addr, p->addralign());
3079
3080 // It would be nice if we could use the existing output_offset
3081 // method to get the output offset of input offset 0.
3082 // Unfortunately we don't know for sure that input offset 0 is
3083 // mapped at all.
3084 if (p->is_merge_section_for(object, shndx))
3085 {
3086 *paddr = addr;
3087 return true;
3088 }
3089
3090 addr += p->data_size();
3091 }
3092
3093 // We couldn't find a merge output section for this input section.
3094 return false;
3095 }
3096
3097 // Update the data size of an Output_section.
3098
3099 void
3100 Output_section::update_data_size()
3101 {
3102 if (this->input_sections_.empty())
3103 return;
3104
3105 if (this->must_sort_attached_input_sections()
3106 || this->input_section_order_specified())
3107 this->sort_attached_input_sections();
3108
3109 off_t off = this->first_input_offset_;
3110 for (Input_section_list::iterator p = this->input_sections_.begin();
3111 p != this->input_sections_.end();
3112 ++p)
3113 {
3114 off = align_address(off, p->addralign());
3115 off += p->current_data_size();
3116 }
3117
3118 this->set_current_data_size_for_child(off);
3119 }
3120
3121 // Set the data size of an Output_section. This is where we handle
3122 // setting the addresses of any Output_section_data objects.
3123
3124 void
3125 Output_section::set_final_data_size()
3126 {
3127 off_t data_size;
3128
3129 if (this->input_sections_.empty())
3130 data_size = this->current_data_size_for_child();
3131 else
3132 {
3133 if (this->must_sort_attached_input_sections()
3134 || this->input_section_order_specified())
3135 this->sort_attached_input_sections();
3136
3137 uint64_t address = this->address();
3138 off_t startoff = this->offset();
3139 off_t off = startoff + this->first_input_offset_;
3140 for (Input_section_list::iterator p = this->input_sections_.begin();
3141 p != this->input_sections_.end();
3142 ++p)
3143 {
3144 off = align_address(off, p->addralign());
3145 p->set_address_and_file_offset(address + (off - startoff), off,
3146 startoff);
3147 off += p->data_size();
3148 }
3149 data_size = off - startoff;
3150 }
3151
3152 // For full incremental links, we want to allocate some patch space
3153 // in most sections for subsequent incremental updates.
3154 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3155 {
3156 double pct = parameters->options().incremental_patch();
3157 size_t extra = static_cast<size_t>(data_size * pct);
3158 if (this->free_space_fill_ != NULL
3159 && this->free_space_fill_->minimum_hole_size() > extra)
3160 extra = this->free_space_fill_->minimum_hole_size();
3161 off_t new_size = align_address(data_size + extra, this->addralign());
3162 this->patch_space_ = new_size - data_size;
3163 gold_debug(DEBUG_INCREMENTAL,
3164 "set_final_data_size: %08lx + %08lx: section %s",
3165 static_cast<long>(data_size),
3166 static_cast<long>(this->patch_space_),
3167 this->name());
3168 data_size = new_size;
3169 }
3170
3171 this->set_data_size(data_size);
3172 }
3173
3174 // Reset the address and file offset.
3175
3176 void
3177 Output_section::do_reset_address_and_file_offset()
3178 {
3179 // An unallocated section has no address. Forcing this means that
3180 // we don't need special treatment for symbols defined in debug
3181 // sections. We do the same in the constructor. This does not
3182 // apply to NOLOAD sections though.
3183 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3184 this->set_address(0);
3185
3186 for (Input_section_list::iterator p = this->input_sections_.begin();
3187 p != this->input_sections_.end();
3188 ++p)
3189 p->reset_address_and_file_offset();
3190
3191 // Remove any patch space that was added in set_final_data_size.
3192 if (this->patch_space_ > 0)
3193 {
3194 this->set_current_data_size_for_child(this->current_data_size_for_child()
3195 - this->patch_space_);
3196 this->patch_space_ = 0;
3197 }
3198 }
3199
3200 // Return true if address and file offset have the values after reset.
3201
3202 bool
3203 Output_section::do_address_and_file_offset_have_reset_values() const
3204 {
3205 if (this->is_offset_valid())
3206 return false;
3207
3208 // An unallocated section has address 0 after its construction or a reset.
3209 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3210 return this->is_address_valid() && this->address() == 0;
3211 else
3212 return !this->is_address_valid();
3213 }
3214
3215 // Set the TLS offset. Called only for SHT_TLS sections.
3216
3217 void
3218 Output_section::do_set_tls_offset(uint64_t tls_base)
3219 {
3220 this->tls_offset_ = this->address() - tls_base;
3221 }
3222
3223 // In a few cases we need to sort the input sections attached to an
3224 // output section. This is used to implement the type of constructor
3225 // priority ordering implemented by the GNU linker, in which the
3226 // priority becomes part of the section name and the sections are
3227 // sorted by name. We only do this for an output section if we see an
3228 // attached input section matching ".ctors.*", ".dtors.*",
3229 // ".init_array.*" or ".fini_array.*".
3230
3231 class Output_section::Input_section_sort_entry
3232 {
3233 public:
3234 Input_section_sort_entry()
3235 : input_section_(), index_(-1U), section_has_name_(false),
3236 section_name_()
3237 { }
3238
3239 Input_section_sort_entry(const Input_section& input_section,
3240 unsigned int index,
3241 bool must_sort_attached_input_sections)
3242 : input_section_(input_section), index_(index),
3243 section_has_name_(input_section.is_input_section()
3244 || input_section.is_relaxed_input_section())
3245 {
3246 if (this->section_has_name_
3247 && must_sort_attached_input_sections)
3248 {
3249 // This is only called single-threaded from Layout::finalize,
3250 // so it is OK to lock. Unfortunately we have no way to pass
3251 // in a Task token.
3252 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3253 Object* obj = (input_section.is_input_section()
3254 ? input_section.relobj()
3255 : input_section.relaxed_input_section()->relobj());
3256 Task_lock_obj<Object> tl(dummy_task, obj);
3257
3258 // This is a slow operation, which should be cached in
3259 // Layout::layout if this becomes a speed problem.
3260 this->section_name_ = obj->section_name(input_section.shndx());
3261 }
3262 }
3263
3264 // Return the Input_section.
3265 const Input_section&
3266 input_section() const
3267 {
3268 gold_assert(this->index_ != -1U);
3269 return this->input_section_;
3270 }
3271
3272 // The index of this entry in the original list. This is used to
3273 // make the sort stable.
3274 unsigned int
3275 index() const
3276 {
3277 gold_assert(this->index_ != -1U);
3278 return this->index_;
3279 }
3280
3281 // Whether there is a section name.
3282 bool
3283 section_has_name() const
3284 { return this->section_has_name_; }
3285
3286 // The section name.
3287 const std::string&
3288 section_name() const
3289 {
3290 gold_assert(this->section_has_name_);
3291 return this->section_name_;
3292 }
3293
3294 // Return true if the section name has a priority. This is assumed
3295 // to be true if it has a dot after the initial dot.
3296 bool
3297 has_priority() const
3298 {
3299 gold_assert(this->section_has_name_);
3300 return this->section_name_.find('.', 1) != std::string::npos;
3301 }
3302
3303 // Return the priority. Believe it or not, gcc encodes the priority
3304 // differently for .ctors/.dtors and .init_array/.fini_array
3305 // sections.
3306 unsigned int
3307 get_priority() const
3308 {
3309 gold_assert(this->section_has_name_);
3310 bool is_ctors;
3311 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3312 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3313 is_ctors = true;
3314 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3315 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3316 is_ctors = false;
3317 else
3318 return 0;
3319 char* end;
3320 unsigned long prio = strtoul((this->section_name_.c_str()
3321 + (is_ctors ? 7 : 12)),
3322 &end, 10);
3323 if (*end != '\0')
3324 return 0;
3325 else if (is_ctors)
3326 return 65535 - prio;
3327 else
3328 return prio;
3329 }
3330
3331 // Return true if this an input file whose base name matches
3332 // FILE_NAME. The base name must have an extension of ".o", and
3333 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3334 // This is to match crtbegin.o as well as crtbeginS.o without
3335 // getting confused by other possibilities. Overall matching the
3336 // file name this way is a dreadful hack, but the GNU linker does it
3337 // in order to better support gcc, and we need to be compatible.
3338 bool
3339 match_file_name(const char* file_name) const
3340 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3341
3342 // Returns 1 if THIS should appear before S in section order, -1 if S
3343 // appears before THIS and 0 if they are not comparable.
3344 int
3345 compare_section_ordering(const Input_section_sort_entry& s) const
3346 {
3347 unsigned int this_secn_index = this->input_section_.section_order_index();
3348 unsigned int s_secn_index = s.input_section().section_order_index();
3349 if (this_secn_index > 0 && s_secn_index > 0)
3350 {
3351 if (this_secn_index < s_secn_index)
3352 return 1;
3353 else if (this_secn_index > s_secn_index)
3354 return -1;
3355 }
3356 return 0;
3357 }
3358
3359 private:
3360 // The Input_section we are sorting.
3361 Input_section input_section_;
3362 // The index of this Input_section in the original list.
3363 unsigned int index_;
3364 // Whether this Input_section has a section name--it won't if this
3365 // is some random Output_section_data.
3366 bool section_has_name_;
3367 // The section name if there is one.
3368 std::string section_name_;
3369 };
3370
3371 // Return true if S1 should come before S2 in the output section.
3372
3373 bool
3374 Output_section::Input_section_sort_compare::operator()(
3375 const Output_section::Input_section_sort_entry& s1,
3376 const Output_section::Input_section_sort_entry& s2) const
3377 {
3378 // crtbegin.o must come first.
3379 bool s1_begin = s1.match_file_name("crtbegin");
3380 bool s2_begin = s2.match_file_name("crtbegin");
3381 if (s1_begin || s2_begin)
3382 {
3383 if (!s1_begin)
3384 return false;
3385 if (!s2_begin)
3386 return true;
3387 return s1.index() < s2.index();
3388 }
3389
3390 // crtend.o must come last.
3391 bool s1_end = s1.match_file_name("crtend");
3392 bool s2_end = s2.match_file_name("crtend");
3393 if (s1_end || s2_end)
3394 {
3395 if (!s1_end)
3396 return true;
3397 if (!s2_end)
3398 return false;
3399 return s1.index() < s2.index();
3400 }
3401
3402 // We sort all the sections with no names to the end.
3403 if (!s1.section_has_name() || !s2.section_has_name())
3404 {
3405 if (s1.section_has_name())
3406 return true;
3407 if (s2.section_has_name())
3408 return false;
3409 return s1.index() < s2.index();
3410 }
3411
3412 // A section with a priority follows a section without a priority.
3413 bool s1_has_priority = s1.has_priority();
3414 bool s2_has_priority = s2.has_priority();
3415 if (s1_has_priority && !s2_has_priority)
3416 return false;
3417 if (!s1_has_priority && s2_has_priority)
3418 return true;
3419
3420 // Check if a section order exists for these sections through a section
3421 // ordering file. If sequence_num is 0, an order does not exist.
3422 int sequence_num = s1.compare_section_ordering(s2);
3423 if (sequence_num != 0)
3424 return sequence_num == 1;
3425
3426 // Otherwise we sort by name.
3427 int compare = s1.section_name().compare(s2.section_name());
3428 if (compare != 0)
3429 return compare < 0;
3430
3431 // Otherwise we keep the input order.
3432 return s1.index() < s2.index();
3433 }
3434
3435 // Return true if S1 should come before S2 in an .init_array or .fini_array
3436 // output section.
3437
3438 bool
3439 Output_section::Input_section_sort_init_fini_compare::operator()(
3440 const Output_section::Input_section_sort_entry& s1,
3441 const Output_section::Input_section_sort_entry& s2) const
3442 {
3443 // We sort all the sections with no names to the end.
3444 if (!s1.section_has_name() || !s2.section_has_name())
3445 {
3446 if (s1.section_has_name())
3447 return true;
3448 if (s2.section_has_name())
3449 return false;
3450 return s1.index() < s2.index();
3451 }
3452
3453 // A section without a priority follows a section with a priority.
3454 // This is the reverse of .ctors and .dtors sections.
3455 bool s1_has_priority = s1.has_priority();
3456 bool s2_has_priority = s2.has_priority();
3457 if (s1_has_priority && !s2_has_priority)
3458 return true;
3459 if (!s1_has_priority && s2_has_priority)
3460 return false;
3461
3462 // .ctors and .dtors sections without priority come after
3463 // .init_array and .fini_array sections without priority.
3464 if (!s1_has_priority
3465 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3466 && s1.section_name() != s2.section_name())
3467 return false;
3468 if (!s2_has_priority
3469 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3470 && s2.section_name() != s1.section_name())
3471 return true;
3472
3473 // Sort by priority if we can.
3474 if (s1_has_priority)
3475 {
3476 unsigned int s1_prio = s1.get_priority();
3477 unsigned int s2_prio = s2.get_priority();
3478 if (s1_prio < s2_prio)
3479 return true;
3480 else if (s1_prio > s2_prio)
3481 return false;
3482 }
3483
3484 // Check if a section order exists for these sections through a section
3485 // ordering file. If sequence_num is 0, an order does not exist.
3486 int sequence_num = s1.compare_section_ordering(s2);
3487 if (sequence_num != 0)
3488 return sequence_num == 1;
3489
3490 // Otherwise we sort by name.
3491 int compare = s1.section_name().compare(s2.section_name());
3492 if (compare != 0)
3493 return compare < 0;
3494
3495 // Otherwise we keep the input order.
3496 return s1.index() < s2.index();
3497 }
3498
3499 // Return true if S1 should come before S2. Sections that do not match
3500 // any pattern in the section ordering file are placed ahead of the sections
3501 // that match some pattern. This function is also used to group text according
3502 // to their prefix. The following prefixes are recognized: ".text.startup",
3503 // ".text.hot", and ".text.unlikely".
3504
3505 bool
3506 Output_section::Input_section_sort_section_order_index_compare::operator()(
3507 const Output_section::Input_section_sort_entry& s1,
3508 const Output_section::Input_section_sort_entry& s2) const
3509 {
3510 unsigned int s1_secn_index = s1.input_section().section_order_index();
3511 unsigned int s2_secn_index = s2.input_section().section_order_index();
3512
3513 // If section ordering is specified, it takes precedence.
3514 if (s1_secn_index != s2_secn_index)
3515 return s1_secn_index < s2_secn_index;
3516
3517 // Sort all the sections with no names to the end.
3518 if (!s1.section_has_name() || !s2.section_has_name())
3519 {
3520 if (s1.section_has_name())
3521 return true;
3522 if (s2.section_has_name())
3523 return false;
3524 return s1.index() < s2.index();
3525 }
3526
3527 // If it is a text section use the following order:
3528 // .text.unlikely, .text.startup, .text.hot. The prefixes
3529 // must match those in function is_section_name_prefix_grouped
3530 // in layout.cc
3531 const char* section_prefix [] =
3532 {
3533 ".text.unlikely",
3534 ".text.startup",
3535 ".text.hot"
3536 };
3537
3538 const unsigned int num_prefixes
3539 = sizeof(section_prefix) / sizeof(const char*);
3540
3541 unsigned int s1_group_index = num_prefixes;
3542 unsigned int s2_group_index = num_prefixes;
3543
3544 unsigned int flag_done = 0;
3545 for (unsigned int i = 0; i < num_prefixes && flag_done < 2; i++)
3546 {
3547 if (s1_group_index == num_prefixes
3548 && is_prefix_of(section_prefix[i], s1.section_name().c_str()))
3549 {
3550 s1_group_index = i;
3551 flag_done++;
3552 }
3553
3554 if (s2_group_index == num_prefixes
3555 && is_prefix_of(section_prefix[i], s2.section_name().c_str()))
3556 {
3557 s2_group_index = i;
3558 flag_done++;
3559 }
3560 }
3561
3562 if (s1_group_index == s2_group_index)
3563 return s1.index() < s2.index();
3564 else
3565 return s1_group_index < s2_group_index;
3566 }
3567
3568 // This updates the section order index of input sections according to the
3569 // the order specified in the mapping from Section id to order index.
3570
3571 void
3572 Output_section::update_section_layout(
3573 const Section_layout_order* order_map)
3574 {
3575 for (Input_section_list::iterator p = this->input_sections_.begin();
3576 p != this->input_sections_.end();
3577 ++p)
3578 {
3579 if (p->is_input_section()
3580 || p->is_relaxed_input_section())
3581 {
3582 Object* obj = (p->is_input_section()
3583 ? p->relobj()
3584 : p->relaxed_input_section()->relobj());
3585 unsigned int shndx = p->shndx();
3586 Section_layout_order::const_iterator it
3587 = order_map->find(Section_id(obj, shndx));
3588 if (it == order_map->end())
3589 continue;
3590 unsigned int section_order_index = it->second;
3591 if (section_order_index != 0)
3592 {
3593 p->set_section_order_index(section_order_index);
3594 this->set_input_section_order_specified();
3595 }
3596 }
3597 }
3598 }
3599
3600 // Sort the input sections attached to an output section.
3601
3602 void
3603 Output_section::sort_attached_input_sections()
3604 {
3605 if (this->attached_input_sections_are_sorted_)
3606 return;
3607
3608 if (this->checkpoint_ != NULL
3609 && !this->checkpoint_->input_sections_saved())
3610 this->checkpoint_->save_input_sections();
3611
3612 // The only thing we know about an input section is the object and
3613 // the section index. We need the section name. Recomputing this
3614 // is slow but this is an unusual case. If this becomes a speed
3615 // problem we can cache the names as required in Layout::layout.
3616
3617 // We start by building a larger vector holding a copy of each
3618 // Input_section, plus its current index in the list and its name.
3619 std::vector<Input_section_sort_entry> sort_list;
3620
3621 unsigned int i = 0;
3622 for (Input_section_list::iterator p = this->input_sections_.begin();
3623 p != this->input_sections_.end();
3624 ++p, ++i)
3625 sort_list.push_back(Input_section_sort_entry(*p, i,
3626 (this->must_sort_attached_input_sections()
3627 || this->input_section_order_specified())));
3628
3629 // Sort the input sections.
3630 if (this->must_sort_attached_input_sections())
3631 {
3632 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3633 || this->type() == elfcpp::SHT_INIT_ARRAY
3634 || this->type() == elfcpp::SHT_FINI_ARRAY)
3635 std::sort(sort_list.begin(), sort_list.end(),
3636 Input_section_sort_init_fini_compare());
3637 else
3638 std::sort(sort_list.begin(), sort_list.end(),
3639 Input_section_sort_compare());
3640 }
3641 else
3642 {
3643 gold_assert(this->input_section_order_specified());
3644 std::sort(sort_list.begin(), sort_list.end(),
3645 Input_section_sort_section_order_index_compare());
3646 }
3647
3648 // Copy the sorted input sections back to our list.
3649 this->input_sections_.clear();
3650 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3651 p != sort_list.end();
3652 ++p)
3653 this->input_sections_.push_back(p->input_section());
3654 sort_list.clear();
3655
3656 // Remember that we sorted the input sections, since we might get
3657 // called again.
3658 this->attached_input_sections_are_sorted_ = true;
3659 }
3660
3661 // Write the section header to *OSHDR.
3662
3663 template<int size, bool big_endian>
3664 void
3665 Output_section::write_header(const Layout* layout,
3666 const Stringpool* secnamepool,
3667 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3668 {
3669 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3670 oshdr->put_sh_type(this->type_);
3671
3672 elfcpp::Elf_Xword flags = this->flags_;
3673 if (this->info_section_ != NULL && this->info_uses_section_index_)
3674 flags |= elfcpp::SHF_INFO_LINK;
3675 oshdr->put_sh_flags(flags);
3676
3677 oshdr->put_sh_addr(this->address());
3678 oshdr->put_sh_offset(this->offset());
3679 oshdr->put_sh_size(this->data_size());
3680 if (this->link_section_ != NULL)
3681 oshdr->put_sh_link(this->link_section_->out_shndx());
3682 else if (this->should_link_to_symtab_)
3683 oshdr->put_sh_link(layout->symtab_section_shndx());
3684 else if (this->should_link_to_dynsym_)
3685 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3686 else
3687 oshdr->put_sh_link(this->link_);
3688
3689 elfcpp::Elf_Word info;
3690 if (this->info_section_ != NULL)
3691 {
3692 if (this->info_uses_section_index_)
3693 info = this->info_section_->out_shndx();
3694 else
3695 info = this->info_section_->symtab_index();
3696 }
3697 else if (this->info_symndx_ != NULL)
3698 info = this->info_symndx_->symtab_index();
3699 else
3700 info = this->info_;
3701 oshdr->put_sh_info(info);
3702
3703 oshdr->put_sh_addralign(this->addralign_);
3704 oshdr->put_sh_entsize(this->entsize_);
3705 }
3706
3707 // Write out the data. For input sections the data is written out by
3708 // Object::relocate, but we have to handle Output_section_data objects
3709 // here.
3710
3711 void
3712 Output_section::do_write(Output_file* of)
3713 {
3714 gold_assert(!this->requires_postprocessing());
3715
3716 // If the target performs relaxation, we delay filler generation until now.
3717 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3718
3719 off_t output_section_file_offset = this->offset();
3720 for (Fill_list::iterator p = this->fills_.begin();
3721 p != this->fills_.end();
3722 ++p)
3723 {
3724 std::string fill_data(parameters->target().code_fill(p->length()));
3725 of->write(output_section_file_offset + p->section_offset(),
3726 fill_data.data(), fill_data.size());
3727 }
3728
3729 off_t off = this->offset() + this->first_input_offset_;
3730 for (Input_section_list::iterator p = this->input_sections_.begin();
3731 p != this->input_sections_.end();
3732 ++p)
3733 {
3734 off_t aligned_off = align_address(off, p->addralign());
3735 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3736 {
3737 size_t fill_len = aligned_off - off;
3738 std::string fill_data(parameters->target().code_fill(fill_len));
3739 of->write(off, fill_data.data(), fill_data.size());
3740 }
3741
3742 p->write(of);
3743 off = aligned_off + p->data_size();
3744 }
3745
3746 // For incremental links, fill in unused chunks in debug sections
3747 // with dummy compilation unit headers.
3748 if (this->free_space_fill_ != NULL)
3749 {
3750 for (Free_list::Const_iterator p = this->free_list_.begin();
3751 p != this->free_list_.end();
3752 ++p)
3753 {
3754 off_t off = p->start_;
3755 size_t len = p->end_ - off;
3756 this->free_space_fill_->write(of, this->offset() + off, len);
3757 }
3758 if (this->patch_space_ > 0)
3759 {
3760 off_t off = this->current_data_size_for_child() - this->patch_space_;
3761 this->free_space_fill_->write(of, this->offset() + off,
3762 this->patch_space_);
3763 }
3764 }
3765 }
3766
3767 // If a section requires postprocessing, create the buffer to use.
3768
3769 void
3770 Output_section::create_postprocessing_buffer()
3771 {
3772 gold_assert(this->requires_postprocessing());
3773
3774 if (this->postprocessing_buffer_ != NULL)
3775 return;
3776
3777 if (!this->input_sections_.empty())
3778 {
3779 off_t off = this->first_input_offset_;
3780 for (Input_section_list::iterator p = this->input_sections_.begin();
3781 p != this->input_sections_.end();
3782 ++p)
3783 {
3784 off = align_address(off, p->addralign());
3785 p->finalize_data_size();
3786 off += p->data_size();
3787 }
3788 this->set_current_data_size_for_child(off);
3789 }
3790
3791 off_t buffer_size = this->current_data_size_for_child();
3792 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3793 }
3794
3795 // Write all the data of an Output_section into the postprocessing
3796 // buffer. This is used for sections which require postprocessing,
3797 // such as compression. Input sections are handled by
3798 // Object::Relocate.
3799
3800 void
3801 Output_section::write_to_postprocessing_buffer()
3802 {
3803 gold_assert(this->requires_postprocessing());
3804
3805 // If the target performs relaxation, we delay filler generation until now.
3806 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3807
3808 unsigned char* buffer = this->postprocessing_buffer();
3809 for (Fill_list::iterator p = this->fills_.begin();
3810 p != this->fills_.end();
3811 ++p)
3812 {
3813 std::string fill_data(parameters->target().code_fill(p->length()));
3814 memcpy(buffer + p->section_offset(), fill_data.data(),
3815 fill_data.size());
3816 }
3817
3818 off_t off = this->first_input_offset_;
3819 for (Input_section_list::iterator p = this->input_sections_.begin();
3820 p != this->input_sections_.end();
3821 ++p)
3822 {
3823 off_t aligned_off = align_address(off, p->addralign());
3824 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3825 {
3826 size_t fill_len = aligned_off - off;
3827 std::string fill_data(parameters->target().code_fill(fill_len));
3828 memcpy(buffer + off, fill_data.data(), fill_data.size());
3829 }
3830
3831 p->write_to_buffer(buffer + aligned_off);
3832 off = aligned_off + p->data_size();
3833 }
3834 }
3835
3836 // Get the input sections for linker script processing. We leave
3837 // behind the Output_section_data entries. Note that this may be
3838 // slightly incorrect for merge sections. We will leave them behind,
3839 // but it is possible that the script says that they should follow
3840 // some other input sections, as in:
3841 // .rodata { *(.rodata) *(.rodata.cst*) }
3842 // For that matter, we don't handle this correctly:
3843 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3844 // With luck this will never matter.
3845
3846 uint64_t
3847 Output_section::get_input_sections(
3848 uint64_t address,
3849 const std::string& fill,
3850 std::list<Input_section>* input_sections)
3851 {
3852 if (this->checkpoint_ != NULL
3853 && !this->checkpoint_->input_sections_saved())
3854 this->checkpoint_->save_input_sections();
3855
3856 // Invalidate fast look-up maps.
3857 this->lookup_maps_->invalidate();
3858
3859 uint64_t orig_address = address;
3860
3861 address = align_address(address, this->addralign());
3862
3863 Input_section_list remaining;
3864 for (Input_section_list::iterator p = this->input_sections_.begin();
3865 p != this->input_sections_.end();
3866 ++p)
3867 {
3868 if (p->is_input_section()
3869 || p->is_relaxed_input_section()
3870 || p->is_merge_section())
3871 input_sections->push_back(*p);
3872 else
3873 {
3874 uint64_t aligned_address = align_address(address, p->addralign());
3875 if (aligned_address != address && !fill.empty())
3876 {
3877 section_size_type length =
3878 convert_to_section_size_type(aligned_address - address);
3879 std::string this_fill;
3880 this_fill.reserve(length);
3881 while (this_fill.length() + fill.length() <= length)
3882 this_fill += fill;
3883 if (this_fill.length() < length)
3884 this_fill.append(fill, 0, length - this_fill.length());
3885
3886 Output_section_data* posd = new Output_data_const(this_fill, 0);
3887 remaining.push_back(Input_section(posd));
3888 }
3889 address = aligned_address;
3890
3891 remaining.push_back(*p);
3892
3893 p->finalize_data_size();
3894 address += p->data_size();
3895 }
3896 }
3897
3898 this->input_sections_.swap(remaining);
3899 this->first_input_offset_ = 0;
3900
3901 uint64_t data_size = address - orig_address;
3902 this->set_current_data_size_for_child(data_size);
3903 return data_size;
3904 }
3905
3906 // Add a script input section. SIS is an Output_section::Input_section,
3907 // which can be either a plain input section or a special input section like
3908 // a relaxed input section. For a special input section, its size must be
3909 // finalized.
3910
3911 void
3912 Output_section::add_script_input_section(const Input_section& sis)
3913 {
3914 uint64_t data_size = sis.data_size();
3915 uint64_t addralign = sis.addralign();
3916 if (addralign > this->addralign_)
3917 this->addralign_ = addralign;
3918
3919 off_t offset_in_section = this->current_data_size_for_child();
3920 off_t aligned_offset_in_section = align_address(offset_in_section,
3921 addralign);
3922
3923 this->set_current_data_size_for_child(aligned_offset_in_section
3924 + data_size);
3925
3926 this->input_sections_.push_back(sis);
3927
3928 // Update fast lookup maps if necessary.
3929 if (this->lookup_maps_->is_valid())
3930 {
3931 if (sis.is_merge_section())
3932 {
3933 Output_merge_base* pomb = sis.output_merge_base();
3934 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3935 pomb->addralign());
3936 this->lookup_maps_->add_merge_section(msp, pomb);
3937 for (Output_merge_base::Input_sections::const_iterator p =
3938 pomb->input_sections_begin();
3939 p != pomb->input_sections_end();
3940 ++p)
3941 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3942 pomb);
3943 }
3944 else if (sis.is_relaxed_input_section())
3945 {
3946 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3947 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3948 poris->shndx(), poris);
3949 }
3950 }
3951 }
3952
3953 // Save states for relaxation.
3954
3955 void
3956 Output_section::save_states()
3957 {
3958 gold_assert(this->checkpoint_ == NULL);
3959 Checkpoint_output_section* checkpoint =
3960 new Checkpoint_output_section(this->addralign_, this->flags_,
3961 this->input_sections_,
3962 this->first_input_offset_,
3963 this->attached_input_sections_are_sorted_);
3964 this->checkpoint_ = checkpoint;
3965 gold_assert(this->fills_.empty());
3966 }
3967
3968 void
3969 Output_section::discard_states()
3970 {
3971 gold_assert(this->checkpoint_ != NULL);
3972 delete this->checkpoint_;
3973 this->checkpoint_ = NULL;
3974 gold_assert(this->fills_.empty());
3975
3976 // Simply invalidate the fast lookup maps since we do not keep
3977 // track of them.
3978 this->lookup_maps_->invalidate();
3979 }
3980
3981 void
3982 Output_section::restore_states()
3983 {
3984 gold_assert(this->checkpoint_ != NULL);
3985 Checkpoint_output_section* checkpoint = this->checkpoint_;
3986
3987 this->addralign_ = checkpoint->addralign();
3988 this->flags_ = checkpoint->flags();
3989 this->first_input_offset_ = checkpoint->first_input_offset();
3990
3991 if (!checkpoint->input_sections_saved())
3992 {
3993 // If we have not copied the input sections, just resize it.
3994 size_t old_size = checkpoint->input_sections_size();
3995 gold_assert(this->input_sections_.size() >= old_size);
3996 this->input_sections_.resize(old_size);
3997 }
3998 else
3999 {
4000 // We need to copy the whole list. This is not efficient for
4001 // extremely large output with hundreads of thousands of input
4002 // objects. We may need to re-think how we should pass sections
4003 // to scripts.
4004 this->input_sections_ = *checkpoint->input_sections();
4005 }
4006
4007 this->attached_input_sections_are_sorted_ =
4008 checkpoint->attached_input_sections_are_sorted();
4009
4010 // Simply invalidate the fast lookup maps since we do not keep
4011 // track of them.
4012 this->lookup_maps_->invalidate();
4013 }
4014
4015 // Update the section offsets of input sections in this. This is required if
4016 // relaxation causes some input sections to change sizes.
4017
4018 void
4019 Output_section::adjust_section_offsets()
4020 {
4021 if (!this->section_offsets_need_adjustment_)
4022 return;
4023
4024 off_t off = 0;
4025 for (Input_section_list::iterator p = this->input_sections_.begin();
4026 p != this->input_sections_.end();
4027 ++p)
4028 {
4029 off = align_address(off, p->addralign());
4030 if (p->is_input_section())
4031 p->relobj()->set_section_offset(p->shndx(), off);
4032 off += p->data_size();
4033 }
4034
4035 this->section_offsets_need_adjustment_ = false;
4036 }
4037
4038 // Print to the map file.
4039
4040 void
4041 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4042 {
4043 mapfile->print_output_section(this);
4044
4045 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4046 p != this->input_sections_.end();
4047 ++p)
4048 p->print_to_mapfile(mapfile);
4049 }
4050
4051 // Print stats for merge sections to stderr.
4052
4053 void
4054 Output_section::print_merge_stats()
4055 {
4056 Input_section_list::iterator p;
4057 for (p = this->input_sections_.begin();
4058 p != this->input_sections_.end();
4059 ++p)
4060 p->print_merge_stats(this->name_);
4061 }
4062
4063 // Set a fixed layout for the section. Used for incremental update links.
4064
4065 void
4066 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4067 off_t sh_size, uint64_t sh_addralign)
4068 {
4069 this->addralign_ = sh_addralign;
4070 this->set_current_data_size(sh_size);
4071 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4072 this->set_address(sh_addr);
4073 this->set_file_offset(sh_offset);
4074 this->finalize_data_size();
4075 this->free_list_.init(sh_size, false);
4076 this->has_fixed_layout_ = true;
4077 }
4078
4079 // Reserve space within the fixed layout for the section. Used for
4080 // incremental update links.
4081
4082 void
4083 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4084 {
4085 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4086 }
4087
4088 // Allocate space from the free list for the section. Used for
4089 // incremental update links.
4090
4091 off_t
4092 Output_section::allocate(off_t len, uint64_t addralign)
4093 {
4094 return this->free_list_.allocate(len, addralign, 0);
4095 }
4096
4097 // Output segment methods.
4098
4099 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4100 : vaddr_(0),
4101 paddr_(0),
4102 memsz_(0),
4103 max_align_(0),
4104 min_p_align_(0),
4105 offset_(0),
4106 filesz_(0),
4107 type_(type),
4108 flags_(flags),
4109 is_max_align_known_(false),
4110 are_addresses_set_(false),
4111 is_large_data_segment_(false),
4112 is_unique_segment_(false)
4113 {
4114 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4115 // the flags.
4116 if (type == elfcpp::PT_TLS)
4117 this->flags_ = elfcpp::PF_R;
4118 }
4119
4120 // Add an Output_section to a PT_LOAD Output_segment.
4121
4122 void
4123 Output_segment::add_output_section_to_load(Layout* layout,
4124 Output_section* os,
4125 elfcpp::Elf_Word seg_flags)
4126 {
4127 gold_assert(this->type() == elfcpp::PT_LOAD);
4128 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4129 gold_assert(!this->is_max_align_known_);
4130 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4131
4132 this->update_flags_for_output_section(seg_flags);
4133
4134 // We don't want to change the ordering if we have a linker script
4135 // with a SECTIONS clause.
4136 Output_section_order order = os->order();
4137 if (layout->script_options()->saw_sections_clause())
4138 order = static_cast<Output_section_order>(0);
4139 else
4140 gold_assert(order != ORDER_INVALID);
4141
4142 this->output_lists_[order].push_back(os);
4143 }
4144
4145 // Add an Output_section to a non-PT_LOAD Output_segment.
4146
4147 void
4148 Output_segment::add_output_section_to_nonload(Output_section* os,
4149 elfcpp::Elf_Word seg_flags)
4150 {
4151 gold_assert(this->type() != elfcpp::PT_LOAD);
4152 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4153 gold_assert(!this->is_max_align_known_);
4154
4155 this->update_flags_for_output_section(seg_flags);
4156
4157 this->output_lists_[0].push_back(os);
4158 }
4159
4160 // Remove an Output_section from this segment. It is an error if it
4161 // is not present.
4162
4163 void
4164 Output_segment::remove_output_section(Output_section* os)
4165 {
4166 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4167 {
4168 Output_data_list* pdl = &this->output_lists_[i];
4169 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4170 {
4171 if (*p == os)
4172 {
4173 pdl->erase(p);
4174 return;
4175 }
4176 }
4177 }
4178 gold_unreachable();
4179 }
4180
4181 // Add an Output_data (which need not be an Output_section) to the
4182 // start of a segment.
4183
4184 void
4185 Output_segment::add_initial_output_data(Output_data* od)
4186 {
4187 gold_assert(!this->is_max_align_known_);
4188 Output_data_list::iterator p = this->output_lists_[0].begin();
4189 this->output_lists_[0].insert(p, od);
4190 }
4191
4192 // Return true if this segment has any sections which hold actual
4193 // data, rather than being a BSS section.
4194
4195 bool
4196 Output_segment::has_any_data_sections() const
4197 {
4198 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4199 {
4200 const Output_data_list* pdl = &this->output_lists_[i];
4201 for (Output_data_list::const_iterator p = pdl->begin();
4202 p != pdl->end();
4203 ++p)
4204 {
4205 if (!(*p)->is_section())
4206 return true;
4207 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4208 return true;
4209 }
4210 }
4211 return false;
4212 }
4213
4214 // Return whether the first data section (not counting TLS sections)
4215 // is a relro section.
4216
4217 bool
4218 Output_segment::is_first_section_relro() const
4219 {
4220 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4221 {
4222 if (i == static_cast<int>(ORDER_TLS_DATA)
4223 || i == static_cast<int>(ORDER_TLS_BSS))
4224 continue;
4225 const Output_data_list* pdl = &this->output_lists_[i];
4226 if (!pdl->empty())
4227 {
4228 Output_data* p = pdl->front();
4229 return p->is_section() && p->output_section()->is_relro();
4230 }
4231 }
4232 return false;
4233 }
4234
4235 // Return the maximum alignment of the Output_data in Output_segment.
4236
4237 uint64_t
4238 Output_segment::maximum_alignment()
4239 {
4240 if (!this->is_max_align_known_)
4241 {
4242 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4243 {
4244 const Output_data_list* pdl = &this->output_lists_[i];
4245 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4246 if (addralign > this->max_align_)
4247 this->max_align_ = addralign;
4248 }
4249 this->is_max_align_known_ = true;
4250 }
4251
4252 return this->max_align_;
4253 }
4254
4255 // Return the maximum alignment of a list of Output_data.
4256
4257 uint64_t
4258 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4259 {
4260 uint64_t ret = 0;
4261 for (Output_data_list::const_iterator p = pdl->begin();
4262 p != pdl->end();
4263 ++p)
4264 {
4265 uint64_t addralign = (*p)->addralign();
4266 if (addralign > ret)
4267 ret = addralign;
4268 }
4269 return ret;
4270 }
4271
4272 // Return whether this segment has any dynamic relocs.
4273
4274 bool
4275 Output_segment::has_dynamic_reloc() const
4276 {
4277 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4278 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4279 return true;
4280 return false;
4281 }
4282
4283 // Return whether this Output_data_list has any dynamic relocs.
4284
4285 bool
4286 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4287 {
4288 for (Output_data_list::const_iterator p = pdl->begin();
4289 p != pdl->end();
4290 ++p)
4291 if ((*p)->has_dynamic_reloc())
4292 return true;
4293 return false;
4294 }
4295
4296 // Set the section addresses for an Output_segment. If RESET is true,
4297 // reset the addresses first. ADDR is the address and *POFF is the
4298 // file offset. Set the section indexes starting with *PSHNDX.
4299 // INCREASE_RELRO is the size of the portion of the first non-relro
4300 // section that should be included in the PT_GNU_RELRO segment.
4301 // If this segment has relro sections, and has been aligned for
4302 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4303 // the immediately following segment. Update *HAS_RELRO, *POFF,
4304 // and *PSHNDX.
4305
4306 uint64_t
4307 Output_segment::set_section_addresses(Layout* layout, bool reset,
4308 uint64_t addr,
4309 unsigned int* increase_relro,
4310 bool* has_relro,
4311 off_t* poff,
4312 unsigned int* pshndx)
4313 {
4314 gold_assert(this->type_ == elfcpp::PT_LOAD);
4315
4316 uint64_t last_relro_pad = 0;
4317 off_t orig_off = *poff;
4318
4319 bool in_tls = false;
4320
4321 // If we have relro sections, we need to pad forward now so that the
4322 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4323 if (parameters->options().relro()
4324 && this->is_first_section_relro()
4325 && (!this->are_addresses_set_ || reset))
4326 {
4327 uint64_t relro_size = 0;
4328 off_t off = *poff;
4329 uint64_t max_align = 0;
4330 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4331 {
4332 Output_data_list* pdl = &this->output_lists_[i];
4333 Output_data_list::iterator p;
4334 for (p = pdl->begin(); p != pdl->end(); ++p)
4335 {
4336 if (!(*p)->is_section())
4337 break;
4338 uint64_t align = (*p)->addralign();
4339 if (align > max_align)
4340 max_align = align;
4341 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4342 in_tls = true;
4343 else if (in_tls)
4344 {
4345 // Align the first non-TLS section to the alignment
4346 // of the TLS segment.
4347 align = max_align;
4348 in_tls = false;
4349 }
4350 relro_size = align_address(relro_size, align);
4351 // Ignore the size of the .tbss section.
4352 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4353 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4354 continue;
4355 if ((*p)->is_address_valid())
4356 relro_size += (*p)->data_size();
4357 else
4358 {
4359 // FIXME: This could be faster.
4360 (*p)->set_address_and_file_offset(addr + relro_size,
4361 off + relro_size);
4362 relro_size += (*p)->data_size();
4363 (*p)->reset_address_and_file_offset();
4364 }
4365 }
4366 if (p != pdl->end())
4367 break;
4368 }
4369 relro_size += *increase_relro;
4370 // Pad the total relro size to a multiple of the maximum
4371 // section alignment seen.
4372 uint64_t aligned_size = align_address(relro_size, max_align);
4373 // Note the amount of padding added after the last relro section.
4374 last_relro_pad = aligned_size - relro_size;
4375 *has_relro = true;
4376
4377 uint64_t page_align = parameters->target().abi_pagesize();
4378
4379 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4380 uint64_t desired_align = page_align - (aligned_size % page_align);
4381 if (desired_align < *poff % page_align)
4382 *poff += page_align - *poff % page_align;
4383 *poff += desired_align - *poff % page_align;
4384 addr += *poff - orig_off;
4385 orig_off = *poff;
4386 }
4387
4388 if (!reset && this->are_addresses_set_)
4389 {
4390 gold_assert(this->paddr_ == addr);
4391 addr = this->vaddr_;
4392 }
4393 else
4394 {
4395 this->vaddr_ = addr;
4396 this->paddr_ = addr;
4397 this->are_addresses_set_ = true;
4398 }
4399
4400 in_tls = false;
4401
4402 this->offset_ = orig_off;
4403
4404 off_t off = 0;
4405 uint64_t ret;
4406 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4407 {
4408 if (i == static_cast<int>(ORDER_RELRO_LAST))
4409 {
4410 *poff += last_relro_pad;
4411 addr += last_relro_pad;
4412 if (this->output_lists_[i].empty())
4413 {
4414 // If there is nothing in the ORDER_RELRO_LAST list,
4415 // the padding will occur at the end of the relro
4416 // segment, and we need to add it to *INCREASE_RELRO.
4417 *increase_relro += last_relro_pad;
4418 }
4419 }
4420 addr = this->set_section_list_addresses(layout, reset,
4421 &this->output_lists_[i],
4422 addr, poff, pshndx, &in_tls);
4423 if (i < static_cast<int>(ORDER_SMALL_BSS))
4424 {
4425 this->filesz_ = *poff - orig_off;
4426 off = *poff;
4427 }
4428
4429 ret = addr;
4430 }
4431
4432 // If the last section was a TLS section, align upward to the
4433 // alignment of the TLS segment, so that the overall size of the TLS
4434 // segment is aligned.
4435 if (in_tls)
4436 {
4437 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4438 *poff = align_address(*poff, segment_align);
4439 }
4440
4441 this->memsz_ = *poff - orig_off;
4442
4443 // Ignore the file offset adjustments made by the BSS Output_data
4444 // objects.
4445 *poff = off;
4446
4447 return ret;
4448 }
4449
4450 // Set the addresses and file offsets in a list of Output_data
4451 // structures.
4452
4453 uint64_t
4454 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4455 Output_data_list* pdl,
4456 uint64_t addr, off_t* poff,
4457 unsigned int* pshndx,
4458 bool* in_tls)
4459 {
4460 off_t startoff = *poff;
4461 // For incremental updates, we may allocate non-fixed sections from
4462 // free space in the file. This keeps track of the high-water mark.
4463 off_t maxoff = startoff;
4464
4465 off_t off = startoff;
4466 for (Output_data_list::iterator p = pdl->begin();
4467 p != pdl->end();
4468 ++p)
4469 {
4470 if (reset)
4471 (*p)->reset_address_and_file_offset();
4472
4473 // When doing an incremental update or when using a linker script,
4474 // the section will most likely already have an address.
4475 if (!(*p)->is_address_valid())
4476 {
4477 uint64_t align = (*p)->addralign();
4478
4479 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4480 {
4481 // Give the first TLS section the alignment of the
4482 // entire TLS segment. Otherwise the TLS segment as a
4483 // whole may be misaligned.
4484 if (!*in_tls)
4485 {
4486 Output_segment* tls_segment = layout->tls_segment();
4487 gold_assert(tls_segment != NULL);
4488 uint64_t segment_align = tls_segment->maximum_alignment();
4489 gold_assert(segment_align >= align);
4490 align = segment_align;
4491
4492 *in_tls = true;
4493 }
4494 }
4495 else
4496 {
4497 // If this is the first section after the TLS segment,
4498 // align it to at least the alignment of the TLS
4499 // segment, so that the size of the overall TLS segment
4500 // is aligned.
4501 if (*in_tls)
4502 {
4503 uint64_t segment_align =
4504 layout->tls_segment()->maximum_alignment();
4505 if (segment_align > align)
4506 align = segment_align;
4507
4508 *in_tls = false;
4509 }
4510 }
4511
4512 if (!parameters->incremental_update())
4513 {
4514 off = align_address(off, align);
4515 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4516 }
4517 else
4518 {
4519 // Incremental update: allocate file space from free list.
4520 (*p)->pre_finalize_data_size();
4521 off_t current_size = (*p)->current_data_size();
4522 off = layout->allocate(current_size, align, startoff);
4523 if (off == -1)
4524 {
4525 gold_assert((*p)->output_section() != NULL);
4526 gold_fallback(_("out of patch space for section %s; "
4527 "relink with --incremental-full"),
4528 (*p)->output_section()->name());
4529 }
4530 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4531 if ((*p)->data_size() > current_size)
4532 {
4533 gold_assert((*p)->output_section() != NULL);
4534 gold_fallback(_("%s: section changed size; "
4535 "relink with --incremental-full"),
4536 (*p)->output_section()->name());
4537 }
4538 }
4539 }
4540 else if (parameters->incremental_update())
4541 {
4542 // For incremental updates, use the fixed offset for the
4543 // high-water mark computation.
4544 off = (*p)->offset();
4545 }
4546 else
4547 {
4548 // The script may have inserted a skip forward, but it
4549 // better not have moved backward.
4550 if ((*p)->address() >= addr + (off - startoff))
4551 off += (*p)->address() - (addr + (off - startoff));
4552 else
4553 {
4554 if (!layout->script_options()->saw_sections_clause())
4555 gold_unreachable();
4556 else
4557 {
4558 Output_section* os = (*p)->output_section();
4559
4560 // Cast to unsigned long long to avoid format warnings.
4561 unsigned long long previous_dot =
4562 static_cast<unsigned long long>(addr + (off - startoff));
4563 unsigned long long dot =
4564 static_cast<unsigned long long>((*p)->address());
4565
4566 if (os == NULL)
4567 gold_error(_("dot moves backward in linker script "
4568 "from 0x%llx to 0x%llx"), previous_dot, dot);
4569 else
4570 gold_error(_("address of section '%s' moves backward "
4571 "from 0x%llx to 0x%llx"),
4572 os->name(), previous_dot, dot);
4573 }
4574 }
4575 (*p)->set_file_offset(off);
4576 (*p)->finalize_data_size();
4577 }
4578
4579 if (parameters->incremental_update())
4580 gold_debug(DEBUG_INCREMENTAL,
4581 "set_section_list_addresses: %08lx %08lx %s",
4582 static_cast<long>(off),
4583 static_cast<long>((*p)->data_size()),
4584 ((*p)->output_section() != NULL
4585 ? (*p)->output_section()->name() : "(special)"));
4586
4587 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4588 // section. Such a section does not affect the size of a
4589 // PT_LOAD segment.
4590 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4591 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4592 off += (*p)->data_size();
4593
4594 if (off > maxoff)
4595 maxoff = off;
4596
4597 if ((*p)->is_section())
4598 {
4599 (*p)->set_out_shndx(*pshndx);
4600 ++*pshndx;
4601 }
4602 }
4603
4604 *poff = maxoff;
4605 return addr + (maxoff - startoff);
4606 }
4607
4608 // For a non-PT_LOAD segment, set the offset from the sections, if
4609 // any. Add INCREASE to the file size and the memory size.
4610
4611 void
4612 Output_segment::set_offset(unsigned int increase)
4613 {
4614 gold_assert(this->type_ != elfcpp::PT_LOAD);
4615
4616 gold_assert(!this->are_addresses_set_);
4617
4618 // A non-load section only uses output_lists_[0].
4619
4620 Output_data_list* pdl = &this->output_lists_[0];
4621
4622 if (pdl->empty())
4623 {
4624 gold_assert(increase == 0);
4625 this->vaddr_ = 0;
4626 this->paddr_ = 0;
4627 this->are_addresses_set_ = true;
4628 this->memsz_ = 0;
4629 this->min_p_align_ = 0;
4630 this->offset_ = 0;
4631 this->filesz_ = 0;
4632 return;
4633 }
4634
4635 // Find the first and last section by address.
4636 const Output_data* first = NULL;
4637 const Output_data* last_data = NULL;
4638 const Output_data* last_bss = NULL;
4639 for (Output_data_list::const_iterator p = pdl->begin();
4640 p != pdl->end();
4641 ++p)
4642 {
4643 if (first == NULL
4644 || (*p)->address() < first->address()
4645 || ((*p)->address() == first->address()
4646 && (*p)->data_size() < first->data_size()))
4647 first = *p;
4648 const Output_data** plast;
4649 if ((*p)->is_section()
4650 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4651 plast = &last_bss;
4652 else
4653 plast = &last_data;
4654 if (*plast == NULL
4655 || (*p)->address() > (*plast)->address()
4656 || ((*p)->address() == (*plast)->address()
4657 && (*p)->data_size() > (*plast)->data_size()))
4658 *plast = *p;
4659 }
4660
4661 this->vaddr_ = first->address();
4662 this->paddr_ = (first->has_load_address()
4663 ? first->load_address()
4664 : this->vaddr_);
4665 this->are_addresses_set_ = true;
4666 this->offset_ = first->offset();
4667
4668 if (last_data == NULL)
4669 this->filesz_ = 0;
4670 else
4671 this->filesz_ = (last_data->address()
4672 + last_data->data_size()
4673 - this->vaddr_);
4674
4675 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4676 this->memsz_ = (last->address()
4677 + last->data_size()
4678 - this->vaddr_);
4679
4680 this->filesz_ += increase;
4681 this->memsz_ += increase;
4682
4683 // If this is a RELRO segment, verify that the segment ends at a
4684 // page boundary.
4685 if (this->type_ == elfcpp::PT_GNU_RELRO)
4686 {
4687 uint64_t page_align = parameters->target().abi_pagesize();
4688 uint64_t segment_end = this->vaddr_ + this->memsz_;
4689 if (parameters->incremental_update())
4690 {
4691 // The INCREASE_RELRO calculation is bypassed for an incremental
4692 // update, so we need to adjust the segment size manually here.
4693 segment_end = align_address(segment_end, page_align);
4694 this->memsz_ = segment_end - this->vaddr_;
4695 }
4696 else
4697 gold_assert(segment_end == align_address(segment_end, page_align));
4698 }
4699
4700 // If this is a TLS segment, align the memory size. The code in
4701 // set_section_list ensures that the section after the TLS segment
4702 // is aligned to give us room.
4703 if (this->type_ == elfcpp::PT_TLS)
4704 {
4705 uint64_t segment_align = this->maximum_alignment();
4706 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4707 this->memsz_ = align_address(this->memsz_, segment_align);
4708 }
4709 }
4710
4711 // Set the TLS offsets of the sections in the PT_TLS segment.
4712
4713 void
4714 Output_segment::set_tls_offsets()
4715 {
4716 gold_assert(this->type_ == elfcpp::PT_TLS);
4717
4718 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4719 p != this->output_lists_[0].end();
4720 ++p)
4721 (*p)->set_tls_offset(this->vaddr_);
4722 }
4723
4724 // Return the first section.
4725
4726 Output_section*
4727 Output_segment::first_section() const
4728 {
4729 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4730 {
4731 const Output_data_list* pdl = &this->output_lists_[i];
4732 for (Output_data_list::const_iterator p = pdl->begin();
4733 p != pdl->end();
4734 ++p)
4735 {
4736 if ((*p)->is_section())
4737 return (*p)->output_section();
4738 }
4739 }
4740 gold_unreachable();
4741 }
4742
4743 // Return the number of Output_sections in an Output_segment.
4744
4745 unsigned int
4746 Output_segment::output_section_count() const
4747 {
4748 unsigned int ret = 0;
4749 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4750 ret += this->output_section_count_list(&this->output_lists_[i]);
4751 return ret;
4752 }
4753
4754 // Return the number of Output_sections in an Output_data_list.
4755
4756 unsigned int
4757 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4758 {
4759 unsigned int count = 0;
4760 for (Output_data_list::const_iterator p = pdl->begin();
4761 p != pdl->end();
4762 ++p)
4763 {
4764 if ((*p)->is_section())
4765 ++count;
4766 }
4767 return count;
4768 }
4769
4770 // Return the section attached to the list segment with the lowest
4771 // load address. This is used when handling a PHDRS clause in a
4772 // linker script.
4773
4774 Output_section*
4775 Output_segment::section_with_lowest_load_address() const
4776 {
4777 Output_section* found = NULL;
4778 uint64_t found_lma = 0;
4779 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4780 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4781 &found_lma);
4782 return found;
4783 }
4784
4785 // Look through a list for a section with a lower load address.
4786
4787 void
4788 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4789 Output_section** found,
4790 uint64_t* found_lma) const
4791 {
4792 for (Output_data_list::const_iterator p = pdl->begin();
4793 p != pdl->end();
4794 ++p)
4795 {
4796 if (!(*p)->is_section())
4797 continue;
4798 Output_section* os = static_cast<Output_section*>(*p);
4799 uint64_t lma = (os->has_load_address()
4800 ? os->load_address()
4801 : os->address());
4802 if (*found == NULL || lma < *found_lma)
4803 {
4804 *found = os;
4805 *found_lma = lma;
4806 }
4807 }
4808 }
4809
4810 // Write the segment data into *OPHDR.
4811
4812 template<int size, bool big_endian>
4813 void
4814 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4815 {
4816 ophdr->put_p_type(this->type_);
4817 ophdr->put_p_offset(this->offset_);
4818 ophdr->put_p_vaddr(this->vaddr_);
4819 ophdr->put_p_paddr(this->paddr_);
4820 ophdr->put_p_filesz(this->filesz_);
4821 ophdr->put_p_memsz(this->memsz_);
4822 ophdr->put_p_flags(this->flags_);
4823 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4824 }
4825
4826 // Write the section headers into V.
4827
4828 template<int size, bool big_endian>
4829 unsigned char*
4830 Output_segment::write_section_headers(const Layout* layout,
4831 const Stringpool* secnamepool,
4832 unsigned char* v,
4833 unsigned int* pshndx) const
4834 {
4835 // Every section that is attached to a segment must be attached to a
4836 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4837 // segments.
4838 if (this->type_ != elfcpp::PT_LOAD)
4839 return v;
4840
4841 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4842 {
4843 const Output_data_list* pdl = &this->output_lists_[i];
4844 v = this->write_section_headers_list<size, big_endian>(layout,
4845 secnamepool,
4846 pdl,
4847 v, pshndx);
4848 }
4849
4850 return v;
4851 }
4852
4853 template<int size, bool big_endian>
4854 unsigned char*
4855 Output_segment::write_section_headers_list(const Layout* layout,
4856 const Stringpool* secnamepool,
4857 const Output_data_list* pdl,
4858 unsigned char* v,
4859 unsigned int* pshndx) const
4860 {
4861 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4862 for (Output_data_list::const_iterator p = pdl->begin();
4863 p != pdl->end();
4864 ++p)
4865 {
4866 if ((*p)->is_section())
4867 {
4868 const Output_section* ps = static_cast<const Output_section*>(*p);
4869 gold_assert(*pshndx == ps->out_shndx());
4870 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4871 ps->write_header(layout, secnamepool, &oshdr);
4872 v += shdr_size;
4873 ++*pshndx;
4874 }
4875 }
4876 return v;
4877 }
4878
4879 // Print the output sections to the map file.
4880
4881 void
4882 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4883 {
4884 if (this->type() != elfcpp::PT_LOAD)
4885 return;
4886 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4887 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4888 }
4889
4890 // Print an output section list to the map file.
4891
4892 void
4893 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4894 const Output_data_list* pdl) const
4895 {
4896 for (Output_data_list::const_iterator p = pdl->begin();
4897 p != pdl->end();
4898 ++p)
4899 (*p)->print_to_mapfile(mapfile);
4900 }
4901
4902 // Output_file methods.
4903
4904 Output_file::Output_file(const char* name)
4905 : name_(name),
4906 o_(-1),
4907 file_size_(0),
4908 base_(NULL),
4909 map_is_anonymous_(false),
4910 map_is_allocated_(false),
4911 is_temporary_(false)
4912 {
4913 }
4914
4915 // Try to open an existing file. Returns false if the file doesn't
4916 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4917 // NULL, open that file as the base for incremental linking, and
4918 // copy its contents to the new output file. This routine can
4919 // be called for incremental updates, in which case WRITABLE should
4920 // be true, or by the incremental-dump utility, in which case
4921 // WRITABLE should be false.
4922
4923 bool
4924 Output_file::open_base_file(const char* base_name, bool writable)
4925 {
4926 // The name "-" means "stdout".
4927 if (strcmp(this->name_, "-") == 0)
4928 return false;
4929
4930 bool use_base_file = base_name != NULL;
4931 if (!use_base_file)
4932 base_name = this->name_;
4933 else if (strcmp(base_name, this->name_) == 0)
4934 gold_fatal(_("%s: incremental base and output file name are the same"),
4935 base_name);
4936
4937 // Don't bother opening files with a size of zero.
4938 struct stat s;
4939 if (::stat(base_name, &s) != 0)
4940 {
4941 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4942 return false;
4943 }
4944 if (s.st_size == 0)
4945 {
4946 gold_info(_("%s: incremental base file is empty"), base_name);
4947 return false;
4948 }
4949
4950 // If we're using a base file, we want to open it read-only.
4951 if (use_base_file)
4952 writable = false;
4953
4954 int oflags = writable ? O_RDWR : O_RDONLY;
4955 int o = open_descriptor(-1, base_name, oflags, 0);
4956 if (o < 0)
4957 {
4958 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4959 return false;
4960 }
4961
4962 // If the base file and the output file are different, open a
4963 // new output file and read the contents from the base file into
4964 // the newly-mapped region.
4965 if (use_base_file)
4966 {
4967 this->open(s.st_size);
4968 ssize_t bytes_to_read = s.st_size;
4969 unsigned char* p = this->base_;
4970 while (bytes_to_read > 0)
4971 {
4972 ssize_t len = ::read(o, p, bytes_to_read);
4973 if (len < 0)
4974 {
4975 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4976 return false;
4977 }
4978 if (len == 0)
4979 {
4980 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4981 base_name,
4982 static_cast<long long>(s.st_size - bytes_to_read),
4983 static_cast<long long>(s.st_size));
4984 return false;
4985 }
4986 p += len;
4987 bytes_to_read -= len;
4988 }
4989 ::close(o);
4990 return true;
4991 }
4992
4993 this->o_ = o;
4994 this->file_size_ = s.st_size;
4995
4996 if (!this->map_no_anonymous(writable))
4997 {
4998 release_descriptor(o, true);
4999 this->o_ = -1;
5000 this->file_size_ = 0;
5001 return false;
5002 }
5003
5004 return true;
5005 }
5006
5007 // Open the output file.
5008
5009 void
5010 Output_file::open(off_t file_size)
5011 {
5012 this->file_size_ = file_size;
5013
5014 // Unlink the file first; otherwise the open() may fail if the file
5015 // is busy (e.g. it's an executable that's currently being executed).
5016 //
5017 // However, the linker may be part of a system where a zero-length
5018 // file is created for it to write to, with tight permissions (gcc
5019 // 2.95 did something like this). Unlinking the file would work
5020 // around those permission controls, so we only unlink if the file
5021 // has a non-zero size. We also unlink only regular files to avoid
5022 // trouble with directories/etc.
5023 //
5024 // If we fail, continue; this command is merely a best-effort attempt
5025 // to improve the odds for open().
5026
5027 // We let the name "-" mean "stdout"
5028 if (!this->is_temporary_)
5029 {
5030 if (strcmp(this->name_, "-") == 0)
5031 this->o_ = STDOUT_FILENO;
5032 else
5033 {
5034 struct stat s;
5035 if (::stat(this->name_, &s) == 0
5036 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5037 {
5038 if (s.st_size != 0)
5039 ::unlink(this->name_);
5040 else if (!parameters->options().relocatable())
5041 {
5042 // If we don't unlink the existing file, add execute
5043 // permission where read permissions already exist
5044 // and where the umask permits.
5045 int mask = ::umask(0);
5046 ::umask(mask);
5047 s.st_mode |= (s.st_mode & 0444) >> 2;
5048 ::chmod(this->name_, s.st_mode & ~mask);
5049 }
5050 }
5051
5052 int mode = parameters->options().relocatable() ? 0666 : 0777;
5053 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5054 mode);
5055 if (o < 0)
5056 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5057 this->o_ = o;
5058 }
5059 }
5060
5061 this->map();
5062 }
5063
5064 // Resize the output file.
5065
5066 void
5067 Output_file::resize(off_t file_size)
5068 {
5069 // If the mmap is mapping an anonymous memory buffer, this is easy:
5070 // just mremap to the new size. If it's mapping to a file, we want
5071 // to unmap to flush to the file, then remap after growing the file.
5072 if (this->map_is_anonymous_)
5073 {
5074 void* base;
5075 if (!this->map_is_allocated_)
5076 {
5077 base = ::mremap(this->base_, this->file_size_, file_size,
5078 MREMAP_MAYMOVE);
5079 if (base == MAP_FAILED)
5080 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5081 }
5082 else
5083 {
5084 base = realloc(this->base_, file_size);
5085 if (base == NULL)
5086 gold_nomem();
5087 if (file_size > this->file_size_)
5088 memset(static_cast<char*>(base) + this->file_size_, 0,
5089 file_size - this->file_size_);
5090 }
5091 this->base_ = static_cast<unsigned char*>(base);
5092 this->file_size_ = file_size;
5093 }
5094 else
5095 {
5096 this->unmap();
5097 this->file_size_ = file_size;
5098 if (!this->map_no_anonymous(true))
5099 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5100 }
5101 }
5102
5103 // Map an anonymous block of memory which will later be written to the
5104 // file. Return whether the map succeeded.
5105
5106 bool
5107 Output_file::map_anonymous()
5108 {
5109 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5110 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5111 if (base == MAP_FAILED)
5112 {
5113 base = malloc(this->file_size_);
5114 if (base == NULL)
5115 return false;
5116 memset(base, 0, this->file_size_);
5117 this->map_is_allocated_ = true;
5118 }
5119 this->base_ = static_cast<unsigned char*>(base);
5120 this->map_is_anonymous_ = true;
5121 return true;
5122 }
5123
5124 // Map the file into memory. Return whether the mapping succeeded.
5125 // If WRITABLE is true, map with write access.
5126
5127 bool
5128 Output_file::map_no_anonymous(bool writable)
5129 {
5130 const int o = this->o_;
5131
5132 // If the output file is not a regular file, don't try to mmap it;
5133 // instead, we'll mmap a block of memory (an anonymous buffer), and
5134 // then later write the buffer to the file.
5135 void* base;
5136 struct stat statbuf;
5137 if (o == STDOUT_FILENO || o == STDERR_FILENO
5138 || ::fstat(o, &statbuf) != 0
5139 || !S_ISREG(statbuf.st_mode)
5140 || this->is_temporary_)
5141 return false;
5142
5143 // Ensure that we have disk space available for the file. If we
5144 // don't do this, it is possible that we will call munmap, close,
5145 // and exit with dirty buffers still in the cache with no assigned
5146 // disk blocks. If the disk is out of space at that point, the
5147 // output file will wind up incomplete, but we will have already
5148 // exited. The alternative to fallocate would be to use fdatasync,
5149 // but that would be a more significant performance hit.
5150 if (writable)
5151 {
5152 int err = gold_fallocate(o, 0, this->file_size_);
5153 if (err != 0)
5154 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5155 }
5156
5157 // Map the file into memory.
5158 int prot = PROT_READ;
5159 if (writable)
5160 prot |= PROT_WRITE;
5161 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5162
5163 // The mmap call might fail because of file system issues: the file
5164 // system might not support mmap at all, or it might not support
5165 // mmap with PROT_WRITE.
5166 if (base == MAP_FAILED)
5167 return false;
5168
5169 this->map_is_anonymous_ = false;
5170 this->base_ = static_cast<unsigned char*>(base);
5171 return true;
5172 }
5173
5174 // Map the file into memory.
5175
5176 void
5177 Output_file::map()
5178 {
5179 if (parameters->options().mmap_output_file()
5180 && this->map_no_anonymous(true))
5181 return;
5182
5183 // The mmap call might fail because of file system issues: the file
5184 // system might not support mmap at all, or it might not support
5185 // mmap with PROT_WRITE. I'm not sure which errno values we will
5186 // see in all cases, so if the mmap fails for any reason and we
5187 // don't care about file contents, try for an anonymous map.
5188 if (this->map_anonymous())
5189 return;
5190
5191 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5192 this->name_, static_cast<unsigned long>(this->file_size_),
5193 strerror(errno));
5194 }
5195
5196 // Unmap the file from memory.
5197
5198 void
5199 Output_file::unmap()
5200 {
5201 if (this->map_is_anonymous_)
5202 {
5203 // We've already written out the data, so there is no reason to
5204 // waste time unmapping or freeing the memory.
5205 }
5206 else
5207 {
5208 if (::munmap(this->base_, this->file_size_) < 0)
5209 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5210 }
5211 this->base_ = NULL;
5212 }
5213
5214 // Close the output file.
5215
5216 void
5217 Output_file::close()
5218 {
5219 // If the map isn't file-backed, we need to write it now.
5220 if (this->map_is_anonymous_ && !this->is_temporary_)
5221 {
5222 size_t bytes_to_write = this->file_size_;
5223 size_t offset = 0;
5224 while (bytes_to_write > 0)
5225 {
5226 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5227 bytes_to_write);
5228 if (bytes_written == 0)
5229 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5230 else if (bytes_written < 0)
5231 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5232 else
5233 {
5234 bytes_to_write -= bytes_written;
5235 offset += bytes_written;
5236 }
5237 }
5238 }
5239 this->unmap();
5240
5241 // We don't close stdout or stderr
5242 if (this->o_ != STDOUT_FILENO
5243 && this->o_ != STDERR_FILENO
5244 && !this->is_temporary_)
5245 if (::close(this->o_) < 0)
5246 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5247 this->o_ = -1;
5248 }
5249
5250 // Instantiate the templates we need. We could use the configure
5251 // script to restrict this to only the ones for implemented targets.
5252
5253 #ifdef HAVE_TARGET_32_LITTLE
5254 template
5255 off_t
5256 Output_section::add_input_section<32, false>(
5257 Layout* layout,
5258 Sized_relobj_file<32, false>* object,
5259 unsigned int shndx,
5260 const char* secname,
5261 const elfcpp::Shdr<32, false>& shdr,
5262 unsigned int reloc_shndx,
5263 bool have_sections_script);
5264 #endif
5265
5266 #ifdef HAVE_TARGET_32_BIG
5267 template
5268 off_t
5269 Output_section::add_input_section<32, true>(
5270 Layout* layout,
5271 Sized_relobj_file<32, true>* object,
5272 unsigned int shndx,
5273 const char* secname,
5274 const elfcpp::Shdr<32, true>& shdr,
5275 unsigned int reloc_shndx,
5276 bool have_sections_script);
5277 #endif
5278
5279 #ifdef HAVE_TARGET_64_LITTLE
5280 template
5281 off_t
5282 Output_section::add_input_section<64, false>(
5283 Layout* layout,
5284 Sized_relobj_file<64, false>* object,
5285 unsigned int shndx,
5286 const char* secname,
5287 const elfcpp::Shdr<64, false>& shdr,
5288 unsigned int reloc_shndx,
5289 bool have_sections_script);
5290 #endif
5291
5292 #ifdef HAVE_TARGET_64_BIG
5293 template
5294 off_t
5295 Output_section::add_input_section<64, true>(
5296 Layout* layout,
5297 Sized_relobj_file<64, true>* object,
5298 unsigned int shndx,
5299 const char* secname,
5300 const elfcpp::Shdr<64, true>& shdr,
5301 unsigned int reloc_shndx,
5302 bool have_sections_script);
5303 #endif
5304
5305 #ifdef HAVE_TARGET_32_LITTLE
5306 template
5307 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5308 #endif
5309
5310 #ifdef HAVE_TARGET_32_BIG
5311 template
5312 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5313 #endif
5314
5315 #ifdef HAVE_TARGET_64_LITTLE
5316 template
5317 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5318 #endif
5319
5320 #ifdef HAVE_TARGET_64_BIG
5321 template
5322 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_LITTLE
5326 template
5327 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5328 #endif
5329
5330 #ifdef HAVE_TARGET_32_BIG
5331 template
5332 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5333 #endif
5334
5335 #ifdef HAVE_TARGET_64_LITTLE
5336 template
5337 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_64_BIG
5341 template
5342 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_32_LITTLE
5346 template
5347 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_32_BIG
5351 template
5352 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_LITTLE
5356 template
5357 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_64_BIG
5361 template
5362 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_32_LITTLE
5366 template
5367 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_32_BIG
5371 template
5372 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_64_LITTLE
5376 template
5377 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_64_BIG
5381 template
5382 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_LITTLE
5386 template
5387 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_32_BIG
5391 template
5392 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_64_LITTLE
5396 template
5397 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_64_BIG
5401 template
5402 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_32_LITTLE
5406 template
5407 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_32_BIG
5411 template
5412 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_64_BIG
5421 template
5422 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_32_LITTLE
5426 template
5427 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_32_BIG
5431 template
5432 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_64_LITTLE
5436 template
5437 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_64_BIG
5441 template
5442 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5443 #endif
5444
5445 #ifdef HAVE_TARGET_32_LITTLE
5446 template
5447 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5448 #endif
5449
5450 #ifdef HAVE_TARGET_32_BIG
5451 template
5452 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5453 #endif
5454
5455 #ifdef HAVE_TARGET_64_LITTLE
5456 template
5457 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5458 #endif
5459
5460 #ifdef HAVE_TARGET_64_BIG
5461 template
5462 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5463 #endif
5464
5465 #ifdef HAVE_TARGET_32_LITTLE
5466 template
5467 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5468 #endif
5469
5470 #ifdef HAVE_TARGET_32_BIG
5471 template
5472 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5473 #endif
5474
5475 #ifdef HAVE_TARGET_64_LITTLE
5476 template
5477 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5478 #endif
5479
5480 #ifdef HAVE_TARGET_64_BIG
5481 template
5482 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5483 #endif
5484
5485 #ifdef HAVE_TARGET_32_LITTLE
5486 template
5487 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5488 #endif
5489
5490 #ifdef HAVE_TARGET_32_BIG
5491 template
5492 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5493 #endif
5494
5495 #ifdef HAVE_TARGET_64_LITTLE
5496 template
5497 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5498 #endif
5499
5500 #ifdef HAVE_TARGET_64_BIG
5501 template
5502 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5503 #endif
5504
5505 #ifdef HAVE_TARGET_32_LITTLE
5506 template
5507 class Output_data_group<32, false>;
5508 #endif
5509
5510 #ifdef HAVE_TARGET_32_BIG
5511 template
5512 class Output_data_group<32, true>;
5513 #endif
5514
5515 #ifdef HAVE_TARGET_64_LITTLE
5516 template
5517 class Output_data_group<64, false>;
5518 #endif
5519
5520 #ifdef HAVE_TARGET_64_BIG
5521 template
5522 class Output_data_group<64, true>;
5523 #endif
5524
5525 template
5526 class Output_data_got<32, false>;
5527
5528 template
5529 class Output_data_got<32, true>;
5530
5531 template
5532 class Output_data_got<64, false>;
5533
5534 template
5535 class Output_data_got<64, true>;
5536
5537 } // End namespace gold.
This page took 0.226234 seconds and 5 git commands to generate.