* output.h (Output_segment::set_section_addresses): Change function
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136
1137 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1138 // static link. The backends will generate a dynamic reloc section
1139 // to hold this. In that case we don't want to link to the dynsym
1140 // section, because there isn't one.
1141 if (!dynamic)
1142 os->set_should_link_to_symtab();
1143 else if (parameters->doing_static_link())
1144 ;
1145 else
1146 os->set_should_link_to_dynsym();
1147 }
1148
1149 // Write out relocation data.
1150
1151 template<int sh_type, bool dynamic, int size, bool big_endian>
1152 void
1153 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1154 Output_file* of)
1155 {
1156 const off_t off = this->offset();
1157 const off_t oview_size = this->data_size();
1158 unsigned char* const oview = of->get_output_view(off, oview_size);
1159
1160 if (this->sort_relocs())
1161 {
1162 gold_assert(dynamic);
1163 std::sort(this->relocs_.begin(), this->relocs_.end(),
1164 Sort_relocs_comparison());
1165 }
1166
1167 unsigned char* pov = oview;
1168 for (typename Relocs::const_iterator p = this->relocs_.begin();
1169 p != this->relocs_.end();
1170 ++p)
1171 {
1172 p->write(pov);
1173 pov += reloc_size;
1174 }
1175
1176 gold_assert(pov - oview == oview_size);
1177
1178 of->write_output_view(off, oview_size, oview);
1179
1180 // We no longer need the relocation entries.
1181 this->relocs_.clear();
1182 }
1183
1184 // Class Output_relocatable_relocs.
1185
1186 template<int sh_type, int size, bool big_endian>
1187 void
1188 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1189 {
1190 this->set_data_size(this->rr_->output_reloc_count()
1191 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1192 }
1193
1194 // class Output_data_group.
1195
1196 template<int size, bool big_endian>
1197 Output_data_group<size, big_endian>::Output_data_group(
1198 Sized_relobj<size, big_endian>* relobj,
1199 section_size_type entry_count,
1200 elfcpp::Elf_Word flags,
1201 std::vector<unsigned int>* input_shndxes)
1202 : Output_section_data(entry_count * 4, 4, false),
1203 relobj_(relobj),
1204 flags_(flags)
1205 {
1206 this->input_shndxes_.swap(*input_shndxes);
1207 }
1208
1209 // Write out the section group, which means translating the section
1210 // indexes to apply to the output file.
1211
1212 template<int size, bool big_endian>
1213 void
1214 Output_data_group<size, big_endian>::do_write(Output_file* of)
1215 {
1216 const off_t off = this->offset();
1217 const section_size_type oview_size =
1218 convert_to_section_size_type(this->data_size());
1219 unsigned char* const oview = of->get_output_view(off, oview_size);
1220
1221 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1222 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1223 ++contents;
1224
1225 for (std::vector<unsigned int>::const_iterator p =
1226 this->input_shndxes_.begin();
1227 p != this->input_shndxes_.end();
1228 ++p, ++contents)
1229 {
1230 Output_section* os = this->relobj_->output_section(*p);
1231
1232 unsigned int output_shndx;
1233 if (os != NULL)
1234 output_shndx = os->out_shndx();
1235 else
1236 {
1237 this->relobj_->error(_("section group retained but "
1238 "group element discarded"));
1239 output_shndx = 0;
1240 }
1241
1242 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1243 }
1244
1245 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1246 gold_assert(wrote == oview_size);
1247
1248 of->write_output_view(off, oview_size, oview);
1249
1250 // We no longer need this information.
1251 this->input_shndxes_.clear();
1252 }
1253
1254 // Output_data_got::Got_entry methods.
1255
1256 // Write out the entry.
1257
1258 template<int size, bool big_endian>
1259 void
1260 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1261 {
1262 Valtype val = 0;
1263
1264 switch (this->local_sym_index_)
1265 {
1266 case GSYM_CODE:
1267 {
1268 // If the symbol is resolved locally, we need to write out the
1269 // link-time value, which will be relocated dynamically by a
1270 // RELATIVE relocation.
1271 Symbol* gsym = this->u_.gsym;
1272 if (this->use_plt_offset_ && gsym->has_plt_offset())
1273 val = (parameters->target().plt_section_for_global(gsym)->address()
1274 + gsym->plt_offset());
1275 else
1276 {
1277 Sized_symbol<size>* sgsym;
1278 // This cast is a bit ugly. We don't want to put a
1279 // virtual method in Symbol, because we want Symbol to be
1280 // as small as possible.
1281 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1282 val = sgsym->value();
1283 }
1284 }
1285 break;
1286
1287 case CONSTANT_CODE:
1288 val = this->u_.constant;
1289 break;
1290
1291 default:
1292 {
1293 const Sized_relobj<size, big_endian>* object = this->u_.object;
1294 const unsigned int lsi = this->local_sym_index_;
1295 const Symbol_value<size>* symval = object->local_symbol(lsi);
1296 if (!this->use_plt_offset_)
1297 val = symval->value(this->u_.object, 0);
1298 else
1299 {
1300 const Output_data* plt =
1301 parameters->target().plt_section_for_local(object, lsi);
1302 val = plt->address() + object->local_plt_offset(lsi);
1303 }
1304 }
1305 break;
1306 }
1307
1308 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1309 }
1310
1311 // Output_data_got methods.
1312
1313 // Add an entry for a global symbol to the GOT. This returns true if
1314 // this is a new GOT entry, false if the symbol already had a GOT
1315 // entry.
1316
1317 template<int size, bool big_endian>
1318 bool
1319 Output_data_got<size, big_endian>::add_global(
1320 Symbol* gsym,
1321 unsigned int got_type)
1322 {
1323 if (gsym->has_got_offset(got_type))
1324 return false;
1325
1326 this->entries_.push_back(Got_entry(gsym, false));
1327 this->set_got_size();
1328 gsym->set_got_offset(got_type, this->last_got_offset());
1329 return true;
1330 }
1331
1332 // Like add_global, but use the PLT offset.
1333
1334 template<int size, bool big_endian>
1335 bool
1336 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1337 unsigned int got_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return false;
1341
1342 this->entries_.push_back(Got_entry(gsym, true));
1343 this->set_got_size();
1344 gsym->set_got_offset(got_type, this->last_got_offset());
1345 return true;
1346 }
1347
1348 // Add an entry for a global symbol to the GOT, and add a dynamic
1349 // relocation of type R_TYPE for the GOT entry.
1350
1351 template<int size, bool big_endian>
1352 void
1353 Output_data_got<size, big_endian>::add_global_with_rel(
1354 Symbol* gsym,
1355 unsigned int got_type,
1356 Rel_dyn* rel_dyn,
1357 unsigned int r_type)
1358 {
1359 if (gsym->has_got_offset(got_type))
1360 return;
1361
1362 this->entries_.push_back(Got_entry());
1363 this->set_got_size();
1364 unsigned int got_offset = this->last_got_offset();
1365 gsym->set_got_offset(got_type, got_offset);
1366 rel_dyn->add_global(gsym, r_type, this, got_offset);
1367 }
1368
1369 template<int size, bool big_endian>
1370 void
1371 Output_data_got<size, big_endian>::add_global_with_rela(
1372 Symbol* gsym,
1373 unsigned int got_type,
1374 Rela_dyn* rela_dyn,
1375 unsigned int r_type)
1376 {
1377 if (gsym->has_got_offset(got_type))
1378 return;
1379
1380 this->entries_.push_back(Got_entry());
1381 this->set_got_size();
1382 unsigned int got_offset = this->last_got_offset();
1383 gsym->set_got_offset(got_type, got_offset);
1384 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1385 }
1386
1387 // Add a pair of entries for a global symbol to the GOT, and add
1388 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1389 // If R_TYPE_2 == 0, add the second entry with no relocation.
1390 template<int size, bool big_endian>
1391 void
1392 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1393 Symbol* gsym,
1394 unsigned int got_type,
1395 Rel_dyn* rel_dyn,
1396 unsigned int r_type_1,
1397 unsigned int r_type_2)
1398 {
1399 if (gsym->has_got_offset(got_type))
1400 return;
1401
1402 this->entries_.push_back(Got_entry());
1403 unsigned int got_offset = this->last_got_offset();
1404 gsym->set_got_offset(got_type, got_offset);
1405 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1406
1407 this->entries_.push_back(Got_entry());
1408 if (r_type_2 != 0)
1409 {
1410 got_offset = this->last_got_offset();
1411 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1412 }
1413
1414 this->set_got_size();
1415 }
1416
1417 template<int size, bool big_endian>
1418 void
1419 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1420 Symbol* gsym,
1421 unsigned int got_type,
1422 Rela_dyn* rela_dyn,
1423 unsigned int r_type_1,
1424 unsigned int r_type_2)
1425 {
1426 if (gsym->has_got_offset(got_type))
1427 return;
1428
1429 this->entries_.push_back(Got_entry());
1430 unsigned int got_offset = this->last_got_offset();
1431 gsym->set_got_offset(got_type, got_offset);
1432 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1433
1434 this->entries_.push_back(Got_entry());
1435 if (r_type_2 != 0)
1436 {
1437 got_offset = this->last_got_offset();
1438 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1439 }
1440
1441 this->set_got_size();
1442 }
1443
1444 // Add an entry for a local symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already has a GOT
1446 // entry.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_local(
1451 Sized_relobj<size, big_endian>* object,
1452 unsigned int symndx,
1453 unsigned int got_type)
1454 {
1455 if (object->local_has_got_offset(symndx, got_type))
1456 return false;
1457
1458 this->entries_.push_back(Got_entry(object, symndx, false));
1459 this->set_got_size();
1460 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1461 return true;
1462 }
1463
1464 // Like add_local, but use the PLT offset.
1465
1466 template<int size, bool big_endian>
1467 bool
1468 Output_data_got<size, big_endian>::add_local_plt(
1469 Sized_relobj<size, big_endian>* object,
1470 unsigned int symndx,
1471 unsigned int got_type)
1472 {
1473 if (object->local_has_got_offset(symndx, got_type))
1474 return false;
1475
1476 this->entries_.push_back(Got_entry(object, symndx, true));
1477 this->set_got_size();
1478 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1479 return true;
1480 }
1481
1482 // Add an entry for a local symbol to the GOT, and add a dynamic
1483 // relocation of type R_TYPE for the GOT entry.
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_with_rel(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int got_type,
1491 Rel_dyn* rel_dyn,
1492 unsigned int r_type)
1493 {
1494 if (object->local_has_got_offset(symndx, got_type))
1495 return;
1496
1497 this->entries_.push_back(Got_entry());
1498 this->set_got_size();
1499 unsigned int got_offset = this->last_got_offset();
1500 object->set_local_got_offset(symndx, got_type, got_offset);
1501 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1502 }
1503
1504 template<int size, bool big_endian>
1505 void
1506 Output_data_got<size, big_endian>::add_local_with_rela(
1507 Sized_relobj<size, big_endian>* object,
1508 unsigned int symndx,
1509 unsigned int got_type,
1510 Rela_dyn* rela_dyn,
1511 unsigned int r_type)
1512 {
1513 if (object->local_has_got_offset(symndx, got_type))
1514 return;
1515
1516 this->entries_.push_back(Got_entry());
1517 this->set_got_size();
1518 unsigned int got_offset = this->last_got_offset();
1519 object->set_local_got_offset(symndx, got_type, got_offset);
1520 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1521 }
1522
1523 // Add a pair of entries for a local symbol to the GOT, and add
1524 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1525 // If R_TYPE_2 == 0, add the second entry with no relocation.
1526 template<int size, bool big_endian>
1527 void
1528 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1529 Sized_relobj<size, big_endian>* object,
1530 unsigned int symndx,
1531 unsigned int shndx,
1532 unsigned int got_type,
1533 Rel_dyn* rel_dyn,
1534 unsigned int r_type_1,
1535 unsigned int r_type_2)
1536 {
1537 if (object->local_has_got_offset(symndx, got_type))
1538 return;
1539
1540 this->entries_.push_back(Got_entry());
1541 unsigned int got_offset = this->last_got_offset();
1542 object->set_local_got_offset(symndx, got_type, got_offset);
1543 Output_section* os = object->output_section(shndx);
1544 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1545
1546 this->entries_.push_back(Got_entry(object, symndx, false));
1547 if (r_type_2 != 0)
1548 {
1549 got_offset = this->last_got_offset();
1550 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1551 }
1552
1553 this->set_got_size();
1554 }
1555
1556 template<int size, bool big_endian>
1557 void
1558 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1559 Sized_relobj<size, big_endian>* object,
1560 unsigned int symndx,
1561 unsigned int shndx,
1562 unsigned int got_type,
1563 Rela_dyn* rela_dyn,
1564 unsigned int r_type_1,
1565 unsigned int r_type_2)
1566 {
1567 if (object->local_has_got_offset(symndx, got_type))
1568 return;
1569
1570 this->entries_.push_back(Got_entry());
1571 unsigned int got_offset = this->last_got_offset();
1572 object->set_local_got_offset(symndx, got_type, got_offset);
1573 Output_section* os = object->output_section(shndx);
1574 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1575
1576 this->entries_.push_back(Got_entry(object, symndx, false));
1577 if (r_type_2 != 0)
1578 {
1579 got_offset = this->last_got_offset();
1580 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1581 }
1582
1583 this->set_got_size();
1584 }
1585
1586 // Write out the GOT.
1587
1588 template<int size, bool big_endian>
1589 void
1590 Output_data_got<size, big_endian>::do_write(Output_file* of)
1591 {
1592 const int add = size / 8;
1593
1594 const off_t off = this->offset();
1595 const off_t oview_size = this->data_size();
1596 unsigned char* const oview = of->get_output_view(off, oview_size);
1597
1598 unsigned char* pov = oview;
1599 for (typename Got_entries::const_iterator p = this->entries_.begin();
1600 p != this->entries_.end();
1601 ++p)
1602 {
1603 p->write(pov);
1604 pov += add;
1605 }
1606
1607 gold_assert(pov - oview == oview_size);
1608
1609 of->write_output_view(off, oview_size, oview);
1610
1611 // We no longer need the GOT entries.
1612 this->entries_.clear();
1613 }
1614
1615 // Output_data_dynamic::Dynamic_entry methods.
1616
1617 // Write out the entry.
1618
1619 template<int size, bool big_endian>
1620 void
1621 Output_data_dynamic::Dynamic_entry::write(
1622 unsigned char* pov,
1623 const Stringpool* pool) const
1624 {
1625 typename elfcpp::Elf_types<size>::Elf_WXword val;
1626 switch (this->offset_)
1627 {
1628 case DYNAMIC_NUMBER:
1629 val = this->u_.val;
1630 break;
1631
1632 case DYNAMIC_SECTION_SIZE:
1633 val = this->u_.od->data_size();
1634 if (this->od2 != NULL)
1635 val += this->od2->data_size();
1636 break;
1637
1638 case DYNAMIC_SYMBOL:
1639 {
1640 const Sized_symbol<size>* s =
1641 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1642 val = s->value();
1643 }
1644 break;
1645
1646 case DYNAMIC_STRING:
1647 val = pool->get_offset(this->u_.str);
1648 break;
1649
1650 default:
1651 val = this->u_.od->address() + this->offset_;
1652 break;
1653 }
1654
1655 elfcpp::Dyn_write<size, big_endian> dw(pov);
1656 dw.put_d_tag(this->tag_);
1657 dw.put_d_val(val);
1658 }
1659
1660 // Output_data_dynamic methods.
1661
1662 // Adjust the output section to set the entry size.
1663
1664 void
1665 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1666 {
1667 if (parameters->target().get_size() == 32)
1668 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1669 else if (parameters->target().get_size() == 64)
1670 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1671 else
1672 gold_unreachable();
1673 }
1674
1675 // Set the final data size.
1676
1677 void
1678 Output_data_dynamic::set_final_data_size()
1679 {
1680 // Add the terminating entry if it hasn't been added.
1681 // Because of relaxation, we can run this multiple times.
1682 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1683 {
1684 int extra = parameters->options().spare_dynamic_tags();
1685 for (int i = 0; i < extra; ++i)
1686 this->add_constant(elfcpp::DT_NULL, 0);
1687 this->add_constant(elfcpp::DT_NULL, 0);
1688 }
1689
1690 int dyn_size;
1691 if (parameters->target().get_size() == 32)
1692 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1693 else if (parameters->target().get_size() == 64)
1694 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1695 else
1696 gold_unreachable();
1697 this->set_data_size(this->entries_.size() * dyn_size);
1698 }
1699
1700 // Write out the dynamic entries.
1701
1702 void
1703 Output_data_dynamic::do_write(Output_file* of)
1704 {
1705 switch (parameters->size_and_endianness())
1706 {
1707 #ifdef HAVE_TARGET_32_LITTLE
1708 case Parameters::TARGET_32_LITTLE:
1709 this->sized_write<32, false>(of);
1710 break;
1711 #endif
1712 #ifdef HAVE_TARGET_32_BIG
1713 case Parameters::TARGET_32_BIG:
1714 this->sized_write<32, true>(of);
1715 break;
1716 #endif
1717 #ifdef HAVE_TARGET_64_LITTLE
1718 case Parameters::TARGET_64_LITTLE:
1719 this->sized_write<64, false>(of);
1720 break;
1721 #endif
1722 #ifdef HAVE_TARGET_64_BIG
1723 case Parameters::TARGET_64_BIG:
1724 this->sized_write<64, true>(of);
1725 break;
1726 #endif
1727 default:
1728 gold_unreachable();
1729 }
1730 }
1731
1732 template<int size, bool big_endian>
1733 void
1734 Output_data_dynamic::sized_write(Output_file* of)
1735 {
1736 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1737
1738 const off_t offset = this->offset();
1739 const off_t oview_size = this->data_size();
1740 unsigned char* const oview = of->get_output_view(offset, oview_size);
1741
1742 unsigned char* pov = oview;
1743 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1744 p != this->entries_.end();
1745 ++p)
1746 {
1747 p->write<size, big_endian>(pov, this->pool_);
1748 pov += dyn_size;
1749 }
1750
1751 gold_assert(pov - oview == oview_size);
1752
1753 of->write_output_view(offset, oview_size, oview);
1754
1755 // We no longer need the dynamic entries.
1756 this->entries_.clear();
1757 }
1758
1759 // Class Output_symtab_xindex.
1760
1761 void
1762 Output_symtab_xindex::do_write(Output_file* of)
1763 {
1764 const off_t offset = this->offset();
1765 const off_t oview_size = this->data_size();
1766 unsigned char* const oview = of->get_output_view(offset, oview_size);
1767
1768 memset(oview, 0, oview_size);
1769
1770 if (parameters->target().is_big_endian())
1771 this->endian_do_write<true>(oview);
1772 else
1773 this->endian_do_write<false>(oview);
1774
1775 of->write_output_view(offset, oview_size, oview);
1776
1777 // We no longer need the data.
1778 this->entries_.clear();
1779 }
1780
1781 template<bool big_endian>
1782 void
1783 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1784 {
1785 for (Xindex_entries::const_iterator p = this->entries_.begin();
1786 p != this->entries_.end();
1787 ++p)
1788 {
1789 unsigned int symndx = p->first;
1790 gold_assert(symndx * 4 < this->data_size());
1791 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1792 }
1793 }
1794
1795 // Output_section::Input_section methods.
1796
1797 // Return the data size. For an input section we store the size here.
1798 // For an Output_section_data, we have to ask it for the size.
1799
1800 off_t
1801 Output_section::Input_section::data_size() const
1802 {
1803 if (this->is_input_section())
1804 return this->u1_.data_size;
1805 else
1806 return this->u2_.posd->data_size();
1807 }
1808
1809 // Return the object for an input section.
1810
1811 Relobj*
1812 Output_section::Input_section::relobj() const
1813 {
1814 if (this->is_input_section())
1815 return this->u2_.object;
1816 else if (this->is_merge_section())
1817 {
1818 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1819 return this->u2_.pomb->first_relobj();
1820 }
1821 else if (this->is_relaxed_input_section())
1822 return this->u2_.poris->relobj();
1823 else
1824 gold_unreachable();
1825 }
1826
1827 // Return the input section index for an input section.
1828
1829 unsigned int
1830 Output_section::Input_section::shndx() const
1831 {
1832 if (this->is_input_section())
1833 return this->shndx_;
1834 else if (this->is_merge_section())
1835 {
1836 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1837 return this->u2_.pomb->first_shndx();
1838 }
1839 else if (this->is_relaxed_input_section())
1840 return this->u2_.poris->shndx();
1841 else
1842 gold_unreachable();
1843 }
1844
1845 // Set the address and file offset.
1846
1847 void
1848 Output_section::Input_section::set_address_and_file_offset(
1849 uint64_t address,
1850 off_t file_offset,
1851 off_t section_file_offset)
1852 {
1853 if (this->is_input_section())
1854 this->u2_.object->set_section_offset(this->shndx_,
1855 file_offset - section_file_offset);
1856 else
1857 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1858 }
1859
1860 // Reset the address and file offset.
1861
1862 void
1863 Output_section::Input_section::reset_address_and_file_offset()
1864 {
1865 if (!this->is_input_section())
1866 this->u2_.posd->reset_address_and_file_offset();
1867 }
1868
1869 // Finalize the data size.
1870
1871 void
1872 Output_section::Input_section::finalize_data_size()
1873 {
1874 if (!this->is_input_section())
1875 this->u2_.posd->finalize_data_size();
1876 }
1877
1878 // Try to turn an input offset into an output offset. We want to
1879 // return the output offset relative to the start of this
1880 // Input_section in the output section.
1881
1882 inline bool
1883 Output_section::Input_section::output_offset(
1884 const Relobj* object,
1885 unsigned int shndx,
1886 section_offset_type offset,
1887 section_offset_type* poutput) const
1888 {
1889 if (!this->is_input_section())
1890 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1891 else
1892 {
1893 if (this->shndx_ != shndx || this->u2_.object != object)
1894 return false;
1895 *poutput = offset;
1896 return true;
1897 }
1898 }
1899
1900 // Return whether this is the merge section for the input section
1901 // SHNDX in OBJECT.
1902
1903 inline bool
1904 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1905 unsigned int shndx) const
1906 {
1907 if (this->is_input_section())
1908 return false;
1909 return this->u2_.posd->is_merge_section_for(object, shndx);
1910 }
1911
1912 // Write out the data. We don't have to do anything for an input
1913 // section--they are handled via Object::relocate--but this is where
1914 // we write out the data for an Output_section_data.
1915
1916 void
1917 Output_section::Input_section::write(Output_file* of)
1918 {
1919 if (!this->is_input_section())
1920 this->u2_.posd->write(of);
1921 }
1922
1923 // Write the data to a buffer. As for write(), we don't have to do
1924 // anything for an input section.
1925
1926 void
1927 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1928 {
1929 if (!this->is_input_section())
1930 this->u2_.posd->write_to_buffer(buffer);
1931 }
1932
1933 // Print to a map file.
1934
1935 void
1936 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1937 {
1938 switch (this->shndx_)
1939 {
1940 case OUTPUT_SECTION_CODE:
1941 case MERGE_DATA_SECTION_CODE:
1942 case MERGE_STRING_SECTION_CODE:
1943 this->u2_.posd->print_to_mapfile(mapfile);
1944 break;
1945
1946 case RELAXED_INPUT_SECTION_CODE:
1947 {
1948 Output_relaxed_input_section* relaxed_section =
1949 this->relaxed_input_section();
1950 mapfile->print_input_section(relaxed_section->relobj(),
1951 relaxed_section->shndx());
1952 }
1953 break;
1954 default:
1955 mapfile->print_input_section(this->u2_.object, this->shndx_);
1956 break;
1957 }
1958 }
1959
1960 // Output_section methods.
1961
1962 // Construct an Output_section. NAME will point into a Stringpool.
1963
1964 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1965 elfcpp::Elf_Xword flags)
1966 : name_(name),
1967 addralign_(0),
1968 entsize_(0),
1969 load_address_(0),
1970 link_section_(NULL),
1971 link_(0),
1972 info_section_(NULL),
1973 info_symndx_(NULL),
1974 info_(0),
1975 type_(type),
1976 flags_(flags),
1977 order_(ORDER_INVALID),
1978 out_shndx_(-1U),
1979 symtab_index_(0),
1980 dynsym_index_(0),
1981 input_sections_(),
1982 first_input_offset_(0),
1983 fills_(),
1984 postprocessing_buffer_(NULL),
1985 needs_symtab_index_(false),
1986 needs_dynsym_index_(false),
1987 should_link_to_symtab_(false),
1988 should_link_to_dynsym_(false),
1989 after_input_sections_(false),
1990 requires_postprocessing_(false),
1991 found_in_sections_clause_(false),
1992 has_load_address_(false),
1993 info_uses_section_index_(false),
1994 input_section_order_specified_(false),
1995 may_sort_attached_input_sections_(false),
1996 must_sort_attached_input_sections_(false),
1997 attached_input_sections_are_sorted_(false),
1998 is_relro_(false),
1999 is_small_section_(false),
2000 is_large_section_(false),
2001 generate_code_fills_at_write_(false),
2002 is_entsize_zero_(false),
2003 section_offsets_need_adjustment_(false),
2004 is_noload_(false),
2005 always_keeps_input_sections_(false),
2006 tls_offset_(0),
2007 checkpoint_(NULL),
2008 lookup_maps_(new Output_section_lookup_maps)
2009 {
2010 // An unallocated section has no address. Forcing this means that
2011 // we don't need special treatment for symbols defined in debug
2012 // sections.
2013 if ((flags & elfcpp::SHF_ALLOC) == 0)
2014 this->set_address(0);
2015 }
2016
2017 Output_section::~Output_section()
2018 {
2019 delete this->checkpoint_;
2020 }
2021
2022 // Set the entry size.
2023
2024 void
2025 Output_section::set_entsize(uint64_t v)
2026 {
2027 if (this->is_entsize_zero_)
2028 ;
2029 else if (this->entsize_ == 0)
2030 this->entsize_ = v;
2031 else if (this->entsize_ != v)
2032 {
2033 this->entsize_ = 0;
2034 this->is_entsize_zero_ = 1;
2035 }
2036 }
2037
2038 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2039 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2040 // relocation section which applies to this section, or 0 if none, or
2041 // -1U if more than one. Return the offset of the input section
2042 // within the output section. Return -1 if the input section will
2043 // receive special handling. In the normal case we don't always keep
2044 // track of input sections for an Output_section. Instead, each
2045 // Object keeps track of the Output_section for each of its input
2046 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2047 // track of input sections here; this is used when SECTIONS appears in
2048 // a linker script.
2049
2050 template<int size, bool big_endian>
2051 off_t
2052 Output_section::add_input_section(Layout* layout,
2053 Sized_relobj<size, big_endian>* object,
2054 unsigned int shndx,
2055 const char* secname,
2056 const elfcpp::Shdr<size, big_endian>& shdr,
2057 unsigned int reloc_shndx,
2058 bool have_sections_script)
2059 {
2060 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2061 if ((addralign & (addralign - 1)) != 0)
2062 {
2063 object->error(_("invalid alignment %lu for section \"%s\""),
2064 static_cast<unsigned long>(addralign), secname);
2065 addralign = 1;
2066 }
2067
2068 if (addralign > this->addralign_)
2069 this->addralign_ = addralign;
2070
2071 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2072 uint64_t entsize = shdr.get_sh_entsize();
2073
2074 // .debug_str is a mergeable string section, but is not always so
2075 // marked by compilers. Mark manually here so we can optimize.
2076 if (strcmp(secname, ".debug_str") == 0)
2077 {
2078 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2079 entsize = 1;
2080 }
2081
2082 this->update_flags_for_input_section(sh_flags);
2083 this->set_entsize(entsize);
2084
2085 // If this is a SHF_MERGE section, we pass all the input sections to
2086 // a Output_data_merge. We don't try to handle relocations for such
2087 // a section. We don't try to handle empty merge sections--they
2088 // mess up the mappings, and are useless anyhow.
2089 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2090 && reloc_shndx == 0
2091 && shdr.get_sh_size() > 0)
2092 {
2093 // Keep information about merged input sections for rebuilding fast
2094 // lookup maps if we have sections-script or we do relaxation.
2095 bool keeps_input_sections = (this->always_keeps_input_sections_
2096 || have_sections_script
2097 || parameters->target().may_relax());
2098
2099 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2100 addralign, keeps_input_sections))
2101 {
2102 // Tell the relocation routines that they need to call the
2103 // output_offset method to determine the final address.
2104 return -1;
2105 }
2106 }
2107
2108 off_t offset_in_section = this->current_data_size_for_child();
2109 off_t aligned_offset_in_section = align_address(offset_in_section,
2110 addralign);
2111
2112 // Determine if we want to delay code-fill generation until the output
2113 // section is written. When the target is relaxing, we want to delay fill
2114 // generating to avoid adjusting them during relaxation.
2115 if (!this->generate_code_fills_at_write_
2116 && !have_sections_script
2117 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2118 && parameters->target().has_code_fill()
2119 && parameters->target().may_relax())
2120 {
2121 gold_assert(this->fills_.empty());
2122 this->generate_code_fills_at_write_ = true;
2123 }
2124
2125 if (aligned_offset_in_section > offset_in_section
2126 && !this->generate_code_fills_at_write_
2127 && !have_sections_script
2128 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2129 && parameters->target().has_code_fill())
2130 {
2131 // We need to add some fill data. Using fill_list_ when
2132 // possible is an optimization, since we will often have fill
2133 // sections without input sections.
2134 off_t fill_len = aligned_offset_in_section - offset_in_section;
2135 if (this->input_sections_.empty())
2136 this->fills_.push_back(Fill(offset_in_section, fill_len));
2137 else
2138 {
2139 std::string fill_data(parameters->target().code_fill(fill_len));
2140 Output_data_const* odc = new Output_data_const(fill_data, 1);
2141 this->input_sections_.push_back(Input_section(odc));
2142 }
2143 }
2144
2145 section_size_type input_section_size = shdr.get_sh_size();
2146 section_size_type uncompressed_size;
2147 if (object->section_is_compressed(shndx, &uncompressed_size))
2148 input_section_size = uncompressed_size;
2149
2150 this->set_current_data_size_for_child(aligned_offset_in_section
2151 + input_section_size);
2152
2153 // We need to keep track of this section if we are already keeping
2154 // track of sections, or if we are relaxing. Also, if this is a
2155 // section which requires sorting, or which may require sorting in
2156 // the future, we keep track of the sections. If the
2157 // --section-ordering-file option is used to specify the order of
2158 // sections, we need to keep track of sections.
2159 if (this->always_keeps_input_sections_
2160 || have_sections_script
2161 || !this->input_sections_.empty()
2162 || this->may_sort_attached_input_sections()
2163 || this->must_sort_attached_input_sections()
2164 || parameters->options().user_set_Map()
2165 || parameters->target().may_relax()
2166 || parameters->options().section_ordering_file())
2167 {
2168 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2169 if (parameters->options().section_ordering_file())
2170 {
2171 unsigned int section_order_index =
2172 layout->find_section_order_index(std::string(secname));
2173 if (section_order_index != 0)
2174 {
2175 isecn.set_section_order_index(section_order_index);
2176 this->set_input_section_order_specified();
2177 }
2178 }
2179 this->input_sections_.push_back(isecn);
2180 }
2181
2182 return aligned_offset_in_section;
2183 }
2184
2185 // Add arbitrary data to an output section.
2186
2187 void
2188 Output_section::add_output_section_data(Output_section_data* posd)
2189 {
2190 Input_section inp(posd);
2191 this->add_output_section_data(&inp);
2192
2193 if (posd->is_data_size_valid())
2194 {
2195 off_t offset_in_section = this->current_data_size_for_child();
2196 off_t aligned_offset_in_section = align_address(offset_in_section,
2197 posd->addralign());
2198 this->set_current_data_size_for_child(aligned_offset_in_section
2199 + posd->data_size());
2200 }
2201 }
2202
2203 // Add a relaxed input section.
2204
2205 void
2206 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2207 {
2208 Input_section inp(poris);
2209 this->add_output_section_data(&inp);
2210 if (this->lookup_maps_->is_valid())
2211 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2212 poris->shndx(), poris);
2213
2214 // For a relaxed section, we use the current data size. Linker scripts
2215 // get all the input sections, including relaxed one from an output
2216 // section and add them back to them same output section to compute the
2217 // output section size. If we do not account for sizes of relaxed input
2218 // sections, an output section would be incorrectly sized.
2219 off_t offset_in_section = this->current_data_size_for_child();
2220 off_t aligned_offset_in_section = align_address(offset_in_section,
2221 poris->addralign());
2222 this->set_current_data_size_for_child(aligned_offset_in_section
2223 + poris->current_data_size());
2224 }
2225
2226 // Add arbitrary data to an output section by Input_section.
2227
2228 void
2229 Output_section::add_output_section_data(Input_section* inp)
2230 {
2231 if (this->input_sections_.empty())
2232 this->first_input_offset_ = this->current_data_size_for_child();
2233
2234 this->input_sections_.push_back(*inp);
2235
2236 uint64_t addralign = inp->addralign();
2237 if (addralign > this->addralign_)
2238 this->addralign_ = addralign;
2239
2240 inp->set_output_section(this);
2241 }
2242
2243 // Add a merge section to an output section.
2244
2245 void
2246 Output_section::add_output_merge_section(Output_section_data* posd,
2247 bool is_string, uint64_t entsize)
2248 {
2249 Input_section inp(posd, is_string, entsize);
2250 this->add_output_section_data(&inp);
2251 }
2252
2253 // Add an input section to a SHF_MERGE section.
2254
2255 bool
2256 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2257 uint64_t flags, uint64_t entsize,
2258 uint64_t addralign,
2259 bool keeps_input_sections)
2260 {
2261 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2262
2263 // We only merge strings if the alignment is not more than the
2264 // character size. This could be handled, but it's unusual.
2265 if (is_string && addralign > entsize)
2266 return false;
2267
2268 // We cannot restore merged input section states.
2269 gold_assert(this->checkpoint_ == NULL);
2270
2271 // Look up merge sections by required properties.
2272 // Currently, we only invalidate the lookup maps in script processing
2273 // and relaxation. We should not have done either when we reach here.
2274 // So we assume that the lookup maps are valid to simply code.
2275 gold_assert(this->lookup_maps_->is_valid());
2276 Merge_section_properties msp(is_string, entsize, addralign);
2277 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2278 bool is_new = false;
2279 if (pomb != NULL)
2280 {
2281 gold_assert(pomb->is_string() == is_string
2282 && pomb->entsize() == entsize
2283 && pomb->addralign() == addralign);
2284 }
2285 else
2286 {
2287 // Create a new Output_merge_data or Output_merge_string_data.
2288 if (!is_string)
2289 pomb = new Output_merge_data(entsize, addralign);
2290 else
2291 {
2292 switch (entsize)
2293 {
2294 case 1:
2295 pomb = new Output_merge_string<char>(addralign);
2296 break;
2297 case 2:
2298 pomb = new Output_merge_string<uint16_t>(addralign);
2299 break;
2300 case 4:
2301 pomb = new Output_merge_string<uint32_t>(addralign);
2302 break;
2303 default:
2304 return false;
2305 }
2306 }
2307 // If we need to do script processing or relaxation, we need to keep
2308 // the original input sections to rebuild the fast lookup maps.
2309 if (keeps_input_sections)
2310 pomb->set_keeps_input_sections();
2311 is_new = true;
2312 }
2313
2314 if (pomb->add_input_section(object, shndx))
2315 {
2316 // Add new merge section to this output section and link merge
2317 // section properties to new merge section in map.
2318 if (is_new)
2319 {
2320 this->add_output_merge_section(pomb, is_string, entsize);
2321 this->lookup_maps_->add_merge_section(msp, pomb);
2322 }
2323
2324 // Add input section to new merge section and link input section to new
2325 // merge section in map.
2326 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2327 return true;
2328 }
2329 else
2330 {
2331 // If add_input_section failed, delete new merge section to avoid
2332 // exporting empty merge sections in Output_section::get_input_section.
2333 if (is_new)
2334 delete pomb;
2335 return false;
2336 }
2337 }
2338
2339 // Build a relaxation map to speed up relaxation of existing input sections.
2340 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2341
2342 void
2343 Output_section::build_relaxation_map(
2344 const Input_section_list& input_sections,
2345 size_t limit,
2346 Relaxation_map* relaxation_map) const
2347 {
2348 for (size_t i = 0; i < limit; ++i)
2349 {
2350 const Input_section& is(input_sections[i]);
2351 if (is.is_input_section() || is.is_relaxed_input_section())
2352 {
2353 Section_id sid(is.relobj(), is.shndx());
2354 (*relaxation_map)[sid] = i;
2355 }
2356 }
2357 }
2358
2359 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2360 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2361 // indices of INPUT_SECTIONS.
2362
2363 void
2364 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2365 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2366 const Relaxation_map& map,
2367 Input_section_list* input_sections)
2368 {
2369 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2370 {
2371 Output_relaxed_input_section* poris = relaxed_sections[i];
2372 Section_id sid(poris->relobj(), poris->shndx());
2373 Relaxation_map::const_iterator p = map.find(sid);
2374 gold_assert(p != map.end());
2375 gold_assert((*input_sections)[p->second].is_input_section());
2376 (*input_sections)[p->second] = Input_section(poris);
2377 }
2378 }
2379
2380 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2381 // is a vector of pointers to Output_relaxed_input_section or its derived
2382 // classes. The relaxed sections must correspond to existing input sections.
2383
2384 void
2385 Output_section::convert_input_sections_to_relaxed_sections(
2386 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2387 {
2388 gold_assert(parameters->target().may_relax());
2389
2390 // We want to make sure that restore_states does not undo the effect of
2391 // this. If there is no checkpoint active, just search the current
2392 // input section list and replace the sections there. If there is
2393 // a checkpoint, also replace the sections there.
2394
2395 // By default, we look at the whole list.
2396 size_t limit = this->input_sections_.size();
2397
2398 if (this->checkpoint_ != NULL)
2399 {
2400 // Replace input sections with relaxed input section in the saved
2401 // copy of the input section list.
2402 if (this->checkpoint_->input_sections_saved())
2403 {
2404 Relaxation_map map;
2405 this->build_relaxation_map(
2406 *(this->checkpoint_->input_sections()),
2407 this->checkpoint_->input_sections()->size(),
2408 &map);
2409 this->convert_input_sections_in_list_to_relaxed_sections(
2410 relaxed_sections,
2411 map,
2412 this->checkpoint_->input_sections());
2413 }
2414 else
2415 {
2416 // We have not copied the input section list yet. Instead, just
2417 // look at the portion that would be saved.
2418 limit = this->checkpoint_->input_sections_size();
2419 }
2420 }
2421
2422 // Convert input sections in input_section_list.
2423 Relaxation_map map;
2424 this->build_relaxation_map(this->input_sections_, limit, &map);
2425 this->convert_input_sections_in_list_to_relaxed_sections(
2426 relaxed_sections,
2427 map,
2428 &this->input_sections_);
2429
2430 // Update fast look-up map.
2431 if (this->lookup_maps_->is_valid())
2432 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2433 {
2434 Output_relaxed_input_section* poris = relaxed_sections[i];
2435 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2436 poris->shndx(), poris);
2437 }
2438 }
2439
2440 // Update the output section flags based on input section flags.
2441
2442 void
2443 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2444 {
2445 // If we created the section with SHF_ALLOC clear, we set the
2446 // address. If we are now setting the SHF_ALLOC flag, we need to
2447 // undo that.
2448 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2449 && (flags & elfcpp::SHF_ALLOC) != 0)
2450 this->mark_address_invalid();
2451
2452 this->flags_ |= (flags
2453 & (elfcpp::SHF_WRITE
2454 | elfcpp::SHF_ALLOC
2455 | elfcpp::SHF_EXECINSTR));
2456
2457 if ((flags & elfcpp::SHF_MERGE) == 0)
2458 this->flags_ &=~ elfcpp::SHF_MERGE;
2459 else
2460 {
2461 if (this->current_data_size_for_child() == 0)
2462 this->flags_ |= elfcpp::SHF_MERGE;
2463 }
2464
2465 if ((flags & elfcpp::SHF_STRINGS) == 0)
2466 this->flags_ &=~ elfcpp::SHF_STRINGS;
2467 else
2468 {
2469 if (this->current_data_size_for_child() == 0)
2470 this->flags_ |= elfcpp::SHF_STRINGS;
2471 }
2472 }
2473
2474 // Find the merge section into which an input section with index SHNDX in
2475 // OBJECT has been added. Return NULL if none found.
2476
2477 Output_section_data*
2478 Output_section::find_merge_section(const Relobj* object,
2479 unsigned int shndx) const
2480 {
2481 if (!this->lookup_maps_->is_valid())
2482 this->build_lookup_maps();
2483 return this->lookup_maps_->find_merge_section(object, shndx);
2484 }
2485
2486 // Build the lookup maps for merge and relaxed sections. This is needs
2487 // to be declared as a const methods so that it is callable with a const
2488 // Output_section pointer. The method only updates states of the maps.
2489
2490 void
2491 Output_section::build_lookup_maps() const
2492 {
2493 this->lookup_maps_->clear();
2494 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2495 p != this->input_sections_.end();
2496 ++p)
2497 {
2498 if (p->is_merge_section())
2499 {
2500 Output_merge_base* pomb = p->output_merge_base();
2501 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2502 pomb->addralign());
2503 this->lookup_maps_->add_merge_section(msp, pomb);
2504 for (Output_merge_base::Input_sections::const_iterator is =
2505 pomb->input_sections_begin();
2506 is != pomb->input_sections_end();
2507 ++is)
2508 {
2509 const Const_section_id& csid = *is;
2510 this->lookup_maps_->add_merge_input_section(csid.first,
2511 csid.second, pomb);
2512 }
2513
2514 }
2515 else if (p->is_relaxed_input_section())
2516 {
2517 Output_relaxed_input_section* poris = p->relaxed_input_section();
2518 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2519 poris->shndx(), poris);
2520 }
2521 }
2522 }
2523
2524 // Find an relaxed input section corresponding to an input section
2525 // in OBJECT with index SHNDX.
2526
2527 const Output_relaxed_input_section*
2528 Output_section::find_relaxed_input_section(const Relobj* object,
2529 unsigned int shndx) const
2530 {
2531 if (!this->lookup_maps_->is_valid())
2532 this->build_lookup_maps();
2533 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2534 }
2535
2536 // Given an address OFFSET relative to the start of input section
2537 // SHNDX in OBJECT, return whether this address is being included in
2538 // the final link. This should only be called if SHNDX in OBJECT has
2539 // a special mapping.
2540
2541 bool
2542 Output_section::is_input_address_mapped(const Relobj* object,
2543 unsigned int shndx,
2544 off_t offset) const
2545 {
2546 // Look at the Output_section_data_maps first.
2547 const Output_section_data* posd = this->find_merge_section(object, shndx);
2548 if (posd == NULL)
2549 posd = this->find_relaxed_input_section(object, shndx);
2550
2551 if (posd != NULL)
2552 {
2553 section_offset_type output_offset;
2554 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2555 gold_assert(found);
2556 return output_offset != -1;
2557 }
2558
2559 // Fall back to the slow look-up.
2560 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2561 p != this->input_sections_.end();
2562 ++p)
2563 {
2564 section_offset_type output_offset;
2565 if (p->output_offset(object, shndx, offset, &output_offset))
2566 return output_offset != -1;
2567 }
2568
2569 // By default we assume that the address is mapped. This should
2570 // only be called after we have passed all sections to Layout. At
2571 // that point we should know what we are discarding.
2572 return true;
2573 }
2574
2575 // Given an address OFFSET relative to the start of input section
2576 // SHNDX in object OBJECT, return the output offset relative to the
2577 // start of the input section in the output section. This should only
2578 // be called if SHNDX in OBJECT has a special mapping.
2579
2580 section_offset_type
2581 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2582 section_offset_type offset) const
2583 {
2584 // This can only be called meaningfully when we know the data size
2585 // of this.
2586 gold_assert(this->is_data_size_valid());
2587
2588 // Look at the Output_section_data_maps first.
2589 const Output_section_data* posd = this->find_merge_section(object, shndx);
2590 if (posd == NULL)
2591 posd = this->find_relaxed_input_section(object, shndx);
2592 if (posd != NULL)
2593 {
2594 section_offset_type output_offset;
2595 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2596 gold_assert(found);
2597 return output_offset;
2598 }
2599
2600 // Fall back to the slow look-up.
2601 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2602 p != this->input_sections_.end();
2603 ++p)
2604 {
2605 section_offset_type output_offset;
2606 if (p->output_offset(object, shndx, offset, &output_offset))
2607 return output_offset;
2608 }
2609 gold_unreachable();
2610 }
2611
2612 // Return the output virtual address of OFFSET relative to the start
2613 // of input section SHNDX in object OBJECT.
2614
2615 uint64_t
2616 Output_section::output_address(const Relobj* object, unsigned int shndx,
2617 off_t offset) const
2618 {
2619 uint64_t addr = this->address() + this->first_input_offset_;
2620
2621 // Look at the Output_section_data_maps first.
2622 const Output_section_data* posd = this->find_merge_section(object, shndx);
2623 if (posd == NULL)
2624 posd = this->find_relaxed_input_section(object, shndx);
2625 if (posd != NULL && posd->is_address_valid())
2626 {
2627 section_offset_type output_offset;
2628 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2629 gold_assert(found);
2630 return posd->address() + output_offset;
2631 }
2632
2633 // Fall back to the slow look-up.
2634 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2635 p != this->input_sections_.end();
2636 ++p)
2637 {
2638 addr = align_address(addr, p->addralign());
2639 section_offset_type output_offset;
2640 if (p->output_offset(object, shndx, offset, &output_offset))
2641 {
2642 if (output_offset == -1)
2643 return -1ULL;
2644 return addr + output_offset;
2645 }
2646 addr += p->data_size();
2647 }
2648
2649 // If we get here, it means that we don't know the mapping for this
2650 // input section. This might happen in principle if
2651 // add_input_section were called before add_output_section_data.
2652 // But it should never actually happen.
2653
2654 gold_unreachable();
2655 }
2656
2657 // Find the output address of the start of the merged section for
2658 // input section SHNDX in object OBJECT.
2659
2660 bool
2661 Output_section::find_starting_output_address(const Relobj* object,
2662 unsigned int shndx,
2663 uint64_t* paddr) const
2664 {
2665 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2666 // Looking up the merge section map does not always work as we sometimes
2667 // find a merge section without its address set.
2668 uint64_t addr = this->address() + this->first_input_offset_;
2669 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2670 p != this->input_sections_.end();
2671 ++p)
2672 {
2673 addr = align_address(addr, p->addralign());
2674
2675 // It would be nice if we could use the existing output_offset
2676 // method to get the output offset of input offset 0.
2677 // Unfortunately we don't know for sure that input offset 0 is
2678 // mapped at all.
2679 if (p->is_merge_section_for(object, shndx))
2680 {
2681 *paddr = addr;
2682 return true;
2683 }
2684
2685 addr += p->data_size();
2686 }
2687
2688 // We couldn't find a merge output section for this input section.
2689 return false;
2690 }
2691
2692 // Set the data size of an Output_section. This is where we handle
2693 // setting the addresses of any Output_section_data objects.
2694
2695 void
2696 Output_section::set_final_data_size()
2697 {
2698 if (this->input_sections_.empty())
2699 {
2700 this->set_data_size(this->current_data_size_for_child());
2701 return;
2702 }
2703
2704 if (this->must_sort_attached_input_sections()
2705 || this->input_section_order_specified())
2706 this->sort_attached_input_sections();
2707
2708 uint64_t address = this->address();
2709 off_t startoff = this->offset();
2710 off_t off = startoff + this->first_input_offset_;
2711 for (Input_section_list::iterator p = this->input_sections_.begin();
2712 p != this->input_sections_.end();
2713 ++p)
2714 {
2715 off = align_address(off, p->addralign());
2716 p->set_address_and_file_offset(address + (off - startoff), off,
2717 startoff);
2718 off += p->data_size();
2719 }
2720
2721 this->set_data_size(off - startoff);
2722 }
2723
2724 // Reset the address and file offset.
2725
2726 void
2727 Output_section::do_reset_address_and_file_offset()
2728 {
2729 // An unallocated section has no address. Forcing this means that
2730 // we don't need special treatment for symbols defined in debug
2731 // sections. We do the same in the constructor. This does not
2732 // apply to NOLOAD sections though.
2733 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2734 this->set_address(0);
2735
2736 for (Input_section_list::iterator p = this->input_sections_.begin();
2737 p != this->input_sections_.end();
2738 ++p)
2739 p->reset_address_and_file_offset();
2740 }
2741
2742 // Return true if address and file offset have the values after reset.
2743
2744 bool
2745 Output_section::do_address_and_file_offset_have_reset_values() const
2746 {
2747 if (this->is_offset_valid())
2748 return false;
2749
2750 // An unallocated section has address 0 after its construction or a reset.
2751 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2752 return this->is_address_valid() && this->address() == 0;
2753 else
2754 return !this->is_address_valid();
2755 }
2756
2757 // Set the TLS offset. Called only for SHT_TLS sections.
2758
2759 void
2760 Output_section::do_set_tls_offset(uint64_t tls_base)
2761 {
2762 this->tls_offset_ = this->address() - tls_base;
2763 }
2764
2765 // In a few cases we need to sort the input sections attached to an
2766 // output section. This is used to implement the type of constructor
2767 // priority ordering implemented by the GNU linker, in which the
2768 // priority becomes part of the section name and the sections are
2769 // sorted by name. We only do this for an output section if we see an
2770 // attached input section matching ".ctor.*", ".dtor.*",
2771 // ".init_array.*" or ".fini_array.*".
2772
2773 class Output_section::Input_section_sort_entry
2774 {
2775 public:
2776 Input_section_sort_entry()
2777 : input_section_(), index_(-1U), section_has_name_(false),
2778 section_name_()
2779 { }
2780
2781 Input_section_sort_entry(const Input_section& input_section,
2782 unsigned int index,
2783 bool must_sort_attached_input_sections)
2784 : input_section_(input_section), index_(index),
2785 section_has_name_(input_section.is_input_section()
2786 || input_section.is_relaxed_input_section())
2787 {
2788 if (this->section_has_name_
2789 && must_sort_attached_input_sections)
2790 {
2791 // This is only called single-threaded from Layout::finalize,
2792 // so it is OK to lock. Unfortunately we have no way to pass
2793 // in a Task token.
2794 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2795 Object* obj = (input_section.is_input_section()
2796 ? input_section.relobj()
2797 : input_section.relaxed_input_section()->relobj());
2798 Task_lock_obj<Object> tl(dummy_task, obj);
2799
2800 // This is a slow operation, which should be cached in
2801 // Layout::layout if this becomes a speed problem.
2802 this->section_name_ = obj->section_name(input_section.shndx());
2803 }
2804 }
2805
2806 // Return the Input_section.
2807 const Input_section&
2808 input_section() const
2809 {
2810 gold_assert(this->index_ != -1U);
2811 return this->input_section_;
2812 }
2813
2814 // The index of this entry in the original list. This is used to
2815 // make the sort stable.
2816 unsigned int
2817 index() const
2818 {
2819 gold_assert(this->index_ != -1U);
2820 return this->index_;
2821 }
2822
2823 // Whether there is a section name.
2824 bool
2825 section_has_name() const
2826 { return this->section_has_name_; }
2827
2828 // The section name.
2829 const std::string&
2830 section_name() const
2831 {
2832 gold_assert(this->section_has_name_);
2833 return this->section_name_;
2834 }
2835
2836 // Return true if the section name has a priority. This is assumed
2837 // to be true if it has a dot after the initial dot.
2838 bool
2839 has_priority() const
2840 {
2841 gold_assert(this->section_has_name_);
2842 return this->section_name_.find('.', 1) != std::string::npos;
2843 }
2844
2845 // Return true if this an input file whose base name matches
2846 // FILE_NAME. The base name must have an extension of ".o", and
2847 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2848 // This is to match crtbegin.o as well as crtbeginS.o without
2849 // getting confused by other possibilities. Overall matching the
2850 // file name this way is a dreadful hack, but the GNU linker does it
2851 // in order to better support gcc, and we need to be compatible.
2852 bool
2853 match_file_name(const char* match_file_name) const
2854 {
2855 const std::string& file_name(this->input_section_.relobj()->name());
2856 const char* base_name = lbasename(file_name.c_str());
2857 size_t match_len = strlen(match_file_name);
2858 if (strncmp(base_name, match_file_name, match_len) != 0)
2859 return false;
2860 size_t base_len = strlen(base_name);
2861 if (base_len != match_len + 2 && base_len != match_len + 3)
2862 return false;
2863 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2864 }
2865
2866 // Returns 1 if THIS should appear before S in section order, -1 if S
2867 // appears before THIS and 0 if they are not comparable.
2868 int
2869 compare_section_ordering(const Input_section_sort_entry& s) const
2870 {
2871 unsigned int this_secn_index = this->input_section_.section_order_index();
2872 unsigned int s_secn_index = s.input_section().section_order_index();
2873 if (this_secn_index > 0 && s_secn_index > 0)
2874 {
2875 if (this_secn_index < s_secn_index)
2876 return 1;
2877 else if (this_secn_index > s_secn_index)
2878 return -1;
2879 }
2880 return 0;
2881 }
2882
2883 private:
2884 // The Input_section we are sorting.
2885 Input_section input_section_;
2886 // The index of this Input_section in the original list.
2887 unsigned int index_;
2888 // Whether this Input_section has a section name--it won't if this
2889 // is some random Output_section_data.
2890 bool section_has_name_;
2891 // The section name if there is one.
2892 std::string section_name_;
2893 };
2894
2895 // Return true if S1 should come before S2 in the output section.
2896
2897 bool
2898 Output_section::Input_section_sort_compare::operator()(
2899 const Output_section::Input_section_sort_entry& s1,
2900 const Output_section::Input_section_sort_entry& s2) const
2901 {
2902 // crtbegin.o must come first.
2903 bool s1_begin = s1.match_file_name("crtbegin");
2904 bool s2_begin = s2.match_file_name("crtbegin");
2905 if (s1_begin || s2_begin)
2906 {
2907 if (!s1_begin)
2908 return false;
2909 if (!s2_begin)
2910 return true;
2911 return s1.index() < s2.index();
2912 }
2913
2914 // crtend.o must come last.
2915 bool s1_end = s1.match_file_name("crtend");
2916 bool s2_end = s2.match_file_name("crtend");
2917 if (s1_end || s2_end)
2918 {
2919 if (!s1_end)
2920 return true;
2921 if (!s2_end)
2922 return false;
2923 return s1.index() < s2.index();
2924 }
2925
2926 // We sort all the sections with no names to the end.
2927 if (!s1.section_has_name() || !s2.section_has_name())
2928 {
2929 if (s1.section_has_name())
2930 return true;
2931 if (s2.section_has_name())
2932 return false;
2933 return s1.index() < s2.index();
2934 }
2935
2936 // A section with a priority follows a section without a priority.
2937 bool s1_has_priority = s1.has_priority();
2938 bool s2_has_priority = s2.has_priority();
2939 if (s1_has_priority && !s2_has_priority)
2940 return false;
2941 if (!s1_has_priority && s2_has_priority)
2942 return true;
2943
2944 // Check if a section order exists for these sections through a section
2945 // ordering file. If sequence_num is 0, an order does not exist.
2946 int sequence_num = s1.compare_section_ordering(s2);
2947 if (sequence_num != 0)
2948 return sequence_num == 1;
2949
2950 // Otherwise we sort by name.
2951 int compare = s1.section_name().compare(s2.section_name());
2952 if (compare != 0)
2953 return compare < 0;
2954
2955 // Otherwise we keep the input order.
2956 return s1.index() < s2.index();
2957 }
2958
2959 // Return true if S1 should come before S2 in an .init_array or .fini_array
2960 // output section.
2961
2962 bool
2963 Output_section::Input_section_sort_init_fini_compare::operator()(
2964 const Output_section::Input_section_sort_entry& s1,
2965 const Output_section::Input_section_sort_entry& s2) const
2966 {
2967 // We sort all the sections with no names to the end.
2968 if (!s1.section_has_name() || !s2.section_has_name())
2969 {
2970 if (s1.section_has_name())
2971 return true;
2972 if (s2.section_has_name())
2973 return false;
2974 return s1.index() < s2.index();
2975 }
2976
2977 // A section without a priority follows a section with a priority.
2978 // This is the reverse of .ctors and .dtors sections.
2979 bool s1_has_priority = s1.has_priority();
2980 bool s2_has_priority = s2.has_priority();
2981 if (s1_has_priority && !s2_has_priority)
2982 return true;
2983 if (!s1_has_priority && s2_has_priority)
2984 return false;
2985
2986 // Check if a section order exists for these sections through a section
2987 // ordering file. If sequence_num is 0, an order does not exist.
2988 int sequence_num = s1.compare_section_ordering(s2);
2989 if (sequence_num != 0)
2990 return sequence_num == 1;
2991
2992 // Otherwise we sort by name.
2993 int compare = s1.section_name().compare(s2.section_name());
2994 if (compare != 0)
2995 return compare < 0;
2996
2997 // Otherwise we keep the input order.
2998 return s1.index() < s2.index();
2999 }
3000
3001 // Return true if S1 should come before S2. Sections that do not match
3002 // any pattern in the section ordering file are placed ahead of the sections
3003 // that match some pattern.
3004
3005 bool
3006 Output_section::Input_section_sort_section_order_index_compare::operator()(
3007 const Output_section::Input_section_sort_entry& s1,
3008 const Output_section::Input_section_sort_entry& s2) const
3009 {
3010 unsigned int s1_secn_index = s1.input_section().section_order_index();
3011 unsigned int s2_secn_index = s2.input_section().section_order_index();
3012
3013 // Keep input order if section ordering cannot determine order.
3014 if (s1_secn_index == s2_secn_index)
3015 return s1.index() < s2.index();
3016
3017 return s1_secn_index < s2_secn_index;
3018 }
3019
3020 // Sort the input sections attached to an output section.
3021
3022 void
3023 Output_section::sort_attached_input_sections()
3024 {
3025 if (this->attached_input_sections_are_sorted_)
3026 return;
3027
3028 if (this->checkpoint_ != NULL
3029 && !this->checkpoint_->input_sections_saved())
3030 this->checkpoint_->save_input_sections();
3031
3032 // The only thing we know about an input section is the object and
3033 // the section index. We need the section name. Recomputing this
3034 // is slow but this is an unusual case. If this becomes a speed
3035 // problem we can cache the names as required in Layout::layout.
3036
3037 // We start by building a larger vector holding a copy of each
3038 // Input_section, plus its current index in the list and its name.
3039 std::vector<Input_section_sort_entry> sort_list;
3040
3041 unsigned int i = 0;
3042 for (Input_section_list::iterator p = this->input_sections_.begin();
3043 p != this->input_sections_.end();
3044 ++p, ++i)
3045 sort_list.push_back(Input_section_sort_entry(*p, i,
3046 this->must_sort_attached_input_sections()));
3047
3048 // Sort the input sections.
3049 if (this->must_sort_attached_input_sections())
3050 {
3051 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3052 || this->type() == elfcpp::SHT_INIT_ARRAY
3053 || this->type() == elfcpp::SHT_FINI_ARRAY)
3054 std::sort(sort_list.begin(), sort_list.end(),
3055 Input_section_sort_init_fini_compare());
3056 else
3057 std::sort(sort_list.begin(), sort_list.end(),
3058 Input_section_sort_compare());
3059 }
3060 else
3061 {
3062 gold_assert(parameters->options().section_ordering_file());
3063 std::sort(sort_list.begin(), sort_list.end(),
3064 Input_section_sort_section_order_index_compare());
3065 }
3066
3067 // Copy the sorted input sections back to our list.
3068 this->input_sections_.clear();
3069 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3070 p != sort_list.end();
3071 ++p)
3072 this->input_sections_.push_back(p->input_section());
3073 sort_list.clear();
3074
3075 // Remember that we sorted the input sections, since we might get
3076 // called again.
3077 this->attached_input_sections_are_sorted_ = true;
3078 }
3079
3080 // Write the section header to *OSHDR.
3081
3082 template<int size, bool big_endian>
3083 void
3084 Output_section::write_header(const Layout* layout,
3085 const Stringpool* secnamepool,
3086 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3087 {
3088 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3089 oshdr->put_sh_type(this->type_);
3090
3091 elfcpp::Elf_Xword flags = this->flags_;
3092 if (this->info_section_ != NULL && this->info_uses_section_index_)
3093 flags |= elfcpp::SHF_INFO_LINK;
3094 oshdr->put_sh_flags(flags);
3095
3096 oshdr->put_sh_addr(this->address());
3097 oshdr->put_sh_offset(this->offset());
3098 oshdr->put_sh_size(this->data_size());
3099 if (this->link_section_ != NULL)
3100 oshdr->put_sh_link(this->link_section_->out_shndx());
3101 else if (this->should_link_to_symtab_)
3102 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3103 else if (this->should_link_to_dynsym_)
3104 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3105 else
3106 oshdr->put_sh_link(this->link_);
3107
3108 elfcpp::Elf_Word info;
3109 if (this->info_section_ != NULL)
3110 {
3111 if (this->info_uses_section_index_)
3112 info = this->info_section_->out_shndx();
3113 else
3114 info = this->info_section_->symtab_index();
3115 }
3116 else if (this->info_symndx_ != NULL)
3117 info = this->info_symndx_->symtab_index();
3118 else
3119 info = this->info_;
3120 oshdr->put_sh_info(info);
3121
3122 oshdr->put_sh_addralign(this->addralign_);
3123 oshdr->put_sh_entsize(this->entsize_);
3124 }
3125
3126 // Write out the data. For input sections the data is written out by
3127 // Object::relocate, but we have to handle Output_section_data objects
3128 // here.
3129
3130 void
3131 Output_section::do_write(Output_file* of)
3132 {
3133 gold_assert(!this->requires_postprocessing());
3134
3135 // If the target performs relaxation, we delay filler generation until now.
3136 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3137
3138 off_t output_section_file_offset = this->offset();
3139 for (Fill_list::iterator p = this->fills_.begin();
3140 p != this->fills_.end();
3141 ++p)
3142 {
3143 std::string fill_data(parameters->target().code_fill(p->length()));
3144 of->write(output_section_file_offset + p->section_offset(),
3145 fill_data.data(), fill_data.size());
3146 }
3147
3148 off_t off = this->offset() + this->first_input_offset_;
3149 for (Input_section_list::iterator p = this->input_sections_.begin();
3150 p != this->input_sections_.end();
3151 ++p)
3152 {
3153 off_t aligned_off = align_address(off, p->addralign());
3154 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3155 {
3156 size_t fill_len = aligned_off - off;
3157 std::string fill_data(parameters->target().code_fill(fill_len));
3158 of->write(off, fill_data.data(), fill_data.size());
3159 }
3160
3161 p->write(of);
3162 off = aligned_off + p->data_size();
3163 }
3164 }
3165
3166 // If a section requires postprocessing, create the buffer to use.
3167
3168 void
3169 Output_section::create_postprocessing_buffer()
3170 {
3171 gold_assert(this->requires_postprocessing());
3172
3173 if (this->postprocessing_buffer_ != NULL)
3174 return;
3175
3176 if (!this->input_sections_.empty())
3177 {
3178 off_t off = this->first_input_offset_;
3179 for (Input_section_list::iterator p = this->input_sections_.begin();
3180 p != this->input_sections_.end();
3181 ++p)
3182 {
3183 off = align_address(off, p->addralign());
3184 p->finalize_data_size();
3185 off += p->data_size();
3186 }
3187 this->set_current_data_size_for_child(off);
3188 }
3189
3190 off_t buffer_size = this->current_data_size_for_child();
3191 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3192 }
3193
3194 // Write all the data of an Output_section into the postprocessing
3195 // buffer. This is used for sections which require postprocessing,
3196 // such as compression. Input sections are handled by
3197 // Object::Relocate.
3198
3199 void
3200 Output_section::write_to_postprocessing_buffer()
3201 {
3202 gold_assert(this->requires_postprocessing());
3203
3204 // If the target performs relaxation, we delay filler generation until now.
3205 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3206
3207 unsigned char* buffer = this->postprocessing_buffer();
3208 for (Fill_list::iterator p = this->fills_.begin();
3209 p != this->fills_.end();
3210 ++p)
3211 {
3212 std::string fill_data(parameters->target().code_fill(p->length()));
3213 memcpy(buffer + p->section_offset(), fill_data.data(),
3214 fill_data.size());
3215 }
3216
3217 off_t off = this->first_input_offset_;
3218 for (Input_section_list::iterator p = this->input_sections_.begin();
3219 p != this->input_sections_.end();
3220 ++p)
3221 {
3222 off_t aligned_off = align_address(off, p->addralign());
3223 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3224 {
3225 size_t fill_len = aligned_off - off;
3226 std::string fill_data(parameters->target().code_fill(fill_len));
3227 memcpy(buffer + off, fill_data.data(), fill_data.size());
3228 }
3229
3230 p->write_to_buffer(buffer + aligned_off);
3231 off = aligned_off + p->data_size();
3232 }
3233 }
3234
3235 // Get the input sections for linker script processing. We leave
3236 // behind the Output_section_data entries. Note that this may be
3237 // slightly incorrect for merge sections. We will leave them behind,
3238 // but it is possible that the script says that they should follow
3239 // some other input sections, as in:
3240 // .rodata { *(.rodata) *(.rodata.cst*) }
3241 // For that matter, we don't handle this correctly:
3242 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3243 // With luck this will never matter.
3244
3245 uint64_t
3246 Output_section::get_input_sections(
3247 uint64_t address,
3248 const std::string& fill,
3249 std::list<Input_section>* input_sections)
3250 {
3251 if (this->checkpoint_ != NULL
3252 && !this->checkpoint_->input_sections_saved())
3253 this->checkpoint_->save_input_sections();
3254
3255 // Invalidate fast look-up maps.
3256 this->lookup_maps_->invalidate();
3257
3258 uint64_t orig_address = address;
3259
3260 address = align_address(address, this->addralign());
3261
3262 Input_section_list remaining;
3263 for (Input_section_list::iterator p = this->input_sections_.begin();
3264 p != this->input_sections_.end();
3265 ++p)
3266 {
3267 if (p->is_input_section()
3268 || p->is_relaxed_input_section()
3269 || p->is_merge_section())
3270 input_sections->push_back(*p);
3271 else
3272 {
3273 uint64_t aligned_address = align_address(address, p->addralign());
3274 if (aligned_address != address && !fill.empty())
3275 {
3276 section_size_type length =
3277 convert_to_section_size_type(aligned_address - address);
3278 std::string this_fill;
3279 this_fill.reserve(length);
3280 while (this_fill.length() + fill.length() <= length)
3281 this_fill += fill;
3282 if (this_fill.length() < length)
3283 this_fill.append(fill, 0, length - this_fill.length());
3284
3285 Output_section_data* posd = new Output_data_const(this_fill, 0);
3286 remaining.push_back(Input_section(posd));
3287 }
3288 address = aligned_address;
3289
3290 remaining.push_back(*p);
3291
3292 p->finalize_data_size();
3293 address += p->data_size();
3294 }
3295 }
3296
3297 this->input_sections_.swap(remaining);
3298 this->first_input_offset_ = 0;
3299
3300 uint64_t data_size = address - orig_address;
3301 this->set_current_data_size_for_child(data_size);
3302 return data_size;
3303 }
3304
3305 // Add a script input section. SIS is an Output_section::Input_section,
3306 // which can be either a plain input section or a special input section like
3307 // a relaxed input section. For a special input section, its size must be
3308 // finalized.
3309
3310 void
3311 Output_section::add_script_input_section(const Input_section& sis)
3312 {
3313 uint64_t data_size = sis.data_size();
3314 uint64_t addralign = sis.addralign();
3315 if (addralign > this->addralign_)
3316 this->addralign_ = addralign;
3317
3318 off_t offset_in_section = this->current_data_size_for_child();
3319 off_t aligned_offset_in_section = align_address(offset_in_section,
3320 addralign);
3321
3322 this->set_current_data_size_for_child(aligned_offset_in_section
3323 + data_size);
3324
3325 this->input_sections_.push_back(sis);
3326
3327 // Update fast lookup maps if necessary.
3328 if (this->lookup_maps_->is_valid())
3329 {
3330 if (sis.is_merge_section())
3331 {
3332 Output_merge_base* pomb = sis.output_merge_base();
3333 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3334 pomb->addralign());
3335 this->lookup_maps_->add_merge_section(msp, pomb);
3336 for (Output_merge_base::Input_sections::const_iterator p =
3337 pomb->input_sections_begin();
3338 p != pomb->input_sections_end();
3339 ++p)
3340 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3341 pomb);
3342 }
3343 else if (sis.is_relaxed_input_section())
3344 {
3345 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3346 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3347 poris->shndx(), poris);
3348 }
3349 }
3350 }
3351
3352 // Save states for relaxation.
3353
3354 void
3355 Output_section::save_states()
3356 {
3357 gold_assert(this->checkpoint_ == NULL);
3358 Checkpoint_output_section* checkpoint =
3359 new Checkpoint_output_section(this->addralign_, this->flags_,
3360 this->input_sections_,
3361 this->first_input_offset_,
3362 this->attached_input_sections_are_sorted_);
3363 this->checkpoint_ = checkpoint;
3364 gold_assert(this->fills_.empty());
3365 }
3366
3367 void
3368 Output_section::discard_states()
3369 {
3370 gold_assert(this->checkpoint_ != NULL);
3371 delete this->checkpoint_;
3372 this->checkpoint_ = NULL;
3373 gold_assert(this->fills_.empty());
3374
3375 // Simply invalidate the fast lookup maps since we do not keep
3376 // track of them.
3377 this->lookup_maps_->invalidate();
3378 }
3379
3380 void
3381 Output_section::restore_states()
3382 {
3383 gold_assert(this->checkpoint_ != NULL);
3384 Checkpoint_output_section* checkpoint = this->checkpoint_;
3385
3386 this->addralign_ = checkpoint->addralign();
3387 this->flags_ = checkpoint->flags();
3388 this->first_input_offset_ = checkpoint->first_input_offset();
3389
3390 if (!checkpoint->input_sections_saved())
3391 {
3392 // If we have not copied the input sections, just resize it.
3393 size_t old_size = checkpoint->input_sections_size();
3394 gold_assert(this->input_sections_.size() >= old_size);
3395 this->input_sections_.resize(old_size);
3396 }
3397 else
3398 {
3399 // We need to copy the whole list. This is not efficient for
3400 // extremely large output with hundreads of thousands of input
3401 // objects. We may need to re-think how we should pass sections
3402 // to scripts.
3403 this->input_sections_ = *checkpoint->input_sections();
3404 }
3405
3406 this->attached_input_sections_are_sorted_ =
3407 checkpoint->attached_input_sections_are_sorted();
3408
3409 // Simply invalidate the fast lookup maps since we do not keep
3410 // track of them.
3411 this->lookup_maps_->invalidate();
3412 }
3413
3414 // Update the section offsets of input sections in this. This is required if
3415 // relaxation causes some input sections to change sizes.
3416
3417 void
3418 Output_section::adjust_section_offsets()
3419 {
3420 if (!this->section_offsets_need_adjustment_)
3421 return;
3422
3423 off_t off = 0;
3424 for (Input_section_list::iterator p = this->input_sections_.begin();
3425 p != this->input_sections_.end();
3426 ++p)
3427 {
3428 off = align_address(off, p->addralign());
3429 if (p->is_input_section())
3430 p->relobj()->set_section_offset(p->shndx(), off);
3431 off += p->data_size();
3432 }
3433
3434 this->section_offsets_need_adjustment_ = false;
3435 }
3436
3437 // Print to the map file.
3438
3439 void
3440 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3441 {
3442 mapfile->print_output_section(this);
3443
3444 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3445 p != this->input_sections_.end();
3446 ++p)
3447 p->print_to_mapfile(mapfile);
3448 }
3449
3450 // Print stats for merge sections to stderr.
3451
3452 void
3453 Output_section::print_merge_stats()
3454 {
3455 Input_section_list::iterator p;
3456 for (p = this->input_sections_.begin();
3457 p != this->input_sections_.end();
3458 ++p)
3459 p->print_merge_stats(this->name_);
3460 }
3461
3462 // Output segment methods.
3463
3464 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3465 : vaddr_(0),
3466 paddr_(0),
3467 memsz_(0),
3468 max_align_(0),
3469 min_p_align_(0),
3470 offset_(0),
3471 filesz_(0),
3472 type_(type),
3473 flags_(flags),
3474 is_max_align_known_(false),
3475 are_addresses_set_(false),
3476 is_large_data_segment_(false)
3477 {
3478 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3479 // the flags.
3480 if (type == elfcpp::PT_TLS)
3481 this->flags_ = elfcpp::PF_R;
3482 }
3483
3484 // Add an Output_section to a PT_LOAD Output_segment.
3485
3486 void
3487 Output_segment::add_output_section_to_load(Layout* layout,
3488 Output_section* os,
3489 elfcpp::Elf_Word seg_flags)
3490 {
3491 gold_assert(this->type() == elfcpp::PT_LOAD);
3492 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3493 gold_assert(!this->is_max_align_known_);
3494 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3495
3496 this->update_flags_for_output_section(seg_flags);
3497
3498 // We don't want to change the ordering if we have a linker script
3499 // with a SECTIONS clause.
3500 Output_section_order order = os->order();
3501 if (layout->script_options()->saw_sections_clause())
3502 order = static_cast<Output_section_order>(0);
3503 else
3504 gold_assert(order != ORDER_INVALID);
3505
3506 this->output_lists_[order].push_back(os);
3507 }
3508
3509 // Add an Output_section to a non-PT_LOAD Output_segment.
3510
3511 void
3512 Output_segment::add_output_section_to_nonload(Output_section* os,
3513 elfcpp::Elf_Word seg_flags)
3514 {
3515 gold_assert(this->type() != elfcpp::PT_LOAD);
3516 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3517 gold_assert(!this->is_max_align_known_);
3518
3519 this->update_flags_for_output_section(seg_flags);
3520
3521 this->output_lists_[0].push_back(os);
3522 }
3523
3524 // Remove an Output_section from this segment. It is an error if it
3525 // is not present.
3526
3527 void
3528 Output_segment::remove_output_section(Output_section* os)
3529 {
3530 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3531 {
3532 Output_data_list* pdl = &this->output_lists_[i];
3533 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3534 {
3535 if (*p == os)
3536 {
3537 pdl->erase(p);
3538 return;
3539 }
3540 }
3541 }
3542 gold_unreachable();
3543 }
3544
3545 // Add an Output_data (which need not be an Output_section) to the
3546 // start of a segment.
3547
3548 void
3549 Output_segment::add_initial_output_data(Output_data* od)
3550 {
3551 gold_assert(!this->is_max_align_known_);
3552 Output_data_list::iterator p = this->output_lists_[0].begin();
3553 this->output_lists_[0].insert(p, od);
3554 }
3555
3556 // Return true if this segment has any sections which hold actual
3557 // data, rather than being a BSS section.
3558
3559 bool
3560 Output_segment::has_any_data_sections() const
3561 {
3562 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3563 {
3564 const Output_data_list* pdl = &this->output_lists_[i];
3565 for (Output_data_list::const_iterator p = pdl->begin();
3566 p != pdl->end();
3567 ++p)
3568 {
3569 if (!(*p)->is_section())
3570 return true;
3571 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3572 return true;
3573 }
3574 }
3575 return false;
3576 }
3577
3578 // Return whether the first data section (not counting TLS sections)
3579 // is a relro section.
3580
3581 bool
3582 Output_segment::is_first_section_relro() const
3583 {
3584 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3585 {
3586 if (i == static_cast<int>(ORDER_TLS_DATA)
3587 || i == static_cast<int>(ORDER_TLS_BSS))
3588 continue;
3589 const Output_data_list* pdl = &this->output_lists_[i];
3590 if (!pdl->empty())
3591 {
3592 Output_data* p = pdl->front();
3593 return p->is_section() && p->output_section()->is_relro();
3594 }
3595 }
3596 return false;
3597 }
3598
3599 // Return the maximum alignment of the Output_data in Output_segment.
3600
3601 uint64_t
3602 Output_segment::maximum_alignment()
3603 {
3604 if (!this->is_max_align_known_)
3605 {
3606 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3607 {
3608 const Output_data_list* pdl = &this->output_lists_[i];
3609 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3610 if (addralign > this->max_align_)
3611 this->max_align_ = addralign;
3612 }
3613 this->is_max_align_known_ = true;
3614 }
3615
3616 return this->max_align_;
3617 }
3618
3619 // Return the maximum alignment of a list of Output_data.
3620
3621 uint64_t
3622 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3623 {
3624 uint64_t ret = 0;
3625 for (Output_data_list::const_iterator p = pdl->begin();
3626 p != pdl->end();
3627 ++p)
3628 {
3629 uint64_t addralign = (*p)->addralign();
3630 if (addralign > ret)
3631 ret = addralign;
3632 }
3633 return ret;
3634 }
3635
3636 // Return whether this segment has any dynamic relocs.
3637
3638 bool
3639 Output_segment::has_dynamic_reloc() const
3640 {
3641 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3642 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3643 return true;
3644 return false;
3645 }
3646
3647 // Return whether this Output_data_list has any dynamic relocs.
3648
3649 bool
3650 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3651 {
3652 for (Output_data_list::const_iterator p = pdl->begin();
3653 p != pdl->end();
3654 ++p)
3655 if ((*p)->has_dynamic_reloc())
3656 return true;
3657 return false;
3658 }
3659
3660 // Set the section addresses for an Output_segment. If RESET is true,
3661 // reset the addresses first. ADDR is the address and *POFF is the
3662 // file offset. Set the section indexes starting with *PSHNDX.
3663 // INCREASE_RELRO is the size of the portion of the first non-relro
3664 // section that should be included in the PT_GNU_RELRO segment.
3665 // If this segment has relro sections, and has been aligned for
3666 // that purpose, set *HAS_RELRO to TRUE. Return the address of
3667 // the immediately following segment. Update *HAS_RELRO, *POFF,
3668 // and *PSHNDX.
3669
3670 uint64_t
3671 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3672 uint64_t addr,
3673 unsigned int increase_relro,
3674 bool* has_relro,
3675 off_t* poff,
3676 unsigned int* pshndx)
3677 {
3678 gold_assert(this->type_ == elfcpp::PT_LOAD);
3679
3680 uint64_t last_relro_pad = 0;
3681 off_t orig_off = *poff;
3682
3683 bool in_tls = false;
3684
3685 // If we have relro sections, we need to pad forward now so that the
3686 // relro sections plus INCREASE_RELRO end on a common page boundary.
3687 if (parameters->options().relro()
3688 && this->is_first_section_relro()
3689 && (!this->are_addresses_set_ || reset))
3690 {
3691 uint64_t relro_size = 0;
3692 off_t off = *poff;
3693 uint64_t max_align = 0;
3694 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
3695 {
3696 Output_data_list* pdl = &this->output_lists_[i];
3697 Output_data_list::iterator p;
3698 for (p = pdl->begin(); p != pdl->end(); ++p)
3699 {
3700 if (!(*p)->is_section())
3701 break;
3702 uint64_t align = (*p)->addralign();
3703 if (align > max_align)
3704 max_align = align;
3705 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3706 in_tls = true;
3707 else if (in_tls)
3708 {
3709 // Align the first non-TLS section to the alignment
3710 // of the TLS segment.
3711 align = max_align;
3712 in_tls = false;
3713 }
3714 relro_size = align_address(relro_size, align);
3715 // Ignore the size of the .tbss section.
3716 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
3717 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
3718 continue;
3719 if ((*p)->is_address_valid())
3720 relro_size += (*p)->data_size();
3721 else
3722 {
3723 // FIXME: This could be faster.
3724 (*p)->set_address_and_file_offset(addr + relro_size,
3725 off + relro_size);
3726 relro_size += (*p)->data_size();
3727 (*p)->reset_address_and_file_offset();
3728 }
3729 }
3730 if (p != pdl->end())
3731 break;
3732 }
3733 relro_size += increase_relro;
3734 // Pad the total relro size to a multiple of the maximum
3735 // section alignment seen.
3736 uint64_t aligned_size = align_address(relro_size, max_align);
3737 // Note the amount of padding added after the last relro section.
3738 last_relro_pad = aligned_size - relro_size;
3739 *has_relro = true;
3740
3741 uint64_t page_align = parameters->target().common_pagesize();
3742
3743 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3744 uint64_t desired_align = page_align - (aligned_size % page_align);
3745 if (desired_align < *poff % page_align)
3746 *poff += page_align - *poff % page_align;
3747 *poff += desired_align - *poff % page_align;
3748 addr += *poff - orig_off;
3749 orig_off = *poff;
3750 }
3751
3752 if (!reset && this->are_addresses_set_)
3753 {
3754 gold_assert(this->paddr_ == addr);
3755 addr = this->vaddr_;
3756 }
3757 else
3758 {
3759 this->vaddr_ = addr;
3760 this->paddr_ = addr;
3761 this->are_addresses_set_ = true;
3762 }
3763
3764 in_tls = false;
3765
3766 this->offset_ = orig_off;
3767
3768 off_t off = 0;
3769 uint64_t ret;
3770 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3771 {
3772 if (i == static_cast<int>(ORDER_RELRO_LAST))
3773 {
3774 *poff += last_relro_pad;
3775 addr += last_relro_pad;
3776 }
3777 addr = this->set_section_list_addresses(layout, reset,
3778 &this->output_lists_[i],
3779 addr, poff, pshndx, &in_tls);
3780 if (i < static_cast<int>(ORDER_SMALL_BSS))
3781 {
3782 this->filesz_ = *poff - orig_off;
3783 off = *poff;
3784 }
3785
3786 ret = addr;
3787 }
3788
3789 // If the last section was a TLS section, align upward to the
3790 // alignment of the TLS segment, so that the overall size of the TLS
3791 // segment is aligned.
3792 if (in_tls)
3793 {
3794 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3795 *poff = align_address(*poff, segment_align);
3796 }
3797
3798 this->memsz_ = *poff - orig_off;
3799
3800 // Ignore the file offset adjustments made by the BSS Output_data
3801 // objects.
3802 *poff = off;
3803
3804 return ret;
3805 }
3806
3807 // Set the addresses and file offsets in a list of Output_data
3808 // structures.
3809
3810 uint64_t
3811 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3812 Output_data_list* pdl,
3813 uint64_t addr, off_t* poff,
3814 unsigned int* pshndx,
3815 bool* in_tls)
3816 {
3817 off_t startoff = *poff;
3818
3819 off_t off = startoff;
3820 for (Output_data_list::iterator p = pdl->begin();
3821 p != pdl->end();
3822 ++p)
3823 {
3824 if (reset)
3825 (*p)->reset_address_and_file_offset();
3826
3827 // When using a linker script the section will most likely
3828 // already have an address.
3829 if (!(*p)->is_address_valid())
3830 {
3831 uint64_t align = (*p)->addralign();
3832
3833 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3834 {
3835 // Give the first TLS section the alignment of the
3836 // entire TLS segment. Otherwise the TLS segment as a
3837 // whole may be misaligned.
3838 if (!*in_tls)
3839 {
3840 Output_segment* tls_segment = layout->tls_segment();
3841 gold_assert(tls_segment != NULL);
3842 uint64_t segment_align = tls_segment->maximum_alignment();
3843 gold_assert(segment_align >= align);
3844 align = segment_align;
3845
3846 *in_tls = true;
3847 }
3848 }
3849 else
3850 {
3851 // If this is the first section after the TLS segment,
3852 // align it to at least the alignment of the TLS
3853 // segment, so that the size of the overall TLS segment
3854 // is aligned.
3855 if (*in_tls)
3856 {
3857 uint64_t segment_align =
3858 layout->tls_segment()->maximum_alignment();
3859 if (segment_align > align)
3860 align = segment_align;
3861
3862 *in_tls = false;
3863 }
3864 }
3865
3866 off = align_address(off, align);
3867 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3868 }
3869 else
3870 {
3871 // The script may have inserted a skip forward, but it
3872 // better not have moved backward.
3873 if ((*p)->address() >= addr + (off - startoff))
3874 off += (*p)->address() - (addr + (off - startoff));
3875 else
3876 {
3877 if (!layout->script_options()->saw_sections_clause())
3878 gold_unreachable();
3879 else
3880 {
3881 Output_section* os = (*p)->output_section();
3882
3883 // Cast to unsigned long long to avoid format warnings.
3884 unsigned long long previous_dot =
3885 static_cast<unsigned long long>(addr + (off - startoff));
3886 unsigned long long dot =
3887 static_cast<unsigned long long>((*p)->address());
3888
3889 if (os == NULL)
3890 gold_error(_("dot moves backward in linker script "
3891 "from 0x%llx to 0x%llx"), previous_dot, dot);
3892 else
3893 gold_error(_("address of section '%s' moves backward "
3894 "from 0x%llx to 0x%llx"),
3895 os->name(), previous_dot, dot);
3896 }
3897 }
3898 (*p)->set_file_offset(off);
3899 (*p)->finalize_data_size();
3900 }
3901
3902 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3903 // section. Such a section does not affect the size of a
3904 // PT_LOAD segment.
3905 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3906 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3907 off += (*p)->data_size();
3908
3909 if ((*p)->is_section())
3910 {
3911 (*p)->set_out_shndx(*pshndx);
3912 ++*pshndx;
3913 }
3914 }
3915
3916 *poff = off;
3917 return addr + (off - startoff);
3918 }
3919
3920 // For a non-PT_LOAD segment, set the offset from the sections, if
3921 // any. Add INCREASE to the file size and the memory size.
3922
3923 void
3924 Output_segment::set_offset(unsigned int increase)
3925 {
3926 gold_assert(this->type_ != elfcpp::PT_LOAD);
3927
3928 gold_assert(!this->are_addresses_set_);
3929
3930 // A non-load section only uses output_lists_[0].
3931
3932 Output_data_list* pdl = &this->output_lists_[0];
3933
3934 if (pdl->empty())
3935 {
3936 gold_assert(increase == 0);
3937 this->vaddr_ = 0;
3938 this->paddr_ = 0;
3939 this->are_addresses_set_ = true;
3940 this->memsz_ = 0;
3941 this->min_p_align_ = 0;
3942 this->offset_ = 0;
3943 this->filesz_ = 0;
3944 return;
3945 }
3946
3947 // Find the first and last section by address.
3948 const Output_data* first = NULL;
3949 const Output_data* last_data = NULL;
3950 const Output_data* last_bss = NULL;
3951 for (Output_data_list::const_iterator p = pdl->begin();
3952 p != pdl->end();
3953 ++p)
3954 {
3955 if (first == NULL
3956 || (*p)->address() < first->address()
3957 || ((*p)->address() == first->address()
3958 && (*p)->data_size() < first->data_size()))
3959 first = *p;
3960 const Output_data** plast;
3961 if ((*p)->is_section()
3962 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
3963 plast = &last_bss;
3964 else
3965 plast = &last_data;
3966 if (*plast == NULL
3967 || (*p)->address() > (*plast)->address()
3968 || ((*p)->address() == (*plast)->address()
3969 && (*p)->data_size() > (*plast)->data_size()))
3970 *plast = *p;
3971 }
3972
3973 this->vaddr_ = first->address();
3974 this->paddr_ = (first->has_load_address()
3975 ? first->load_address()
3976 : this->vaddr_);
3977 this->are_addresses_set_ = true;
3978 this->offset_ = first->offset();
3979
3980 if (last_data == NULL)
3981 this->filesz_ = 0;
3982 else
3983 this->filesz_ = (last_data->address()
3984 + last_data->data_size()
3985 - this->vaddr_);
3986
3987 const Output_data* last = last_bss != NULL ? last_bss : last_data;
3988 this->memsz_ = (last->address()
3989 + last->data_size()
3990 - this->vaddr_);
3991
3992 this->filesz_ += increase;
3993 this->memsz_ += increase;
3994
3995 // If this is a TLS segment, align the memory size. The code in
3996 // set_section_list ensures that the section after the TLS segment
3997 // is aligned to give us room.
3998 if (this->type_ == elfcpp::PT_TLS)
3999 {
4000 uint64_t segment_align = this->maximum_alignment();
4001 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4002 this->memsz_ = align_address(this->memsz_, segment_align);
4003 }
4004 }
4005
4006 // Set the TLS offsets of the sections in the PT_TLS segment.
4007
4008 void
4009 Output_segment::set_tls_offsets()
4010 {
4011 gold_assert(this->type_ == elfcpp::PT_TLS);
4012
4013 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4014 p != this->output_lists_[0].end();
4015 ++p)
4016 (*p)->set_tls_offset(this->vaddr_);
4017 }
4018
4019 // Return the load address of the first section.
4020
4021 uint64_t
4022 Output_segment::first_section_load_address() const
4023 {
4024 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4025 {
4026 const Output_data_list* pdl = &this->output_lists_[i];
4027 for (Output_data_list::const_iterator p = pdl->begin();
4028 p != pdl->end();
4029 ++p)
4030 {
4031 if ((*p)->is_section())
4032 return ((*p)->has_load_address()
4033 ? (*p)->load_address()
4034 : (*p)->address());
4035 }
4036 }
4037 gold_unreachable();
4038 }
4039
4040 // Return the number of Output_sections in an Output_segment.
4041
4042 unsigned int
4043 Output_segment::output_section_count() const
4044 {
4045 unsigned int ret = 0;
4046 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4047 ret += this->output_section_count_list(&this->output_lists_[i]);
4048 return ret;
4049 }
4050
4051 // Return the number of Output_sections in an Output_data_list.
4052
4053 unsigned int
4054 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4055 {
4056 unsigned int count = 0;
4057 for (Output_data_list::const_iterator p = pdl->begin();
4058 p != pdl->end();
4059 ++p)
4060 {
4061 if ((*p)->is_section())
4062 ++count;
4063 }
4064 return count;
4065 }
4066
4067 // Return the section attached to the list segment with the lowest
4068 // load address. This is used when handling a PHDRS clause in a
4069 // linker script.
4070
4071 Output_section*
4072 Output_segment::section_with_lowest_load_address() const
4073 {
4074 Output_section* found = NULL;
4075 uint64_t found_lma = 0;
4076 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4077 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4078 &found_lma);
4079 return found;
4080 }
4081
4082 // Look through a list for a section with a lower load address.
4083
4084 void
4085 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4086 Output_section** found,
4087 uint64_t* found_lma) const
4088 {
4089 for (Output_data_list::const_iterator p = pdl->begin();
4090 p != pdl->end();
4091 ++p)
4092 {
4093 if (!(*p)->is_section())
4094 continue;
4095 Output_section* os = static_cast<Output_section*>(*p);
4096 uint64_t lma = (os->has_load_address()
4097 ? os->load_address()
4098 : os->address());
4099 if (*found == NULL || lma < *found_lma)
4100 {
4101 *found = os;
4102 *found_lma = lma;
4103 }
4104 }
4105 }
4106
4107 // Write the segment data into *OPHDR.
4108
4109 template<int size, bool big_endian>
4110 void
4111 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4112 {
4113 ophdr->put_p_type(this->type_);
4114 ophdr->put_p_offset(this->offset_);
4115 ophdr->put_p_vaddr(this->vaddr_);
4116 ophdr->put_p_paddr(this->paddr_);
4117 ophdr->put_p_filesz(this->filesz_);
4118 ophdr->put_p_memsz(this->memsz_);
4119 ophdr->put_p_flags(this->flags_);
4120 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4121 }
4122
4123 // Write the section headers into V.
4124
4125 template<int size, bool big_endian>
4126 unsigned char*
4127 Output_segment::write_section_headers(const Layout* layout,
4128 const Stringpool* secnamepool,
4129 unsigned char* v,
4130 unsigned int* pshndx) const
4131 {
4132 // Every section that is attached to a segment must be attached to a
4133 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4134 // segments.
4135 if (this->type_ != elfcpp::PT_LOAD)
4136 return v;
4137
4138 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4139 {
4140 const Output_data_list* pdl = &this->output_lists_[i];
4141 v = this->write_section_headers_list<size, big_endian>(layout,
4142 secnamepool,
4143 pdl,
4144 v, pshndx);
4145 }
4146
4147 return v;
4148 }
4149
4150 template<int size, bool big_endian>
4151 unsigned char*
4152 Output_segment::write_section_headers_list(const Layout* layout,
4153 const Stringpool* secnamepool,
4154 const Output_data_list* pdl,
4155 unsigned char* v,
4156 unsigned int* pshndx) const
4157 {
4158 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4159 for (Output_data_list::const_iterator p = pdl->begin();
4160 p != pdl->end();
4161 ++p)
4162 {
4163 if ((*p)->is_section())
4164 {
4165 const Output_section* ps = static_cast<const Output_section*>(*p);
4166 gold_assert(*pshndx == ps->out_shndx());
4167 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4168 ps->write_header(layout, secnamepool, &oshdr);
4169 v += shdr_size;
4170 ++*pshndx;
4171 }
4172 }
4173 return v;
4174 }
4175
4176 // Print the output sections to the map file.
4177
4178 void
4179 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4180 {
4181 if (this->type() != elfcpp::PT_LOAD)
4182 return;
4183 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4184 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4185 }
4186
4187 // Print an output section list to the map file.
4188
4189 void
4190 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4191 const Output_data_list* pdl) const
4192 {
4193 for (Output_data_list::const_iterator p = pdl->begin();
4194 p != pdl->end();
4195 ++p)
4196 (*p)->print_to_mapfile(mapfile);
4197 }
4198
4199 // Output_file methods.
4200
4201 Output_file::Output_file(const char* name)
4202 : name_(name),
4203 o_(-1),
4204 file_size_(0),
4205 base_(NULL),
4206 map_is_anonymous_(false),
4207 is_temporary_(false)
4208 {
4209 }
4210
4211 // Try to open an existing file. Returns false if the file doesn't
4212 // exist, has a size of 0 or can't be mmapped.
4213
4214 bool
4215 Output_file::open_for_modification()
4216 {
4217 // The name "-" means "stdout".
4218 if (strcmp(this->name_, "-") == 0)
4219 return false;
4220
4221 // Don't bother opening files with a size of zero.
4222 struct stat s;
4223 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4224 return false;
4225
4226 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4227 if (o < 0)
4228 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4229 this->o_ = o;
4230 this->file_size_ = s.st_size;
4231
4232 // If the file can't be mmapped, copying the content to an anonymous
4233 // map will probably negate the performance benefits of incremental
4234 // linking. This could be helped by using views and loading only
4235 // the necessary parts, but this is not supported as of now.
4236 if (!this->map_no_anonymous())
4237 {
4238 release_descriptor(o, true);
4239 this->o_ = -1;
4240 this->file_size_ = 0;
4241 return false;
4242 }
4243
4244 return true;
4245 }
4246
4247 // Open the output file.
4248
4249 void
4250 Output_file::open(off_t file_size)
4251 {
4252 this->file_size_ = file_size;
4253
4254 // Unlink the file first; otherwise the open() may fail if the file
4255 // is busy (e.g. it's an executable that's currently being executed).
4256 //
4257 // However, the linker may be part of a system where a zero-length
4258 // file is created for it to write to, with tight permissions (gcc
4259 // 2.95 did something like this). Unlinking the file would work
4260 // around those permission controls, so we only unlink if the file
4261 // has a non-zero size. We also unlink only regular files to avoid
4262 // trouble with directories/etc.
4263 //
4264 // If we fail, continue; this command is merely a best-effort attempt
4265 // to improve the odds for open().
4266
4267 // We let the name "-" mean "stdout"
4268 if (!this->is_temporary_)
4269 {
4270 if (strcmp(this->name_, "-") == 0)
4271 this->o_ = STDOUT_FILENO;
4272 else
4273 {
4274 struct stat s;
4275 if (::stat(this->name_, &s) == 0
4276 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4277 {
4278 if (s.st_size != 0)
4279 ::unlink(this->name_);
4280 else if (!parameters->options().relocatable())
4281 {
4282 // If we don't unlink the existing file, add execute
4283 // permission where read permissions already exist
4284 // and where the umask permits.
4285 int mask = ::umask(0);
4286 ::umask(mask);
4287 s.st_mode |= (s.st_mode & 0444) >> 2;
4288 ::chmod(this->name_, s.st_mode & ~mask);
4289 }
4290 }
4291
4292 int mode = parameters->options().relocatable() ? 0666 : 0777;
4293 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4294 mode);
4295 if (o < 0)
4296 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4297 this->o_ = o;
4298 }
4299 }
4300
4301 this->map();
4302 }
4303
4304 // Resize the output file.
4305
4306 void
4307 Output_file::resize(off_t file_size)
4308 {
4309 // If the mmap is mapping an anonymous memory buffer, this is easy:
4310 // just mremap to the new size. If it's mapping to a file, we want
4311 // to unmap to flush to the file, then remap after growing the file.
4312 if (this->map_is_anonymous_)
4313 {
4314 void* base = ::mremap(this->base_, this->file_size_, file_size,
4315 MREMAP_MAYMOVE);
4316 if (base == MAP_FAILED)
4317 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4318 this->base_ = static_cast<unsigned char*>(base);
4319 this->file_size_ = file_size;
4320 }
4321 else
4322 {
4323 this->unmap();
4324 this->file_size_ = file_size;
4325 if (!this->map_no_anonymous())
4326 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4327 }
4328 }
4329
4330 // Map an anonymous block of memory which will later be written to the
4331 // file. Return whether the map succeeded.
4332
4333 bool
4334 Output_file::map_anonymous()
4335 {
4336 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4337 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4338 if (base != MAP_FAILED)
4339 {
4340 this->map_is_anonymous_ = true;
4341 this->base_ = static_cast<unsigned char*>(base);
4342 return true;
4343 }
4344 return false;
4345 }
4346
4347 // Map the file into memory. Return whether the mapping succeeded.
4348
4349 bool
4350 Output_file::map_no_anonymous()
4351 {
4352 const int o = this->o_;
4353
4354 // If the output file is not a regular file, don't try to mmap it;
4355 // instead, we'll mmap a block of memory (an anonymous buffer), and
4356 // then later write the buffer to the file.
4357 void* base;
4358 struct stat statbuf;
4359 if (o == STDOUT_FILENO || o == STDERR_FILENO
4360 || ::fstat(o, &statbuf) != 0
4361 || !S_ISREG(statbuf.st_mode)
4362 || this->is_temporary_)
4363 return false;
4364
4365 // Ensure that we have disk space available for the file. If we
4366 // don't do this, it is possible that we will call munmap, close,
4367 // and exit with dirty buffers still in the cache with no assigned
4368 // disk blocks. If the disk is out of space at that point, the
4369 // output file will wind up incomplete, but we will have already
4370 // exited. The alternative to fallocate would be to use fdatasync,
4371 // but that would be a more significant performance hit.
4372 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4373 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4374
4375 // Map the file into memory.
4376 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4377 MAP_SHARED, o, 0);
4378
4379 // The mmap call might fail because of file system issues: the file
4380 // system might not support mmap at all, or it might not support
4381 // mmap with PROT_WRITE.
4382 if (base == MAP_FAILED)
4383 return false;
4384
4385 this->map_is_anonymous_ = false;
4386 this->base_ = static_cast<unsigned char*>(base);
4387 return true;
4388 }
4389
4390 // Map the file into memory.
4391
4392 void
4393 Output_file::map()
4394 {
4395 if (this->map_no_anonymous())
4396 return;
4397
4398 // The mmap call might fail because of file system issues: the file
4399 // system might not support mmap at all, or it might not support
4400 // mmap with PROT_WRITE. I'm not sure which errno values we will
4401 // see in all cases, so if the mmap fails for any reason and we
4402 // don't care about file contents, try for an anonymous map.
4403 if (this->map_anonymous())
4404 return;
4405
4406 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4407 this->name_, static_cast<unsigned long>(this->file_size_),
4408 strerror(errno));
4409 }
4410
4411 // Unmap the file from memory.
4412
4413 void
4414 Output_file::unmap()
4415 {
4416 if (::munmap(this->base_, this->file_size_) < 0)
4417 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4418 this->base_ = NULL;
4419 }
4420
4421 // Close the output file.
4422
4423 void
4424 Output_file::close()
4425 {
4426 // If the map isn't file-backed, we need to write it now.
4427 if (this->map_is_anonymous_ && !this->is_temporary_)
4428 {
4429 size_t bytes_to_write = this->file_size_;
4430 size_t offset = 0;
4431 while (bytes_to_write > 0)
4432 {
4433 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4434 bytes_to_write);
4435 if (bytes_written == 0)
4436 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4437 else if (bytes_written < 0)
4438 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4439 else
4440 {
4441 bytes_to_write -= bytes_written;
4442 offset += bytes_written;
4443 }
4444 }
4445 }
4446 this->unmap();
4447
4448 // We don't close stdout or stderr
4449 if (this->o_ != STDOUT_FILENO
4450 && this->o_ != STDERR_FILENO
4451 && !this->is_temporary_)
4452 if (::close(this->o_) < 0)
4453 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4454 this->o_ = -1;
4455 }
4456
4457 // Instantiate the templates we need. We could use the configure
4458 // script to restrict this to only the ones for implemented targets.
4459
4460 #ifdef HAVE_TARGET_32_LITTLE
4461 template
4462 off_t
4463 Output_section::add_input_section<32, false>(
4464 Layout* layout,
4465 Sized_relobj<32, false>* object,
4466 unsigned int shndx,
4467 const char* secname,
4468 const elfcpp::Shdr<32, false>& shdr,
4469 unsigned int reloc_shndx,
4470 bool have_sections_script);
4471 #endif
4472
4473 #ifdef HAVE_TARGET_32_BIG
4474 template
4475 off_t
4476 Output_section::add_input_section<32, true>(
4477 Layout* layout,
4478 Sized_relobj<32, true>* object,
4479 unsigned int shndx,
4480 const char* secname,
4481 const elfcpp::Shdr<32, true>& shdr,
4482 unsigned int reloc_shndx,
4483 bool have_sections_script);
4484 #endif
4485
4486 #ifdef HAVE_TARGET_64_LITTLE
4487 template
4488 off_t
4489 Output_section::add_input_section<64, false>(
4490 Layout* layout,
4491 Sized_relobj<64, false>* object,
4492 unsigned int shndx,
4493 const char* secname,
4494 const elfcpp::Shdr<64, false>& shdr,
4495 unsigned int reloc_shndx,
4496 bool have_sections_script);
4497 #endif
4498
4499 #ifdef HAVE_TARGET_64_BIG
4500 template
4501 off_t
4502 Output_section::add_input_section<64, true>(
4503 Layout* layout,
4504 Sized_relobj<64, true>* object,
4505 unsigned int shndx,
4506 const char* secname,
4507 const elfcpp::Shdr<64, true>& shdr,
4508 unsigned int reloc_shndx,
4509 bool have_sections_script);
4510 #endif
4511
4512 #ifdef HAVE_TARGET_32_LITTLE
4513 template
4514 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4515 #endif
4516
4517 #ifdef HAVE_TARGET_32_BIG
4518 template
4519 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4520 #endif
4521
4522 #ifdef HAVE_TARGET_64_LITTLE
4523 template
4524 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4525 #endif
4526
4527 #ifdef HAVE_TARGET_64_BIG
4528 template
4529 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4530 #endif
4531
4532 #ifdef HAVE_TARGET_32_LITTLE
4533 template
4534 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4535 #endif
4536
4537 #ifdef HAVE_TARGET_32_BIG
4538 template
4539 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4540 #endif
4541
4542 #ifdef HAVE_TARGET_64_LITTLE
4543 template
4544 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4545 #endif
4546
4547 #ifdef HAVE_TARGET_64_BIG
4548 template
4549 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4550 #endif
4551
4552 #ifdef HAVE_TARGET_32_LITTLE
4553 template
4554 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4555 #endif
4556
4557 #ifdef HAVE_TARGET_32_BIG
4558 template
4559 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4560 #endif
4561
4562 #ifdef HAVE_TARGET_64_LITTLE
4563 template
4564 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4565 #endif
4566
4567 #ifdef HAVE_TARGET_64_BIG
4568 template
4569 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4570 #endif
4571
4572 #ifdef HAVE_TARGET_32_LITTLE
4573 template
4574 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4575 #endif
4576
4577 #ifdef HAVE_TARGET_32_BIG
4578 template
4579 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4580 #endif
4581
4582 #ifdef HAVE_TARGET_64_LITTLE
4583 template
4584 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4585 #endif
4586
4587 #ifdef HAVE_TARGET_64_BIG
4588 template
4589 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4590 #endif
4591
4592 #ifdef HAVE_TARGET_32_LITTLE
4593 template
4594 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4595 #endif
4596
4597 #ifdef HAVE_TARGET_32_BIG
4598 template
4599 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4600 #endif
4601
4602 #ifdef HAVE_TARGET_64_LITTLE
4603 template
4604 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4605 #endif
4606
4607 #ifdef HAVE_TARGET_64_BIG
4608 template
4609 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4610 #endif
4611
4612 #ifdef HAVE_TARGET_32_LITTLE
4613 template
4614 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4615 #endif
4616
4617 #ifdef HAVE_TARGET_32_BIG
4618 template
4619 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4620 #endif
4621
4622 #ifdef HAVE_TARGET_64_LITTLE
4623 template
4624 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4625 #endif
4626
4627 #ifdef HAVE_TARGET_64_BIG
4628 template
4629 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4630 #endif
4631
4632 #ifdef HAVE_TARGET_32_LITTLE
4633 template
4634 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4635 #endif
4636
4637 #ifdef HAVE_TARGET_32_BIG
4638 template
4639 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4640 #endif
4641
4642 #ifdef HAVE_TARGET_64_LITTLE
4643 template
4644 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4645 #endif
4646
4647 #ifdef HAVE_TARGET_64_BIG
4648 template
4649 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4650 #endif
4651
4652 #ifdef HAVE_TARGET_32_LITTLE
4653 template
4654 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4655 #endif
4656
4657 #ifdef HAVE_TARGET_32_BIG
4658 template
4659 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4660 #endif
4661
4662 #ifdef HAVE_TARGET_64_LITTLE
4663 template
4664 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4665 #endif
4666
4667 #ifdef HAVE_TARGET_64_BIG
4668 template
4669 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4670 #endif
4671
4672 #ifdef HAVE_TARGET_32_LITTLE
4673 template
4674 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4675 #endif
4676
4677 #ifdef HAVE_TARGET_32_BIG
4678 template
4679 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4680 #endif
4681
4682 #ifdef HAVE_TARGET_64_LITTLE
4683 template
4684 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4685 #endif
4686
4687 #ifdef HAVE_TARGET_64_BIG
4688 template
4689 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4690 #endif
4691
4692 #ifdef HAVE_TARGET_32_LITTLE
4693 template
4694 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4695 #endif
4696
4697 #ifdef HAVE_TARGET_32_BIG
4698 template
4699 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4700 #endif
4701
4702 #ifdef HAVE_TARGET_64_LITTLE
4703 template
4704 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4705 #endif
4706
4707 #ifdef HAVE_TARGET_64_BIG
4708 template
4709 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4710 #endif
4711
4712 #ifdef HAVE_TARGET_32_LITTLE
4713 template
4714 class Output_data_group<32, false>;
4715 #endif
4716
4717 #ifdef HAVE_TARGET_32_BIG
4718 template
4719 class Output_data_group<32, true>;
4720 #endif
4721
4722 #ifdef HAVE_TARGET_64_LITTLE
4723 template
4724 class Output_data_group<64, false>;
4725 #endif
4726
4727 #ifdef HAVE_TARGET_64_BIG
4728 template
4729 class Output_data_group<64, true>;
4730 #endif
4731
4732 #ifdef HAVE_TARGET_32_LITTLE
4733 template
4734 class Output_data_got<32, false>;
4735 #endif
4736
4737 #ifdef HAVE_TARGET_32_BIG
4738 template
4739 class Output_data_got<32, true>;
4740 #endif
4741
4742 #ifdef HAVE_TARGET_64_LITTLE
4743 template
4744 class Output_data_got<64, false>;
4745 #endif
4746
4747 #ifdef HAVE_TARGET_64_BIG
4748 template
4749 class Output_data_got<64, true>;
4750 #endif
4751
4752 } // End namespace gold.
This page took 0.12049 seconds and 5 git commands to generate.