PR gold/13249
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 #ifndef HAVE_POSIX_FALLOCATE
115 // A dummy, non general, version of posix_fallocate. Here we just set
116 // the file size and hope that there is enough disk space. FIXME: We
117 // could allocate disk space by walking block by block and writing a
118 // zero byte into each block.
119 static int
120 posix_fallocate(int o, off_t offset, off_t len)
121 {
122 return ftruncate(o, offset + len);
123 }
124 #endif // !defined(HAVE_POSIX_FALLOCATE)
125
126 // Mingw does not have S_ISLNK.
127 #ifndef S_ISLNK
128 # define S_ISLNK(mode) 0
129 #endif
130
131 namespace gold
132 {
133
134 // Output_data variables.
135
136 bool Output_data::allocated_sizes_are_fixed;
137
138 // Output_data methods.
139
140 Output_data::~Output_data()
141 {
142 }
143
144 // Return the default alignment for the target size.
145
146 uint64_t
147 Output_data::default_alignment()
148 {
149 return Output_data::default_alignment_for_size(
150 parameters->target().get_size());
151 }
152
153 // Return the default alignment for a size--32 or 64.
154
155 uint64_t
156 Output_data::default_alignment_for_size(int size)
157 {
158 if (size == 32)
159 return 4;
160 else if (size == 64)
161 return 8;
162 else
163 gold_unreachable();
164 }
165
166 // Output_section_header methods. This currently assumes that the
167 // segment and section lists are complete at construction time.
168
169 Output_section_headers::Output_section_headers(
170 const Layout* layout,
171 const Layout::Segment_list* segment_list,
172 const Layout::Section_list* section_list,
173 const Layout::Section_list* unattached_section_list,
174 const Stringpool* secnamepool,
175 const Output_section* shstrtab_section)
176 : layout_(layout),
177 segment_list_(segment_list),
178 section_list_(section_list),
179 unattached_section_list_(unattached_section_list),
180 secnamepool_(secnamepool),
181 shstrtab_section_(shstrtab_section)
182 {
183 }
184
185 // Compute the current data size.
186
187 off_t
188 Output_section_headers::do_size() const
189 {
190 // Count all the sections. Start with 1 for the null section.
191 off_t count = 1;
192 if (!parameters->options().relocatable())
193 {
194 for (Layout::Segment_list::const_iterator p =
195 this->segment_list_->begin();
196 p != this->segment_list_->end();
197 ++p)
198 if ((*p)->type() == elfcpp::PT_LOAD)
199 count += (*p)->output_section_count();
200 }
201 else
202 {
203 for (Layout::Section_list::const_iterator p =
204 this->section_list_->begin();
205 p != this->section_list_->end();
206 ++p)
207 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
208 ++count;
209 }
210 count += this->unattached_section_list_->size();
211
212 const int size = parameters->target().get_size();
213 int shdr_size;
214 if (size == 32)
215 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
216 else if (size == 64)
217 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
218 else
219 gold_unreachable();
220
221 return count * shdr_size;
222 }
223
224 // Write out the section headers.
225
226 void
227 Output_section_headers::do_write(Output_file* of)
228 {
229 switch (parameters->size_and_endianness())
230 {
231 #ifdef HAVE_TARGET_32_LITTLE
232 case Parameters::TARGET_32_LITTLE:
233 this->do_sized_write<32, false>(of);
234 break;
235 #endif
236 #ifdef HAVE_TARGET_32_BIG
237 case Parameters::TARGET_32_BIG:
238 this->do_sized_write<32, true>(of);
239 break;
240 #endif
241 #ifdef HAVE_TARGET_64_LITTLE
242 case Parameters::TARGET_64_LITTLE:
243 this->do_sized_write<64, false>(of);
244 break;
245 #endif
246 #ifdef HAVE_TARGET_64_BIG
247 case Parameters::TARGET_64_BIG:
248 this->do_sized_write<64, true>(of);
249 break;
250 #endif
251 default:
252 gold_unreachable();
253 }
254 }
255
256 template<int size, bool big_endian>
257 void
258 Output_section_headers::do_sized_write(Output_file* of)
259 {
260 off_t all_shdrs_size = this->data_size();
261 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
262
263 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
264 unsigned char* v = view;
265
266 {
267 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
268 oshdr.put_sh_name(0);
269 oshdr.put_sh_type(elfcpp::SHT_NULL);
270 oshdr.put_sh_flags(0);
271 oshdr.put_sh_addr(0);
272 oshdr.put_sh_offset(0);
273
274 size_t section_count = (this->data_size()
275 / elfcpp::Elf_sizes<size>::shdr_size);
276 if (section_count < elfcpp::SHN_LORESERVE)
277 oshdr.put_sh_size(0);
278 else
279 oshdr.put_sh_size(section_count);
280
281 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
282 if (shstrndx < elfcpp::SHN_LORESERVE)
283 oshdr.put_sh_link(0);
284 else
285 oshdr.put_sh_link(shstrndx);
286
287 size_t segment_count = this->segment_list_->size();
288 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
289
290 oshdr.put_sh_addralign(0);
291 oshdr.put_sh_entsize(0);
292 }
293
294 v += shdr_size;
295
296 unsigned int shndx = 1;
297 if (!parameters->options().relocatable())
298 {
299 for (Layout::Segment_list::const_iterator p =
300 this->segment_list_->begin();
301 p != this->segment_list_->end();
302 ++p)
303 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
304 this->secnamepool_,
305 v,
306 &shndx);
307 }
308 else
309 {
310 for (Layout::Section_list::const_iterator p =
311 this->section_list_->begin();
312 p != this->section_list_->end();
313 ++p)
314 {
315 // We do unallocated sections below, except that group
316 // sections have to come first.
317 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
318 && (*p)->type() != elfcpp::SHT_GROUP)
319 continue;
320 gold_assert(shndx == (*p)->out_shndx());
321 elfcpp::Shdr_write<size, big_endian> oshdr(v);
322 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
323 v += shdr_size;
324 ++shndx;
325 }
326 }
327
328 for (Layout::Section_list::const_iterator p =
329 this->unattached_section_list_->begin();
330 p != this->unattached_section_list_->end();
331 ++p)
332 {
333 // For a relocatable link, we did unallocated group sections
334 // above, since they have to come first.
335 if ((*p)->type() == elfcpp::SHT_GROUP
336 && parameters->options().relocatable())
337 continue;
338 gold_assert(shndx == (*p)->out_shndx());
339 elfcpp::Shdr_write<size, big_endian> oshdr(v);
340 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
341 v += shdr_size;
342 ++shndx;
343 }
344
345 of->write_output_view(this->offset(), all_shdrs_size, view);
346 }
347
348 // Output_segment_header methods.
349
350 Output_segment_headers::Output_segment_headers(
351 const Layout::Segment_list& segment_list)
352 : segment_list_(segment_list)
353 {
354 this->set_current_data_size_for_child(this->do_size());
355 }
356
357 void
358 Output_segment_headers::do_write(Output_file* of)
359 {
360 switch (parameters->size_and_endianness())
361 {
362 #ifdef HAVE_TARGET_32_LITTLE
363 case Parameters::TARGET_32_LITTLE:
364 this->do_sized_write<32, false>(of);
365 break;
366 #endif
367 #ifdef HAVE_TARGET_32_BIG
368 case Parameters::TARGET_32_BIG:
369 this->do_sized_write<32, true>(of);
370 break;
371 #endif
372 #ifdef HAVE_TARGET_64_LITTLE
373 case Parameters::TARGET_64_LITTLE:
374 this->do_sized_write<64, false>(of);
375 break;
376 #endif
377 #ifdef HAVE_TARGET_64_BIG
378 case Parameters::TARGET_64_BIG:
379 this->do_sized_write<64, true>(of);
380 break;
381 #endif
382 default:
383 gold_unreachable();
384 }
385 }
386
387 template<int size, bool big_endian>
388 void
389 Output_segment_headers::do_sized_write(Output_file* of)
390 {
391 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
392 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
393 gold_assert(all_phdrs_size == this->data_size());
394 unsigned char* view = of->get_output_view(this->offset(),
395 all_phdrs_size);
396 unsigned char* v = view;
397 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
398 p != this->segment_list_.end();
399 ++p)
400 {
401 elfcpp::Phdr_write<size, big_endian> ophdr(v);
402 (*p)->write_header(&ophdr);
403 v += phdr_size;
404 }
405
406 gold_assert(v - view == all_phdrs_size);
407
408 of->write_output_view(this->offset(), all_phdrs_size, view);
409 }
410
411 off_t
412 Output_segment_headers::do_size() const
413 {
414 const int size = parameters->target().get_size();
415 int phdr_size;
416 if (size == 32)
417 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
418 else if (size == 64)
419 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
420 else
421 gold_unreachable();
422
423 return this->segment_list_.size() * phdr_size;
424 }
425
426 // Output_file_header methods.
427
428 Output_file_header::Output_file_header(const Target* target,
429 const Symbol_table* symtab,
430 const Output_segment_headers* osh)
431 : target_(target),
432 symtab_(symtab),
433 segment_header_(osh),
434 section_header_(NULL),
435 shstrtab_(NULL)
436 {
437 this->set_data_size(this->do_size());
438 }
439
440 // Set the section table information for a file header.
441
442 void
443 Output_file_header::set_section_info(const Output_section_headers* shdrs,
444 const Output_section* shstrtab)
445 {
446 this->section_header_ = shdrs;
447 this->shstrtab_ = shstrtab;
448 }
449
450 // Write out the file header.
451
452 void
453 Output_file_header::do_write(Output_file* of)
454 {
455 gold_assert(this->offset() == 0);
456
457 switch (parameters->size_and_endianness())
458 {
459 #ifdef HAVE_TARGET_32_LITTLE
460 case Parameters::TARGET_32_LITTLE:
461 this->do_sized_write<32, false>(of);
462 break;
463 #endif
464 #ifdef HAVE_TARGET_32_BIG
465 case Parameters::TARGET_32_BIG:
466 this->do_sized_write<32, true>(of);
467 break;
468 #endif
469 #ifdef HAVE_TARGET_64_LITTLE
470 case Parameters::TARGET_64_LITTLE:
471 this->do_sized_write<64, false>(of);
472 break;
473 #endif
474 #ifdef HAVE_TARGET_64_BIG
475 case Parameters::TARGET_64_BIG:
476 this->do_sized_write<64, true>(of);
477 break;
478 #endif
479 default:
480 gold_unreachable();
481 }
482 }
483
484 // Write out the file header with appropriate size and endianness.
485
486 template<int size, bool big_endian>
487 void
488 Output_file_header::do_sized_write(Output_file* of)
489 {
490 gold_assert(this->offset() == 0);
491
492 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
493 unsigned char* view = of->get_output_view(0, ehdr_size);
494 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
495
496 unsigned char e_ident[elfcpp::EI_NIDENT];
497 memset(e_ident, 0, elfcpp::EI_NIDENT);
498 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
499 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
500 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
501 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
502 if (size == 32)
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
504 else if (size == 64)
505 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
506 else
507 gold_unreachable();
508 e_ident[elfcpp::EI_DATA] = (big_endian
509 ? elfcpp::ELFDATA2MSB
510 : elfcpp::ELFDATA2LSB);
511 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
512 oehdr.put_e_ident(e_ident);
513
514 elfcpp::ET e_type;
515 if (parameters->options().relocatable())
516 e_type = elfcpp::ET_REL;
517 else if (parameters->options().output_is_position_independent())
518 e_type = elfcpp::ET_DYN;
519 else
520 e_type = elfcpp::ET_EXEC;
521 oehdr.put_e_type(e_type);
522
523 oehdr.put_e_machine(this->target_->machine_code());
524 oehdr.put_e_version(elfcpp::EV_CURRENT);
525
526 oehdr.put_e_entry(this->entry<size>());
527
528 if (this->segment_header_ == NULL)
529 oehdr.put_e_phoff(0);
530 else
531 oehdr.put_e_phoff(this->segment_header_->offset());
532
533 oehdr.put_e_shoff(this->section_header_->offset());
534 oehdr.put_e_flags(this->target_->processor_specific_flags());
535 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
536
537 if (this->segment_header_ == NULL)
538 {
539 oehdr.put_e_phentsize(0);
540 oehdr.put_e_phnum(0);
541 }
542 else
543 {
544 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
545 size_t phnum = (this->segment_header_->data_size()
546 / elfcpp::Elf_sizes<size>::phdr_size);
547 if (phnum > elfcpp::PN_XNUM)
548 phnum = elfcpp::PN_XNUM;
549 oehdr.put_e_phnum(phnum);
550 }
551
552 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
553 size_t section_count = (this->section_header_->data_size()
554 / elfcpp::Elf_sizes<size>::shdr_size);
555
556 if (section_count < elfcpp::SHN_LORESERVE)
557 oehdr.put_e_shnum(this->section_header_->data_size()
558 / elfcpp::Elf_sizes<size>::shdr_size);
559 else
560 oehdr.put_e_shnum(0);
561
562 unsigned int shstrndx = this->shstrtab_->out_shndx();
563 if (shstrndx < elfcpp::SHN_LORESERVE)
564 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
565 else
566 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
567
568 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
569 // the e_ident field.
570 parameters->target().adjust_elf_header(view, ehdr_size);
571
572 of->write_output_view(0, ehdr_size, view);
573 }
574
575 // Return the value to use for the entry address.
576
577 template<int size>
578 typename elfcpp::Elf_types<size>::Elf_Addr
579 Output_file_header::entry()
580 {
581 const bool should_issue_warning = (parameters->options().entry() != NULL
582 && !parameters->options().relocatable()
583 && !parameters->options().shared());
584 const char* entry = parameters->entry();
585 Symbol* sym = this->symtab_->lookup(entry);
586
587 typename Sized_symbol<size>::Value_type v;
588 if (sym != NULL)
589 {
590 Sized_symbol<size>* ssym;
591 ssym = this->symtab_->get_sized_symbol<size>(sym);
592 if (!ssym->is_defined() && should_issue_warning)
593 gold_warning("entry symbol '%s' exists but is not defined", entry);
594 v = ssym->value();
595 }
596 else
597 {
598 // We couldn't find the entry symbol. See if we can parse it as
599 // a number. This supports, e.g., -e 0x1000.
600 char* endptr;
601 v = strtoull(entry, &endptr, 0);
602 if (*endptr != '\0')
603 {
604 if (should_issue_warning)
605 gold_warning("cannot find entry symbol '%s'", entry);
606 v = 0;
607 }
608 }
609
610 return v;
611 }
612
613 // Compute the current data size.
614
615 off_t
616 Output_file_header::do_size() const
617 {
618 const int size = parameters->target().get_size();
619 if (size == 32)
620 return elfcpp::Elf_sizes<32>::ehdr_size;
621 else if (size == 64)
622 return elfcpp::Elf_sizes<64>::ehdr_size;
623 else
624 gold_unreachable();
625 }
626
627 // Output_data_const methods.
628
629 void
630 Output_data_const::do_write(Output_file* of)
631 {
632 of->write(this->offset(), this->data_.data(), this->data_.size());
633 }
634
635 // Output_data_const_buffer methods.
636
637 void
638 Output_data_const_buffer::do_write(Output_file* of)
639 {
640 of->write(this->offset(), this->p_, this->data_size());
641 }
642
643 // Output_section_data methods.
644
645 // Record the output section, and set the entry size and such.
646
647 void
648 Output_section_data::set_output_section(Output_section* os)
649 {
650 gold_assert(this->output_section_ == NULL);
651 this->output_section_ = os;
652 this->do_adjust_output_section(os);
653 }
654
655 // Return the section index of the output section.
656
657 unsigned int
658 Output_section_data::do_out_shndx() const
659 {
660 gold_assert(this->output_section_ != NULL);
661 return this->output_section_->out_shndx();
662 }
663
664 // Set the alignment, which means we may need to update the alignment
665 // of the output section.
666
667 void
668 Output_section_data::set_addralign(uint64_t addralign)
669 {
670 this->addralign_ = addralign;
671 if (this->output_section_ != NULL
672 && this->output_section_->addralign() < addralign)
673 this->output_section_->set_addralign(addralign);
674 }
675
676 // Output_data_strtab methods.
677
678 // Set the final data size.
679
680 void
681 Output_data_strtab::set_final_data_size()
682 {
683 this->strtab_->set_string_offsets();
684 this->set_data_size(this->strtab_->get_strtab_size());
685 }
686
687 // Write out a string table.
688
689 void
690 Output_data_strtab::do_write(Output_file* of)
691 {
692 this->strtab_->write(of, this->offset());
693 }
694
695 // Output_reloc methods.
696
697 // A reloc against a global symbol.
698
699 template<bool dynamic, int size, bool big_endian>
700 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
701 Symbol* gsym,
702 unsigned int type,
703 Output_data* od,
704 Address address,
705 bool is_relative,
706 bool is_symbolless)
707 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
708 is_relative_(is_relative), is_symbolless_(is_symbolless),
709 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
710 {
711 // this->type_ is a bitfield; make sure TYPE fits.
712 gold_assert(this->type_ == type);
713 this->u1_.gsym = gsym;
714 this->u2_.od = od;
715 if (dynamic)
716 this->set_needs_dynsym_index();
717 }
718
719 template<bool dynamic, int size, bool big_endian>
720 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
721 Symbol* gsym,
722 unsigned int type,
723 Sized_relobj<size, big_endian>* relobj,
724 unsigned int shndx,
725 Address address,
726 bool is_relative,
727 bool is_symbolless)
728 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
729 is_relative_(is_relative), is_symbolless_(is_symbolless),
730 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
731 {
732 gold_assert(shndx != INVALID_CODE);
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.relobj = relobj;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 }
740
741 // A reloc against a local symbol.
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int local_sym_index,
747 unsigned int type,
748 Output_data* od,
749 Address address,
750 bool is_relative,
751 bool is_symbolless,
752 bool is_section_symbol,
753 bool use_plt_offset)
754 : address_(address), local_sym_index_(local_sym_index), type_(type),
755 is_relative_(is_relative), is_symbolless_(is_symbolless),
756 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
757 shndx_(INVALID_CODE)
758 {
759 gold_assert(local_sym_index != GSYM_CODE
760 && local_sym_index != INVALID_CODE);
761 // this->type_ is a bitfield; make sure TYPE fits.
762 gold_assert(this->type_ == type);
763 this->u1_.relobj = relobj;
764 this->u2_.od = od;
765 if (dynamic)
766 this->set_needs_dynsym_index();
767 }
768
769 template<bool dynamic, int size, bool big_endian>
770 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
771 Sized_relobj<size, big_endian>* relobj,
772 unsigned int local_sym_index,
773 unsigned int type,
774 unsigned int shndx,
775 Address address,
776 bool is_relative,
777 bool is_symbolless,
778 bool is_section_symbol,
779 bool use_plt_offset)
780 : address_(address), local_sym_index_(local_sym_index), type_(type),
781 is_relative_(is_relative), is_symbolless_(is_symbolless),
782 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
783 shndx_(shndx)
784 {
785 gold_assert(local_sym_index != GSYM_CODE
786 && local_sym_index != INVALID_CODE);
787 gold_assert(shndx != INVALID_CODE);
788 // this->type_ is a bitfield; make sure TYPE fits.
789 gold_assert(this->type_ == type);
790 this->u1_.relobj = relobj;
791 this->u2_.relobj = relobj;
792 if (dynamic)
793 this->set_needs_dynsym_index();
794 }
795
796 // A reloc against the STT_SECTION symbol of an output section.
797
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800 Output_section* os,
801 unsigned int type,
802 Output_data* od,
803 Address address)
804 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
805 is_relative_(false), is_symbolless_(false),
806 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
807 {
808 // this->type_ is a bitfield; make sure TYPE fits.
809 gold_assert(this->type_ == type);
810 this->u1_.os = os;
811 this->u2_.od = od;
812 if (dynamic)
813 this->set_needs_dynsym_index();
814 else
815 os->set_needs_symtab_index();
816 }
817
818 template<bool dynamic, int size, bool big_endian>
819 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
820 Output_section* os,
821 unsigned int type,
822 Sized_relobj<size, big_endian>* relobj,
823 unsigned int shndx,
824 Address address)
825 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
826 is_relative_(false), is_symbolless_(false),
827 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
828 {
829 gold_assert(shndx != INVALID_CODE);
830 // this->type_ is a bitfield; make sure TYPE fits.
831 gold_assert(this->type_ == type);
832 this->u1_.os = os;
833 this->u2_.relobj = relobj;
834 if (dynamic)
835 this->set_needs_dynsym_index();
836 else
837 os->set_needs_symtab_index();
838 }
839
840 // An absolute relocation.
841
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844 unsigned int type,
845 Output_data* od,
846 Address address)
847 : address_(address), local_sym_index_(0), type_(type),
848 is_relative_(false), is_symbolless_(false),
849 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
850 {
851 // this->type_ is a bitfield; make sure TYPE fits.
852 gold_assert(this->type_ == type);
853 this->u1_.relobj = NULL;
854 this->u2_.od = od;
855 }
856
857 template<bool dynamic, int size, bool big_endian>
858 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
859 unsigned int type,
860 Sized_relobj<size, big_endian>* relobj,
861 unsigned int shndx,
862 Address address)
863 : address_(address), local_sym_index_(0), type_(type),
864 is_relative_(false), is_symbolless_(false),
865 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
866 {
867 gold_assert(shndx != INVALID_CODE);
868 // this->type_ is a bitfield; make sure TYPE fits.
869 gold_assert(this->type_ == type);
870 this->u1_.relobj = NULL;
871 this->u2_.relobj = relobj;
872 }
873
874 // A target specific relocation.
875
876 template<bool dynamic, int size, bool big_endian>
877 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
878 unsigned int type,
879 void* arg,
880 Output_data* od,
881 Address address)
882 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
883 is_relative_(false), is_symbolless_(false),
884 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
885 {
886 // this->type_ is a bitfield; make sure TYPE fits.
887 gold_assert(this->type_ == type);
888 this->u1_.arg = arg;
889 this->u2_.od = od;
890 }
891
892 template<bool dynamic, int size, bool big_endian>
893 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
894 unsigned int type,
895 void* arg,
896 Sized_relobj<size, big_endian>* relobj,
897 unsigned int shndx,
898 Address address)
899 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
900 is_relative_(false), is_symbolless_(false),
901 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
902 {
903 gold_assert(shndx != INVALID_CODE);
904 // this->type_ is a bitfield; make sure TYPE fits.
905 gold_assert(this->type_ == type);
906 this->u1_.arg = arg;
907 this->u2_.relobj = relobj;
908 }
909
910 // Record that we need a dynamic symbol index for this relocation.
911
912 template<bool dynamic, int size, bool big_endian>
913 void
914 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
915 set_needs_dynsym_index()
916 {
917 if (this->is_symbolless_)
918 return;
919 switch (this->local_sym_index_)
920 {
921 case INVALID_CODE:
922 gold_unreachable();
923
924 case GSYM_CODE:
925 this->u1_.gsym->set_needs_dynsym_entry();
926 break;
927
928 case SECTION_CODE:
929 this->u1_.os->set_needs_dynsym_index();
930 break;
931
932 case TARGET_CODE:
933 // The target must take care of this if necessary.
934 break;
935
936 case 0:
937 break;
938
939 default:
940 {
941 const unsigned int lsi = this->local_sym_index_;
942 Sized_relobj_file<size, big_endian>* relobj =
943 this->u1_.relobj->sized_relobj();
944 gold_assert(relobj != NULL);
945 if (!this->is_section_symbol_)
946 relobj->set_needs_output_dynsym_entry(lsi);
947 else
948 relobj->output_section(lsi)->set_needs_dynsym_index();
949 }
950 break;
951 }
952 }
953
954 // Get the symbol index of a relocation.
955
956 template<bool dynamic, int size, bool big_endian>
957 unsigned int
958 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
959 const
960 {
961 unsigned int index;
962 if (this->is_symbolless_)
963 return 0;
964 switch (this->local_sym_index_)
965 {
966 case INVALID_CODE:
967 gold_unreachable();
968
969 case GSYM_CODE:
970 if (this->u1_.gsym == NULL)
971 index = 0;
972 else if (dynamic)
973 index = this->u1_.gsym->dynsym_index();
974 else
975 index = this->u1_.gsym->symtab_index();
976 break;
977
978 case SECTION_CODE:
979 if (dynamic)
980 index = this->u1_.os->dynsym_index();
981 else
982 index = this->u1_.os->symtab_index();
983 break;
984
985 case TARGET_CODE:
986 index = parameters->target().reloc_symbol_index(this->u1_.arg,
987 this->type_);
988 break;
989
990 case 0:
991 // Relocations without symbols use a symbol index of 0.
992 index = 0;
993 break;
994
995 default:
996 {
997 const unsigned int lsi = this->local_sym_index_;
998 Sized_relobj_file<size, big_endian>* relobj =
999 this->u1_.relobj->sized_relobj();
1000 gold_assert(relobj != NULL);
1001 if (!this->is_section_symbol_)
1002 {
1003 if (dynamic)
1004 index = relobj->dynsym_index(lsi);
1005 else
1006 index = relobj->symtab_index(lsi);
1007 }
1008 else
1009 {
1010 Output_section* os = relobj->output_section(lsi);
1011 gold_assert(os != NULL);
1012 if (dynamic)
1013 index = os->dynsym_index();
1014 else
1015 index = os->symtab_index();
1016 }
1017 }
1018 break;
1019 }
1020 gold_assert(index != -1U);
1021 return index;
1022 }
1023
1024 // For a local section symbol, get the address of the offset ADDEND
1025 // within the input section.
1026
1027 template<bool dynamic, int size, bool big_endian>
1028 typename elfcpp::Elf_types<size>::Elf_Addr
1029 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1030 local_section_offset(Addend addend) const
1031 {
1032 gold_assert(this->local_sym_index_ != GSYM_CODE
1033 && this->local_sym_index_ != SECTION_CODE
1034 && this->local_sym_index_ != TARGET_CODE
1035 && this->local_sym_index_ != INVALID_CODE
1036 && this->local_sym_index_ != 0
1037 && this->is_section_symbol_);
1038 const unsigned int lsi = this->local_sym_index_;
1039 Output_section* os = this->u1_.relobj->output_section(lsi);
1040 gold_assert(os != NULL);
1041 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1042 if (offset != invalid_address)
1043 return offset + addend;
1044 // This is a merge section.
1045 Sized_relobj_file<size, big_endian>* relobj =
1046 this->u1_.relobj->sized_relobj();
1047 gold_assert(relobj != NULL);
1048 offset = os->output_address(relobj, lsi, addend);
1049 gold_assert(offset != invalid_address);
1050 return offset;
1051 }
1052
1053 // Get the output address of a relocation.
1054
1055 template<bool dynamic, int size, bool big_endian>
1056 typename elfcpp::Elf_types<size>::Elf_Addr
1057 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1058 {
1059 Address address = this->address_;
1060 if (this->shndx_ != INVALID_CODE)
1061 {
1062 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1063 gold_assert(os != NULL);
1064 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1065 if (off != invalid_address)
1066 address += os->address() + off;
1067 else
1068 {
1069 Sized_relobj_file<size, big_endian>* relobj =
1070 this->u2_.relobj->sized_relobj();
1071 gold_assert(relobj != NULL);
1072 address = os->output_address(relobj, this->shndx_, address);
1073 gold_assert(address != invalid_address);
1074 }
1075 }
1076 else if (this->u2_.od != NULL)
1077 address += this->u2_.od->address();
1078 return address;
1079 }
1080
1081 // Write out the offset and info fields of a Rel or Rela relocation
1082 // entry.
1083
1084 template<bool dynamic, int size, bool big_endian>
1085 template<typename Write_rel>
1086 void
1087 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1088 Write_rel* wr) const
1089 {
1090 wr->put_r_offset(this->get_address());
1091 unsigned int sym_index = this->get_symbol_index();
1092 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1093 }
1094
1095 // Write out a Rel relocation.
1096
1097 template<bool dynamic, int size, bool big_endian>
1098 void
1099 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1100 unsigned char* pov) const
1101 {
1102 elfcpp::Rel_write<size, big_endian> orel(pov);
1103 this->write_rel(&orel);
1104 }
1105
1106 // Get the value of the symbol referred to by a Rel relocation.
1107
1108 template<bool dynamic, int size, bool big_endian>
1109 typename elfcpp::Elf_types<size>::Elf_Addr
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1111 Addend addend) const
1112 {
1113 if (this->local_sym_index_ == GSYM_CODE)
1114 {
1115 const Sized_symbol<size>* sym;
1116 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1117 return sym->value() + addend;
1118 }
1119 gold_assert(this->local_sym_index_ != SECTION_CODE
1120 && this->local_sym_index_ != TARGET_CODE
1121 && this->local_sym_index_ != INVALID_CODE
1122 && this->local_sym_index_ != 0
1123 && !this->is_section_symbol_);
1124 const unsigned int lsi = this->local_sym_index_;
1125 Sized_relobj_file<size, big_endian>* relobj =
1126 this->u1_.relobj->sized_relobj();
1127 gold_assert(relobj != NULL);
1128 if (this->use_plt_offset_)
1129 {
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_local(relobj, lsi);
1132 return plt_address + relobj->local_plt_offset(lsi);
1133 }
1134 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1135 return symval->value(relobj, addend);
1136 }
1137
1138 // Reloc comparison. This function sorts the dynamic relocs for the
1139 // benefit of the dynamic linker. First we sort all relative relocs
1140 // to the front. Among relative relocs, we sort by output address.
1141 // Among non-relative relocs, we sort by symbol index, then by output
1142 // address.
1143
1144 template<bool dynamic, int size, bool big_endian>
1145 int
1146 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1147 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1148 const
1149 {
1150 if (this->is_relative_)
1151 {
1152 if (!r2.is_relative_)
1153 return -1;
1154 // Otherwise sort by reloc address below.
1155 }
1156 else if (r2.is_relative_)
1157 return 1;
1158 else
1159 {
1160 unsigned int sym1 = this->get_symbol_index();
1161 unsigned int sym2 = r2.get_symbol_index();
1162 if (sym1 < sym2)
1163 return -1;
1164 else if (sym1 > sym2)
1165 return 1;
1166 // Otherwise sort by reloc address.
1167 }
1168
1169 section_offset_type addr1 = this->get_address();
1170 section_offset_type addr2 = r2.get_address();
1171 if (addr1 < addr2)
1172 return -1;
1173 else if (addr1 > addr2)
1174 return 1;
1175
1176 // Final tie breaker, in order to generate the same output on any
1177 // host: reloc type.
1178 unsigned int type1 = this->type_;
1179 unsigned int type2 = r2.type_;
1180 if (type1 < type2)
1181 return -1;
1182 else if (type1 > type2)
1183 return 1;
1184
1185 // These relocs appear to be exactly the same.
1186 return 0;
1187 }
1188
1189 // Write out a Rela relocation.
1190
1191 template<bool dynamic, int size, bool big_endian>
1192 void
1193 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1194 unsigned char* pov) const
1195 {
1196 elfcpp::Rela_write<size, big_endian> orel(pov);
1197 this->rel_.write_rel(&orel);
1198 Addend addend = this->addend_;
1199 if (this->rel_.is_target_specific())
1200 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1201 this->rel_.type(), addend);
1202 else if (this->rel_.is_symbolless())
1203 addend = this->rel_.symbol_value(addend);
1204 else if (this->rel_.is_local_section_symbol())
1205 addend = this->rel_.local_section_offset(addend);
1206 orel.put_r_addend(addend);
1207 }
1208
1209 // Output_data_reloc_base methods.
1210
1211 // Adjust the output section.
1212
1213 template<int sh_type, bool dynamic, int size, bool big_endian>
1214 void
1215 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1216 ::do_adjust_output_section(Output_section* os)
1217 {
1218 if (sh_type == elfcpp::SHT_REL)
1219 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1220 else if (sh_type == elfcpp::SHT_RELA)
1221 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1222 else
1223 gold_unreachable();
1224
1225 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1226 // static link. The backends will generate a dynamic reloc section
1227 // to hold this. In that case we don't want to link to the dynsym
1228 // section, because there isn't one.
1229 if (!dynamic)
1230 os->set_should_link_to_symtab();
1231 else if (parameters->doing_static_link())
1232 ;
1233 else
1234 os->set_should_link_to_dynsym();
1235 }
1236
1237 // Write out relocation data.
1238
1239 template<int sh_type, bool dynamic, int size, bool big_endian>
1240 void
1241 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1242 Output_file* of)
1243 {
1244 const off_t off = this->offset();
1245 const off_t oview_size = this->data_size();
1246 unsigned char* const oview = of->get_output_view(off, oview_size);
1247
1248 if (this->sort_relocs())
1249 {
1250 gold_assert(dynamic);
1251 std::sort(this->relocs_.begin(), this->relocs_.end(),
1252 Sort_relocs_comparison());
1253 }
1254
1255 unsigned char* pov = oview;
1256 for (typename Relocs::const_iterator p = this->relocs_.begin();
1257 p != this->relocs_.end();
1258 ++p)
1259 {
1260 p->write(pov);
1261 pov += reloc_size;
1262 }
1263
1264 gold_assert(pov - oview == oview_size);
1265
1266 of->write_output_view(off, oview_size, oview);
1267
1268 // We no longer need the relocation entries.
1269 this->relocs_.clear();
1270 }
1271
1272 // Class Output_relocatable_relocs.
1273
1274 template<int sh_type, int size, bool big_endian>
1275 void
1276 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1277 {
1278 this->set_data_size(this->rr_->output_reloc_count()
1279 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1280 }
1281
1282 // class Output_data_group.
1283
1284 template<int size, bool big_endian>
1285 Output_data_group<size, big_endian>::Output_data_group(
1286 Sized_relobj_file<size, big_endian>* relobj,
1287 section_size_type entry_count,
1288 elfcpp::Elf_Word flags,
1289 std::vector<unsigned int>* input_shndxes)
1290 : Output_section_data(entry_count * 4, 4, false),
1291 relobj_(relobj),
1292 flags_(flags)
1293 {
1294 this->input_shndxes_.swap(*input_shndxes);
1295 }
1296
1297 // Write out the section group, which means translating the section
1298 // indexes to apply to the output file.
1299
1300 template<int size, bool big_endian>
1301 void
1302 Output_data_group<size, big_endian>::do_write(Output_file* of)
1303 {
1304 const off_t off = this->offset();
1305 const section_size_type oview_size =
1306 convert_to_section_size_type(this->data_size());
1307 unsigned char* const oview = of->get_output_view(off, oview_size);
1308
1309 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1310 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1311 ++contents;
1312
1313 for (std::vector<unsigned int>::const_iterator p =
1314 this->input_shndxes_.begin();
1315 p != this->input_shndxes_.end();
1316 ++p, ++contents)
1317 {
1318 Output_section* os = this->relobj_->output_section(*p);
1319
1320 unsigned int output_shndx;
1321 if (os != NULL)
1322 output_shndx = os->out_shndx();
1323 else
1324 {
1325 this->relobj_->error(_("section group retained but "
1326 "group element discarded"));
1327 output_shndx = 0;
1328 }
1329
1330 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1331 }
1332
1333 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1334 gold_assert(wrote == oview_size);
1335
1336 of->write_output_view(off, oview_size, oview);
1337
1338 // We no longer need this information.
1339 this->input_shndxes_.clear();
1340 }
1341
1342 // Output_data_got::Got_entry methods.
1343
1344 // Write out the entry.
1345
1346 template<int size, bool big_endian>
1347 void
1348 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1349 {
1350 Valtype val = 0;
1351
1352 switch (this->local_sym_index_)
1353 {
1354 case GSYM_CODE:
1355 {
1356 // If the symbol is resolved locally, we need to write out the
1357 // link-time value, which will be relocated dynamically by a
1358 // RELATIVE relocation.
1359 Symbol* gsym = this->u_.gsym;
1360 if (this->use_plt_offset_ && gsym->has_plt_offset())
1361 val = (parameters->target().plt_address_for_global(gsym)
1362 + gsym->plt_offset());
1363 else
1364 {
1365 Sized_symbol<size>* sgsym;
1366 // This cast is a bit ugly. We don't want to put a
1367 // virtual method in Symbol, because we want Symbol to be
1368 // as small as possible.
1369 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1370 val = sgsym->value();
1371 }
1372 }
1373 break;
1374
1375 case CONSTANT_CODE:
1376 val = this->u_.constant;
1377 break;
1378
1379 case RESERVED_CODE:
1380 // If we're doing an incremental update, don't touch this GOT entry.
1381 if (parameters->incremental_update())
1382 return;
1383 val = this->u_.constant;
1384 break;
1385
1386 default:
1387 {
1388 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1389 const unsigned int lsi = this->local_sym_index_;
1390 const Symbol_value<size>* symval = object->local_symbol(lsi);
1391 if (!this->use_plt_offset_)
1392 val = symval->value(this->u_.object, 0);
1393 else
1394 {
1395 uint64_t plt_address =
1396 parameters->target().plt_address_for_local(object, lsi);
1397 val = plt_address + object->local_plt_offset(lsi);
1398 }
1399 }
1400 break;
1401 }
1402
1403 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1404 }
1405
1406 // Output_data_got methods.
1407
1408 // Add an entry for a global symbol to the GOT. This returns true if
1409 // this is a new GOT entry, false if the symbol already had a GOT
1410 // entry.
1411
1412 template<int size, bool big_endian>
1413 bool
1414 Output_data_got<size, big_endian>::add_global(
1415 Symbol* gsym,
1416 unsigned int got_type)
1417 {
1418 if (gsym->has_got_offset(got_type))
1419 return false;
1420
1421 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1422 gsym->set_got_offset(got_type, got_offset);
1423 return true;
1424 }
1425
1426 // Like add_global, but use the PLT offset.
1427
1428 template<int size, bool big_endian>
1429 bool
1430 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1431 unsigned int got_type)
1432 {
1433 if (gsym->has_got_offset(got_type))
1434 return false;
1435
1436 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1437 gsym->set_got_offset(got_type, got_offset);
1438 return true;
1439 }
1440
1441 // Add an entry for a global symbol to the GOT, and add a dynamic
1442 // relocation of type R_TYPE for the GOT entry.
1443
1444 template<int size, bool big_endian>
1445 void
1446 Output_data_got<size, big_endian>::add_global_with_rel(
1447 Symbol* gsym,
1448 unsigned int got_type,
1449 Rel_dyn* rel_dyn,
1450 unsigned int r_type)
1451 {
1452 if (gsym->has_got_offset(got_type))
1453 return;
1454
1455 unsigned int got_offset = this->add_got_entry(Got_entry());
1456 gsym->set_got_offset(got_type, got_offset);
1457 rel_dyn->add_global(gsym, r_type, this, got_offset);
1458 }
1459
1460 template<int size, bool big_endian>
1461 void
1462 Output_data_got<size, big_endian>::add_global_with_rela(
1463 Symbol* gsym,
1464 unsigned int got_type,
1465 Rela_dyn* rela_dyn,
1466 unsigned int r_type)
1467 {
1468 if (gsym->has_got_offset(got_type))
1469 return;
1470
1471 unsigned int got_offset = this->add_got_entry(Got_entry());
1472 gsym->set_got_offset(got_type, got_offset);
1473 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1474 }
1475
1476 // Add a pair of entries for a global symbol to the GOT, and add
1477 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1478 // If R_TYPE_2 == 0, add the second entry with no relocation.
1479 template<int size, bool big_endian>
1480 void
1481 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1482 Symbol* gsym,
1483 unsigned int got_type,
1484 Rel_dyn* rel_dyn,
1485 unsigned int r_type_1,
1486 unsigned int r_type_2)
1487 {
1488 if (gsym->has_got_offset(got_type))
1489 return;
1490
1491 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1494
1495 if (r_type_2 != 0)
1496 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1502 Symbol* gsym,
1503 unsigned int got_type,
1504 Rela_dyn* rela_dyn,
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
1507 {
1508 if (gsym->has_got_offset(got_type))
1509 return;
1510
1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512 gsym->set_got_offset(got_type, got_offset);
1513 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1514
1515 if (r_type_2 != 0)
1516 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1517 }
1518
1519 // Add an entry for a local symbol to the GOT. This returns true if
1520 // this is a new GOT entry, false if the symbol already has a GOT
1521 // entry.
1522
1523 template<int size, bool big_endian>
1524 bool
1525 Output_data_got<size, big_endian>::add_local(
1526 Sized_relobj_file<size, big_endian>* object,
1527 unsigned int symndx,
1528 unsigned int got_type)
1529 {
1530 if (object->local_has_got_offset(symndx, got_type))
1531 return false;
1532
1533 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1534 false));
1535 object->set_local_got_offset(symndx, got_type, got_offset);
1536 return true;
1537 }
1538
1539 // Like add_local, but use the PLT offset.
1540
1541 template<int size, bool big_endian>
1542 bool
1543 Output_data_got<size, big_endian>::add_local_plt(
1544 Sized_relobj_file<size, big_endian>* object,
1545 unsigned int symndx,
1546 unsigned int got_type)
1547 {
1548 if (object->local_has_got_offset(symndx, got_type))
1549 return false;
1550
1551 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1552 true));
1553 object->set_local_got_offset(symndx, got_type, got_offset);
1554 return true;
1555 }
1556
1557 // Add an entry for a local symbol to the GOT, and add a dynamic
1558 // relocation of type R_TYPE for the GOT entry.
1559
1560 template<int size, bool big_endian>
1561 void
1562 Output_data_got<size, big_endian>::add_local_with_rel(
1563 Sized_relobj_file<size, big_endian>* object,
1564 unsigned int symndx,
1565 unsigned int got_type,
1566 Rel_dyn* rel_dyn,
1567 unsigned int r_type)
1568 {
1569 if (object->local_has_got_offset(symndx, got_type))
1570 return;
1571
1572 unsigned int got_offset = this->add_got_entry(Got_entry());
1573 object->set_local_got_offset(symndx, got_type, got_offset);
1574 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1575 }
1576
1577 template<int size, bool big_endian>
1578 void
1579 Output_data_got<size, big_endian>::add_local_with_rela(
1580 Sized_relobj_file<size, big_endian>* object,
1581 unsigned int symndx,
1582 unsigned int got_type,
1583 Rela_dyn* rela_dyn,
1584 unsigned int r_type)
1585 {
1586 if (object->local_has_got_offset(symndx, got_type))
1587 return;
1588
1589 unsigned int got_offset = this->add_got_entry(Got_entry());
1590 object->set_local_got_offset(symndx, got_type, got_offset);
1591 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1592 }
1593
1594 // Add a pair of entries for a local symbol to the GOT, and add
1595 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1596 // If R_TYPE_2 == 0, add the second entry with no relocation.
1597 template<int size, bool big_endian>
1598 void
1599 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1600 Sized_relobj_file<size, big_endian>* object,
1601 unsigned int symndx,
1602 unsigned int shndx,
1603 unsigned int got_type,
1604 Rel_dyn* rel_dyn,
1605 unsigned int r_type_1,
1606 unsigned int r_type_2)
1607 {
1608 if (object->local_has_got_offset(symndx, got_type))
1609 return;
1610
1611 unsigned int got_offset =
1612 this->add_got_entry_pair(Got_entry(),
1613 Got_entry(object, symndx, false));
1614 object->set_local_got_offset(symndx, got_type, got_offset);
1615 Output_section* os = object->output_section(shndx);
1616 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1617
1618 if (r_type_2 != 0)
1619 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1620 }
1621
1622 template<int size, bool big_endian>
1623 void
1624 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1625 Sized_relobj_file<size, big_endian>* object,
1626 unsigned int symndx,
1627 unsigned int shndx,
1628 unsigned int got_type,
1629 Rela_dyn* rela_dyn,
1630 unsigned int r_type_1,
1631 unsigned int r_type_2)
1632 {
1633 if (object->local_has_got_offset(symndx, got_type))
1634 return;
1635
1636 unsigned int got_offset =
1637 this->add_got_entry_pair(Got_entry(),
1638 Got_entry(object, symndx, false));
1639 object->set_local_got_offset(symndx, got_type, got_offset);
1640 Output_section* os = object->output_section(shndx);
1641 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1642
1643 if (r_type_2 != 0)
1644 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1645 }
1646
1647 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1648
1649 template<int size, bool big_endian>
1650 void
1651 Output_data_got<size, big_endian>::reserve_local(
1652 unsigned int i,
1653 Sized_relobj<size, big_endian>* object,
1654 unsigned int sym_index,
1655 unsigned int got_type)
1656 {
1657 this->reserve_slot(i);
1658 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1659 }
1660
1661 // Reserve a slot in the GOT for a global symbol.
1662
1663 template<int size, bool big_endian>
1664 void
1665 Output_data_got<size, big_endian>::reserve_global(
1666 unsigned int i,
1667 Symbol* gsym,
1668 unsigned int got_type)
1669 {
1670 this->reserve_slot(i);
1671 gsym->set_got_offset(got_type, this->got_offset(i));
1672 }
1673
1674 // Write out the GOT.
1675
1676 template<int size, bool big_endian>
1677 void
1678 Output_data_got<size, big_endian>::do_write(Output_file* of)
1679 {
1680 const int add = size / 8;
1681
1682 const off_t off = this->offset();
1683 const off_t oview_size = this->data_size();
1684 unsigned char* const oview = of->get_output_view(off, oview_size);
1685
1686 unsigned char* pov = oview;
1687 for (typename Got_entries::const_iterator p = this->entries_.begin();
1688 p != this->entries_.end();
1689 ++p)
1690 {
1691 p->write(pov);
1692 pov += add;
1693 }
1694
1695 gold_assert(pov - oview == oview_size);
1696
1697 of->write_output_view(off, oview_size, oview);
1698
1699 // We no longer need the GOT entries.
1700 this->entries_.clear();
1701 }
1702
1703 // Create a new GOT entry and return its offset.
1704
1705 template<int size, bool big_endian>
1706 unsigned int
1707 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1708 {
1709 if (!this->is_data_size_valid())
1710 {
1711 this->entries_.push_back(got_entry);
1712 this->set_got_size();
1713 return this->last_got_offset();
1714 }
1715 else
1716 {
1717 // For an incremental update, find an available slot.
1718 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1719 if (got_offset == -1)
1720 gold_fallback(_("out of patch space (GOT);"
1721 " relink with --incremental-full"));
1722 unsigned int got_index = got_offset / (size / 8);
1723 gold_assert(got_index < this->entries_.size());
1724 this->entries_[got_index] = got_entry;
1725 return static_cast<unsigned int>(got_offset);
1726 }
1727 }
1728
1729 // Create a pair of new GOT entries and return the offset of the first.
1730
1731 template<int size, bool big_endian>
1732 unsigned int
1733 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1734 Got_entry got_entry_2)
1735 {
1736 if (!this->is_data_size_valid())
1737 {
1738 unsigned int got_offset;
1739 this->entries_.push_back(got_entry_1);
1740 got_offset = this->last_got_offset();
1741 this->entries_.push_back(got_entry_2);
1742 this->set_got_size();
1743 return got_offset;
1744 }
1745 else
1746 {
1747 // For an incremental update, find an available pair of slots.
1748 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1749 if (got_offset == -1)
1750 gold_fallback(_("out of patch space (GOT);"
1751 " relink with --incremental-full"));
1752 unsigned int got_index = got_offset / (size / 8);
1753 gold_assert(got_index < this->entries_.size());
1754 this->entries_[got_index] = got_entry_1;
1755 this->entries_[got_index + 1] = got_entry_2;
1756 return static_cast<unsigned int>(got_offset);
1757 }
1758 }
1759
1760 // Output_data_dynamic::Dynamic_entry methods.
1761
1762 // Write out the entry.
1763
1764 template<int size, bool big_endian>
1765 void
1766 Output_data_dynamic::Dynamic_entry::write(
1767 unsigned char* pov,
1768 const Stringpool* pool) const
1769 {
1770 typename elfcpp::Elf_types<size>::Elf_WXword val;
1771 switch (this->offset_)
1772 {
1773 case DYNAMIC_NUMBER:
1774 val = this->u_.val;
1775 break;
1776
1777 case DYNAMIC_SECTION_SIZE:
1778 val = this->u_.od->data_size();
1779 if (this->od2 != NULL)
1780 val += this->od2->data_size();
1781 break;
1782
1783 case DYNAMIC_SYMBOL:
1784 {
1785 const Sized_symbol<size>* s =
1786 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1787 val = s->value();
1788 }
1789 break;
1790
1791 case DYNAMIC_STRING:
1792 val = pool->get_offset(this->u_.str);
1793 break;
1794
1795 default:
1796 val = this->u_.od->address() + this->offset_;
1797 break;
1798 }
1799
1800 elfcpp::Dyn_write<size, big_endian> dw(pov);
1801 dw.put_d_tag(this->tag_);
1802 dw.put_d_val(val);
1803 }
1804
1805 // Output_data_dynamic methods.
1806
1807 // Adjust the output section to set the entry size.
1808
1809 void
1810 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1811 {
1812 if (parameters->target().get_size() == 32)
1813 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1814 else if (parameters->target().get_size() == 64)
1815 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1816 else
1817 gold_unreachable();
1818 }
1819
1820 // Set the final data size.
1821
1822 void
1823 Output_data_dynamic::set_final_data_size()
1824 {
1825 // Add the terminating entry if it hasn't been added.
1826 // Because of relaxation, we can run this multiple times.
1827 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1828 {
1829 int extra = parameters->options().spare_dynamic_tags();
1830 for (int i = 0; i < extra; ++i)
1831 this->add_constant(elfcpp::DT_NULL, 0);
1832 this->add_constant(elfcpp::DT_NULL, 0);
1833 }
1834
1835 int dyn_size;
1836 if (parameters->target().get_size() == 32)
1837 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1838 else if (parameters->target().get_size() == 64)
1839 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1840 else
1841 gold_unreachable();
1842 this->set_data_size(this->entries_.size() * dyn_size);
1843 }
1844
1845 // Write out the dynamic entries.
1846
1847 void
1848 Output_data_dynamic::do_write(Output_file* of)
1849 {
1850 switch (parameters->size_and_endianness())
1851 {
1852 #ifdef HAVE_TARGET_32_LITTLE
1853 case Parameters::TARGET_32_LITTLE:
1854 this->sized_write<32, false>(of);
1855 break;
1856 #endif
1857 #ifdef HAVE_TARGET_32_BIG
1858 case Parameters::TARGET_32_BIG:
1859 this->sized_write<32, true>(of);
1860 break;
1861 #endif
1862 #ifdef HAVE_TARGET_64_LITTLE
1863 case Parameters::TARGET_64_LITTLE:
1864 this->sized_write<64, false>(of);
1865 break;
1866 #endif
1867 #ifdef HAVE_TARGET_64_BIG
1868 case Parameters::TARGET_64_BIG:
1869 this->sized_write<64, true>(of);
1870 break;
1871 #endif
1872 default:
1873 gold_unreachable();
1874 }
1875 }
1876
1877 template<int size, bool big_endian>
1878 void
1879 Output_data_dynamic::sized_write(Output_file* of)
1880 {
1881 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1882
1883 const off_t offset = this->offset();
1884 const off_t oview_size = this->data_size();
1885 unsigned char* const oview = of->get_output_view(offset, oview_size);
1886
1887 unsigned char* pov = oview;
1888 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1889 p != this->entries_.end();
1890 ++p)
1891 {
1892 p->write<size, big_endian>(pov, this->pool_);
1893 pov += dyn_size;
1894 }
1895
1896 gold_assert(pov - oview == oview_size);
1897
1898 of->write_output_view(offset, oview_size, oview);
1899
1900 // We no longer need the dynamic entries.
1901 this->entries_.clear();
1902 }
1903
1904 // Class Output_symtab_xindex.
1905
1906 void
1907 Output_symtab_xindex::do_write(Output_file* of)
1908 {
1909 const off_t offset = this->offset();
1910 const off_t oview_size = this->data_size();
1911 unsigned char* const oview = of->get_output_view(offset, oview_size);
1912
1913 memset(oview, 0, oview_size);
1914
1915 if (parameters->target().is_big_endian())
1916 this->endian_do_write<true>(oview);
1917 else
1918 this->endian_do_write<false>(oview);
1919
1920 of->write_output_view(offset, oview_size, oview);
1921
1922 // We no longer need the data.
1923 this->entries_.clear();
1924 }
1925
1926 template<bool big_endian>
1927 void
1928 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1929 {
1930 for (Xindex_entries::const_iterator p = this->entries_.begin();
1931 p != this->entries_.end();
1932 ++p)
1933 {
1934 unsigned int symndx = p->first;
1935 gold_assert(symndx * 4 < this->data_size());
1936 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1937 }
1938 }
1939
1940 // Output_fill_debug_info methods.
1941
1942 // Return the minimum size needed for a dummy compilation unit header.
1943
1944 size_t
1945 Output_fill_debug_info::do_minimum_hole_size() const
1946 {
1947 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1948 // address_size.
1949 const size_t len = 4 + 2 + 4 + 1;
1950 // For type units, add type_signature, type_offset.
1951 if (this->is_debug_types_)
1952 return len + 8 + 4;
1953 return len;
1954 }
1955
1956 // Write a dummy compilation unit header to fill a hole in the
1957 // .debug_info or .debug_types section.
1958
1959 void
1960 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1961 {
1962 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1963 static_cast<long>(off), static_cast<long>(len));
1964
1965 gold_assert(len >= this->do_minimum_hole_size());
1966
1967 unsigned char* const oview = of->get_output_view(off, len);
1968 unsigned char* pov = oview;
1969
1970 // Write header fields: unit_length, version, debug_abbrev_offset,
1971 // address_size.
1972 if (this->is_big_endian())
1973 {
1974 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1975 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1976 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1977 }
1978 else
1979 {
1980 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1981 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1982 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1983 }
1984 pov += 4 + 2 + 4;
1985 *pov++ = 4;
1986
1987 // For type units, the additional header fields -- type_signature,
1988 // type_offset -- can be filled with zeroes.
1989
1990 // Fill the remainder of the free space with zeroes. The first
1991 // zero should tell the consumer there are no DIEs to read in this
1992 // compilation unit.
1993 if (pov < oview + len)
1994 memset(pov, 0, oview + len - pov);
1995
1996 of->write_output_view(off, len, oview);
1997 }
1998
1999 // Output_fill_debug_line methods.
2000
2001 // Return the minimum size needed for a dummy line number program header.
2002
2003 size_t
2004 Output_fill_debug_line::do_minimum_hole_size() const
2005 {
2006 // Line number program header fields: unit_length, version, header_length,
2007 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2008 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2009 const size_t len = 4 + 2 + 4 + this->header_length;
2010 return len;
2011 }
2012
2013 // Write a dummy line number program header to fill a hole in the
2014 // .debug_line section.
2015
2016 void
2017 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2018 {
2019 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2020 static_cast<long>(off), static_cast<long>(len));
2021
2022 gold_assert(len >= this->do_minimum_hole_size());
2023
2024 unsigned char* const oview = of->get_output_view(off, len);
2025 unsigned char* pov = oview;
2026
2027 // Write header fields: unit_length, version, header_length,
2028 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2029 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2030 // We set the header_length field to cover the entire hole, so the
2031 // line number program is empty.
2032 if (this->is_big_endian())
2033 {
2034 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2035 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2036 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2037 }
2038 else
2039 {
2040 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2041 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2042 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2043 }
2044 pov += 4 + 2 + 4;
2045 *pov++ = 1; // minimum_instruction_length
2046 *pov++ = 0; // default_is_stmt
2047 *pov++ = 0; // line_base
2048 *pov++ = 5; // line_range
2049 *pov++ = 13; // opcode_base
2050 *pov++ = 0; // standard_opcode_lengths[1]
2051 *pov++ = 1; // standard_opcode_lengths[2]
2052 *pov++ = 1; // standard_opcode_lengths[3]
2053 *pov++ = 1; // standard_opcode_lengths[4]
2054 *pov++ = 1; // standard_opcode_lengths[5]
2055 *pov++ = 0; // standard_opcode_lengths[6]
2056 *pov++ = 0; // standard_opcode_lengths[7]
2057 *pov++ = 0; // standard_opcode_lengths[8]
2058 *pov++ = 1; // standard_opcode_lengths[9]
2059 *pov++ = 0; // standard_opcode_lengths[10]
2060 *pov++ = 0; // standard_opcode_lengths[11]
2061 *pov++ = 1; // standard_opcode_lengths[12]
2062 *pov++ = 0; // include_directories (empty)
2063 *pov++ = 0; // filenames (empty)
2064
2065 // Some consumers don't check the header_length field, and simply
2066 // start reading the line number program immediately following the
2067 // header. For those consumers, we fill the remainder of the free
2068 // space with DW_LNS_set_basic_block opcodes. These are effectively
2069 // no-ops: the resulting line table program will not create any rows.
2070 if (pov < oview + len)
2071 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2072
2073 of->write_output_view(off, len, oview);
2074 }
2075
2076 // Output_section::Input_section methods.
2077
2078 // Return the current data size. For an input section we store the size here.
2079 // For an Output_section_data, we have to ask it for the size.
2080
2081 off_t
2082 Output_section::Input_section::current_data_size() const
2083 {
2084 if (this->is_input_section())
2085 return this->u1_.data_size;
2086 else
2087 {
2088 this->u2_.posd->pre_finalize_data_size();
2089 return this->u2_.posd->current_data_size();
2090 }
2091 }
2092
2093 // Return the data size. For an input section we store the size here.
2094 // For an Output_section_data, we have to ask it for the size.
2095
2096 off_t
2097 Output_section::Input_section::data_size() const
2098 {
2099 if (this->is_input_section())
2100 return this->u1_.data_size;
2101 else
2102 return this->u2_.posd->data_size();
2103 }
2104
2105 // Return the object for an input section.
2106
2107 Relobj*
2108 Output_section::Input_section::relobj() const
2109 {
2110 if (this->is_input_section())
2111 return this->u2_.object;
2112 else if (this->is_merge_section())
2113 {
2114 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2115 return this->u2_.pomb->first_relobj();
2116 }
2117 else if (this->is_relaxed_input_section())
2118 return this->u2_.poris->relobj();
2119 else
2120 gold_unreachable();
2121 }
2122
2123 // Return the input section index for an input section.
2124
2125 unsigned int
2126 Output_section::Input_section::shndx() const
2127 {
2128 if (this->is_input_section())
2129 return this->shndx_;
2130 else if (this->is_merge_section())
2131 {
2132 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2133 return this->u2_.pomb->first_shndx();
2134 }
2135 else if (this->is_relaxed_input_section())
2136 return this->u2_.poris->shndx();
2137 else
2138 gold_unreachable();
2139 }
2140
2141 // Set the address and file offset.
2142
2143 void
2144 Output_section::Input_section::set_address_and_file_offset(
2145 uint64_t address,
2146 off_t file_offset,
2147 off_t section_file_offset)
2148 {
2149 if (this->is_input_section())
2150 this->u2_.object->set_section_offset(this->shndx_,
2151 file_offset - section_file_offset);
2152 else
2153 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2154 }
2155
2156 // Reset the address and file offset.
2157
2158 void
2159 Output_section::Input_section::reset_address_and_file_offset()
2160 {
2161 if (!this->is_input_section())
2162 this->u2_.posd->reset_address_and_file_offset();
2163 }
2164
2165 // Finalize the data size.
2166
2167 void
2168 Output_section::Input_section::finalize_data_size()
2169 {
2170 if (!this->is_input_section())
2171 this->u2_.posd->finalize_data_size();
2172 }
2173
2174 // Try to turn an input offset into an output offset. We want to
2175 // return the output offset relative to the start of this
2176 // Input_section in the output section.
2177
2178 inline bool
2179 Output_section::Input_section::output_offset(
2180 const Relobj* object,
2181 unsigned int shndx,
2182 section_offset_type offset,
2183 section_offset_type* poutput) const
2184 {
2185 if (!this->is_input_section())
2186 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2187 else
2188 {
2189 if (this->shndx_ != shndx || this->u2_.object != object)
2190 return false;
2191 *poutput = offset;
2192 return true;
2193 }
2194 }
2195
2196 // Return whether this is the merge section for the input section
2197 // SHNDX in OBJECT.
2198
2199 inline bool
2200 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2201 unsigned int shndx) const
2202 {
2203 if (this->is_input_section())
2204 return false;
2205 return this->u2_.posd->is_merge_section_for(object, shndx);
2206 }
2207
2208 // Write out the data. We don't have to do anything for an input
2209 // section--they are handled via Object::relocate--but this is where
2210 // we write out the data for an Output_section_data.
2211
2212 void
2213 Output_section::Input_section::write(Output_file* of)
2214 {
2215 if (!this->is_input_section())
2216 this->u2_.posd->write(of);
2217 }
2218
2219 // Write the data to a buffer. As for write(), we don't have to do
2220 // anything for an input section.
2221
2222 void
2223 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2224 {
2225 if (!this->is_input_section())
2226 this->u2_.posd->write_to_buffer(buffer);
2227 }
2228
2229 // Print to a map file.
2230
2231 void
2232 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2233 {
2234 switch (this->shndx_)
2235 {
2236 case OUTPUT_SECTION_CODE:
2237 case MERGE_DATA_SECTION_CODE:
2238 case MERGE_STRING_SECTION_CODE:
2239 this->u2_.posd->print_to_mapfile(mapfile);
2240 break;
2241
2242 case RELAXED_INPUT_SECTION_CODE:
2243 {
2244 Output_relaxed_input_section* relaxed_section =
2245 this->relaxed_input_section();
2246 mapfile->print_input_section(relaxed_section->relobj(),
2247 relaxed_section->shndx());
2248 }
2249 break;
2250 default:
2251 mapfile->print_input_section(this->u2_.object, this->shndx_);
2252 break;
2253 }
2254 }
2255
2256 // Output_section methods.
2257
2258 // Construct an Output_section. NAME will point into a Stringpool.
2259
2260 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2261 elfcpp::Elf_Xword flags)
2262 : name_(name),
2263 addralign_(0),
2264 entsize_(0),
2265 load_address_(0),
2266 link_section_(NULL),
2267 link_(0),
2268 info_section_(NULL),
2269 info_symndx_(NULL),
2270 info_(0),
2271 type_(type),
2272 flags_(flags),
2273 order_(ORDER_INVALID),
2274 out_shndx_(-1U),
2275 symtab_index_(0),
2276 dynsym_index_(0),
2277 input_sections_(),
2278 first_input_offset_(0),
2279 fills_(),
2280 postprocessing_buffer_(NULL),
2281 needs_symtab_index_(false),
2282 needs_dynsym_index_(false),
2283 should_link_to_symtab_(false),
2284 should_link_to_dynsym_(false),
2285 after_input_sections_(false),
2286 requires_postprocessing_(false),
2287 found_in_sections_clause_(false),
2288 has_load_address_(false),
2289 info_uses_section_index_(false),
2290 input_section_order_specified_(false),
2291 may_sort_attached_input_sections_(false),
2292 must_sort_attached_input_sections_(false),
2293 attached_input_sections_are_sorted_(false),
2294 is_relro_(false),
2295 is_small_section_(false),
2296 is_large_section_(false),
2297 generate_code_fills_at_write_(false),
2298 is_entsize_zero_(false),
2299 section_offsets_need_adjustment_(false),
2300 is_noload_(false),
2301 always_keeps_input_sections_(false),
2302 has_fixed_layout_(false),
2303 is_patch_space_allowed_(false),
2304 tls_offset_(0),
2305 checkpoint_(NULL),
2306 lookup_maps_(new Output_section_lookup_maps),
2307 free_list_(),
2308 free_space_fill_(NULL),
2309 patch_space_(0)
2310 {
2311 // An unallocated section has no address. Forcing this means that
2312 // we don't need special treatment for symbols defined in debug
2313 // sections.
2314 if ((flags & elfcpp::SHF_ALLOC) == 0)
2315 this->set_address(0);
2316 }
2317
2318 Output_section::~Output_section()
2319 {
2320 delete this->checkpoint_;
2321 }
2322
2323 // Set the entry size.
2324
2325 void
2326 Output_section::set_entsize(uint64_t v)
2327 {
2328 if (this->is_entsize_zero_)
2329 ;
2330 else if (this->entsize_ == 0)
2331 this->entsize_ = v;
2332 else if (this->entsize_ != v)
2333 {
2334 this->entsize_ = 0;
2335 this->is_entsize_zero_ = 1;
2336 }
2337 }
2338
2339 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2340 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2341 // relocation section which applies to this section, or 0 if none, or
2342 // -1U if more than one. Return the offset of the input section
2343 // within the output section. Return -1 if the input section will
2344 // receive special handling. In the normal case we don't always keep
2345 // track of input sections for an Output_section. Instead, each
2346 // Object keeps track of the Output_section for each of its input
2347 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2348 // track of input sections here; this is used when SECTIONS appears in
2349 // a linker script.
2350
2351 template<int size, bool big_endian>
2352 off_t
2353 Output_section::add_input_section(Layout* layout,
2354 Sized_relobj_file<size, big_endian>* object,
2355 unsigned int shndx,
2356 const char* secname,
2357 const elfcpp::Shdr<size, big_endian>& shdr,
2358 unsigned int reloc_shndx,
2359 bool have_sections_script)
2360 {
2361 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2362 if ((addralign & (addralign - 1)) != 0)
2363 {
2364 object->error(_("invalid alignment %lu for section \"%s\""),
2365 static_cast<unsigned long>(addralign), secname);
2366 addralign = 1;
2367 }
2368
2369 if (addralign > this->addralign_)
2370 this->addralign_ = addralign;
2371
2372 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2373 uint64_t entsize = shdr.get_sh_entsize();
2374
2375 // .debug_str is a mergeable string section, but is not always so
2376 // marked by compilers. Mark manually here so we can optimize.
2377 if (strcmp(secname, ".debug_str") == 0)
2378 {
2379 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2380 entsize = 1;
2381 }
2382
2383 this->update_flags_for_input_section(sh_flags);
2384 this->set_entsize(entsize);
2385
2386 // If this is a SHF_MERGE section, we pass all the input sections to
2387 // a Output_data_merge. We don't try to handle relocations for such
2388 // a section. We don't try to handle empty merge sections--they
2389 // mess up the mappings, and are useless anyhow.
2390 // FIXME: Need to handle merge sections during incremental update.
2391 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2392 && reloc_shndx == 0
2393 && shdr.get_sh_size() > 0
2394 && !parameters->incremental())
2395 {
2396 // Keep information about merged input sections for rebuilding fast
2397 // lookup maps if we have sections-script or we do relaxation.
2398 bool keeps_input_sections = (this->always_keeps_input_sections_
2399 || have_sections_script
2400 || parameters->target().may_relax());
2401
2402 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2403 addralign, keeps_input_sections))
2404 {
2405 // Tell the relocation routines that they need to call the
2406 // output_offset method to determine the final address.
2407 return -1;
2408 }
2409 }
2410
2411 section_size_type input_section_size = shdr.get_sh_size();
2412 section_size_type uncompressed_size;
2413 if (object->section_is_compressed(shndx, &uncompressed_size))
2414 input_section_size = uncompressed_size;
2415
2416 off_t offset_in_section;
2417 off_t aligned_offset_in_section;
2418 if (this->has_fixed_layout())
2419 {
2420 // For incremental updates, find a chunk of unused space in the section.
2421 offset_in_section = this->free_list_.allocate(input_section_size,
2422 addralign, 0);
2423 if (offset_in_section == -1)
2424 gold_fallback(_("out of patch space in section %s; "
2425 "relink with --incremental-full"),
2426 this->name());
2427 aligned_offset_in_section = offset_in_section;
2428 }
2429 else
2430 {
2431 offset_in_section = this->current_data_size_for_child();
2432 aligned_offset_in_section = align_address(offset_in_section,
2433 addralign);
2434 this->set_current_data_size_for_child(aligned_offset_in_section
2435 + input_section_size);
2436 }
2437
2438 // Determine if we want to delay code-fill generation until the output
2439 // section is written. When the target is relaxing, we want to delay fill
2440 // generating to avoid adjusting them during relaxation. Also, if we are
2441 // sorting input sections we must delay fill generation.
2442 if (!this->generate_code_fills_at_write_
2443 && !have_sections_script
2444 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2445 && parameters->target().has_code_fill()
2446 && (parameters->target().may_relax()
2447 || layout->is_section_ordering_specified()))
2448 {
2449 gold_assert(this->fills_.empty());
2450 this->generate_code_fills_at_write_ = true;
2451 }
2452
2453 if (aligned_offset_in_section > offset_in_section
2454 && !this->generate_code_fills_at_write_
2455 && !have_sections_script
2456 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2457 && parameters->target().has_code_fill())
2458 {
2459 // We need to add some fill data. Using fill_list_ when
2460 // possible is an optimization, since we will often have fill
2461 // sections without input sections.
2462 off_t fill_len = aligned_offset_in_section - offset_in_section;
2463 if (this->input_sections_.empty())
2464 this->fills_.push_back(Fill(offset_in_section, fill_len));
2465 else
2466 {
2467 std::string fill_data(parameters->target().code_fill(fill_len));
2468 Output_data_const* odc = new Output_data_const(fill_data, 1);
2469 this->input_sections_.push_back(Input_section(odc));
2470 }
2471 }
2472
2473 // We need to keep track of this section if we are already keeping
2474 // track of sections, or if we are relaxing. Also, if this is a
2475 // section which requires sorting, or which may require sorting in
2476 // the future, we keep track of the sections. If the
2477 // --section-ordering-file option is used to specify the order of
2478 // sections, we need to keep track of sections.
2479 if (this->always_keeps_input_sections_
2480 || have_sections_script
2481 || !this->input_sections_.empty()
2482 || this->may_sort_attached_input_sections()
2483 || this->must_sort_attached_input_sections()
2484 || parameters->options().user_set_Map()
2485 || parameters->target().may_relax()
2486 || layout->is_section_ordering_specified())
2487 {
2488 Input_section isecn(object, shndx, input_section_size, addralign);
2489 /* If section ordering is requested by specifying a ordering file,
2490 using --section-ordering-file, match the section name with
2491 a pattern. */
2492 if (parameters->options().section_ordering_file())
2493 {
2494 unsigned int section_order_index =
2495 layout->find_section_order_index(std::string(secname));
2496 if (section_order_index != 0)
2497 {
2498 isecn.set_section_order_index(section_order_index);
2499 this->set_input_section_order_specified();
2500 }
2501 }
2502 if (this->has_fixed_layout())
2503 {
2504 // For incremental updates, finalize the address and offset now.
2505 uint64_t addr = this->address();
2506 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2507 aligned_offset_in_section,
2508 this->offset());
2509 }
2510 this->input_sections_.push_back(isecn);
2511 }
2512
2513 return aligned_offset_in_section;
2514 }
2515
2516 // Add arbitrary data to an output section.
2517
2518 void
2519 Output_section::add_output_section_data(Output_section_data* posd)
2520 {
2521 Input_section inp(posd);
2522 this->add_output_section_data(&inp);
2523
2524 if (posd->is_data_size_valid())
2525 {
2526 off_t offset_in_section;
2527 if (this->has_fixed_layout())
2528 {
2529 // For incremental updates, find a chunk of unused space.
2530 offset_in_section = this->free_list_.allocate(posd->data_size(),
2531 posd->addralign(), 0);
2532 if (offset_in_section == -1)
2533 gold_fallback(_("out of patch space in section %s; "
2534 "relink with --incremental-full"),
2535 this->name());
2536 // Finalize the address and offset now.
2537 uint64_t addr = this->address();
2538 off_t offset = this->offset();
2539 posd->set_address_and_file_offset(addr + offset_in_section,
2540 offset + offset_in_section);
2541 }
2542 else
2543 {
2544 offset_in_section = this->current_data_size_for_child();
2545 off_t aligned_offset_in_section = align_address(offset_in_section,
2546 posd->addralign());
2547 this->set_current_data_size_for_child(aligned_offset_in_section
2548 + posd->data_size());
2549 }
2550 }
2551 else if (this->has_fixed_layout())
2552 {
2553 // For incremental updates, arrange for the data to have a fixed layout.
2554 // This will mean that additions to the data must be allocated from
2555 // free space within the containing output section.
2556 uint64_t addr = this->address();
2557 posd->set_address(addr);
2558 posd->set_file_offset(0);
2559 // FIXME: This should eventually be unreachable.
2560 // gold_unreachable();
2561 }
2562 }
2563
2564 // Add a relaxed input section.
2565
2566 void
2567 Output_section::add_relaxed_input_section(Layout* layout,
2568 Output_relaxed_input_section* poris,
2569 const std::string& name)
2570 {
2571 Input_section inp(poris);
2572
2573 // If the --section-ordering-file option is used to specify the order of
2574 // sections, we need to keep track of sections.
2575 if (layout->is_section_ordering_specified())
2576 {
2577 unsigned int section_order_index =
2578 layout->find_section_order_index(name);
2579 if (section_order_index != 0)
2580 {
2581 inp.set_section_order_index(section_order_index);
2582 this->set_input_section_order_specified();
2583 }
2584 }
2585
2586 this->add_output_section_data(&inp);
2587 if (this->lookup_maps_->is_valid())
2588 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2589 poris->shndx(), poris);
2590
2591 // For a relaxed section, we use the current data size. Linker scripts
2592 // get all the input sections, including relaxed one from an output
2593 // section and add them back to them same output section to compute the
2594 // output section size. If we do not account for sizes of relaxed input
2595 // sections, an output section would be incorrectly sized.
2596 off_t offset_in_section = this->current_data_size_for_child();
2597 off_t aligned_offset_in_section = align_address(offset_in_section,
2598 poris->addralign());
2599 this->set_current_data_size_for_child(aligned_offset_in_section
2600 + poris->current_data_size());
2601 }
2602
2603 // Add arbitrary data to an output section by Input_section.
2604
2605 void
2606 Output_section::add_output_section_data(Input_section* inp)
2607 {
2608 if (this->input_sections_.empty())
2609 this->first_input_offset_ = this->current_data_size_for_child();
2610
2611 this->input_sections_.push_back(*inp);
2612
2613 uint64_t addralign = inp->addralign();
2614 if (addralign > this->addralign_)
2615 this->addralign_ = addralign;
2616
2617 inp->set_output_section(this);
2618 }
2619
2620 // Add a merge section to an output section.
2621
2622 void
2623 Output_section::add_output_merge_section(Output_section_data* posd,
2624 bool is_string, uint64_t entsize)
2625 {
2626 Input_section inp(posd, is_string, entsize);
2627 this->add_output_section_data(&inp);
2628 }
2629
2630 // Add an input section to a SHF_MERGE section.
2631
2632 bool
2633 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2634 uint64_t flags, uint64_t entsize,
2635 uint64_t addralign,
2636 bool keeps_input_sections)
2637 {
2638 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2639
2640 // We only merge strings if the alignment is not more than the
2641 // character size. This could be handled, but it's unusual.
2642 if (is_string && addralign > entsize)
2643 return false;
2644
2645 // We cannot restore merged input section states.
2646 gold_assert(this->checkpoint_ == NULL);
2647
2648 // Look up merge sections by required properties.
2649 // Currently, we only invalidate the lookup maps in script processing
2650 // and relaxation. We should not have done either when we reach here.
2651 // So we assume that the lookup maps are valid to simply code.
2652 gold_assert(this->lookup_maps_->is_valid());
2653 Merge_section_properties msp(is_string, entsize, addralign);
2654 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2655 bool is_new = false;
2656 if (pomb != NULL)
2657 {
2658 gold_assert(pomb->is_string() == is_string
2659 && pomb->entsize() == entsize
2660 && pomb->addralign() == addralign);
2661 }
2662 else
2663 {
2664 // Create a new Output_merge_data or Output_merge_string_data.
2665 if (!is_string)
2666 pomb = new Output_merge_data(entsize, addralign);
2667 else
2668 {
2669 switch (entsize)
2670 {
2671 case 1:
2672 pomb = new Output_merge_string<char>(addralign);
2673 break;
2674 case 2:
2675 pomb = new Output_merge_string<uint16_t>(addralign);
2676 break;
2677 case 4:
2678 pomb = new Output_merge_string<uint32_t>(addralign);
2679 break;
2680 default:
2681 return false;
2682 }
2683 }
2684 // If we need to do script processing or relaxation, we need to keep
2685 // the original input sections to rebuild the fast lookup maps.
2686 if (keeps_input_sections)
2687 pomb->set_keeps_input_sections();
2688 is_new = true;
2689 }
2690
2691 if (pomb->add_input_section(object, shndx))
2692 {
2693 // Add new merge section to this output section and link merge
2694 // section properties to new merge section in map.
2695 if (is_new)
2696 {
2697 this->add_output_merge_section(pomb, is_string, entsize);
2698 this->lookup_maps_->add_merge_section(msp, pomb);
2699 }
2700
2701 // Add input section to new merge section and link input section to new
2702 // merge section in map.
2703 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2704 return true;
2705 }
2706 else
2707 {
2708 // If add_input_section failed, delete new merge section to avoid
2709 // exporting empty merge sections in Output_section::get_input_section.
2710 if (is_new)
2711 delete pomb;
2712 return false;
2713 }
2714 }
2715
2716 // Build a relaxation map to speed up relaxation of existing input sections.
2717 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2718
2719 void
2720 Output_section::build_relaxation_map(
2721 const Input_section_list& input_sections,
2722 size_t limit,
2723 Relaxation_map* relaxation_map) const
2724 {
2725 for (size_t i = 0; i < limit; ++i)
2726 {
2727 const Input_section& is(input_sections[i]);
2728 if (is.is_input_section() || is.is_relaxed_input_section())
2729 {
2730 Section_id sid(is.relobj(), is.shndx());
2731 (*relaxation_map)[sid] = i;
2732 }
2733 }
2734 }
2735
2736 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2737 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2738 // indices of INPUT_SECTIONS.
2739
2740 void
2741 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2742 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2743 const Relaxation_map& map,
2744 Input_section_list* input_sections)
2745 {
2746 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2747 {
2748 Output_relaxed_input_section* poris = relaxed_sections[i];
2749 Section_id sid(poris->relobj(), poris->shndx());
2750 Relaxation_map::const_iterator p = map.find(sid);
2751 gold_assert(p != map.end());
2752 gold_assert((*input_sections)[p->second].is_input_section());
2753
2754 // Remember section order index of original input section
2755 // if it is set. Copy it to the relaxed input section.
2756 unsigned int soi =
2757 (*input_sections)[p->second].section_order_index();
2758 (*input_sections)[p->second] = Input_section(poris);
2759 (*input_sections)[p->second].set_section_order_index(soi);
2760 }
2761 }
2762
2763 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2764 // is a vector of pointers to Output_relaxed_input_section or its derived
2765 // classes. The relaxed sections must correspond to existing input sections.
2766
2767 void
2768 Output_section::convert_input_sections_to_relaxed_sections(
2769 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2770 {
2771 gold_assert(parameters->target().may_relax());
2772
2773 // We want to make sure that restore_states does not undo the effect of
2774 // this. If there is no checkpoint active, just search the current
2775 // input section list and replace the sections there. If there is
2776 // a checkpoint, also replace the sections there.
2777
2778 // By default, we look at the whole list.
2779 size_t limit = this->input_sections_.size();
2780
2781 if (this->checkpoint_ != NULL)
2782 {
2783 // Replace input sections with relaxed input section in the saved
2784 // copy of the input section list.
2785 if (this->checkpoint_->input_sections_saved())
2786 {
2787 Relaxation_map map;
2788 this->build_relaxation_map(
2789 *(this->checkpoint_->input_sections()),
2790 this->checkpoint_->input_sections()->size(),
2791 &map);
2792 this->convert_input_sections_in_list_to_relaxed_sections(
2793 relaxed_sections,
2794 map,
2795 this->checkpoint_->input_sections());
2796 }
2797 else
2798 {
2799 // We have not copied the input section list yet. Instead, just
2800 // look at the portion that would be saved.
2801 limit = this->checkpoint_->input_sections_size();
2802 }
2803 }
2804
2805 // Convert input sections in input_section_list.
2806 Relaxation_map map;
2807 this->build_relaxation_map(this->input_sections_, limit, &map);
2808 this->convert_input_sections_in_list_to_relaxed_sections(
2809 relaxed_sections,
2810 map,
2811 &this->input_sections_);
2812
2813 // Update fast look-up map.
2814 if (this->lookup_maps_->is_valid())
2815 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2816 {
2817 Output_relaxed_input_section* poris = relaxed_sections[i];
2818 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2819 poris->shndx(), poris);
2820 }
2821 }
2822
2823 // Update the output section flags based on input section flags.
2824
2825 void
2826 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2827 {
2828 // If we created the section with SHF_ALLOC clear, we set the
2829 // address. If we are now setting the SHF_ALLOC flag, we need to
2830 // undo that.
2831 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2832 && (flags & elfcpp::SHF_ALLOC) != 0)
2833 this->mark_address_invalid();
2834
2835 this->flags_ |= (flags
2836 & (elfcpp::SHF_WRITE
2837 | elfcpp::SHF_ALLOC
2838 | elfcpp::SHF_EXECINSTR));
2839
2840 if ((flags & elfcpp::SHF_MERGE) == 0)
2841 this->flags_ &=~ elfcpp::SHF_MERGE;
2842 else
2843 {
2844 if (this->current_data_size_for_child() == 0)
2845 this->flags_ |= elfcpp::SHF_MERGE;
2846 }
2847
2848 if ((flags & elfcpp::SHF_STRINGS) == 0)
2849 this->flags_ &=~ elfcpp::SHF_STRINGS;
2850 else
2851 {
2852 if (this->current_data_size_for_child() == 0)
2853 this->flags_ |= elfcpp::SHF_STRINGS;
2854 }
2855 }
2856
2857 // Find the merge section into which an input section with index SHNDX in
2858 // OBJECT has been added. Return NULL if none found.
2859
2860 Output_section_data*
2861 Output_section::find_merge_section(const Relobj* object,
2862 unsigned int shndx) const
2863 {
2864 if (!this->lookup_maps_->is_valid())
2865 this->build_lookup_maps();
2866 return this->lookup_maps_->find_merge_section(object, shndx);
2867 }
2868
2869 // Build the lookup maps for merge and relaxed sections. This is needs
2870 // to be declared as a const methods so that it is callable with a const
2871 // Output_section pointer. The method only updates states of the maps.
2872
2873 void
2874 Output_section::build_lookup_maps() const
2875 {
2876 this->lookup_maps_->clear();
2877 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2878 p != this->input_sections_.end();
2879 ++p)
2880 {
2881 if (p->is_merge_section())
2882 {
2883 Output_merge_base* pomb = p->output_merge_base();
2884 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2885 pomb->addralign());
2886 this->lookup_maps_->add_merge_section(msp, pomb);
2887 for (Output_merge_base::Input_sections::const_iterator is =
2888 pomb->input_sections_begin();
2889 is != pomb->input_sections_end();
2890 ++is)
2891 {
2892 const Const_section_id& csid = *is;
2893 this->lookup_maps_->add_merge_input_section(csid.first,
2894 csid.second, pomb);
2895 }
2896
2897 }
2898 else if (p->is_relaxed_input_section())
2899 {
2900 Output_relaxed_input_section* poris = p->relaxed_input_section();
2901 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2902 poris->shndx(), poris);
2903 }
2904 }
2905 }
2906
2907 // Find an relaxed input section corresponding to an input section
2908 // in OBJECT with index SHNDX.
2909
2910 const Output_relaxed_input_section*
2911 Output_section::find_relaxed_input_section(const Relobj* object,
2912 unsigned int shndx) const
2913 {
2914 if (!this->lookup_maps_->is_valid())
2915 this->build_lookup_maps();
2916 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2917 }
2918
2919 // Given an address OFFSET relative to the start of input section
2920 // SHNDX in OBJECT, return whether this address is being included in
2921 // the final link. This should only be called if SHNDX in OBJECT has
2922 // a special mapping.
2923
2924 bool
2925 Output_section::is_input_address_mapped(const Relobj* object,
2926 unsigned int shndx,
2927 off_t offset) const
2928 {
2929 // Look at the Output_section_data_maps first.
2930 const Output_section_data* posd = this->find_merge_section(object, shndx);
2931 if (posd == NULL)
2932 posd = this->find_relaxed_input_section(object, shndx);
2933
2934 if (posd != NULL)
2935 {
2936 section_offset_type output_offset;
2937 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2938 gold_assert(found);
2939 return output_offset != -1;
2940 }
2941
2942 // Fall back to the slow look-up.
2943 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2944 p != this->input_sections_.end();
2945 ++p)
2946 {
2947 section_offset_type output_offset;
2948 if (p->output_offset(object, shndx, offset, &output_offset))
2949 return output_offset != -1;
2950 }
2951
2952 // By default we assume that the address is mapped. This should
2953 // only be called after we have passed all sections to Layout. At
2954 // that point we should know what we are discarding.
2955 return true;
2956 }
2957
2958 // Given an address OFFSET relative to the start of input section
2959 // SHNDX in object OBJECT, return the output offset relative to the
2960 // start of the input section in the output section. This should only
2961 // be called if SHNDX in OBJECT has a special mapping.
2962
2963 section_offset_type
2964 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2965 section_offset_type offset) const
2966 {
2967 // This can only be called meaningfully when we know the data size
2968 // of this.
2969 gold_assert(this->is_data_size_valid());
2970
2971 // Look at the Output_section_data_maps first.
2972 const Output_section_data* posd = this->find_merge_section(object, shndx);
2973 if (posd == NULL)
2974 posd = this->find_relaxed_input_section(object, shndx);
2975 if (posd != NULL)
2976 {
2977 section_offset_type output_offset;
2978 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2979 gold_assert(found);
2980 return output_offset;
2981 }
2982
2983 // Fall back to the slow look-up.
2984 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2985 p != this->input_sections_.end();
2986 ++p)
2987 {
2988 section_offset_type output_offset;
2989 if (p->output_offset(object, shndx, offset, &output_offset))
2990 return output_offset;
2991 }
2992 gold_unreachable();
2993 }
2994
2995 // Return the output virtual address of OFFSET relative to the start
2996 // of input section SHNDX in object OBJECT.
2997
2998 uint64_t
2999 Output_section::output_address(const Relobj* object, unsigned int shndx,
3000 off_t offset) const
3001 {
3002 uint64_t addr = this->address() + this->first_input_offset_;
3003
3004 // Look at the Output_section_data_maps first.
3005 const Output_section_data* posd = this->find_merge_section(object, shndx);
3006 if (posd == NULL)
3007 posd = this->find_relaxed_input_section(object, shndx);
3008 if (posd != NULL && posd->is_address_valid())
3009 {
3010 section_offset_type output_offset;
3011 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3012 gold_assert(found);
3013 return posd->address() + output_offset;
3014 }
3015
3016 // Fall back to the slow look-up.
3017 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3018 p != this->input_sections_.end();
3019 ++p)
3020 {
3021 addr = align_address(addr, p->addralign());
3022 section_offset_type output_offset;
3023 if (p->output_offset(object, shndx, offset, &output_offset))
3024 {
3025 if (output_offset == -1)
3026 return -1ULL;
3027 return addr + output_offset;
3028 }
3029 addr += p->data_size();
3030 }
3031
3032 // If we get here, it means that we don't know the mapping for this
3033 // input section. This might happen in principle if
3034 // add_input_section were called before add_output_section_data.
3035 // But it should never actually happen.
3036
3037 gold_unreachable();
3038 }
3039
3040 // Find the output address of the start of the merged section for
3041 // input section SHNDX in object OBJECT.
3042
3043 bool
3044 Output_section::find_starting_output_address(const Relobj* object,
3045 unsigned int shndx,
3046 uint64_t* paddr) const
3047 {
3048 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3049 // Looking up the merge section map does not always work as we sometimes
3050 // find a merge section without its address set.
3051 uint64_t addr = this->address() + this->first_input_offset_;
3052 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3053 p != this->input_sections_.end();
3054 ++p)
3055 {
3056 addr = align_address(addr, p->addralign());
3057
3058 // It would be nice if we could use the existing output_offset
3059 // method to get the output offset of input offset 0.
3060 // Unfortunately we don't know for sure that input offset 0 is
3061 // mapped at all.
3062 if (p->is_merge_section_for(object, shndx))
3063 {
3064 *paddr = addr;
3065 return true;
3066 }
3067
3068 addr += p->data_size();
3069 }
3070
3071 // We couldn't find a merge output section for this input section.
3072 return false;
3073 }
3074
3075 // Update the data size of an Output_section.
3076
3077 void
3078 Output_section::update_data_size()
3079 {
3080 if (this->input_sections_.empty())
3081 return;
3082
3083 if (this->must_sort_attached_input_sections()
3084 || this->input_section_order_specified())
3085 this->sort_attached_input_sections();
3086
3087 off_t off = this->first_input_offset_;
3088 for (Input_section_list::iterator p = this->input_sections_.begin();
3089 p != this->input_sections_.end();
3090 ++p)
3091 {
3092 off = align_address(off, p->addralign());
3093 off += p->current_data_size();
3094 }
3095
3096 this->set_current_data_size_for_child(off);
3097 }
3098
3099 // Set the data size of an Output_section. This is where we handle
3100 // setting the addresses of any Output_section_data objects.
3101
3102 void
3103 Output_section::set_final_data_size()
3104 {
3105 off_t data_size;
3106
3107 if (this->input_sections_.empty())
3108 data_size = this->current_data_size_for_child();
3109 else
3110 {
3111 if (this->must_sort_attached_input_sections()
3112 || this->input_section_order_specified())
3113 this->sort_attached_input_sections();
3114
3115 uint64_t address = this->address();
3116 off_t startoff = this->offset();
3117 off_t off = startoff + this->first_input_offset_;
3118 for (Input_section_list::iterator p = this->input_sections_.begin();
3119 p != this->input_sections_.end();
3120 ++p)
3121 {
3122 off = align_address(off, p->addralign());
3123 p->set_address_and_file_offset(address + (off - startoff), off,
3124 startoff);
3125 off += p->data_size();
3126 }
3127 data_size = off - startoff;
3128 }
3129
3130 // For full incremental links, we want to allocate some patch space
3131 // in most sections for subsequent incremental updates.
3132 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3133 {
3134 double pct = parameters->options().incremental_patch();
3135 size_t extra = static_cast<size_t>(data_size * pct);
3136 if (this->free_space_fill_ != NULL
3137 && this->free_space_fill_->minimum_hole_size() > extra)
3138 extra = this->free_space_fill_->minimum_hole_size();
3139 off_t new_size = align_address(data_size + extra, this->addralign());
3140 this->patch_space_ = new_size - data_size;
3141 gold_debug(DEBUG_INCREMENTAL,
3142 "set_final_data_size: %08lx + %08lx: section %s",
3143 static_cast<long>(data_size),
3144 static_cast<long>(this->patch_space_),
3145 this->name());
3146 data_size = new_size;
3147 }
3148
3149 this->set_data_size(data_size);
3150 }
3151
3152 // Reset the address and file offset.
3153
3154 void
3155 Output_section::do_reset_address_and_file_offset()
3156 {
3157 // An unallocated section has no address. Forcing this means that
3158 // we don't need special treatment for symbols defined in debug
3159 // sections. We do the same in the constructor. This does not
3160 // apply to NOLOAD sections though.
3161 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3162 this->set_address(0);
3163
3164 for (Input_section_list::iterator p = this->input_sections_.begin();
3165 p != this->input_sections_.end();
3166 ++p)
3167 p->reset_address_and_file_offset();
3168
3169 // Remove any patch space that was added in set_final_data_size.
3170 if (this->patch_space_ > 0)
3171 {
3172 this->set_current_data_size_for_child(this->current_data_size_for_child()
3173 - this->patch_space_);
3174 this->patch_space_ = 0;
3175 }
3176 }
3177
3178 // Return true if address and file offset have the values after reset.
3179
3180 bool
3181 Output_section::do_address_and_file_offset_have_reset_values() const
3182 {
3183 if (this->is_offset_valid())
3184 return false;
3185
3186 // An unallocated section has address 0 after its construction or a reset.
3187 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3188 return this->is_address_valid() && this->address() == 0;
3189 else
3190 return !this->is_address_valid();
3191 }
3192
3193 // Set the TLS offset. Called only for SHT_TLS sections.
3194
3195 void
3196 Output_section::do_set_tls_offset(uint64_t tls_base)
3197 {
3198 this->tls_offset_ = this->address() - tls_base;
3199 }
3200
3201 // In a few cases we need to sort the input sections attached to an
3202 // output section. This is used to implement the type of constructor
3203 // priority ordering implemented by the GNU linker, in which the
3204 // priority becomes part of the section name and the sections are
3205 // sorted by name. We only do this for an output section if we see an
3206 // attached input section matching ".ctors.*", ".dtors.*",
3207 // ".init_array.*" or ".fini_array.*".
3208
3209 class Output_section::Input_section_sort_entry
3210 {
3211 public:
3212 Input_section_sort_entry()
3213 : input_section_(), index_(-1U), section_has_name_(false),
3214 section_name_()
3215 { }
3216
3217 Input_section_sort_entry(const Input_section& input_section,
3218 unsigned int index,
3219 bool must_sort_attached_input_sections)
3220 : input_section_(input_section), index_(index),
3221 section_has_name_(input_section.is_input_section()
3222 || input_section.is_relaxed_input_section())
3223 {
3224 if (this->section_has_name_
3225 && must_sort_attached_input_sections)
3226 {
3227 // This is only called single-threaded from Layout::finalize,
3228 // so it is OK to lock. Unfortunately we have no way to pass
3229 // in a Task token.
3230 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3231 Object* obj = (input_section.is_input_section()
3232 ? input_section.relobj()
3233 : input_section.relaxed_input_section()->relobj());
3234 Task_lock_obj<Object> tl(dummy_task, obj);
3235
3236 // This is a slow operation, which should be cached in
3237 // Layout::layout if this becomes a speed problem.
3238 this->section_name_ = obj->section_name(input_section.shndx());
3239 }
3240 }
3241
3242 // Return the Input_section.
3243 const Input_section&
3244 input_section() const
3245 {
3246 gold_assert(this->index_ != -1U);
3247 return this->input_section_;
3248 }
3249
3250 // The index of this entry in the original list. This is used to
3251 // make the sort stable.
3252 unsigned int
3253 index() const
3254 {
3255 gold_assert(this->index_ != -1U);
3256 return this->index_;
3257 }
3258
3259 // Whether there is a section name.
3260 bool
3261 section_has_name() const
3262 { return this->section_has_name_; }
3263
3264 // The section name.
3265 const std::string&
3266 section_name() const
3267 {
3268 gold_assert(this->section_has_name_);
3269 return this->section_name_;
3270 }
3271
3272 // Return true if the section name has a priority. This is assumed
3273 // to be true if it has a dot after the initial dot.
3274 bool
3275 has_priority() const
3276 {
3277 gold_assert(this->section_has_name_);
3278 return this->section_name_.find('.', 1) != std::string::npos;
3279 }
3280
3281 // Return the priority. Believe it or not, gcc encodes the priority
3282 // differently for .ctors/.dtors and .init_array/.fini_array
3283 // sections.
3284 unsigned int
3285 get_priority() const
3286 {
3287 gold_assert(this->section_has_name_);
3288 bool is_ctors;
3289 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3290 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3291 is_ctors = true;
3292 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3293 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3294 is_ctors = false;
3295 else
3296 return 0;
3297 char* end;
3298 unsigned long prio = strtoul((this->section_name_.c_str()
3299 + (is_ctors ? 7 : 12)),
3300 &end, 10);
3301 if (*end != '\0')
3302 return 0;
3303 else if (is_ctors)
3304 return 65535 - prio;
3305 else
3306 return prio;
3307 }
3308
3309 // Return true if this an input file whose base name matches
3310 // FILE_NAME. The base name must have an extension of ".o", and
3311 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3312 // This is to match crtbegin.o as well as crtbeginS.o without
3313 // getting confused by other possibilities. Overall matching the
3314 // file name this way is a dreadful hack, but the GNU linker does it
3315 // in order to better support gcc, and we need to be compatible.
3316 bool
3317 match_file_name(const char* file_name) const
3318 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3319
3320 // Returns 1 if THIS should appear before S in section order, -1 if S
3321 // appears before THIS and 0 if they are not comparable.
3322 int
3323 compare_section_ordering(const Input_section_sort_entry& s) const
3324 {
3325 unsigned int this_secn_index = this->input_section_.section_order_index();
3326 unsigned int s_secn_index = s.input_section().section_order_index();
3327 if (this_secn_index > 0 && s_secn_index > 0)
3328 {
3329 if (this_secn_index < s_secn_index)
3330 return 1;
3331 else if (this_secn_index > s_secn_index)
3332 return -1;
3333 }
3334 return 0;
3335 }
3336
3337 private:
3338 // The Input_section we are sorting.
3339 Input_section input_section_;
3340 // The index of this Input_section in the original list.
3341 unsigned int index_;
3342 // Whether this Input_section has a section name--it won't if this
3343 // is some random Output_section_data.
3344 bool section_has_name_;
3345 // The section name if there is one.
3346 std::string section_name_;
3347 };
3348
3349 // Return true if S1 should come before S2 in the output section.
3350
3351 bool
3352 Output_section::Input_section_sort_compare::operator()(
3353 const Output_section::Input_section_sort_entry& s1,
3354 const Output_section::Input_section_sort_entry& s2) const
3355 {
3356 // crtbegin.o must come first.
3357 bool s1_begin = s1.match_file_name("crtbegin");
3358 bool s2_begin = s2.match_file_name("crtbegin");
3359 if (s1_begin || s2_begin)
3360 {
3361 if (!s1_begin)
3362 return false;
3363 if (!s2_begin)
3364 return true;
3365 return s1.index() < s2.index();
3366 }
3367
3368 // crtend.o must come last.
3369 bool s1_end = s1.match_file_name("crtend");
3370 bool s2_end = s2.match_file_name("crtend");
3371 if (s1_end || s2_end)
3372 {
3373 if (!s1_end)
3374 return true;
3375 if (!s2_end)
3376 return false;
3377 return s1.index() < s2.index();
3378 }
3379
3380 // We sort all the sections with no names to the end.
3381 if (!s1.section_has_name() || !s2.section_has_name())
3382 {
3383 if (s1.section_has_name())
3384 return true;
3385 if (s2.section_has_name())
3386 return false;
3387 return s1.index() < s2.index();
3388 }
3389
3390 // A section with a priority follows a section without a priority.
3391 bool s1_has_priority = s1.has_priority();
3392 bool s2_has_priority = s2.has_priority();
3393 if (s1_has_priority && !s2_has_priority)
3394 return false;
3395 if (!s1_has_priority && s2_has_priority)
3396 return true;
3397
3398 // Check if a section order exists for these sections through a section
3399 // ordering file. If sequence_num is 0, an order does not exist.
3400 int sequence_num = s1.compare_section_ordering(s2);
3401 if (sequence_num != 0)
3402 return sequence_num == 1;
3403
3404 // Otherwise we sort by name.
3405 int compare = s1.section_name().compare(s2.section_name());
3406 if (compare != 0)
3407 return compare < 0;
3408
3409 // Otherwise we keep the input order.
3410 return s1.index() < s2.index();
3411 }
3412
3413 // Return true if S1 should come before S2 in an .init_array or .fini_array
3414 // output section.
3415
3416 bool
3417 Output_section::Input_section_sort_init_fini_compare::operator()(
3418 const Output_section::Input_section_sort_entry& s1,
3419 const Output_section::Input_section_sort_entry& s2) const
3420 {
3421 // We sort all the sections with no names to the end.
3422 if (!s1.section_has_name() || !s2.section_has_name())
3423 {
3424 if (s1.section_has_name())
3425 return true;
3426 if (s2.section_has_name())
3427 return false;
3428 return s1.index() < s2.index();
3429 }
3430
3431 // A section without a priority follows a section with a priority.
3432 // This is the reverse of .ctors and .dtors sections.
3433 bool s1_has_priority = s1.has_priority();
3434 bool s2_has_priority = s2.has_priority();
3435 if (s1_has_priority && !s2_has_priority)
3436 return true;
3437 if (!s1_has_priority && s2_has_priority)
3438 return false;
3439
3440 // .ctors and .dtors sections without priority come after
3441 // .init_array and .fini_array sections without priority.
3442 if (!s1_has_priority
3443 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3444 && s1.section_name() != s2.section_name())
3445 return false;
3446 if (!s2_has_priority
3447 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3448 && s2.section_name() != s1.section_name())
3449 return true;
3450
3451 // Sort by priority if we can.
3452 if (s1_has_priority)
3453 {
3454 unsigned int s1_prio = s1.get_priority();
3455 unsigned int s2_prio = s2.get_priority();
3456 if (s1_prio < s2_prio)
3457 return true;
3458 else if (s1_prio > s2_prio)
3459 return false;
3460 }
3461
3462 // Check if a section order exists for these sections through a section
3463 // ordering file. If sequence_num is 0, an order does not exist.
3464 int sequence_num = s1.compare_section_ordering(s2);
3465 if (sequence_num != 0)
3466 return sequence_num == 1;
3467
3468 // Otherwise we sort by name.
3469 int compare = s1.section_name().compare(s2.section_name());
3470 if (compare != 0)
3471 return compare < 0;
3472
3473 // Otherwise we keep the input order.
3474 return s1.index() < s2.index();
3475 }
3476
3477 // Return true if S1 should come before S2. Sections that do not match
3478 // any pattern in the section ordering file are placed ahead of the sections
3479 // that match some pattern.
3480
3481 bool
3482 Output_section::Input_section_sort_section_order_index_compare::operator()(
3483 const Output_section::Input_section_sort_entry& s1,
3484 const Output_section::Input_section_sort_entry& s2) const
3485 {
3486 unsigned int s1_secn_index = s1.input_section().section_order_index();
3487 unsigned int s2_secn_index = s2.input_section().section_order_index();
3488
3489 // Keep input order if section ordering cannot determine order.
3490 if (s1_secn_index == s2_secn_index)
3491 return s1.index() < s2.index();
3492
3493 return s1_secn_index < s2_secn_index;
3494 }
3495
3496 // This updates the section order index of input sections according to the
3497 // the order specified in the mapping from Section id to order index.
3498
3499 void
3500 Output_section::update_section_layout(
3501 const Section_layout_order* order_map)
3502 {
3503 for (Input_section_list::iterator p = this->input_sections_.begin();
3504 p != this->input_sections_.end();
3505 ++p)
3506 {
3507 if (p->is_input_section()
3508 || p->is_relaxed_input_section())
3509 {
3510 Object* obj = (p->is_input_section()
3511 ? p->relobj()
3512 : p->relaxed_input_section()->relobj());
3513 unsigned int shndx = p->shndx();
3514 Section_layout_order::const_iterator it
3515 = order_map->find(Section_id(obj, shndx));
3516 if (it == order_map->end())
3517 continue;
3518 unsigned int section_order_index = it->second;
3519 if (section_order_index != 0)
3520 {
3521 p->set_section_order_index(section_order_index);
3522 this->set_input_section_order_specified();
3523 }
3524 }
3525 }
3526 }
3527
3528 // Sort the input sections attached to an output section.
3529
3530 void
3531 Output_section::sort_attached_input_sections()
3532 {
3533 if (this->attached_input_sections_are_sorted_)
3534 return;
3535
3536 if (this->checkpoint_ != NULL
3537 && !this->checkpoint_->input_sections_saved())
3538 this->checkpoint_->save_input_sections();
3539
3540 // The only thing we know about an input section is the object and
3541 // the section index. We need the section name. Recomputing this
3542 // is slow but this is an unusual case. If this becomes a speed
3543 // problem we can cache the names as required in Layout::layout.
3544
3545 // We start by building a larger vector holding a copy of each
3546 // Input_section, plus its current index in the list and its name.
3547 std::vector<Input_section_sort_entry> sort_list;
3548
3549 unsigned int i = 0;
3550 for (Input_section_list::iterator p = this->input_sections_.begin();
3551 p != this->input_sections_.end();
3552 ++p, ++i)
3553 sort_list.push_back(Input_section_sort_entry(*p, i,
3554 this->must_sort_attached_input_sections()));
3555
3556 // Sort the input sections.
3557 if (this->must_sort_attached_input_sections())
3558 {
3559 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3560 || this->type() == elfcpp::SHT_INIT_ARRAY
3561 || this->type() == elfcpp::SHT_FINI_ARRAY)
3562 std::sort(sort_list.begin(), sort_list.end(),
3563 Input_section_sort_init_fini_compare());
3564 else
3565 std::sort(sort_list.begin(), sort_list.end(),
3566 Input_section_sort_compare());
3567 }
3568 else
3569 {
3570 gold_assert(this->input_section_order_specified());
3571 std::sort(sort_list.begin(), sort_list.end(),
3572 Input_section_sort_section_order_index_compare());
3573 }
3574
3575 // Copy the sorted input sections back to our list.
3576 this->input_sections_.clear();
3577 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3578 p != sort_list.end();
3579 ++p)
3580 this->input_sections_.push_back(p->input_section());
3581 sort_list.clear();
3582
3583 // Remember that we sorted the input sections, since we might get
3584 // called again.
3585 this->attached_input_sections_are_sorted_ = true;
3586 }
3587
3588 // Write the section header to *OSHDR.
3589
3590 template<int size, bool big_endian>
3591 void
3592 Output_section::write_header(const Layout* layout,
3593 const Stringpool* secnamepool,
3594 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3595 {
3596 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3597 oshdr->put_sh_type(this->type_);
3598
3599 elfcpp::Elf_Xword flags = this->flags_;
3600 if (this->info_section_ != NULL && this->info_uses_section_index_)
3601 flags |= elfcpp::SHF_INFO_LINK;
3602 oshdr->put_sh_flags(flags);
3603
3604 oshdr->put_sh_addr(this->address());
3605 oshdr->put_sh_offset(this->offset());
3606 oshdr->put_sh_size(this->data_size());
3607 if (this->link_section_ != NULL)
3608 oshdr->put_sh_link(this->link_section_->out_shndx());
3609 else if (this->should_link_to_symtab_)
3610 oshdr->put_sh_link(layout->symtab_section_shndx());
3611 else if (this->should_link_to_dynsym_)
3612 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3613 else
3614 oshdr->put_sh_link(this->link_);
3615
3616 elfcpp::Elf_Word info;
3617 if (this->info_section_ != NULL)
3618 {
3619 if (this->info_uses_section_index_)
3620 info = this->info_section_->out_shndx();
3621 else
3622 info = this->info_section_->symtab_index();
3623 }
3624 else if (this->info_symndx_ != NULL)
3625 info = this->info_symndx_->symtab_index();
3626 else
3627 info = this->info_;
3628 oshdr->put_sh_info(info);
3629
3630 oshdr->put_sh_addralign(this->addralign_);
3631 oshdr->put_sh_entsize(this->entsize_);
3632 }
3633
3634 // Write out the data. For input sections the data is written out by
3635 // Object::relocate, but we have to handle Output_section_data objects
3636 // here.
3637
3638 void
3639 Output_section::do_write(Output_file* of)
3640 {
3641 gold_assert(!this->requires_postprocessing());
3642
3643 // If the target performs relaxation, we delay filler generation until now.
3644 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3645
3646 off_t output_section_file_offset = this->offset();
3647 for (Fill_list::iterator p = this->fills_.begin();
3648 p != this->fills_.end();
3649 ++p)
3650 {
3651 std::string fill_data(parameters->target().code_fill(p->length()));
3652 of->write(output_section_file_offset + p->section_offset(),
3653 fill_data.data(), fill_data.size());
3654 }
3655
3656 off_t off = this->offset() + this->first_input_offset_;
3657 for (Input_section_list::iterator p = this->input_sections_.begin();
3658 p != this->input_sections_.end();
3659 ++p)
3660 {
3661 off_t aligned_off = align_address(off, p->addralign());
3662 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3663 {
3664 size_t fill_len = aligned_off - off;
3665 std::string fill_data(parameters->target().code_fill(fill_len));
3666 of->write(off, fill_data.data(), fill_data.size());
3667 }
3668
3669 p->write(of);
3670 off = aligned_off + p->data_size();
3671 }
3672
3673 // For incremental links, fill in unused chunks in debug sections
3674 // with dummy compilation unit headers.
3675 if (this->free_space_fill_ != NULL)
3676 {
3677 for (Free_list::Const_iterator p = this->free_list_.begin();
3678 p != this->free_list_.end();
3679 ++p)
3680 {
3681 off_t off = p->start_;
3682 size_t len = p->end_ - off;
3683 this->free_space_fill_->write(of, this->offset() + off, len);
3684 }
3685 if (this->patch_space_ > 0)
3686 {
3687 off_t off = this->current_data_size_for_child() - this->patch_space_;
3688 this->free_space_fill_->write(of, this->offset() + off,
3689 this->patch_space_);
3690 }
3691 }
3692 }
3693
3694 // If a section requires postprocessing, create the buffer to use.
3695
3696 void
3697 Output_section::create_postprocessing_buffer()
3698 {
3699 gold_assert(this->requires_postprocessing());
3700
3701 if (this->postprocessing_buffer_ != NULL)
3702 return;
3703
3704 if (!this->input_sections_.empty())
3705 {
3706 off_t off = this->first_input_offset_;
3707 for (Input_section_list::iterator p = this->input_sections_.begin();
3708 p != this->input_sections_.end();
3709 ++p)
3710 {
3711 off = align_address(off, p->addralign());
3712 p->finalize_data_size();
3713 off += p->data_size();
3714 }
3715 this->set_current_data_size_for_child(off);
3716 }
3717
3718 off_t buffer_size = this->current_data_size_for_child();
3719 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3720 }
3721
3722 // Write all the data of an Output_section into the postprocessing
3723 // buffer. This is used for sections which require postprocessing,
3724 // such as compression. Input sections are handled by
3725 // Object::Relocate.
3726
3727 void
3728 Output_section::write_to_postprocessing_buffer()
3729 {
3730 gold_assert(this->requires_postprocessing());
3731
3732 // If the target performs relaxation, we delay filler generation until now.
3733 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3734
3735 unsigned char* buffer = this->postprocessing_buffer();
3736 for (Fill_list::iterator p = this->fills_.begin();
3737 p != this->fills_.end();
3738 ++p)
3739 {
3740 std::string fill_data(parameters->target().code_fill(p->length()));
3741 memcpy(buffer + p->section_offset(), fill_data.data(),
3742 fill_data.size());
3743 }
3744
3745 off_t off = this->first_input_offset_;
3746 for (Input_section_list::iterator p = this->input_sections_.begin();
3747 p != this->input_sections_.end();
3748 ++p)
3749 {
3750 off_t aligned_off = align_address(off, p->addralign());
3751 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3752 {
3753 size_t fill_len = aligned_off - off;
3754 std::string fill_data(parameters->target().code_fill(fill_len));
3755 memcpy(buffer + off, fill_data.data(), fill_data.size());
3756 }
3757
3758 p->write_to_buffer(buffer + aligned_off);
3759 off = aligned_off + p->data_size();
3760 }
3761 }
3762
3763 // Get the input sections for linker script processing. We leave
3764 // behind the Output_section_data entries. Note that this may be
3765 // slightly incorrect for merge sections. We will leave them behind,
3766 // but it is possible that the script says that they should follow
3767 // some other input sections, as in:
3768 // .rodata { *(.rodata) *(.rodata.cst*) }
3769 // For that matter, we don't handle this correctly:
3770 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3771 // With luck this will never matter.
3772
3773 uint64_t
3774 Output_section::get_input_sections(
3775 uint64_t address,
3776 const std::string& fill,
3777 std::list<Input_section>* input_sections)
3778 {
3779 if (this->checkpoint_ != NULL
3780 && !this->checkpoint_->input_sections_saved())
3781 this->checkpoint_->save_input_sections();
3782
3783 // Invalidate fast look-up maps.
3784 this->lookup_maps_->invalidate();
3785
3786 uint64_t orig_address = address;
3787
3788 address = align_address(address, this->addralign());
3789
3790 Input_section_list remaining;
3791 for (Input_section_list::iterator p = this->input_sections_.begin();
3792 p != this->input_sections_.end();
3793 ++p)
3794 {
3795 if (p->is_input_section()
3796 || p->is_relaxed_input_section()
3797 || p->is_merge_section())
3798 input_sections->push_back(*p);
3799 else
3800 {
3801 uint64_t aligned_address = align_address(address, p->addralign());
3802 if (aligned_address != address && !fill.empty())
3803 {
3804 section_size_type length =
3805 convert_to_section_size_type(aligned_address - address);
3806 std::string this_fill;
3807 this_fill.reserve(length);
3808 while (this_fill.length() + fill.length() <= length)
3809 this_fill += fill;
3810 if (this_fill.length() < length)
3811 this_fill.append(fill, 0, length - this_fill.length());
3812
3813 Output_section_data* posd = new Output_data_const(this_fill, 0);
3814 remaining.push_back(Input_section(posd));
3815 }
3816 address = aligned_address;
3817
3818 remaining.push_back(*p);
3819
3820 p->finalize_data_size();
3821 address += p->data_size();
3822 }
3823 }
3824
3825 this->input_sections_.swap(remaining);
3826 this->first_input_offset_ = 0;
3827
3828 uint64_t data_size = address - orig_address;
3829 this->set_current_data_size_for_child(data_size);
3830 return data_size;
3831 }
3832
3833 // Add a script input section. SIS is an Output_section::Input_section,
3834 // which can be either a plain input section or a special input section like
3835 // a relaxed input section. For a special input section, its size must be
3836 // finalized.
3837
3838 void
3839 Output_section::add_script_input_section(const Input_section& sis)
3840 {
3841 uint64_t data_size = sis.data_size();
3842 uint64_t addralign = sis.addralign();
3843 if (addralign > this->addralign_)
3844 this->addralign_ = addralign;
3845
3846 off_t offset_in_section = this->current_data_size_for_child();
3847 off_t aligned_offset_in_section = align_address(offset_in_section,
3848 addralign);
3849
3850 this->set_current_data_size_for_child(aligned_offset_in_section
3851 + data_size);
3852
3853 this->input_sections_.push_back(sis);
3854
3855 // Update fast lookup maps if necessary.
3856 if (this->lookup_maps_->is_valid())
3857 {
3858 if (sis.is_merge_section())
3859 {
3860 Output_merge_base* pomb = sis.output_merge_base();
3861 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3862 pomb->addralign());
3863 this->lookup_maps_->add_merge_section(msp, pomb);
3864 for (Output_merge_base::Input_sections::const_iterator p =
3865 pomb->input_sections_begin();
3866 p != pomb->input_sections_end();
3867 ++p)
3868 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3869 pomb);
3870 }
3871 else if (sis.is_relaxed_input_section())
3872 {
3873 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3874 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3875 poris->shndx(), poris);
3876 }
3877 }
3878 }
3879
3880 // Save states for relaxation.
3881
3882 void
3883 Output_section::save_states()
3884 {
3885 gold_assert(this->checkpoint_ == NULL);
3886 Checkpoint_output_section* checkpoint =
3887 new Checkpoint_output_section(this->addralign_, this->flags_,
3888 this->input_sections_,
3889 this->first_input_offset_,
3890 this->attached_input_sections_are_sorted_);
3891 this->checkpoint_ = checkpoint;
3892 gold_assert(this->fills_.empty());
3893 }
3894
3895 void
3896 Output_section::discard_states()
3897 {
3898 gold_assert(this->checkpoint_ != NULL);
3899 delete this->checkpoint_;
3900 this->checkpoint_ = NULL;
3901 gold_assert(this->fills_.empty());
3902
3903 // Simply invalidate the fast lookup maps since we do not keep
3904 // track of them.
3905 this->lookup_maps_->invalidate();
3906 }
3907
3908 void
3909 Output_section::restore_states()
3910 {
3911 gold_assert(this->checkpoint_ != NULL);
3912 Checkpoint_output_section* checkpoint = this->checkpoint_;
3913
3914 this->addralign_ = checkpoint->addralign();
3915 this->flags_ = checkpoint->flags();
3916 this->first_input_offset_ = checkpoint->first_input_offset();
3917
3918 if (!checkpoint->input_sections_saved())
3919 {
3920 // If we have not copied the input sections, just resize it.
3921 size_t old_size = checkpoint->input_sections_size();
3922 gold_assert(this->input_sections_.size() >= old_size);
3923 this->input_sections_.resize(old_size);
3924 }
3925 else
3926 {
3927 // We need to copy the whole list. This is not efficient for
3928 // extremely large output with hundreads of thousands of input
3929 // objects. We may need to re-think how we should pass sections
3930 // to scripts.
3931 this->input_sections_ = *checkpoint->input_sections();
3932 }
3933
3934 this->attached_input_sections_are_sorted_ =
3935 checkpoint->attached_input_sections_are_sorted();
3936
3937 // Simply invalidate the fast lookup maps since we do not keep
3938 // track of them.
3939 this->lookup_maps_->invalidate();
3940 }
3941
3942 // Update the section offsets of input sections in this. This is required if
3943 // relaxation causes some input sections to change sizes.
3944
3945 void
3946 Output_section::adjust_section_offsets()
3947 {
3948 if (!this->section_offsets_need_adjustment_)
3949 return;
3950
3951 off_t off = 0;
3952 for (Input_section_list::iterator p = this->input_sections_.begin();
3953 p != this->input_sections_.end();
3954 ++p)
3955 {
3956 off = align_address(off, p->addralign());
3957 if (p->is_input_section())
3958 p->relobj()->set_section_offset(p->shndx(), off);
3959 off += p->data_size();
3960 }
3961
3962 this->section_offsets_need_adjustment_ = false;
3963 }
3964
3965 // Print to the map file.
3966
3967 void
3968 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3969 {
3970 mapfile->print_output_section(this);
3971
3972 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3973 p != this->input_sections_.end();
3974 ++p)
3975 p->print_to_mapfile(mapfile);
3976 }
3977
3978 // Print stats for merge sections to stderr.
3979
3980 void
3981 Output_section::print_merge_stats()
3982 {
3983 Input_section_list::iterator p;
3984 for (p = this->input_sections_.begin();
3985 p != this->input_sections_.end();
3986 ++p)
3987 p->print_merge_stats(this->name_);
3988 }
3989
3990 // Set a fixed layout for the section. Used for incremental update links.
3991
3992 void
3993 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3994 off_t sh_size, uint64_t sh_addralign)
3995 {
3996 this->addralign_ = sh_addralign;
3997 this->set_current_data_size(sh_size);
3998 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3999 this->set_address(sh_addr);
4000 this->set_file_offset(sh_offset);
4001 this->finalize_data_size();
4002 this->free_list_.init(sh_size, false);
4003 this->has_fixed_layout_ = true;
4004 }
4005
4006 // Reserve space within the fixed layout for the section. Used for
4007 // incremental update links.
4008
4009 void
4010 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4011 {
4012 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4013 }
4014
4015 // Allocate space from the free list for the section. Used for
4016 // incremental update links.
4017
4018 off_t
4019 Output_section::allocate(off_t len, uint64_t addralign)
4020 {
4021 return this->free_list_.allocate(len, addralign, 0);
4022 }
4023
4024 // Output segment methods.
4025
4026 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4027 : vaddr_(0),
4028 paddr_(0),
4029 memsz_(0),
4030 max_align_(0),
4031 min_p_align_(0),
4032 offset_(0),
4033 filesz_(0),
4034 type_(type),
4035 flags_(flags),
4036 is_max_align_known_(false),
4037 are_addresses_set_(false),
4038 is_large_data_segment_(false)
4039 {
4040 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4041 // the flags.
4042 if (type == elfcpp::PT_TLS)
4043 this->flags_ = elfcpp::PF_R;
4044 }
4045
4046 // Add an Output_section to a PT_LOAD Output_segment.
4047
4048 void
4049 Output_segment::add_output_section_to_load(Layout* layout,
4050 Output_section* os,
4051 elfcpp::Elf_Word seg_flags)
4052 {
4053 gold_assert(this->type() == elfcpp::PT_LOAD);
4054 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4055 gold_assert(!this->is_max_align_known_);
4056 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4057
4058 this->update_flags_for_output_section(seg_flags);
4059
4060 // We don't want to change the ordering if we have a linker script
4061 // with a SECTIONS clause.
4062 Output_section_order order = os->order();
4063 if (layout->script_options()->saw_sections_clause())
4064 order = static_cast<Output_section_order>(0);
4065 else
4066 gold_assert(order != ORDER_INVALID);
4067
4068 this->output_lists_[order].push_back(os);
4069 }
4070
4071 // Add an Output_section to a non-PT_LOAD Output_segment.
4072
4073 void
4074 Output_segment::add_output_section_to_nonload(Output_section* os,
4075 elfcpp::Elf_Word seg_flags)
4076 {
4077 gold_assert(this->type() != elfcpp::PT_LOAD);
4078 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4079 gold_assert(!this->is_max_align_known_);
4080
4081 this->update_flags_for_output_section(seg_flags);
4082
4083 this->output_lists_[0].push_back(os);
4084 }
4085
4086 // Remove an Output_section from this segment. It is an error if it
4087 // is not present.
4088
4089 void
4090 Output_segment::remove_output_section(Output_section* os)
4091 {
4092 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4093 {
4094 Output_data_list* pdl = &this->output_lists_[i];
4095 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4096 {
4097 if (*p == os)
4098 {
4099 pdl->erase(p);
4100 return;
4101 }
4102 }
4103 }
4104 gold_unreachable();
4105 }
4106
4107 // Add an Output_data (which need not be an Output_section) to the
4108 // start of a segment.
4109
4110 void
4111 Output_segment::add_initial_output_data(Output_data* od)
4112 {
4113 gold_assert(!this->is_max_align_known_);
4114 Output_data_list::iterator p = this->output_lists_[0].begin();
4115 this->output_lists_[0].insert(p, od);
4116 }
4117
4118 // Return true if this segment has any sections which hold actual
4119 // data, rather than being a BSS section.
4120
4121 bool
4122 Output_segment::has_any_data_sections() const
4123 {
4124 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4125 {
4126 const Output_data_list* pdl = &this->output_lists_[i];
4127 for (Output_data_list::const_iterator p = pdl->begin();
4128 p != pdl->end();
4129 ++p)
4130 {
4131 if (!(*p)->is_section())
4132 return true;
4133 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4134 return true;
4135 }
4136 }
4137 return false;
4138 }
4139
4140 // Return whether the first data section (not counting TLS sections)
4141 // is a relro section.
4142
4143 bool
4144 Output_segment::is_first_section_relro() const
4145 {
4146 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4147 {
4148 if (i == static_cast<int>(ORDER_TLS_DATA)
4149 || i == static_cast<int>(ORDER_TLS_BSS))
4150 continue;
4151 const Output_data_list* pdl = &this->output_lists_[i];
4152 if (!pdl->empty())
4153 {
4154 Output_data* p = pdl->front();
4155 return p->is_section() && p->output_section()->is_relro();
4156 }
4157 }
4158 return false;
4159 }
4160
4161 // Return the maximum alignment of the Output_data in Output_segment.
4162
4163 uint64_t
4164 Output_segment::maximum_alignment()
4165 {
4166 if (!this->is_max_align_known_)
4167 {
4168 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4169 {
4170 const Output_data_list* pdl = &this->output_lists_[i];
4171 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4172 if (addralign > this->max_align_)
4173 this->max_align_ = addralign;
4174 }
4175 this->is_max_align_known_ = true;
4176 }
4177
4178 return this->max_align_;
4179 }
4180
4181 // Return the maximum alignment of a list of Output_data.
4182
4183 uint64_t
4184 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4185 {
4186 uint64_t ret = 0;
4187 for (Output_data_list::const_iterator p = pdl->begin();
4188 p != pdl->end();
4189 ++p)
4190 {
4191 uint64_t addralign = (*p)->addralign();
4192 if (addralign > ret)
4193 ret = addralign;
4194 }
4195 return ret;
4196 }
4197
4198 // Return whether this segment has any dynamic relocs.
4199
4200 bool
4201 Output_segment::has_dynamic_reloc() const
4202 {
4203 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4204 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4205 return true;
4206 return false;
4207 }
4208
4209 // Return whether this Output_data_list has any dynamic relocs.
4210
4211 bool
4212 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4213 {
4214 for (Output_data_list::const_iterator p = pdl->begin();
4215 p != pdl->end();
4216 ++p)
4217 if ((*p)->has_dynamic_reloc())
4218 return true;
4219 return false;
4220 }
4221
4222 // Set the section addresses for an Output_segment. If RESET is true,
4223 // reset the addresses first. ADDR is the address and *POFF is the
4224 // file offset. Set the section indexes starting with *PSHNDX.
4225 // INCREASE_RELRO is the size of the portion of the first non-relro
4226 // section that should be included in the PT_GNU_RELRO segment.
4227 // If this segment has relro sections, and has been aligned for
4228 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4229 // the immediately following segment. Update *HAS_RELRO, *POFF,
4230 // and *PSHNDX.
4231
4232 uint64_t
4233 Output_segment::set_section_addresses(Layout* layout, bool reset,
4234 uint64_t addr,
4235 unsigned int* increase_relro,
4236 bool* has_relro,
4237 off_t* poff,
4238 unsigned int* pshndx)
4239 {
4240 gold_assert(this->type_ == elfcpp::PT_LOAD);
4241
4242 uint64_t last_relro_pad = 0;
4243 off_t orig_off = *poff;
4244
4245 bool in_tls = false;
4246
4247 // If we have relro sections, we need to pad forward now so that the
4248 // relro sections plus INCREASE_RELRO end on a common page boundary.
4249 if (parameters->options().relro()
4250 && this->is_first_section_relro()
4251 && (!this->are_addresses_set_ || reset))
4252 {
4253 uint64_t relro_size = 0;
4254 off_t off = *poff;
4255 uint64_t max_align = 0;
4256 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4257 {
4258 Output_data_list* pdl = &this->output_lists_[i];
4259 Output_data_list::iterator p;
4260 for (p = pdl->begin(); p != pdl->end(); ++p)
4261 {
4262 if (!(*p)->is_section())
4263 break;
4264 uint64_t align = (*p)->addralign();
4265 if (align > max_align)
4266 max_align = align;
4267 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4268 in_tls = true;
4269 else if (in_tls)
4270 {
4271 // Align the first non-TLS section to the alignment
4272 // of the TLS segment.
4273 align = max_align;
4274 in_tls = false;
4275 }
4276 relro_size = align_address(relro_size, align);
4277 // Ignore the size of the .tbss section.
4278 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4279 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4280 continue;
4281 if ((*p)->is_address_valid())
4282 relro_size += (*p)->data_size();
4283 else
4284 {
4285 // FIXME: This could be faster.
4286 (*p)->set_address_and_file_offset(addr + relro_size,
4287 off + relro_size);
4288 relro_size += (*p)->data_size();
4289 (*p)->reset_address_and_file_offset();
4290 }
4291 }
4292 if (p != pdl->end())
4293 break;
4294 }
4295 relro_size += *increase_relro;
4296 // Pad the total relro size to a multiple of the maximum
4297 // section alignment seen.
4298 uint64_t aligned_size = align_address(relro_size, max_align);
4299 // Note the amount of padding added after the last relro section.
4300 last_relro_pad = aligned_size - relro_size;
4301 *has_relro = true;
4302
4303 uint64_t page_align = parameters->target().common_pagesize();
4304
4305 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4306 uint64_t desired_align = page_align - (aligned_size % page_align);
4307 if (desired_align < *poff % page_align)
4308 *poff += page_align - *poff % page_align;
4309 *poff += desired_align - *poff % page_align;
4310 addr += *poff - orig_off;
4311 orig_off = *poff;
4312 }
4313
4314 if (!reset && this->are_addresses_set_)
4315 {
4316 gold_assert(this->paddr_ == addr);
4317 addr = this->vaddr_;
4318 }
4319 else
4320 {
4321 this->vaddr_ = addr;
4322 this->paddr_ = addr;
4323 this->are_addresses_set_ = true;
4324 }
4325
4326 in_tls = false;
4327
4328 this->offset_ = orig_off;
4329
4330 off_t off = 0;
4331 uint64_t ret;
4332 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4333 {
4334 if (i == static_cast<int>(ORDER_RELRO_LAST))
4335 {
4336 *poff += last_relro_pad;
4337 addr += last_relro_pad;
4338 if (this->output_lists_[i].empty())
4339 {
4340 // If there is nothing in the ORDER_RELRO_LAST list,
4341 // the padding will occur at the end of the relro
4342 // segment, and we need to add it to *INCREASE_RELRO.
4343 *increase_relro += last_relro_pad;
4344 }
4345 }
4346 addr = this->set_section_list_addresses(layout, reset,
4347 &this->output_lists_[i],
4348 addr, poff, pshndx, &in_tls);
4349 if (i < static_cast<int>(ORDER_SMALL_BSS))
4350 {
4351 this->filesz_ = *poff - orig_off;
4352 off = *poff;
4353 }
4354
4355 ret = addr;
4356 }
4357
4358 // If the last section was a TLS section, align upward to the
4359 // alignment of the TLS segment, so that the overall size of the TLS
4360 // segment is aligned.
4361 if (in_tls)
4362 {
4363 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4364 *poff = align_address(*poff, segment_align);
4365 }
4366
4367 this->memsz_ = *poff - orig_off;
4368
4369 // Ignore the file offset adjustments made by the BSS Output_data
4370 // objects.
4371 *poff = off;
4372
4373 return ret;
4374 }
4375
4376 // Set the addresses and file offsets in a list of Output_data
4377 // structures.
4378
4379 uint64_t
4380 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4381 Output_data_list* pdl,
4382 uint64_t addr, off_t* poff,
4383 unsigned int* pshndx,
4384 bool* in_tls)
4385 {
4386 off_t startoff = *poff;
4387 // For incremental updates, we may allocate non-fixed sections from
4388 // free space in the file. This keeps track of the high-water mark.
4389 off_t maxoff = startoff;
4390
4391 off_t off = startoff;
4392 for (Output_data_list::iterator p = pdl->begin();
4393 p != pdl->end();
4394 ++p)
4395 {
4396 if (reset)
4397 (*p)->reset_address_and_file_offset();
4398
4399 // When doing an incremental update or when using a linker script,
4400 // the section will most likely already have an address.
4401 if (!(*p)->is_address_valid())
4402 {
4403 uint64_t align = (*p)->addralign();
4404
4405 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4406 {
4407 // Give the first TLS section the alignment of the
4408 // entire TLS segment. Otherwise the TLS segment as a
4409 // whole may be misaligned.
4410 if (!*in_tls)
4411 {
4412 Output_segment* tls_segment = layout->tls_segment();
4413 gold_assert(tls_segment != NULL);
4414 uint64_t segment_align = tls_segment->maximum_alignment();
4415 gold_assert(segment_align >= align);
4416 align = segment_align;
4417
4418 *in_tls = true;
4419 }
4420 }
4421 else
4422 {
4423 // If this is the first section after the TLS segment,
4424 // align it to at least the alignment of the TLS
4425 // segment, so that the size of the overall TLS segment
4426 // is aligned.
4427 if (*in_tls)
4428 {
4429 uint64_t segment_align =
4430 layout->tls_segment()->maximum_alignment();
4431 if (segment_align > align)
4432 align = segment_align;
4433
4434 *in_tls = false;
4435 }
4436 }
4437
4438 if (!parameters->incremental_update())
4439 {
4440 off = align_address(off, align);
4441 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4442 }
4443 else
4444 {
4445 // Incremental update: allocate file space from free list.
4446 (*p)->pre_finalize_data_size();
4447 off_t current_size = (*p)->current_data_size();
4448 off = layout->allocate(current_size, align, startoff);
4449 if (off == -1)
4450 {
4451 gold_assert((*p)->output_section() != NULL);
4452 gold_fallback(_("out of patch space for section %s; "
4453 "relink with --incremental-full"),
4454 (*p)->output_section()->name());
4455 }
4456 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4457 if ((*p)->data_size() > current_size)
4458 {
4459 gold_assert((*p)->output_section() != NULL);
4460 gold_fallback(_("%s: section changed size; "
4461 "relink with --incremental-full"),
4462 (*p)->output_section()->name());
4463 }
4464 }
4465 }
4466 else if (parameters->incremental_update())
4467 {
4468 // For incremental updates, use the fixed offset for the
4469 // high-water mark computation.
4470 off = (*p)->offset();
4471 }
4472 else
4473 {
4474 // The script may have inserted a skip forward, but it
4475 // better not have moved backward.
4476 if ((*p)->address() >= addr + (off - startoff))
4477 off += (*p)->address() - (addr + (off - startoff));
4478 else
4479 {
4480 if (!layout->script_options()->saw_sections_clause())
4481 gold_unreachable();
4482 else
4483 {
4484 Output_section* os = (*p)->output_section();
4485
4486 // Cast to unsigned long long to avoid format warnings.
4487 unsigned long long previous_dot =
4488 static_cast<unsigned long long>(addr + (off - startoff));
4489 unsigned long long dot =
4490 static_cast<unsigned long long>((*p)->address());
4491
4492 if (os == NULL)
4493 gold_error(_("dot moves backward in linker script "
4494 "from 0x%llx to 0x%llx"), previous_dot, dot);
4495 else
4496 gold_error(_("address of section '%s' moves backward "
4497 "from 0x%llx to 0x%llx"),
4498 os->name(), previous_dot, dot);
4499 }
4500 }
4501 (*p)->set_file_offset(off);
4502 (*p)->finalize_data_size();
4503 }
4504
4505 if (parameters->incremental_update())
4506 gold_debug(DEBUG_INCREMENTAL,
4507 "set_section_list_addresses: %08lx %08lx %s",
4508 static_cast<long>(off),
4509 static_cast<long>((*p)->data_size()),
4510 ((*p)->output_section() != NULL
4511 ? (*p)->output_section()->name() : "(special)"));
4512
4513 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4514 // section. Such a section does not affect the size of a
4515 // PT_LOAD segment.
4516 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4517 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4518 off += (*p)->data_size();
4519
4520 if (off > maxoff)
4521 maxoff = off;
4522
4523 if ((*p)->is_section())
4524 {
4525 (*p)->set_out_shndx(*pshndx);
4526 ++*pshndx;
4527 }
4528 }
4529
4530 *poff = maxoff;
4531 return addr + (maxoff - startoff);
4532 }
4533
4534 // For a non-PT_LOAD segment, set the offset from the sections, if
4535 // any. Add INCREASE to the file size and the memory size.
4536
4537 void
4538 Output_segment::set_offset(unsigned int increase)
4539 {
4540 gold_assert(this->type_ != elfcpp::PT_LOAD);
4541
4542 gold_assert(!this->are_addresses_set_);
4543
4544 // A non-load section only uses output_lists_[0].
4545
4546 Output_data_list* pdl = &this->output_lists_[0];
4547
4548 if (pdl->empty())
4549 {
4550 gold_assert(increase == 0);
4551 this->vaddr_ = 0;
4552 this->paddr_ = 0;
4553 this->are_addresses_set_ = true;
4554 this->memsz_ = 0;
4555 this->min_p_align_ = 0;
4556 this->offset_ = 0;
4557 this->filesz_ = 0;
4558 return;
4559 }
4560
4561 // Find the first and last section by address.
4562 const Output_data* first = NULL;
4563 const Output_data* last_data = NULL;
4564 const Output_data* last_bss = NULL;
4565 for (Output_data_list::const_iterator p = pdl->begin();
4566 p != pdl->end();
4567 ++p)
4568 {
4569 if (first == NULL
4570 || (*p)->address() < first->address()
4571 || ((*p)->address() == first->address()
4572 && (*p)->data_size() < first->data_size()))
4573 first = *p;
4574 const Output_data** plast;
4575 if ((*p)->is_section()
4576 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4577 plast = &last_bss;
4578 else
4579 plast = &last_data;
4580 if (*plast == NULL
4581 || (*p)->address() > (*plast)->address()
4582 || ((*p)->address() == (*plast)->address()
4583 && (*p)->data_size() > (*plast)->data_size()))
4584 *plast = *p;
4585 }
4586
4587 this->vaddr_ = first->address();
4588 this->paddr_ = (first->has_load_address()
4589 ? first->load_address()
4590 : this->vaddr_);
4591 this->are_addresses_set_ = true;
4592 this->offset_ = first->offset();
4593
4594 if (last_data == NULL)
4595 this->filesz_ = 0;
4596 else
4597 this->filesz_ = (last_data->address()
4598 + last_data->data_size()
4599 - this->vaddr_);
4600
4601 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4602 this->memsz_ = (last->address()
4603 + last->data_size()
4604 - this->vaddr_);
4605
4606 this->filesz_ += increase;
4607 this->memsz_ += increase;
4608
4609 // If this is a RELRO segment, verify that the segment ends at a
4610 // page boundary.
4611 if (this->type_ == elfcpp::PT_GNU_RELRO)
4612 {
4613 uint64_t page_align = parameters->target().common_pagesize();
4614 uint64_t segment_end = this->vaddr_ + this->memsz_;
4615 if (parameters->incremental_update())
4616 {
4617 // The INCREASE_RELRO calculation is bypassed for an incremental
4618 // update, so we need to adjust the segment size manually here.
4619 segment_end = align_address(segment_end, page_align);
4620 this->memsz_ = segment_end - this->vaddr_;
4621 }
4622 else
4623 gold_assert(segment_end == align_address(segment_end, page_align));
4624 }
4625
4626 // If this is a TLS segment, align the memory size. The code in
4627 // set_section_list ensures that the section after the TLS segment
4628 // is aligned to give us room.
4629 if (this->type_ == elfcpp::PT_TLS)
4630 {
4631 uint64_t segment_align = this->maximum_alignment();
4632 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4633 this->memsz_ = align_address(this->memsz_, segment_align);
4634 }
4635 }
4636
4637 // Set the TLS offsets of the sections in the PT_TLS segment.
4638
4639 void
4640 Output_segment::set_tls_offsets()
4641 {
4642 gold_assert(this->type_ == elfcpp::PT_TLS);
4643
4644 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4645 p != this->output_lists_[0].end();
4646 ++p)
4647 (*p)->set_tls_offset(this->vaddr_);
4648 }
4649
4650 // Return the load address of the first section.
4651
4652 uint64_t
4653 Output_segment::first_section_load_address() const
4654 {
4655 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4656 {
4657 const Output_data_list* pdl = &this->output_lists_[i];
4658 for (Output_data_list::const_iterator p = pdl->begin();
4659 p != pdl->end();
4660 ++p)
4661 {
4662 if ((*p)->is_section())
4663 return ((*p)->has_load_address()
4664 ? (*p)->load_address()
4665 : (*p)->address());
4666 }
4667 }
4668 gold_unreachable();
4669 }
4670
4671 // Return the number of Output_sections in an Output_segment.
4672
4673 unsigned int
4674 Output_segment::output_section_count() const
4675 {
4676 unsigned int ret = 0;
4677 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4678 ret += this->output_section_count_list(&this->output_lists_[i]);
4679 return ret;
4680 }
4681
4682 // Return the number of Output_sections in an Output_data_list.
4683
4684 unsigned int
4685 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4686 {
4687 unsigned int count = 0;
4688 for (Output_data_list::const_iterator p = pdl->begin();
4689 p != pdl->end();
4690 ++p)
4691 {
4692 if ((*p)->is_section())
4693 ++count;
4694 }
4695 return count;
4696 }
4697
4698 // Return the section attached to the list segment with the lowest
4699 // load address. This is used when handling a PHDRS clause in a
4700 // linker script.
4701
4702 Output_section*
4703 Output_segment::section_with_lowest_load_address() const
4704 {
4705 Output_section* found = NULL;
4706 uint64_t found_lma = 0;
4707 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4708 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4709 &found_lma);
4710 return found;
4711 }
4712
4713 // Look through a list for a section with a lower load address.
4714
4715 void
4716 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4717 Output_section** found,
4718 uint64_t* found_lma) const
4719 {
4720 for (Output_data_list::const_iterator p = pdl->begin();
4721 p != pdl->end();
4722 ++p)
4723 {
4724 if (!(*p)->is_section())
4725 continue;
4726 Output_section* os = static_cast<Output_section*>(*p);
4727 uint64_t lma = (os->has_load_address()
4728 ? os->load_address()
4729 : os->address());
4730 if (*found == NULL || lma < *found_lma)
4731 {
4732 *found = os;
4733 *found_lma = lma;
4734 }
4735 }
4736 }
4737
4738 // Write the segment data into *OPHDR.
4739
4740 template<int size, bool big_endian>
4741 void
4742 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4743 {
4744 ophdr->put_p_type(this->type_);
4745 ophdr->put_p_offset(this->offset_);
4746 ophdr->put_p_vaddr(this->vaddr_);
4747 ophdr->put_p_paddr(this->paddr_);
4748 ophdr->put_p_filesz(this->filesz_);
4749 ophdr->put_p_memsz(this->memsz_);
4750 ophdr->put_p_flags(this->flags_);
4751 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4752 }
4753
4754 // Write the section headers into V.
4755
4756 template<int size, bool big_endian>
4757 unsigned char*
4758 Output_segment::write_section_headers(const Layout* layout,
4759 const Stringpool* secnamepool,
4760 unsigned char* v,
4761 unsigned int* pshndx) const
4762 {
4763 // Every section that is attached to a segment must be attached to a
4764 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4765 // segments.
4766 if (this->type_ != elfcpp::PT_LOAD)
4767 return v;
4768
4769 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4770 {
4771 const Output_data_list* pdl = &this->output_lists_[i];
4772 v = this->write_section_headers_list<size, big_endian>(layout,
4773 secnamepool,
4774 pdl,
4775 v, pshndx);
4776 }
4777
4778 return v;
4779 }
4780
4781 template<int size, bool big_endian>
4782 unsigned char*
4783 Output_segment::write_section_headers_list(const Layout* layout,
4784 const Stringpool* secnamepool,
4785 const Output_data_list* pdl,
4786 unsigned char* v,
4787 unsigned int* pshndx) const
4788 {
4789 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4790 for (Output_data_list::const_iterator p = pdl->begin();
4791 p != pdl->end();
4792 ++p)
4793 {
4794 if ((*p)->is_section())
4795 {
4796 const Output_section* ps = static_cast<const Output_section*>(*p);
4797 gold_assert(*pshndx == ps->out_shndx());
4798 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4799 ps->write_header(layout, secnamepool, &oshdr);
4800 v += shdr_size;
4801 ++*pshndx;
4802 }
4803 }
4804 return v;
4805 }
4806
4807 // Print the output sections to the map file.
4808
4809 void
4810 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4811 {
4812 if (this->type() != elfcpp::PT_LOAD)
4813 return;
4814 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4815 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4816 }
4817
4818 // Print an output section list to the map file.
4819
4820 void
4821 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4822 const Output_data_list* pdl) const
4823 {
4824 for (Output_data_list::const_iterator p = pdl->begin();
4825 p != pdl->end();
4826 ++p)
4827 (*p)->print_to_mapfile(mapfile);
4828 }
4829
4830 // Output_file methods.
4831
4832 Output_file::Output_file(const char* name)
4833 : name_(name),
4834 o_(-1),
4835 file_size_(0),
4836 base_(NULL),
4837 map_is_anonymous_(false),
4838 map_is_allocated_(false),
4839 is_temporary_(false)
4840 {
4841 }
4842
4843 // Try to open an existing file. Returns false if the file doesn't
4844 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4845 // NULL, open that file as the base for incremental linking, and
4846 // copy its contents to the new output file. This routine can
4847 // be called for incremental updates, in which case WRITABLE should
4848 // be true, or by the incremental-dump utility, in which case
4849 // WRITABLE should be false.
4850
4851 bool
4852 Output_file::open_base_file(const char* base_name, bool writable)
4853 {
4854 // The name "-" means "stdout".
4855 if (strcmp(this->name_, "-") == 0)
4856 return false;
4857
4858 bool use_base_file = base_name != NULL;
4859 if (!use_base_file)
4860 base_name = this->name_;
4861 else if (strcmp(base_name, this->name_) == 0)
4862 gold_fatal(_("%s: incremental base and output file name are the same"),
4863 base_name);
4864
4865 // Don't bother opening files with a size of zero.
4866 struct stat s;
4867 if (::stat(base_name, &s) != 0)
4868 {
4869 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4870 return false;
4871 }
4872 if (s.st_size == 0)
4873 {
4874 gold_info(_("%s: incremental base file is empty"), base_name);
4875 return false;
4876 }
4877
4878 // If we're using a base file, we want to open it read-only.
4879 if (use_base_file)
4880 writable = false;
4881
4882 int oflags = writable ? O_RDWR : O_RDONLY;
4883 int o = open_descriptor(-1, base_name, oflags, 0);
4884 if (o < 0)
4885 {
4886 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4887 return false;
4888 }
4889
4890 // If the base file and the output file are different, open a
4891 // new output file and read the contents from the base file into
4892 // the newly-mapped region.
4893 if (use_base_file)
4894 {
4895 this->open(s.st_size);
4896 ssize_t len = ::read(o, this->base_, s.st_size);
4897 if (len < 0)
4898 {
4899 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4900 return false;
4901 }
4902 if (len < s.st_size)
4903 {
4904 gold_info(_("%s: file too short"), base_name);
4905 return false;
4906 }
4907 ::close(o);
4908 return true;
4909 }
4910
4911 this->o_ = o;
4912 this->file_size_ = s.st_size;
4913
4914 if (!this->map_no_anonymous(writable))
4915 {
4916 release_descriptor(o, true);
4917 this->o_ = -1;
4918 this->file_size_ = 0;
4919 return false;
4920 }
4921
4922 return true;
4923 }
4924
4925 // Open the output file.
4926
4927 void
4928 Output_file::open(off_t file_size)
4929 {
4930 this->file_size_ = file_size;
4931
4932 // Unlink the file first; otherwise the open() may fail if the file
4933 // is busy (e.g. it's an executable that's currently being executed).
4934 //
4935 // However, the linker may be part of a system where a zero-length
4936 // file is created for it to write to, with tight permissions (gcc
4937 // 2.95 did something like this). Unlinking the file would work
4938 // around those permission controls, so we only unlink if the file
4939 // has a non-zero size. We also unlink only regular files to avoid
4940 // trouble with directories/etc.
4941 //
4942 // If we fail, continue; this command is merely a best-effort attempt
4943 // to improve the odds for open().
4944
4945 // We let the name "-" mean "stdout"
4946 if (!this->is_temporary_)
4947 {
4948 if (strcmp(this->name_, "-") == 0)
4949 this->o_ = STDOUT_FILENO;
4950 else
4951 {
4952 struct stat s;
4953 if (::stat(this->name_, &s) == 0
4954 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4955 {
4956 if (s.st_size != 0)
4957 ::unlink(this->name_);
4958 else if (!parameters->options().relocatable())
4959 {
4960 // If we don't unlink the existing file, add execute
4961 // permission where read permissions already exist
4962 // and where the umask permits.
4963 int mask = ::umask(0);
4964 ::umask(mask);
4965 s.st_mode |= (s.st_mode & 0444) >> 2;
4966 ::chmod(this->name_, s.st_mode & ~mask);
4967 }
4968 }
4969
4970 int mode = parameters->options().relocatable() ? 0666 : 0777;
4971 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4972 mode);
4973 if (o < 0)
4974 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4975 this->o_ = o;
4976 }
4977 }
4978
4979 this->map();
4980 }
4981
4982 // Resize the output file.
4983
4984 void
4985 Output_file::resize(off_t file_size)
4986 {
4987 // If the mmap is mapping an anonymous memory buffer, this is easy:
4988 // just mremap to the new size. If it's mapping to a file, we want
4989 // to unmap to flush to the file, then remap after growing the file.
4990 if (this->map_is_anonymous_)
4991 {
4992 void* base;
4993 if (!this->map_is_allocated_)
4994 {
4995 base = ::mremap(this->base_, this->file_size_, file_size,
4996 MREMAP_MAYMOVE);
4997 if (base == MAP_FAILED)
4998 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4999 }
5000 else
5001 {
5002 base = realloc(this->base_, file_size);
5003 if (base == NULL)
5004 gold_nomem();
5005 if (file_size > this->file_size_)
5006 memset(static_cast<char*>(base) + this->file_size_, 0,
5007 file_size - this->file_size_);
5008 }
5009 this->base_ = static_cast<unsigned char*>(base);
5010 this->file_size_ = file_size;
5011 }
5012 else
5013 {
5014 this->unmap();
5015 this->file_size_ = file_size;
5016 if (!this->map_no_anonymous(true))
5017 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5018 }
5019 }
5020
5021 // Map an anonymous block of memory which will later be written to the
5022 // file. Return whether the map succeeded.
5023
5024 bool
5025 Output_file::map_anonymous()
5026 {
5027 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5028 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5029 if (base == MAP_FAILED)
5030 {
5031 base = malloc(this->file_size_);
5032 if (base == NULL)
5033 return false;
5034 memset(base, 0, this->file_size_);
5035 this->map_is_allocated_ = true;
5036 }
5037 this->base_ = static_cast<unsigned char*>(base);
5038 this->map_is_anonymous_ = true;
5039 return true;
5040 }
5041
5042 // Map the file into memory. Return whether the mapping succeeded.
5043 // If WRITABLE is true, map with write access.
5044
5045 bool
5046 Output_file::map_no_anonymous(bool writable)
5047 {
5048 const int o = this->o_;
5049
5050 // If the output file is not a regular file, don't try to mmap it;
5051 // instead, we'll mmap a block of memory (an anonymous buffer), and
5052 // then later write the buffer to the file.
5053 void* base;
5054 struct stat statbuf;
5055 if (o == STDOUT_FILENO || o == STDERR_FILENO
5056 || ::fstat(o, &statbuf) != 0
5057 || !S_ISREG(statbuf.st_mode)
5058 || this->is_temporary_)
5059 return false;
5060
5061 // Ensure that we have disk space available for the file. If we
5062 // don't do this, it is possible that we will call munmap, close,
5063 // and exit with dirty buffers still in the cache with no assigned
5064 // disk blocks. If the disk is out of space at that point, the
5065 // output file will wind up incomplete, but we will have already
5066 // exited. The alternative to fallocate would be to use fdatasync,
5067 // but that would be a more significant performance hit.
5068 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
5069 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
5070
5071 // Map the file into memory.
5072 int prot = PROT_READ;
5073 if (writable)
5074 prot |= PROT_WRITE;
5075 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5076
5077 // The mmap call might fail because of file system issues: the file
5078 // system might not support mmap at all, or it might not support
5079 // mmap with PROT_WRITE.
5080 if (base == MAP_FAILED)
5081 return false;
5082
5083 this->map_is_anonymous_ = false;
5084 this->base_ = static_cast<unsigned char*>(base);
5085 return true;
5086 }
5087
5088 // Map the file into memory.
5089
5090 void
5091 Output_file::map()
5092 {
5093 if (this->map_no_anonymous(true))
5094 return;
5095
5096 // The mmap call might fail because of file system issues: the file
5097 // system might not support mmap at all, or it might not support
5098 // mmap with PROT_WRITE. I'm not sure which errno values we will
5099 // see in all cases, so if the mmap fails for any reason and we
5100 // don't care about file contents, try for an anonymous map.
5101 if (this->map_anonymous())
5102 return;
5103
5104 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5105 this->name_, static_cast<unsigned long>(this->file_size_),
5106 strerror(errno));
5107 }
5108
5109 // Unmap the file from memory.
5110
5111 void
5112 Output_file::unmap()
5113 {
5114 if (this->map_is_anonymous_)
5115 {
5116 // We've already written out the data, so there is no reason to
5117 // waste time unmapping or freeing the memory.
5118 }
5119 else
5120 {
5121 if (::munmap(this->base_, this->file_size_) < 0)
5122 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5123 }
5124 this->base_ = NULL;
5125 }
5126
5127 // Close the output file.
5128
5129 void
5130 Output_file::close()
5131 {
5132 // If the map isn't file-backed, we need to write it now.
5133 if (this->map_is_anonymous_ && !this->is_temporary_)
5134 {
5135 size_t bytes_to_write = this->file_size_;
5136 size_t offset = 0;
5137 while (bytes_to_write > 0)
5138 {
5139 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5140 bytes_to_write);
5141 if (bytes_written == 0)
5142 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5143 else if (bytes_written < 0)
5144 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5145 else
5146 {
5147 bytes_to_write -= bytes_written;
5148 offset += bytes_written;
5149 }
5150 }
5151 }
5152 this->unmap();
5153
5154 // We don't close stdout or stderr
5155 if (this->o_ != STDOUT_FILENO
5156 && this->o_ != STDERR_FILENO
5157 && !this->is_temporary_)
5158 if (::close(this->o_) < 0)
5159 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5160 this->o_ = -1;
5161 }
5162
5163 // Instantiate the templates we need. We could use the configure
5164 // script to restrict this to only the ones for implemented targets.
5165
5166 #ifdef HAVE_TARGET_32_LITTLE
5167 template
5168 off_t
5169 Output_section::add_input_section<32, false>(
5170 Layout* layout,
5171 Sized_relobj_file<32, false>* object,
5172 unsigned int shndx,
5173 const char* secname,
5174 const elfcpp::Shdr<32, false>& shdr,
5175 unsigned int reloc_shndx,
5176 bool have_sections_script);
5177 #endif
5178
5179 #ifdef HAVE_TARGET_32_BIG
5180 template
5181 off_t
5182 Output_section::add_input_section<32, true>(
5183 Layout* layout,
5184 Sized_relobj_file<32, true>* object,
5185 unsigned int shndx,
5186 const char* secname,
5187 const elfcpp::Shdr<32, true>& shdr,
5188 unsigned int reloc_shndx,
5189 bool have_sections_script);
5190 #endif
5191
5192 #ifdef HAVE_TARGET_64_LITTLE
5193 template
5194 off_t
5195 Output_section::add_input_section<64, false>(
5196 Layout* layout,
5197 Sized_relobj_file<64, false>* object,
5198 unsigned int shndx,
5199 const char* secname,
5200 const elfcpp::Shdr<64, false>& shdr,
5201 unsigned int reloc_shndx,
5202 bool have_sections_script);
5203 #endif
5204
5205 #ifdef HAVE_TARGET_64_BIG
5206 template
5207 off_t
5208 Output_section::add_input_section<64, true>(
5209 Layout* layout,
5210 Sized_relobj_file<64, true>* object,
5211 unsigned int shndx,
5212 const char* secname,
5213 const elfcpp::Shdr<64, true>& shdr,
5214 unsigned int reloc_shndx,
5215 bool have_sections_script);
5216 #endif
5217
5218 #ifdef HAVE_TARGET_32_LITTLE
5219 template
5220 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5221 #endif
5222
5223 #ifdef HAVE_TARGET_32_BIG
5224 template
5225 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5226 #endif
5227
5228 #ifdef HAVE_TARGET_64_LITTLE
5229 template
5230 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5231 #endif
5232
5233 #ifdef HAVE_TARGET_64_BIG
5234 template
5235 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5236 #endif
5237
5238 #ifdef HAVE_TARGET_32_LITTLE
5239 template
5240 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5241 #endif
5242
5243 #ifdef HAVE_TARGET_32_BIG
5244 template
5245 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5246 #endif
5247
5248 #ifdef HAVE_TARGET_64_LITTLE
5249 template
5250 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5251 #endif
5252
5253 #ifdef HAVE_TARGET_64_BIG
5254 template
5255 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5256 #endif
5257
5258 #ifdef HAVE_TARGET_32_LITTLE
5259 template
5260 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_BIG
5264 template
5265 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_LITTLE
5269 template
5270 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_BIG
5274 template
5275 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_32_LITTLE
5279 template
5280 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_32_BIG
5284 template
5285 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_64_LITTLE
5289 template
5290 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_BIG
5294 template
5295 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_32_LITTLE
5299 template
5300 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_BIG
5304 template
5305 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_64_LITTLE
5309 template
5310 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_BIG
5314 template
5315 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_32_LITTLE
5319 template
5320 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_32_BIG
5324 template
5325 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_64_LITTLE
5329 template
5330 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_64_BIG
5334 template
5335 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_32_LITTLE
5339 template
5340 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_32_BIG
5344 template
5345 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_64_LITTLE
5349 template
5350 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_64_BIG
5354 template
5355 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_32_LITTLE
5359 template
5360 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_BIG
5364 template
5365 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_64_LITTLE
5369 template
5370 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_BIG
5374 template
5375 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_32_LITTLE
5379 template
5380 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_BIG
5384 template
5385 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_64_LITTLE
5389 template
5390 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_BIG
5394 template
5395 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_32_LITTLE
5399 template
5400 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_BIG
5404 template
5405 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_LITTLE
5409 template
5410 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_BIG
5414 template
5415 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_32_LITTLE
5419 template
5420 class Output_data_group<32, false>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_BIG
5424 template
5425 class Output_data_group<32, true>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_64_LITTLE
5429 template
5430 class Output_data_group<64, false>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_BIG
5434 template
5435 class Output_data_group<64, true>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_32_LITTLE
5439 template
5440 class Output_data_got<32, false>;
5441 #endif
5442
5443 #ifdef HAVE_TARGET_32_BIG
5444 template
5445 class Output_data_got<32, true>;
5446 #endif
5447
5448 #ifdef HAVE_TARGET_64_LITTLE
5449 template
5450 class Output_data_got<64, false>;
5451 #endif
5452
5453 #ifdef HAVE_TARGET_64_BIG
5454 template
5455 class Output_data_got<64, true>;
5456 #endif
5457
5458 } // End namespace gold.
This page took 0.160758 seconds and 5 git commands to generate.