elfcpp/:
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative)
642 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
644 {
645 // this->type_ is a bitfield; make sure TYPE fits.
646 gold_assert(this->type_ == type);
647 this->u1_.gsym = gsym;
648 this->u2_.od = od;
649 if (dynamic)
650 this->set_needs_dynsym_index();
651 }
652
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
655 Symbol* gsym,
656 unsigned int type,
657 Sized_relobj<size, big_endian>* relobj,
658 unsigned int shndx,
659 Address address,
660 bool is_relative)
661 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
663 {
664 gold_assert(shndx != INVALID_CODE);
665 // this->type_ is a bitfield; make sure TYPE fits.
666 gold_assert(this->type_ == type);
667 this->u1_.gsym = gsym;
668 this->u2_.relobj = relobj;
669 if (dynamic)
670 this->set_needs_dynsym_index();
671 }
672
673 // A reloc against a local symbol.
674
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677 Sized_relobj<size, big_endian>* relobj,
678 unsigned int local_sym_index,
679 unsigned int type,
680 Output_data* od,
681 Address address,
682 bool is_relative,
683 bool is_section_symbol)
684 : address_(address), local_sym_index_(local_sym_index), type_(type),
685 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
686 shndx_(INVALID_CODE)
687 {
688 gold_assert(local_sym_index != GSYM_CODE
689 && local_sym_index != INVALID_CODE);
690 // this->type_ is a bitfield; make sure TYPE fits.
691 gold_assert(this->type_ == type);
692 this->u1_.relobj = relobj;
693 this->u2_.od = od;
694 if (dynamic)
695 this->set_needs_dynsym_index();
696 }
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Sized_relobj<size, big_endian>* relobj,
701 unsigned int local_sym_index,
702 unsigned int type,
703 unsigned int shndx,
704 Address address,
705 bool is_relative,
706 bool is_section_symbol)
707 : address_(address), local_sym_index_(local_sym_index), type_(type),
708 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
709 shndx_(shndx)
710 {
711 gold_assert(local_sym_index != GSYM_CODE
712 && local_sym_index != INVALID_CODE);
713 gold_assert(shndx != INVALID_CODE);
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
716 this->u1_.relobj = relobj;
717 this->u2_.relobj = relobj;
718 if (dynamic)
719 this->set_needs_dynsym_index();
720 }
721
722 // A reloc against the STT_SECTION symbol of an output section.
723
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726 Output_section* os,
727 unsigned int type,
728 Output_data* od,
729 Address address)
730 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
732 {
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.os = os;
736 this->u2_.od = od;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
741 }
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Output_section* os,
746 unsigned int type,
747 Sized_relobj<size, big_endian>* relobj,
748 unsigned int shndx,
749 Address address)
750 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
752 {
753 gold_assert(shndx != INVALID_CODE);
754 // this->type_ is a bitfield; make sure TYPE fits.
755 gold_assert(this->type_ == type);
756 this->u1_.os = os;
757 this->u2_.relobj = relobj;
758 if (dynamic)
759 this->set_needs_dynsym_index();
760 else
761 os->set_needs_symtab_index();
762 }
763
764 // An absolute relocation.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 unsigned int type,
769 Output_data* od,
770 Address address)
771 : address_(address), local_sym_index_(0), type_(type),
772 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
773 {
774 // this->type_ is a bitfield; make sure TYPE fits.
775 gold_assert(this->type_ == type);
776 this->u1_.relobj = NULL;
777 this->u2_.od = od;
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 unsigned int type,
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int shndx,
785 Address address)
786 : address_(address), local_sym_index_(0), type_(type),
787 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
788 {
789 gold_assert(shndx != INVALID_CODE);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_ == type);
792 this->u1_.relobj = NULL;
793 this->u2_.relobj = relobj;
794 }
795
796 // A target specific relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800 unsigned int type,
801 void* arg,
802 Output_data* od,
803 Address address)
804 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
806 {
807 // this->type_ is a bitfield; make sure TYPE fits.
808 gold_assert(this->type_ == type);
809 this->u1_.arg = arg;
810 this->u2_.od = od;
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 unsigned int type,
816 void* arg,
817 Sized_relobj<size, big_endian>* relobj,
818 unsigned int shndx,
819 Address address)
820 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
822 {
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
826 this->u1_.arg = arg;
827 this->u2_.relobj = relobj;
828 }
829
830 // Record that we need a dynamic symbol index for this relocation.
831
832 template<bool dynamic, int size, bool big_endian>
833 void
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
836 {
837 if (this->is_relative_)
838 return;
839 switch (this->local_sym_index_)
840 {
841 case INVALID_CODE:
842 gold_unreachable();
843
844 case GSYM_CODE:
845 this->u1_.gsym->set_needs_dynsym_entry();
846 break;
847
848 case SECTION_CODE:
849 this->u1_.os->set_needs_dynsym_index();
850 break;
851
852 case TARGET_CODE:
853 // The target must take care of this if necessary.
854 break;
855
856 case 0:
857 break;
858
859 default:
860 {
861 const unsigned int lsi = this->local_sym_index_;
862 if (!this->is_section_symbol_)
863 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
864 else
865 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
866 }
867 break;
868 }
869 }
870
871 // Get the symbol index of a relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 unsigned int
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
876 const
877 {
878 unsigned int index;
879 switch (this->local_sym_index_)
880 {
881 case INVALID_CODE:
882 gold_unreachable();
883
884 case GSYM_CODE:
885 if (this->u1_.gsym == NULL)
886 index = 0;
887 else if (dynamic)
888 index = this->u1_.gsym->dynsym_index();
889 else
890 index = this->u1_.gsym->symtab_index();
891 break;
892
893 case SECTION_CODE:
894 if (dynamic)
895 index = this->u1_.os->dynsym_index();
896 else
897 index = this->u1_.os->symtab_index();
898 break;
899
900 case TARGET_CODE:
901 index = parameters->target().reloc_symbol_index(this->u1_.arg,
902 this->type_);
903 break;
904
905 case 0:
906 // Relocations without symbols use a symbol index of 0.
907 index = 0;
908 break;
909
910 default:
911 {
912 const unsigned int lsi = this->local_sym_index_;
913 if (!this->is_section_symbol_)
914 {
915 if (dynamic)
916 index = this->u1_.relobj->dynsym_index(lsi);
917 else
918 index = this->u1_.relobj->symtab_index(lsi);
919 }
920 else
921 {
922 Output_section* os = this->u1_.relobj->output_section(lsi);
923 gold_assert(os != NULL);
924 if (dynamic)
925 index = os->dynsym_index();
926 else
927 index = os->symtab_index();
928 }
929 }
930 break;
931 }
932 gold_assert(index != -1U);
933 return index;
934 }
935
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
938
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 local_section_offset(Addend addend) const
943 {
944 gold_assert(this->local_sym_index_ != GSYM_CODE
945 && this->local_sym_index_ != SECTION_CODE
946 && this->local_sym_index_ != TARGET_CODE
947 && this->local_sym_index_ != INVALID_CODE
948 && this->local_sym_index_ != 0
949 && this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 Output_section* os = this->u1_.relobj->output_section(lsi);
952 gold_assert(os != NULL);
953 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954 if (offset != invalid_address)
955 return offset + addend;
956 // This is a merge section.
957 offset = os->output_address(this->u1_.relobj, lsi, addend);
958 gold_assert(offset != invalid_address);
959 return offset;
960 }
961
962 // Get the output address of a relocation.
963
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
967 {
968 Address address = this->address_;
969 if (this->shndx_ != INVALID_CODE)
970 {
971 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972 gold_assert(os != NULL);
973 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974 if (off != invalid_address)
975 address += os->address() + off;
976 else
977 {
978 address = os->output_address(this->u2_.relobj, this->shndx_,
979 address);
980 gold_assert(address != invalid_address);
981 }
982 }
983 else if (this->u2_.od != NULL)
984 address += this->u2_.od->address();
985 return address;
986 }
987
988 // Write out the offset and info fields of a Rel or Rela relocation
989 // entry.
990
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
993 void
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
995 Write_rel* wr) const
996 {
997 wr->put_r_offset(this->get_address());
998 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1000 }
1001
1002 // Write out a Rel relocation.
1003
1004 template<bool dynamic, int size, bool big_endian>
1005 void
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007 unsigned char* pov) const
1008 {
1009 elfcpp::Rel_write<size, big_endian> orel(pov);
1010 this->write_rel(&orel);
1011 }
1012
1013 // Get the value of the symbol referred to by a Rel relocation.
1014
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018 Addend addend) const
1019 {
1020 if (this->local_sym_index_ == GSYM_CODE)
1021 {
1022 const Sized_symbol<size>* sym;
1023 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024 return sym->value() + addend;
1025 }
1026 gold_assert(this->local_sym_index_ != SECTION_CODE
1027 && this->local_sym_index_ != TARGET_CODE
1028 && this->local_sym_index_ != INVALID_CODE
1029 && this->local_sym_index_ != 0
1030 && !this->is_section_symbol_);
1031 const unsigned int lsi = this->local_sym_index_;
1032 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033 return symval->value(this->u1_.relobj, addend);
1034 }
1035
1036 // Reloc comparison. This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker. First we sort all relative relocs
1038 // to the front. Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1040 // address.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 int
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1046 const
1047 {
1048 if (this->is_relative_)
1049 {
1050 if (!r2.is_relative_)
1051 return -1;
1052 // Otherwise sort by reloc address below.
1053 }
1054 else if (r2.is_relative_)
1055 return 1;
1056 else
1057 {
1058 unsigned int sym1 = this->get_symbol_index();
1059 unsigned int sym2 = r2.get_symbol_index();
1060 if (sym1 < sym2)
1061 return -1;
1062 else if (sym1 > sym2)
1063 return 1;
1064 // Otherwise sort by reloc address.
1065 }
1066
1067 section_offset_type addr1 = this->get_address();
1068 section_offset_type addr2 = r2.get_address();
1069 if (addr1 < addr2)
1070 return -1;
1071 else if (addr1 > addr2)
1072 return 1;
1073
1074 // Final tie breaker, in order to generate the same output on any
1075 // host: reloc type.
1076 unsigned int type1 = this->type_;
1077 unsigned int type2 = r2.type_;
1078 if (type1 < type2)
1079 return -1;
1080 else if (type1 > type2)
1081 return 1;
1082
1083 // These relocs appear to be exactly the same.
1084 return 0;
1085 }
1086
1087 // Write out a Rela relocation.
1088
1089 template<bool dynamic, int size, bool big_endian>
1090 void
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092 unsigned char* pov) const
1093 {
1094 elfcpp::Rela_write<size, big_endian> orel(pov);
1095 this->rel_.write_rel(&orel);
1096 Addend addend = this->addend_;
1097 if (this->rel_.is_target_specific())
1098 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099 this->rel_.type(), addend);
1100 else if (this->rel_.is_relative())
1101 addend = this->rel_.symbol_value(addend);
1102 else if (this->rel_.is_local_section_symbol())
1103 addend = this->rel_.local_section_offset(addend);
1104 orel.put_r_addend(addend);
1105 }
1106
1107 // Output_data_reloc_base methods.
1108
1109 // Adjust the output section.
1110
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1112 void
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114 ::do_adjust_output_section(Output_section* os)
1115 {
1116 if (sh_type == elfcpp::SHT_REL)
1117 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118 else if (sh_type == elfcpp::SHT_RELA)
1119 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1120 else
1121 gold_unreachable();
1122 if (dynamic)
1123 os->set_should_link_to_dynsym();
1124 else
1125 os->set_should_link_to_symtab();
1126 }
1127
1128 // Write out relocation data.
1129
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1131 void
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1133 Output_file* of)
1134 {
1135 const off_t off = this->offset();
1136 const off_t oview_size = this->data_size();
1137 unsigned char* const oview = of->get_output_view(off, oview_size);
1138
1139 if (this->sort_relocs())
1140 {
1141 gold_assert(dynamic);
1142 std::sort(this->relocs_.begin(), this->relocs_.end(),
1143 Sort_relocs_comparison());
1144 }
1145
1146 unsigned char* pov = oview;
1147 for (typename Relocs::const_iterator p = this->relocs_.begin();
1148 p != this->relocs_.end();
1149 ++p)
1150 {
1151 p->write(pov);
1152 pov += reloc_size;
1153 }
1154
1155 gold_assert(pov - oview == oview_size);
1156
1157 of->write_output_view(off, oview_size, oview);
1158
1159 // We no longer need the relocation entries.
1160 this->relocs_.clear();
1161 }
1162
1163 // Class Output_relocatable_relocs.
1164
1165 template<int sh_type, int size, bool big_endian>
1166 void
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1168 {
1169 this->set_data_size(this->rr_->output_reloc_count()
1170 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1171 }
1172
1173 // class Output_data_group.
1174
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177 Sized_relobj<size, big_endian>* relobj,
1178 section_size_type entry_count,
1179 elfcpp::Elf_Word flags,
1180 std::vector<unsigned int>* input_shndxes)
1181 : Output_section_data(entry_count * 4, 4, false),
1182 relobj_(relobj),
1183 flags_(flags)
1184 {
1185 this->input_shndxes_.swap(*input_shndxes);
1186 }
1187
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1190
1191 template<int size, bool big_endian>
1192 void
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1194 {
1195 const off_t off = this->offset();
1196 const section_size_type oview_size =
1197 convert_to_section_size_type(this->data_size());
1198 unsigned char* const oview = of->get_output_view(off, oview_size);
1199
1200 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1202 ++contents;
1203
1204 for (std::vector<unsigned int>::const_iterator p =
1205 this->input_shndxes_.begin();
1206 p != this->input_shndxes_.end();
1207 ++p, ++contents)
1208 {
1209 Output_section* os = this->relobj_->output_section(*p);
1210
1211 unsigned int output_shndx;
1212 if (os != NULL)
1213 output_shndx = os->out_shndx();
1214 else
1215 {
1216 this->relobj_->error(_("section group retained but "
1217 "group element discarded"));
1218 output_shndx = 0;
1219 }
1220
1221 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1222 }
1223
1224 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225 gold_assert(wrote == oview_size);
1226
1227 of->write_output_view(off, oview_size, oview);
1228
1229 // We no longer need this information.
1230 this->input_shndxes_.clear();
1231 }
1232
1233 // Output_data_got::Got_entry methods.
1234
1235 // Write out the entry.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1240 {
1241 Valtype val = 0;
1242
1243 switch (this->local_sym_index_)
1244 {
1245 case GSYM_CODE:
1246 {
1247 // If the symbol is resolved locally, we need to write out the
1248 // link-time value, which will be relocated dynamically by a
1249 // RELATIVE relocation.
1250 Symbol* gsym = this->u_.gsym;
1251 Sized_symbol<size>* sgsym;
1252 // This cast is a bit ugly. We don't want to put a
1253 // virtual method in Symbol, because we want Symbol to be
1254 // as small as possible.
1255 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256 val = sgsym->value();
1257 }
1258 break;
1259
1260 case CONSTANT_CODE:
1261 val = this->u_.constant;
1262 break;
1263
1264 default:
1265 {
1266 const unsigned int lsi = this->local_sym_index_;
1267 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268 val = symval->value(this->u_.object, 0);
1269 }
1270 break;
1271 }
1272
1273 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1274 }
1275
1276 // Output_data_got methods.
1277
1278 // Add an entry for a global symbol to the GOT. This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1280 // entry.
1281
1282 template<int size, bool big_endian>
1283 bool
1284 Output_data_got<size, big_endian>::add_global(
1285 Symbol* gsym,
1286 unsigned int got_type)
1287 {
1288 if (gsym->has_got_offset(got_type))
1289 return false;
1290
1291 this->entries_.push_back(Got_entry(gsym));
1292 this->set_got_size();
1293 gsym->set_got_offset(got_type, this->last_got_offset());
1294 return true;
1295 }
1296
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1300 void
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1302 Symbol* gsym,
1303 unsigned int got_type,
1304 Rel_dyn* rel_dyn,
1305 unsigned int r_type)
1306 {
1307 if (gsym->has_got_offset(got_type))
1308 return;
1309
1310 this->entries_.push_back(Got_entry());
1311 this->set_got_size();
1312 unsigned int got_offset = this->last_got_offset();
1313 gsym->set_got_offset(got_type, got_offset);
1314 rel_dyn->add_global(gsym, r_type, this, got_offset);
1315 }
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1320 Symbol* gsym,
1321 unsigned int got_type,
1322 Rela_dyn* rela_dyn,
1323 unsigned int r_type)
1324 {
1325 if (gsym->has_got_offset(got_type))
1326 return;
1327
1328 this->entries_.push_back(Got_entry());
1329 this->set_got_size();
1330 unsigned int got_offset = this->last_got_offset();
1331 gsym->set_got_offset(got_type, got_offset);
1332 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1333 }
1334
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1339 void
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1341 Symbol* gsym,
1342 unsigned int got_type,
1343 Rel_dyn* rel_dyn,
1344 unsigned int r_type_1,
1345 unsigned int r_type_2)
1346 {
1347 if (gsym->has_got_offset(got_type))
1348 return;
1349
1350 this->entries_.push_back(Got_entry());
1351 unsigned int got_offset = this->last_got_offset();
1352 gsym->set_got_offset(got_type, got_offset);
1353 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1354
1355 this->entries_.push_back(Got_entry());
1356 if (r_type_2 != 0)
1357 {
1358 got_offset = this->last_got_offset();
1359 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1360 }
1361
1362 this->set_got_size();
1363 }
1364
1365 template<int size, bool big_endian>
1366 void
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1368 Symbol* gsym,
1369 unsigned int got_type,
1370 Rela_dyn* rela_dyn,
1371 unsigned int r_type_1,
1372 unsigned int r_type_2)
1373 {
1374 if (gsym->has_got_offset(got_type))
1375 return;
1376
1377 this->entries_.push_back(Got_entry());
1378 unsigned int got_offset = this->last_got_offset();
1379 gsym->set_got_offset(got_type, got_offset);
1380 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1381
1382 this->entries_.push_back(Got_entry());
1383 if (r_type_2 != 0)
1384 {
1385 got_offset = this->last_got_offset();
1386 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1387 }
1388
1389 this->set_got_size();
1390 }
1391
1392 // Add an entry for a local symbol to the GOT. This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1394 // entry.
1395
1396 template<int size, bool big_endian>
1397 bool
1398 Output_data_got<size, big_endian>::add_local(
1399 Sized_relobj<size, big_endian>* object,
1400 unsigned int symndx,
1401 unsigned int got_type)
1402 {
1403 if (object->local_has_got_offset(symndx, got_type))
1404 return false;
1405
1406 this->entries_.push_back(Got_entry(object, symndx));
1407 this->set_got_size();
1408 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1409 return true;
1410 }
1411
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417 Sized_relobj<size, big_endian>* object,
1418 unsigned int symndx,
1419 unsigned int got_type,
1420 Rel_dyn* rel_dyn,
1421 unsigned int r_type)
1422 {
1423 if (object->local_has_got_offset(symndx, got_type))
1424 return;
1425
1426 this->entries_.push_back(Got_entry());
1427 this->set_got_size();
1428 unsigned int got_offset = this->last_got_offset();
1429 object->set_local_got_offset(symndx, got_type, got_offset);
1430 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1431 }
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436 Sized_relobj<size, big_endian>* object,
1437 unsigned int symndx,
1438 unsigned int got_type,
1439 Rela_dyn* rela_dyn,
1440 unsigned int r_type)
1441 {
1442 if (object->local_has_got_offset(symndx, got_type))
1443 return;
1444
1445 this->entries_.push_back(Got_entry());
1446 this->set_got_size();
1447 unsigned int got_offset = this->last_got_offset();
1448 object->set_local_got_offset(symndx, got_type, got_offset);
1449 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1450 }
1451
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1456 void
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458 Sized_relobj<size, big_endian>* object,
1459 unsigned int symndx,
1460 unsigned int shndx,
1461 unsigned int got_type,
1462 Rel_dyn* rel_dyn,
1463 unsigned int r_type_1,
1464 unsigned int r_type_2)
1465 {
1466 if (object->local_has_got_offset(symndx, got_type))
1467 return;
1468
1469 this->entries_.push_back(Got_entry());
1470 unsigned int got_offset = this->last_got_offset();
1471 object->set_local_got_offset(symndx, got_type, got_offset);
1472 Output_section* os = object->output_section(shndx);
1473 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1474
1475 this->entries_.push_back(Got_entry(object, symndx));
1476 if (r_type_2 != 0)
1477 {
1478 got_offset = this->last_got_offset();
1479 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1480 }
1481
1482 this->set_got_size();
1483 }
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int shndx,
1491 unsigned int got_type,
1492 Rela_dyn* rela_dyn,
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
1495 {
1496 if (object->local_has_got_offset(symndx, got_type))
1497 return;
1498
1499 this->entries_.push_back(Got_entry());
1500 unsigned int got_offset = this->last_got_offset();
1501 object->set_local_got_offset(symndx, got_type, got_offset);
1502 Output_section* os = object->output_section(shndx);
1503 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1504
1505 this->entries_.push_back(Got_entry(object, symndx));
1506 if (r_type_2 != 0)
1507 {
1508 got_offset = this->last_got_offset();
1509 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1510 }
1511
1512 this->set_got_size();
1513 }
1514
1515 // Write out the GOT.
1516
1517 template<int size, bool big_endian>
1518 void
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1520 {
1521 const int add = size / 8;
1522
1523 const off_t off = this->offset();
1524 const off_t oview_size = this->data_size();
1525 unsigned char* const oview = of->get_output_view(off, oview_size);
1526
1527 unsigned char* pov = oview;
1528 for (typename Got_entries::const_iterator p = this->entries_.begin();
1529 p != this->entries_.end();
1530 ++p)
1531 {
1532 p->write(pov);
1533 pov += add;
1534 }
1535
1536 gold_assert(pov - oview == oview_size);
1537
1538 of->write_output_view(off, oview_size, oview);
1539
1540 // We no longer need the GOT entries.
1541 this->entries_.clear();
1542 }
1543
1544 // Output_data_dynamic::Dynamic_entry methods.
1545
1546 // Write out the entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_dynamic::Dynamic_entry::write(
1551 unsigned char* pov,
1552 const Stringpool* pool) const
1553 {
1554 typename elfcpp::Elf_types<size>::Elf_WXword val;
1555 switch (this->offset_)
1556 {
1557 case DYNAMIC_NUMBER:
1558 val = this->u_.val;
1559 break;
1560
1561 case DYNAMIC_SECTION_SIZE:
1562 val = this->u_.od->data_size();
1563 break;
1564
1565 case DYNAMIC_SYMBOL:
1566 {
1567 const Sized_symbol<size>* s =
1568 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1569 val = s->value();
1570 }
1571 break;
1572
1573 case DYNAMIC_STRING:
1574 val = pool->get_offset(this->u_.str);
1575 break;
1576
1577 default:
1578 val = this->u_.od->address() + this->offset_;
1579 break;
1580 }
1581
1582 elfcpp::Dyn_write<size, big_endian> dw(pov);
1583 dw.put_d_tag(this->tag_);
1584 dw.put_d_val(val);
1585 }
1586
1587 // Output_data_dynamic methods.
1588
1589 // Adjust the output section to set the entry size.
1590
1591 void
1592 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1593 {
1594 if (parameters->target().get_size() == 32)
1595 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1596 else if (parameters->target().get_size() == 64)
1597 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1598 else
1599 gold_unreachable();
1600 }
1601
1602 // Set the final data size.
1603
1604 void
1605 Output_data_dynamic::set_final_data_size()
1606 {
1607 // Add the terminating entry if it hasn't been added.
1608 // Because of relaxation, we can run this multiple times.
1609 if (this->entries_.empty()
1610 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1611 this->add_constant(elfcpp::DT_NULL, 0);
1612
1613 int dyn_size;
1614 if (parameters->target().get_size() == 32)
1615 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1616 else if (parameters->target().get_size() == 64)
1617 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1618 else
1619 gold_unreachable();
1620 this->set_data_size(this->entries_.size() * dyn_size);
1621 }
1622
1623 // Write out the dynamic entries.
1624
1625 void
1626 Output_data_dynamic::do_write(Output_file* of)
1627 {
1628 switch (parameters->size_and_endianness())
1629 {
1630 #ifdef HAVE_TARGET_32_LITTLE
1631 case Parameters::TARGET_32_LITTLE:
1632 this->sized_write<32, false>(of);
1633 break;
1634 #endif
1635 #ifdef HAVE_TARGET_32_BIG
1636 case Parameters::TARGET_32_BIG:
1637 this->sized_write<32, true>(of);
1638 break;
1639 #endif
1640 #ifdef HAVE_TARGET_64_LITTLE
1641 case Parameters::TARGET_64_LITTLE:
1642 this->sized_write<64, false>(of);
1643 break;
1644 #endif
1645 #ifdef HAVE_TARGET_64_BIG
1646 case Parameters::TARGET_64_BIG:
1647 this->sized_write<64, true>(of);
1648 break;
1649 #endif
1650 default:
1651 gold_unreachable();
1652 }
1653 }
1654
1655 template<int size, bool big_endian>
1656 void
1657 Output_data_dynamic::sized_write(Output_file* of)
1658 {
1659 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1660
1661 const off_t offset = this->offset();
1662 const off_t oview_size = this->data_size();
1663 unsigned char* const oview = of->get_output_view(offset, oview_size);
1664
1665 unsigned char* pov = oview;
1666 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1667 p != this->entries_.end();
1668 ++p)
1669 {
1670 p->write<size, big_endian>(pov, this->pool_);
1671 pov += dyn_size;
1672 }
1673
1674 gold_assert(pov - oview == oview_size);
1675
1676 of->write_output_view(offset, oview_size, oview);
1677
1678 // We no longer need the dynamic entries.
1679 this->entries_.clear();
1680 }
1681
1682 // Class Output_symtab_xindex.
1683
1684 void
1685 Output_symtab_xindex::do_write(Output_file* of)
1686 {
1687 const off_t offset = this->offset();
1688 const off_t oview_size = this->data_size();
1689 unsigned char* const oview = of->get_output_view(offset, oview_size);
1690
1691 memset(oview, 0, oview_size);
1692
1693 if (parameters->target().is_big_endian())
1694 this->endian_do_write<true>(oview);
1695 else
1696 this->endian_do_write<false>(oview);
1697
1698 of->write_output_view(offset, oview_size, oview);
1699
1700 // We no longer need the data.
1701 this->entries_.clear();
1702 }
1703
1704 template<bool big_endian>
1705 void
1706 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1707 {
1708 for (Xindex_entries::const_iterator p = this->entries_.begin();
1709 p != this->entries_.end();
1710 ++p)
1711 {
1712 unsigned int symndx = p->first;
1713 gold_assert(symndx * 4 < this->data_size());
1714 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1715 }
1716 }
1717
1718 // Output_section::Input_section methods.
1719
1720 // Return the data size. For an input section we store the size here.
1721 // For an Output_section_data, we have to ask it for the size.
1722
1723 off_t
1724 Output_section::Input_section::data_size() const
1725 {
1726 if (this->is_input_section())
1727 return this->u1_.data_size;
1728 else
1729 return this->u2_.posd->data_size();
1730 }
1731
1732 // Set the address and file offset.
1733
1734 void
1735 Output_section::Input_section::set_address_and_file_offset(
1736 uint64_t address,
1737 off_t file_offset,
1738 off_t section_file_offset)
1739 {
1740 if (this->is_input_section())
1741 this->u2_.object->set_section_offset(this->shndx_,
1742 file_offset - section_file_offset);
1743 else
1744 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1745 }
1746
1747 // Reset the address and file offset.
1748
1749 void
1750 Output_section::Input_section::reset_address_and_file_offset()
1751 {
1752 if (!this->is_input_section())
1753 this->u2_.posd->reset_address_and_file_offset();
1754 }
1755
1756 // Finalize the data size.
1757
1758 void
1759 Output_section::Input_section::finalize_data_size()
1760 {
1761 if (!this->is_input_section())
1762 this->u2_.posd->finalize_data_size();
1763 }
1764
1765 // Try to turn an input offset into an output offset. We want to
1766 // return the output offset relative to the start of this
1767 // Input_section in the output section.
1768
1769 inline bool
1770 Output_section::Input_section::output_offset(
1771 const Relobj* object,
1772 unsigned int shndx,
1773 section_offset_type offset,
1774 section_offset_type *poutput) const
1775 {
1776 if (!this->is_input_section())
1777 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1778 else
1779 {
1780 if (this->shndx_ != shndx || this->u2_.object != object)
1781 return false;
1782 *poutput = offset;
1783 return true;
1784 }
1785 }
1786
1787 // Return whether this is the merge section for the input section
1788 // SHNDX in OBJECT.
1789
1790 inline bool
1791 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1792 unsigned int shndx) const
1793 {
1794 if (this->is_input_section())
1795 return false;
1796 return this->u2_.posd->is_merge_section_for(object, shndx);
1797 }
1798
1799 // Write out the data. We don't have to do anything for an input
1800 // section--they are handled via Object::relocate--but this is where
1801 // we write out the data for an Output_section_data.
1802
1803 void
1804 Output_section::Input_section::write(Output_file* of)
1805 {
1806 if (!this->is_input_section())
1807 this->u2_.posd->write(of);
1808 }
1809
1810 // Write the data to a buffer. As for write(), we don't have to do
1811 // anything for an input section.
1812
1813 void
1814 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1815 {
1816 if (!this->is_input_section())
1817 this->u2_.posd->write_to_buffer(buffer);
1818 }
1819
1820 // Print to a map file.
1821
1822 void
1823 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1824 {
1825 switch (this->shndx_)
1826 {
1827 case OUTPUT_SECTION_CODE:
1828 case MERGE_DATA_SECTION_CODE:
1829 case MERGE_STRING_SECTION_CODE:
1830 this->u2_.posd->print_to_mapfile(mapfile);
1831 break;
1832
1833 case RELAXED_INPUT_SECTION_CODE:
1834 {
1835 Output_relaxed_input_section* relaxed_section =
1836 this->relaxed_input_section();
1837 mapfile->print_input_section(relaxed_section->relobj(),
1838 relaxed_section->shndx());
1839 }
1840 break;
1841 default:
1842 mapfile->print_input_section(this->u2_.object, this->shndx_);
1843 break;
1844 }
1845 }
1846
1847 // Output_section methods.
1848
1849 // Construct an Output_section. NAME will point into a Stringpool.
1850
1851 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1852 elfcpp::Elf_Xword flags)
1853 : name_(name),
1854 addralign_(0),
1855 entsize_(0),
1856 load_address_(0),
1857 link_section_(NULL),
1858 link_(0),
1859 info_section_(NULL),
1860 info_symndx_(NULL),
1861 info_(0),
1862 type_(type),
1863 flags_(flags),
1864 out_shndx_(-1U),
1865 symtab_index_(0),
1866 dynsym_index_(0),
1867 input_sections_(),
1868 first_input_offset_(0),
1869 fills_(),
1870 postprocessing_buffer_(NULL),
1871 needs_symtab_index_(false),
1872 needs_dynsym_index_(false),
1873 should_link_to_symtab_(false),
1874 should_link_to_dynsym_(false),
1875 after_input_sections_(false),
1876 requires_postprocessing_(false),
1877 found_in_sections_clause_(false),
1878 has_load_address_(false),
1879 info_uses_section_index_(false),
1880 may_sort_attached_input_sections_(false),
1881 must_sort_attached_input_sections_(false),
1882 attached_input_sections_are_sorted_(false),
1883 is_relro_(false),
1884 is_relro_local_(false),
1885 is_last_relro_(false),
1886 is_first_non_relro_(false),
1887 is_small_section_(false),
1888 is_large_section_(false),
1889 is_interp_(false),
1890 is_dynamic_linker_section_(false),
1891 generate_code_fills_at_write_(false),
1892 is_entsize_zero_(false),
1893 tls_offset_(0),
1894 checkpoint_(NULL),
1895 merge_section_map_(),
1896 merge_section_by_properties_map_(),
1897 relaxed_input_section_map_(),
1898 is_relaxed_input_section_map_valid_(true)
1899 {
1900 // An unallocated section has no address. Forcing this means that
1901 // we don't need special treatment for symbols defined in debug
1902 // sections.
1903 if ((flags & elfcpp::SHF_ALLOC) == 0)
1904 this->set_address(0);
1905 }
1906
1907 Output_section::~Output_section()
1908 {
1909 delete this->checkpoint_;
1910 }
1911
1912 // Set the entry size.
1913
1914 void
1915 Output_section::set_entsize(uint64_t v)
1916 {
1917 if (this->is_entsize_zero_)
1918 ;
1919 else if (this->entsize_ == 0)
1920 this->entsize_ = v;
1921 else if (this->entsize_ != v)
1922 {
1923 this->entsize_ = 0;
1924 this->is_entsize_zero_ = 1;
1925 }
1926 }
1927
1928 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1929 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1930 // relocation section which applies to this section, or 0 if none, or
1931 // -1U if more than one. Return the offset of the input section
1932 // within the output section. Return -1 if the input section will
1933 // receive special handling. In the normal case we don't always keep
1934 // track of input sections for an Output_section. Instead, each
1935 // Object keeps track of the Output_section for each of its input
1936 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1937 // track of input sections here; this is used when SECTIONS appears in
1938 // a linker script.
1939
1940 template<int size, bool big_endian>
1941 off_t
1942 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1943 unsigned int shndx,
1944 const char* secname,
1945 const elfcpp::Shdr<size, big_endian>& shdr,
1946 unsigned int reloc_shndx,
1947 bool have_sections_script)
1948 {
1949 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1950 if ((addralign & (addralign - 1)) != 0)
1951 {
1952 object->error(_("invalid alignment %lu for section \"%s\""),
1953 static_cast<unsigned long>(addralign), secname);
1954 addralign = 1;
1955 }
1956
1957 if (addralign > this->addralign_)
1958 this->addralign_ = addralign;
1959
1960 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1961 uint64_t entsize = shdr.get_sh_entsize();
1962
1963 // .debug_str is a mergeable string section, but is not always so
1964 // marked by compilers. Mark manually here so we can optimize.
1965 if (strcmp(secname, ".debug_str") == 0)
1966 {
1967 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1968 entsize = 1;
1969 }
1970
1971 this->update_flags_for_input_section(sh_flags);
1972 this->set_entsize(entsize);
1973
1974 // If this is a SHF_MERGE section, we pass all the input sections to
1975 // a Output_data_merge. We don't try to handle relocations for such
1976 // a section. We don't try to handle empty merge sections--they
1977 // mess up the mappings, and are useless anyhow.
1978 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1979 && reloc_shndx == 0
1980 && shdr.get_sh_size() > 0)
1981 {
1982 if (this->add_merge_input_section(object, shndx, sh_flags,
1983 entsize, addralign))
1984 {
1985 // Tell the relocation routines that they need to call the
1986 // output_offset method to determine the final address.
1987 return -1;
1988 }
1989 }
1990
1991 off_t offset_in_section = this->current_data_size_for_child();
1992 off_t aligned_offset_in_section = align_address(offset_in_section,
1993 addralign);
1994
1995 // Determine if we want to delay code-fill generation until the output
1996 // section is written. When the target is relaxing, we want to delay fill
1997 // generating to avoid adjusting them during relaxation.
1998 if (!this->generate_code_fills_at_write_
1999 && !have_sections_script
2000 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2001 && parameters->target().has_code_fill()
2002 && parameters->target().may_relax())
2003 {
2004 gold_assert(this->fills_.empty());
2005 this->generate_code_fills_at_write_ = true;
2006 }
2007
2008 if (aligned_offset_in_section > offset_in_section
2009 && !this->generate_code_fills_at_write_
2010 && !have_sections_script
2011 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2012 && parameters->target().has_code_fill())
2013 {
2014 // We need to add some fill data. Using fill_list_ when
2015 // possible is an optimization, since we will often have fill
2016 // sections without input sections.
2017 off_t fill_len = aligned_offset_in_section - offset_in_section;
2018 if (this->input_sections_.empty())
2019 this->fills_.push_back(Fill(offset_in_section, fill_len));
2020 else
2021 {
2022 std::string fill_data(parameters->target().code_fill(fill_len));
2023 Output_data_const* odc = new Output_data_const(fill_data, 1);
2024 this->input_sections_.push_back(Input_section(odc));
2025 }
2026 }
2027
2028 this->set_current_data_size_for_child(aligned_offset_in_section
2029 + shdr.get_sh_size());
2030
2031 // We need to keep track of this section if we are already keeping
2032 // track of sections, or if we are relaxing. Also, if this is a
2033 // section which requires sorting, or which may require sorting in
2034 // the future, we keep track of the sections.
2035 if (have_sections_script
2036 || !this->input_sections_.empty()
2037 || this->may_sort_attached_input_sections()
2038 || this->must_sort_attached_input_sections()
2039 || parameters->options().user_set_Map()
2040 || parameters->target().may_relax())
2041 this->input_sections_.push_back(Input_section(object, shndx,
2042 shdr.get_sh_size(),
2043 addralign));
2044
2045 return aligned_offset_in_section;
2046 }
2047
2048 // Add arbitrary data to an output section.
2049
2050 void
2051 Output_section::add_output_section_data(Output_section_data* posd)
2052 {
2053 Input_section inp(posd);
2054 this->add_output_section_data(&inp);
2055
2056 if (posd->is_data_size_valid())
2057 {
2058 off_t offset_in_section = this->current_data_size_for_child();
2059 off_t aligned_offset_in_section = align_address(offset_in_section,
2060 posd->addralign());
2061 this->set_current_data_size_for_child(aligned_offset_in_section
2062 + posd->data_size());
2063 }
2064 }
2065
2066 // Add a relaxed input section.
2067
2068 void
2069 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2070 {
2071 Input_section inp(poris);
2072 this->add_output_section_data(&inp);
2073 if (this->is_relaxed_input_section_map_valid_)
2074 {
2075 Input_section_specifier iss(poris->relobj(), poris->shndx());
2076 this->relaxed_input_section_map_[iss] = poris;
2077 }
2078
2079 // For a relaxed section, we use the current data size. Linker scripts
2080 // get all the input sections, including relaxed one from an output
2081 // section and add them back to them same output section to compute the
2082 // output section size. If we do not account for sizes of relaxed input
2083 // sections, an output section would be incorrectly sized.
2084 off_t offset_in_section = this->current_data_size_for_child();
2085 off_t aligned_offset_in_section = align_address(offset_in_section,
2086 poris->addralign());
2087 this->set_current_data_size_for_child(aligned_offset_in_section
2088 + poris->current_data_size());
2089 }
2090
2091 // Add arbitrary data to an output section by Input_section.
2092
2093 void
2094 Output_section::add_output_section_data(Input_section* inp)
2095 {
2096 if (this->input_sections_.empty())
2097 this->first_input_offset_ = this->current_data_size_for_child();
2098
2099 this->input_sections_.push_back(*inp);
2100
2101 uint64_t addralign = inp->addralign();
2102 if (addralign > this->addralign_)
2103 this->addralign_ = addralign;
2104
2105 inp->set_output_section(this);
2106 }
2107
2108 // Add a merge section to an output section.
2109
2110 void
2111 Output_section::add_output_merge_section(Output_section_data* posd,
2112 bool is_string, uint64_t entsize)
2113 {
2114 Input_section inp(posd, is_string, entsize);
2115 this->add_output_section_data(&inp);
2116 }
2117
2118 // Add an input section to a SHF_MERGE section.
2119
2120 bool
2121 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2122 uint64_t flags, uint64_t entsize,
2123 uint64_t addralign)
2124 {
2125 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2126
2127 // We only merge strings if the alignment is not more than the
2128 // character size. This could be handled, but it's unusual.
2129 if (is_string && addralign > entsize)
2130 return false;
2131
2132 // We cannot restore merged input section states.
2133 gold_assert(this->checkpoint_ == NULL);
2134
2135 // Look up merge sections by required properties.
2136 Merge_section_properties msp(is_string, entsize, addralign);
2137 Merge_section_by_properties_map::const_iterator p =
2138 this->merge_section_by_properties_map_.find(msp);
2139 if (p != this->merge_section_by_properties_map_.end())
2140 {
2141 Output_merge_base* merge_section = p->second;
2142 merge_section->add_input_section(object, shndx);
2143 gold_assert(merge_section->is_string() == is_string
2144 && merge_section->entsize() == entsize
2145 && merge_section->addralign() == addralign);
2146
2147 // Link input section to found merge section.
2148 Input_section_specifier iss(object, shndx);
2149 this->merge_section_map_[iss] = merge_section;
2150 return true;
2151 }
2152
2153 // We handle the actual constant merging in Output_merge_data or
2154 // Output_merge_string_data.
2155 Output_merge_base* pomb;
2156 if (!is_string)
2157 pomb = new Output_merge_data(entsize, addralign);
2158 else
2159 {
2160 switch (entsize)
2161 {
2162 case 1:
2163 pomb = new Output_merge_string<char>(addralign);
2164 break;
2165 case 2:
2166 pomb = new Output_merge_string<uint16_t>(addralign);
2167 break;
2168 case 4:
2169 pomb = new Output_merge_string<uint32_t>(addralign);
2170 break;
2171 default:
2172 return false;
2173 }
2174 }
2175
2176 // Add new merge section to this output section and link merge section
2177 // properties to new merge section in map.
2178 this->add_output_merge_section(pomb, is_string, entsize);
2179 this->merge_section_by_properties_map_[msp] = pomb;
2180
2181 // Add input section to new merge section and link input section to new
2182 // merge section in map.
2183 pomb->add_input_section(object, shndx);
2184 Input_section_specifier iss(object, shndx);
2185 this->merge_section_map_[iss] = pomb;
2186
2187 return true;
2188 }
2189
2190 // Build a relaxation map to speed up relaxation of existing input sections.
2191 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2192
2193 void
2194 Output_section::build_relaxation_map(
2195 const Input_section_list& input_sections,
2196 size_t limit,
2197 Relaxation_map* relaxation_map) const
2198 {
2199 for (size_t i = 0; i < limit; ++i)
2200 {
2201 const Input_section& is(input_sections[i]);
2202 if (is.is_input_section() || is.is_relaxed_input_section())
2203 {
2204 Input_section_specifier iss(is.relobj(), is.shndx());
2205 (*relaxation_map)[iss] = i;
2206 }
2207 }
2208 }
2209
2210 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2211 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from input section
2212 // specifier to indices of INPUT_SECTIONS.
2213
2214 void
2215 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2216 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2217 const Relaxation_map& map,
2218 Input_section_list* input_sections)
2219 {
2220 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2221 {
2222 Output_relaxed_input_section* poris = relaxed_sections[i];
2223 Input_section_specifier iss(poris->relobj(), poris->shndx());
2224 Relaxation_map::const_iterator p = map.find(iss);
2225 gold_assert(p != map.end());
2226 gold_assert((*input_sections)[p->second].is_input_section());
2227 (*input_sections)[p->second] = Input_section(poris);
2228 }
2229 }
2230
2231 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2232 // is a vector of pointers to Output_relaxed_input_section or its derived
2233 // classes. The relaxed sections must correspond to existing input sections.
2234
2235 void
2236 Output_section::convert_input_sections_to_relaxed_sections(
2237 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2238 {
2239 gold_assert(parameters->target().may_relax());
2240
2241 // We want to make sure that restore_states does not undo the effect of
2242 // this. If there is no checkpoint active, just search the current
2243 // input section list and replace the sections there. If there is
2244 // a checkpoint, also replace the sections there.
2245
2246 // By default, we look at the whole list.
2247 size_t limit = this->input_sections_.size();
2248
2249 if (this->checkpoint_ != NULL)
2250 {
2251 // Replace input sections with relaxed input section in the saved
2252 // copy of the input section list.
2253 if (this->checkpoint_->input_sections_saved())
2254 {
2255 Relaxation_map map;
2256 this->build_relaxation_map(
2257 *(this->checkpoint_->input_sections()),
2258 this->checkpoint_->input_sections()->size(),
2259 &map);
2260 this->convert_input_sections_in_list_to_relaxed_sections(
2261 relaxed_sections,
2262 map,
2263 this->checkpoint_->input_sections());
2264 }
2265 else
2266 {
2267 // We have not copied the input section list yet. Instead, just
2268 // look at the portion that would be saved.
2269 limit = this->checkpoint_->input_sections_size();
2270 }
2271 }
2272
2273 // Convert input sections in input_section_list.
2274 Relaxation_map map;
2275 this->build_relaxation_map(this->input_sections_, limit, &map);
2276 this->convert_input_sections_in_list_to_relaxed_sections(
2277 relaxed_sections,
2278 map,
2279 &this->input_sections_);
2280
2281 // Update fast look-up map.
2282 if (this->is_relaxed_input_section_map_valid_)
2283 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2284 {
2285 Output_relaxed_input_section* poris = relaxed_sections[i];
2286 Input_section_specifier iss(poris->relobj(), poris->shndx());
2287 this->relaxed_input_section_map_[iss] = poris;
2288 }
2289 }
2290
2291 // Update the output section flags based on input section flags.
2292
2293 void
2294 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2295 {
2296 // If we created the section with SHF_ALLOC clear, we set the
2297 // address. If we are now setting the SHF_ALLOC flag, we need to
2298 // undo that.
2299 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2300 && (flags & elfcpp::SHF_ALLOC) != 0)
2301 this->mark_address_invalid();
2302
2303 this->flags_ |= (flags
2304 & (elfcpp::SHF_WRITE
2305 | elfcpp::SHF_ALLOC
2306 | elfcpp::SHF_EXECINSTR));
2307
2308 if ((flags & elfcpp::SHF_MERGE) == 0)
2309 this->flags_ &=~ elfcpp::SHF_MERGE;
2310 else
2311 {
2312 if (this->current_data_size_for_child() == 0)
2313 this->flags_ |= elfcpp::SHF_MERGE;
2314 }
2315
2316 if ((flags & elfcpp::SHF_STRINGS) == 0)
2317 this->flags_ &=~ elfcpp::SHF_STRINGS;
2318 else
2319 {
2320 if (this->current_data_size_for_child() == 0)
2321 this->flags_ |= elfcpp::SHF_STRINGS;
2322 }
2323 }
2324
2325 // Find the merge section into which an input section with index SHNDX in
2326 // OBJECT has been added. Return NULL if none found.
2327
2328 Output_section_data*
2329 Output_section::find_merge_section(const Relobj* object,
2330 unsigned int shndx) const
2331 {
2332 Input_section_specifier iss(object, shndx);
2333 Output_section_data_by_input_section_map::const_iterator p =
2334 this->merge_section_map_.find(iss);
2335 if (p != this->merge_section_map_.end())
2336 {
2337 Output_section_data* posd = p->second;
2338 gold_assert(posd->is_merge_section_for(object, shndx));
2339 return posd;
2340 }
2341 else
2342 return NULL;
2343 }
2344
2345 // Find an relaxed input section corresponding to an input section
2346 // in OBJECT with index SHNDX.
2347
2348 const Output_relaxed_input_section*
2349 Output_section::find_relaxed_input_section(const Relobj* object,
2350 unsigned int shndx) const
2351 {
2352 // Be careful that the map may not be valid due to input section export
2353 // to scripts or a check-point restore.
2354 if (!this->is_relaxed_input_section_map_valid_)
2355 {
2356 // Rebuild the map as needed.
2357 this->relaxed_input_section_map_.clear();
2358 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2359 p != this->input_sections_.end();
2360 ++p)
2361 if (p->is_relaxed_input_section())
2362 {
2363 Input_section_specifier iss(p->relobj(), p->shndx());
2364 this->relaxed_input_section_map_[iss] =
2365 p->relaxed_input_section();
2366 }
2367 this->is_relaxed_input_section_map_valid_ = true;
2368 }
2369
2370 Input_section_specifier iss(object, shndx);
2371 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2372 this->relaxed_input_section_map_.find(iss);
2373 if (p != this->relaxed_input_section_map_.end())
2374 return p->second;
2375 else
2376 return NULL;
2377 }
2378
2379 // Given an address OFFSET relative to the start of input section
2380 // SHNDX in OBJECT, return whether this address is being included in
2381 // the final link. This should only be called if SHNDX in OBJECT has
2382 // a special mapping.
2383
2384 bool
2385 Output_section::is_input_address_mapped(const Relobj* object,
2386 unsigned int shndx,
2387 off_t offset) const
2388 {
2389 // Look at the Output_section_data_maps first.
2390 const Output_section_data* posd = this->find_merge_section(object, shndx);
2391 if (posd == NULL)
2392 posd = this->find_relaxed_input_section(object, shndx);
2393
2394 if (posd != NULL)
2395 {
2396 section_offset_type output_offset;
2397 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2398 gold_assert(found);
2399 return output_offset != -1;
2400 }
2401
2402 // Fall back to the slow look-up.
2403 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2404 p != this->input_sections_.end();
2405 ++p)
2406 {
2407 section_offset_type output_offset;
2408 if (p->output_offset(object, shndx, offset, &output_offset))
2409 return output_offset != -1;
2410 }
2411
2412 // By default we assume that the address is mapped. This should
2413 // only be called after we have passed all sections to Layout. At
2414 // that point we should know what we are discarding.
2415 return true;
2416 }
2417
2418 // Given an address OFFSET relative to the start of input section
2419 // SHNDX in object OBJECT, return the output offset relative to the
2420 // start of the input section in the output section. This should only
2421 // be called if SHNDX in OBJECT has a special mapping.
2422
2423 section_offset_type
2424 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2425 section_offset_type offset) const
2426 {
2427 // This can only be called meaningfully when we know the data size
2428 // of this.
2429 gold_assert(this->is_data_size_valid());
2430
2431 // Look at the Output_section_data_maps first.
2432 const Output_section_data* posd = this->find_merge_section(object, shndx);
2433 if (posd == NULL)
2434 posd = this->find_relaxed_input_section(object, shndx);
2435 if (posd != NULL)
2436 {
2437 section_offset_type output_offset;
2438 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2439 gold_assert(found);
2440 return output_offset;
2441 }
2442
2443 // Fall back to the slow look-up.
2444 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2445 p != this->input_sections_.end();
2446 ++p)
2447 {
2448 section_offset_type output_offset;
2449 if (p->output_offset(object, shndx, offset, &output_offset))
2450 return output_offset;
2451 }
2452 gold_unreachable();
2453 }
2454
2455 // Return the output virtual address of OFFSET relative to the start
2456 // of input section SHNDX in object OBJECT.
2457
2458 uint64_t
2459 Output_section::output_address(const Relobj* object, unsigned int shndx,
2460 off_t offset) const
2461 {
2462 uint64_t addr = this->address() + this->first_input_offset_;
2463
2464 // Look at the Output_section_data_maps first.
2465 const Output_section_data* posd = this->find_merge_section(object, shndx);
2466 if (posd == NULL)
2467 posd = this->find_relaxed_input_section(object, shndx);
2468 if (posd != NULL && posd->is_address_valid())
2469 {
2470 section_offset_type output_offset;
2471 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2472 gold_assert(found);
2473 return posd->address() + output_offset;
2474 }
2475
2476 // Fall back to the slow look-up.
2477 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2478 p != this->input_sections_.end();
2479 ++p)
2480 {
2481 addr = align_address(addr, p->addralign());
2482 section_offset_type output_offset;
2483 if (p->output_offset(object, shndx, offset, &output_offset))
2484 {
2485 if (output_offset == -1)
2486 return -1ULL;
2487 return addr + output_offset;
2488 }
2489 addr += p->data_size();
2490 }
2491
2492 // If we get here, it means that we don't know the mapping for this
2493 // input section. This might happen in principle if
2494 // add_input_section were called before add_output_section_data.
2495 // But it should never actually happen.
2496
2497 gold_unreachable();
2498 }
2499
2500 // Find the output address of the start of the merged section for
2501 // input section SHNDX in object OBJECT.
2502
2503 bool
2504 Output_section::find_starting_output_address(const Relobj* object,
2505 unsigned int shndx,
2506 uint64_t* paddr) const
2507 {
2508 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2509 // Looking up the merge section map does not always work as we sometimes
2510 // find a merge section without its address set.
2511 uint64_t addr = this->address() + this->first_input_offset_;
2512 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2513 p != this->input_sections_.end();
2514 ++p)
2515 {
2516 addr = align_address(addr, p->addralign());
2517
2518 // It would be nice if we could use the existing output_offset
2519 // method to get the output offset of input offset 0.
2520 // Unfortunately we don't know for sure that input offset 0 is
2521 // mapped at all.
2522 if (p->is_merge_section_for(object, shndx))
2523 {
2524 *paddr = addr;
2525 return true;
2526 }
2527
2528 addr += p->data_size();
2529 }
2530
2531 // We couldn't find a merge output section for this input section.
2532 return false;
2533 }
2534
2535 // Set the data size of an Output_section. This is where we handle
2536 // setting the addresses of any Output_section_data objects.
2537
2538 void
2539 Output_section::set_final_data_size()
2540 {
2541 if (this->input_sections_.empty())
2542 {
2543 this->set_data_size(this->current_data_size_for_child());
2544 return;
2545 }
2546
2547 if (this->must_sort_attached_input_sections())
2548 this->sort_attached_input_sections();
2549
2550 uint64_t address = this->address();
2551 off_t startoff = this->offset();
2552 off_t off = startoff + this->first_input_offset_;
2553 for (Input_section_list::iterator p = this->input_sections_.begin();
2554 p != this->input_sections_.end();
2555 ++p)
2556 {
2557 off = align_address(off, p->addralign());
2558 p->set_address_and_file_offset(address + (off - startoff), off,
2559 startoff);
2560 off += p->data_size();
2561 }
2562
2563 this->set_data_size(off - startoff);
2564 }
2565
2566 // Reset the address and file offset.
2567
2568 void
2569 Output_section::do_reset_address_and_file_offset()
2570 {
2571 // An unallocated section has no address. Forcing this means that
2572 // we don't need special treatment for symbols defined in debug
2573 // sections. We do the same in the constructor.
2574 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2575 this->set_address(0);
2576
2577 for (Input_section_list::iterator p = this->input_sections_.begin();
2578 p != this->input_sections_.end();
2579 ++p)
2580 p->reset_address_and_file_offset();
2581 }
2582
2583 // Return true if address and file offset have the values after reset.
2584
2585 bool
2586 Output_section::do_address_and_file_offset_have_reset_values() const
2587 {
2588 if (this->is_offset_valid())
2589 return false;
2590
2591 // An unallocated section has address 0 after its construction or a reset.
2592 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2593 return this->is_address_valid() && this->address() == 0;
2594 else
2595 return !this->is_address_valid();
2596 }
2597
2598 // Set the TLS offset. Called only for SHT_TLS sections.
2599
2600 void
2601 Output_section::do_set_tls_offset(uint64_t tls_base)
2602 {
2603 this->tls_offset_ = this->address() - tls_base;
2604 }
2605
2606 // In a few cases we need to sort the input sections attached to an
2607 // output section. This is used to implement the type of constructor
2608 // priority ordering implemented by the GNU linker, in which the
2609 // priority becomes part of the section name and the sections are
2610 // sorted by name. We only do this for an output section if we see an
2611 // attached input section matching ".ctor.*", ".dtor.*",
2612 // ".init_array.*" or ".fini_array.*".
2613
2614 class Output_section::Input_section_sort_entry
2615 {
2616 public:
2617 Input_section_sort_entry()
2618 : input_section_(), index_(-1U), section_has_name_(false),
2619 section_name_()
2620 { }
2621
2622 Input_section_sort_entry(const Input_section& input_section,
2623 unsigned int index)
2624 : input_section_(input_section), index_(index),
2625 section_has_name_(input_section.is_input_section()
2626 || input_section.is_relaxed_input_section())
2627 {
2628 if (this->section_has_name_)
2629 {
2630 // This is only called single-threaded from Layout::finalize,
2631 // so it is OK to lock. Unfortunately we have no way to pass
2632 // in a Task token.
2633 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2634 Object* obj = (input_section.is_input_section()
2635 ? input_section.relobj()
2636 : input_section.relaxed_input_section()->relobj());
2637 Task_lock_obj<Object> tl(dummy_task, obj);
2638
2639 // This is a slow operation, which should be cached in
2640 // Layout::layout if this becomes a speed problem.
2641 this->section_name_ = obj->section_name(input_section.shndx());
2642 }
2643 }
2644
2645 // Return the Input_section.
2646 const Input_section&
2647 input_section() const
2648 {
2649 gold_assert(this->index_ != -1U);
2650 return this->input_section_;
2651 }
2652
2653 // The index of this entry in the original list. This is used to
2654 // make the sort stable.
2655 unsigned int
2656 index() const
2657 {
2658 gold_assert(this->index_ != -1U);
2659 return this->index_;
2660 }
2661
2662 // Whether there is a section name.
2663 bool
2664 section_has_name() const
2665 { return this->section_has_name_; }
2666
2667 // The section name.
2668 const std::string&
2669 section_name() const
2670 {
2671 gold_assert(this->section_has_name_);
2672 return this->section_name_;
2673 }
2674
2675 // Return true if the section name has a priority. This is assumed
2676 // to be true if it has a dot after the initial dot.
2677 bool
2678 has_priority() const
2679 {
2680 gold_assert(this->section_has_name_);
2681 return this->section_name_.find('.', 1);
2682 }
2683
2684 // Return true if this an input file whose base name matches
2685 // FILE_NAME. The base name must have an extension of ".o", and
2686 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2687 // This is to match crtbegin.o as well as crtbeginS.o without
2688 // getting confused by other possibilities. Overall matching the
2689 // file name this way is a dreadful hack, but the GNU linker does it
2690 // in order to better support gcc, and we need to be compatible.
2691 bool
2692 match_file_name(const char* match_file_name) const
2693 {
2694 const std::string& file_name(this->input_section_.relobj()->name());
2695 const char* base_name = lbasename(file_name.c_str());
2696 size_t match_len = strlen(match_file_name);
2697 if (strncmp(base_name, match_file_name, match_len) != 0)
2698 return false;
2699 size_t base_len = strlen(base_name);
2700 if (base_len != match_len + 2 && base_len != match_len + 3)
2701 return false;
2702 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2703 }
2704
2705 private:
2706 // The Input_section we are sorting.
2707 Input_section input_section_;
2708 // The index of this Input_section in the original list.
2709 unsigned int index_;
2710 // Whether this Input_section has a section name--it won't if this
2711 // is some random Output_section_data.
2712 bool section_has_name_;
2713 // The section name if there is one.
2714 std::string section_name_;
2715 };
2716
2717 // Return true if S1 should come before S2 in the output section.
2718
2719 bool
2720 Output_section::Input_section_sort_compare::operator()(
2721 const Output_section::Input_section_sort_entry& s1,
2722 const Output_section::Input_section_sort_entry& s2) const
2723 {
2724 // crtbegin.o must come first.
2725 bool s1_begin = s1.match_file_name("crtbegin");
2726 bool s2_begin = s2.match_file_name("crtbegin");
2727 if (s1_begin || s2_begin)
2728 {
2729 if (!s1_begin)
2730 return false;
2731 if (!s2_begin)
2732 return true;
2733 return s1.index() < s2.index();
2734 }
2735
2736 // crtend.o must come last.
2737 bool s1_end = s1.match_file_name("crtend");
2738 bool s2_end = s2.match_file_name("crtend");
2739 if (s1_end || s2_end)
2740 {
2741 if (!s1_end)
2742 return true;
2743 if (!s2_end)
2744 return false;
2745 return s1.index() < s2.index();
2746 }
2747
2748 // We sort all the sections with no names to the end.
2749 if (!s1.section_has_name() || !s2.section_has_name())
2750 {
2751 if (s1.section_has_name())
2752 return true;
2753 if (s2.section_has_name())
2754 return false;
2755 return s1.index() < s2.index();
2756 }
2757
2758 // A section with a priority follows a section without a priority.
2759 // The GNU linker does this for all but .init_array sections; until
2760 // further notice we'll assume that that is an mistake.
2761 bool s1_has_priority = s1.has_priority();
2762 bool s2_has_priority = s2.has_priority();
2763 if (s1_has_priority && !s2_has_priority)
2764 return false;
2765 if (!s1_has_priority && s2_has_priority)
2766 return true;
2767
2768 // Otherwise we sort by name.
2769 int compare = s1.section_name().compare(s2.section_name());
2770 if (compare != 0)
2771 return compare < 0;
2772
2773 // Otherwise we keep the input order.
2774 return s1.index() < s2.index();
2775 }
2776
2777 // Sort the input sections attached to an output section.
2778
2779 void
2780 Output_section::sort_attached_input_sections()
2781 {
2782 if (this->attached_input_sections_are_sorted_)
2783 return;
2784
2785 if (this->checkpoint_ != NULL
2786 && !this->checkpoint_->input_sections_saved())
2787 this->checkpoint_->save_input_sections();
2788
2789 // The only thing we know about an input section is the object and
2790 // the section index. We need the section name. Recomputing this
2791 // is slow but this is an unusual case. If this becomes a speed
2792 // problem we can cache the names as required in Layout::layout.
2793
2794 // We start by building a larger vector holding a copy of each
2795 // Input_section, plus its current index in the list and its name.
2796 std::vector<Input_section_sort_entry> sort_list;
2797
2798 unsigned int i = 0;
2799 for (Input_section_list::iterator p = this->input_sections_.begin();
2800 p != this->input_sections_.end();
2801 ++p, ++i)
2802 sort_list.push_back(Input_section_sort_entry(*p, i));
2803
2804 // Sort the input sections.
2805 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2806
2807 // Copy the sorted input sections back to our list.
2808 this->input_sections_.clear();
2809 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2810 p != sort_list.end();
2811 ++p)
2812 this->input_sections_.push_back(p->input_section());
2813
2814 // Remember that we sorted the input sections, since we might get
2815 // called again.
2816 this->attached_input_sections_are_sorted_ = true;
2817 }
2818
2819 // Write the section header to *OSHDR.
2820
2821 template<int size, bool big_endian>
2822 void
2823 Output_section::write_header(const Layout* layout,
2824 const Stringpool* secnamepool,
2825 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2826 {
2827 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2828 oshdr->put_sh_type(this->type_);
2829
2830 elfcpp::Elf_Xword flags = this->flags_;
2831 if (this->info_section_ != NULL && this->info_uses_section_index_)
2832 flags |= elfcpp::SHF_INFO_LINK;
2833 oshdr->put_sh_flags(flags);
2834
2835 oshdr->put_sh_addr(this->address());
2836 oshdr->put_sh_offset(this->offset());
2837 oshdr->put_sh_size(this->data_size());
2838 if (this->link_section_ != NULL)
2839 oshdr->put_sh_link(this->link_section_->out_shndx());
2840 else if (this->should_link_to_symtab_)
2841 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2842 else if (this->should_link_to_dynsym_)
2843 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2844 else
2845 oshdr->put_sh_link(this->link_);
2846
2847 elfcpp::Elf_Word info;
2848 if (this->info_section_ != NULL)
2849 {
2850 if (this->info_uses_section_index_)
2851 info = this->info_section_->out_shndx();
2852 else
2853 info = this->info_section_->symtab_index();
2854 }
2855 else if (this->info_symndx_ != NULL)
2856 info = this->info_symndx_->symtab_index();
2857 else
2858 info = this->info_;
2859 oshdr->put_sh_info(info);
2860
2861 oshdr->put_sh_addralign(this->addralign_);
2862 oshdr->put_sh_entsize(this->entsize_);
2863 }
2864
2865 // Write out the data. For input sections the data is written out by
2866 // Object::relocate, but we have to handle Output_section_data objects
2867 // here.
2868
2869 void
2870 Output_section::do_write(Output_file* of)
2871 {
2872 gold_assert(!this->requires_postprocessing());
2873
2874 // If the target performs relaxation, we delay filler generation until now.
2875 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2876
2877 off_t output_section_file_offset = this->offset();
2878 for (Fill_list::iterator p = this->fills_.begin();
2879 p != this->fills_.end();
2880 ++p)
2881 {
2882 std::string fill_data(parameters->target().code_fill(p->length()));
2883 of->write(output_section_file_offset + p->section_offset(),
2884 fill_data.data(), fill_data.size());
2885 }
2886
2887 off_t off = this->offset() + this->first_input_offset_;
2888 for (Input_section_list::iterator p = this->input_sections_.begin();
2889 p != this->input_sections_.end();
2890 ++p)
2891 {
2892 off_t aligned_off = align_address(off, p->addralign());
2893 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2894 {
2895 size_t fill_len = aligned_off - off;
2896 std::string fill_data(parameters->target().code_fill(fill_len));
2897 of->write(off, fill_data.data(), fill_data.size());
2898 }
2899
2900 p->write(of);
2901 off = aligned_off + p->data_size();
2902 }
2903 }
2904
2905 // If a section requires postprocessing, create the buffer to use.
2906
2907 void
2908 Output_section::create_postprocessing_buffer()
2909 {
2910 gold_assert(this->requires_postprocessing());
2911
2912 if (this->postprocessing_buffer_ != NULL)
2913 return;
2914
2915 if (!this->input_sections_.empty())
2916 {
2917 off_t off = this->first_input_offset_;
2918 for (Input_section_list::iterator p = this->input_sections_.begin();
2919 p != this->input_sections_.end();
2920 ++p)
2921 {
2922 off = align_address(off, p->addralign());
2923 p->finalize_data_size();
2924 off += p->data_size();
2925 }
2926 this->set_current_data_size_for_child(off);
2927 }
2928
2929 off_t buffer_size = this->current_data_size_for_child();
2930 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2931 }
2932
2933 // Write all the data of an Output_section into the postprocessing
2934 // buffer. This is used for sections which require postprocessing,
2935 // such as compression. Input sections are handled by
2936 // Object::Relocate.
2937
2938 void
2939 Output_section::write_to_postprocessing_buffer()
2940 {
2941 gold_assert(this->requires_postprocessing());
2942
2943 // If the target performs relaxation, we delay filler generation until now.
2944 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2945
2946 unsigned char* buffer = this->postprocessing_buffer();
2947 for (Fill_list::iterator p = this->fills_.begin();
2948 p != this->fills_.end();
2949 ++p)
2950 {
2951 std::string fill_data(parameters->target().code_fill(p->length()));
2952 memcpy(buffer + p->section_offset(), fill_data.data(),
2953 fill_data.size());
2954 }
2955
2956 off_t off = this->first_input_offset_;
2957 for (Input_section_list::iterator p = this->input_sections_.begin();
2958 p != this->input_sections_.end();
2959 ++p)
2960 {
2961 off_t aligned_off = align_address(off, p->addralign());
2962 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2963 {
2964 size_t fill_len = aligned_off - off;
2965 std::string fill_data(parameters->target().code_fill(fill_len));
2966 memcpy(buffer + off, fill_data.data(), fill_data.size());
2967 }
2968
2969 p->write_to_buffer(buffer + aligned_off);
2970 off = aligned_off + p->data_size();
2971 }
2972 }
2973
2974 // Get the input sections for linker script processing. We leave
2975 // behind the Output_section_data entries. Note that this may be
2976 // slightly incorrect for merge sections. We will leave them behind,
2977 // but it is possible that the script says that they should follow
2978 // some other input sections, as in:
2979 // .rodata { *(.rodata) *(.rodata.cst*) }
2980 // For that matter, we don't handle this correctly:
2981 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2982 // With luck this will never matter.
2983
2984 uint64_t
2985 Output_section::get_input_sections(
2986 uint64_t address,
2987 const std::string& fill,
2988 std::list<Simple_input_section>* input_sections)
2989 {
2990 if (this->checkpoint_ != NULL
2991 && !this->checkpoint_->input_sections_saved())
2992 this->checkpoint_->save_input_sections();
2993
2994 // Invalidate the relaxed input section map.
2995 this->is_relaxed_input_section_map_valid_ = false;
2996
2997 uint64_t orig_address = address;
2998
2999 address = align_address(address, this->addralign());
3000
3001 Input_section_list remaining;
3002 for (Input_section_list::iterator p = this->input_sections_.begin();
3003 p != this->input_sections_.end();
3004 ++p)
3005 {
3006 if (p->is_input_section())
3007 input_sections->push_back(Simple_input_section(p->relobj(),
3008 p->shndx()));
3009 else if (p->is_relaxed_input_section())
3010 input_sections->push_back(
3011 Simple_input_section(p->relaxed_input_section()));
3012 else
3013 {
3014 uint64_t aligned_address = align_address(address, p->addralign());
3015 if (aligned_address != address && !fill.empty())
3016 {
3017 section_size_type length =
3018 convert_to_section_size_type(aligned_address - address);
3019 std::string this_fill;
3020 this_fill.reserve(length);
3021 while (this_fill.length() + fill.length() <= length)
3022 this_fill += fill;
3023 if (this_fill.length() < length)
3024 this_fill.append(fill, 0, length - this_fill.length());
3025
3026 Output_section_data* posd = new Output_data_const(this_fill, 0);
3027 remaining.push_back(Input_section(posd));
3028 }
3029 address = aligned_address;
3030
3031 remaining.push_back(*p);
3032
3033 p->finalize_data_size();
3034 address += p->data_size();
3035 }
3036 }
3037
3038 this->input_sections_.swap(remaining);
3039 this->first_input_offset_ = 0;
3040
3041 uint64_t data_size = address - orig_address;
3042 this->set_current_data_size_for_child(data_size);
3043 return data_size;
3044 }
3045
3046 // Add an input section from a script.
3047
3048 void
3049 Output_section::add_input_section_for_script(const Simple_input_section& sis,
3050 off_t data_size,
3051 uint64_t addralign)
3052 {
3053 if (addralign > this->addralign_)
3054 this->addralign_ = addralign;
3055
3056 off_t offset_in_section = this->current_data_size_for_child();
3057 off_t aligned_offset_in_section = align_address(offset_in_section,
3058 addralign);
3059
3060 this->set_current_data_size_for_child(aligned_offset_in_section
3061 + data_size);
3062
3063 Input_section is =
3064 (sis.is_relaxed_input_section()
3065 ? Input_section(sis.relaxed_input_section())
3066 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3067 this->input_sections_.push_back(is);
3068 }
3069
3070 //
3071
3072 void
3073 Output_section::save_states()
3074 {
3075 gold_assert(this->checkpoint_ == NULL);
3076 Checkpoint_output_section* checkpoint =
3077 new Checkpoint_output_section(this->addralign_, this->flags_,
3078 this->input_sections_,
3079 this->first_input_offset_,
3080 this->attached_input_sections_are_sorted_);
3081 this->checkpoint_ = checkpoint;
3082 gold_assert(this->fills_.empty());
3083 }
3084
3085 void
3086 Output_section::restore_states()
3087 {
3088 gold_assert(this->checkpoint_ != NULL);
3089 Checkpoint_output_section* checkpoint = this->checkpoint_;
3090
3091 this->addralign_ = checkpoint->addralign();
3092 this->flags_ = checkpoint->flags();
3093 this->first_input_offset_ = checkpoint->first_input_offset();
3094
3095 if (!checkpoint->input_sections_saved())
3096 {
3097 // If we have not copied the input sections, just resize it.
3098 size_t old_size = checkpoint->input_sections_size();
3099 gold_assert(this->input_sections_.size() >= old_size);
3100 this->input_sections_.resize(old_size);
3101 }
3102 else
3103 {
3104 // We need to copy the whole list. This is not efficient for
3105 // extremely large output with hundreads of thousands of input
3106 // objects. We may need to re-think how we should pass sections
3107 // to scripts.
3108 this->input_sections_ = *checkpoint->input_sections();
3109 }
3110
3111 this->attached_input_sections_are_sorted_ =
3112 checkpoint->attached_input_sections_are_sorted();
3113
3114 // Simply invalidate the relaxed input section map since we do not keep
3115 // track of it.
3116 this->is_relaxed_input_section_map_valid_ = false;
3117 }
3118
3119 // Print to the map file.
3120
3121 void
3122 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3123 {
3124 mapfile->print_output_section(this);
3125
3126 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3128 ++p)
3129 p->print_to_mapfile(mapfile);
3130 }
3131
3132 // Print stats for merge sections to stderr.
3133
3134 void
3135 Output_section::print_merge_stats()
3136 {
3137 Input_section_list::iterator p;
3138 for (p = this->input_sections_.begin();
3139 p != this->input_sections_.end();
3140 ++p)
3141 p->print_merge_stats(this->name_);
3142 }
3143
3144 // Output segment methods.
3145
3146 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3147 : output_data_(),
3148 output_bss_(),
3149 vaddr_(0),
3150 paddr_(0),
3151 memsz_(0),
3152 max_align_(0),
3153 min_p_align_(0),
3154 offset_(0),
3155 filesz_(0),
3156 type_(type),
3157 flags_(flags),
3158 is_max_align_known_(false),
3159 are_addresses_set_(false),
3160 is_large_data_segment_(false)
3161 {
3162 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3163 // the flags.
3164 if (type == elfcpp::PT_TLS)
3165 this->flags_ = elfcpp::PF_R;
3166 }
3167
3168 // Add an Output_section to an Output_segment.
3169
3170 void
3171 Output_segment::add_output_section(Output_section* os,
3172 elfcpp::Elf_Word seg_flags,
3173 bool do_sort)
3174 {
3175 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3176 gold_assert(!this->is_max_align_known_);
3177 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3178 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3179
3180 this->update_flags_for_output_section(seg_flags);
3181
3182 Output_segment::Output_data_list* pdl;
3183 if (os->type() == elfcpp::SHT_NOBITS)
3184 pdl = &this->output_bss_;
3185 else
3186 pdl = &this->output_data_;
3187
3188 // Note that while there may be many input sections in an output
3189 // section, there are normally only a few output sections in an
3190 // output segment. The loops below are expected to be fast.
3191
3192 // So that PT_NOTE segments will work correctly, we need to ensure
3193 // that all SHT_NOTE sections are adjacent.
3194 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3195 {
3196 Output_segment::Output_data_list::iterator p = pdl->end();
3197 do
3198 {
3199 --p;
3200 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3201 {
3202 ++p;
3203 pdl->insert(p, os);
3204 return;
3205 }
3206 }
3207 while (p != pdl->begin());
3208 }
3209
3210 // Similarly, so that PT_TLS segments will work, we need to group
3211 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3212 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3213 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3214 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3215 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3216 // segment.
3217 if (this->type_ != elfcpp::PT_TLS
3218 && (os->flags() & elfcpp::SHF_TLS) != 0)
3219 {
3220 pdl = &this->output_data_;
3221 if (!pdl->empty())
3222 {
3223 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3224 bool sawtls = false;
3225 Output_segment::Output_data_list::iterator p = pdl->end();
3226 gold_assert(p != pdl->begin());
3227 do
3228 {
3229 --p;
3230 bool insert;
3231 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3232 {
3233 sawtls = true;
3234 // Put a NOBITS section after the first TLS section.
3235 // Put a PROGBITS section after the first
3236 // TLS/PROGBITS section.
3237 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3238 }
3239 else
3240 {
3241 // If we've gone past the TLS sections, but we've
3242 // seen a TLS section, then we need to insert this
3243 // section now.
3244 insert = sawtls;
3245 }
3246
3247 if (insert)
3248 {
3249 ++p;
3250 pdl->insert(p, os);
3251 return;
3252 }
3253 }
3254 while (p != pdl->begin());
3255 }
3256
3257 // There are no TLS sections yet; put this one at the requested
3258 // location in the section list.
3259 }
3260
3261 if (do_sort)
3262 {
3263 // For the PT_GNU_RELRO segment, we need to group relro
3264 // sections, and we need to put them before any non-relro
3265 // sections. Any relro local sections go before relro non-local
3266 // sections. One section may be marked as the last relro
3267 // section.
3268 if (os->is_relro())
3269 {
3270 gold_assert(pdl == &this->output_data_);
3271 Output_segment::Output_data_list::iterator p;
3272 for (p = pdl->begin(); p != pdl->end(); ++p)
3273 {
3274 if (!(*p)->is_section())
3275 break;
3276
3277 Output_section* pos = (*p)->output_section();
3278 if (!pos->is_relro()
3279 || (os->is_relro_local() && !pos->is_relro_local())
3280 || (!os->is_last_relro() && pos->is_last_relro()))
3281 break;
3282 }
3283
3284 pdl->insert(p, os);
3285 return;
3286 }
3287
3288 // One section may be marked as the first section which follows
3289 // the relro sections.
3290 if (os->is_first_non_relro())
3291 {
3292 gold_assert(pdl == &this->output_data_);
3293 Output_segment::Output_data_list::iterator p;
3294 for (p = pdl->begin(); p != pdl->end(); ++p)
3295 {
3296 if (!(*p)->is_section())
3297 break;
3298
3299 Output_section* pos = (*p)->output_section();
3300 if (!pos->is_relro())
3301 break;
3302 }
3303
3304 pdl->insert(p, os);
3305 return;
3306 }
3307 }
3308
3309 // Small data sections go at the end of the list of data sections.
3310 // If OS is not small, and there are small sections, we have to
3311 // insert it before the first small section.
3312 if (os->type() != elfcpp::SHT_NOBITS
3313 && !os->is_small_section()
3314 && !pdl->empty()
3315 && pdl->back()->is_section()
3316 && pdl->back()->output_section()->is_small_section())
3317 {
3318 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3319 p != pdl->end();
3320 ++p)
3321 {
3322 if ((*p)->is_section()
3323 && (*p)->output_section()->is_small_section())
3324 {
3325 pdl->insert(p, os);
3326 return;
3327 }
3328 }
3329 gold_unreachable();
3330 }
3331
3332 // A small BSS section goes at the start of the BSS sections, after
3333 // other small BSS sections.
3334 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3335 {
3336 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3337 p != pdl->end();
3338 ++p)
3339 {
3340 if (!(*p)->is_section()
3341 || !(*p)->output_section()->is_small_section())
3342 {
3343 pdl->insert(p, os);
3344 return;
3345 }
3346 }
3347 }
3348
3349 // A large BSS section goes at the end of the BSS sections, which
3350 // means that one that is not large must come before the first large
3351 // one.
3352 if (os->type() == elfcpp::SHT_NOBITS
3353 && !os->is_large_section()
3354 && !pdl->empty()
3355 && pdl->back()->is_section()
3356 && pdl->back()->output_section()->is_large_section())
3357 {
3358 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3359 p != pdl->end();
3360 ++p)
3361 {
3362 if ((*p)->is_section()
3363 && (*p)->output_section()->is_large_section())
3364 {
3365 pdl->insert(p, os);
3366 return;
3367 }
3368 }
3369 gold_unreachable();
3370 }
3371
3372 // We do some further output section sorting in order to make the
3373 // generated program run more efficiently. We should only do this
3374 // when not using a linker script, so it is controled by the DO_SORT
3375 // parameter.
3376 if (do_sort)
3377 {
3378 // FreeBSD requires the .interp section to be in the first page
3379 // of the executable. That is a more efficient location anyhow
3380 // for any OS, since it means that the kernel will have the data
3381 // handy after it reads the program headers.
3382 if (os->is_interp() && !pdl->empty())
3383 {
3384 pdl->insert(pdl->begin(), os);
3385 return;
3386 }
3387
3388 // Put loadable non-writable notes immediately after the .interp
3389 // sections, so that the PT_NOTE segment is on the first page of
3390 // the executable.
3391 if (os->type() == elfcpp::SHT_NOTE
3392 && (os->flags() & elfcpp::SHF_WRITE) == 0
3393 && !pdl->empty())
3394 {
3395 Output_segment::Output_data_list::iterator p = pdl->begin();
3396 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3397 ++p;
3398 pdl->insert(p, os);
3399 return;
3400 }
3401
3402 // If this section is used by the dynamic linker, and it is not
3403 // writable, then put it first, after the .interp section and
3404 // any loadable notes. This makes it more likely that the
3405 // dynamic linker will have to read less data from the disk.
3406 if (os->is_dynamic_linker_section()
3407 && !pdl->empty()
3408 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3409 {
3410 bool is_reloc = (os->type() == elfcpp::SHT_REL
3411 || os->type() == elfcpp::SHT_RELA);
3412 Output_segment::Output_data_list::iterator p = pdl->begin();
3413 while (p != pdl->end()
3414 && (*p)->is_section()
3415 && ((*p)->output_section()->is_dynamic_linker_section()
3416 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3417 {
3418 // Put reloc sections after the other ones. Putting the
3419 // dynamic reloc sections first confuses BFD, notably
3420 // objcopy and strip.
3421 if (!is_reloc
3422 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3423 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3424 break;
3425 ++p;
3426 }
3427 pdl->insert(p, os);
3428 return;
3429 }
3430 }
3431
3432 // If there were no constraints on the output section, just add it
3433 // to the end of the list.
3434 pdl->push_back(os);
3435 }
3436
3437 // Remove an Output_section from this segment. It is an error if it
3438 // is not present.
3439
3440 void
3441 Output_segment::remove_output_section(Output_section* os)
3442 {
3443 // We only need this for SHT_PROGBITS.
3444 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3445 for (Output_data_list::iterator p = this->output_data_.begin();
3446 p != this->output_data_.end();
3447 ++p)
3448 {
3449 if (*p == os)
3450 {
3451 this->output_data_.erase(p);
3452 return;
3453 }
3454 }
3455 gold_unreachable();
3456 }
3457
3458 // Add an Output_data (which need not be an Output_section) to the
3459 // start of a segment.
3460
3461 void
3462 Output_segment::add_initial_output_data(Output_data* od)
3463 {
3464 gold_assert(!this->is_max_align_known_);
3465 this->output_data_.push_front(od);
3466 }
3467
3468 // Return whether the first data section is a relro section.
3469
3470 bool
3471 Output_segment::is_first_section_relro() const
3472 {
3473 return (!this->output_data_.empty()
3474 && this->output_data_.front()->is_section()
3475 && this->output_data_.front()->output_section()->is_relro());
3476 }
3477
3478 // Return the maximum alignment of the Output_data in Output_segment.
3479
3480 uint64_t
3481 Output_segment::maximum_alignment()
3482 {
3483 if (!this->is_max_align_known_)
3484 {
3485 uint64_t addralign;
3486
3487 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3488 if (addralign > this->max_align_)
3489 this->max_align_ = addralign;
3490
3491 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3492 if (addralign > this->max_align_)
3493 this->max_align_ = addralign;
3494
3495 this->is_max_align_known_ = true;
3496 }
3497
3498 return this->max_align_;
3499 }
3500
3501 // Return the maximum alignment of a list of Output_data.
3502
3503 uint64_t
3504 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3505 {
3506 uint64_t ret = 0;
3507 for (Output_data_list::const_iterator p = pdl->begin();
3508 p != pdl->end();
3509 ++p)
3510 {
3511 uint64_t addralign = (*p)->addralign();
3512 if (addralign > ret)
3513 ret = addralign;
3514 }
3515 return ret;
3516 }
3517
3518 // Return the number of dynamic relocs applied to this segment.
3519
3520 unsigned int
3521 Output_segment::dynamic_reloc_count() const
3522 {
3523 return (this->dynamic_reloc_count_list(&this->output_data_)
3524 + this->dynamic_reloc_count_list(&this->output_bss_));
3525 }
3526
3527 // Return the number of dynamic relocs applied to an Output_data_list.
3528
3529 unsigned int
3530 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3531 {
3532 unsigned int count = 0;
3533 for (Output_data_list::const_iterator p = pdl->begin();
3534 p != pdl->end();
3535 ++p)
3536 count += (*p)->dynamic_reloc_count();
3537 return count;
3538 }
3539
3540 // Set the section addresses for an Output_segment. If RESET is true,
3541 // reset the addresses first. ADDR is the address and *POFF is the
3542 // file offset. Set the section indexes starting with *PSHNDX.
3543 // Return the address of the immediately following segment. Update
3544 // *POFF and *PSHNDX.
3545
3546 uint64_t
3547 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3548 uint64_t addr,
3549 unsigned int increase_relro,
3550 off_t* poff,
3551 unsigned int* pshndx)
3552 {
3553 gold_assert(this->type_ == elfcpp::PT_LOAD);
3554
3555 off_t orig_off = *poff;
3556
3557 // If we have relro sections, we need to pad forward now so that the
3558 // relro sections plus INCREASE_RELRO end on a common page boundary.
3559 if (parameters->options().relro()
3560 && this->is_first_section_relro()
3561 && (!this->are_addresses_set_ || reset))
3562 {
3563 uint64_t relro_size = 0;
3564 off_t off = *poff;
3565 for (Output_data_list::iterator p = this->output_data_.begin();
3566 p != this->output_data_.end();
3567 ++p)
3568 {
3569 if (!(*p)->is_section())
3570 break;
3571 Output_section* pos = (*p)->output_section();
3572 if (!pos->is_relro())
3573 break;
3574 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3575 if ((*p)->is_address_valid())
3576 relro_size += (*p)->data_size();
3577 else
3578 {
3579 // FIXME: This could be faster.
3580 (*p)->set_address_and_file_offset(addr + relro_size,
3581 off + relro_size);
3582 relro_size += (*p)->data_size();
3583 (*p)->reset_address_and_file_offset();
3584 }
3585 }
3586 relro_size += increase_relro;
3587
3588 uint64_t page_align = parameters->target().common_pagesize();
3589
3590 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3591 uint64_t desired_align = page_align - (relro_size % page_align);
3592 if (desired_align < *poff % page_align)
3593 *poff += page_align - *poff % page_align;
3594 *poff += desired_align - *poff % page_align;
3595 addr += *poff - orig_off;
3596 orig_off = *poff;
3597 }
3598
3599 if (!reset && this->are_addresses_set_)
3600 {
3601 gold_assert(this->paddr_ == addr);
3602 addr = this->vaddr_;
3603 }
3604 else
3605 {
3606 this->vaddr_ = addr;
3607 this->paddr_ = addr;
3608 this->are_addresses_set_ = true;
3609 }
3610
3611 bool in_tls = false;
3612
3613 this->offset_ = orig_off;
3614
3615 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3616 addr, poff, pshndx, &in_tls);
3617 this->filesz_ = *poff - orig_off;
3618
3619 off_t off = *poff;
3620
3621 uint64_t ret = this->set_section_list_addresses(layout, reset,
3622 &this->output_bss_,
3623 addr, poff, pshndx,
3624 &in_tls);
3625
3626 // If the last section was a TLS section, align upward to the
3627 // alignment of the TLS segment, so that the overall size of the TLS
3628 // segment is aligned.
3629 if (in_tls)
3630 {
3631 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3632 *poff = align_address(*poff, segment_align);
3633 }
3634
3635 this->memsz_ = *poff - orig_off;
3636
3637 // Ignore the file offset adjustments made by the BSS Output_data
3638 // objects.
3639 *poff = off;
3640
3641 return ret;
3642 }
3643
3644 // Set the addresses and file offsets in a list of Output_data
3645 // structures.
3646
3647 uint64_t
3648 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3649 Output_data_list* pdl,
3650 uint64_t addr, off_t* poff,
3651 unsigned int* pshndx,
3652 bool* in_tls)
3653 {
3654 off_t startoff = *poff;
3655
3656 off_t off = startoff;
3657 for (Output_data_list::iterator p = pdl->begin();
3658 p != pdl->end();
3659 ++p)
3660 {
3661 if (reset)
3662 (*p)->reset_address_and_file_offset();
3663
3664 // When using a linker script the section will most likely
3665 // already have an address.
3666 if (!(*p)->is_address_valid())
3667 {
3668 uint64_t align = (*p)->addralign();
3669
3670 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3671 {
3672 // Give the first TLS section the alignment of the
3673 // entire TLS segment. Otherwise the TLS segment as a
3674 // whole may be misaligned.
3675 if (!*in_tls)
3676 {
3677 Output_segment* tls_segment = layout->tls_segment();
3678 gold_assert(tls_segment != NULL);
3679 uint64_t segment_align = tls_segment->maximum_alignment();
3680 gold_assert(segment_align >= align);
3681 align = segment_align;
3682
3683 *in_tls = true;
3684 }
3685 }
3686 else
3687 {
3688 // If this is the first section after the TLS segment,
3689 // align it to at least the alignment of the TLS
3690 // segment, so that the size of the overall TLS segment
3691 // is aligned.
3692 if (*in_tls)
3693 {
3694 uint64_t segment_align =
3695 layout->tls_segment()->maximum_alignment();
3696 if (segment_align > align)
3697 align = segment_align;
3698
3699 *in_tls = false;
3700 }
3701 }
3702
3703 off = align_address(off, align);
3704 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3705 }
3706 else
3707 {
3708 // The script may have inserted a skip forward, but it
3709 // better not have moved backward.
3710 if ((*p)->address() >= addr + (off - startoff))
3711 off += (*p)->address() - (addr + (off - startoff));
3712 else
3713 {
3714 if (!layout->script_options()->saw_sections_clause())
3715 gold_unreachable();
3716 else
3717 {
3718 Output_section* os = (*p)->output_section();
3719
3720 // Cast to unsigned long long to avoid format warnings.
3721 unsigned long long previous_dot =
3722 static_cast<unsigned long long>(addr + (off - startoff));
3723 unsigned long long dot =
3724 static_cast<unsigned long long>((*p)->address());
3725
3726 if (os == NULL)
3727 gold_error(_("dot moves backward in linker script "
3728 "from 0x%llx to 0x%llx"), previous_dot, dot);
3729 else
3730 gold_error(_("address of section '%s' moves backward "
3731 "from 0x%llx to 0x%llx"),
3732 os->name(), previous_dot, dot);
3733 }
3734 }
3735 (*p)->set_file_offset(off);
3736 (*p)->finalize_data_size();
3737 }
3738
3739 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3740 // section. Such a section does not affect the size of a
3741 // PT_LOAD segment.
3742 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3743 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3744 off += (*p)->data_size();
3745
3746 if ((*p)->is_section())
3747 {
3748 (*p)->set_out_shndx(*pshndx);
3749 ++*pshndx;
3750 }
3751 }
3752
3753 *poff = off;
3754 return addr + (off - startoff);
3755 }
3756
3757 // For a non-PT_LOAD segment, set the offset from the sections, if
3758 // any. Add INCREASE to the file size and the memory size.
3759
3760 void
3761 Output_segment::set_offset(unsigned int increase)
3762 {
3763 gold_assert(this->type_ != elfcpp::PT_LOAD);
3764
3765 gold_assert(!this->are_addresses_set_);
3766
3767 if (this->output_data_.empty() && this->output_bss_.empty())
3768 {
3769 gold_assert(increase == 0);
3770 this->vaddr_ = 0;
3771 this->paddr_ = 0;
3772 this->are_addresses_set_ = true;
3773 this->memsz_ = 0;
3774 this->min_p_align_ = 0;
3775 this->offset_ = 0;
3776 this->filesz_ = 0;
3777 return;
3778 }
3779
3780 const Output_data* first;
3781 if (this->output_data_.empty())
3782 first = this->output_bss_.front();
3783 else
3784 first = this->output_data_.front();
3785 this->vaddr_ = first->address();
3786 this->paddr_ = (first->has_load_address()
3787 ? first->load_address()
3788 : this->vaddr_);
3789 this->are_addresses_set_ = true;
3790 this->offset_ = first->offset();
3791
3792 if (this->output_data_.empty())
3793 this->filesz_ = 0;
3794 else
3795 {
3796 const Output_data* last_data = this->output_data_.back();
3797 this->filesz_ = (last_data->address()
3798 + last_data->data_size()
3799 - this->vaddr_);
3800 }
3801
3802 const Output_data* last;
3803 if (this->output_bss_.empty())
3804 last = this->output_data_.back();
3805 else
3806 last = this->output_bss_.back();
3807 this->memsz_ = (last->address()
3808 + last->data_size()
3809 - this->vaddr_);
3810
3811 this->filesz_ += increase;
3812 this->memsz_ += increase;
3813
3814 // If this is a TLS segment, align the memory size. The code in
3815 // set_section_list ensures that the section after the TLS segment
3816 // is aligned to give us room.
3817 if (this->type_ == elfcpp::PT_TLS)
3818 {
3819 uint64_t segment_align = this->maximum_alignment();
3820 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3821 this->memsz_ = align_address(this->memsz_, segment_align);
3822 }
3823 }
3824
3825 // Set the TLS offsets of the sections in the PT_TLS segment.
3826
3827 void
3828 Output_segment::set_tls_offsets()
3829 {
3830 gold_assert(this->type_ == elfcpp::PT_TLS);
3831
3832 for (Output_data_list::iterator p = this->output_data_.begin();
3833 p != this->output_data_.end();
3834 ++p)
3835 (*p)->set_tls_offset(this->vaddr_);
3836
3837 for (Output_data_list::iterator p = this->output_bss_.begin();
3838 p != this->output_bss_.end();
3839 ++p)
3840 (*p)->set_tls_offset(this->vaddr_);
3841 }
3842
3843 // Return the address of the first section.
3844
3845 uint64_t
3846 Output_segment::first_section_load_address() const
3847 {
3848 for (Output_data_list::const_iterator p = this->output_data_.begin();
3849 p != this->output_data_.end();
3850 ++p)
3851 if ((*p)->is_section())
3852 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3853
3854 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3855 p != this->output_bss_.end();
3856 ++p)
3857 if ((*p)->is_section())
3858 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3859
3860 gold_unreachable();
3861 }
3862
3863 // Return the number of Output_sections in an Output_segment.
3864
3865 unsigned int
3866 Output_segment::output_section_count() const
3867 {
3868 return (this->output_section_count_list(&this->output_data_)
3869 + this->output_section_count_list(&this->output_bss_));
3870 }
3871
3872 // Return the number of Output_sections in an Output_data_list.
3873
3874 unsigned int
3875 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3876 {
3877 unsigned int count = 0;
3878 for (Output_data_list::const_iterator p = pdl->begin();
3879 p != pdl->end();
3880 ++p)
3881 {
3882 if ((*p)->is_section())
3883 ++count;
3884 }
3885 return count;
3886 }
3887
3888 // Return the section attached to the list segment with the lowest
3889 // load address. This is used when handling a PHDRS clause in a
3890 // linker script.
3891
3892 Output_section*
3893 Output_segment::section_with_lowest_load_address() const
3894 {
3895 Output_section* found = NULL;
3896 uint64_t found_lma = 0;
3897 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3898
3899 Output_section* found_data = found;
3900 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3901 if (found != found_data && found_data != NULL)
3902 {
3903 gold_error(_("nobits section %s may not precede progbits section %s "
3904 "in same segment"),
3905 found->name(), found_data->name());
3906 return NULL;
3907 }
3908
3909 return found;
3910 }
3911
3912 // Look through a list for a section with a lower load address.
3913
3914 void
3915 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3916 Output_section** found,
3917 uint64_t* found_lma) const
3918 {
3919 for (Output_data_list::const_iterator p = pdl->begin();
3920 p != pdl->end();
3921 ++p)
3922 {
3923 if (!(*p)->is_section())
3924 continue;
3925 Output_section* os = static_cast<Output_section*>(*p);
3926 uint64_t lma = (os->has_load_address()
3927 ? os->load_address()
3928 : os->address());
3929 if (*found == NULL || lma < *found_lma)
3930 {
3931 *found = os;
3932 *found_lma = lma;
3933 }
3934 }
3935 }
3936
3937 // Write the segment data into *OPHDR.
3938
3939 template<int size, bool big_endian>
3940 void
3941 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3942 {
3943 ophdr->put_p_type(this->type_);
3944 ophdr->put_p_offset(this->offset_);
3945 ophdr->put_p_vaddr(this->vaddr_);
3946 ophdr->put_p_paddr(this->paddr_);
3947 ophdr->put_p_filesz(this->filesz_);
3948 ophdr->put_p_memsz(this->memsz_);
3949 ophdr->put_p_flags(this->flags_);
3950 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3951 }
3952
3953 // Write the section headers into V.
3954
3955 template<int size, bool big_endian>
3956 unsigned char*
3957 Output_segment::write_section_headers(const Layout* layout,
3958 const Stringpool* secnamepool,
3959 unsigned char* v,
3960 unsigned int *pshndx) const
3961 {
3962 // Every section that is attached to a segment must be attached to a
3963 // PT_LOAD segment, so we only write out section headers for PT_LOAD
3964 // segments.
3965 if (this->type_ != elfcpp::PT_LOAD)
3966 return v;
3967
3968 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3969 &this->output_data_,
3970 v, pshndx);
3971 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
3972 &this->output_bss_,
3973 v, pshndx);
3974 return v;
3975 }
3976
3977 template<int size, bool big_endian>
3978 unsigned char*
3979 Output_segment::write_section_headers_list(const Layout* layout,
3980 const Stringpool* secnamepool,
3981 const Output_data_list* pdl,
3982 unsigned char* v,
3983 unsigned int* pshndx) const
3984 {
3985 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
3986 for (Output_data_list::const_iterator p = pdl->begin();
3987 p != pdl->end();
3988 ++p)
3989 {
3990 if ((*p)->is_section())
3991 {
3992 const Output_section* ps = static_cast<const Output_section*>(*p);
3993 gold_assert(*pshndx == ps->out_shndx());
3994 elfcpp::Shdr_write<size, big_endian> oshdr(v);
3995 ps->write_header(layout, secnamepool, &oshdr);
3996 v += shdr_size;
3997 ++*pshndx;
3998 }
3999 }
4000 return v;
4001 }
4002
4003 // Print the output sections to the map file.
4004
4005 void
4006 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4007 {
4008 if (this->type() != elfcpp::PT_LOAD)
4009 return;
4010 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4011 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4012 }
4013
4014 // Print an output section list to the map file.
4015
4016 void
4017 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4018 const Output_data_list* pdl) const
4019 {
4020 for (Output_data_list::const_iterator p = pdl->begin();
4021 p != pdl->end();
4022 ++p)
4023 (*p)->print_to_mapfile(mapfile);
4024 }
4025
4026 // Output_file methods.
4027
4028 Output_file::Output_file(const char* name)
4029 : name_(name),
4030 o_(-1),
4031 file_size_(0),
4032 base_(NULL),
4033 map_is_anonymous_(false),
4034 is_temporary_(false)
4035 {
4036 }
4037
4038 // Try to open an existing file. Returns false if the file doesn't
4039 // exist, has a size of 0 or can't be mmapped.
4040
4041 bool
4042 Output_file::open_for_modification()
4043 {
4044 // The name "-" means "stdout".
4045 if (strcmp(this->name_, "-") == 0)
4046 return false;
4047
4048 // Don't bother opening files with a size of zero.
4049 struct stat s;
4050 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4051 return false;
4052
4053 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4054 if (o < 0)
4055 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4056 this->o_ = o;
4057 this->file_size_ = s.st_size;
4058
4059 // If the file can't be mmapped, copying the content to an anonymous
4060 // map will probably negate the performance benefits of incremental
4061 // linking. This could be helped by using views and loading only
4062 // the necessary parts, but this is not supported as of now.
4063 if (!this->map_no_anonymous())
4064 {
4065 release_descriptor(o, true);
4066 this->o_ = -1;
4067 this->file_size_ = 0;
4068 return false;
4069 }
4070
4071 return true;
4072 }
4073
4074 // Open the output file.
4075
4076 void
4077 Output_file::open(off_t file_size)
4078 {
4079 this->file_size_ = file_size;
4080
4081 // Unlink the file first; otherwise the open() may fail if the file
4082 // is busy (e.g. it's an executable that's currently being executed).
4083 //
4084 // However, the linker may be part of a system where a zero-length
4085 // file is created for it to write to, with tight permissions (gcc
4086 // 2.95 did something like this). Unlinking the file would work
4087 // around those permission controls, so we only unlink if the file
4088 // has a non-zero size. We also unlink only regular files to avoid
4089 // trouble with directories/etc.
4090 //
4091 // If we fail, continue; this command is merely a best-effort attempt
4092 // to improve the odds for open().
4093
4094 // We let the name "-" mean "stdout"
4095 if (!this->is_temporary_)
4096 {
4097 if (strcmp(this->name_, "-") == 0)
4098 this->o_ = STDOUT_FILENO;
4099 else
4100 {
4101 struct stat s;
4102 if (::stat(this->name_, &s) == 0
4103 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4104 {
4105 if (s.st_size != 0)
4106 ::unlink(this->name_);
4107 else if (!parameters->options().relocatable())
4108 {
4109 // If we don't unlink the existing file, add execute
4110 // permission where read permissions already exist
4111 // and where the umask permits.
4112 int mask = ::umask(0);
4113 ::umask(mask);
4114 s.st_mode |= (s.st_mode & 0444) >> 2;
4115 ::chmod(this->name_, s.st_mode & ~mask);
4116 }
4117 }
4118
4119 int mode = parameters->options().relocatable() ? 0666 : 0777;
4120 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4121 mode);
4122 if (o < 0)
4123 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4124 this->o_ = o;
4125 }
4126 }
4127
4128 this->map();
4129 }
4130
4131 // Resize the output file.
4132
4133 void
4134 Output_file::resize(off_t file_size)
4135 {
4136 // If the mmap is mapping an anonymous memory buffer, this is easy:
4137 // just mremap to the new size. If it's mapping to a file, we want
4138 // to unmap to flush to the file, then remap after growing the file.
4139 if (this->map_is_anonymous_)
4140 {
4141 void* base = ::mremap(this->base_, this->file_size_, file_size,
4142 MREMAP_MAYMOVE);
4143 if (base == MAP_FAILED)
4144 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4145 this->base_ = static_cast<unsigned char*>(base);
4146 this->file_size_ = file_size;
4147 }
4148 else
4149 {
4150 this->unmap();
4151 this->file_size_ = file_size;
4152 if (!this->map_no_anonymous())
4153 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4154 }
4155 }
4156
4157 // Map an anonymous block of memory which will later be written to the
4158 // file. Return whether the map succeeded.
4159
4160 bool
4161 Output_file::map_anonymous()
4162 {
4163 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4164 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4165 if (base != MAP_FAILED)
4166 {
4167 this->map_is_anonymous_ = true;
4168 this->base_ = static_cast<unsigned char*>(base);
4169 return true;
4170 }
4171 return false;
4172 }
4173
4174 // Map the file into memory. Return whether the mapping succeeded.
4175
4176 bool
4177 Output_file::map_no_anonymous()
4178 {
4179 const int o = this->o_;
4180
4181 // If the output file is not a regular file, don't try to mmap it;
4182 // instead, we'll mmap a block of memory (an anonymous buffer), and
4183 // then later write the buffer to the file.
4184 void* base;
4185 struct stat statbuf;
4186 if (o == STDOUT_FILENO || o == STDERR_FILENO
4187 || ::fstat(o, &statbuf) != 0
4188 || !S_ISREG(statbuf.st_mode)
4189 || this->is_temporary_)
4190 return false;
4191
4192 // Ensure that we have disk space available for the file. If we
4193 // don't do this, it is possible that we will call munmap, close,
4194 // and exit with dirty buffers still in the cache with no assigned
4195 // disk blocks. If the disk is out of space at that point, the
4196 // output file will wind up incomplete, but we will have already
4197 // exited. The alternative to fallocate would be to use fdatasync,
4198 // but that would be a more significant performance hit.
4199 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4200 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4201
4202 // Map the file into memory.
4203 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4204 MAP_SHARED, o, 0);
4205
4206 // The mmap call might fail because of file system issues: the file
4207 // system might not support mmap at all, or it might not support
4208 // mmap with PROT_WRITE.
4209 if (base == MAP_FAILED)
4210 return false;
4211
4212 this->map_is_anonymous_ = false;
4213 this->base_ = static_cast<unsigned char*>(base);
4214 return true;
4215 }
4216
4217 // Map the file into memory.
4218
4219 void
4220 Output_file::map()
4221 {
4222 if (this->map_no_anonymous())
4223 return;
4224
4225 // The mmap call might fail because of file system issues: the file
4226 // system might not support mmap at all, or it might not support
4227 // mmap with PROT_WRITE. I'm not sure which errno values we will
4228 // see in all cases, so if the mmap fails for any reason and we
4229 // don't care about file contents, try for an anonymous map.
4230 if (this->map_anonymous())
4231 return;
4232
4233 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4234 this->name_, static_cast<unsigned long>(this->file_size_),
4235 strerror(errno));
4236 }
4237
4238 // Unmap the file from memory.
4239
4240 void
4241 Output_file::unmap()
4242 {
4243 if (::munmap(this->base_, this->file_size_) < 0)
4244 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4245 this->base_ = NULL;
4246 }
4247
4248 // Close the output file.
4249
4250 void
4251 Output_file::close()
4252 {
4253 // If the map isn't file-backed, we need to write it now.
4254 if (this->map_is_anonymous_ && !this->is_temporary_)
4255 {
4256 size_t bytes_to_write = this->file_size_;
4257 size_t offset = 0;
4258 while (bytes_to_write > 0)
4259 {
4260 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4261 bytes_to_write);
4262 if (bytes_written == 0)
4263 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4264 else if (bytes_written < 0)
4265 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4266 else
4267 {
4268 bytes_to_write -= bytes_written;
4269 offset += bytes_written;
4270 }
4271 }
4272 }
4273 this->unmap();
4274
4275 // We don't close stdout or stderr
4276 if (this->o_ != STDOUT_FILENO
4277 && this->o_ != STDERR_FILENO
4278 && !this->is_temporary_)
4279 if (::close(this->o_) < 0)
4280 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4281 this->o_ = -1;
4282 }
4283
4284 // Instantiate the templates we need. We could use the configure
4285 // script to restrict this to only the ones for implemented targets.
4286
4287 #ifdef HAVE_TARGET_32_LITTLE
4288 template
4289 off_t
4290 Output_section::add_input_section<32, false>(
4291 Sized_relobj<32, false>* object,
4292 unsigned int shndx,
4293 const char* secname,
4294 const elfcpp::Shdr<32, false>& shdr,
4295 unsigned int reloc_shndx,
4296 bool have_sections_script);
4297 #endif
4298
4299 #ifdef HAVE_TARGET_32_BIG
4300 template
4301 off_t
4302 Output_section::add_input_section<32, true>(
4303 Sized_relobj<32, true>* object,
4304 unsigned int shndx,
4305 const char* secname,
4306 const elfcpp::Shdr<32, true>& shdr,
4307 unsigned int reloc_shndx,
4308 bool have_sections_script);
4309 #endif
4310
4311 #ifdef HAVE_TARGET_64_LITTLE
4312 template
4313 off_t
4314 Output_section::add_input_section<64, false>(
4315 Sized_relobj<64, false>* object,
4316 unsigned int shndx,
4317 const char* secname,
4318 const elfcpp::Shdr<64, false>& shdr,
4319 unsigned int reloc_shndx,
4320 bool have_sections_script);
4321 #endif
4322
4323 #ifdef HAVE_TARGET_64_BIG
4324 template
4325 off_t
4326 Output_section::add_input_section<64, true>(
4327 Sized_relobj<64, true>* object,
4328 unsigned int shndx,
4329 const char* secname,
4330 const elfcpp::Shdr<64, true>& shdr,
4331 unsigned int reloc_shndx,
4332 bool have_sections_script);
4333 #endif
4334
4335 #ifdef HAVE_TARGET_32_LITTLE
4336 template
4337 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4338 #endif
4339
4340 #ifdef HAVE_TARGET_32_BIG
4341 template
4342 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4343 #endif
4344
4345 #ifdef HAVE_TARGET_64_LITTLE
4346 template
4347 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4348 #endif
4349
4350 #ifdef HAVE_TARGET_64_BIG
4351 template
4352 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4353 #endif
4354
4355 #ifdef HAVE_TARGET_32_LITTLE
4356 template
4357 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4358 #endif
4359
4360 #ifdef HAVE_TARGET_32_BIG
4361 template
4362 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4363 #endif
4364
4365 #ifdef HAVE_TARGET_64_LITTLE
4366 template
4367 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4368 #endif
4369
4370 #ifdef HAVE_TARGET_64_BIG
4371 template
4372 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4373 #endif
4374
4375 #ifdef HAVE_TARGET_32_LITTLE
4376 template
4377 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4378 #endif
4379
4380 #ifdef HAVE_TARGET_32_BIG
4381 template
4382 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4383 #endif
4384
4385 #ifdef HAVE_TARGET_64_LITTLE
4386 template
4387 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4388 #endif
4389
4390 #ifdef HAVE_TARGET_64_BIG
4391 template
4392 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4393 #endif
4394
4395 #ifdef HAVE_TARGET_32_LITTLE
4396 template
4397 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4398 #endif
4399
4400 #ifdef HAVE_TARGET_32_BIG
4401 template
4402 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4403 #endif
4404
4405 #ifdef HAVE_TARGET_64_LITTLE
4406 template
4407 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4408 #endif
4409
4410 #ifdef HAVE_TARGET_64_BIG
4411 template
4412 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4413 #endif
4414
4415 #ifdef HAVE_TARGET_32_LITTLE
4416 template
4417 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4418 #endif
4419
4420 #ifdef HAVE_TARGET_32_BIG
4421 template
4422 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4423 #endif
4424
4425 #ifdef HAVE_TARGET_64_LITTLE
4426 template
4427 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4428 #endif
4429
4430 #ifdef HAVE_TARGET_64_BIG
4431 template
4432 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4433 #endif
4434
4435 #ifdef HAVE_TARGET_32_LITTLE
4436 template
4437 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4438 #endif
4439
4440 #ifdef HAVE_TARGET_32_BIG
4441 template
4442 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4443 #endif
4444
4445 #ifdef HAVE_TARGET_64_LITTLE
4446 template
4447 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4448 #endif
4449
4450 #ifdef HAVE_TARGET_64_BIG
4451 template
4452 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4453 #endif
4454
4455 #ifdef HAVE_TARGET_32_LITTLE
4456 template
4457 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4458 #endif
4459
4460 #ifdef HAVE_TARGET_32_BIG
4461 template
4462 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4463 #endif
4464
4465 #ifdef HAVE_TARGET_64_LITTLE
4466 template
4467 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4468 #endif
4469
4470 #ifdef HAVE_TARGET_64_BIG
4471 template
4472 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4473 #endif
4474
4475 #ifdef HAVE_TARGET_32_LITTLE
4476 template
4477 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4478 #endif
4479
4480 #ifdef HAVE_TARGET_32_BIG
4481 template
4482 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4483 #endif
4484
4485 #ifdef HAVE_TARGET_64_LITTLE
4486 template
4487 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4488 #endif
4489
4490 #ifdef HAVE_TARGET_64_BIG
4491 template
4492 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4493 #endif
4494
4495 #ifdef HAVE_TARGET_32_LITTLE
4496 template
4497 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4498 #endif
4499
4500 #ifdef HAVE_TARGET_32_BIG
4501 template
4502 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4503 #endif
4504
4505 #ifdef HAVE_TARGET_64_LITTLE
4506 template
4507 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4508 #endif
4509
4510 #ifdef HAVE_TARGET_64_BIG
4511 template
4512 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4513 #endif
4514
4515 #ifdef HAVE_TARGET_32_LITTLE
4516 template
4517 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4518 #endif
4519
4520 #ifdef HAVE_TARGET_32_BIG
4521 template
4522 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4523 #endif
4524
4525 #ifdef HAVE_TARGET_64_LITTLE
4526 template
4527 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4528 #endif
4529
4530 #ifdef HAVE_TARGET_64_BIG
4531 template
4532 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4533 #endif
4534
4535 #ifdef HAVE_TARGET_32_LITTLE
4536 template
4537 class Output_data_group<32, false>;
4538 #endif
4539
4540 #ifdef HAVE_TARGET_32_BIG
4541 template
4542 class Output_data_group<32, true>;
4543 #endif
4544
4545 #ifdef HAVE_TARGET_64_LITTLE
4546 template
4547 class Output_data_group<64, false>;
4548 #endif
4549
4550 #ifdef HAVE_TARGET_64_BIG
4551 template
4552 class Output_data_group<64, true>;
4553 #endif
4554
4555 #ifdef HAVE_TARGET_32_LITTLE
4556 template
4557 class Output_data_got<32, false>;
4558 #endif
4559
4560 #ifdef HAVE_TARGET_32_BIG
4561 template
4562 class Output_data_got<32, true>;
4563 #endif
4564
4565 #ifdef HAVE_TARGET_64_LITTLE
4566 template
4567 class Output_data_got<64, false>;
4568 #endif
4569
4570 #ifdef HAVE_TARGET_64_BIG
4571 template
4572 class Output_data_got<64, true>;
4573 #endif
4574
4575 } // End namespace gold.
This page took 0.190206 seconds and 5 git commands to generate.