2010-03-01 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty()
1626 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1627 this->add_constant(elfcpp::DT_NULL, 0);
1628
1629 int dyn_size;
1630 if (parameters->target().get_size() == 32)
1631 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1632 else if (parameters->target().get_size() == 64)
1633 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1634 else
1635 gold_unreachable();
1636 this->set_data_size(this->entries_.size() * dyn_size);
1637 }
1638
1639 // Write out the dynamic entries.
1640
1641 void
1642 Output_data_dynamic::do_write(Output_file* of)
1643 {
1644 switch (parameters->size_and_endianness())
1645 {
1646 #ifdef HAVE_TARGET_32_LITTLE
1647 case Parameters::TARGET_32_LITTLE:
1648 this->sized_write<32, false>(of);
1649 break;
1650 #endif
1651 #ifdef HAVE_TARGET_32_BIG
1652 case Parameters::TARGET_32_BIG:
1653 this->sized_write<32, true>(of);
1654 break;
1655 #endif
1656 #ifdef HAVE_TARGET_64_LITTLE
1657 case Parameters::TARGET_64_LITTLE:
1658 this->sized_write<64, false>(of);
1659 break;
1660 #endif
1661 #ifdef HAVE_TARGET_64_BIG
1662 case Parameters::TARGET_64_BIG:
1663 this->sized_write<64, true>(of);
1664 break;
1665 #endif
1666 default:
1667 gold_unreachable();
1668 }
1669 }
1670
1671 template<int size, bool big_endian>
1672 void
1673 Output_data_dynamic::sized_write(Output_file* of)
1674 {
1675 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1676
1677 const off_t offset = this->offset();
1678 const off_t oview_size = this->data_size();
1679 unsigned char* const oview = of->get_output_view(offset, oview_size);
1680
1681 unsigned char* pov = oview;
1682 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1683 p != this->entries_.end();
1684 ++p)
1685 {
1686 p->write<size, big_endian>(pov, this->pool_);
1687 pov += dyn_size;
1688 }
1689
1690 gold_assert(pov - oview == oview_size);
1691
1692 of->write_output_view(offset, oview_size, oview);
1693
1694 // We no longer need the dynamic entries.
1695 this->entries_.clear();
1696 }
1697
1698 // Class Output_symtab_xindex.
1699
1700 void
1701 Output_symtab_xindex::do_write(Output_file* of)
1702 {
1703 const off_t offset = this->offset();
1704 const off_t oview_size = this->data_size();
1705 unsigned char* const oview = of->get_output_view(offset, oview_size);
1706
1707 memset(oview, 0, oview_size);
1708
1709 if (parameters->target().is_big_endian())
1710 this->endian_do_write<true>(oview);
1711 else
1712 this->endian_do_write<false>(oview);
1713
1714 of->write_output_view(offset, oview_size, oview);
1715
1716 // We no longer need the data.
1717 this->entries_.clear();
1718 }
1719
1720 template<bool big_endian>
1721 void
1722 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1723 {
1724 for (Xindex_entries::const_iterator p = this->entries_.begin();
1725 p != this->entries_.end();
1726 ++p)
1727 {
1728 unsigned int symndx = p->first;
1729 gold_assert(symndx * 4 < this->data_size());
1730 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1731 }
1732 }
1733
1734 // Output_section::Input_section methods.
1735
1736 // Return the data size. For an input section we store the size here.
1737 // For an Output_section_data, we have to ask it for the size.
1738
1739 off_t
1740 Output_section::Input_section::data_size() const
1741 {
1742 if (this->is_input_section())
1743 return this->u1_.data_size;
1744 else
1745 return this->u2_.posd->data_size();
1746 }
1747
1748 // Set the address and file offset.
1749
1750 void
1751 Output_section::Input_section::set_address_and_file_offset(
1752 uint64_t address,
1753 off_t file_offset,
1754 off_t section_file_offset)
1755 {
1756 if (this->is_input_section())
1757 this->u2_.object->set_section_offset(this->shndx_,
1758 file_offset - section_file_offset);
1759 else
1760 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1761 }
1762
1763 // Reset the address and file offset.
1764
1765 void
1766 Output_section::Input_section::reset_address_and_file_offset()
1767 {
1768 if (!this->is_input_section())
1769 this->u2_.posd->reset_address_and_file_offset();
1770 }
1771
1772 // Finalize the data size.
1773
1774 void
1775 Output_section::Input_section::finalize_data_size()
1776 {
1777 if (!this->is_input_section())
1778 this->u2_.posd->finalize_data_size();
1779 }
1780
1781 // Try to turn an input offset into an output offset. We want to
1782 // return the output offset relative to the start of this
1783 // Input_section in the output section.
1784
1785 inline bool
1786 Output_section::Input_section::output_offset(
1787 const Relobj* object,
1788 unsigned int shndx,
1789 section_offset_type offset,
1790 section_offset_type *poutput) const
1791 {
1792 if (!this->is_input_section())
1793 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1794 else
1795 {
1796 if (this->shndx_ != shndx || this->u2_.object != object)
1797 return false;
1798 *poutput = offset;
1799 return true;
1800 }
1801 }
1802
1803 // Return whether this is the merge section for the input section
1804 // SHNDX in OBJECT.
1805
1806 inline bool
1807 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1808 unsigned int shndx) const
1809 {
1810 if (this->is_input_section())
1811 return false;
1812 return this->u2_.posd->is_merge_section_for(object, shndx);
1813 }
1814
1815 // Write out the data. We don't have to do anything for an input
1816 // section--they are handled via Object::relocate--but this is where
1817 // we write out the data for an Output_section_data.
1818
1819 void
1820 Output_section::Input_section::write(Output_file* of)
1821 {
1822 if (!this->is_input_section())
1823 this->u2_.posd->write(of);
1824 }
1825
1826 // Write the data to a buffer. As for write(), we don't have to do
1827 // anything for an input section.
1828
1829 void
1830 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1831 {
1832 if (!this->is_input_section())
1833 this->u2_.posd->write_to_buffer(buffer);
1834 }
1835
1836 // Print to a map file.
1837
1838 void
1839 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1840 {
1841 switch (this->shndx_)
1842 {
1843 case OUTPUT_SECTION_CODE:
1844 case MERGE_DATA_SECTION_CODE:
1845 case MERGE_STRING_SECTION_CODE:
1846 this->u2_.posd->print_to_mapfile(mapfile);
1847 break;
1848
1849 case RELAXED_INPUT_SECTION_CODE:
1850 {
1851 Output_relaxed_input_section* relaxed_section =
1852 this->relaxed_input_section();
1853 mapfile->print_input_section(relaxed_section->relobj(),
1854 relaxed_section->shndx());
1855 }
1856 break;
1857 default:
1858 mapfile->print_input_section(this->u2_.object, this->shndx_);
1859 break;
1860 }
1861 }
1862
1863 // Output_section methods.
1864
1865 // Construct an Output_section. NAME will point into a Stringpool.
1866
1867 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1868 elfcpp::Elf_Xword flags)
1869 : name_(name),
1870 addralign_(0),
1871 entsize_(0),
1872 load_address_(0),
1873 link_section_(NULL),
1874 link_(0),
1875 info_section_(NULL),
1876 info_symndx_(NULL),
1877 info_(0),
1878 type_(type),
1879 flags_(flags),
1880 out_shndx_(-1U),
1881 symtab_index_(0),
1882 dynsym_index_(0),
1883 input_sections_(),
1884 first_input_offset_(0),
1885 fills_(),
1886 postprocessing_buffer_(NULL),
1887 needs_symtab_index_(false),
1888 needs_dynsym_index_(false),
1889 should_link_to_symtab_(false),
1890 should_link_to_dynsym_(false),
1891 after_input_sections_(false),
1892 requires_postprocessing_(false),
1893 found_in_sections_clause_(false),
1894 has_load_address_(false),
1895 info_uses_section_index_(false),
1896 may_sort_attached_input_sections_(false),
1897 must_sort_attached_input_sections_(false),
1898 attached_input_sections_are_sorted_(false),
1899 is_relro_(false),
1900 is_relro_local_(false),
1901 is_last_relro_(false),
1902 is_first_non_relro_(false),
1903 is_small_section_(false),
1904 is_large_section_(false),
1905 is_interp_(false),
1906 is_dynamic_linker_section_(false),
1907 generate_code_fills_at_write_(false),
1908 is_entsize_zero_(false),
1909 section_offsets_need_adjustment_(false),
1910 tls_offset_(0),
1911 checkpoint_(NULL),
1912 merge_section_map_(),
1913 merge_section_by_properties_map_(),
1914 relaxed_input_section_map_(),
1915 is_relaxed_input_section_map_valid_(true)
1916 {
1917 // An unallocated section has no address. Forcing this means that
1918 // we don't need special treatment for symbols defined in debug
1919 // sections.
1920 if ((flags & elfcpp::SHF_ALLOC) == 0)
1921 this->set_address(0);
1922 }
1923
1924 Output_section::~Output_section()
1925 {
1926 delete this->checkpoint_;
1927 }
1928
1929 // Set the entry size.
1930
1931 void
1932 Output_section::set_entsize(uint64_t v)
1933 {
1934 if (this->is_entsize_zero_)
1935 ;
1936 else if (this->entsize_ == 0)
1937 this->entsize_ = v;
1938 else if (this->entsize_ != v)
1939 {
1940 this->entsize_ = 0;
1941 this->is_entsize_zero_ = 1;
1942 }
1943 }
1944
1945 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1946 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1947 // relocation section which applies to this section, or 0 if none, or
1948 // -1U if more than one. Return the offset of the input section
1949 // within the output section. Return -1 if the input section will
1950 // receive special handling. In the normal case we don't always keep
1951 // track of input sections for an Output_section. Instead, each
1952 // Object keeps track of the Output_section for each of its input
1953 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1954 // track of input sections here; this is used when SECTIONS appears in
1955 // a linker script.
1956
1957 template<int size, bool big_endian>
1958 off_t
1959 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1960 unsigned int shndx,
1961 const char* secname,
1962 const elfcpp::Shdr<size, big_endian>& shdr,
1963 unsigned int reloc_shndx,
1964 bool have_sections_script)
1965 {
1966 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1967 if ((addralign & (addralign - 1)) != 0)
1968 {
1969 object->error(_("invalid alignment %lu for section \"%s\""),
1970 static_cast<unsigned long>(addralign), secname);
1971 addralign = 1;
1972 }
1973
1974 if (addralign > this->addralign_)
1975 this->addralign_ = addralign;
1976
1977 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1978 uint64_t entsize = shdr.get_sh_entsize();
1979
1980 // .debug_str is a mergeable string section, but is not always so
1981 // marked by compilers. Mark manually here so we can optimize.
1982 if (strcmp(secname, ".debug_str") == 0)
1983 {
1984 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1985 entsize = 1;
1986 }
1987
1988 this->update_flags_for_input_section(sh_flags);
1989 this->set_entsize(entsize);
1990
1991 // If this is a SHF_MERGE section, we pass all the input sections to
1992 // a Output_data_merge. We don't try to handle relocations for such
1993 // a section. We don't try to handle empty merge sections--they
1994 // mess up the mappings, and are useless anyhow.
1995 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1996 && reloc_shndx == 0
1997 && shdr.get_sh_size() > 0)
1998 {
1999 if (this->add_merge_input_section(object, shndx, sh_flags,
2000 entsize, addralign))
2001 {
2002 // Tell the relocation routines that they need to call the
2003 // output_offset method to determine the final address.
2004 return -1;
2005 }
2006 }
2007
2008 off_t offset_in_section = this->current_data_size_for_child();
2009 off_t aligned_offset_in_section = align_address(offset_in_section,
2010 addralign);
2011
2012 // Determine if we want to delay code-fill generation until the output
2013 // section is written. When the target is relaxing, we want to delay fill
2014 // generating to avoid adjusting them during relaxation.
2015 if (!this->generate_code_fills_at_write_
2016 && !have_sections_script
2017 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2018 && parameters->target().has_code_fill()
2019 && parameters->target().may_relax())
2020 {
2021 gold_assert(this->fills_.empty());
2022 this->generate_code_fills_at_write_ = true;
2023 }
2024
2025 if (aligned_offset_in_section > offset_in_section
2026 && !this->generate_code_fills_at_write_
2027 && !have_sections_script
2028 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2029 && parameters->target().has_code_fill())
2030 {
2031 // We need to add some fill data. Using fill_list_ when
2032 // possible is an optimization, since we will often have fill
2033 // sections without input sections.
2034 off_t fill_len = aligned_offset_in_section - offset_in_section;
2035 if (this->input_sections_.empty())
2036 this->fills_.push_back(Fill(offset_in_section, fill_len));
2037 else
2038 {
2039 std::string fill_data(parameters->target().code_fill(fill_len));
2040 Output_data_const* odc = new Output_data_const(fill_data, 1);
2041 this->input_sections_.push_back(Input_section(odc));
2042 }
2043 }
2044
2045 this->set_current_data_size_for_child(aligned_offset_in_section
2046 + shdr.get_sh_size());
2047
2048 // We need to keep track of this section if we are already keeping
2049 // track of sections, or if we are relaxing. Also, if this is a
2050 // section which requires sorting, or which may require sorting in
2051 // the future, we keep track of the sections.
2052 if (have_sections_script
2053 || !this->input_sections_.empty()
2054 || this->may_sort_attached_input_sections()
2055 || this->must_sort_attached_input_sections()
2056 || parameters->options().user_set_Map()
2057 || parameters->target().may_relax())
2058 this->input_sections_.push_back(Input_section(object, shndx,
2059 shdr.get_sh_size(),
2060 addralign));
2061
2062 return aligned_offset_in_section;
2063 }
2064
2065 // Add arbitrary data to an output section.
2066
2067 void
2068 Output_section::add_output_section_data(Output_section_data* posd)
2069 {
2070 Input_section inp(posd);
2071 this->add_output_section_data(&inp);
2072
2073 if (posd->is_data_size_valid())
2074 {
2075 off_t offset_in_section = this->current_data_size_for_child();
2076 off_t aligned_offset_in_section = align_address(offset_in_section,
2077 posd->addralign());
2078 this->set_current_data_size_for_child(aligned_offset_in_section
2079 + posd->data_size());
2080 }
2081 }
2082
2083 // Add a relaxed input section.
2084
2085 void
2086 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2087 {
2088 Input_section inp(poris);
2089 this->add_output_section_data(&inp);
2090 if (this->is_relaxed_input_section_map_valid_)
2091 {
2092 Const_section_id csid(poris->relobj(), poris->shndx());
2093 this->relaxed_input_section_map_[csid] = poris;
2094 }
2095
2096 // For a relaxed section, we use the current data size. Linker scripts
2097 // get all the input sections, including relaxed one from an output
2098 // section and add them back to them same output section to compute the
2099 // output section size. If we do not account for sizes of relaxed input
2100 // sections, an output section would be incorrectly sized.
2101 off_t offset_in_section = this->current_data_size_for_child();
2102 off_t aligned_offset_in_section = align_address(offset_in_section,
2103 poris->addralign());
2104 this->set_current_data_size_for_child(aligned_offset_in_section
2105 + poris->current_data_size());
2106 }
2107
2108 // Add arbitrary data to an output section by Input_section.
2109
2110 void
2111 Output_section::add_output_section_data(Input_section* inp)
2112 {
2113 if (this->input_sections_.empty())
2114 this->first_input_offset_ = this->current_data_size_for_child();
2115
2116 this->input_sections_.push_back(*inp);
2117
2118 uint64_t addralign = inp->addralign();
2119 if (addralign > this->addralign_)
2120 this->addralign_ = addralign;
2121
2122 inp->set_output_section(this);
2123 }
2124
2125 // Add a merge section to an output section.
2126
2127 void
2128 Output_section::add_output_merge_section(Output_section_data* posd,
2129 bool is_string, uint64_t entsize)
2130 {
2131 Input_section inp(posd, is_string, entsize);
2132 this->add_output_section_data(&inp);
2133 }
2134
2135 // Add an input section to a SHF_MERGE section.
2136
2137 bool
2138 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2139 uint64_t flags, uint64_t entsize,
2140 uint64_t addralign)
2141 {
2142 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2143
2144 // We only merge strings if the alignment is not more than the
2145 // character size. This could be handled, but it's unusual.
2146 if (is_string && addralign > entsize)
2147 return false;
2148
2149 // We cannot restore merged input section states.
2150 gold_assert(this->checkpoint_ == NULL);
2151
2152 // Look up merge sections by required properties.
2153 Merge_section_properties msp(is_string, entsize, addralign);
2154 Merge_section_by_properties_map::const_iterator p =
2155 this->merge_section_by_properties_map_.find(msp);
2156 if (p != this->merge_section_by_properties_map_.end())
2157 {
2158 Output_merge_base* merge_section = p->second;
2159 merge_section->add_input_section(object, shndx);
2160 gold_assert(merge_section->is_string() == is_string
2161 && merge_section->entsize() == entsize
2162 && merge_section->addralign() == addralign);
2163
2164 // Link input section to found merge section.
2165 Const_section_id csid(object, shndx);
2166 this->merge_section_map_[csid] = merge_section;
2167 return true;
2168 }
2169
2170 // We handle the actual constant merging in Output_merge_data or
2171 // Output_merge_string_data.
2172 Output_merge_base* pomb;
2173 if (!is_string)
2174 pomb = new Output_merge_data(entsize, addralign);
2175 else
2176 {
2177 switch (entsize)
2178 {
2179 case 1:
2180 pomb = new Output_merge_string<char>(addralign);
2181 break;
2182 case 2:
2183 pomb = new Output_merge_string<uint16_t>(addralign);
2184 break;
2185 case 4:
2186 pomb = new Output_merge_string<uint32_t>(addralign);
2187 break;
2188 default:
2189 return false;
2190 }
2191 }
2192
2193 // Add new merge section to this output section and link merge section
2194 // properties to new merge section in map.
2195 this->add_output_merge_section(pomb, is_string, entsize);
2196 this->merge_section_by_properties_map_[msp] = pomb;
2197
2198 // Add input section to new merge section and link input section to new
2199 // merge section in map.
2200 pomb->add_input_section(object, shndx);
2201 Const_section_id csid(object, shndx);
2202 this->merge_section_map_[csid] = pomb;
2203
2204 return true;
2205 }
2206
2207 // Build a relaxation map to speed up relaxation of existing input sections.
2208 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2209
2210 void
2211 Output_section::build_relaxation_map(
2212 const Input_section_list& input_sections,
2213 size_t limit,
2214 Relaxation_map* relaxation_map) const
2215 {
2216 for (size_t i = 0; i < limit; ++i)
2217 {
2218 const Input_section& is(input_sections[i]);
2219 if (is.is_input_section() || is.is_relaxed_input_section())
2220 {
2221 Section_id sid(is.relobj(), is.shndx());
2222 (*relaxation_map)[sid] = i;
2223 }
2224 }
2225 }
2226
2227 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2228 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2229 // indices of INPUT_SECTIONS.
2230
2231 void
2232 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2233 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2234 const Relaxation_map& map,
2235 Input_section_list* input_sections)
2236 {
2237 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2238 {
2239 Output_relaxed_input_section* poris = relaxed_sections[i];
2240 Section_id sid(poris->relobj(), poris->shndx());
2241 Relaxation_map::const_iterator p = map.find(sid);
2242 gold_assert(p != map.end());
2243 gold_assert((*input_sections)[p->second].is_input_section());
2244 (*input_sections)[p->second] = Input_section(poris);
2245 }
2246 }
2247
2248 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2249 // is a vector of pointers to Output_relaxed_input_section or its derived
2250 // classes. The relaxed sections must correspond to existing input sections.
2251
2252 void
2253 Output_section::convert_input_sections_to_relaxed_sections(
2254 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2255 {
2256 gold_assert(parameters->target().may_relax());
2257
2258 // We want to make sure that restore_states does not undo the effect of
2259 // this. If there is no checkpoint active, just search the current
2260 // input section list and replace the sections there. If there is
2261 // a checkpoint, also replace the sections there.
2262
2263 // By default, we look at the whole list.
2264 size_t limit = this->input_sections_.size();
2265
2266 if (this->checkpoint_ != NULL)
2267 {
2268 // Replace input sections with relaxed input section in the saved
2269 // copy of the input section list.
2270 if (this->checkpoint_->input_sections_saved())
2271 {
2272 Relaxation_map map;
2273 this->build_relaxation_map(
2274 *(this->checkpoint_->input_sections()),
2275 this->checkpoint_->input_sections()->size(),
2276 &map);
2277 this->convert_input_sections_in_list_to_relaxed_sections(
2278 relaxed_sections,
2279 map,
2280 this->checkpoint_->input_sections());
2281 }
2282 else
2283 {
2284 // We have not copied the input section list yet. Instead, just
2285 // look at the portion that would be saved.
2286 limit = this->checkpoint_->input_sections_size();
2287 }
2288 }
2289
2290 // Convert input sections in input_section_list.
2291 Relaxation_map map;
2292 this->build_relaxation_map(this->input_sections_, limit, &map);
2293 this->convert_input_sections_in_list_to_relaxed_sections(
2294 relaxed_sections,
2295 map,
2296 &this->input_sections_);
2297
2298 // Update fast look-up map.
2299 if (this->is_relaxed_input_section_map_valid_)
2300 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2301 {
2302 Output_relaxed_input_section* poris = relaxed_sections[i];
2303 Const_section_id csid(poris->relobj(), poris->shndx());
2304 this->relaxed_input_section_map_[csid] = poris;
2305 }
2306 }
2307
2308 // Update the output section flags based on input section flags.
2309
2310 void
2311 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2312 {
2313 // If we created the section with SHF_ALLOC clear, we set the
2314 // address. If we are now setting the SHF_ALLOC flag, we need to
2315 // undo that.
2316 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2317 && (flags & elfcpp::SHF_ALLOC) != 0)
2318 this->mark_address_invalid();
2319
2320 this->flags_ |= (flags
2321 & (elfcpp::SHF_WRITE
2322 | elfcpp::SHF_ALLOC
2323 | elfcpp::SHF_EXECINSTR));
2324
2325 if ((flags & elfcpp::SHF_MERGE) == 0)
2326 this->flags_ &=~ elfcpp::SHF_MERGE;
2327 else
2328 {
2329 if (this->current_data_size_for_child() == 0)
2330 this->flags_ |= elfcpp::SHF_MERGE;
2331 }
2332
2333 if ((flags & elfcpp::SHF_STRINGS) == 0)
2334 this->flags_ &=~ elfcpp::SHF_STRINGS;
2335 else
2336 {
2337 if (this->current_data_size_for_child() == 0)
2338 this->flags_ |= elfcpp::SHF_STRINGS;
2339 }
2340 }
2341
2342 // Find the merge section into which an input section with index SHNDX in
2343 // OBJECT has been added. Return NULL if none found.
2344
2345 Output_section_data*
2346 Output_section::find_merge_section(const Relobj* object,
2347 unsigned int shndx) const
2348 {
2349 Const_section_id csid(object, shndx);
2350 Output_section_data_by_input_section_map::const_iterator p =
2351 this->merge_section_map_.find(csid);
2352 if (p != this->merge_section_map_.end())
2353 {
2354 Output_section_data* posd = p->second;
2355 gold_assert(posd->is_merge_section_for(object, shndx));
2356 return posd;
2357 }
2358 else
2359 return NULL;
2360 }
2361
2362 // Find an relaxed input section corresponding to an input section
2363 // in OBJECT with index SHNDX.
2364
2365 const Output_relaxed_input_section*
2366 Output_section::find_relaxed_input_section(const Relobj* object,
2367 unsigned int shndx) const
2368 {
2369 // Be careful that the map may not be valid due to input section export
2370 // to scripts or a check-point restore.
2371 if (!this->is_relaxed_input_section_map_valid_)
2372 {
2373 // Rebuild the map as needed.
2374 this->relaxed_input_section_map_.clear();
2375 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2376 p != this->input_sections_.end();
2377 ++p)
2378 if (p->is_relaxed_input_section())
2379 {
2380 Const_section_id csid(p->relobj(), p->shndx());
2381 this->relaxed_input_section_map_[csid] =
2382 p->relaxed_input_section();
2383 }
2384 this->is_relaxed_input_section_map_valid_ = true;
2385 }
2386
2387 Const_section_id csid(object, shndx);
2388 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2389 this->relaxed_input_section_map_.find(csid);
2390 if (p != this->relaxed_input_section_map_.end())
2391 return p->second;
2392 else
2393 return NULL;
2394 }
2395
2396 // Given an address OFFSET relative to the start of input section
2397 // SHNDX in OBJECT, return whether this address is being included in
2398 // the final link. This should only be called if SHNDX in OBJECT has
2399 // a special mapping.
2400
2401 bool
2402 Output_section::is_input_address_mapped(const Relobj* object,
2403 unsigned int shndx,
2404 off_t offset) const
2405 {
2406 // Look at the Output_section_data_maps first.
2407 const Output_section_data* posd = this->find_merge_section(object, shndx);
2408 if (posd == NULL)
2409 posd = this->find_relaxed_input_section(object, shndx);
2410
2411 if (posd != NULL)
2412 {
2413 section_offset_type output_offset;
2414 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2415 gold_assert(found);
2416 return output_offset != -1;
2417 }
2418
2419 // Fall back to the slow look-up.
2420 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2421 p != this->input_sections_.end();
2422 ++p)
2423 {
2424 section_offset_type output_offset;
2425 if (p->output_offset(object, shndx, offset, &output_offset))
2426 return output_offset != -1;
2427 }
2428
2429 // By default we assume that the address is mapped. This should
2430 // only be called after we have passed all sections to Layout. At
2431 // that point we should know what we are discarding.
2432 return true;
2433 }
2434
2435 // Given an address OFFSET relative to the start of input section
2436 // SHNDX in object OBJECT, return the output offset relative to the
2437 // start of the input section in the output section. This should only
2438 // be called if SHNDX in OBJECT has a special mapping.
2439
2440 section_offset_type
2441 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2442 section_offset_type offset) const
2443 {
2444 // This can only be called meaningfully when we know the data size
2445 // of this.
2446 gold_assert(this->is_data_size_valid());
2447
2448 // Look at the Output_section_data_maps first.
2449 const Output_section_data* posd = this->find_merge_section(object, shndx);
2450 if (posd == NULL)
2451 posd = this->find_relaxed_input_section(object, shndx);
2452 if (posd != NULL)
2453 {
2454 section_offset_type output_offset;
2455 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2456 gold_assert(found);
2457 return output_offset;
2458 }
2459
2460 // Fall back to the slow look-up.
2461 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2462 p != this->input_sections_.end();
2463 ++p)
2464 {
2465 section_offset_type output_offset;
2466 if (p->output_offset(object, shndx, offset, &output_offset))
2467 return output_offset;
2468 }
2469 gold_unreachable();
2470 }
2471
2472 // Return the output virtual address of OFFSET relative to the start
2473 // of input section SHNDX in object OBJECT.
2474
2475 uint64_t
2476 Output_section::output_address(const Relobj* object, unsigned int shndx,
2477 off_t offset) const
2478 {
2479 uint64_t addr = this->address() + this->first_input_offset_;
2480
2481 // Look at the Output_section_data_maps first.
2482 const Output_section_data* posd = this->find_merge_section(object, shndx);
2483 if (posd == NULL)
2484 posd = this->find_relaxed_input_section(object, shndx);
2485 if (posd != NULL && posd->is_address_valid())
2486 {
2487 section_offset_type output_offset;
2488 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2489 gold_assert(found);
2490 return posd->address() + output_offset;
2491 }
2492
2493 // Fall back to the slow look-up.
2494 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2495 p != this->input_sections_.end();
2496 ++p)
2497 {
2498 addr = align_address(addr, p->addralign());
2499 section_offset_type output_offset;
2500 if (p->output_offset(object, shndx, offset, &output_offset))
2501 {
2502 if (output_offset == -1)
2503 return -1ULL;
2504 return addr + output_offset;
2505 }
2506 addr += p->data_size();
2507 }
2508
2509 // If we get here, it means that we don't know the mapping for this
2510 // input section. This might happen in principle if
2511 // add_input_section were called before add_output_section_data.
2512 // But it should never actually happen.
2513
2514 gold_unreachable();
2515 }
2516
2517 // Find the output address of the start of the merged section for
2518 // input section SHNDX in object OBJECT.
2519
2520 bool
2521 Output_section::find_starting_output_address(const Relobj* object,
2522 unsigned int shndx,
2523 uint64_t* paddr) const
2524 {
2525 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2526 // Looking up the merge section map does not always work as we sometimes
2527 // find a merge section without its address set.
2528 uint64_t addr = this->address() + this->first_input_offset_;
2529 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2530 p != this->input_sections_.end();
2531 ++p)
2532 {
2533 addr = align_address(addr, p->addralign());
2534
2535 // It would be nice if we could use the existing output_offset
2536 // method to get the output offset of input offset 0.
2537 // Unfortunately we don't know for sure that input offset 0 is
2538 // mapped at all.
2539 if (p->is_merge_section_for(object, shndx))
2540 {
2541 *paddr = addr;
2542 return true;
2543 }
2544
2545 addr += p->data_size();
2546 }
2547
2548 // We couldn't find a merge output section for this input section.
2549 return false;
2550 }
2551
2552 // Set the data size of an Output_section. This is where we handle
2553 // setting the addresses of any Output_section_data objects.
2554
2555 void
2556 Output_section::set_final_data_size()
2557 {
2558 if (this->input_sections_.empty())
2559 {
2560 this->set_data_size(this->current_data_size_for_child());
2561 return;
2562 }
2563
2564 if (this->must_sort_attached_input_sections())
2565 this->sort_attached_input_sections();
2566
2567 uint64_t address = this->address();
2568 off_t startoff = this->offset();
2569 off_t off = startoff + this->first_input_offset_;
2570 for (Input_section_list::iterator p = this->input_sections_.begin();
2571 p != this->input_sections_.end();
2572 ++p)
2573 {
2574 off = align_address(off, p->addralign());
2575 p->set_address_and_file_offset(address + (off - startoff), off,
2576 startoff);
2577 off += p->data_size();
2578 }
2579
2580 this->set_data_size(off - startoff);
2581 }
2582
2583 // Reset the address and file offset.
2584
2585 void
2586 Output_section::do_reset_address_and_file_offset()
2587 {
2588 // An unallocated section has no address. Forcing this means that
2589 // we don't need special treatment for symbols defined in debug
2590 // sections. We do the same in the constructor.
2591 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2592 this->set_address(0);
2593
2594 for (Input_section_list::iterator p = this->input_sections_.begin();
2595 p != this->input_sections_.end();
2596 ++p)
2597 p->reset_address_and_file_offset();
2598 }
2599
2600 // Return true if address and file offset have the values after reset.
2601
2602 bool
2603 Output_section::do_address_and_file_offset_have_reset_values() const
2604 {
2605 if (this->is_offset_valid())
2606 return false;
2607
2608 // An unallocated section has address 0 after its construction or a reset.
2609 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2610 return this->is_address_valid() && this->address() == 0;
2611 else
2612 return !this->is_address_valid();
2613 }
2614
2615 // Set the TLS offset. Called only for SHT_TLS sections.
2616
2617 void
2618 Output_section::do_set_tls_offset(uint64_t tls_base)
2619 {
2620 this->tls_offset_ = this->address() - tls_base;
2621 }
2622
2623 // In a few cases we need to sort the input sections attached to an
2624 // output section. This is used to implement the type of constructor
2625 // priority ordering implemented by the GNU linker, in which the
2626 // priority becomes part of the section name and the sections are
2627 // sorted by name. We only do this for an output section if we see an
2628 // attached input section matching ".ctor.*", ".dtor.*",
2629 // ".init_array.*" or ".fini_array.*".
2630
2631 class Output_section::Input_section_sort_entry
2632 {
2633 public:
2634 Input_section_sort_entry()
2635 : input_section_(), index_(-1U), section_has_name_(false),
2636 section_name_()
2637 { }
2638
2639 Input_section_sort_entry(const Input_section& input_section,
2640 unsigned int index)
2641 : input_section_(input_section), index_(index),
2642 section_has_name_(input_section.is_input_section()
2643 || input_section.is_relaxed_input_section())
2644 {
2645 if (this->section_has_name_)
2646 {
2647 // This is only called single-threaded from Layout::finalize,
2648 // so it is OK to lock. Unfortunately we have no way to pass
2649 // in a Task token.
2650 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2651 Object* obj = (input_section.is_input_section()
2652 ? input_section.relobj()
2653 : input_section.relaxed_input_section()->relobj());
2654 Task_lock_obj<Object> tl(dummy_task, obj);
2655
2656 // This is a slow operation, which should be cached in
2657 // Layout::layout if this becomes a speed problem.
2658 this->section_name_ = obj->section_name(input_section.shndx());
2659 }
2660 }
2661
2662 // Return the Input_section.
2663 const Input_section&
2664 input_section() const
2665 {
2666 gold_assert(this->index_ != -1U);
2667 return this->input_section_;
2668 }
2669
2670 // The index of this entry in the original list. This is used to
2671 // make the sort stable.
2672 unsigned int
2673 index() const
2674 {
2675 gold_assert(this->index_ != -1U);
2676 return this->index_;
2677 }
2678
2679 // Whether there is a section name.
2680 bool
2681 section_has_name() const
2682 { return this->section_has_name_; }
2683
2684 // The section name.
2685 const std::string&
2686 section_name() const
2687 {
2688 gold_assert(this->section_has_name_);
2689 return this->section_name_;
2690 }
2691
2692 // Return true if the section name has a priority. This is assumed
2693 // to be true if it has a dot after the initial dot.
2694 bool
2695 has_priority() const
2696 {
2697 gold_assert(this->section_has_name_);
2698 return this->section_name_.find('.', 1) != std::string::npos;
2699 }
2700
2701 // Return true if this an input file whose base name matches
2702 // FILE_NAME. The base name must have an extension of ".o", and
2703 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2704 // This is to match crtbegin.o as well as crtbeginS.o without
2705 // getting confused by other possibilities. Overall matching the
2706 // file name this way is a dreadful hack, but the GNU linker does it
2707 // in order to better support gcc, and we need to be compatible.
2708 bool
2709 match_file_name(const char* match_file_name) const
2710 {
2711 const std::string& file_name(this->input_section_.relobj()->name());
2712 const char* base_name = lbasename(file_name.c_str());
2713 size_t match_len = strlen(match_file_name);
2714 if (strncmp(base_name, match_file_name, match_len) != 0)
2715 return false;
2716 size_t base_len = strlen(base_name);
2717 if (base_len != match_len + 2 && base_len != match_len + 3)
2718 return false;
2719 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2720 }
2721
2722 private:
2723 // The Input_section we are sorting.
2724 Input_section input_section_;
2725 // The index of this Input_section in the original list.
2726 unsigned int index_;
2727 // Whether this Input_section has a section name--it won't if this
2728 // is some random Output_section_data.
2729 bool section_has_name_;
2730 // The section name if there is one.
2731 std::string section_name_;
2732 };
2733
2734 // Return true if S1 should come before S2 in the output section.
2735
2736 bool
2737 Output_section::Input_section_sort_compare::operator()(
2738 const Output_section::Input_section_sort_entry& s1,
2739 const Output_section::Input_section_sort_entry& s2) const
2740 {
2741 // crtbegin.o must come first.
2742 bool s1_begin = s1.match_file_name("crtbegin");
2743 bool s2_begin = s2.match_file_name("crtbegin");
2744 if (s1_begin || s2_begin)
2745 {
2746 if (!s1_begin)
2747 return false;
2748 if (!s2_begin)
2749 return true;
2750 return s1.index() < s2.index();
2751 }
2752
2753 // crtend.o must come last.
2754 bool s1_end = s1.match_file_name("crtend");
2755 bool s2_end = s2.match_file_name("crtend");
2756 if (s1_end || s2_end)
2757 {
2758 if (!s1_end)
2759 return true;
2760 if (!s2_end)
2761 return false;
2762 return s1.index() < s2.index();
2763 }
2764
2765 // We sort all the sections with no names to the end.
2766 if (!s1.section_has_name() || !s2.section_has_name())
2767 {
2768 if (s1.section_has_name())
2769 return true;
2770 if (s2.section_has_name())
2771 return false;
2772 return s1.index() < s2.index();
2773 }
2774
2775 // A section with a priority follows a section without a priority.
2776 bool s1_has_priority = s1.has_priority();
2777 bool s2_has_priority = s2.has_priority();
2778 if (s1_has_priority && !s2_has_priority)
2779 return false;
2780 if (!s1_has_priority && s2_has_priority)
2781 return true;
2782
2783 // Otherwise we sort by name.
2784 int compare = s1.section_name().compare(s2.section_name());
2785 if (compare != 0)
2786 return compare < 0;
2787
2788 // Otherwise we keep the input order.
2789 return s1.index() < s2.index();
2790 }
2791
2792 // Return true if S1 should come before S2 in an .init_array or .fini_array
2793 // output section.
2794
2795 bool
2796 Output_section::Input_section_sort_init_fini_compare::operator()(
2797 const Output_section::Input_section_sort_entry& s1,
2798 const Output_section::Input_section_sort_entry& s2) const
2799 {
2800 // We sort all the sections with no names to the end.
2801 if (!s1.section_has_name() || !s2.section_has_name())
2802 {
2803 if (s1.section_has_name())
2804 return true;
2805 if (s2.section_has_name())
2806 return false;
2807 return s1.index() < s2.index();
2808 }
2809
2810 // A section without a priority follows a section with a priority.
2811 // This is the reverse of .ctors and .dtors sections.
2812 bool s1_has_priority = s1.has_priority();
2813 bool s2_has_priority = s2.has_priority();
2814 if (s1_has_priority && !s2_has_priority)
2815 return true;
2816 if (!s1_has_priority && s2_has_priority)
2817 return false;
2818
2819 // Otherwise we sort by name.
2820 int compare = s1.section_name().compare(s2.section_name());
2821 if (compare != 0)
2822 return compare < 0;
2823
2824 // Otherwise we keep the input order.
2825 return s1.index() < s2.index();
2826 }
2827
2828 // Sort the input sections attached to an output section.
2829
2830 void
2831 Output_section::sort_attached_input_sections()
2832 {
2833 if (this->attached_input_sections_are_sorted_)
2834 return;
2835
2836 if (this->checkpoint_ != NULL
2837 && !this->checkpoint_->input_sections_saved())
2838 this->checkpoint_->save_input_sections();
2839
2840 // The only thing we know about an input section is the object and
2841 // the section index. We need the section name. Recomputing this
2842 // is slow but this is an unusual case. If this becomes a speed
2843 // problem we can cache the names as required in Layout::layout.
2844
2845 // We start by building a larger vector holding a copy of each
2846 // Input_section, plus its current index in the list and its name.
2847 std::vector<Input_section_sort_entry> sort_list;
2848
2849 unsigned int i = 0;
2850 for (Input_section_list::iterator p = this->input_sections_.begin();
2851 p != this->input_sections_.end();
2852 ++p, ++i)
2853 sort_list.push_back(Input_section_sort_entry(*p, i));
2854
2855 // Sort the input sections.
2856 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2857 || this->type() == elfcpp::SHT_INIT_ARRAY
2858 || this->type() == elfcpp::SHT_FINI_ARRAY)
2859 std::sort(sort_list.begin(), sort_list.end(),
2860 Input_section_sort_init_fini_compare());
2861 else
2862 std::sort(sort_list.begin(), sort_list.end(),
2863 Input_section_sort_compare());
2864
2865 // Copy the sorted input sections back to our list.
2866 this->input_sections_.clear();
2867 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2868 p != sort_list.end();
2869 ++p)
2870 this->input_sections_.push_back(p->input_section());
2871
2872 // Remember that we sorted the input sections, since we might get
2873 // called again.
2874 this->attached_input_sections_are_sorted_ = true;
2875 }
2876
2877 // Write the section header to *OSHDR.
2878
2879 template<int size, bool big_endian>
2880 void
2881 Output_section::write_header(const Layout* layout,
2882 const Stringpool* secnamepool,
2883 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2884 {
2885 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2886 oshdr->put_sh_type(this->type_);
2887
2888 elfcpp::Elf_Xword flags = this->flags_;
2889 if (this->info_section_ != NULL && this->info_uses_section_index_)
2890 flags |= elfcpp::SHF_INFO_LINK;
2891 oshdr->put_sh_flags(flags);
2892
2893 oshdr->put_sh_addr(this->address());
2894 oshdr->put_sh_offset(this->offset());
2895 oshdr->put_sh_size(this->data_size());
2896 if (this->link_section_ != NULL)
2897 oshdr->put_sh_link(this->link_section_->out_shndx());
2898 else if (this->should_link_to_symtab_)
2899 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2900 else if (this->should_link_to_dynsym_)
2901 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2902 else
2903 oshdr->put_sh_link(this->link_);
2904
2905 elfcpp::Elf_Word info;
2906 if (this->info_section_ != NULL)
2907 {
2908 if (this->info_uses_section_index_)
2909 info = this->info_section_->out_shndx();
2910 else
2911 info = this->info_section_->symtab_index();
2912 }
2913 else if (this->info_symndx_ != NULL)
2914 info = this->info_symndx_->symtab_index();
2915 else
2916 info = this->info_;
2917 oshdr->put_sh_info(info);
2918
2919 oshdr->put_sh_addralign(this->addralign_);
2920 oshdr->put_sh_entsize(this->entsize_);
2921 }
2922
2923 // Write out the data. For input sections the data is written out by
2924 // Object::relocate, but we have to handle Output_section_data objects
2925 // here.
2926
2927 void
2928 Output_section::do_write(Output_file* of)
2929 {
2930 gold_assert(!this->requires_postprocessing());
2931
2932 // If the target performs relaxation, we delay filler generation until now.
2933 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2934
2935 off_t output_section_file_offset = this->offset();
2936 for (Fill_list::iterator p = this->fills_.begin();
2937 p != this->fills_.end();
2938 ++p)
2939 {
2940 std::string fill_data(parameters->target().code_fill(p->length()));
2941 of->write(output_section_file_offset + p->section_offset(),
2942 fill_data.data(), fill_data.size());
2943 }
2944
2945 off_t off = this->offset() + this->first_input_offset_;
2946 for (Input_section_list::iterator p = this->input_sections_.begin();
2947 p != this->input_sections_.end();
2948 ++p)
2949 {
2950 off_t aligned_off = align_address(off, p->addralign());
2951 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2952 {
2953 size_t fill_len = aligned_off - off;
2954 std::string fill_data(parameters->target().code_fill(fill_len));
2955 of->write(off, fill_data.data(), fill_data.size());
2956 }
2957
2958 p->write(of);
2959 off = aligned_off + p->data_size();
2960 }
2961 }
2962
2963 // If a section requires postprocessing, create the buffer to use.
2964
2965 void
2966 Output_section::create_postprocessing_buffer()
2967 {
2968 gold_assert(this->requires_postprocessing());
2969
2970 if (this->postprocessing_buffer_ != NULL)
2971 return;
2972
2973 if (!this->input_sections_.empty())
2974 {
2975 off_t off = this->first_input_offset_;
2976 for (Input_section_list::iterator p = this->input_sections_.begin();
2977 p != this->input_sections_.end();
2978 ++p)
2979 {
2980 off = align_address(off, p->addralign());
2981 p->finalize_data_size();
2982 off += p->data_size();
2983 }
2984 this->set_current_data_size_for_child(off);
2985 }
2986
2987 off_t buffer_size = this->current_data_size_for_child();
2988 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2989 }
2990
2991 // Write all the data of an Output_section into the postprocessing
2992 // buffer. This is used for sections which require postprocessing,
2993 // such as compression. Input sections are handled by
2994 // Object::Relocate.
2995
2996 void
2997 Output_section::write_to_postprocessing_buffer()
2998 {
2999 gold_assert(this->requires_postprocessing());
3000
3001 // If the target performs relaxation, we delay filler generation until now.
3002 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3003
3004 unsigned char* buffer = this->postprocessing_buffer();
3005 for (Fill_list::iterator p = this->fills_.begin();
3006 p != this->fills_.end();
3007 ++p)
3008 {
3009 std::string fill_data(parameters->target().code_fill(p->length()));
3010 memcpy(buffer + p->section_offset(), fill_data.data(),
3011 fill_data.size());
3012 }
3013
3014 off_t off = this->first_input_offset_;
3015 for (Input_section_list::iterator p = this->input_sections_.begin();
3016 p != this->input_sections_.end();
3017 ++p)
3018 {
3019 off_t aligned_off = align_address(off, p->addralign());
3020 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3021 {
3022 size_t fill_len = aligned_off - off;
3023 std::string fill_data(parameters->target().code_fill(fill_len));
3024 memcpy(buffer + off, fill_data.data(), fill_data.size());
3025 }
3026
3027 p->write_to_buffer(buffer + aligned_off);
3028 off = aligned_off + p->data_size();
3029 }
3030 }
3031
3032 // Get the input sections for linker script processing. We leave
3033 // behind the Output_section_data entries. Note that this may be
3034 // slightly incorrect for merge sections. We will leave them behind,
3035 // but it is possible that the script says that they should follow
3036 // some other input sections, as in:
3037 // .rodata { *(.rodata) *(.rodata.cst*) }
3038 // For that matter, we don't handle this correctly:
3039 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3040 // With luck this will never matter.
3041
3042 uint64_t
3043 Output_section::get_input_sections(
3044 uint64_t address,
3045 const std::string& fill,
3046 std::list<Simple_input_section>* input_sections)
3047 {
3048 if (this->checkpoint_ != NULL
3049 && !this->checkpoint_->input_sections_saved())
3050 this->checkpoint_->save_input_sections();
3051
3052 // Invalidate the relaxed input section map.
3053 this->is_relaxed_input_section_map_valid_ = false;
3054
3055 uint64_t orig_address = address;
3056
3057 address = align_address(address, this->addralign());
3058
3059 Input_section_list remaining;
3060 for (Input_section_list::iterator p = this->input_sections_.begin();
3061 p != this->input_sections_.end();
3062 ++p)
3063 {
3064 if (p->is_input_section())
3065 input_sections->push_back(Simple_input_section(p->relobj(),
3066 p->shndx()));
3067 else if (p->is_relaxed_input_section())
3068 input_sections->push_back(
3069 Simple_input_section(p->relaxed_input_section()));
3070 else
3071 {
3072 uint64_t aligned_address = align_address(address, p->addralign());
3073 if (aligned_address != address && !fill.empty())
3074 {
3075 section_size_type length =
3076 convert_to_section_size_type(aligned_address - address);
3077 std::string this_fill;
3078 this_fill.reserve(length);
3079 while (this_fill.length() + fill.length() <= length)
3080 this_fill += fill;
3081 if (this_fill.length() < length)
3082 this_fill.append(fill, 0, length - this_fill.length());
3083
3084 Output_section_data* posd = new Output_data_const(this_fill, 0);
3085 remaining.push_back(Input_section(posd));
3086 }
3087 address = aligned_address;
3088
3089 remaining.push_back(*p);
3090
3091 p->finalize_data_size();
3092 address += p->data_size();
3093 }
3094 }
3095
3096 this->input_sections_.swap(remaining);
3097 this->first_input_offset_ = 0;
3098
3099 uint64_t data_size = address - orig_address;
3100 this->set_current_data_size_for_child(data_size);
3101 return data_size;
3102 }
3103
3104 // Add an simple input section.
3105
3106 void
3107 Output_section::add_simple_input_section(const Simple_input_section& sis,
3108 off_t data_size,
3109 uint64_t addralign)
3110 {
3111 if (addralign > this->addralign_)
3112 this->addralign_ = addralign;
3113
3114 off_t offset_in_section = this->current_data_size_for_child();
3115 off_t aligned_offset_in_section = align_address(offset_in_section,
3116 addralign);
3117
3118 this->set_current_data_size_for_child(aligned_offset_in_section
3119 + data_size);
3120
3121 Input_section is =
3122 (sis.is_relaxed_input_section()
3123 ? Input_section(sis.relaxed_input_section())
3124 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3125 this->input_sections_.push_back(is);
3126 }
3127
3128 // Save states for relaxation.
3129
3130 void
3131 Output_section::save_states()
3132 {
3133 gold_assert(this->checkpoint_ == NULL);
3134 Checkpoint_output_section* checkpoint =
3135 new Checkpoint_output_section(this->addralign_, this->flags_,
3136 this->input_sections_,
3137 this->first_input_offset_,
3138 this->attached_input_sections_are_sorted_);
3139 this->checkpoint_ = checkpoint;
3140 gold_assert(this->fills_.empty());
3141 }
3142
3143 void
3144 Output_section::discard_states()
3145 {
3146 gold_assert(this->checkpoint_ != NULL);
3147 delete this->checkpoint_;
3148 this->checkpoint_ = NULL;
3149 gold_assert(this->fills_.empty());
3150
3151 // Simply invalidate the relaxed input section map since we do not keep
3152 // track of it.
3153 this->is_relaxed_input_section_map_valid_ = false;
3154 }
3155
3156 void
3157 Output_section::restore_states()
3158 {
3159 gold_assert(this->checkpoint_ != NULL);
3160 Checkpoint_output_section* checkpoint = this->checkpoint_;
3161
3162 this->addralign_ = checkpoint->addralign();
3163 this->flags_ = checkpoint->flags();
3164 this->first_input_offset_ = checkpoint->first_input_offset();
3165
3166 if (!checkpoint->input_sections_saved())
3167 {
3168 // If we have not copied the input sections, just resize it.
3169 size_t old_size = checkpoint->input_sections_size();
3170 gold_assert(this->input_sections_.size() >= old_size);
3171 this->input_sections_.resize(old_size);
3172 }
3173 else
3174 {
3175 // We need to copy the whole list. This is not efficient for
3176 // extremely large output with hundreads of thousands of input
3177 // objects. We may need to re-think how we should pass sections
3178 // to scripts.
3179 this->input_sections_ = *checkpoint->input_sections();
3180 }
3181
3182 this->attached_input_sections_are_sorted_ =
3183 checkpoint->attached_input_sections_are_sorted();
3184
3185 // Simply invalidate the relaxed input section map since we do not keep
3186 // track of it.
3187 this->is_relaxed_input_section_map_valid_ = false;
3188 }
3189
3190 // Update the section offsets of input sections in this. This is required if
3191 // relaxation causes some input sections to change sizes.
3192
3193 void
3194 Output_section::adjust_section_offsets()
3195 {
3196 if (!this->section_offsets_need_adjustment_)
3197 return;
3198
3199 off_t off = 0;
3200 for (Input_section_list::iterator p = this->input_sections_.begin();
3201 p != this->input_sections_.end();
3202 ++p)
3203 {
3204 off = align_address(off, p->addralign());
3205 if (p->is_input_section())
3206 p->relobj()->set_section_offset(p->shndx(), off);
3207 off += p->data_size();
3208 }
3209
3210 this->section_offsets_need_adjustment_ = false;
3211 }
3212
3213 // Print to the map file.
3214
3215 void
3216 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3217 {
3218 mapfile->print_output_section(this);
3219
3220 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3221 p != this->input_sections_.end();
3222 ++p)
3223 p->print_to_mapfile(mapfile);
3224 }
3225
3226 // Print stats for merge sections to stderr.
3227
3228 void
3229 Output_section::print_merge_stats()
3230 {
3231 Input_section_list::iterator p;
3232 for (p = this->input_sections_.begin();
3233 p != this->input_sections_.end();
3234 ++p)
3235 p->print_merge_stats(this->name_);
3236 }
3237
3238 // Output segment methods.
3239
3240 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3241 : output_data_(),
3242 output_bss_(),
3243 vaddr_(0),
3244 paddr_(0),
3245 memsz_(0),
3246 max_align_(0),
3247 min_p_align_(0),
3248 offset_(0),
3249 filesz_(0),
3250 type_(type),
3251 flags_(flags),
3252 is_max_align_known_(false),
3253 are_addresses_set_(false),
3254 is_large_data_segment_(false)
3255 {
3256 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3257 // the flags.
3258 if (type == elfcpp::PT_TLS)
3259 this->flags_ = elfcpp::PF_R;
3260 }
3261
3262 // Add an Output_section to an Output_segment.
3263
3264 void
3265 Output_segment::add_output_section(Output_section* os,
3266 elfcpp::Elf_Word seg_flags,
3267 bool do_sort)
3268 {
3269 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3270 gold_assert(!this->is_max_align_known_);
3271 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3272 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3273
3274 this->update_flags_for_output_section(seg_flags);
3275
3276 Output_segment::Output_data_list* pdl;
3277 if (os->type() == elfcpp::SHT_NOBITS)
3278 pdl = &this->output_bss_;
3279 else
3280 pdl = &this->output_data_;
3281
3282 // Note that while there may be many input sections in an output
3283 // section, there are normally only a few output sections in an
3284 // output segment. The loops below are expected to be fast.
3285
3286 // So that PT_NOTE segments will work correctly, we need to ensure
3287 // that all SHT_NOTE sections are adjacent.
3288 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3289 {
3290 Output_segment::Output_data_list::iterator p = pdl->end();
3291 do
3292 {
3293 --p;
3294 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3295 {
3296 ++p;
3297 pdl->insert(p, os);
3298 return;
3299 }
3300 }
3301 while (p != pdl->begin());
3302 }
3303
3304 // Similarly, so that PT_TLS segments will work, we need to group
3305 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3306 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3307 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3308 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3309 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3310 // segment.
3311 if (this->type_ != elfcpp::PT_TLS
3312 && (os->flags() & elfcpp::SHF_TLS) != 0)
3313 {
3314 pdl = &this->output_data_;
3315 if (!pdl->empty())
3316 {
3317 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3318 bool sawtls = false;
3319 Output_segment::Output_data_list::iterator p = pdl->end();
3320 gold_assert(p != pdl->begin());
3321 do
3322 {
3323 --p;
3324 bool insert;
3325 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3326 {
3327 sawtls = true;
3328 // Put a NOBITS section after the first TLS section.
3329 // Put a PROGBITS section after the first
3330 // TLS/PROGBITS section.
3331 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3332 }
3333 else
3334 {
3335 // If we've gone past the TLS sections, but we've
3336 // seen a TLS section, then we need to insert this
3337 // section now.
3338 insert = sawtls;
3339 }
3340
3341 if (insert)
3342 {
3343 ++p;
3344 pdl->insert(p, os);
3345 return;
3346 }
3347 }
3348 while (p != pdl->begin());
3349 }
3350
3351 // There are no TLS sections yet; put this one at the requested
3352 // location in the section list.
3353 }
3354
3355 if (do_sort)
3356 {
3357 // For the PT_GNU_RELRO segment, we need to group relro
3358 // sections, and we need to put them before any non-relro
3359 // sections. Any relro local sections go before relro non-local
3360 // sections. One section may be marked as the last relro
3361 // section.
3362 if (os->is_relro())
3363 {
3364 gold_assert(pdl == &this->output_data_);
3365 Output_segment::Output_data_list::iterator p;
3366 for (p = pdl->begin(); p != pdl->end(); ++p)
3367 {
3368 if (!(*p)->is_section())
3369 break;
3370
3371 Output_section* pos = (*p)->output_section();
3372 if (!pos->is_relro()
3373 || (os->is_relro_local() && !pos->is_relro_local())
3374 || (!os->is_last_relro() && pos->is_last_relro()))
3375 break;
3376 }
3377
3378 pdl->insert(p, os);
3379 return;
3380 }
3381
3382 // One section may be marked as the first section which follows
3383 // the relro sections.
3384 if (os->is_first_non_relro())
3385 {
3386 gold_assert(pdl == &this->output_data_);
3387 Output_segment::Output_data_list::iterator p;
3388 for (p = pdl->begin(); p != pdl->end(); ++p)
3389 {
3390 if (!(*p)->is_section())
3391 break;
3392
3393 Output_section* pos = (*p)->output_section();
3394 if (!pos->is_relro())
3395 break;
3396 }
3397
3398 pdl->insert(p, os);
3399 return;
3400 }
3401 }
3402
3403 // Small data sections go at the end of the list of data sections.
3404 // If OS is not small, and there are small sections, we have to
3405 // insert it before the first small section.
3406 if (os->type() != elfcpp::SHT_NOBITS
3407 && !os->is_small_section()
3408 && !pdl->empty()
3409 && pdl->back()->is_section()
3410 && pdl->back()->output_section()->is_small_section())
3411 {
3412 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3413 p != pdl->end();
3414 ++p)
3415 {
3416 if ((*p)->is_section()
3417 && (*p)->output_section()->is_small_section())
3418 {
3419 pdl->insert(p, os);
3420 return;
3421 }
3422 }
3423 gold_unreachable();
3424 }
3425
3426 // A small BSS section goes at the start of the BSS sections, after
3427 // other small BSS sections.
3428 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3429 {
3430 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3431 p != pdl->end();
3432 ++p)
3433 {
3434 if (!(*p)->is_section()
3435 || !(*p)->output_section()->is_small_section())
3436 {
3437 pdl->insert(p, os);
3438 return;
3439 }
3440 }
3441 }
3442
3443 // A large BSS section goes at the end of the BSS sections, which
3444 // means that one that is not large must come before the first large
3445 // one.
3446 if (os->type() == elfcpp::SHT_NOBITS
3447 && !os->is_large_section()
3448 && !pdl->empty()
3449 && pdl->back()->is_section()
3450 && pdl->back()->output_section()->is_large_section())
3451 {
3452 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3453 p != pdl->end();
3454 ++p)
3455 {
3456 if ((*p)->is_section()
3457 && (*p)->output_section()->is_large_section())
3458 {
3459 pdl->insert(p, os);
3460 return;
3461 }
3462 }
3463 gold_unreachable();
3464 }
3465
3466 // We do some further output section sorting in order to make the
3467 // generated program run more efficiently. We should only do this
3468 // when not using a linker script, so it is controled by the DO_SORT
3469 // parameter.
3470 if (do_sort)
3471 {
3472 // FreeBSD requires the .interp section to be in the first page
3473 // of the executable. That is a more efficient location anyhow
3474 // for any OS, since it means that the kernel will have the data
3475 // handy after it reads the program headers.
3476 if (os->is_interp() && !pdl->empty())
3477 {
3478 pdl->insert(pdl->begin(), os);
3479 return;
3480 }
3481
3482 // Put loadable non-writable notes immediately after the .interp
3483 // sections, so that the PT_NOTE segment is on the first page of
3484 // the executable.
3485 if (os->type() == elfcpp::SHT_NOTE
3486 && (os->flags() & elfcpp::SHF_WRITE) == 0
3487 && !pdl->empty())
3488 {
3489 Output_segment::Output_data_list::iterator p = pdl->begin();
3490 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3491 ++p;
3492 pdl->insert(p, os);
3493 return;
3494 }
3495
3496 // If this section is used by the dynamic linker, and it is not
3497 // writable, then put it first, after the .interp section and
3498 // any loadable notes. This makes it more likely that the
3499 // dynamic linker will have to read less data from the disk.
3500 if (os->is_dynamic_linker_section()
3501 && !pdl->empty()
3502 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3503 {
3504 bool is_reloc = (os->type() == elfcpp::SHT_REL
3505 || os->type() == elfcpp::SHT_RELA);
3506 Output_segment::Output_data_list::iterator p = pdl->begin();
3507 while (p != pdl->end()
3508 && (*p)->is_section()
3509 && ((*p)->output_section()->is_dynamic_linker_section()
3510 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3511 {
3512 // Put reloc sections after the other ones. Putting the
3513 // dynamic reloc sections first confuses BFD, notably
3514 // objcopy and strip.
3515 if (!is_reloc
3516 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3517 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3518 break;
3519 ++p;
3520 }
3521 pdl->insert(p, os);
3522 return;
3523 }
3524 }
3525
3526 // If there were no constraints on the output section, just add it
3527 // to the end of the list.
3528 pdl->push_back(os);
3529 }
3530
3531 // Remove an Output_section from this segment. It is an error if it
3532 // is not present.
3533
3534 void
3535 Output_segment::remove_output_section(Output_section* os)
3536 {
3537 // We only need this for SHT_PROGBITS.
3538 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3539 for (Output_data_list::iterator p = this->output_data_.begin();
3540 p != this->output_data_.end();
3541 ++p)
3542 {
3543 if (*p == os)
3544 {
3545 this->output_data_.erase(p);
3546 return;
3547 }
3548 }
3549 gold_unreachable();
3550 }
3551
3552 // Add an Output_data (which need not be an Output_section) to the
3553 // start of a segment.
3554
3555 void
3556 Output_segment::add_initial_output_data(Output_data* od)
3557 {
3558 gold_assert(!this->is_max_align_known_);
3559 this->output_data_.push_front(od);
3560 }
3561
3562 // Return whether the first data section is a relro section.
3563
3564 bool
3565 Output_segment::is_first_section_relro() const
3566 {
3567 return (!this->output_data_.empty()
3568 && this->output_data_.front()->is_section()
3569 && this->output_data_.front()->output_section()->is_relro());
3570 }
3571
3572 // Return the maximum alignment of the Output_data in Output_segment.
3573
3574 uint64_t
3575 Output_segment::maximum_alignment()
3576 {
3577 if (!this->is_max_align_known_)
3578 {
3579 uint64_t addralign;
3580
3581 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3582 if (addralign > this->max_align_)
3583 this->max_align_ = addralign;
3584
3585 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3586 if (addralign > this->max_align_)
3587 this->max_align_ = addralign;
3588
3589 this->is_max_align_known_ = true;
3590 }
3591
3592 return this->max_align_;
3593 }
3594
3595 // Return the maximum alignment of a list of Output_data.
3596
3597 uint64_t
3598 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3599 {
3600 uint64_t ret = 0;
3601 for (Output_data_list::const_iterator p = pdl->begin();
3602 p != pdl->end();
3603 ++p)
3604 {
3605 uint64_t addralign = (*p)->addralign();
3606 if (addralign > ret)
3607 ret = addralign;
3608 }
3609 return ret;
3610 }
3611
3612 // Return the number of dynamic relocs applied to this segment.
3613
3614 unsigned int
3615 Output_segment::dynamic_reloc_count() const
3616 {
3617 return (this->dynamic_reloc_count_list(&this->output_data_)
3618 + this->dynamic_reloc_count_list(&this->output_bss_));
3619 }
3620
3621 // Return the number of dynamic relocs applied to an Output_data_list.
3622
3623 unsigned int
3624 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3625 {
3626 unsigned int count = 0;
3627 for (Output_data_list::const_iterator p = pdl->begin();
3628 p != pdl->end();
3629 ++p)
3630 count += (*p)->dynamic_reloc_count();
3631 return count;
3632 }
3633
3634 // Set the section addresses for an Output_segment. If RESET is true,
3635 // reset the addresses first. ADDR is the address and *POFF is the
3636 // file offset. Set the section indexes starting with *PSHNDX.
3637 // Return the address of the immediately following segment. Update
3638 // *POFF and *PSHNDX.
3639
3640 uint64_t
3641 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3642 uint64_t addr,
3643 unsigned int increase_relro,
3644 off_t* poff,
3645 unsigned int* pshndx)
3646 {
3647 gold_assert(this->type_ == elfcpp::PT_LOAD);
3648
3649 off_t orig_off = *poff;
3650
3651 // If we have relro sections, we need to pad forward now so that the
3652 // relro sections plus INCREASE_RELRO end on a common page boundary.
3653 if (parameters->options().relro()
3654 && this->is_first_section_relro()
3655 && (!this->are_addresses_set_ || reset))
3656 {
3657 uint64_t relro_size = 0;
3658 off_t off = *poff;
3659 for (Output_data_list::iterator p = this->output_data_.begin();
3660 p != this->output_data_.end();
3661 ++p)
3662 {
3663 if (!(*p)->is_section())
3664 break;
3665 Output_section* pos = (*p)->output_section();
3666 if (!pos->is_relro())
3667 break;
3668 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3669 if ((*p)->is_address_valid())
3670 relro_size += (*p)->data_size();
3671 else
3672 {
3673 // FIXME: This could be faster.
3674 (*p)->set_address_and_file_offset(addr + relro_size,
3675 off + relro_size);
3676 relro_size += (*p)->data_size();
3677 (*p)->reset_address_and_file_offset();
3678 }
3679 }
3680 relro_size += increase_relro;
3681
3682 uint64_t page_align = parameters->target().common_pagesize();
3683
3684 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3685 uint64_t desired_align = page_align - (relro_size % page_align);
3686 if (desired_align < *poff % page_align)
3687 *poff += page_align - *poff % page_align;
3688 *poff += desired_align - *poff % page_align;
3689 addr += *poff - orig_off;
3690 orig_off = *poff;
3691 }
3692
3693 if (!reset && this->are_addresses_set_)
3694 {
3695 gold_assert(this->paddr_ == addr);
3696 addr = this->vaddr_;
3697 }
3698 else
3699 {
3700 this->vaddr_ = addr;
3701 this->paddr_ = addr;
3702 this->are_addresses_set_ = true;
3703 }
3704
3705 bool in_tls = false;
3706
3707 this->offset_ = orig_off;
3708
3709 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3710 addr, poff, pshndx, &in_tls);
3711 this->filesz_ = *poff - orig_off;
3712
3713 off_t off = *poff;
3714
3715 uint64_t ret = this->set_section_list_addresses(layout, reset,
3716 &this->output_bss_,
3717 addr, poff, pshndx,
3718 &in_tls);
3719
3720 // If the last section was a TLS section, align upward to the
3721 // alignment of the TLS segment, so that the overall size of the TLS
3722 // segment is aligned.
3723 if (in_tls)
3724 {
3725 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3726 *poff = align_address(*poff, segment_align);
3727 }
3728
3729 this->memsz_ = *poff - orig_off;
3730
3731 // Ignore the file offset adjustments made by the BSS Output_data
3732 // objects.
3733 *poff = off;
3734
3735 return ret;
3736 }
3737
3738 // Set the addresses and file offsets in a list of Output_data
3739 // structures.
3740
3741 uint64_t
3742 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3743 Output_data_list* pdl,
3744 uint64_t addr, off_t* poff,
3745 unsigned int* pshndx,
3746 bool* in_tls)
3747 {
3748 off_t startoff = *poff;
3749
3750 off_t off = startoff;
3751 for (Output_data_list::iterator p = pdl->begin();
3752 p != pdl->end();
3753 ++p)
3754 {
3755 if (reset)
3756 (*p)->reset_address_and_file_offset();
3757
3758 // When using a linker script the section will most likely
3759 // already have an address.
3760 if (!(*p)->is_address_valid())
3761 {
3762 uint64_t align = (*p)->addralign();
3763
3764 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3765 {
3766 // Give the first TLS section the alignment of the
3767 // entire TLS segment. Otherwise the TLS segment as a
3768 // whole may be misaligned.
3769 if (!*in_tls)
3770 {
3771 Output_segment* tls_segment = layout->tls_segment();
3772 gold_assert(tls_segment != NULL);
3773 uint64_t segment_align = tls_segment->maximum_alignment();
3774 gold_assert(segment_align >= align);
3775 align = segment_align;
3776
3777 *in_tls = true;
3778 }
3779 }
3780 else
3781 {
3782 // If this is the first section after the TLS segment,
3783 // align it to at least the alignment of the TLS
3784 // segment, so that the size of the overall TLS segment
3785 // is aligned.
3786 if (*in_tls)
3787 {
3788 uint64_t segment_align =
3789 layout->tls_segment()->maximum_alignment();
3790 if (segment_align > align)
3791 align = segment_align;
3792
3793 *in_tls = false;
3794 }
3795 }
3796
3797 off = align_address(off, align);
3798 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3799 }
3800 else
3801 {
3802 // The script may have inserted a skip forward, but it
3803 // better not have moved backward.
3804 if ((*p)->address() >= addr + (off - startoff))
3805 off += (*p)->address() - (addr + (off - startoff));
3806 else
3807 {
3808 if (!layout->script_options()->saw_sections_clause())
3809 gold_unreachable();
3810 else
3811 {
3812 Output_section* os = (*p)->output_section();
3813
3814 // Cast to unsigned long long to avoid format warnings.
3815 unsigned long long previous_dot =
3816 static_cast<unsigned long long>(addr + (off - startoff));
3817 unsigned long long dot =
3818 static_cast<unsigned long long>((*p)->address());
3819
3820 if (os == NULL)
3821 gold_error(_("dot moves backward in linker script "
3822 "from 0x%llx to 0x%llx"), previous_dot, dot);
3823 else
3824 gold_error(_("address of section '%s' moves backward "
3825 "from 0x%llx to 0x%llx"),
3826 os->name(), previous_dot, dot);
3827 }
3828 }
3829 (*p)->set_file_offset(off);
3830 (*p)->finalize_data_size();
3831 }
3832
3833 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3834 // section. Such a section does not affect the size of a
3835 // PT_LOAD segment.
3836 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3837 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3838 off += (*p)->data_size();
3839
3840 if ((*p)->is_section())
3841 {
3842 (*p)->set_out_shndx(*pshndx);
3843 ++*pshndx;
3844 }
3845 }
3846
3847 *poff = off;
3848 return addr + (off - startoff);
3849 }
3850
3851 // For a non-PT_LOAD segment, set the offset from the sections, if
3852 // any. Add INCREASE to the file size and the memory size.
3853
3854 void
3855 Output_segment::set_offset(unsigned int increase)
3856 {
3857 gold_assert(this->type_ != elfcpp::PT_LOAD);
3858
3859 gold_assert(!this->are_addresses_set_);
3860
3861 if (this->output_data_.empty() && this->output_bss_.empty())
3862 {
3863 gold_assert(increase == 0);
3864 this->vaddr_ = 0;
3865 this->paddr_ = 0;
3866 this->are_addresses_set_ = true;
3867 this->memsz_ = 0;
3868 this->min_p_align_ = 0;
3869 this->offset_ = 0;
3870 this->filesz_ = 0;
3871 return;
3872 }
3873
3874 const Output_data* first;
3875 if (this->output_data_.empty())
3876 first = this->output_bss_.front();
3877 else
3878 first = this->output_data_.front();
3879 this->vaddr_ = first->address();
3880 this->paddr_ = (first->has_load_address()
3881 ? first->load_address()
3882 : this->vaddr_);
3883 this->are_addresses_set_ = true;
3884 this->offset_ = first->offset();
3885
3886 if (this->output_data_.empty())
3887 this->filesz_ = 0;
3888 else
3889 {
3890 const Output_data* last_data = this->output_data_.back();
3891 this->filesz_ = (last_data->address()
3892 + last_data->data_size()
3893 - this->vaddr_);
3894 }
3895
3896 const Output_data* last;
3897 if (this->output_bss_.empty())
3898 last = this->output_data_.back();
3899 else
3900 last = this->output_bss_.back();
3901 this->memsz_ = (last->address()
3902 + last->data_size()
3903 - this->vaddr_);
3904
3905 this->filesz_ += increase;
3906 this->memsz_ += increase;
3907
3908 // If this is a TLS segment, align the memory size. The code in
3909 // set_section_list ensures that the section after the TLS segment
3910 // is aligned to give us room.
3911 if (this->type_ == elfcpp::PT_TLS)
3912 {
3913 uint64_t segment_align = this->maximum_alignment();
3914 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3915 this->memsz_ = align_address(this->memsz_, segment_align);
3916 }
3917 }
3918
3919 // Set the TLS offsets of the sections in the PT_TLS segment.
3920
3921 void
3922 Output_segment::set_tls_offsets()
3923 {
3924 gold_assert(this->type_ == elfcpp::PT_TLS);
3925
3926 for (Output_data_list::iterator p = this->output_data_.begin();
3927 p != this->output_data_.end();
3928 ++p)
3929 (*p)->set_tls_offset(this->vaddr_);
3930
3931 for (Output_data_list::iterator p = this->output_bss_.begin();
3932 p != this->output_bss_.end();
3933 ++p)
3934 (*p)->set_tls_offset(this->vaddr_);
3935 }
3936
3937 // Return the address of the first section.
3938
3939 uint64_t
3940 Output_segment::first_section_load_address() const
3941 {
3942 for (Output_data_list::const_iterator p = this->output_data_.begin();
3943 p != this->output_data_.end();
3944 ++p)
3945 if ((*p)->is_section())
3946 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3947
3948 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3949 p != this->output_bss_.end();
3950 ++p)
3951 if ((*p)->is_section())
3952 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3953
3954 gold_unreachable();
3955 }
3956
3957 // Return the number of Output_sections in an Output_segment.
3958
3959 unsigned int
3960 Output_segment::output_section_count() const
3961 {
3962 return (this->output_section_count_list(&this->output_data_)
3963 + this->output_section_count_list(&this->output_bss_));
3964 }
3965
3966 // Return the number of Output_sections in an Output_data_list.
3967
3968 unsigned int
3969 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3970 {
3971 unsigned int count = 0;
3972 for (Output_data_list::const_iterator p = pdl->begin();
3973 p != pdl->end();
3974 ++p)
3975 {
3976 if ((*p)->is_section())
3977 ++count;
3978 }
3979 return count;
3980 }
3981
3982 // Return the section attached to the list segment with the lowest
3983 // load address. This is used when handling a PHDRS clause in a
3984 // linker script.
3985
3986 Output_section*
3987 Output_segment::section_with_lowest_load_address() const
3988 {
3989 Output_section* found = NULL;
3990 uint64_t found_lma = 0;
3991 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3992
3993 Output_section* found_data = found;
3994 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3995 if (found != found_data && found_data != NULL)
3996 {
3997 gold_error(_("nobits section %s may not precede progbits section %s "
3998 "in same segment"),
3999 found->name(), found_data->name());
4000 return NULL;
4001 }
4002
4003 return found;
4004 }
4005
4006 // Look through a list for a section with a lower load address.
4007
4008 void
4009 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4010 Output_section** found,
4011 uint64_t* found_lma) const
4012 {
4013 for (Output_data_list::const_iterator p = pdl->begin();
4014 p != pdl->end();
4015 ++p)
4016 {
4017 if (!(*p)->is_section())
4018 continue;
4019 Output_section* os = static_cast<Output_section*>(*p);
4020 uint64_t lma = (os->has_load_address()
4021 ? os->load_address()
4022 : os->address());
4023 if (*found == NULL || lma < *found_lma)
4024 {
4025 *found = os;
4026 *found_lma = lma;
4027 }
4028 }
4029 }
4030
4031 // Write the segment data into *OPHDR.
4032
4033 template<int size, bool big_endian>
4034 void
4035 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4036 {
4037 ophdr->put_p_type(this->type_);
4038 ophdr->put_p_offset(this->offset_);
4039 ophdr->put_p_vaddr(this->vaddr_);
4040 ophdr->put_p_paddr(this->paddr_);
4041 ophdr->put_p_filesz(this->filesz_);
4042 ophdr->put_p_memsz(this->memsz_);
4043 ophdr->put_p_flags(this->flags_);
4044 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4045 }
4046
4047 // Write the section headers into V.
4048
4049 template<int size, bool big_endian>
4050 unsigned char*
4051 Output_segment::write_section_headers(const Layout* layout,
4052 const Stringpool* secnamepool,
4053 unsigned char* v,
4054 unsigned int *pshndx) const
4055 {
4056 // Every section that is attached to a segment must be attached to a
4057 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4058 // segments.
4059 if (this->type_ != elfcpp::PT_LOAD)
4060 return v;
4061
4062 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4063 &this->output_data_,
4064 v, pshndx);
4065 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4066 &this->output_bss_,
4067 v, pshndx);
4068 return v;
4069 }
4070
4071 template<int size, bool big_endian>
4072 unsigned char*
4073 Output_segment::write_section_headers_list(const Layout* layout,
4074 const Stringpool* secnamepool,
4075 const Output_data_list* pdl,
4076 unsigned char* v,
4077 unsigned int* pshndx) const
4078 {
4079 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4080 for (Output_data_list::const_iterator p = pdl->begin();
4081 p != pdl->end();
4082 ++p)
4083 {
4084 if ((*p)->is_section())
4085 {
4086 const Output_section* ps = static_cast<const Output_section*>(*p);
4087 gold_assert(*pshndx == ps->out_shndx());
4088 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4089 ps->write_header(layout, secnamepool, &oshdr);
4090 v += shdr_size;
4091 ++*pshndx;
4092 }
4093 }
4094 return v;
4095 }
4096
4097 // Print the output sections to the map file.
4098
4099 void
4100 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4101 {
4102 if (this->type() != elfcpp::PT_LOAD)
4103 return;
4104 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4105 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4106 }
4107
4108 // Print an output section list to the map file.
4109
4110 void
4111 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4112 const Output_data_list* pdl) const
4113 {
4114 for (Output_data_list::const_iterator p = pdl->begin();
4115 p != pdl->end();
4116 ++p)
4117 (*p)->print_to_mapfile(mapfile);
4118 }
4119
4120 // Output_file methods.
4121
4122 Output_file::Output_file(const char* name)
4123 : name_(name),
4124 o_(-1),
4125 file_size_(0),
4126 base_(NULL),
4127 map_is_anonymous_(false),
4128 is_temporary_(false)
4129 {
4130 }
4131
4132 // Try to open an existing file. Returns false if the file doesn't
4133 // exist, has a size of 0 or can't be mmapped.
4134
4135 bool
4136 Output_file::open_for_modification()
4137 {
4138 // The name "-" means "stdout".
4139 if (strcmp(this->name_, "-") == 0)
4140 return false;
4141
4142 // Don't bother opening files with a size of zero.
4143 struct stat s;
4144 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4145 return false;
4146
4147 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4148 if (o < 0)
4149 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4150 this->o_ = o;
4151 this->file_size_ = s.st_size;
4152
4153 // If the file can't be mmapped, copying the content to an anonymous
4154 // map will probably negate the performance benefits of incremental
4155 // linking. This could be helped by using views and loading only
4156 // the necessary parts, but this is not supported as of now.
4157 if (!this->map_no_anonymous())
4158 {
4159 release_descriptor(o, true);
4160 this->o_ = -1;
4161 this->file_size_ = 0;
4162 return false;
4163 }
4164
4165 return true;
4166 }
4167
4168 // Open the output file.
4169
4170 void
4171 Output_file::open(off_t file_size)
4172 {
4173 this->file_size_ = file_size;
4174
4175 // Unlink the file first; otherwise the open() may fail if the file
4176 // is busy (e.g. it's an executable that's currently being executed).
4177 //
4178 // However, the linker may be part of a system where a zero-length
4179 // file is created for it to write to, with tight permissions (gcc
4180 // 2.95 did something like this). Unlinking the file would work
4181 // around those permission controls, so we only unlink if the file
4182 // has a non-zero size. We also unlink only regular files to avoid
4183 // trouble with directories/etc.
4184 //
4185 // If we fail, continue; this command is merely a best-effort attempt
4186 // to improve the odds for open().
4187
4188 // We let the name "-" mean "stdout"
4189 if (!this->is_temporary_)
4190 {
4191 if (strcmp(this->name_, "-") == 0)
4192 this->o_ = STDOUT_FILENO;
4193 else
4194 {
4195 struct stat s;
4196 if (::stat(this->name_, &s) == 0
4197 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4198 {
4199 if (s.st_size != 0)
4200 ::unlink(this->name_);
4201 else if (!parameters->options().relocatable())
4202 {
4203 // If we don't unlink the existing file, add execute
4204 // permission where read permissions already exist
4205 // and where the umask permits.
4206 int mask = ::umask(0);
4207 ::umask(mask);
4208 s.st_mode |= (s.st_mode & 0444) >> 2;
4209 ::chmod(this->name_, s.st_mode & ~mask);
4210 }
4211 }
4212
4213 int mode = parameters->options().relocatable() ? 0666 : 0777;
4214 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4215 mode);
4216 if (o < 0)
4217 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4218 this->o_ = o;
4219 }
4220 }
4221
4222 this->map();
4223 }
4224
4225 // Resize the output file.
4226
4227 void
4228 Output_file::resize(off_t file_size)
4229 {
4230 // If the mmap is mapping an anonymous memory buffer, this is easy:
4231 // just mremap to the new size. If it's mapping to a file, we want
4232 // to unmap to flush to the file, then remap after growing the file.
4233 if (this->map_is_anonymous_)
4234 {
4235 void* base = ::mremap(this->base_, this->file_size_, file_size,
4236 MREMAP_MAYMOVE);
4237 if (base == MAP_FAILED)
4238 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4239 this->base_ = static_cast<unsigned char*>(base);
4240 this->file_size_ = file_size;
4241 }
4242 else
4243 {
4244 this->unmap();
4245 this->file_size_ = file_size;
4246 if (!this->map_no_anonymous())
4247 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4248 }
4249 }
4250
4251 // Map an anonymous block of memory which will later be written to the
4252 // file. Return whether the map succeeded.
4253
4254 bool
4255 Output_file::map_anonymous()
4256 {
4257 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4258 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4259 if (base != MAP_FAILED)
4260 {
4261 this->map_is_anonymous_ = true;
4262 this->base_ = static_cast<unsigned char*>(base);
4263 return true;
4264 }
4265 return false;
4266 }
4267
4268 // Map the file into memory. Return whether the mapping succeeded.
4269
4270 bool
4271 Output_file::map_no_anonymous()
4272 {
4273 const int o = this->o_;
4274
4275 // If the output file is not a regular file, don't try to mmap it;
4276 // instead, we'll mmap a block of memory (an anonymous buffer), and
4277 // then later write the buffer to the file.
4278 void* base;
4279 struct stat statbuf;
4280 if (o == STDOUT_FILENO || o == STDERR_FILENO
4281 || ::fstat(o, &statbuf) != 0
4282 || !S_ISREG(statbuf.st_mode)
4283 || this->is_temporary_)
4284 return false;
4285
4286 // Ensure that we have disk space available for the file. If we
4287 // don't do this, it is possible that we will call munmap, close,
4288 // and exit with dirty buffers still in the cache with no assigned
4289 // disk blocks. If the disk is out of space at that point, the
4290 // output file will wind up incomplete, but we will have already
4291 // exited. The alternative to fallocate would be to use fdatasync,
4292 // but that would be a more significant performance hit.
4293 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4294 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4295
4296 // Map the file into memory.
4297 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4298 MAP_SHARED, o, 0);
4299
4300 // The mmap call might fail because of file system issues: the file
4301 // system might not support mmap at all, or it might not support
4302 // mmap with PROT_WRITE.
4303 if (base == MAP_FAILED)
4304 return false;
4305
4306 this->map_is_anonymous_ = false;
4307 this->base_ = static_cast<unsigned char*>(base);
4308 return true;
4309 }
4310
4311 // Map the file into memory.
4312
4313 void
4314 Output_file::map()
4315 {
4316 if (this->map_no_anonymous())
4317 return;
4318
4319 // The mmap call might fail because of file system issues: the file
4320 // system might not support mmap at all, or it might not support
4321 // mmap with PROT_WRITE. I'm not sure which errno values we will
4322 // see in all cases, so if the mmap fails for any reason and we
4323 // don't care about file contents, try for an anonymous map.
4324 if (this->map_anonymous())
4325 return;
4326
4327 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4328 this->name_, static_cast<unsigned long>(this->file_size_),
4329 strerror(errno));
4330 }
4331
4332 // Unmap the file from memory.
4333
4334 void
4335 Output_file::unmap()
4336 {
4337 if (::munmap(this->base_, this->file_size_) < 0)
4338 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4339 this->base_ = NULL;
4340 }
4341
4342 // Close the output file.
4343
4344 void
4345 Output_file::close()
4346 {
4347 // If the map isn't file-backed, we need to write it now.
4348 if (this->map_is_anonymous_ && !this->is_temporary_)
4349 {
4350 size_t bytes_to_write = this->file_size_;
4351 size_t offset = 0;
4352 while (bytes_to_write > 0)
4353 {
4354 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4355 bytes_to_write);
4356 if (bytes_written == 0)
4357 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4358 else if (bytes_written < 0)
4359 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4360 else
4361 {
4362 bytes_to_write -= bytes_written;
4363 offset += bytes_written;
4364 }
4365 }
4366 }
4367 this->unmap();
4368
4369 // We don't close stdout or stderr
4370 if (this->o_ != STDOUT_FILENO
4371 && this->o_ != STDERR_FILENO
4372 && !this->is_temporary_)
4373 if (::close(this->o_) < 0)
4374 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4375 this->o_ = -1;
4376 }
4377
4378 // Instantiate the templates we need. We could use the configure
4379 // script to restrict this to only the ones for implemented targets.
4380
4381 #ifdef HAVE_TARGET_32_LITTLE
4382 template
4383 off_t
4384 Output_section::add_input_section<32, false>(
4385 Sized_relobj<32, false>* object,
4386 unsigned int shndx,
4387 const char* secname,
4388 const elfcpp::Shdr<32, false>& shdr,
4389 unsigned int reloc_shndx,
4390 bool have_sections_script);
4391 #endif
4392
4393 #ifdef HAVE_TARGET_32_BIG
4394 template
4395 off_t
4396 Output_section::add_input_section<32, true>(
4397 Sized_relobj<32, true>* object,
4398 unsigned int shndx,
4399 const char* secname,
4400 const elfcpp::Shdr<32, true>& shdr,
4401 unsigned int reloc_shndx,
4402 bool have_sections_script);
4403 #endif
4404
4405 #ifdef HAVE_TARGET_64_LITTLE
4406 template
4407 off_t
4408 Output_section::add_input_section<64, false>(
4409 Sized_relobj<64, false>* object,
4410 unsigned int shndx,
4411 const char* secname,
4412 const elfcpp::Shdr<64, false>& shdr,
4413 unsigned int reloc_shndx,
4414 bool have_sections_script);
4415 #endif
4416
4417 #ifdef HAVE_TARGET_64_BIG
4418 template
4419 off_t
4420 Output_section::add_input_section<64, true>(
4421 Sized_relobj<64, true>* object,
4422 unsigned int shndx,
4423 const char* secname,
4424 const elfcpp::Shdr<64, true>& shdr,
4425 unsigned int reloc_shndx,
4426 bool have_sections_script);
4427 #endif
4428
4429 #ifdef HAVE_TARGET_32_LITTLE
4430 template
4431 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4432 #endif
4433
4434 #ifdef HAVE_TARGET_32_BIG
4435 template
4436 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4437 #endif
4438
4439 #ifdef HAVE_TARGET_64_LITTLE
4440 template
4441 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4442 #endif
4443
4444 #ifdef HAVE_TARGET_64_BIG
4445 template
4446 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4447 #endif
4448
4449 #ifdef HAVE_TARGET_32_LITTLE
4450 template
4451 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4452 #endif
4453
4454 #ifdef HAVE_TARGET_32_BIG
4455 template
4456 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4457 #endif
4458
4459 #ifdef HAVE_TARGET_64_LITTLE
4460 template
4461 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4462 #endif
4463
4464 #ifdef HAVE_TARGET_64_BIG
4465 template
4466 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4467 #endif
4468
4469 #ifdef HAVE_TARGET_32_LITTLE
4470 template
4471 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4472 #endif
4473
4474 #ifdef HAVE_TARGET_32_BIG
4475 template
4476 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4477 #endif
4478
4479 #ifdef HAVE_TARGET_64_LITTLE
4480 template
4481 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4482 #endif
4483
4484 #ifdef HAVE_TARGET_64_BIG
4485 template
4486 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4487 #endif
4488
4489 #ifdef HAVE_TARGET_32_LITTLE
4490 template
4491 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4492 #endif
4493
4494 #ifdef HAVE_TARGET_32_BIG
4495 template
4496 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4497 #endif
4498
4499 #ifdef HAVE_TARGET_64_LITTLE
4500 template
4501 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4502 #endif
4503
4504 #ifdef HAVE_TARGET_64_BIG
4505 template
4506 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4507 #endif
4508
4509 #ifdef HAVE_TARGET_32_LITTLE
4510 template
4511 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4512 #endif
4513
4514 #ifdef HAVE_TARGET_32_BIG
4515 template
4516 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4517 #endif
4518
4519 #ifdef HAVE_TARGET_64_LITTLE
4520 template
4521 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4522 #endif
4523
4524 #ifdef HAVE_TARGET_64_BIG
4525 template
4526 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4527 #endif
4528
4529 #ifdef HAVE_TARGET_32_LITTLE
4530 template
4531 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4532 #endif
4533
4534 #ifdef HAVE_TARGET_32_BIG
4535 template
4536 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4537 #endif
4538
4539 #ifdef HAVE_TARGET_64_LITTLE
4540 template
4541 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4542 #endif
4543
4544 #ifdef HAVE_TARGET_64_BIG
4545 template
4546 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4547 #endif
4548
4549 #ifdef HAVE_TARGET_32_LITTLE
4550 template
4551 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4552 #endif
4553
4554 #ifdef HAVE_TARGET_32_BIG
4555 template
4556 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4557 #endif
4558
4559 #ifdef HAVE_TARGET_64_LITTLE
4560 template
4561 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4562 #endif
4563
4564 #ifdef HAVE_TARGET_64_BIG
4565 template
4566 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4567 #endif
4568
4569 #ifdef HAVE_TARGET_32_LITTLE
4570 template
4571 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4572 #endif
4573
4574 #ifdef HAVE_TARGET_32_BIG
4575 template
4576 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4577 #endif
4578
4579 #ifdef HAVE_TARGET_64_LITTLE
4580 template
4581 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4582 #endif
4583
4584 #ifdef HAVE_TARGET_64_BIG
4585 template
4586 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4587 #endif
4588
4589 #ifdef HAVE_TARGET_32_LITTLE
4590 template
4591 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4592 #endif
4593
4594 #ifdef HAVE_TARGET_32_BIG
4595 template
4596 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4597 #endif
4598
4599 #ifdef HAVE_TARGET_64_LITTLE
4600 template
4601 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4602 #endif
4603
4604 #ifdef HAVE_TARGET_64_BIG
4605 template
4606 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4607 #endif
4608
4609 #ifdef HAVE_TARGET_32_LITTLE
4610 template
4611 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4612 #endif
4613
4614 #ifdef HAVE_TARGET_32_BIG
4615 template
4616 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4617 #endif
4618
4619 #ifdef HAVE_TARGET_64_LITTLE
4620 template
4621 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4622 #endif
4623
4624 #ifdef HAVE_TARGET_64_BIG
4625 template
4626 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4627 #endif
4628
4629 #ifdef HAVE_TARGET_32_LITTLE
4630 template
4631 class Output_data_group<32, false>;
4632 #endif
4633
4634 #ifdef HAVE_TARGET_32_BIG
4635 template
4636 class Output_data_group<32, true>;
4637 #endif
4638
4639 #ifdef HAVE_TARGET_64_LITTLE
4640 template
4641 class Output_data_group<64, false>;
4642 #endif
4643
4644 #ifdef HAVE_TARGET_64_BIG
4645 template
4646 class Output_data_group<64, true>;
4647 #endif
4648
4649 #ifdef HAVE_TARGET_32_LITTLE
4650 template
4651 class Output_data_got<32, false>;
4652 #endif
4653
4654 #ifdef HAVE_TARGET_32_BIG
4655 template
4656 class Output_data_got<32, true>;
4657 #endif
4658
4659 #ifdef HAVE_TARGET_64_LITTLE
4660 template
4661 class Output_data_got<64, false>;
4662 #endif
4663
4664 #ifdef HAVE_TARGET_64_BIG
4665 template
4666 class Output_data_got<64, true>;
4667 #endif
4668
4669 } // End namespace gold.
This page took 0.131914 seconds and 5 git commands to generate.