Update copyright years
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367 unsigned int got_indx,
1368 unsigned char* pov) const
1369 {
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
1379 Symbol* gsym = this->u_.gsym;
1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381 val = parameters->target().plt_address_for_global(gsym);
1382 else
1383 {
1384 switch (parameters->size_and_endianness())
1385 {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408 #endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
1416 }
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
1427 return;
1428 val = this->u_.constant;
1429 break;
1430
1431 default:
1432 {
1433 const Relobj* object = this->u_.object;
1434 const unsigned int lsi = this->local_sym_index_;
1435 bool is_tls = object->local_is_tls(lsi);
1436 if (this->use_plt_or_tls_offset_ && !is_tls)
1437 val = parameters->target().plt_address_for_local(object, lsi);
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
1446 }
1447 break;
1448 }
1449
1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT. This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462 Symbol* gsym,
1463 unsigned int got_type)
1464 {
1465 if (gsym->has_got_offset(got_type))
1466 return false;
1467
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
1470 return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
1479 {
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
1485 return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494 Symbol* gsym,
1495 unsigned int got_type,
1496 Output_data_reloc_generic* rel_dyn,
1497 unsigned int r_type)
1498 {
1499 if (gsym->has_got_offset(got_type))
1500 return;
1501
1502 unsigned int got_offset = this->add_got_entry(Got_entry());
1503 gsym->set_got_offset(got_type, got_offset);
1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513 Symbol* gsym,
1514 unsigned int got_type,
1515 Output_data_reloc_generic* rel_dyn,
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
1518 {
1519 if (gsym->has_got_offset(got_type))
1520 return;
1521
1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523 gsym->set_got_offset(got_type, got_offset);
1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526 if (r_type_2 != 0)
1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
1528 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT. This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538 Relobj* object,
1539 unsigned int symndx,
1540 unsigned int got_type)
1541 {
1542 if (object->local_has_got_offset(symndx, got_type))
1543 return false;
1544
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
1548 return true;
1549 }
1550
1551 // Like add_local, but use the PLT offset.
1552
1553 template<int got_size, bool big_endian>
1554 bool
1555 Output_data_got<got_size, big_endian>::add_local_plt(
1556 Relobj* object,
1557 unsigned int symndx,
1558 unsigned int got_type)
1559 {
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return false;
1562
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564 true));
1565 object->set_local_got_offset(symndx, got_type, got_offset);
1566 return true;
1567 }
1568
1569 // Add an entry for a local symbol to the GOT, and add a dynamic
1570 // relocation of type R_TYPE for the GOT entry.
1571
1572 template<int got_size, bool big_endian>
1573 void
1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
1575 Relobj* object,
1576 unsigned int symndx,
1577 unsigned int got_type,
1578 Output_data_reloc_generic* rel_dyn,
1579 unsigned int r_type)
1580 {
1581 if (object->local_has_got_offset(symndx, got_type))
1582 return;
1583
1584 unsigned int got_offset = this->add_got_entry(Got_entry());
1585 object->set_local_got_offset(symndx, got_type, got_offset);
1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1587 }
1588
1589 // Add a pair of entries for a local symbol to the GOT, and add
1590 // a dynamic relocation of type R_TYPE using the section symbol of
1591 // the output section to which input section SHNDX maps, on the first.
1592 // The first got entry will have a value of zero, the second the
1593 // value of the local symbol.
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int shndx,
1600 unsigned int got_type,
1601 Output_data_reloc_generic* rel_dyn,
1602 unsigned int r_type)
1603 {
1604 if (object->local_has_got_offset(symndx, got_type))
1605 return;
1606
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
1610 object->set_local_got_offset(symndx, got_type, got_offset);
1611 Output_section* os = object->output_section(shndx);
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613 }
1614
1615 // Add a pair of entries for a local symbol to the GOT, and add
1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617 // The first got entry will have a value of zero, the second the
1618 // value of the local symbol offset by Target::tls_offset_for_local.
1619 template<int got_size, bool big_endian>
1620 void
1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1622 Relobj* object,
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1627 {
1628 if (object->local_has_got_offset(symndx, got_type))
1629 return;
1630
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1636 }
1637
1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
1640 template<int got_size, bool big_endian>
1641 void
1642 Output_data_got<got_size, big_endian>::reserve_local(
1643 unsigned int i,
1644 Relobj* object,
1645 unsigned int sym_index,
1646 unsigned int got_type)
1647 {
1648 this->do_reserve_slot(i);
1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1650 }
1651
1652 // Reserve a slot in the GOT for a global symbol.
1653
1654 template<int got_size, bool big_endian>
1655 void
1656 Output_data_got<got_size, big_endian>::reserve_global(
1657 unsigned int i,
1658 Symbol* gsym,
1659 unsigned int got_type)
1660 {
1661 this->do_reserve_slot(i);
1662 gsym->set_got_offset(got_type, this->got_offset(i));
1663 }
1664
1665 // Write out the GOT.
1666
1667 template<int got_size, bool big_endian>
1668 void
1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1670 {
1671 const int add = got_size / 8;
1672
1673 const off_t off = this->offset();
1674 const off_t oview_size = this->data_size();
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677 unsigned char* pov = oview;
1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1679 {
1680 this->entries_[i].write(i, pov);
1681 pov += add;
1682 }
1683
1684 gold_assert(pov - oview == oview_size);
1685
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int got_size, bool big_endian>
1695 unsigned int
1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1708 got_size / 8, 0);
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (got_size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int got_size, bool big_endian>
1722 unsigned int
1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
1726 {
1727 if (!this->is_data_size_valid())
1728 {
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1734 return got_offset;
1735 }
1736 else
1737 {
1738 // For an incremental update, find an available pair of slots.
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740 got_size / 8, 0);
1741 if (got_offset == -1)
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
1744 unsigned int got_index = got_offset / (got_size / 8);
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1749 }
1750 }
1751
1752 // Replace GOT entry I with a new value.
1753
1754 template<int got_size, bool big_endian>
1755 void
1756 Output_data_got<got_size, big_endian>::replace_got_entry(
1757 unsigned int i,
1758 Got_entry got_entry)
1759 {
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1762 }
1763
1764 // Output_data_dynamic::Dynamic_entry methods.
1765
1766 // Write out the entry.
1767
1768 template<int size, bool big_endian>
1769 void
1770 Output_data_dynamic::Dynamic_entry::write(
1771 unsigned char* pov,
1772 const Stringpool* pool) const
1773 {
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
1775 switch (this->offset_)
1776 {
1777 case DYNAMIC_NUMBER:
1778 val = this->u_.val;
1779 break;
1780
1781 case DYNAMIC_SECTION_SIZE:
1782 val = this->u_.od->data_size();
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
1785 break;
1786
1787 case DYNAMIC_SYMBOL:
1788 {
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1791 val = s->value();
1792 }
1793 break;
1794
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1797 break;
1798
1799 default:
1800 val = this->u_.od->address() + this->offset_;
1801 break;
1802 }
1803
1804 elfcpp::Dyn_write<size, big_endian> dw(pov);
1805 dw.put_d_tag(this->tag_);
1806 dw.put_d_val(val);
1807 }
1808
1809 // Output_data_dynamic methods.
1810
1811 // Adjust the output section to set the entry size.
1812
1813 void
1814 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1815 {
1816 if (parameters->target().get_size() == 32)
1817 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1818 else if (parameters->target().get_size() == 64)
1819 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1820 else
1821 gold_unreachable();
1822 }
1823
1824 // Set the final data size.
1825
1826 void
1827 Output_data_dynamic::set_final_data_size()
1828 {
1829 // Add the terminating entry if it hasn't been added.
1830 // Because of relaxation, we can run this multiple times.
1831 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1832 {
1833 int extra = parameters->options().spare_dynamic_tags();
1834 for (int i = 0; i < extra; ++i)
1835 this->add_constant(elfcpp::DT_NULL, 0);
1836 this->add_constant(elfcpp::DT_NULL, 0);
1837 }
1838
1839 int dyn_size;
1840 if (parameters->target().get_size() == 32)
1841 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1842 else if (parameters->target().get_size() == 64)
1843 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1844 else
1845 gold_unreachable();
1846 this->set_data_size(this->entries_.size() * dyn_size);
1847 }
1848
1849 // Write out the dynamic entries.
1850
1851 void
1852 Output_data_dynamic::do_write(Output_file* of)
1853 {
1854 switch (parameters->size_and_endianness())
1855 {
1856 #ifdef HAVE_TARGET_32_LITTLE
1857 case Parameters::TARGET_32_LITTLE:
1858 this->sized_write<32, false>(of);
1859 break;
1860 #endif
1861 #ifdef HAVE_TARGET_32_BIG
1862 case Parameters::TARGET_32_BIG:
1863 this->sized_write<32, true>(of);
1864 break;
1865 #endif
1866 #ifdef HAVE_TARGET_64_LITTLE
1867 case Parameters::TARGET_64_LITTLE:
1868 this->sized_write<64, false>(of);
1869 break;
1870 #endif
1871 #ifdef HAVE_TARGET_64_BIG
1872 case Parameters::TARGET_64_BIG:
1873 this->sized_write<64, true>(of);
1874 break;
1875 #endif
1876 default:
1877 gold_unreachable();
1878 }
1879 }
1880
1881 template<int size, bool big_endian>
1882 void
1883 Output_data_dynamic::sized_write(Output_file* of)
1884 {
1885 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1886
1887 const off_t offset = this->offset();
1888 const off_t oview_size = this->data_size();
1889 unsigned char* const oview = of->get_output_view(offset, oview_size);
1890
1891 unsigned char* pov = oview;
1892 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1893 p != this->entries_.end();
1894 ++p)
1895 {
1896 p->write<size, big_endian>(pov, this->pool_);
1897 pov += dyn_size;
1898 }
1899
1900 gold_assert(pov - oview == oview_size);
1901
1902 of->write_output_view(offset, oview_size, oview);
1903
1904 // We no longer need the dynamic entries.
1905 this->entries_.clear();
1906 }
1907
1908 // Class Output_symtab_xindex.
1909
1910 void
1911 Output_symtab_xindex::do_write(Output_file* of)
1912 {
1913 const off_t offset = this->offset();
1914 const off_t oview_size = this->data_size();
1915 unsigned char* const oview = of->get_output_view(offset, oview_size);
1916
1917 memset(oview, 0, oview_size);
1918
1919 if (parameters->target().is_big_endian())
1920 this->endian_do_write<true>(oview);
1921 else
1922 this->endian_do_write<false>(oview);
1923
1924 of->write_output_view(offset, oview_size, oview);
1925
1926 // We no longer need the data.
1927 this->entries_.clear();
1928 }
1929
1930 template<bool big_endian>
1931 void
1932 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1933 {
1934 for (Xindex_entries::const_iterator p = this->entries_.begin();
1935 p != this->entries_.end();
1936 ++p)
1937 {
1938 unsigned int symndx = p->first;
1939 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1940 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1941 }
1942 }
1943
1944 // Output_fill_debug_info methods.
1945
1946 // Return the minimum size needed for a dummy compilation unit header.
1947
1948 size_t
1949 Output_fill_debug_info::do_minimum_hole_size() const
1950 {
1951 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1952 // address_size.
1953 const size_t len = 4 + 2 + 4 + 1;
1954 // For type units, add type_signature, type_offset.
1955 if (this->is_debug_types_)
1956 return len + 8 + 4;
1957 return len;
1958 }
1959
1960 // Write a dummy compilation unit header to fill a hole in the
1961 // .debug_info or .debug_types section.
1962
1963 void
1964 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1965 {
1966 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1967 static_cast<long>(off), static_cast<long>(len));
1968
1969 gold_assert(len >= this->do_minimum_hole_size());
1970
1971 unsigned char* const oview = of->get_output_view(off, len);
1972 unsigned char* pov = oview;
1973
1974 // Write header fields: unit_length, version, debug_abbrev_offset,
1975 // address_size.
1976 if (this->is_big_endian())
1977 {
1978 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1979 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1980 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1981 }
1982 else
1983 {
1984 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1985 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1986 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1987 }
1988 pov += 4 + 2 + 4;
1989 *pov++ = 4;
1990
1991 // For type units, the additional header fields -- type_signature,
1992 // type_offset -- can be filled with zeroes.
1993
1994 // Fill the remainder of the free space with zeroes. The first
1995 // zero should tell the consumer there are no DIEs to read in this
1996 // compilation unit.
1997 if (pov < oview + len)
1998 memset(pov, 0, oview + len - pov);
1999
2000 of->write_output_view(off, len, oview);
2001 }
2002
2003 // Output_fill_debug_line methods.
2004
2005 // Return the minimum size needed for a dummy line number program header.
2006
2007 size_t
2008 Output_fill_debug_line::do_minimum_hole_size() const
2009 {
2010 // Line number program header fields: unit_length, version, header_length,
2011 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2012 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2013 const size_t len = 4 + 2 + 4 + this->header_length;
2014 return len;
2015 }
2016
2017 // Write a dummy line number program header to fill a hole in the
2018 // .debug_line section.
2019
2020 void
2021 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2022 {
2023 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2024 static_cast<long>(off), static_cast<long>(len));
2025
2026 gold_assert(len >= this->do_minimum_hole_size());
2027
2028 unsigned char* const oview = of->get_output_view(off, len);
2029 unsigned char* pov = oview;
2030
2031 // Write header fields: unit_length, version, header_length,
2032 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2033 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2034 // We set the header_length field to cover the entire hole, so the
2035 // line number program is empty.
2036 if (this->is_big_endian())
2037 {
2038 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2039 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2040 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2041 }
2042 else
2043 {
2044 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2045 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2046 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2047 }
2048 pov += 4 + 2 + 4;
2049 *pov++ = 1; // minimum_instruction_length
2050 *pov++ = 0; // default_is_stmt
2051 *pov++ = 0; // line_base
2052 *pov++ = 5; // line_range
2053 *pov++ = 13; // opcode_base
2054 *pov++ = 0; // standard_opcode_lengths[1]
2055 *pov++ = 1; // standard_opcode_lengths[2]
2056 *pov++ = 1; // standard_opcode_lengths[3]
2057 *pov++ = 1; // standard_opcode_lengths[4]
2058 *pov++ = 1; // standard_opcode_lengths[5]
2059 *pov++ = 0; // standard_opcode_lengths[6]
2060 *pov++ = 0; // standard_opcode_lengths[7]
2061 *pov++ = 0; // standard_opcode_lengths[8]
2062 *pov++ = 1; // standard_opcode_lengths[9]
2063 *pov++ = 0; // standard_opcode_lengths[10]
2064 *pov++ = 0; // standard_opcode_lengths[11]
2065 *pov++ = 1; // standard_opcode_lengths[12]
2066 *pov++ = 0; // include_directories (empty)
2067 *pov++ = 0; // filenames (empty)
2068
2069 // Some consumers don't check the header_length field, and simply
2070 // start reading the line number program immediately following the
2071 // header. For those consumers, we fill the remainder of the free
2072 // space with DW_LNS_set_basic_block opcodes. These are effectively
2073 // no-ops: the resulting line table program will not create any rows.
2074 if (pov < oview + len)
2075 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2076
2077 of->write_output_view(off, len, oview);
2078 }
2079
2080 // Output_section::Input_section methods.
2081
2082 // Return the current data size. For an input section we store the size here.
2083 // For an Output_section_data, we have to ask it for the size.
2084
2085 off_t
2086 Output_section::Input_section::current_data_size() const
2087 {
2088 if (this->is_input_section())
2089 return this->u1_.data_size;
2090 else
2091 {
2092 this->u2_.posd->pre_finalize_data_size();
2093 return this->u2_.posd->current_data_size();
2094 }
2095 }
2096
2097 // Return the data size. For an input section we store the size here.
2098 // For an Output_section_data, we have to ask it for the size.
2099
2100 off_t
2101 Output_section::Input_section::data_size() const
2102 {
2103 if (this->is_input_section())
2104 return this->u1_.data_size;
2105 else
2106 return this->u2_.posd->data_size();
2107 }
2108
2109 // Return the object for an input section.
2110
2111 Relobj*
2112 Output_section::Input_section::relobj() const
2113 {
2114 if (this->is_input_section())
2115 return this->u2_.object;
2116 else if (this->is_merge_section())
2117 {
2118 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2119 return this->u2_.pomb->first_relobj();
2120 }
2121 else if (this->is_relaxed_input_section())
2122 return this->u2_.poris->relobj();
2123 else
2124 gold_unreachable();
2125 }
2126
2127 // Return the input section index for an input section.
2128
2129 unsigned int
2130 Output_section::Input_section::shndx() const
2131 {
2132 if (this->is_input_section())
2133 return this->shndx_;
2134 else if (this->is_merge_section())
2135 {
2136 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2137 return this->u2_.pomb->first_shndx();
2138 }
2139 else if (this->is_relaxed_input_section())
2140 return this->u2_.poris->shndx();
2141 else
2142 gold_unreachable();
2143 }
2144
2145 // Set the address and file offset.
2146
2147 void
2148 Output_section::Input_section::set_address_and_file_offset(
2149 uint64_t address,
2150 off_t file_offset,
2151 off_t section_file_offset)
2152 {
2153 if (this->is_input_section())
2154 this->u2_.object->set_section_offset(this->shndx_,
2155 file_offset - section_file_offset);
2156 else
2157 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2158 }
2159
2160 // Reset the address and file offset.
2161
2162 void
2163 Output_section::Input_section::reset_address_and_file_offset()
2164 {
2165 if (!this->is_input_section())
2166 this->u2_.posd->reset_address_and_file_offset();
2167 }
2168
2169 // Finalize the data size.
2170
2171 void
2172 Output_section::Input_section::finalize_data_size()
2173 {
2174 if (!this->is_input_section())
2175 this->u2_.posd->finalize_data_size();
2176 }
2177
2178 // Try to turn an input offset into an output offset. We want to
2179 // return the output offset relative to the start of this
2180 // Input_section in the output section.
2181
2182 inline bool
2183 Output_section::Input_section::output_offset(
2184 const Relobj* object,
2185 unsigned int shndx,
2186 section_offset_type offset,
2187 section_offset_type* poutput) const
2188 {
2189 if (!this->is_input_section())
2190 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2191 else
2192 {
2193 if (this->shndx_ != shndx || this->u2_.object != object)
2194 return false;
2195 *poutput = offset;
2196 return true;
2197 }
2198 }
2199
2200 // Return whether this is the merge section for the input section
2201 // SHNDX in OBJECT.
2202
2203 inline bool
2204 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2205 unsigned int shndx) const
2206 {
2207 if (this->is_input_section())
2208 return false;
2209 return this->u2_.posd->is_merge_section_for(object, shndx);
2210 }
2211
2212 // Write out the data. We don't have to do anything for an input
2213 // section--they are handled via Object::relocate--but this is where
2214 // we write out the data for an Output_section_data.
2215
2216 void
2217 Output_section::Input_section::write(Output_file* of)
2218 {
2219 if (!this->is_input_section())
2220 this->u2_.posd->write(of);
2221 }
2222
2223 // Write the data to a buffer. As for write(), we don't have to do
2224 // anything for an input section.
2225
2226 void
2227 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2228 {
2229 if (!this->is_input_section())
2230 this->u2_.posd->write_to_buffer(buffer);
2231 }
2232
2233 // Print to a map file.
2234
2235 void
2236 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2237 {
2238 switch (this->shndx_)
2239 {
2240 case OUTPUT_SECTION_CODE:
2241 case MERGE_DATA_SECTION_CODE:
2242 case MERGE_STRING_SECTION_CODE:
2243 this->u2_.posd->print_to_mapfile(mapfile);
2244 break;
2245
2246 case RELAXED_INPUT_SECTION_CODE:
2247 {
2248 Output_relaxed_input_section* relaxed_section =
2249 this->relaxed_input_section();
2250 mapfile->print_input_section(relaxed_section->relobj(),
2251 relaxed_section->shndx());
2252 }
2253 break;
2254 default:
2255 mapfile->print_input_section(this->u2_.object, this->shndx_);
2256 break;
2257 }
2258 }
2259
2260 // Output_section methods.
2261
2262 // Construct an Output_section. NAME will point into a Stringpool.
2263
2264 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2265 elfcpp::Elf_Xword flags)
2266 : name_(name),
2267 addralign_(0),
2268 entsize_(0),
2269 load_address_(0),
2270 link_section_(NULL),
2271 link_(0),
2272 info_section_(NULL),
2273 info_symndx_(NULL),
2274 info_(0),
2275 type_(type),
2276 flags_(flags),
2277 order_(ORDER_INVALID),
2278 out_shndx_(-1U),
2279 symtab_index_(0),
2280 dynsym_index_(0),
2281 input_sections_(),
2282 first_input_offset_(0),
2283 fills_(),
2284 postprocessing_buffer_(NULL),
2285 needs_symtab_index_(false),
2286 needs_dynsym_index_(false),
2287 should_link_to_symtab_(false),
2288 should_link_to_dynsym_(false),
2289 after_input_sections_(false),
2290 requires_postprocessing_(false),
2291 found_in_sections_clause_(false),
2292 has_load_address_(false),
2293 info_uses_section_index_(false),
2294 input_section_order_specified_(false),
2295 may_sort_attached_input_sections_(false),
2296 must_sort_attached_input_sections_(false),
2297 attached_input_sections_are_sorted_(false),
2298 is_relro_(false),
2299 is_small_section_(false),
2300 is_large_section_(false),
2301 generate_code_fills_at_write_(false),
2302 is_entsize_zero_(false),
2303 section_offsets_need_adjustment_(false),
2304 is_noload_(false),
2305 always_keeps_input_sections_(false),
2306 has_fixed_layout_(false),
2307 is_patch_space_allowed_(false),
2308 is_unique_segment_(false),
2309 tls_offset_(0),
2310 extra_segment_flags_(0),
2311 segment_alignment_(0),
2312 checkpoint_(NULL),
2313 lookup_maps_(new Output_section_lookup_maps),
2314 free_list_(),
2315 free_space_fill_(NULL),
2316 patch_space_(0)
2317 {
2318 // An unallocated section has no address. Forcing this means that
2319 // we don't need special treatment for symbols defined in debug
2320 // sections.
2321 if ((flags & elfcpp::SHF_ALLOC) == 0)
2322 this->set_address(0);
2323 }
2324
2325 Output_section::~Output_section()
2326 {
2327 delete this->checkpoint_;
2328 }
2329
2330 // Set the entry size.
2331
2332 void
2333 Output_section::set_entsize(uint64_t v)
2334 {
2335 if (this->is_entsize_zero_)
2336 ;
2337 else if (this->entsize_ == 0)
2338 this->entsize_ = v;
2339 else if (this->entsize_ != v)
2340 {
2341 this->entsize_ = 0;
2342 this->is_entsize_zero_ = 1;
2343 }
2344 }
2345
2346 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2347 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2348 // relocation section which applies to this section, or 0 if none, or
2349 // -1U if more than one. Return the offset of the input section
2350 // within the output section. Return -1 if the input section will
2351 // receive special handling. In the normal case we don't always keep
2352 // track of input sections for an Output_section. Instead, each
2353 // Object keeps track of the Output_section for each of its input
2354 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2355 // track of input sections here; this is used when SECTIONS appears in
2356 // a linker script.
2357
2358 template<int size, bool big_endian>
2359 off_t
2360 Output_section::add_input_section(Layout* layout,
2361 Sized_relobj_file<size, big_endian>* object,
2362 unsigned int shndx,
2363 const char* secname,
2364 const elfcpp::Shdr<size, big_endian>& shdr,
2365 unsigned int reloc_shndx,
2366 bool have_sections_script)
2367 {
2368 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2369 if ((addralign & (addralign - 1)) != 0)
2370 {
2371 object->error(_("invalid alignment %lu for section \"%s\""),
2372 static_cast<unsigned long>(addralign), secname);
2373 addralign = 1;
2374 }
2375
2376 if (addralign > this->addralign_)
2377 this->addralign_ = addralign;
2378
2379 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2380 uint64_t entsize = shdr.get_sh_entsize();
2381
2382 // .debug_str is a mergeable string section, but is not always so
2383 // marked by compilers. Mark manually here so we can optimize.
2384 if (strcmp(secname, ".debug_str") == 0)
2385 {
2386 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2387 entsize = 1;
2388 }
2389
2390 this->update_flags_for_input_section(sh_flags);
2391 this->set_entsize(entsize);
2392
2393 // If this is a SHF_MERGE section, we pass all the input sections to
2394 // a Output_data_merge. We don't try to handle relocations for such
2395 // a section. We don't try to handle empty merge sections--they
2396 // mess up the mappings, and are useless anyhow.
2397 // FIXME: Need to handle merge sections during incremental update.
2398 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2399 && reloc_shndx == 0
2400 && shdr.get_sh_size() > 0
2401 && !parameters->incremental())
2402 {
2403 // Keep information about merged input sections for rebuilding fast
2404 // lookup maps if we have sections-script or we do relaxation.
2405 bool keeps_input_sections = (this->always_keeps_input_sections_
2406 || have_sections_script
2407 || parameters->target().may_relax());
2408
2409 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2410 addralign, keeps_input_sections))
2411 {
2412 // Tell the relocation routines that they need to call the
2413 // output_offset method to determine the final address.
2414 return -1;
2415 }
2416 }
2417
2418 section_size_type input_section_size = shdr.get_sh_size();
2419 section_size_type uncompressed_size;
2420 if (object->section_is_compressed(shndx, &uncompressed_size))
2421 input_section_size = uncompressed_size;
2422
2423 off_t offset_in_section;
2424
2425 if (this->has_fixed_layout())
2426 {
2427 // For incremental updates, find a chunk of unused space in the section.
2428 offset_in_section = this->free_list_.allocate(input_section_size,
2429 addralign, 0);
2430 if (offset_in_section == -1)
2431 gold_fallback(_("out of patch space in section %s; "
2432 "relink with --incremental-full"),
2433 this->name());
2434 return offset_in_section;
2435 }
2436
2437 offset_in_section = this->current_data_size_for_child();
2438 off_t aligned_offset_in_section = align_address(offset_in_section,
2439 addralign);
2440 this->set_current_data_size_for_child(aligned_offset_in_section
2441 + input_section_size);
2442
2443 // Determine if we want to delay code-fill generation until the output
2444 // section is written. When the target is relaxing, we want to delay fill
2445 // generating to avoid adjusting them during relaxation. Also, if we are
2446 // sorting input sections we must delay fill generation.
2447 if (!this->generate_code_fills_at_write_
2448 && !have_sections_script
2449 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2450 && parameters->target().has_code_fill()
2451 && (parameters->target().may_relax()
2452 || layout->is_section_ordering_specified()))
2453 {
2454 gold_assert(this->fills_.empty());
2455 this->generate_code_fills_at_write_ = true;
2456 }
2457
2458 if (aligned_offset_in_section > offset_in_section
2459 && !this->generate_code_fills_at_write_
2460 && !have_sections_script
2461 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2462 && parameters->target().has_code_fill())
2463 {
2464 // We need to add some fill data. Using fill_list_ when
2465 // possible is an optimization, since we will often have fill
2466 // sections without input sections.
2467 off_t fill_len = aligned_offset_in_section - offset_in_section;
2468 if (this->input_sections_.empty())
2469 this->fills_.push_back(Fill(offset_in_section, fill_len));
2470 else
2471 {
2472 std::string fill_data(parameters->target().code_fill(fill_len));
2473 Output_data_const* odc = new Output_data_const(fill_data, 1);
2474 this->input_sections_.push_back(Input_section(odc));
2475 }
2476 }
2477
2478 // We need to keep track of this section if we are already keeping
2479 // track of sections, or if we are relaxing. Also, if this is a
2480 // section which requires sorting, or which may require sorting in
2481 // the future, we keep track of the sections. If the
2482 // --section-ordering-file option is used to specify the order of
2483 // sections, we need to keep track of sections.
2484 if (this->always_keeps_input_sections_
2485 || have_sections_script
2486 || !this->input_sections_.empty()
2487 || this->may_sort_attached_input_sections()
2488 || this->must_sort_attached_input_sections()
2489 || parameters->options().user_set_Map()
2490 || parameters->target().may_relax()
2491 || layout->is_section_ordering_specified())
2492 {
2493 Input_section isecn(object, shndx, input_section_size, addralign);
2494 /* If section ordering is requested by specifying a ordering file,
2495 using --section-ordering-file, match the section name with
2496 a pattern. */
2497 if (parameters->options().section_ordering_file())
2498 {
2499 unsigned int section_order_index =
2500 layout->find_section_order_index(std::string(secname));
2501 if (section_order_index != 0)
2502 {
2503 isecn.set_section_order_index(section_order_index);
2504 this->set_input_section_order_specified();
2505 }
2506 }
2507 this->input_sections_.push_back(isecn);
2508 }
2509
2510 return aligned_offset_in_section;
2511 }
2512
2513 // Add arbitrary data to an output section.
2514
2515 void
2516 Output_section::add_output_section_data(Output_section_data* posd)
2517 {
2518 Input_section inp(posd);
2519 this->add_output_section_data(&inp);
2520
2521 if (posd->is_data_size_valid())
2522 {
2523 off_t offset_in_section;
2524 if (this->has_fixed_layout())
2525 {
2526 // For incremental updates, find a chunk of unused space.
2527 offset_in_section = this->free_list_.allocate(posd->data_size(),
2528 posd->addralign(), 0);
2529 if (offset_in_section == -1)
2530 gold_fallback(_("out of patch space in section %s; "
2531 "relink with --incremental-full"),
2532 this->name());
2533 // Finalize the address and offset now.
2534 uint64_t addr = this->address();
2535 off_t offset = this->offset();
2536 posd->set_address_and_file_offset(addr + offset_in_section,
2537 offset + offset_in_section);
2538 }
2539 else
2540 {
2541 offset_in_section = this->current_data_size_for_child();
2542 off_t aligned_offset_in_section = align_address(offset_in_section,
2543 posd->addralign());
2544 this->set_current_data_size_for_child(aligned_offset_in_section
2545 + posd->data_size());
2546 }
2547 }
2548 else if (this->has_fixed_layout())
2549 {
2550 // For incremental updates, arrange for the data to have a fixed layout.
2551 // This will mean that additions to the data must be allocated from
2552 // free space within the containing output section.
2553 uint64_t addr = this->address();
2554 posd->set_address(addr);
2555 posd->set_file_offset(0);
2556 // FIXME: This should eventually be unreachable.
2557 // gold_unreachable();
2558 }
2559 }
2560
2561 // Add a relaxed input section.
2562
2563 void
2564 Output_section::add_relaxed_input_section(Layout* layout,
2565 Output_relaxed_input_section* poris,
2566 const std::string& name)
2567 {
2568 Input_section inp(poris);
2569
2570 // If the --section-ordering-file option is used to specify the order of
2571 // sections, we need to keep track of sections.
2572 if (layout->is_section_ordering_specified())
2573 {
2574 unsigned int section_order_index =
2575 layout->find_section_order_index(name);
2576 if (section_order_index != 0)
2577 {
2578 inp.set_section_order_index(section_order_index);
2579 this->set_input_section_order_specified();
2580 }
2581 }
2582
2583 this->add_output_section_data(&inp);
2584 if (this->lookup_maps_->is_valid())
2585 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2586 poris->shndx(), poris);
2587
2588 // For a relaxed section, we use the current data size. Linker scripts
2589 // get all the input sections, including relaxed one from an output
2590 // section and add them back to the same output section to compute the
2591 // output section size. If we do not account for sizes of relaxed input
2592 // sections, an output section would be incorrectly sized.
2593 off_t offset_in_section = this->current_data_size_for_child();
2594 off_t aligned_offset_in_section = align_address(offset_in_section,
2595 poris->addralign());
2596 this->set_current_data_size_for_child(aligned_offset_in_section
2597 + poris->current_data_size());
2598 }
2599
2600 // Add arbitrary data to an output section by Input_section.
2601
2602 void
2603 Output_section::add_output_section_data(Input_section* inp)
2604 {
2605 if (this->input_sections_.empty())
2606 this->first_input_offset_ = this->current_data_size_for_child();
2607
2608 this->input_sections_.push_back(*inp);
2609
2610 uint64_t addralign = inp->addralign();
2611 if (addralign > this->addralign_)
2612 this->addralign_ = addralign;
2613
2614 inp->set_output_section(this);
2615 }
2616
2617 // Add a merge section to an output section.
2618
2619 void
2620 Output_section::add_output_merge_section(Output_section_data* posd,
2621 bool is_string, uint64_t entsize)
2622 {
2623 Input_section inp(posd, is_string, entsize);
2624 this->add_output_section_data(&inp);
2625 }
2626
2627 // Add an input section to a SHF_MERGE section.
2628
2629 bool
2630 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2631 uint64_t flags, uint64_t entsize,
2632 uint64_t addralign,
2633 bool keeps_input_sections)
2634 {
2635 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2636
2637 // We cannot restore merged input section states.
2638 gold_assert(this->checkpoint_ == NULL);
2639
2640 // Look up merge sections by required properties.
2641 // Currently, we only invalidate the lookup maps in script processing
2642 // and relaxation. We should not have done either when we reach here.
2643 // So we assume that the lookup maps are valid to simply code.
2644 gold_assert(this->lookup_maps_->is_valid());
2645 Merge_section_properties msp(is_string, entsize, addralign);
2646 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2647 bool is_new = false;
2648 if (pomb != NULL)
2649 {
2650 gold_assert(pomb->is_string() == is_string
2651 && pomb->entsize() == entsize
2652 && pomb->addralign() == addralign);
2653 }
2654 else
2655 {
2656 // Create a new Output_merge_data or Output_merge_string_data.
2657 if (!is_string)
2658 pomb = new Output_merge_data(entsize, addralign);
2659 else
2660 {
2661 switch (entsize)
2662 {
2663 case 1:
2664 pomb = new Output_merge_string<char>(addralign);
2665 break;
2666 case 2:
2667 pomb = new Output_merge_string<uint16_t>(addralign);
2668 break;
2669 case 4:
2670 pomb = new Output_merge_string<uint32_t>(addralign);
2671 break;
2672 default:
2673 return false;
2674 }
2675 }
2676 // If we need to do script processing or relaxation, we need to keep
2677 // the original input sections to rebuild the fast lookup maps.
2678 if (keeps_input_sections)
2679 pomb->set_keeps_input_sections();
2680 is_new = true;
2681 }
2682
2683 if (pomb->add_input_section(object, shndx))
2684 {
2685 // Add new merge section to this output section and link merge
2686 // section properties to new merge section in map.
2687 if (is_new)
2688 {
2689 this->add_output_merge_section(pomb, is_string, entsize);
2690 this->lookup_maps_->add_merge_section(msp, pomb);
2691 }
2692
2693 // Add input section to new merge section and link input section to new
2694 // merge section in map.
2695 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2696 return true;
2697 }
2698 else
2699 {
2700 // If add_input_section failed, delete new merge section to avoid
2701 // exporting empty merge sections in Output_section::get_input_section.
2702 if (is_new)
2703 delete pomb;
2704 return false;
2705 }
2706 }
2707
2708 // Build a relaxation map to speed up relaxation of existing input sections.
2709 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2710
2711 void
2712 Output_section::build_relaxation_map(
2713 const Input_section_list& input_sections,
2714 size_t limit,
2715 Relaxation_map* relaxation_map) const
2716 {
2717 for (size_t i = 0; i < limit; ++i)
2718 {
2719 const Input_section& is(input_sections[i]);
2720 if (is.is_input_section() || is.is_relaxed_input_section())
2721 {
2722 Section_id sid(is.relobj(), is.shndx());
2723 (*relaxation_map)[sid] = i;
2724 }
2725 }
2726 }
2727
2728 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2729 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2730 // indices of INPUT_SECTIONS.
2731
2732 void
2733 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2734 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2735 const Relaxation_map& map,
2736 Input_section_list* input_sections)
2737 {
2738 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2739 {
2740 Output_relaxed_input_section* poris = relaxed_sections[i];
2741 Section_id sid(poris->relobj(), poris->shndx());
2742 Relaxation_map::const_iterator p = map.find(sid);
2743 gold_assert(p != map.end());
2744 gold_assert((*input_sections)[p->second].is_input_section());
2745
2746 // Remember section order index of original input section
2747 // if it is set. Copy it to the relaxed input section.
2748 unsigned int soi =
2749 (*input_sections)[p->second].section_order_index();
2750 (*input_sections)[p->second] = Input_section(poris);
2751 (*input_sections)[p->second].set_section_order_index(soi);
2752 }
2753 }
2754
2755 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2756 // is a vector of pointers to Output_relaxed_input_section or its derived
2757 // classes. The relaxed sections must correspond to existing input sections.
2758
2759 void
2760 Output_section::convert_input_sections_to_relaxed_sections(
2761 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2762 {
2763 gold_assert(parameters->target().may_relax());
2764
2765 // We want to make sure that restore_states does not undo the effect of
2766 // this. If there is no checkpoint active, just search the current
2767 // input section list and replace the sections there. If there is
2768 // a checkpoint, also replace the sections there.
2769
2770 // By default, we look at the whole list.
2771 size_t limit = this->input_sections_.size();
2772
2773 if (this->checkpoint_ != NULL)
2774 {
2775 // Replace input sections with relaxed input section in the saved
2776 // copy of the input section list.
2777 if (this->checkpoint_->input_sections_saved())
2778 {
2779 Relaxation_map map;
2780 this->build_relaxation_map(
2781 *(this->checkpoint_->input_sections()),
2782 this->checkpoint_->input_sections()->size(),
2783 &map);
2784 this->convert_input_sections_in_list_to_relaxed_sections(
2785 relaxed_sections,
2786 map,
2787 this->checkpoint_->input_sections());
2788 }
2789 else
2790 {
2791 // We have not copied the input section list yet. Instead, just
2792 // look at the portion that would be saved.
2793 limit = this->checkpoint_->input_sections_size();
2794 }
2795 }
2796
2797 // Convert input sections in input_section_list.
2798 Relaxation_map map;
2799 this->build_relaxation_map(this->input_sections_, limit, &map);
2800 this->convert_input_sections_in_list_to_relaxed_sections(
2801 relaxed_sections,
2802 map,
2803 &this->input_sections_);
2804
2805 // Update fast look-up map.
2806 if (this->lookup_maps_->is_valid())
2807 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2808 {
2809 Output_relaxed_input_section* poris = relaxed_sections[i];
2810 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2811 poris->shndx(), poris);
2812 }
2813 }
2814
2815 // Update the output section flags based on input section flags.
2816
2817 void
2818 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2819 {
2820 // If we created the section with SHF_ALLOC clear, we set the
2821 // address. If we are now setting the SHF_ALLOC flag, we need to
2822 // undo that.
2823 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2824 && (flags & elfcpp::SHF_ALLOC) != 0)
2825 this->mark_address_invalid();
2826
2827 this->flags_ |= (flags
2828 & (elfcpp::SHF_WRITE
2829 | elfcpp::SHF_ALLOC
2830 | elfcpp::SHF_EXECINSTR));
2831
2832 if ((flags & elfcpp::SHF_MERGE) == 0)
2833 this->flags_ &=~ elfcpp::SHF_MERGE;
2834 else
2835 {
2836 if (this->current_data_size_for_child() == 0)
2837 this->flags_ |= elfcpp::SHF_MERGE;
2838 }
2839
2840 if ((flags & elfcpp::SHF_STRINGS) == 0)
2841 this->flags_ &=~ elfcpp::SHF_STRINGS;
2842 else
2843 {
2844 if (this->current_data_size_for_child() == 0)
2845 this->flags_ |= elfcpp::SHF_STRINGS;
2846 }
2847 }
2848
2849 // Find the merge section into which an input section with index SHNDX in
2850 // OBJECT has been added. Return NULL if none found.
2851
2852 Output_section_data*
2853 Output_section::find_merge_section(const Relobj* object,
2854 unsigned int shndx) const
2855 {
2856 if (!this->lookup_maps_->is_valid())
2857 this->build_lookup_maps();
2858 return this->lookup_maps_->find_merge_section(object, shndx);
2859 }
2860
2861 // Build the lookup maps for merge and relaxed sections. This is needs
2862 // to be declared as a const methods so that it is callable with a const
2863 // Output_section pointer. The method only updates states of the maps.
2864
2865 void
2866 Output_section::build_lookup_maps() const
2867 {
2868 this->lookup_maps_->clear();
2869 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2870 p != this->input_sections_.end();
2871 ++p)
2872 {
2873 if (p->is_merge_section())
2874 {
2875 Output_merge_base* pomb = p->output_merge_base();
2876 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2877 pomb->addralign());
2878 this->lookup_maps_->add_merge_section(msp, pomb);
2879 for (Output_merge_base::Input_sections::const_iterator is =
2880 pomb->input_sections_begin();
2881 is != pomb->input_sections_end();
2882 ++is)
2883 {
2884 const Const_section_id& csid = *is;
2885 this->lookup_maps_->add_merge_input_section(csid.first,
2886 csid.second, pomb);
2887 }
2888
2889 }
2890 else if (p->is_relaxed_input_section())
2891 {
2892 Output_relaxed_input_section* poris = p->relaxed_input_section();
2893 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2894 poris->shndx(), poris);
2895 }
2896 }
2897 }
2898
2899 // Find an relaxed input section corresponding to an input section
2900 // in OBJECT with index SHNDX.
2901
2902 const Output_relaxed_input_section*
2903 Output_section::find_relaxed_input_section(const Relobj* object,
2904 unsigned int shndx) const
2905 {
2906 if (!this->lookup_maps_->is_valid())
2907 this->build_lookup_maps();
2908 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2909 }
2910
2911 // Given an address OFFSET relative to the start of input section
2912 // SHNDX in OBJECT, return whether this address is being included in
2913 // the final link. This should only be called if SHNDX in OBJECT has
2914 // a special mapping.
2915
2916 bool
2917 Output_section::is_input_address_mapped(const Relobj* object,
2918 unsigned int shndx,
2919 off_t offset) const
2920 {
2921 // Look at the Output_section_data_maps first.
2922 const Output_section_data* posd = this->find_merge_section(object, shndx);
2923 if (posd == NULL)
2924 posd = this->find_relaxed_input_section(object, shndx);
2925
2926 if (posd != NULL)
2927 {
2928 section_offset_type output_offset;
2929 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2930 gold_assert(found);
2931 return output_offset != -1;
2932 }
2933
2934 // Fall back to the slow look-up.
2935 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2936 p != this->input_sections_.end();
2937 ++p)
2938 {
2939 section_offset_type output_offset;
2940 if (p->output_offset(object, shndx, offset, &output_offset))
2941 return output_offset != -1;
2942 }
2943
2944 // By default we assume that the address is mapped. This should
2945 // only be called after we have passed all sections to Layout. At
2946 // that point we should know what we are discarding.
2947 return true;
2948 }
2949
2950 // Given an address OFFSET relative to the start of input section
2951 // SHNDX in object OBJECT, return the output offset relative to the
2952 // start of the input section in the output section. This should only
2953 // be called if SHNDX in OBJECT has a special mapping.
2954
2955 section_offset_type
2956 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2957 section_offset_type offset) const
2958 {
2959 // This can only be called meaningfully when we know the data size
2960 // of this.
2961 gold_assert(this->is_data_size_valid());
2962
2963 // Look at the Output_section_data_maps first.
2964 const Output_section_data* posd = this->find_merge_section(object, shndx);
2965 if (posd == NULL)
2966 posd = this->find_relaxed_input_section(object, shndx);
2967 if (posd != NULL)
2968 {
2969 section_offset_type output_offset;
2970 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2971 gold_assert(found);
2972 return output_offset;
2973 }
2974
2975 // Fall back to the slow look-up.
2976 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2977 p != this->input_sections_.end();
2978 ++p)
2979 {
2980 section_offset_type output_offset;
2981 if (p->output_offset(object, shndx, offset, &output_offset))
2982 return output_offset;
2983 }
2984 gold_unreachable();
2985 }
2986
2987 // Return the output virtual address of OFFSET relative to the start
2988 // of input section SHNDX in object OBJECT.
2989
2990 uint64_t
2991 Output_section::output_address(const Relobj* object, unsigned int shndx,
2992 off_t offset) const
2993 {
2994 uint64_t addr = this->address() + this->first_input_offset_;
2995
2996 // Look at the Output_section_data_maps first.
2997 const Output_section_data* posd = this->find_merge_section(object, shndx);
2998 if (posd == NULL)
2999 posd = this->find_relaxed_input_section(object, shndx);
3000 if (posd != NULL && posd->is_address_valid())
3001 {
3002 section_offset_type output_offset;
3003 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3004 gold_assert(found);
3005 return posd->address() + output_offset;
3006 }
3007
3008 // Fall back to the slow look-up.
3009 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3010 p != this->input_sections_.end();
3011 ++p)
3012 {
3013 addr = align_address(addr, p->addralign());
3014 section_offset_type output_offset;
3015 if (p->output_offset(object, shndx, offset, &output_offset))
3016 {
3017 if (output_offset == -1)
3018 return -1ULL;
3019 return addr + output_offset;
3020 }
3021 addr += p->data_size();
3022 }
3023
3024 // If we get here, it means that we don't know the mapping for this
3025 // input section. This might happen in principle if
3026 // add_input_section were called before add_output_section_data.
3027 // But it should never actually happen.
3028
3029 gold_unreachable();
3030 }
3031
3032 // Find the output address of the start of the merged section for
3033 // input section SHNDX in object OBJECT.
3034
3035 bool
3036 Output_section::find_starting_output_address(const Relobj* object,
3037 unsigned int shndx,
3038 uint64_t* paddr) const
3039 {
3040 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3041 // Looking up the merge section map does not always work as we sometimes
3042 // find a merge section without its address set.
3043 uint64_t addr = this->address() + this->first_input_offset_;
3044 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3045 p != this->input_sections_.end();
3046 ++p)
3047 {
3048 addr = align_address(addr, p->addralign());
3049
3050 // It would be nice if we could use the existing output_offset
3051 // method to get the output offset of input offset 0.
3052 // Unfortunately we don't know for sure that input offset 0 is
3053 // mapped at all.
3054 if (p->is_merge_section_for(object, shndx))
3055 {
3056 *paddr = addr;
3057 return true;
3058 }
3059
3060 addr += p->data_size();
3061 }
3062
3063 // We couldn't find a merge output section for this input section.
3064 return false;
3065 }
3066
3067 // Update the data size of an Output_section.
3068
3069 void
3070 Output_section::update_data_size()
3071 {
3072 if (this->input_sections_.empty())
3073 return;
3074
3075 if (this->must_sort_attached_input_sections()
3076 || this->input_section_order_specified())
3077 this->sort_attached_input_sections();
3078
3079 off_t off = this->first_input_offset_;
3080 for (Input_section_list::iterator p = this->input_sections_.begin();
3081 p != this->input_sections_.end();
3082 ++p)
3083 {
3084 off = align_address(off, p->addralign());
3085 off += p->current_data_size();
3086 }
3087
3088 this->set_current_data_size_for_child(off);
3089 }
3090
3091 // Set the data size of an Output_section. This is where we handle
3092 // setting the addresses of any Output_section_data objects.
3093
3094 void
3095 Output_section::set_final_data_size()
3096 {
3097 off_t data_size;
3098
3099 if (this->input_sections_.empty())
3100 data_size = this->current_data_size_for_child();
3101 else
3102 {
3103 if (this->must_sort_attached_input_sections()
3104 || this->input_section_order_specified())
3105 this->sort_attached_input_sections();
3106
3107 uint64_t address = this->address();
3108 off_t startoff = this->offset();
3109 off_t off = startoff + this->first_input_offset_;
3110 for (Input_section_list::iterator p = this->input_sections_.begin();
3111 p != this->input_sections_.end();
3112 ++p)
3113 {
3114 off = align_address(off, p->addralign());
3115 p->set_address_and_file_offset(address + (off - startoff), off,
3116 startoff);
3117 off += p->data_size();
3118 }
3119 data_size = off - startoff;
3120 }
3121
3122 // For full incremental links, we want to allocate some patch space
3123 // in most sections for subsequent incremental updates.
3124 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3125 {
3126 double pct = parameters->options().incremental_patch();
3127 size_t extra = static_cast<size_t>(data_size * pct);
3128 if (this->free_space_fill_ != NULL
3129 && this->free_space_fill_->minimum_hole_size() > extra)
3130 extra = this->free_space_fill_->minimum_hole_size();
3131 off_t new_size = align_address(data_size + extra, this->addralign());
3132 this->patch_space_ = new_size - data_size;
3133 gold_debug(DEBUG_INCREMENTAL,
3134 "set_final_data_size: %08lx + %08lx: section %s",
3135 static_cast<long>(data_size),
3136 static_cast<long>(this->patch_space_),
3137 this->name());
3138 data_size = new_size;
3139 }
3140
3141 this->set_data_size(data_size);
3142 }
3143
3144 // Reset the address and file offset.
3145
3146 void
3147 Output_section::do_reset_address_and_file_offset()
3148 {
3149 // An unallocated section has no address. Forcing this means that
3150 // we don't need special treatment for symbols defined in debug
3151 // sections. We do the same in the constructor. This does not
3152 // apply to NOLOAD sections though.
3153 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3154 this->set_address(0);
3155
3156 for (Input_section_list::iterator p = this->input_sections_.begin();
3157 p != this->input_sections_.end();
3158 ++p)
3159 p->reset_address_and_file_offset();
3160
3161 // Remove any patch space that was added in set_final_data_size.
3162 if (this->patch_space_ > 0)
3163 {
3164 this->set_current_data_size_for_child(this->current_data_size_for_child()
3165 - this->patch_space_);
3166 this->patch_space_ = 0;
3167 }
3168 }
3169
3170 // Return true if address and file offset have the values after reset.
3171
3172 bool
3173 Output_section::do_address_and_file_offset_have_reset_values() const
3174 {
3175 if (this->is_offset_valid())
3176 return false;
3177
3178 // An unallocated section has address 0 after its construction or a reset.
3179 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3180 return this->is_address_valid() && this->address() == 0;
3181 else
3182 return !this->is_address_valid();
3183 }
3184
3185 // Set the TLS offset. Called only for SHT_TLS sections.
3186
3187 void
3188 Output_section::do_set_tls_offset(uint64_t tls_base)
3189 {
3190 this->tls_offset_ = this->address() - tls_base;
3191 }
3192
3193 // In a few cases we need to sort the input sections attached to an
3194 // output section. This is used to implement the type of constructor
3195 // priority ordering implemented by the GNU linker, in which the
3196 // priority becomes part of the section name and the sections are
3197 // sorted by name. We only do this for an output section if we see an
3198 // attached input section matching ".ctors.*", ".dtors.*",
3199 // ".init_array.*" or ".fini_array.*".
3200
3201 class Output_section::Input_section_sort_entry
3202 {
3203 public:
3204 Input_section_sort_entry()
3205 : input_section_(), index_(-1U), section_has_name_(false),
3206 section_name_()
3207 { }
3208
3209 Input_section_sort_entry(const Input_section& input_section,
3210 unsigned int index,
3211 bool must_sort_attached_input_sections)
3212 : input_section_(input_section), index_(index),
3213 section_has_name_(input_section.is_input_section()
3214 || input_section.is_relaxed_input_section())
3215 {
3216 if (this->section_has_name_
3217 && must_sort_attached_input_sections)
3218 {
3219 // This is only called single-threaded from Layout::finalize,
3220 // so it is OK to lock. Unfortunately we have no way to pass
3221 // in a Task token.
3222 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3223 Object* obj = (input_section.is_input_section()
3224 ? input_section.relobj()
3225 : input_section.relaxed_input_section()->relobj());
3226 Task_lock_obj<Object> tl(dummy_task, obj);
3227
3228 // This is a slow operation, which should be cached in
3229 // Layout::layout if this becomes a speed problem.
3230 this->section_name_ = obj->section_name(input_section.shndx());
3231 }
3232 }
3233
3234 // Return the Input_section.
3235 const Input_section&
3236 input_section() const
3237 {
3238 gold_assert(this->index_ != -1U);
3239 return this->input_section_;
3240 }
3241
3242 // The index of this entry in the original list. This is used to
3243 // make the sort stable.
3244 unsigned int
3245 index() const
3246 {
3247 gold_assert(this->index_ != -1U);
3248 return this->index_;
3249 }
3250
3251 // Whether there is a section name.
3252 bool
3253 section_has_name() const
3254 { return this->section_has_name_; }
3255
3256 // The section name.
3257 const std::string&
3258 section_name() const
3259 {
3260 gold_assert(this->section_has_name_);
3261 return this->section_name_;
3262 }
3263
3264 // Return true if the section name has a priority. This is assumed
3265 // to be true if it has a dot after the initial dot.
3266 bool
3267 has_priority() const
3268 {
3269 gold_assert(this->section_has_name_);
3270 return this->section_name_.find('.', 1) != std::string::npos;
3271 }
3272
3273 // Return the priority. Believe it or not, gcc encodes the priority
3274 // differently for .ctors/.dtors and .init_array/.fini_array
3275 // sections.
3276 unsigned int
3277 get_priority() const
3278 {
3279 gold_assert(this->section_has_name_);
3280 bool is_ctors;
3281 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3282 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3283 is_ctors = true;
3284 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3285 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3286 is_ctors = false;
3287 else
3288 return 0;
3289 char* end;
3290 unsigned long prio = strtoul((this->section_name_.c_str()
3291 + (is_ctors ? 7 : 12)),
3292 &end, 10);
3293 if (*end != '\0')
3294 return 0;
3295 else if (is_ctors)
3296 return 65535 - prio;
3297 else
3298 return prio;
3299 }
3300
3301 // Return true if this an input file whose base name matches
3302 // FILE_NAME. The base name must have an extension of ".o", and
3303 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3304 // This is to match crtbegin.o as well as crtbeginS.o without
3305 // getting confused by other possibilities. Overall matching the
3306 // file name this way is a dreadful hack, but the GNU linker does it
3307 // in order to better support gcc, and we need to be compatible.
3308 bool
3309 match_file_name(const char* file_name) const
3310 {
3311 if (this->input_section_.is_output_section_data())
3312 return false;
3313 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3314 }
3315
3316 // Returns 1 if THIS should appear before S in section order, -1 if S
3317 // appears before THIS and 0 if they are not comparable.
3318 int
3319 compare_section_ordering(const Input_section_sort_entry& s) const
3320 {
3321 unsigned int this_secn_index = this->input_section_.section_order_index();
3322 unsigned int s_secn_index = s.input_section().section_order_index();
3323 if (this_secn_index > 0 && s_secn_index > 0)
3324 {
3325 if (this_secn_index < s_secn_index)
3326 return 1;
3327 else if (this_secn_index > s_secn_index)
3328 return -1;
3329 }
3330 return 0;
3331 }
3332
3333 private:
3334 // The Input_section we are sorting.
3335 Input_section input_section_;
3336 // The index of this Input_section in the original list.
3337 unsigned int index_;
3338 // Whether this Input_section has a section name--it won't if this
3339 // is some random Output_section_data.
3340 bool section_has_name_;
3341 // The section name if there is one.
3342 std::string section_name_;
3343 };
3344
3345 // Return true if S1 should come before S2 in the output section.
3346
3347 bool
3348 Output_section::Input_section_sort_compare::operator()(
3349 const Output_section::Input_section_sort_entry& s1,
3350 const Output_section::Input_section_sort_entry& s2) const
3351 {
3352 // crtbegin.o must come first.
3353 bool s1_begin = s1.match_file_name("crtbegin");
3354 bool s2_begin = s2.match_file_name("crtbegin");
3355 if (s1_begin || s2_begin)
3356 {
3357 if (!s1_begin)
3358 return false;
3359 if (!s2_begin)
3360 return true;
3361 return s1.index() < s2.index();
3362 }
3363
3364 // crtend.o must come last.
3365 bool s1_end = s1.match_file_name("crtend");
3366 bool s2_end = s2.match_file_name("crtend");
3367 if (s1_end || s2_end)
3368 {
3369 if (!s1_end)
3370 return true;
3371 if (!s2_end)
3372 return false;
3373 return s1.index() < s2.index();
3374 }
3375
3376 // We sort all the sections with no names to the end.
3377 if (!s1.section_has_name() || !s2.section_has_name())
3378 {
3379 if (s1.section_has_name())
3380 return true;
3381 if (s2.section_has_name())
3382 return false;
3383 return s1.index() < s2.index();
3384 }
3385
3386 // A section with a priority follows a section without a priority.
3387 bool s1_has_priority = s1.has_priority();
3388 bool s2_has_priority = s2.has_priority();
3389 if (s1_has_priority && !s2_has_priority)
3390 return false;
3391 if (!s1_has_priority && s2_has_priority)
3392 return true;
3393
3394 // Check if a section order exists for these sections through a section
3395 // ordering file. If sequence_num is 0, an order does not exist.
3396 int sequence_num = s1.compare_section_ordering(s2);
3397 if (sequence_num != 0)
3398 return sequence_num == 1;
3399
3400 // Otherwise we sort by name.
3401 int compare = s1.section_name().compare(s2.section_name());
3402 if (compare != 0)
3403 return compare < 0;
3404
3405 // Otherwise we keep the input order.
3406 return s1.index() < s2.index();
3407 }
3408
3409 // Return true if S1 should come before S2 in an .init_array or .fini_array
3410 // output section.
3411
3412 bool
3413 Output_section::Input_section_sort_init_fini_compare::operator()(
3414 const Output_section::Input_section_sort_entry& s1,
3415 const Output_section::Input_section_sort_entry& s2) const
3416 {
3417 // We sort all the sections with no names to the end.
3418 if (!s1.section_has_name() || !s2.section_has_name())
3419 {
3420 if (s1.section_has_name())
3421 return true;
3422 if (s2.section_has_name())
3423 return false;
3424 return s1.index() < s2.index();
3425 }
3426
3427 // A section without a priority follows a section with a priority.
3428 // This is the reverse of .ctors and .dtors sections.
3429 bool s1_has_priority = s1.has_priority();
3430 bool s2_has_priority = s2.has_priority();
3431 if (s1_has_priority && !s2_has_priority)
3432 return true;
3433 if (!s1_has_priority && s2_has_priority)
3434 return false;
3435
3436 // .ctors and .dtors sections without priority come after
3437 // .init_array and .fini_array sections without priority.
3438 if (!s1_has_priority
3439 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3440 && s1.section_name() != s2.section_name())
3441 return false;
3442 if (!s2_has_priority
3443 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3444 && s2.section_name() != s1.section_name())
3445 return true;
3446
3447 // Sort by priority if we can.
3448 if (s1_has_priority)
3449 {
3450 unsigned int s1_prio = s1.get_priority();
3451 unsigned int s2_prio = s2.get_priority();
3452 if (s1_prio < s2_prio)
3453 return true;
3454 else if (s1_prio > s2_prio)
3455 return false;
3456 }
3457
3458 // Check if a section order exists for these sections through a section
3459 // ordering file. If sequence_num is 0, an order does not exist.
3460 int sequence_num = s1.compare_section_ordering(s2);
3461 if (sequence_num != 0)
3462 return sequence_num == 1;
3463
3464 // Otherwise we sort by name.
3465 int compare = s1.section_name().compare(s2.section_name());
3466 if (compare != 0)
3467 return compare < 0;
3468
3469 // Otherwise we keep the input order.
3470 return s1.index() < s2.index();
3471 }
3472
3473 // Return true if S1 should come before S2. Sections that do not match
3474 // any pattern in the section ordering file are placed ahead of the sections
3475 // that match some pattern.
3476
3477 bool
3478 Output_section::Input_section_sort_section_order_index_compare::operator()(
3479 const Output_section::Input_section_sort_entry& s1,
3480 const Output_section::Input_section_sort_entry& s2) const
3481 {
3482 unsigned int s1_secn_index = s1.input_section().section_order_index();
3483 unsigned int s2_secn_index = s2.input_section().section_order_index();
3484
3485 // Keep input order if section ordering cannot determine order.
3486 if (s1_secn_index == s2_secn_index)
3487 return s1.index() < s2.index();
3488
3489 return s1_secn_index < s2_secn_index;
3490 }
3491
3492 // Return true if S1 should come before S2. This is the sort comparison
3493 // function for .text to sort sections with prefixes
3494 // .text.{unlikely,exit,startup,hot} before other sections.
3495
3496 bool
3497 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3498 ::operator()(
3499 const Output_section::Input_section_sort_entry& s1,
3500 const Output_section::Input_section_sort_entry& s2) const
3501 {
3502 // We sort all the sections with no names to the end.
3503 if (!s1.section_has_name() || !s2.section_has_name())
3504 {
3505 if (s1.section_has_name())
3506 return true;
3507 if (s2.section_has_name())
3508 return false;
3509 return s1.index() < s2.index();
3510 }
3511
3512 // Some input section names have special ordering requirements.
3513 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3514 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3515 if (o1 != o2)
3516 {
3517 if (o1 < 0)
3518 return false;
3519 else if (o2 < 0)
3520 return true;
3521 else
3522 return o1 < o2;
3523 }
3524
3525 // Keep input order otherwise.
3526 return s1.index() < s2.index();
3527 }
3528
3529 // Return true if S1 should come before S2. This is the sort comparison
3530 // function for sections to sort them by name.
3531
3532 bool
3533 Output_section::Input_section_sort_section_name_compare
3534 ::operator()(
3535 const Output_section::Input_section_sort_entry& s1,
3536 const Output_section::Input_section_sort_entry& s2) const
3537 {
3538 // We sort all the sections with no names to the end.
3539 if (!s1.section_has_name() || !s2.section_has_name())
3540 {
3541 if (s1.section_has_name())
3542 return true;
3543 if (s2.section_has_name())
3544 return false;
3545 return s1.index() < s2.index();
3546 }
3547
3548 // We sort by name.
3549 int compare = s1.section_name().compare(s2.section_name());
3550 if (compare != 0)
3551 return compare < 0;
3552
3553 // Keep input order otherwise.
3554 return s1.index() < s2.index();
3555 }
3556
3557 // This updates the section order index of input sections according to the
3558 // the order specified in the mapping from Section id to order index.
3559
3560 void
3561 Output_section::update_section_layout(
3562 const Section_layout_order* order_map)
3563 {
3564 for (Input_section_list::iterator p = this->input_sections_.begin();
3565 p != this->input_sections_.end();
3566 ++p)
3567 {
3568 if (p->is_input_section()
3569 || p->is_relaxed_input_section())
3570 {
3571 Object* obj = (p->is_input_section()
3572 ? p->relobj()
3573 : p->relaxed_input_section()->relobj());
3574 unsigned int shndx = p->shndx();
3575 Section_layout_order::const_iterator it
3576 = order_map->find(Section_id(obj, shndx));
3577 if (it == order_map->end())
3578 continue;
3579 unsigned int section_order_index = it->second;
3580 if (section_order_index != 0)
3581 {
3582 p->set_section_order_index(section_order_index);
3583 this->set_input_section_order_specified();
3584 }
3585 }
3586 }
3587 }
3588
3589 // Sort the input sections attached to an output section.
3590
3591 void
3592 Output_section::sort_attached_input_sections()
3593 {
3594 if (this->attached_input_sections_are_sorted_)
3595 return;
3596
3597 if (this->checkpoint_ != NULL
3598 && !this->checkpoint_->input_sections_saved())
3599 this->checkpoint_->save_input_sections();
3600
3601 // The only thing we know about an input section is the object and
3602 // the section index. We need the section name. Recomputing this
3603 // is slow but this is an unusual case. If this becomes a speed
3604 // problem we can cache the names as required in Layout::layout.
3605
3606 // We start by building a larger vector holding a copy of each
3607 // Input_section, plus its current index in the list and its name.
3608 std::vector<Input_section_sort_entry> sort_list;
3609
3610 unsigned int i = 0;
3611 for (Input_section_list::iterator p = this->input_sections_.begin();
3612 p != this->input_sections_.end();
3613 ++p, ++i)
3614 sort_list.push_back(Input_section_sort_entry(*p, i,
3615 this->must_sort_attached_input_sections()));
3616
3617 // Sort the input sections.
3618 if (this->must_sort_attached_input_sections())
3619 {
3620 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3621 || this->type() == elfcpp::SHT_INIT_ARRAY
3622 || this->type() == elfcpp::SHT_FINI_ARRAY)
3623 std::sort(sort_list.begin(), sort_list.end(),
3624 Input_section_sort_init_fini_compare());
3625 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3626 std::sort(sort_list.begin(), sort_list.end(),
3627 Input_section_sort_section_name_compare());
3628 else if (strcmp(this->name(), ".text") == 0)
3629 std::sort(sort_list.begin(), sort_list.end(),
3630 Input_section_sort_section_prefix_special_ordering_compare());
3631 else
3632 std::sort(sort_list.begin(), sort_list.end(),
3633 Input_section_sort_compare());
3634 }
3635 else
3636 {
3637 gold_assert(this->input_section_order_specified());
3638 std::sort(sort_list.begin(), sort_list.end(),
3639 Input_section_sort_section_order_index_compare());
3640 }
3641
3642 // Copy the sorted input sections back to our list.
3643 this->input_sections_.clear();
3644 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3645 p != sort_list.end();
3646 ++p)
3647 this->input_sections_.push_back(p->input_section());
3648 sort_list.clear();
3649
3650 // Remember that we sorted the input sections, since we might get
3651 // called again.
3652 this->attached_input_sections_are_sorted_ = true;
3653 }
3654
3655 // Write the section header to *OSHDR.
3656
3657 template<int size, bool big_endian>
3658 void
3659 Output_section::write_header(const Layout* layout,
3660 const Stringpool* secnamepool,
3661 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3662 {
3663 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3664 oshdr->put_sh_type(this->type_);
3665
3666 elfcpp::Elf_Xword flags = this->flags_;
3667 if (this->info_section_ != NULL && this->info_uses_section_index_)
3668 flags |= elfcpp::SHF_INFO_LINK;
3669 oshdr->put_sh_flags(flags);
3670
3671 oshdr->put_sh_addr(this->address());
3672 oshdr->put_sh_offset(this->offset());
3673 oshdr->put_sh_size(this->data_size());
3674 if (this->link_section_ != NULL)
3675 oshdr->put_sh_link(this->link_section_->out_shndx());
3676 else if (this->should_link_to_symtab_)
3677 oshdr->put_sh_link(layout->symtab_section_shndx());
3678 else if (this->should_link_to_dynsym_)
3679 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3680 else
3681 oshdr->put_sh_link(this->link_);
3682
3683 elfcpp::Elf_Word info;
3684 if (this->info_section_ != NULL)
3685 {
3686 if (this->info_uses_section_index_)
3687 info = this->info_section_->out_shndx();
3688 else
3689 info = this->info_section_->symtab_index();
3690 }
3691 else if (this->info_symndx_ != NULL)
3692 info = this->info_symndx_->symtab_index();
3693 else
3694 info = this->info_;
3695 oshdr->put_sh_info(info);
3696
3697 oshdr->put_sh_addralign(this->addralign_);
3698 oshdr->put_sh_entsize(this->entsize_);
3699 }
3700
3701 // Write out the data. For input sections the data is written out by
3702 // Object::relocate, but we have to handle Output_section_data objects
3703 // here.
3704
3705 void
3706 Output_section::do_write(Output_file* of)
3707 {
3708 gold_assert(!this->requires_postprocessing());
3709
3710 // If the target performs relaxation, we delay filler generation until now.
3711 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3712
3713 off_t output_section_file_offset = this->offset();
3714 for (Fill_list::iterator p = this->fills_.begin();
3715 p != this->fills_.end();
3716 ++p)
3717 {
3718 std::string fill_data(parameters->target().code_fill(p->length()));
3719 of->write(output_section_file_offset + p->section_offset(),
3720 fill_data.data(), fill_data.size());
3721 }
3722
3723 off_t off = this->offset() + this->first_input_offset_;
3724 for (Input_section_list::iterator p = this->input_sections_.begin();
3725 p != this->input_sections_.end();
3726 ++p)
3727 {
3728 off_t aligned_off = align_address(off, p->addralign());
3729 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3730 {
3731 size_t fill_len = aligned_off - off;
3732 std::string fill_data(parameters->target().code_fill(fill_len));
3733 of->write(off, fill_data.data(), fill_data.size());
3734 }
3735
3736 p->write(of);
3737 off = aligned_off + p->data_size();
3738 }
3739
3740 // For incremental links, fill in unused chunks in debug sections
3741 // with dummy compilation unit headers.
3742 if (this->free_space_fill_ != NULL)
3743 {
3744 for (Free_list::Const_iterator p = this->free_list_.begin();
3745 p != this->free_list_.end();
3746 ++p)
3747 {
3748 off_t off = p->start_;
3749 size_t len = p->end_ - off;
3750 this->free_space_fill_->write(of, this->offset() + off, len);
3751 }
3752 if (this->patch_space_ > 0)
3753 {
3754 off_t off = this->current_data_size_for_child() - this->patch_space_;
3755 this->free_space_fill_->write(of, this->offset() + off,
3756 this->patch_space_);
3757 }
3758 }
3759 }
3760
3761 // If a section requires postprocessing, create the buffer to use.
3762
3763 void
3764 Output_section::create_postprocessing_buffer()
3765 {
3766 gold_assert(this->requires_postprocessing());
3767
3768 if (this->postprocessing_buffer_ != NULL)
3769 return;
3770
3771 if (!this->input_sections_.empty())
3772 {
3773 off_t off = this->first_input_offset_;
3774 for (Input_section_list::iterator p = this->input_sections_.begin();
3775 p != this->input_sections_.end();
3776 ++p)
3777 {
3778 off = align_address(off, p->addralign());
3779 p->finalize_data_size();
3780 off += p->data_size();
3781 }
3782 this->set_current_data_size_for_child(off);
3783 }
3784
3785 off_t buffer_size = this->current_data_size_for_child();
3786 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3787 }
3788
3789 // Write all the data of an Output_section into the postprocessing
3790 // buffer. This is used for sections which require postprocessing,
3791 // such as compression. Input sections are handled by
3792 // Object::Relocate.
3793
3794 void
3795 Output_section::write_to_postprocessing_buffer()
3796 {
3797 gold_assert(this->requires_postprocessing());
3798
3799 // If the target performs relaxation, we delay filler generation until now.
3800 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3801
3802 unsigned char* buffer = this->postprocessing_buffer();
3803 for (Fill_list::iterator p = this->fills_.begin();
3804 p != this->fills_.end();
3805 ++p)
3806 {
3807 std::string fill_data(parameters->target().code_fill(p->length()));
3808 memcpy(buffer + p->section_offset(), fill_data.data(),
3809 fill_data.size());
3810 }
3811
3812 off_t off = this->first_input_offset_;
3813 for (Input_section_list::iterator p = this->input_sections_.begin();
3814 p != this->input_sections_.end();
3815 ++p)
3816 {
3817 off_t aligned_off = align_address(off, p->addralign());
3818 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3819 {
3820 size_t fill_len = aligned_off - off;
3821 std::string fill_data(parameters->target().code_fill(fill_len));
3822 memcpy(buffer + off, fill_data.data(), fill_data.size());
3823 }
3824
3825 p->write_to_buffer(buffer + aligned_off);
3826 off = aligned_off + p->data_size();
3827 }
3828 }
3829
3830 // Get the input sections for linker script processing. We leave
3831 // behind the Output_section_data entries. Note that this may be
3832 // slightly incorrect for merge sections. We will leave them behind,
3833 // but it is possible that the script says that they should follow
3834 // some other input sections, as in:
3835 // .rodata { *(.rodata) *(.rodata.cst*) }
3836 // For that matter, we don't handle this correctly:
3837 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3838 // With luck this will never matter.
3839
3840 uint64_t
3841 Output_section::get_input_sections(
3842 uint64_t address,
3843 const std::string& fill,
3844 std::list<Input_section>* input_sections)
3845 {
3846 if (this->checkpoint_ != NULL
3847 && !this->checkpoint_->input_sections_saved())
3848 this->checkpoint_->save_input_sections();
3849
3850 // Invalidate fast look-up maps.
3851 this->lookup_maps_->invalidate();
3852
3853 uint64_t orig_address = address;
3854
3855 address = align_address(address, this->addralign());
3856
3857 Input_section_list remaining;
3858 for (Input_section_list::iterator p = this->input_sections_.begin();
3859 p != this->input_sections_.end();
3860 ++p)
3861 {
3862 if (p->is_input_section()
3863 || p->is_relaxed_input_section()
3864 || p->is_merge_section())
3865 input_sections->push_back(*p);
3866 else
3867 {
3868 uint64_t aligned_address = align_address(address, p->addralign());
3869 if (aligned_address != address && !fill.empty())
3870 {
3871 section_size_type length =
3872 convert_to_section_size_type(aligned_address - address);
3873 std::string this_fill;
3874 this_fill.reserve(length);
3875 while (this_fill.length() + fill.length() <= length)
3876 this_fill += fill;
3877 if (this_fill.length() < length)
3878 this_fill.append(fill, 0, length - this_fill.length());
3879
3880 Output_section_data* posd = new Output_data_const(this_fill, 0);
3881 remaining.push_back(Input_section(posd));
3882 }
3883 address = aligned_address;
3884
3885 remaining.push_back(*p);
3886
3887 p->finalize_data_size();
3888 address += p->data_size();
3889 }
3890 }
3891
3892 this->input_sections_.swap(remaining);
3893 this->first_input_offset_ = 0;
3894
3895 uint64_t data_size = address - orig_address;
3896 this->set_current_data_size_for_child(data_size);
3897 return data_size;
3898 }
3899
3900 // Add a script input section. SIS is an Output_section::Input_section,
3901 // which can be either a plain input section or a special input section like
3902 // a relaxed input section. For a special input section, its size must be
3903 // finalized.
3904
3905 void
3906 Output_section::add_script_input_section(const Input_section& sis)
3907 {
3908 uint64_t data_size = sis.data_size();
3909 uint64_t addralign = sis.addralign();
3910 if (addralign > this->addralign_)
3911 this->addralign_ = addralign;
3912
3913 off_t offset_in_section = this->current_data_size_for_child();
3914 off_t aligned_offset_in_section = align_address(offset_in_section,
3915 addralign);
3916
3917 this->set_current_data_size_for_child(aligned_offset_in_section
3918 + data_size);
3919
3920 this->input_sections_.push_back(sis);
3921
3922 // Update fast lookup maps if necessary.
3923 if (this->lookup_maps_->is_valid())
3924 {
3925 if (sis.is_merge_section())
3926 {
3927 Output_merge_base* pomb = sis.output_merge_base();
3928 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3929 pomb->addralign());
3930 this->lookup_maps_->add_merge_section(msp, pomb);
3931 for (Output_merge_base::Input_sections::const_iterator p =
3932 pomb->input_sections_begin();
3933 p != pomb->input_sections_end();
3934 ++p)
3935 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3936 pomb);
3937 }
3938 else if (sis.is_relaxed_input_section())
3939 {
3940 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3941 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3942 poris->shndx(), poris);
3943 }
3944 }
3945 }
3946
3947 // Save states for relaxation.
3948
3949 void
3950 Output_section::save_states()
3951 {
3952 gold_assert(this->checkpoint_ == NULL);
3953 Checkpoint_output_section* checkpoint =
3954 new Checkpoint_output_section(this->addralign_, this->flags_,
3955 this->input_sections_,
3956 this->first_input_offset_,
3957 this->attached_input_sections_are_sorted_);
3958 this->checkpoint_ = checkpoint;
3959 gold_assert(this->fills_.empty());
3960 }
3961
3962 void
3963 Output_section::discard_states()
3964 {
3965 gold_assert(this->checkpoint_ != NULL);
3966 delete this->checkpoint_;
3967 this->checkpoint_ = NULL;
3968 gold_assert(this->fills_.empty());
3969
3970 // Simply invalidate the fast lookup maps since we do not keep
3971 // track of them.
3972 this->lookup_maps_->invalidate();
3973 }
3974
3975 void
3976 Output_section::restore_states()
3977 {
3978 gold_assert(this->checkpoint_ != NULL);
3979 Checkpoint_output_section* checkpoint = this->checkpoint_;
3980
3981 this->addralign_ = checkpoint->addralign();
3982 this->flags_ = checkpoint->flags();
3983 this->first_input_offset_ = checkpoint->first_input_offset();
3984
3985 if (!checkpoint->input_sections_saved())
3986 {
3987 // If we have not copied the input sections, just resize it.
3988 size_t old_size = checkpoint->input_sections_size();
3989 gold_assert(this->input_sections_.size() >= old_size);
3990 this->input_sections_.resize(old_size);
3991 }
3992 else
3993 {
3994 // We need to copy the whole list. This is not efficient for
3995 // extremely large output with hundreads of thousands of input
3996 // objects. We may need to re-think how we should pass sections
3997 // to scripts.
3998 this->input_sections_ = *checkpoint->input_sections();
3999 }
4000
4001 this->attached_input_sections_are_sorted_ =
4002 checkpoint->attached_input_sections_are_sorted();
4003
4004 // Simply invalidate the fast lookup maps since we do not keep
4005 // track of them.
4006 this->lookup_maps_->invalidate();
4007 }
4008
4009 // Update the section offsets of input sections in this. This is required if
4010 // relaxation causes some input sections to change sizes.
4011
4012 void
4013 Output_section::adjust_section_offsets()
4014 {
4015 if (!this->section_offsets_need_adjustment_)
4016 return;
4017
4018 off_t off = 0;
4019 for (Input_section_list::iterator p = this->input_sections_.begin();
4020 p != this->input_sections_.end();
4021 ++p)
4022 {
4023 off = align_address(off, p->addralign());
4024 if (p->is_input_section())
4025 p->relobj()->set_section_offset(p->shndx(), off);
4026 off += p->data_size();
4027 }
4028
4029 this->section_offsets_need_adjustment_ = false;
4030 }
4031
4032 // Print to the map file.
4033
4034 void
4035 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4036 {
4037 mapfile->print_output_section(this);
4038
4039 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4040 p != this->input_sections_.end();
4041 ++p)
4042 p->print_to_mapfile(mapfile);
4043 }
4044
4045 // Print stats for merge sections to stderr.
4046
4047 void
4048 Output_section::print_merge_stats()
4049 {
4050 Input_section_list::iterator p;
4051 for (p = this->input_sections_.begin();
4052 p != this->input_sections_.end();
4053 ++p)
4054 p->print_merge_stats(this->name_);
4055 }
4056
4057 // Set a fixed layout for the section. Used for incremental update links.
4058
4059 void
4060 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4061 off_t sh_size, uint64_t sh_addralign)
4062 {
4063 this->addralign_ = sh_addralign;
4064 this->set_current_data_size(sh_size);
4065 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4066 this->set_address(sh_addr);
4067 this->set_file_offset(sh_offset);
4068 this->finalize_data_size();
4069 this->free_list_.init(sh_size, false);
4070 this->has_fixed_layout_ = true;
4071 }
4072
4073 // Reserve space within the fixed layout for the section. Used for
4074 // incremental update links.
4075
4076 void
4077 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4078 {
4079 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4080 }
4081
4082 // Allocate space from the free list for the section. Used for
4083 // incremental update links.
4084
4085 off_t
4086 Output_section::allocate(off_t len, uint64_t addralign)
4087 {
4088 return this->free_list_.allocate(len, addralign, 0);
4089 }
4090
4091 // Output segment methods.
4092
4093 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4094 : vaddr_(0),
4095 paddr_(0),
4096 memsz_(0),
4097 max_align_(0),
4098 min_p_align_(0),
4099 offset_(0),
4100 filesz_(0),
4101 type_(type),
4102 flags_(flags),
4103 is_max_align_known_(false),
4104 are_addresses_set_(false),
4105 is_large_data_segment_(false),
4106 is_unique_segment_(false)
4107 {
4108 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4109 // the flags.
4110 if (type == elfcpp::PT_TLS)
4111 this->flags_ = elfcpp::PF_R;
4112 }
4113
4114 // Add an Output_section to a PT_LOAD Output_segment.
4115
4116 void
4117 Output_segment::add_output_section_to_load(Layout* layout,
4118 Output_section* os,
4119 elfcpp::Elf_Word seg_flags)
4120 {
4121 gold_assert(this->type() == elfcpp::PT_LOAD);
4122 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4123 gold_assert(!this->is_max_align_known_);
4124 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4125
4126 this->update_flags_for_output_section(seg_flags);
4127
4128 // We don't want to change the ordering if we have a linker script
4129 // with a SECTIONS clause.
4130 Output_section_order order = os->order();
4131 if (layout->script_options()->saw_sections_clause())
4132 order = static_cast<Output_section_order>(0);
4133 else
4134 gold_assert(order != ORDER_INVALID);
4135
4136 this->output_lists_[order].push_back(os);
4137 }
4138
4139 // Add an Output_section to a non-PT_LOAD Output_segment.
4140
4141 void
4142 Output_segment::add_output_section_to_nonload(Output_section* os,
4143 elfcpp::Elf_Word seg_flags)
4144 {
4145 gold_assert(this->type() != elfcpp::PT_LOAD);
4146 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4147 gold_assert(!this->is_max_align_known_);
4148
4149 this->update_flags_for_output_section(seg_flags);
4150
4151 this->output_lists_[0].push_back(os);
4152 }
4153
4154 // Remove an Output_section from this segment. It is an error if it
4155 // is not present.
4156
4157 void
4158 Output_segment::remove_output_section(Output_section* os)
4159 {
4160 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4161 {
4162 Output_data_list* pdl = &this->output_lists_[i];
4163 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4164 {
4165 if (*p == os)
4166 {
4167 pdl->erase(p);
4168 return;
4169 }
4170 }
4171 }
4172 gold_unreachable();
4173 }
4174
4175 // Add an Output_data (which need not be an Output_section) to the
4176 // start of a segment.
4177
4178 void
4179 Output_segment::add_initial_output_data(Output_data* od)
4180 {
4181 gold_assert(!this->is_max_align_known_);
4182 Output_data_list::iterator p = this->output_lists_[0].begin();
4183 this->output_lists_[0].insert(p, od);
4184 }
4185
4186 // Return true if this segment has any sections which hold actual
4187 // data, rather than being a BSS section.
4188
4189 bool
4190 Output_segment::has_any_data_sections() const
4191 {
4192 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4193 {
4194 const Output_data_list* pdl = &this->output_lists_[i];
4195 for (Output_data_list::const_iterator p = pdl->begin();
4196 p != pdl->end();
4197 ++p)
4198 {
4199 if (!(*p)->is_section())
4200 return true;
4201 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4202 return true;
4203 }
4204 }
4205 return false;
4206 }
4207
4208 // Return whether the first data section (not counting TLS sections)
4209 // is a relro section.
4210
4211 bool
4212 Output_segment::is_first_section_relro() const
4213 {
4214 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4215 {
4216 if (i == static_cast<int>(ORDER_TLS_DATA)
4217 || i == static_cast<int>(ORDER_TLS_BSS))
4218 continue;
4219 const Output_data_list* pdl = &this->output_lists_[i];
4220 if (!pdl->empty())
4221 {
4222 Output_data* p = pdl->front();
4223 return p->is_section() && p->output_section()->is_relro();
4224 }
4225 }
4226 return false;
4227 }
4228
4229 // Return the maximum alignment of the Output_data in Output_segment.
4230
4231 uint64_t
4232 Output_segment::maximum_alignment()
4233 {
4234 if (!this->is_max_align_known_)
4235 {
4236 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4237 {
4238 const Output_data_list* pdl = &this->output_lists_[i];
4239 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4240 if (addralign > this->max_align_)
4241 this->max_align_ = addralign;
4242 }
4243 this->is_max_align_known_ = true;
4244 }
4245
4246 return this->max_align_;
4247 }
4248
4249 // Return the maximum alignment of a list of Output_data.
4250
4251 uint64_t
4252 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4253 {
4254 uint64_t ret = 0;
4255 for (Output_data_list::const_iterator p = pdl->begin();
4256 p != pdl->end();
4257 ++p)
4258 {
4259 uint64_t addralign = (*p)->addralign();
4260 if (addralign > ret)
4261 ret = addralign;
4262 }
4263 return ret;
4264 }
4265
4266 // Return whether this segment has any dynamic relocs.
4267
4268 bool
4269 Output_segment::has_dynamic_reloc() const
4270 {
4271 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4272 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4273 return true;
4274 return false;
4275 }
4276
4277 // Return whether this Output_data_list has any dynamic relocs.
4278
4279 bool
4280 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4281 {
4282 for (Output_data_list::const_iterator p = pdl->begin();
4283 p != pdl->end();
4284 ++p)
4285 if ((*p)->has_dynamic_reloc())
4286 return true;
4287 return false;
4288 }
4289
4290 // Set the section addresses for an Output_segment. If RESET is true,
4291 // reset the addresses first. ADDR is the address and *POFF is the
4292 // file offset. Set the section indexes starting with *PSHNDX.
4293 // INCREASE_RELRO is the size of the portion of the first non-relro
4294 // section that should be included in the PT_GNU_RELRO segment.
4295 // If this segment has relro sections, and has been aligned for
4296 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4297 // the immediately following segment. Update *HAS_RELRO, *POFF,
4298 // and *PSHNDX.
4299
4300 uint64_t
4301 Output_segment::set_section_addresses(const Target* target,
4302 Layout* layout, bool reset,
4303 uint64_t addr,
4304 unsigned int* increase_relro,
4305 bool* has_relro,
4306 off_t* poff,
4307 unsigned int* pshndx)
4308 {
4309 gold_assert(this->type_ == elfcpp::PT_LOAD);
4310
4311 uint64_t last_relro_pad = 0;
4312 off_t orig_off = *poff;
4313
4314 bool in_tls = false;
4315
4316 // If we have relro sections, we need to pad forward now so that the
4317 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4318 if (parameters->options().relro()
4319 && this->is_first_section_relro()
4320 && (!this->are_addresses_set_ || reset))
4321 {
4322 uint64_t relro_size = 0;
4323 off_t off = *poff;
4324 uint64_t max_align = 0;
4325 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4326 {
4327 Output_data_list* pdl = &this->output_lists_[i];
4328 Output_data_list::iterator p;
4329 for (p = pdl->begin(); p != pdl->end(); ++p)
4330 {
4331 if (!(*p)->is_section())
4332 break;
4333 uint64_t align = (*p)->addralign();
4334 if (align > max_align)
4335 max_align = align;
4336 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4337 in_tls = true;
4338 else if (in_tls)
4339 {
4340 // Align the first non-TLS section to the alignment
4341 // of the TLS segment.
4342 align = max_align;
4343 in_tls = false;
4344 }
4345 relro_size = align_address(relro_size, align);
4346 // Ignore the size of the .tbss section.
4347 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4348 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4349 continue;
4350 if ((*p)->is_address_valid())
4351 relro_size += (*p)->data_size();
4352 else
4353 {
4354 // FIXME: This could be faster.
4355 (*p)->set_address_and_file_offset(addr + relro_size,
4356 off + relro_size);
4357 relro_size += (*p)->data_size();
4358 (*p)->reset_address_and_file_offset();
4359 }
4360 }
4361 if (p != pdl->end())
4362 break;
4363 }
4364 relro_size += *increase_relro;
4365 // Pad the total relro size to a multiple of the maximum
4366 // section alignment seen.
4367 uint64_t aligned_size = align_address(relro_size, max_align);
4368 // Note the amount of padding added after the last relro section.
4369 last_relro_pad = aligned_size - relro_size;
4370 *has_relro = true;
4371
4372 uint64_t page_align = parameters->target().abi_pagesize();
4373
4374 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4375 uint64_t desired_align = page_align - (aligned_size % page_align);
4376 if (desired_align < *poff % page_align)
4377 *poff += page_align - *poff % page_align;
4378 *poff += desired_align - *poff % page_align;
4379 addr += *poff - orig_off;
4380 orig_off = *poff;
4381 }
4382
4383 if (!reset && this->are_addresses_set_)
4384 {
4385 gold_assert(this->paddr_ == addr);
4386 addr = this->vaddr_;
4387 }
4388 else
4389 {
4390 this->vaddr_ = addr;
4391 this->paddr_ = addr;
4392 this->are_addresses_set_ = true;
4393 }
4394
4395 in_tls = false;
4396
4397 this->offset_ = orig_off;
4398
4399 off_t off = 0;
4400 uint64_t ret;
4401 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4402 {
4403 if (i == static_cast<int>(ORDER_RELRO_LAST))
4404 {
4405 *poff += last_relro_pad;
4406 addr += last_relro_pad;
4407 if (this->output_lists_[i].empty())
4408 {
4409 // If there is nothing in the ORDER_RELRO_LAST list,
4410 // the padding will occur at the end of the relro
4411 // segment, and we need to add it to *INCREASE_RELRO.
4412 *increase_relro += last_relro_pad;
4413 }
4414 }
4415 addr = this->set_section_list_addresses(layout, reset,
4416 &this->output_lists_[i],
4417 addr, poff, pshndx, &in_tls);
4418 if (i < static_cast<int>(ORDER_SMALL_BSS))
4419 {
4420 this->filesz_ = *poff - orig_off;
4421 off = *poff;
4422 }
4423
4424 ret = addr;
4425 }
4426
4427 // If the last section was a TLS section, align upward to the
4428 // alignment of the TLS segment, so that the overall size of the TLS
4429 // segment is aligned.
4430 if (in_tls)
4431 {
4432 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4433 *poff = align_address(*poff, segment_align);
4434 }
4435
4436 this->memsz_ = *poff - orig_off;
4437
4438 // Ignore the file offset adjustments made by the BSS Output_data
4439 // objects.
4440 *poff = off;
4441
4442 // If code segments must contain only code, and this code segment is
4443 // page-aligned in the file, then fill it out to a whole page with
4444 // code fill (the tail of the segment will not be within any section).
4445 // Thus the entire code segment can be mapped from the file as whole
4446 // pages and that mapping will contain only valid instructions.
4447 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4448 {
4449 uint64_t abi_pagesize = target->abi_pagesize();
4450 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4451 {
4452 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4453
4454 std::string fill_data;
4455 if (target->has_code_fill())
4456 fill_data = target->code_fill(fill_size);
4457 else
4458 fill_data.resize(fill_size); // Zero fill.
4459
4460 Output_data_const* fill = new Output_data_const(fill_data, 0);
4461 fill->set_address(this->vaddr_ + this->memsz_);
4462 fill->set_file_offset(off);
4463 layout->add_relax_output(fill);
4464
4465 off += fill_size;
4466 gold_assert(off % abi_pagesize == 0);
4467 ret += fill_size;
4468 gold_assert(ret % abi_pagesize == 0);
4469
4470 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4471 this->memsz_ = this->filesz_ += fill_size;
4472
4473 *poff = off;
4474 }
4475 }
4476
4477 return ret;
4478 }
4479
4480 // Set the addresses and file offsets in a list of Output_data
4481 // structures.
4482
4483 uint64_t
4484 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4485 Output_data_list* pdl,
4486 uint64_t addr, off_t* poff,
4487 unsigned int* pshndx,
4488 bool* in_tls)
4489 {
4490 off_t startoff = *poff;
4491 // For incremental updates, we may allocate non-fixed sections from
4492 // free space in the file. This keeps track of the high-water mark.
4493 off_t maxoff = startoff;
4494
4495 off_t off = startoff;
4496 for (Output_data_list::iterator p = pdl->begin();
4497 p != pdl->end();
4498 ++p)
4499 {
4500 if (reset)
4501 (*p)->reset_address_and_file_offset();
4502
4503 // When doing an incremental update or when using a linker script,
4504 // the section will most likely already have an address.
4505 if (!(*p)->is_address_valid())
4506 {
4507 uint64_t align = (*p)->addralign();
4508
4509 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4510 {
4511 // Give the first TLS section the alignment of the
4512 // entire TLS segment. Otherwise the TLS segment as a
4513 // whole may be misaligned.
4514 if (!*in_tls)
4515 {
4516 Output_segment* tls_segment = layout->tls_segment();
4517 gold_assert(tls_segment != NULL);
4518 uint64_t segment_align = tls_segment->maximum_alignment();
4519 gold_assert(segment_align >= align);
4520 align = segment_align;
4521
4522 *in_tls = true;
4523 }
4524 }
4525 else
4526 {
4527 // If this is the first section after the TLS segment,
4528 // align it to at least the alignment of the TLS
4529 // segment, so that the size of the overall TLS segment
4530 // is aligned.
4531 if (*in_tls)
4532 {
4533 uint64_t segment_align =
4534 layout->tls_segment()->maximum_alignment();
4535 if (segment_align > align)
4536 align = segment_align;
4537
4538 *in_tls = false;
4539 }
4540 }
4541
4542 if (!parameters->incremental_update())
4543 {
4544 off = align_address(off, align);
4545 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4546 }
4547 else
4548 {
4549 // Incremental update: allocate file space from free list.
4550 (*p)->pre_finalize_data_size();
4551 off_t current_size = (*p)->current_data_size();
4552 off = layout->allocate(current_size, align, startoff);
4553 if (off == -1)
4554 {
4555 gold_assert((*p)->output_section() != NULL);
4556 gold_fallback(_("out of patch space for section %s; "
4557 "relink with --incremental-full"),
4558 (*p)->output_section()->name());
4559 }
4560 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4561 if ((*p)->data_size() > current_size)
4562 {
4563 gold_assert((*p)->output_section() != NULL);
4564 gold_fallback(_("%s: section changed size; "
4565 "relink with --incremental-full"),
4566 (*p)->output_section()->name());
4567 }
4568 }
4569 }
4570 else if (parameters->incremental_update())
4571 {
4572 // For incremental updates, use the fixed offset for the
4573 // high-water mark computation.
4574 off = (*p)->offset();
4575 }
4576 else
4577 {
4578 // The script may have inserted a skip forward, but it
4579 // better not have moved backward.
4580 if ((*p)->address() >= addr + (off - startoff))
4581 off += (*p)->address() - (addr + (off - startoff));
4582 else
4583 {
4584 if (!layout->script_options()->saw_sections_clause())
4585 gold_unreachable();
4586 else
4587 {
4588 Output_section* os = (*p)->output_section();
4589
4590 // Cast to unsigned long long to avoid format warnings.
4591 unsigned long long previous_dot =
4592 static_cast<unsigned long long>(addr + (off - startoff));
4593 unsigned long long dot =
4594 static_cast<unsigned long long>((*p)->address());
4595
4596 if (os == NULL)
4597 gold_error(_("dot moves backward in linker script "
4598 "from 0x%llx to 0x%llx"), previous_dot, dot);
4599 else
4600 gold_error(_("address of section '%s' moves backward "
4601 "from 0x%llx to 0x%llx"),
4602 os->name(), previous_dot, dot);
4603 }
4604 }
4605 (*p)->set_file_offset(off);
4606 (*p)->finalize_data_size();
4607 }
4608
4609 if (parameters->incremental_update())
4610 gold_debug(DEBUG_INCREMENTAL,
4611 "set_section_list_addresses: %08lx %08lx %s",
4612 static_cast<long>(off),
4613 static_cast<long>((*p)->data_size()),
4614 ((*p)->output_section() != NULL
4615 ? (*p)->output_section()->name() : "(special)"));
4616
4617 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4618 // section. Such a section does not affect the size of a
4619 // PT_LOAD segment.
4620 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4621 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4622 off += (*p)->data_size();
4623
4624 if (off > maxoff)
4625 maxoff = off;
4626
4627 if ((*p)->is_section())
4628 {
4629 (*p)->set_out_shndx(*pshndx);
4630 ++*pshndx;
4631 }
4632 }
4633
4634 *poff = maxoff;
4635 return addr + (maxoff - startoff);
4636 }
4637
4638 // For a non-PT_LOAD segment, set the offset from the sections, if
4639 // any. Add INCREASE to the file size and the memory size.
4640
4641 void
4642 Output_segment::set_offset(unsigned int increase)
4643 {
4644 gold_assert(this->type_ != elfcpp::PT_LOAD);
4645
4646 gold_assert(!this->are_addresses_set_);
4647
4648 // A non-load section only uses output_lists_[0].
4649
4650 Output_data_list* pdl = &this->output_lists_[0];
4651
4652 if (pdl->empty())
4653 {
4654 gold_assert(increase == 0);
4655 this->vaddr_ = 0;
4656 this->paddr_ = 0;
4657 this->are_addresses_set_ = true;
4658 this->memsz_ = 0;
4659 this->min_p_align_ = 0;
4660 this->offset_ = 0;
4661 this->filesz_ = 0;
4662 return;
4663 }
4664
4665 // Find the first and last section by address.
4666 const Output_data* first = NULL;
4667 const Output_data* last_data = NULL;
4668 const Output_data* last_bss = NULL;
4669 for (Output_data_list::const_iterator p = pdl->begin();
4670 p != pdl->end();
4671 ++p)
4672 {
4673 if (first == NULL
4674 || (*p)->address() < first->address()
4675 || ((*p)->address() == first->address()
4676 && (*p)->data_size() < first->data_size()))
4677 first = *p;
4678 const Output_data** plast;
4679 if ((*p)->is_section()
4680 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4681 plast = &last_bss;
4682 else
4683 plast = &last_data;
4684 if (*plast == NULL
4685 || (*p)->address() > (*plast)->address()
4686 || ((*p)->address() == (*plast)->address()
4687 && (*p)->data_size() > (*plast)->data_size()))
4688 *plast = *p;
4689 }
4690
4691 this->vaddr_ = first->address();
4692 this->paddr_ = (first->has_load_address()
4693 ? first->load_address()
4694 : this->vaddr_);
4695 this->are_addresses_set_ = true;
4696 this->offset_ = first->offset();
4697
4698 if (last_data == NULL)
4699 this->filesz_ = 0;
4700 else
4701 this->filesz_ = (last_data->address()
4702 + last_data->data_size()
4703 - this->vaddr_);
4704
4705 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4706 this->memsz_ = (last->address()
4707 + last->data_size()
4708 - this->vaddr_);
4709
4710 this->filesz_ += increase;
4711 this->memsz_ += increase;
4712
4713 // If this is a RELRO segment, verify that the segment ends at a
4714 // page boundary.
4715 if (this->type_ == elfcpp::PT_GNU_RELRO)
4716 {
4717 uint64_t page_align = parameters->target().abi_pagesize();
4718 uint64_t segment_end = this->vaddr_ + this->memsz_;
4719 if (parameters->incremental_update())
4720 {
4721 // The INCREASE_RELRO calculation is bypassed for an incremental
4722 // update, so we need to adjust the segment size manually here.
4723 segment_end = align_address(segment_end, page_align);
4724 this->memsz_ = segment_end - this->vaddr_;
4725 }
4726 else
4727 gold_assert(segment_end == align_address(segment_end, page_align));
4728 }
4729
4730 // If this is a TLS segment, align the memory size. The code in
4731 // set_section_list ensures that the section after the TLS segment
4732 // is aligned to give us room.
4733 if (this->type_ == elfcpp::PT_TLS)
4734 {
4735 uint64_t segment_align = this->maximum_alignment();
4736 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4737 this->memsz_ = align_address(this->memsz_, segment_align);
4738 }
4739 }
4740
4741 // Set the TLS offsets of the sections in the PT_TLS segment.
4742
4743 void
4744 Output_segment::set_tls_offsets()
4745 {
4746 gold_assert(this->type_ == elfcpp::PT_TLS);
4747
4748 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4749 p != this->output_lists_[0].end();
4750 ++p)
4751 (*p)->set_tls_offset(this->vaddr_);
4752 }
4753
4754 // Return the first section.
4755
4756 Output_section*
4757 Output_segment::first_section() const
4758 {
4759 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4760 {
4761 const Output_data_list* pdl = &this->output_lists_[i];
4762 for (Output_data_list::const_iterator p = pdl->begin();
4763 p != pdl->end();
4764 ++p)
4765 {
4766 if ((*p)->is_section())
4767 return (*p)->output_section();
4768 }
4769 }
4770 gold_unreachable();
4771 }
4772
4773 // Return the number of Output_sections in an Output_segment.
4774
4775 unsigned int
4776 Output_segment::output_section_count() const
4777 {
4778 unsigned int ret = 0;
4779 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4780 ret += this->output_section_count_list(&this->output_lists_[i]);
4781 return ret;
4782 }
4783
4784 // Return the number of Output_sections in an Output_data_list.
4785
4786 unsigned int
4787 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4788 {
4789 unsigned int count = 0;
4790 for (Output_data_list::const_iterator p = pdl->begin();
4791 p != pdl->end();
4792 ++p)
4793 {
4794 if ((*p)->is_section())
4795 ++count;
4796 }
4797 return count;
4798 }
4799
4800 // Return the section attached to the list segment with the lowest
4801 // load address. This is used when handling a PHDRS clause in a
4802 // linker script.
4803
4804 Output_section*
4805 Output_segment::section_with_lowest_load_address() const
4806 {
4807 Output_section* found = NULL;
4808 uint64_t found_lma = 0;
4809 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4810 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4811 &found_lma);
4812 return found;
4813 }
4814
4815 // Look through a list for a section with a lower load address.
4816
4817 void
4818 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4819 Output_section** found,
4820 uint64_t* found_lma) const
4821 {
4822 for (Output_data_list::const_iterator p = pdl->begin();
4823 p != pdl->end();
4824 ++p)
4825 {
4826 if (!(*p)->is_section())
4827 continue;
4828 Output_section* os = static_cast<Output_section*>(*p);
4829 uint64_t lma = (os->has_load_address()
4830 ? os->load_address()
4831 : os->address());
4832 if (*found == NULL || lma < *found_lma)
4833 {
4834 *found = os;
4835 *found_lma = lma;
4836 }
4837 }
4838 }
4839
4840 // Write the segment data into *OPHDR.
4841
4842 template<int size, bool big_endian>
4843 void
4844 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4845 {
4846 ophdr->put_p_type(this->type_);
4847 ophdr->put_p_offset(this->offset_);
4848 ophdr->put_p_vaddr(this->vaddr_);
4849 ophdr->put_p_paddr(this->paddr_);
4850 ophdr->put_p_filesz(this->filesz_);
4851 ophdr->put_p_memsz(this->memsz_);
4852 ophdr->put_p_flags(this->flags_);
4853 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4854 }
4855
4856 // Write the section headers into V.
4857
4858 template<int size, bool big_endian>
4859 unsigned char*
4860 Output_segment::write_section_headers(const Layout* layout,
4861 const Stringpool* secnamepool,
4862 unsigned char* v,
4863 unsigned int* pshndx) const
4864 {
4865 // Every section that is attached to a segment must be attached to a
4866 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4867 // segments.
4868 if (this->type_ != elfcpp::PT_LOAD)
4869 return v;
4870
4871 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4872 {
4873 const Output_data_list* pdl = &this->output_lists_[i];
4874 v = this->write_section_headers_list<size, big_endian>(layout,
4875 secnamepool,
4876 pdl,
4877 v, pshndx);
4878 }
4879
4880 return v;
4881 }
4882
4883 template<int size, bool big_endian>
4884 unsigned char*
4885 Output_segment::write_section_headers_list(const Layout* layout,
4886 const Stringpool* secnamepool,
4887 const Output_data_list* pdl,
4888 unsigned char* v,
4889 unsigned int* pshndx) const
4890 {
4891 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4892 for (Output_data_list::const_iterator p = pdl->begin();
4893 p != pdl->end();
4894 ++p)
4895 {
4896 if ((*p)->is_section())
4897 {
4898 const Output_section* ps = static_cast<const Output_section*>(*p);
4899 gold_assert(*pshndx == ps->out_shndx());
4900 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4901 ps->write_header(layout, secnamepool, &oshdr);
4902 v += shdr_size;
4903 ++*pshndx;
4904 }
4905 }
4906 return v;
4907 }
4908
4909 // Print the output sections to the map file.
4910
4911 void
4912 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4913 {
4914 if (this->type() != elfcpp::PT_LOAD)
4915 return;
4916 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4917 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4918 }
4919
4920 // Print an output section list to the map file.
4921
4922 void
4923 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4924 const Output_data_list* pdl) const
4925 {
4926 for (Output_data_list::const_iterator p = pdl->begin();
4927 p != pdl->end();
4928 ++p)
4929 (*p)->print_to_mapfile(mapfile);
4930 }
4931
4932 // Output_file methods.
4933
4934 Output_file::Output_file(const char* name)
4935 : name_(name),
4936 o_(-1),
4937 file_size_(0),
4938 base_(NULL),
4939 map_is_anonymous_(false),
4940 map_is_allocated_(false),
4941 is_temporary_(false)
4942 {
4943 }
4944
4945 // Try to open an existing file. Returns false if the file doesn't
4946 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4947 // NULL, open that file as the base for incremental linking, and
4948 // copy its contents to the new output file. This routine can
4949 // be called for incremental updates, in which case WRITABLE should
4950 // be true, or by the incremental-dump utility, in which case
4951 // WRITABLE should be false.
4952
4953 bool
4954 Output_file::open_base_file(const char* base_name, bool writable)
4955 {
4956 // The name "-" means "stdout".
4957 if (strcmp(this->name_, "-") == 0)
4958 return false;
4959
4960 bool use_base_file = base_name != NULL;
4961 if (!use_base_file)
4962 base_name = this->name_;
4963 else if (strcmp(base_name, this->name_) == 0)
4964 gold_fatal(_("%s: incremental base and output file name are the same"),
4965 base_name);
4966
4967 // Don't bother opening files with a size of zero.
4968 struct stat s;
4969 if (::stat(base_name, &s) != 0)
4970 {
4971 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4972 return false;
4973 }
4974 if (s.st_size == 0)
4975 {
4976 gold_info(_("%s: incremental base file is empty"), base_name);
4977 return false;
4978 }
4979
4980 // If we're using a base file, we want to open it read-only.
4981 if (use_base_file)
4982 writable = false;
4983
4984 int oflags = writable ? O_RDWR : O_RDONLY;
4985 int o = open_descriptor(-1, base_name, oflags, 0);
4986 if (o < 0)
4987 {
4988 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4989 return false;
4990 }
4991
4992 // If the base file and the output file are different, open a
4993 // new output file and read the contents from the base file into
4994 // the newly-mapped region.
4995 if (use_base_file)
4996 {
4997 this->open(s.st_size);
4998 ssize_t bytes_to_read = s.st_size;
4999 unsigned char* p = this->base_;
5000 while (bytes_to_read > 0)
5001 {
5002 ssize_t len = ::read(o, p, bytes_to_read);
5003 if (len < 0)
5004 {
5005 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5006 return false;
5007 }
5008 if (len == 0)
5009 {
5010 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5011 base_name,
5012 static_cast<long long>(s.st_size - bytes_to_read),
5013 static_cast<long long>(s.st_size));
5014 return false;
5015 }
5016 p += len;
5017 bytes_to_read -= len;
5018 }
5019 ::close(o);
5020 return true;
5021 }
5022
5023 this->o_ = o;
5024 this->file_size_ = s.st_size;
5025
5026 if (!this->map_no_anonymous(writable))
5027 {
5028 release_descriptor(o, true);
5029 this->o_ = -1;
5030 this->file_size_ = 0;
5031 return false;
5032 }
5033
5034 return true;
5035 }
5036
5037 // Open the output file.
5038
5039 void
5040 Output_file::open(off_t file_size)
5041 {
5042 this->file_size_ = file_size;
5043
5044 // Unlink the file first; otherwise the open() may fail if the file
5045 // is busy (e.g. it's an executable that's currently being executed).
5046 //
5047 // However, the linker may be part of a system where a zero-length
5048 // file is created for it to write to, with tight permissions (gcc
5049 // 2.95 did something like this). Unlinking the file would work
5050 // around those permission controls, so we only unlink if the file
5051 // has a non-zero size. We also unlink only regular files to avoid
5052 // trouble with directories/etc.
5053 //
5054 // If we fail, continue; this command is merely a best-effort attempt
5055 // to improve the odds for open().
5056
5057 // We let the name "-" mean "stdout"
5058 if (!this->is_temporary_)
5059 {
5060 if (strcmp(this->name_, "-") == 0)
5061 this->o_ = STDOUT_FILENO;
5062 else
5063 {
5064 struct stat s;
5065 if (::stat(this->name_, &s) == 0
5066 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5067 {
5068 if (s.st_size != 0)
5069 ::unlink(this->name_);
5070 else if (!parameters->options().relocatable())
5071 {
5072 // If we don't unlink the existing file, add execute
5073 // permission where read permissions already exist
5074 // and where the umask permits.
5075 int mask = ::umask(0);
5076 ::umask(mask);
5077 s.st_mode |= (s.st_mode & 0444) >> 2;
5078 ::chmod(this->name_, s.st_mode & ~mask);
5079 }
5080 }
5081
5082 int mode = parameters->options().relocatable() ? 0666 : 0777;
5083 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5084 mode);
5085 if (o < 0)
5086 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5087 this->o_ = o;
5088 }
5089 }
5090
5091 this->map();
5092 }
5093
5094 // Resize the output file.
5095
5096 void
5097 Output_file::resize(off_t file_size)
5098 {
5099 // If the mmap is mapping an anonymous memory buffer, this is easy:
5100 // just mremap to the new size. If it's mapping to a file, we want
5101 // to unmap to flush to the file, then remap after growing the file.
5102 if (this->map_is_anonymous_)
5103 {
5104 void* base;
5105 if (!this->map_is_allocated_)
5106 {
5107 base = ::mremap(this->base_, this->file_size_, file_size,
5108 MREMAP_MAYMOVE);
5109 if (base == MAP_FAILED)
5110 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5111 }
5112 else
5113 {
5114 base = realloc(this->base_, file_size);
5115 if (base == NULL)
5116 gold_nomem();
5117 if (file_size > this->file_size_)
5118 memset(static_cast<char*>(base) + this->file_size_, 0,
5119 file_size - this->file_size_);
5120 }
5121 this->base_ = static_cast<unsigned char*>(base);
5122 this->file_size_ = file_size;
5123 }
5124 else
5125 {
5126 this->unmap();
5127 this->file_size_ = file_size;
5128 if (!this->map_no_anonymous(true))
5129 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5130 }
5131 }
5132
5133 // Map an anonymous block of memory which will later be written to the
5134 // file. Return whether the map succeeded.
5135
5136 bool
5137 Output_file::map_anonymous()
5138 {
5139 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5140 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5141 if (base == MAP_FAILED)
5142 {
5143 base = malloc(this->file_size_);
5144 if (base == NULL)
5145 return false;
5146 memset(base, 0, this->file_size_);
5147 this->map_is_allocated_ = true;
5148 }
5149 this->base_ = static_cast<unsigned char*>(base);
5150 this->map_is_anonymous_ = true;
5151 return true;
5152 }
5153
5154 // Map the file into memory. Return whether the mapping succeeded.
5155 // If WRITABLE is true, map with write access.
5156
5157 bool
5158 Output_file::map_no_anonymous(bool writable)
5159 {
5160 const int o = this->o_;
5161
5162 // If the output file is not a regular file, don't try to mmap it;
5163 // instead, we'll mmap a block of memory (an anonymous buffer), and
5164 // then later write the buffer to the file.
5165 void* base;
5166 struct stat statbuf;
5167 if (o == STDOUT_FILENO || o == STDERR_FILENO
5168 || ::fstat(o, &statbuf) != 0
5169 || !S_ISREG(statbuf.st_mode)
5170 || this->is_temporary_)
5171 return false;
5172
5173 // Ensure that we have disk space available for the file. If we
5174 // don't do this, it is possible that we will call munmap, close,
5175 // and exit with dirty buffers still in the cache with no assigned
5176 // disk blocks. If the disk is out of space at that point, the
5177 // output file will wind up incomplete, but we will have already
5178 // exited. The alternative to fallocate would be to use fdatasync,
5179 // but that would be a more significant performance hit.
5180 if (writable)
5181 {
5182 int err = gold_fallocate(o, 0, this->file_size_);
5183 if (err != 0)
5184 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5185 }
5186
5187 // Map the file into memory.
5188 int prot = PROT_READ;
5189 if (writable)
5190 prot |= PROT_WRITE;
5191 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5192
5193 // The mmap call might fail because of file system issues: the file
5194 // system might not support mmap at all, or it might not support
5195 // mmap with PROT_WRITE.
5196 if (base == MAP_FAILED)
5197 return false;
5198
5199 this->map_is_anonymous_ = false;
5200 this->base_ = static_cast<unsigned char*>(base);
5201 return true;
5202 }
5203
5204 // Map the file into memory.
5205
5206 void
5207 Output_file::map()
5208 {
5209 if (parameters->options().mmap_output_file()
5210 && this->map_no_anonymous(true))
5211 return;
5212
5213 // The mmap call might fail because of file system issues: the file
5214 // system might not support mmap at all, or it might not support
5215 // mmap with PROT_WRITE. I'm not sure which errno values we will
5216 // see in all cases, so if the mmap fails for any reason and we
5217 // don't care about file contents, try for an anonymous map.
5218 if (this->map_anonymous())
5219 return;
5220
5221 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5222 this->name_, static_cast<unsigned long>(this->file_size_),
5223 strerror(errno));
5224 }
5225
5226 // Unmap the file from memory.
5227
5228 void
5229 Output_file::unmap()
5230 {
5231 if (this->map_is_anonymous_)
5232 {
5233 // We've already written out the data, so there is no reason to
5234 // waste time unmapping or freeing the memory.
5235 }
5236 else
5237 {
5238 if (::munmap(this->base_, this->file_size_) < 0)
5239 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5240 }
5241 this->base_ = NULL;
5242 }
5243
5244 // Close the output file.
5245
5246 void
5247 Output_file::close()
5248 {
5249 // If the map isn't file-backed, we need to write it now.
5250 if (this->map_is_anonymous_ && !this->is_temporary_)
5251 {
5252 size_t bytes_to_write = this->file_size_;
5253 size_t offset = 0;
5254 while (bytes_to_write > 0)
5255 {
5256 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5257 bytes_to_write);
5258 if (bytes_written == 0)
5259 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5260 else if (bytes_written < 0)
5261 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5262 else
5263 {
5264 bytes_to_write -= bytes_written;
5265 offset += bytes_written;
5266 }
5267 }
5268 }
5269 this->unmap();
5270
5271 // We don't close stdout or stderr
5272 if (this->o_ != STDOUT_FILENO
5273 && this->o_ != STDERR_FILENO
5274 && !this->is_temporary_)
5275 if (::close(this->o_) < 0)
5276 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5277 this->o_ = -1;
5278 }
5279
5280 // Instantiate the templates we need. We could use the configure
5281 // script to restrict this to only the ones for implemented targets.
5282
5283 #ifdef HAVE_TARGET_32_LITTLE
5284 template
5285 off_t
5286 Output_section::add_input_section<32, false>(
5287 Layout* layout,
5288 Sized_relobj_file<32, false>* object,
5289 unsigned int shndx,
5290 const char* secname,
5291 const elfcpp::Shdr<32, false>& shdr,
5292 unsigned int reloc_shndx,
5293 bool have_sections_script);
5294 #endif
5295
5296 #ifdef HAVE_TARGET_32_BIG
5297 template
5298 off_t
5299 Output_section::add_input_section<32, true>(
5300 Layout* layout,
5301 Sized_relobj_file<32, true>* object,
5302 unsigned int shndx,
5303 const char* secname,
5304 const elfcpp::Shdr<32, true>& shdr,
5305 unsigned int reloc_shndx,
5306 bool have_sections_script);
5307 #endif
5308
5309 #ifdef HAVE_TARGET_64_LITTLE
5310 template
5311 off_t
5312 Output_section::add_input_section<64, false>(
5313 Layout* layout,
5314 Sized_relobj_file<64, false>* object,
5315 unsigned int shndx,
5316 const char* secname,
5317 const elfcpp::Shdr<64, false>& shdr,
5318 unsigned int reloc_shndx,
5319 bool have_sections_script);
5320 #endif
5321
5322 #ifdef HAVE_TARGET_64_BIG
5323 template
5324 off_t
5325 Output_section::add_input_section<64, true>(
5326 Layout* layout,
5327 Sized_relobj_file<64, true>* object,
5328 unsigned int shndx,
5329 const char* secname,
5330 const elfcpp::Shdr<64, true>& shdr,
5331 unsigned int reloc_shndx,
5332 bool have_sections_script);
5333 #endif
5334
5335 #ifdef HAVE_TARGET_32_LITTLE
5336 template
5337 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_32_BIG
5341 template
5342 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_64_LITTLE
5346 template
5347 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_64_BIG
5351 template
5352 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_32_LITTLE
5356 template
5357 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_32_BIG
5361 template
5362 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_64_LITTLE
5366 template
5367 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_64_BIG
5371 template
5372 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_32_LITTLE
5376 template
5377 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_32_BIG
5381 template
5382 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_64_LITTLE
5386 template
5387 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_64_BIG
5391 template
5392 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_32_LITTLE
5396 template
5397 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_32_BIG
5401 template
5402 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_64_LITTLE
5406 template
5407 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_64_BIG
5411 template
5412 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_32_LITTLE
5416 template
5417 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_32_BIG
5421 template
5422 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_64_LITTLE
5426 template
5427 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_64_BIG
5431 template
5432 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_32_LITTLE
5436 template
5437 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_32_BIG
5441 template
5442 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5443 #endif
5444
5445 #ifdef HAVE_TARGET_64_LITTLE
5446 template
5447 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5448 #endif
5449
5450 #ifdef HAVE_TARGET_64_BIG
5451 template
5452 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5453 #endif
5454
5455 #ifdef HAVE_TARGET_32_LITTLE
5456 template
5457 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5458 #endif
5459
5460 #ifdef HAVE_TARGET_32_BIG
5461 template
5462 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5463 #endif
5464
5465 #ifdef HAVE_TARGET_64_LITTLE
5466 template
5467 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5468 #endif
5469
5470 #ifdef HAVE_TARGET_64_BIG
5471 template
5472 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5473 #endif
5474
5475 #ifdef HAVE_TARGET_32_LITTLE
5476 template
5477 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5478 #endif
5479
5480 #ifdef HAVE_TARGET_32_BIG
5481 template
5482 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5483 #endif
5484
5485 #ifdef HAVE_TARGET_64_LITTLE
5486 template
5487 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5488 #endif
5489
5490 #ifdef HAVE_TARGET_64_BIG
5491 template
5492 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5493 #endif
5494
5495 #ifdef HAVE_TARGET_32_LITTLE
5496 template
5497 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5498 #endif
5499
5500 #ifdef HAVE_TARGET_32_BIG
5501 template
5502 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5503 #endif
5504
5505 #ifdef HAVE_TARGET_64_LITTLE
5506 template
5507 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5508 #endif
5509
5510 #ifdef HAVE_TARGET_64_BIG
5511 template
5512 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5513 #endif
5514
5515 #ifdef HAVE_TARGET_32_LITTLE
5516 template
5517 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5518 #endif
5519
5520 #ifdef HAVE_TARGET_32_BIG
5521 template
5522 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5523 #endif
5524
5525 #ifdef HAVE_TARGET_64_LITTLE
5526 template
5527 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5528 #endif
5529
5530 #ifdef HAVE_TARGET_64_BIG
5531 template
5532 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5533 #endif
5534
5535 #ifdef HAVE_TARGET_32_LITTLE
5536 template
5537 class Output_data_group<32, false>;
5538 #endif
5539
5540 #ifdef HAVE_TARGET_32_BIG
5541 template
5542 class Output_data_group<32, true>;
5543 #endif
5544
5545 #ifdef HAVE_TARGET_64_LITTLE
5546 template
5547 class Output_data_group<64, false>;
5548 #endif
5549
5550 #ifdef HAVE_TARGET_64_BIG
5551 template
5552 class Output_data_group<64, true>;
5553 #endif
5554
5555 template
5556 class Output_data_got<32, false>;
5557
5558 template
5559 class Output_data_got<32, true>;
5560
5561 template
5562 class Output_data_got<64, false>;
5563
5564 template
5565 class Output_data_got<64, true>;
5566
5567 } // End namespace gold.
This page took 0.143191 seconds and 5 git commands to generate.