PR 11866
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Return the object for an input section.
1753
1754 Relobj*
1755 Output_section::Input_section::relobj() const
1756 {
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768 }
1769
1770 // Return the input section index for an input section.
1771
1772 unsigned int
1773 Output_section::Input_section::shndx() const
1774 {
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786 }
1787
1788 // Set the address and file offset.
1789
1790 void
1791 Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
1795 {
1796 if (this->is_input_section())
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
1799 else
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801 }
1802
1803 // Reset the address and file offset.
1804
1805 void
1806 Output_section::Input_section::reset_address_and_file_offset()
1807 {
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810 }
1811
1812 // Finalize the data size.
1813
1814 void
1815 Output_section::Input_section::finalize_data_size()
1816 {
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
1819 }
1820
1821 // Try to turn an input offset into an output offset. We want to
1822 // return the output offset relative to the start of this
1823 // Input_section in the output section.
1824
1825 inline bool
1826 Output_section::Input_section::output_offset(
1827 const Relobj* object,
1828 unsigned int shndx,
1829 section_offset_type offset,
1830 section_offset_type *poutput) const
1831 {
1832 if (!this->is_input_section())
1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1834 else
1835 {
1836 if (this->shndx_ != shndx || this->u2_.object != object)
1837 return false;
1838 *poutput = offset;
1839 return true;
1840 }
1841 }
1842
1843 // Return whether this is the merge section for the input section
1844 // SHNDX in OBJECT.
1845
1846 inline bool
1847 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1848 unsigned int shndx) const
1849 {
1850 if (this->is_input_section())
1851 return false;
1852 return this->u2_.posd->is_merge_section_for(object, shndx);
1853 }
1854
1855 // Write out the data. We don't have to do anything for an input
1856 // section--they are handled via Object::relocate--but this is where
1857 // we write out the data for an Output_section_data.
1858
1859 void
1860 Output_section::Input_section::write(Output_file* of)
1861 {
1862 if (!this->is_input_section())
1863 this->u2_.posd->write(of);
1864 }
1865
1866 // Write the data to a buffer. As for write(), we don't have to do
1867 // anything for an input section.
1868
1869 void
1870 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871 {
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874 }
1875
1876 // Print to a map file.
1877
1878 void
1879 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880 {
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901 }
1902
1903 // Output_section methods.
1904
1905 // Construct an Output_section. NAME will point into a Stringpool.
1906
1907 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
1910 addralign_(0),
1911 entsize_(0),
1912 load_address_(0),
1913 link_section_(NULL),
1914 link_(0),
1915 info_section_(NULL),
1916 info_symndx_(NULL),
1917 info_(0),
1918 type_(type),
1919 flags_(flags),
1920 out_shndx_(-1U),
1921 symtab_index_(0),
1922 dynsym_index_(0),
1923 input_sections_(),
1924 first_input_offset_(0),
1925 fills_(),
1926 postprocessing_buffer_(NULL),
1927 needs_symtab_index_(false),
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
1930 should_link_to_dynsym_(false),
1931 after_input_sections_(false),
1932 requires_postprocessing_(false),
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
1935 info_uses_section_index_(false),
1936 input_section_order_specified_(false),
1937 may_sort_attached_input_sections_(false),
1938 must_sort_attached_input_sections_(false),
1939 attached_input_sections_are_sorted_(false),
1940 is_relro_(false),
1941 is_relro_local_(false),
1942 is_last_relro_(false),
1943 is_first_non_relro_(false),
1944 is_small_section_(false),
1945 is_large_section_(false),
1946 is_interp_(false),
1947 is_dynamic_linker_section_(false),
1948 generate_code_fills_at_write_(false),
1949 is_entsize_zero_(false),
1950 section_offsets_need_adjustment_(false),
1951 is_noload_(false),
1952 always_keeps_input_sections_(false),
1953 tls_offset_(0),
1954 checkpoint_(NULL),
1955 lookup_maps_(new Output_section_lookup_maps)
1956 {
1957 // An unallocated section has no address. Forcing this means that
1958 // we don't need special treatment for symbols defined in debug
1959 // sections.
1960 if ((flags & elfcpp::SHF_ALLOC) == 0)
1961 this->set_address(0);
1962 }
1963
1964 Output_section::~Output_section()
1965 {
1966 delete this->checkpoint_;
1967 }
1968
1969 // Set the entry size.
1970
1971 void
1972 Output_section::set_entsize(uint64_t v)
1973 {
1974 if (this->is_entsize_zero_)
1975 ;
1976 else if (this->entsize_ == 0)
1977 this->entsize_ = v;
1978 else if (this->entsize_ != v)
1979 {
1980 this->entsize_ = 0;
1981 this->is_entsize_zero_ = 1;
1982 }
1983 }
1984
1985 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1986 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1987 // relocation section which applies to this section, or 0 if none, or
1988 // -1U if more than one. Return the offset of the input section
1989 // within the output section. Return -1 if the input section will
1990 // receive special handling. In the normal case we don't always keep
1991 // track of input sections for an Output_section. Instead, each
1992 // Object keeps track of the Output_section for each of its input
1993 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1994 // track of input sections here; this is used when SECTIONS appears in
1995 // a linker script.
1996
1997 template<int size, bool big_endian>
1998 off_t
1999 Output_section::add_input_section(Layout* layout,
2000 Sized_relobj<size, big_endian>* object,
2001 unsigned int shndx,
2002 const char* secname,
2003 const elfcpp::Shdr<size, big_endian>& shdr,
2004 unsigned int reloc_shndx,
2005 bool have_sections_script)
2006 {
2007 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2008 if ((addralign & (addralign - 1)) != 0)
2009 {
2010 object->error(_("invalid alignment %lu for section \"%s\""),
2011 static_cast<unsigned long>(addralign), secname);
2012 addralign = 1;
2013 }
2014
2015 if (addralign > this->addralign_)
2016 this->addralign_ = addralign;
2017
2018 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2019 uint64_t entsize = shdr.get_sh_entsize();
2020
2021 // .debug_str is a mergeable string section, but is not always so
2022 // marked by compilers. Mark manually here so we can optimize.
2023 if (strcmp(secname, ".debug_str") == 0)
2024 {
2025 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2026 entsize = 1;
2027 }
2028
2029 this->update_flags_for_input_section(sh_flags);
2030 this->set_entsize(entsize);
2031
2032 // If this is a SHF_MERGE section, we pass all the input sections to
2033 // a Output_data_merge. We don't try to handle relocations for such
2034 // a section. We don't try to handle empty merge sections--they
2035 // mess up the mappings, and are useless anyhow.
2036 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2037 && reloc_shndx == 0
2038 && shdr.get_sh_size() > 0)
2039 {
2040 // Keep information about merged input sections for rebuilding fast
2041 // lookup maps if we have sections-script or we do relaxation.
2042 bool keeps_input_sections = (this->always_keeps_input_sections_
2043 || have_sections_script
2044 || parameters->target().may_relax());
2045
2046 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2047 addralign, keeps_input_sections))
2048 {
2049 // Tell the relocation routines that they need to call the
2050 // output_offset method to determine the final address.
2051 return -1;
2052 }
2053 }
2054
2055 off_t offset_in_section = this->current_data_size_for_child();
2056 off_t aligned_offset_in_section = align_address(offset_in_section,
2057 addralign);
2058
2059 // Determine if we want to delay code-fill generation until the output
2060 // section is written. When the target is relaxing, we want to delay fill
2061 // generating to avoid adjusting them during relaxation.
2062 if (!this->generate_code_fills_at_write_
2063 && !have_sections_script
2064 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2065 && parameters->target().has_code_fill()
2066 && parameters->target().may_relax())
2067 {
2068 gold_assert(this->fills_.empty());
2069 this->generate_code_fills_at_write_ = true;
2070 }
2071
2072 if (aligned_offset_in_section > offset_in_section
2073 && !this->generate_code_fills_at_write_
2074 && !have_sections_script
2075 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2076 && parameters->target().has_code_fill())
2077 {
2078 // We need to add some fill data. Using fill_list_ when
2079 // possible is an optimization, since we will often have fill
2080 // sections without input sections.
2081 off_t fill_len = aligned_offset_in_section - offset_in_section;
2082 if (this->input_sections_.empty())
2083 this->fills_.push_back(Fill(offset_in_section, fill_len));
2084 else
2085 {
2086 std::string fill_data(parameters->target().code_fill(fill_len));
2087 Output_data_const* odc = new Output_data_const(fill_data, 1);
2088 this->input_sections_.push_back(Input_section(odc));
2089 }
2090 }
2091
2092 section_size_type input_section_size = shdr.get_sh_size();
2093 section_size_type uncompressed_size;
2094 if (object->section_is_compressed(shndx, &uncompressed_size))
2095 input_section_size = uncompressed_size;
2096
2097 this->set_current_data_size_for_child(aligned_offset_in_section
2098 + input_section_size);
2099
2100 // We need to keep track of this section if we are already keeping
2101 // track of sections, or if we are relaxing. Also, if this is a
2102 // section which requires sorting, or which may require sorting in
2103 // the future, we keep track of the sections. If the
2104 // --section-ordering-file option is used to specify the order of
2105 // sections, we need to keep track of sections.
2106 if (this->always_keeps_input_sections_
2107 || have_sections_script
2108 || !this->input_sections_.empty()
2109 || this->may_sort_attached_input_sections()
2110 || this->must_sort_attached_input_sections()
2111 || parameters->options().user_set_Map()
2112 || parameters->target().may_relax()
2113 || parameters->options().section_ordering_file())
2114 {
2115 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2116 if (parameters->options().section_ordering_file())
2117 {
2118 unsigned int section_order_index =
2119 layout->find_section_order_index(std::string(secname));
2120 if (section_order_index != 0)
2121 {
2122 isecn.set_section_order_index(section_order_index);
2123 this->set_input_section_order_specified();
2124 }
2125 }
2126 this->input_sections_.push_back(isecn);
2127 }
2128
2129 return aligned_offset_in_section;
2130 }
2131
2132 // Add arbitrary data to an output section.
2133
2134 void
2135 Output_section::add_output_section_data(Output_section_data* posd)
2136 {
2137 Input_section inp(posd);
2138 this->add_output_section_data(&inp);
2139
2140 if (posd->is_data_size_valid())
2141 {
2142 off_t offset_in_section = this->current_data_size_for_child();
2143 off_t aligned_offset_in_section = align_address(offset_in_section,
2144 posd->addralign());
2145 this->set_current_data_size_for_child(aligned_offset_in_section
2146 + posd->data_size());
2147 }
2148 }
2149
2150 // Add a relaxed input section.
2151
2152 void
2153 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2154 {
2155 Input_section inp(poris);
2156 this->add_output_section_data(&inp);
2157 if (this->lookup_maps_->is_valid())
2158 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2159 poris->shndx(), poris);
2160
2161 // For a relaxed section, we use the current data size. Linker scripts
2162 // get all the input sections, including relaxed one from an output
2163 // section and add them back to them same output section to compute the
2164 // output section size. If we do not account for sizes of relaxed input
2165 // sections, an output section would be incorrectly sized.
2166 off_t offset_in_section = this->current_data_size_for_child();
2167 off_t aligned_offset_in_section = align_address(offset_in_section,
2168 poris->addralign());
2169 this->set_current_data_size_for_child(aligned_offset_in_section
2170 + poris->current_data_size());
2171 }
2172
2173 // Add arbitrary data to an output section by Input_section.
2174
2175 void
2176 Output_section::add_output_section_data(Input_section* inp)
2177 {
2178 if (this->input_sections_.empty())
2179 this->first_input_offset_ = this->current_data_size_for_child();
2180
2181 this->input_sections_.push_back(*inp);
2182
2183 uint64_t addralign = inp->addralign();
2184 if (addralign > this->addralign_)
2185 this->addralign_ = addralign;
2186
2187 inp->set_output_section(this);
2188 }
2189
2190 // Add a merge section to an output section.
2191
2192 void
2193 Output_section::add_output_merge_section(Output_section_data* posd,
2194 bool is_string, uint64_t entsize)
2195 {
2196 Input_section inp(posd, is_string, entsize);
2197 this->add_output_section_data(&inp);
2198 }
2199
2200 // Add an input section to a SHF_MERGE section.
2201
2202 bool
2203 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2204 uint64_t flags, uint64_t entsize,
2205 uint64_t addralign,
2206 bool keeps_input_sections)
2207 {
2208 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2209
2210 // We only merge strings if the alignment is not more than the
2211 // character size. This could be handled, but it's unusual.
2212 if (is_string && addralign > entsize)
2213 return false;
2214
2215 // We cannot restore merged input section states.
2216 gold_assert(this->checkpoint_ == NULL);
2217
2218 // Look up merge sections by required properties.
2219 // Currently, we only invalidate the lookup maps in script processing
2220 // and relaxation. We should not have done either when we reach here.
2221 // So we assume that the lookup maps are valid to simply code.
2222 gold_assert(this->lookup_maps_->is_valid());
2223 Merge_section_properties msp(is_string, entsize, addralign);
2224 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2225 bool is_new = false;
2226 if (pomb != NULL)
2227 {
2228 gold_assert(pomb->is_string() == is_string
2229 && pomb->entsize() == entsize
2230 && pomb->addralign() == addralign);
2231 }
2232 else
2233 {
2234 // Create a new Output_merge_data or Output_merge_string_data.
2235 if (!is_string)
2236 pomb = new Output_merge_data(entsize, addralign);
2237 else
2238 {
2239 switch (entsize)
2240 {
2241 case 1:
2242 pomb = new Output_merge_string<char>(addralign);
2243 break;
2244 case 2:
2245 pomb = new Output_merge_string<uint16_t>(addralign);
2246 break;
2247 case 4:
2248 pomb = new Output_merge_string<uint32_t>(addralign);
2249 break;
2250 default:
2251 return false;
2252 }
2253 }
2254 // If we need to do script processing or relaxation, we need to keep
2255 // the original input sections to rebuild the fast lookup maps.
2256 if (keeps_input_sections)
2257 pomb->set_keeps_input_sections();
2258 is_new = true;
2259 }
2260
2261 if (pomb->add_input_section(object, shndx))
2262 {
2263 // Add new merge section to this output section and link merge
2264 // section properties to new merge section in map.
2265 if (is_new)
2266 {
2267 this->add_output_merge_section(pomb, is_string, entsize);
2268 this->lookup_maps_->add_merge_section(msp, pomb);
2269 }
2270
2271 // Add input section to new merge section and link input section to new
2272 // merge section in map.
2273 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2274 return true;
2275 }
2276 else
2277 {
2278 // If add_input_section failed, delete new merge section to avoid
2279 // exporting empty merge sections in Output_section::get_input_section.
2280 if (is_new)
2281 delete pomb;
2282 return false;
2283 }
2284 }
2285
2286 // Build a relaxation map to speed up relaxation of existing input sections.
2287 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2288
2289 void
2290 Output_section::build_relaxation_map(
2291 const Input_section_list& input_sections,
2292 size_t limit,
2293 Relaxation_map* relaxation_map) const
2294 {
2295 for (size_t i = 0; i < limit; ++i)
2296 {
2297 const Input_section& is(input_sections[i]);
2298 if (is.is_input_section() || is.is_relaxed_input_section())
2299 {
2300 Section_id sid(is.relobj(), is.shndx());
2301 (*relaxation_map)[sid] = i;
2302 }
2303 }
2304 }
2305
2306 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2307 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2308 // indices of INPUT_SECTIONS.
2309
2310 void
2311 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2312 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2313 const Relaxation_map& map,
2314 Input_section_list* input_sections)
2315 {
2316 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2317 {
2318 Output_relaxed_input_section* poris = relaxed_sections[i];
2319 Section_id sid(poris->relobj(), poris->shndx());
2320 Relaxation_map::const_iterator p = map.find(sid);
2321 gold_assert(p != map.end());
2322 gold_assert((*input_sections)[p->second].is_input_section());
2323 (*input_sections)[p->second] = Input_section(poris);
2324 }
2325 }
2326
2327 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2328 // is a vector of pointers to Output_relaxed_input_section or its derived
2329 // classes. The relaxed sections must correspond to existing input sections.
2330
2331 void
2332 Output_section::convert_input_sections_to_relaxed_sections(
2333 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2334 {
2335 gold_assert(parameters->target().may_relax());
2336
2337 // We want to make sure that restore_states does not undo the effect of
2338 // this. If there is no checkpoint active, just search the current
2339 // input section list and replace the sections there. If there is
2340 // a checkpoint, also replace the sections there.
2341
2342 // By default, we look at the whole list.
2343 size_t limit = this->input_sections_.size();
2344
2345 if (this->checkpoint_ != NULL)
2346 {
2347 // Replace input sections with relaxed input section in the saved
2348 // copy of the input section list.
2349 if (this->checkpoint_->input_sections_saved())
2350 {
2351 Relaxation_map map;
2352 this->build_relaxation_map(
2353 *(this->checkpoint_->input_sections()),
2354 this->checkpoint_->input_sections()->size(),
2355 &map);
2356 this->convert_input_sections_in_list_to_relaxed_sections(
2357 relaxed_sections,
2358 map,
2359 this->checkpoint_->input_sections());
2360 }
2361 else
2362 {
2363 // We have not copied the input section list yet. Instead, just
2364 // look at the portion that would be saved.
2365 limit = this->checkpoint_->input_sections_size();
2366 }
2367 }
2368
2369 // Convert input sections in input_section_list.
2370 Relaxation_map map;
2371 this->build_relaxation_map(this->input_sections_, limit, &map);
2372 this->convert_input_sections_in_list_to_relaxed_sections(
2373 relaxed_sections,
2374 map,
2375 &this->input_sections_);
2376
2377 // Update fast look-up map.
2378 if (this->lookup_maps_->is_valid())
2379 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2380 {
2381 Output_relaxed_input_section* poris = relaxed_sections[i];
2382 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2383 poris->shndx(), poris);
2384 }
2385 }
2386
2387 // Update the output section flags based on input section flags.
2388
2389 void
2390 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2391 {
2392 // If we created the section with SHF_ALLOC clear, we set the
2393 // address. If we are now setting the SHF_ALLOC flag, we need to
2394 // undo that.
2395 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2396 && (flags & elfcpp::SHF_ALLOC) != 0)
2397 this->mark_address_invalid();
2398
2399 this->flags_ |= (flags
2400 & (elfcpp::SHF_WRITE
2401 | elfcpp::SHF_ALLOC
2402 | elfcpp::SHF_EXECINSTR));
2403
2404 if ((flags & elfcpp::SHF_MERGE) == 0)
2405 this->flags_ &=~ elfcpp::SHF_MERGE;
2406 else
2407 {
2408 if (this->current_data_size_for_child() == 0)
2409 this->flags_ |= elfcpp::SHF_MERGE;
2410 }
2411
2412 if ((flags & elfcpp::SHF_STRINGS) == 0)
2413 this->flags_ &=~ elfcpp::SHF_STRINGS;
2414 else
2415 {
2416 if (this->current_data_size_for_child() == 0)
2417 this->flags_ |= elfcpp::SHF_STRINGS;
2418 }
2419 }
2420
2421 // Find the merge section into which an input section with index SHNDX in
2422 // OBJECT has been added. Return NULL if none found.
2423
2424 Output_section_data*
2425 Output_section::find_merge_section(const Relobj* object,
2426 unsigned int shndx) const
2427 {
2428 if (!this->lookup_maps_->is_valid())
2429 this->build_lookup_maps();
2430 return this->lookup_maps_->find_merge_section(object, shndx);
2431 }
2432
2433 // Build the lookup maps for merge and relaxed sections. This is needs
2434 // to be declared as a const methods so that it is callable with a const
2435 // Output_section pointer. The method only updates states of the maps.
2436
2437 void
2438 Output_section::build_lookup_maps() const
2439 {
2440 this->lookup_maps_->clear();
2441 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2442 p != this->input_sections_.end();
2443 ++p)
2444 {
2445 if (p->is_merge_section())
2446 {
2447 Output_merge_base* pomb = p->output_merge_base();
2448 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2449 pomb->addralign());
2450 this->lookup_maps_->add_merge_section(msp, pomb);
2451 for (Output_merge_base::Input_sections::const_iterator is =
2452 pomb->input_sections_begin();
2453 is != pomb->input_sections_end();
2454 ++is)
2455 {
2456 const Const_section_id& csid = *is;
2457 this->lookup_maps_->add_merge_input_section(csid.first,
2458 csid.second, pomb);
2459 }
2460
2461 }
2462 else if (p->is_relaxed_input_section())
2463 {
2464 Output_relaxed_input_section* poris = p->relaxed_input_section();
2465 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2466 poris->shndx(), poris);
2467 }
2468 }
2469 }
2470
2471 // Find an relaxed input section corresponding to an input section
2472 // in OBJECT with index SHNDX.
2473
2474 const Output_relaxed_input_section*
2475 Output_section::find_relaxed_input_section(const Relobj* object,
2476 unsigned int shndx) const
2477 {
2478 if (!this->lookup_maps_->is_valid())
2479 this->build_lookup_maps();
2480 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2481 }
2482
2483 // Given an address OFFSET relative to the start of input section
2484 // SHNDX in OBJECT, return whether this address is being included in
2485 // the final link. This should only be called if SHNDX in OBJECT has
2486 // a special mapping.
2487
2488 bool
2489 Output_section::is_input_address_mapped(const Relobj* object,
2490 unsigned int shndx,
2491 off_t offset) const
2492 {
2493 // Look at the Output_section_data_maps first.
2494 const Output_section_data* posd = this->find_merge_section(object, shndx);
2495 if (posd == NULL)
2496 posd = this->find_relaxed_input_section(object, shndx);
2497
2498 if (posd != NULL)
2499 {
2500 section_offset_type output_offset;
2501 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2502 gold_assert(found);
2503 return output_offset != -1;
2504 }
2505
2506 // Fall back to the slow look-up.
2507 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2508 p != this->input_sections_.end();
2509 ++p)
2510 {
2511 section_offset_type output_offset;
2512 if (p->output_offset(object, shndx, offset, &output_offset))
2513 return output_offset != -1;
2514 }
2515
2516 // By default we assume that the address is mapped. This should
2517 // only be called after we have passed all sections to Layout. At
2518 // that point we should know what we are discarding.
2519 return true;
2520 }
2521
2522 // Given an address OFFSET relative to the start of input section
2523 // SHNDX in object OBJECT, return the output offset relative to the
2524 // start of the input section in the output section. This should only
2525 // be called if SHNDX in OBJECT has a special mapping.
2526
2527 section_offset_type
2528 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2529 section_offset_type offset) const
2530 {
2531 // This can only be called meaningfully when we know the data size
2532 // of this.
2533 gold_assert(this->is_data_size_valid());
2534
2535 // Look at the Output_section_data_maps first.
2536 const Output_section_data* posd = this->find_merge_section(object, shndx);
2537 if (posd == NULL)
2538 posd = this->find_relaxed_input_section(object, shndx);
2539 if (posd != NULL)
2540 {
2541 section_offset_type output_offset;
2542 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2543 gold_assert(found);
2544 return output_offset;
2545 }
2546
2547 // Fall back to the slow look-up.
2548 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2549 p != this->input_sections_.end();
2550 ++p)
2551 {
2552 section_offset_type output_offset;
2553 if (p->output_offset(object, shndx, offset, &output_offset))
2554 return output_offset;
2555 }
2556 gold_unreachable();
2557 }
2558
2559 // Return the output virtual address of OFFSET relative to the start
2560 // of input section SHNDX in object OBJECT.
2561
2562 uint64_t
2563 Output_section::output_address(const Relobj* object, unsigned int shndx,
2564 off_t offset) const
2565 {
2566 uint64_t addr = this->address() + this->first_input_offset_;
2567
2568 // Look at the Output_section_data_maps first.
2569 const Output_section_data* posd = this->find_merge_section(object, shndx);
2570 if (posd == NULL)
2571 posd = this->find_relaxed_input_section(object, shndx);
2572 if (posd != NULL && posd->is_address_valid())
2573 {
2574 section_offset_type output_offset;
2575 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2576 gold_assert(found);
2577 return posd->address() + output_offset;
2578 }
2579
2580 // Fall back to the slow look-up.
2581 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2582 p != this->input_sections_.end();
2583 ++p)
2584 {
2585 addr = align_address(addr, p->addralign());
2586 section_offset_type output_offset;
2587 if (p->output_offset(object, shndx, offset, &output_offset))
2588 {
2589 if (output_offset == -1)
2590 return -1ULL;
2591 return addr + output_offset;
2592 }
2593 addr += p->data_size();
2594 }
2595
2596 // If we get here, it means that we don't know the mapping for this
2597 // input section. This might happen in principle if
2598 // add_input_section were called before add_output_section_data.
2599 // But it should never actually happen.
2600
2601 gold_unreachable();
2602 }
2603
2604 // Find the output address of the start of the merged section for
2605 // input section SHNDX in object OBJECT.
2606
2607 bool
2608 Output_section::find_starting_output_address(const Relobj* object,
2609 unsigned int shndx,
2610 uint64_t* paddr) const
2611 {
2612 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2613 // Looking up the merge section map does not always work as we sometimes
2614 // find a merge section without its address set.
2615 uint64_t addr = this->address() + this->first_input_offset_;
2616 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2617 p != this->input_sections_.end();
2618 ++p)
2619 {
2620 addr = align_address(addr, p->addralign());
2621
2622 // It would be nice if we could use the existing output_offset
2623 // method to get the output offset of input offset 0.
2624 // Unfortunately we don't know for sure that input offset 0 is
2625 // mapped at all.
2626 if (p->is_merge_section_for(object, shndx))
2627 {
2628 *paddr = addr;
2629 return true;
2630 }
2631
2632 addr += p->data_size();
2633 }
2634
2635 // We couldn't find a merge output section for this input section.
2636 return false;
2637 }
2638
2639 // Set the data size of an Output_section. This is where we handle
2640 // setting the addresses of any Output_section_data objects.
2641
2642 void
2643 Output_section::set_final_data_size()
2644 {
2645 if (this->input_sections_.empty())
2646 {
2647 this->set_data_size(this->current_data_size_for_child());
2648 return;
2649 }
2650
2651 if (this->must_sort_attached_input_sections()
2652 || this->input_section_order_specified())
2653 this->sort_attached_input_sections();
2654
2655 uint64_t address = this->address();
2656 off_t startoff = this->offset();
2657 off_t off = startoff + this->first_input_offset_;
2658 for (Input_section_list::iterator p = this->input_sections_.begin();
2659 p != this->input_sections_.end();
2660 ++p)
2661 {
2662 off = align_address(off, p->addralign());
2663 p->set_address_and_file_offset(address + (off - startoff), off,
2664 startoff);
2665 off += p->data_size();
2666 }
2667
2668 this->set_data_size(off - startoff);
2669 }
2670
2671 // Reset the address and file offset.
2672
2673 void
2674 Output_section::do_reset_address_and_file_offset()
2675 {
2676 // An unallocated section has no address. Forcing this means that
2677 // we don't need special treatment for symbols defined in debug
2678 // sections. We do the same in the constructor. This does not
2679 // apply to NOLOAD sections though.
2680 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2681 this->set_address(0);
2682
2683 for (Input_section_list::iterator p = this->input_sections_.begin();
2684 p != this->input_sections_.end();
2685 ++p)
2686 p->reset_address_and_file_offset();
2687 }
2688
2689 // Return true if address and file offset have the values after reset.
2690
2691 bool
2692 Output_section::do_address_and_file_offset_have_reset_values() const
2693 {
2694 if (this->is_offset_valid())
2695 return false;
2696
2697 // An unallocated section has address 0 after its construction or a reset.
2698 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2699 return this->is_address_valid() && this->address() == 0;
2700 else
2701 return !this->is_address_valid();
2702 }
2703
2704 // Set the TLS offset. Called only for SHT_TLS sections.
2705
2706 void
2707 Output_section::do_set_tls_offset(uint64_t tls_base)
2708 {
2709 this->tls_offset_ = this->address() - tls_base;
2710 }
2711
2712 // In a few cases we need to sort the input sections attached to an
2713 // output section. This is used to implement the type of constructor
2714 // priority ordering implemented by the GNU linker, in which the
2715 // priority becomes part of the section name and the sections are
2716 // sorted by name. We only do this for an output section if we see an
2717 // attached input section matching ".ctor.*", ".dtor.*",
2718 // ".init_array.*" or ".fini_array.*".
2719
2720 class Output_section::Input_section_sort_entry
2721 {
2722 public:
2723 Input_section_sort_entry()
2724 : input_section_(), index_(-1U), section_has_name_(false),
2725 section_name_()
2726 { }
2727
2728 Input_section_sort_entry(const Input_section& input_section,
2729 unsigned int index,
2730 bool must_sort_attached_input_sections)
2731 : input_section_(input_section), index_(index),
2732 section_has_name_(input_section.is_input_section()
2733 || input_section.is_relaxed_input_section())
2734 {
2735 if (this->section_has_name_
2736 && must_sort_attached_input_sections)
2737 {
2738 // This is only called single-threaded from Layout::finalize,
2739 // so it is OK to lock. Unfortunately we have no way to pass
2740 // in a Task token.
2741 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2742 Object* obj = (input_section.is_input_section()
2743 ? input_section.relobj()
2744 : input_section.relaxed_input_section()->relobj());
2745 Task_lock_obj<Object> tl(dummy_task, obj);
2746
2747 // This is a slow operation, which should be cached in
2748 // Layout::layout if this becomes a speed problem.
2749 this->section_name_ = obj->section_name(input_section.shndx());
2750 }
2751 }
2752
2753 // Return the Input_section.
2754 const Input_section&
2755 input_section() const
2756 {
2757 gold_assert(this->index_ != -1U);
2758 return this->input_section_;
2759 }
2760
2761 // The index of this entry in the original list. This is used to
2762 // make the sort stable.
2763 unsigned int
2764 index() const
2765 {
2766 gold_assert(this->index_ != -1U);
2767 return this->index_;
2768 }
2769
2770 // Whether there is a section name.
2771 bool
2772 section_has_name() const
2773 { return this->section_has_name_; }
2774
2775 // The section name.
2776 const std::string&
2777 section_name() const
2778 {
2779 gold_assert(this->section_has_name_);
2780 return this->section_name_;
2781 }
2782
2783 // Return true if the section name has a priority. This is assumed
2784 // to be true if it has a dot after the initial dot.
2785 bool
2786 has_priority() const
2787 {
2788 gold_assert(this->section_has_name_);
2789 return this->section_name_.find('.', 1) != std::string::npos;
2790 }
2791
2792 // Return true if this an input file whose base name matches
2793 // FILE_NAME. The base name must have an extension of ".o", and
2794 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2795 // This is to match crtbegin.o as well as crtbeginS.o without
2796 // getting confused by other possibilities. Overall matching the
2797 // file name this way is a dreadful hack, but the GNU linker does it
2798 // in order to better support gcc, and we need to be compatible.
2799 bool
2800 match_file_name(const char* match_file_name) const
2801 {
2802 const std::string& file_name(this->input_section_.relobj()->name());
2803 const char* base_name = lbasename(file_name.c_str());
2804 size_t match_len = strlen(match_file_name);
2805 if (strncmp(base_name, match_file_name, match_len) != 0)
2806 return false;
2807 size_t base_len = strlen(base_name);
2808 if (base_len != match_len + 2 && base_len != match_len + 3)
2809 return false;
2810 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2811 }
2812
2813 // Returns 1 if THIS should appear before S in section order, -1 if S
2814 // appears before THIS and 0 if they are not comparable.
2815 int
2816 compare_section_ordering(const Input_section_sort_entry& s) const
2817 {
2818 unsigned int this_secn_index = this->input_section_.section_order_index();
2819 unsigned int s_secn_index = s.input_section().section_order_index();
2820 if (this_secn_index > 0 && s_secn_index > 0)
2821 {
2822 if (this_secn_index < s_secn_index)
2823 return 1;
2824 else if (this_secn_index > s_secn_index)
2825 return -1;
2826 }
2827 return 0;
2828 }
2829
2830 private:
2831 // The Input_section we are sorting.
2832 Input_section input_section_;
2833 // The index of this Input_section in the original list.
2834 unsigned int index_;
2835 // Whether this Input_section has a section name--it won't if this
2836 // is some random Output_section_data.
2837 bool section_has_name_;
2838 // The section name if there is one.
2839 std::string section_name_;
2840 };
2841
2842 // Return true if S1 should come before S2 in the output section.
2843
2844 bool
2845 Output_section::Input_section_sort_compare::operator()(
2846 const Output_section::Input_section_sort_entry& s1,
2847 const Output_section::Input_section_sort_entry& s2) const
2848 {
2849 // crtbegin.o must come first.
2850 bool s1_begin = s1.match_file_name("crtbegin");
2851 bool s2_begin = s2.match_file_name("crtbegin");
2852 if (s1_begin || s2_begin)
2853 {
2854 if (!s1_begin)
2855 return false;
2856 if (!s2_begin)
2857 return true;
2858 return s1.index() < s2.index();
2859 }
2860
2861 // crtend.o must come last.
2862 bool s1_end = s1.match_file_name("crtend");
2863 bool s2_end = s2.match_file_name("crtend");
2864 if (s1_end || s2_end)
2865 {
2866 if (!s1_end)
2867 return true;
2868 if (!s2_end)
2869 return false;
2870 return s1.index() < s2.index();
2871 }
2872
2873 // We sort all the sections with no names to the end.
2874 if (!s1.section_has_name() || !s2.section_has_name())
2875 {
2876 if (s1.section_has_name())
2877 return true;
2878 if (s2.section_has_name())
2879 return false;
2880 return s1.index() < s2.index();
2881 }
2882
2883 // A section with a priority follows a section without a priority.
2884 bool s1_has_priority = s1.has_priority();
2885 bool s2_has_priority = s2.has_priority();
2886 if (s1_has_priority && !s2_has_priority)
2887 return false;
2888 if (!s1_has_priority && s2_has_priority)
2889 return true;
2890
2891 // Check if a section order exists for these sections through a section
2892 // ordering file. If sequence_num is 0, an order does not exist.
2893 int sequence_num = s1.compare_section_ordering(s2);
2894 if (sequence_num != 0)
2895 return sequence_num == 1;
2896
2897 // Otherwise we sort by name.
2898 int compare = s1.section_name().compare(s2.section_name());
2899 if (compare != 0)
2900 return compare < 0;
2901
2902 // Otherwise we keep the input order.
2903 return s1.index() < s2.index();
2904 }
2905
2906 // Return true if S1 should come before S2 in an .init_array or .fini_array
2907 // output section.
2908
2909 bool
2910 Output_section::Input_section_sort_init_fini_compare::operator()(
2911 const Output_section::Input_section_sort_entry& s1,
2912 const Output_section::Input_section_sort_entry& s2) const
2913 {
2914 // We sort all the sections with no names to the end.
2915 if (!s1.section_has_name() || !s2.section_has_name())
2916 {
2917 if (s1.section_has_name())
2918 return true;
2919 if (s2.section_has_name())
2920 return false;
2921 return s1.index() < s2.index();
2922 }
2923
2924 // A section without a priority follows a section with a priority.
2925 // This is the reverse of .ctors and .dtors sections.
2926 bool s1_has_priority = s1.has_priority();
2927 bool s2_has_priority = s2.has_priority();
2928 if (s1_has_priority && !s2_has_priority)
2929 return true;
2930 if (!s1_has_priority && s2_has_priority)
2931 return false;
2932
2933 // Check if a section order exists for these sections through a section
2934 // ordering file. If sequence_num is 0, an order does not exist.
2935 int sequence_num = s1.compare_section_ordering(s2);
2936 if (sequence_num != 0)
2937 return sequence_num == 1;
2938
2939 // Otherwise we sort by name.
2940 int compare = s1.section_name().compare(s2.section_name());
2941 if (compare != 0)
2942 return compare < 0;
2943
2944 // Otherwise we keep the input order.
2945 return s1.index() < s2.index();
2946 }
2947
2948 // Return true if S1 should come before S2. Sections that do not match
2949 // any pattern in the section ordering file are placed ahead of the sections
2950 // that match some pattern.
2951
2952 bool
2953 Output_section::Input_section_sort_section_order_index_compare::operator()(
2954 const Output_section::Input_section_sort_entry& s1,
2955 const Output_section::Input_section_sort_entry& s2) const
2956 {
2957 unsigned int s1_secn_index = s1.input_section().section_order_index();
2958 unsigned int s2_secn_index = s2.input_section().section_order_index();
2959
2960 // Keep input order if section ordering cannot determine order.
2961 if (s1_secn_index == s2_secn_index)
2962 return s1.index() < s2.index();
2963
2964 return s1_secn_index < s2_secn_index;
2965 }
2966
2967 // Sort the input sections attached to an output section.
2968
2969 void
2970 Output_section::sort_attached_input_sections()
2971 {
2972 if (this->attached_input_sections_are_sorted_)
2973 return;
2974
2975 if (this->checkpoint_ != NULL
2976 && !this->checkpoint_->input_sections_saved())
2977 this->checkpoint_->save_input_sections();
2978
2979 // The only thing we know about an input section is the object and
2980 // the section index. We need the section name. Recomputing this
2981 // is slow but this is an unusual case. If this becomes a speed
2982 // problem we can cache the names as required in Layout::layout.
2983
2984 // We start by building a larger vector holding a copy of each
2985 // Input_section, plus its current index in the list and its name.
2986 std::vector<Input_section_sort_entry> sort_list;
2987
2988 unsigned int i = 0;
2989 for (Input_section_list::iterator p = this->input_sections_.begin();
2990 p != this->input_sections_.end();
2991 ++p, ++i)
2992 sort_list.push_back(Input_section_sort_entry(*p, i,
2993 this->must_sort_attached_input_sections()));
2994
2995 // Sort the input sections.
2996 if (this->must_sort_attached_input_sections())
2997 {
2998 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2999 || this->type() == elfcpp::SHT_INIT_ARRAY
3000 || this->type() == elfcpp::SHT_FINI_ARRAY)
3001 std::sort(sort_list.begin(), sort_list.end(),
3002 Input_section_sort_init_fini_compare());
3003 else
3004 std::sort(sort_list.begin(), sort_list.end(),
3005 Input_section_sort_compare());
3006 }
3007 else
3008 {
3009 gold_assert(parameters->options().section_ordering_file());
3010 std::sort(sort_list.begin(), sort_list.end(),
3011 Input_section_sort_section_order_index_compare());
3012 }
3013
3014 // Copy the sorted input sections back to our list.
3015 this->input_sections_.clear();
3016 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3017 p != sort_list.end();
3018 ++p)
3019 this->input_sections_.push_back(p->input_section());
3020 sort_list.clear();
3021
3022 // Remember that we sorted the input sections, since we might get
3023 // called again.
3024 this->attached_input_sections_are_sorted_ = true;
3025 }
3026
3027 // Write the section header to *OSHDR.
3028
3029 template<int size, bool big_endian>
3030 void
3031 Output_section::write_header(const Layout* layout,
3032 const Stringpool* secnamepool,
3033 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3034 {
3035 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3036 oshdr->put_sh_type(this->type_);
3037
3038 elfcpp::Elf_Xword flags = this->flags_;
3039 if (this->info_section_ != NULL && this->info_uses_section_index_)
3040 flags |= elfcpp::SHF_INFO_LINK;
3041 oshdr->put_sh_flags(flags);
3042
3043 oshdr->put_sh_addr(this->address());
3044 oshdr->put_sh_offset(this->offset());
3045 oshdr->put_sh_size(this->data_size());
3046 if (this->link_section_ != NULL)
3047 oshdr->put_sh_link(this->link_section_->out_shndx());
3048 else if (this->should_link_to_symtab_)
3049 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3050 else if (this->should_link_to_dynsym_)
3051 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3052 else
3053 oshdr->put_sh_link(this->link_);
3054
3055 elfcpp::Elf_Word info;
3056 if (this->info_section_ != NULL)
3057 {
3058 if (this->info_uses_section_index_)
3059 info = this->info_section_->out_shndx();
3060 else
3061 info = this->info_section_->symtab_index();
3062 }
3063 else if (this->info_symndx_ != NULL)
3064 info = this->info_symndx_->symtab_index();
3065 else
3066 info = this->info_;
3067 oshdr->put_sh_info(info);
3068
3069 oshdr->put_sh_addralign(this->addralign_);
3070 oshdr->put_sh_entsize(this->entsize_);
3071 }
3072
3073 // Write out the data. For input sections the data is written out by
3074 // Object::relocate, but we have to handle Output_section_data objects
3075 // here.
3076
3077 void
3078 Output_section::do_write(Output_file* of)
3079 {
3080 gold_assert(!this->requires_postprocessing());
3081
3082 // If the target performs relaxation, we delay filler generation until now.
3083 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3084
3085 off_t output_section_file_offset = this->offset();
3086 for (Fill_list::iterator p = this->fills_.begin();
3087 p != this->fills_.end();
3088 ++p)
3089 {
3090 std::string fill_data(parameters->target().code_fill(p->length()));
3091 of->write(output_section_file_offset + p->section_offset(),
3092 fill_data.data(), fill_data.size());
3093 }
3094
3095 off_t off = this->offset() + this->first_input_offset_;
3096 for (Input_section_list::iterator p = this->input_sections_.begin();
3097 p != this->input_sections_.end();
3098 ++p)
3099 {
3100 off_t aligned_off = align_address(off, p->addralign());
3101 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3102 {
3103 size_t fill_len = aligned_off - off;
3104 std::string fill_data(parameters->target().code_fill(fill_len));
3105 of->write(off, fill_data.data(), fill_data.size());
3106 }
3107
3108 p->write(of);
3109 off = aligned_off + p->data_size();
3110 }
3111 }
3112
3113 // If a section requires postprocessing, create the buffer to use.
3114
3115 void
3116 Output_section::create_postprocessing_buffer()
3117 {
3118 gold_assert(this->requires_postprocessing());
3119
3120 if (this->postprocessing_buffer_ != NULL)
3121 return;
3122
3123 if (!this->input_sections_.empty())
3124 {
3125 off_t off = this->first_input_offset_;
3126 for (Input_section_list::iterator p = this->input_sections_.begin();
3127 p != this->input_sections_.end();
3128 ++p)
3129 {
3130 off = align_address(off, p->addralign());
3131 p->finalize_data_size();
3132 off += p->data_size();
3133 }
3134 this->set_current_data_size_for_child(off);
3135 }
3136
3137 off_t buffer_size = this->current_data_size_for_child();
3138 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3139 }
3140
3141 // Write all the data of an Output_section into the postprocessing
3142 // buffer. This is used for sections which require postprocessing,
3143 // such as compression. Input sections are handled by
3144 // Object::Relocate.
3145
3146 void
3147 Output_section::write_to_postprocessing_buffer()
3148 {
3149 gold_assert(this->requires_postprocessing());
3150
3151 // If the target performs relaxation, we delay filler generation until now.
3152 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3153
3154 unsigned char* buffer = this->postprocessing_buffer();
3155 for (Fill_list::iterator p = this->fills_.begin();
3156 p != this->fills_.end();
3157 ++p)
3158 {
3159 std::string fill_data(parameters->target().code_fill(p->length()));
3160 memcpy(buffer + p->section_offset(), fill_data.data(),
3161 fill_data.size());
3162 }
3163
3164 off_t off = this->first_input_offset_;
3165 for (Input_section_list::iterator p = this->input_sections_.begin();
3166 p != this->input_sections_.end();
3167 ++p)
3168 {
3169 off_t aligned_off = align_address(off, p->addralign());
3170 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3171 {
3172 size_t fill_len = aligned_off - off;
3173 std::string fill_data(parameters->target().code_fill(fill_len));
3174 memcpy(buffer + off, fill_data.data(), fill_data.size());
3175 }
3176
3177 p->write_to_buffer(buffer + aligned_off);
3178 off = aligned_off + p->data_size();
3179 }
3180 }
3181
3182 // Get the input sections for linker script processing. We leave
3183 // behind the Output_section_data entries. Note that this may be
3184 // slightly incorrect for merge sections. We will leave them behind,
3185 // but it is possible that the script says that they should follow
3186 // some other input sections, as in:
3187 // .rodata { *(.rodata) *(.rodata.cst*) }
3188 // For that matter, we don't handle this correctly:
3189 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3190 // With luck this will never matter.
3191
3192 uint64_t
3193 Output_section::get_input_sections(
3194 uint64_t address,
3195 const std::string& fill,
3196 std::list<Input_section>* input_sections)
3197 {
3198 if (this->checkpoint_ != NULL
3199 && !this->checkpoint_->input_sections_saved())
3200 this->checkpoint_->save_input_sections();
3201
3202 // Invalidate fast look-up maps.
3203 this->lookup_maps_->invalidate();
3204
3205 uint64_t orig_address = address;
3206
3207 address = align_address(address, this->addralign());
3208
3209 Input_section_list remaining;
3210 for (Input_section_list::iterator p = this->input_sections_.begin();
3211 p != this->input_sections_.end();
3212 ++p)
3213 {
3214 if (p->is_input_section()
3215 || p->is_relaxed_input_section()
3216 || p->is_merge_section())
3217 input_sections->push_back(*p);
3218 else
3219 {
3220 uint64_t aligned_address = align_address(address, p->addralign());
3221 if (aligned_address != address && !fill.empty())
3222 {
3223 section_size_type length =
3224 convert_to_section_size_type(aligned_address - address);
3225 std::string this_fill;
3226 this_fill.reserve(length);
3227 while (this_fill.length() + fill.length() <= length)
3228 this_fill += fill;
3229 if (this_fill.length() < length)
3230 this_fill.append(fill, 0, length - this_fill.length());
3231
3232 Output_section_data* posd = new Output_data_const(this_fill, 0);
3233 remaining.push_back(Input_section(posd));
3234 }
3235 address = aligned_address;
3236
3237 remaining.push_back(*p);
3238
3239 p->finalize_data_size();
3240 address += p->data_size();
3241 }
3242 }
3243
3244 this->input_sections_.swap(remaining);
3245 this->first_input_offset_ = 0;
3246
3247 uint64_t data_size = address - orig_address;
3248 this->set_current_data_size_for_child(data_size);
3249 return data_size;
3250 }
3251
3252 // Add a script input section. SIS is an Output_section::Input_section,
3253 // which can be either a plain input section or a special input section like
3254 // a relaxed input section. For a special input section, its size must be
3255 // finalized.
3256
3257 void
3258 Output_section::add_script_input_section(const Input_section& sis)
3259 {
3260 uint64_t data_size = sis.data_size();
3261 uint64_t addralign = sis.addralign();
3262 if (addralign > this->addralign_)
3263 this->addralign_ = addralign;
3264
3265 off_t offset_in_section = this->current_data_size_for_child();
3266 off_t aligned_offset_in_section = align_address(offset_in_section,
3267 addralign);
3268
3269 this->set_current_data_size_for_child(aligned_offset_in_section
3270 + data_size);
3271
3272 this->input_sections_.push_back(sis);
3273
3274 // Update fast lookup maps if necessary.
3275 if (this->lookup_maps_->is_valid())
3276 {
3277 if (sis.is_merge_section())
3278 {
3279 Output_merge_base* pomb = sis.output_merge_base();
3280 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3281 pomb->addralign());
3282 this->lookup_maps_->add_merge_section(msp, pomb);
3283 for (Output_merge_base::Input_sections::const_iterator p =
3284 pomb->input_sections_begin();
3285 p != pomb->input_sections_end();
3286 ++p)
3287 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3288 pomb);
3289 }
3290 else if (sis.is_relaxed_input_section())
3291 {
3292 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3293 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3294 poris->shndx(), poris);
3295 }
3296 }
3297 }
3298
3299 // Save states for relaxation.
3300
3301 void
3302 Output_section::save_states()
3303 {
3304 gold_assert(this->checkpoint_ == NULL);
3305 Checkpoint_output_section* checkpoint =
3306 new Checkpoint_output_section(this->addralign_, this->flags_,
3307 this->input_sections_,
3308 this->first_input_offset_,
3309 this->attached_input_sections_are_sorted_);
3310 this->checkpoint_ = checkpoint;
3311 gold_assert(this->fills_.empty());
3312 }
3313
3314 void
3315 Output_section::discard_states()
3316 {
3317 gold_assert(this->checkpoint_ != NULL);
3318 delete this->checkpoint_;
3319 this->checkpoint_ = NULL;
3320 gold_assert(this->fills_.empty());
3321
3322 // Simply invalidate the fast lookup maps since we do not keep
3323 // track of them.
3324 this->lookup_maps_->invalidate();
3325 }
3326
3327 void
3328 Output_section::restore_states()
3329 {
3330 gold_assert(this->checkpoint_ != NULL);
3331 Checkpoint_output_section* checkpoint = this->checkpoint_;
3332
3333 this->addralign_ = checkpoint->addralign();
3334 this->flags_ = checkpoint->flags();
3335 this->first_input_offset_ = checkpoint->first_input_offset();
3336
3337 if (!checkpoint->input_sections_saved())
3338 {
3339 // If we have not copied the input sections, just resize it.
3340 size_t old_size = checkpoint->input_sections_size();
3341 gold_assert(this->input_sections_.size() >= old_size);
3342 this->input_sections_.resize(old_size);
3343 }
3344 else
3345 {
3346 // We need to copy the whole list. This is not efficient for
3347 // extremely large output with hundreads of thousands of input
3348 // objects. We may need to re-think how we should pass sections
3349 // to scripts.
3350 this->input_sections_ = *checkpoint->input_sections();
3351 }
3352
3353 this->attached_input_sections_are_sorted_ =
3354 checkpoint->attached_input_sections_are_sorted();
3355
3356 // Simply invalidate the fast lookup maps since we do not keep
3357 // track of them.
3358 this->lookup_maps_->invalidate();
3359 }
3360
3361 // Update the section offsets of input sections in this. This is required if
3362 // relaxation causes some input sections to change sizes.
3363
3364 void
3365 Output_section::adjust_section_offsets()
3366 {
3367 if (!this->section_offsets_need_adjustment_)
3368 return;
3369
3370 off_t off = 0;
3371 for (Input_section_list::iterator p = this->input_sections_.begin();
3372 p != this->input_sections_.end();
3373 ++p)
3374 {
3375 off = align_address(off, p->addralign());
3376 if (p->is_input_section())
3377 p->relobj()->set_section_offset(p->shndx(), off);
3378 off += p->data_size();
3379 }
3380
3381 this->section_offsets_need_adjustment_ = false;
3382 }
3383
3384 // Print to the map file.
3385
3386 void
3387 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3388 {
3389 mapfile->print_output_section(this);
3390
3391 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3392 p != this->input_sections_.end();
3393 ++p)
3394 p->print_to_mapfile(mapfile);
3395 }
3396
3397 // Print stats for merge sections to stderr.
3398
3399 void
3400 Output_section::print_merge_stats()
3401 {
3402 Input_section_list::iterator p;
3403 for (p = this->input_sections_.begin();
3404 p != this->input_sections_.end();
3405 ++p)
3406 p->print_merge_stats(this->name_);
3407 }
3408
3409 // Output segment methods.
3410
3411 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3412 : output_data_(),
3413 output_bss_(),
3414 vaddr_(0),
3415 paddr_(0),
3416 memsz_(0),
3417 max_align_(0),
3418 min_p_align_(0),
3419 offset_(0),
3420 filesz_(0),
3421 type_(type),
3422 flags_(flags),
3423 is_max_align_known_(false),
3424 are_addresses_set_(false),
3425 is_large_data_segment_(false)
3426 {
3427 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3428 // the flags.
3429 if (type == elfcpp::PT_TLS)
3430 this->flags_ = elfcpp::PF_R;
3431 }
3432
3433 // Add an Output_section to an Output_segment.
3434
3435 void
3436 Output_segment::add_output_section(Output_section* os,
3437 elfcpp::Elf_Word seg_flags,
3438 bool do_sort)
3439 {
3440 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3441 gold_assert(!this->is_max_align_known_);
3442 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3443 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3444
3445 this->update_flags_for_output_section(seg_flags);
3446
3447 Output_segment::Output_data_list* pdl;
3448 if (os->type() == elfcpp::SHT_NOBITS)
3449 pdl = &this->output_bss_;
3450 else
3451 pdl = &this->output_data_;
3452
3453 // Note that while there may be many input sections in an output
3454 // section, there are normally only a few output sections in an
3455 // output segment. The loops below are expected to be fast.
3456
3457 // So that PT_NOTE segments will work correctly, we need to ensure
3458 // that all SHT_NOTE sections are adjacent.
3459 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3460 {
3461 Output_segment::Output_data_list::iterator p = pdl->end();
3462 do
3463 {
3464 --p;
3465 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3466 {
3467 ++p;
3468 pdl->insert(p, os);
3469 return;
3470 }
3471 }
3472 while (p != pdl->begin());
3473 }
3474
3475 // Similarly, so that PT_TLS segments will work, we need to group
3476 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3477 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3478 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3479 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3480 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3481 // segment.
3482 if (this->type_ != elfcpp::PT_TLS
3483 && (os->flags() & elfcpp::SHF_TLS) != 0)
3484 {
3485 pdl = &this->output_data_;
3486 if (!pdl->empty())
3487 {
3488 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3489 bool sawtls = false;
3490 Output_segment::Output_data_list::iterator p = pdl->end();
3491 gold_assert(p != pdl->begin());
3492 do
3493 {
3494 --p;
3495 bool insert;
3496 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3497 {
3498 sawtls = true;
3499 // Put a NOBITS section after the first TLS section.
3500 // Put a PROGBITS section after the first
3501 // TLS/PROGBITS section.
3502 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3503 }
3504 else
3505 {
3506 // If we've gone past the TLS sections, but we've
3507 // seen a TLS section, then we need to insert this
3508 // section now.
3509 insert = sawtls;
3510 }
3511
3512 if (insert)
3513 {
3514 ++p;
3515 pdl->insert(p, os);
3516 return;
3517 }
3518 }
3519 while (p != pdl->begin());
3520 }
3521
3522 // There are no TLS sections yet; put this one at the requested
3523 // location in the section list.
3524 }
3525
3526 if (do_sort)
3527 {
3528 // For the PT_GNU_RELRO segment, we need to group relro
3529 // sections, and we need to put them before any non-relro
3530 // sections. Any relro local sections go before relro non-local
3531 // sections. One section may be marked as the last relro
3532 // section.
3533 if (os->is_relro())
3534 {
3535 gold_assert(pdl == &this->output_data_);
3536 Output_segment::Output_data_list::iterator p;
3537 for (p = pdl->begin(); p != pdl->end(); ++p)
3538 {
3539 if (!(*p)->is_section())
3540 break;
3541
3542 Output_section* pos = (*p)->output_section();
3543 if (!pos->is_relro()
3544 || (os->is_relro_local() && !pos->is_relro_local())
3545 || (!os->is_last_relro() && pos->is_last_relro()))
3546 break;
3547 }
3548
3549 pdl->insert(p, os);
3550 return;
3551 }
3552
3553 // One section may be marked as the first section which follows
3554 // the relro sections.
3555 if (os->is_first_non_relro())
3556 {
3557 gold_assert(pdl == &this->output_data_);
3558 Output_segment::Output_data_list::iterator p;
3559 for (p = pdl->begin(); p != pdl->end(); ++p)
3560 {
3561 if (!(*p)->is_section())
3562 break;
3563
3564 Output_section* pos = (*p)->output_section();
3565 if (!pos->is_relro())
3566 break;
3567 }
3568
3569 pdl->insert(p, os);
3570 return;
3571 }
3572 }
3573
3574 // Small data sections go at the end of the list of data sections.
3575 // If OS is not small, and there are small sections, we have to
3576 // insert it before the first small section.
3577 if (os->type() != elfcpp::SHT_NOBITS
3578 && !os->is_small_section()
3579 && !pdl->empty()
3580 && pdl->back()->is_section()
3581 && pdl->back()->output_section()->is_small_section())
3582 {
3583 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3584 p != pdl->end();
3585 ++p)
3586 {
3587 if ((*p)->is_section()
3588 && (*p)->output_section()->is_small_section())
3589 {
3590 pdl->insert(p, os);
3591 return;
3592 }
3593 }
3594 gold_unreachable();
3595 }
3596
3597 // A small BSS section goes at the start of the BSS sections, after
3598 // other small BSS sections.
3599 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3600 {
3601 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3602 p != pdl->end();
3603 ++p)
3604 {
3605 if (!(*p)->is_section()
3606 || !(*p)->output_section()->is_small_section())
3607 {
3608 pdl->insert(p, os);
3609 return;
3610 }
3611 }
3612 }
3613
3614 // A large BSS section goes at the end of the BSS sections, which
3615 // means that one that is not large must come before the first large
3616 // one.
3617 if (os->type() == elfcpp::SHT_NOBITS
3618 && !os->is_large_section()
3619 && !pdl->empty()
3620 && pdl->back()->is_section()
3621 && pdl->back()->output_section()->is_large_section())
3622 {
3623 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3624 p != pdl->end();
3625 ++p)
3626 {
3627 if ((*p)->is_section()
3628 && (*p)->output_section()->is_large_section())
3629 {
3630 pdl->insert(p, os);
3631 return;
3632 }
3633 }
3634 gold_unreachable();
3635 }
3636
3637 // We do some further output section sorting in order to make the
3638 // generated program run more efficiently. We should only do this
3639 // when not using a linker script, so it is controled by the DO_SORT
3640 // parameter.
3641 if (do_sort)
3642 {
3643 // FreeBSD requires the .interp section to be in the first page
3644 // of the executable. That is a more efficient location anyhow
3645 // for any OS, since it means that the kernel will have the data
3646 // handy after it reads the program headers.
3647 if (os->is_interp() && !pdl->empty())
3648 {
3649 pdl->insert(pdl->begin(), os);
3650 return;
3651 }
3652
3653 // Put loadable non-writable notes immediately after the .interp
3654 // sections, so that the PT_NOTE segment is on the first page of
3655 // the executable.
3656 if (os->type() == elfcpp::SHT_NOTE
3657 && (os->flags() & elfcpp::SHF_WRITE) == 0
3658 && !pdl->empty())
3659 {
3660 Output_segment::Output_data_list::iterator p = pdl->begin();
3661 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3662 ++p;
3663 pdl->insert(p, os);
3664 return;
3665 }
3666
3667 // If this section is used by the dynamic linker, and it is not
3668 // writable, then put it first, after the .interp section and
3669 // any loadable notes. This makes it more likely that the
3670 // dynamic linker will have to read less data from the disk.
3671 if (os->is_dynamic_linker_section()
3672 && !pdl->empty()
3673 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3674 {
3675 bool is_reloc = (os->type() == elfcpp::SHT_REL
3676 || os->type() == elfcpp::SHT_RELA);
3677 Output_segment::Output_data_list::iterator p = pdl->begin();
3678 while (p != pdl->end()
3679 && (*p)->is_section()
3680 && ((*p)->output_section()->is_dynamic_linker_section()
3681 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3682 {
3683 // Put reloc sections after the other ones. Putting the
3684 // dynamic reloc sections first confuses BFD, notably
3685 // objcopy and strip.
3686 if (!is_reloc
3687 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3688 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3689 break;
3690 ++p;
3691 }
3692 pdl->insert(p, os);
3693 return;
3694 }
3695 }
3696
3697 // If there were no constraints on the output section, just add it
3698 // to the end of the list.
3699 pdl->push_back(os);
3700 }
3701
3702 // Remove an Output_section from this segment. It is an error if it
3703 // is not present.
3704
3705 void
3706 Output_segment::remove_output_section(Output_section* os)
3707 {
3708 // We only need this for SHT_PROGBITS.
3709 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3710 for (Output_data_list::iterator p = this->output_data_.begin();
3711 p != this->output_data_.end();
3712 ++p)
3713 {
3714 if (*p == os)
3715 {
3716 this->output_data_.erase(p);
3717 return;
3718 }
3719 }
3720 gold_unreachable();
3721 }
3722
3723 // Add an Output_data (which need not be an Output_section) to the
3724 // start of a segment.
3725
3726 void
3727 Output_segment::add_initial_output_data(Output_data* od)
3728 {
3729 gold_assert(!this->is_max_align_known_);
3730 this->output_data_.push_front(od);
3731 }
3732
3733 // Return whether the first data section is a relro section.
3734
3735 bool
3736 Output_segment::is_first_section_relro() const
3737 {
3738 return (!this->output_data_.empty()
3739 && this->output_data_.front()->is_section()
3740 && this->output_data_.front()->output_section()->is_relro());
3741 }
3742
3743 // Return the maximum alignment of the Output_data in Output_segment.
3744
3745 uint64_t
3746 Output_segment::maximum_alignment()
3747 {
3748 if (!this->is_max_align_known_)
3749 {
3750 uint64_t addralign;
3751
3752 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3753 if (addralign > this->max_align_)
3754 this->max_align_ = addralign;
3755
3756 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3757 if (addralign > this->max_align_)
3758 this->max_align_ = addralign;
3759
3760 this->is_max_align_known_ = true;
3761 }
3762
3763 return this->max_align_;
3764 }
3765
3766 // Return the maximum alignment of a list of Output_data.
3767
3768 uint64_t
3769 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3770 {
3771 uint64_t ret = 0;
3772 for (Output_data_list::const_iterator p = pdl->begin();
3773 p != pdl->end();
3774 ++p)
3775 {
3776 uint64_t addralign = (*p)->addralign();
3777 if (addralign > ret)
3778 ret = addralign;
3779 }
3780 return ret;
3781 }
3782
3783 // Return the number of dynamic relocs applied to this segment.
3784
3785 unsigned int
3786 Output_segment::dynamic_reloc_count() const
3787 {
3788 return (this->dynamic_reloc_count_list(&this->output_data_)
3789 + this->dynamic_reloc_count_list(&this->output_bss_));
3790 }
3791
3792 // Return the number of dynamic relocs applied to an Output_data_list.
3793
3794 unsigned int
3795 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3796 {
3797 unsigned int count = 0;
3798 for (Output_data_list::const_iterator p = pdl->begin();
3799 p != pdl->end();
3800 ++p)
3801 count += (*p)->dynamic_reloc_count();
3802 return count;
3803 }
3804
3805 // Set the section addresses for an Output_segment. If RESET is true,
3806 // reset the addresses first. ADDR is the address and *POFF is the
3807 // file offset. Set the section indexes starting with *PSHNDX.
3808 // Return the address of the immediately following segment. Update
3809 // *POFF and *PSHNDX.
3810
3811 uint64_t
3812 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3813 uint64_t addr,
3814 unsigned int increase_relro,
3815 off_t* poff,
3816 unsigned int* pshndx)
3817 {
3818 gold_assert(this->type_ == elfcpp::PT_LOAD);
3819
3820 off_t orig_off = *poff;
3821
3822 // If we have relro sections, we need to pad forward now so that the
3823 // relro sections plus INCREASE_RELRO end on a common page boundary.
3824 if (parameters->options().relro()
3825 && this->is_first_section_relro()
3826 && (!this->are_addresses_set_ || reset))
3827 {
3828 uint64_t relro_size = 0;
3829 off_t off = *poff;
3830 for (Output_data_list::iterator p = this->output_data_.begin();
3831 p != this->output_data_.end();
3832 ++p)
3833 {
3834 if (!(*p)->is_section())
3835 break;
3836 Output_section* pos = (*p)->output_section();
3837 if (!pos->is_relro())
3838 break;
3839 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3840 if ((*p)->is_address_valid())
3841 relro_size += (*p)->data_size();
3842 else
3843 {
3844 // FIXME: This could be faster.
3845 (*p)->set_address_and_file_offset(addr + relro_size,
3846 off + relro_size);
3847 relro_size += (*p)->data_size();
3848 (*p)->reset_address_and_file_offset();
3849 }
3850 }
3851 relro_size += increase_relro;
3852
3853 uint64_t page_align = parameters->target().common_pagesize();
3854
3855 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3856 uint64_t desired_align = page_align - (relro_size % page_align);
3857 if (desired_align < *poff % page_align)
3858 *poff += page_align - *poff % page_align;
3859 *poff += desired_align - *poff % page_align;
3860 addr += *poff - orig_off;
3861 orig_off = *poff;
3862 }
3863
3864 if (!reset && this->are_addresses_set_)
3865 {
3866 gold_assert(this->paddr_ == addr);
3867 addr = this->vaddr_;
3868 }
3869 else
3870 {
3871 this->vaddr_ = addr;
3872 this->paddr_ = addr;
3873 this->are_addresses_set_ = true;
3874 }
3875
3876 bool in_tls = false;
3877
3878 this->offset_ = orig_off;
3879
3880 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3881 addr, poff, pshndx, &in_tls);
3882 this->filesz_ = *poff - orig_off;
3883
3884 off_t off = *poff;
3885
3886 uint64_t ret = this->set_section_list_addresses(layout, reset,
3887 &this->output_bss_,
3888 addr, poff, pshndx,
3889 &in_tls);
3890
3891 // If the last section was a TLS section, align upward to the
3892 // alignment of the TLS segment, so that the overall size of the TLS
3893 // segment is aligned.
3894 if (in_tls)
3895 {
3896 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3897 *poff = align_address(*poff, segment_align);
3898 }
3899
3900 this->memsz_ = *poff - orig_off;
3901
3902 // Ignore the file offset adjustments made by the BSS Output_data
3903 // objects.
3904 *poff = off;
3905
3906 return ret;
3907 }
3908
3909 // Set the addresses and file offsets in a list of Output_data
3910 // structures.
3911
3912 uint64_t
3913 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3914 Output_data_list* pdl,
3915 uint64_t addr, off_t* poff,
3916 unsigned int* pshndx,
3917 bool* in_tls)
3918 {
3919 off_t startoff = *poff;
3920
3921 off_t off = startoff;
3922 for (Output_data_list::iterator p = pdl->begin();
3923 p != pdl->end();
3924 ++p)
3925 {
3926 if (reset)
3927 (*p)->reset_address_and_file_offset();
3928
3929 // When using a linker script the section will most likely
3930 // already have an address.
3931 if (!(*p)->is_address_valid())
3932 {
3933 uint64_t align = (*p)->addralign();
3934
3935 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3936 {
3937 // Give the first TLS section the alignment of the
3938 // entire TLS segment. Otherwise the TLS segment as a
3939 // whole may be misaligned.
3940 if (!*in_tls)
3941 {
3942 Output_segment* tls_segment = layout->tls_segment();
3943 gold_assert(tls_segment != NULL);
3944 uint64_t segment_align = tls_segment->maximum_alignment();
3945 gold_assert(segment_align >= align);
3946 align = segment_align;
3947
3948 *in_tls = true;
3949 }
3950 }
3951 else
3952 {
3953 // If this is the first section after the TLS segment,
3954 // align it to at least the alignment of the TLS
3955 // segment, so that the size of the overall TLS segment
3956 // is aligned.
3957 if (*in_tls)
3958 {
3959 uint64_t segment_align =
3960 layout->tls_segment()->maximum_alignment();
3961 if (segment_align > align)
3962 align = segment_align;
3963
3964 *in_tls = false;
3965 }
3966 }
3967
3968 off = align_address(off, align);
3969 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3970 }
3971 else
3972 {
3973 // The script may have inserted a skip forward, but it
3974 // better not have moved backward.
3975 if ((*p)->address() >= addr + (off - startoff))
3976 off += (*p)->address() - (addr + (off - startoff));
3977 else
3978 {
3979 if (!layout->script_options()->saw_sections_clause())
3980 gold_unreachable();
3981 else
3982 {
3983 Output_section* os = (*p)->output_section();
3984
3985 // Cast to unsigned long long to avoid format warnings.
3986 unsigned long long previous_dot =
3987 static_cast<unsigned long long>(addr + (off - startoff));
3988 unsigned long long dot =
3989 static_cast<unsigned long long>((*p)->address());
3990
3991 if (os == NULL)
3992 gold_error(_("dot moves backward in linker script "
3993 "from 0x%llx to 0x%llx"), previous_dot, dot);
3994 else
3995 gold_error(_("address of section '%s' moves backward "
3996 "from 0x%llx to 0x%llx"),
3997 os->name(), previous_dot, dot);
3998 }
3999 }
4000 (*p)->set_file_offset(off);
4001 (*p)->finalize_data_size();
4002 }
4003
4004 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4005 // section. Such a section does not affect the size of a
4006 // PT_LOAD segment.
4007 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4008 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4009 off += (*p)->data_size();
4010
4011 if ((*p)->is_section())
4012 {
4013 (*p)->set_out_shndx(*pshndx);
4014 ++*pshndx;
4015 }
4016 }
4017
4018 *poff = off;
4019 return addr + (off - startoff);
4020 }
4021
4022 // For a non-PT_LOAD segment, set the offset from the sections, if
4023 // any. Add INCREASE to the file size and the memory size.
4024
4025 void
4026 Output_segment::set_offset(unsigned int increase)
4027 {
4028 gold_assert(this->type_ != elfcpp::PT_LOAD);
4029
4030 gold_assert(!this->are_addresses_set_);
4031
4032 if (this->output_data_.empty() && this->output_bss_.empty())
4033 {
4034 gold_assert(increase == 0);
4035 this->vaddr_ = 0;
4036 this->paddr_ = 0;
4037 this->are_addresses_set_ = true;
4038 this->memsz_ = 0;
4039 this->min_p_align_ = 0;
4040 this->offset_ = 0;
4041 this->filesz_ = 0;
4042 return;
4043 }
4044
4045 // Find the first and last section by address. The sections may
4046 // have been sorted for the PT_LOAD segment.
4047 const Output_data* first = NULL;
4048 const Output_data* last_data = NULL;
4049 const Output_data* last_bss = NULL;
4050 this->find_first_and_last_list(&this->output_data_, &first, &last_data);
4051 this->find_first_and_last_list(&this->output_bss_, &first, &last_bss);
4052
4053 this->vaddr_ = first->address();
4054 this->paddr_ = (first->has_load_address()
4055 ? first->load_address()
4056 : this->vaddr_);
4057 this->are_addresses_set_ = true;
4058 this->offset_ = first->offset();
4059
4060 if (this->output_data_.empty())
4061 this->filesz_ = 0;
4062 else
4063 this->filesz_ = (last_data->address()
4064 + last_data->data_size()
4065 - this->vaddr_);
4066
4067 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4068 this->memsz_ = (last->address()
4069 + last->data_size()
4070 - this->vaddr_);
4071
4072 this->filesz_ += increase;
4073 this->memsz_ += increase;
4074
4075 // If this is a TLS segment, align the memory size. The code in
4076 // set_section_list ensures that the section after the TLS segment
4077 // is aligned to give us room.
4078 if (this->type_ == elfcpp::PT_TLS)
4079 {
4080 uint64_t segment_align = this->maximum_alignment();
4081 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4082 this->memsz_ = align_address(this->memsz_, segment_align);
4083 }
4084 }
4085
4086 // Look through a list of Output_data objects and find the first and
4087 // last by address.
4088
4089 void
4090 Output_segment::find_first_and_last_list(const Output_data_list* pdl,
4091 const Output_data** pfirst,
4092 const Output_data** plast) const
4093 {
4094 const Output_data* first = *pfirst;
4095 const Output_data* last = *plast;
4096 for (Output_data_list::const_iterator p = pdl->begin(); p != pdl->end(); ++p)
4097 {
4098 if (first == NULL
4099 || (*p)->address() < first->address()
4100 || ((*p)->address() == first->address()
4101 && (*p)->data_size() < first->data_size()))
4102 {
4103 first = *p;
4104 *pfirst = first;
4105 }
4106 if (last == NULL
4107 || (*p)->address() > last->address()
4108 || ((*p)->address() == last->address()
4109 && (*p)->data_size() > last->data_size()))
4110 {
4111 last = *p;
4112 *plast = last;
4113 }
4114 }
4115 }
4116
4117 // Set the TLS offsets of the sections in the PT_TLS segment.
4118
4119 void
4120 Output_segment::set_tls_offsets()
4121 {
4122 gold_assert(this->type_ == elfcpp::PT_TLS);
4123
4124 for (Output_data_list::iterator p = this->output_data_.begin();
4125 p != this->output_data_.end();
4126 ++p)
4127 (*p)->set_tls_offset(this->vaddr_);
4128
4129 for (Output_data_list::iterator p = this->output_bss_.begin();
4130 p != this->output_bss_.end();
4131 ++p)
4132 (*p)->set_tls_offset(this->vaddr_);
4133 }
4134
4135 // Return the address of the first section.
4136
4137 uint64_t
4138 Output_segment::first_section_load_address() const
4139 {
4140 for (Output_data_list::const_iterator p = this->output_data_.begin();
4141 p != this->output_data_.end();
4142 ++p)
4143 if ((*p)->is_section())
4144 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4145
4146 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4147 p != this->output_bss_.end();
4148 ++p)
4149 if ((*p)->is_section())
4150 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4151
4152 gold_unreachable();
4153 }
4154
4155 // Return the number of Output_sections in an Output_segment.
4156
4157 unsigned int
4158 Output_segment::output_section_count() const
4159 {
4160 return (this->output_section_count_list(&this->output_data_)
4161 + this->output_section_count_list(&this->output_bss_));
4162 }
4163
4164 // Return the number of Output_sections in an Output_data_list.
4165
4166 unsigned int
4167 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4168 {
4169 unsigned int count = 0;
4170 for (Output_data_list::const_iterator p = pdl->begin();
4171 p != pdl->end();
4172 ++p)
4173 {
4174 if ((*p)->is_section())
4175 ++count;
4176 }
4177 return count;
4178 }
4179
4180 // Return the section attached to the list segment with the lowest
4181 // load address. This is used when handling a PHDRS clause in a
4182 // linker script.
4183
4184 Output_section*
4185 Output_segment::section_with_lowest_load_address() const
4186 {
4187 Output_section* found = NULL;
4188 uint64_t found_lma = 0;
4189 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4190
4191 Output_section* found_data = found;
4192 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4193 if (found != found_data && found_data != NULL)
4194 {
4195 gold_error(_("nobits section %s may not precede progbits section %s "
4196 "in same segment"),
4197 found->name(), found_data->name());
4198 return NULL;
4199 }
4200
4201 return found;
4202 }
4203
4204 // Look through a list for a section with a lower load address.
4205
4206 void
4207 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4208 Output_section** found,
4209 uint64_t* found_lma) const
4210 {
4211 for (Output_data_list::const_iterator p = pdl->begin();
4212 p != pdl->end();
4213 ++p)
4214 {
4215 if (!(*p)->is_section())
4216 continue;
4217 Output_section* os = static_cast<Output_section*>(*p);
4218 uint64_t lma = (os->has_load_address()
4219 ? os->load_address()
4220 : os->address());
4221 if (*found == NULL || lma < *found_lma)
4222 {
4223 *found = os;
4224 *found_lma = lma;
4225 }
4226 }
4227 }
4228
4229 // Write the segment data into *OPHDR.
4230
4231 template<int size, bool big_endian>
4232 void
4233 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4234 {
4235 ophdr->put_p_type(this->type_);
4236 ophdr->put_p_offset(this->offset_);
4237 ophdr->put_p_vaddr(this->vaddr_);
4238 ophdr->put_p_paddr(this->paddr_);
4239 ophdr->put_p_filesz(this->filesz_);
4240 ophdr->put_p_memsz(this->memsz_);
4241 ophdr->put_p_flags(this->flags_);
4242 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4243 }
4244
4245 // Write the section headers into V.
4246
4247 template<int size, bool big_endian>
4248 unsigned char*
4249 Output_segment::write_section_headers(const Layout* layout,
4250 const Stringpool* secnamepool,
4251 unsigned char* v,
4252 unsigned int *pshndx) const
4253 {
4254 // Every section that is attached to a segment must be attached to a
4255 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4256 // segments.
4257 if (this->type_ != elfcpp::PT_LOAD)
4258 return v;
4259
4260 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4261 &this->output_data_,
4262 v, pshndx);
4263 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4264 &this->output_bss_,
4265 v, pshndx);
4266 return v;
4267 }
4268
4269 template<int size, bool big_endian>
4270 unsigned char*
4271 Output_segment::write_section_headers_list(const Layout* layout,
4272 const Stringpool* secnamepool,
4273 const Output_data_list* pdl,
4274 unsigned char* v,
4275 unsigned int* pshndx) const
4276 {
4277 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4278 for (Output_data_list::const_iterator p = pdl->begin();
4279 p != pdl->end();
4280 ++p)
4281 {
4282 if ((*p)->is_section())
4283 {
4284 const Output_section* ps = static_cast<const Output_section*>(*p);
4285 gold_assert(*pshndx == ps->out_shndx());
4286 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4287 ps->write_header(layout, secnamepool, &oshdr);
4288 v += shdr_size;
4289 ++*pshndx;
4290 }
4291 }
4292 return v;
4293 }
4294
4295 // Print the output sections to the map file.
4296
4297 void
4298 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4299 {
4300 if (this->type() != elfcpp::PT_LOAD)
4301 return;
4302 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4303 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4304 }
4305
4306 // Print an output section list to the map file.
4307
4308 void
4309 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4310 const Output_data_list* pdl) const
4311 {
4312 for (Output_data_list::const_iterator p = pdl->begin();
4313 p != pdl->end();
4314 ++p)
4315 (*p)->print_to_mapfile(mapfile);
4316 }
4317
4318 // Output_file methods.
4319
4320 Output_file::Output_file(const char* name)
4321 : name_(name),
4322 o_(-1),
4323 file_size_(0),
4324 base_(NULL),
4325 map_is_anonymous_(false),
4326 is_temporary_(false)
4327 {
4328 }
4329
4330 // Try to open an existing file. Returns false if the file doesn't
4331 // exist, has a size of 0 or can't be mmapped.
4332
4333 bool
4334 Output_file::open_for_modification()
4335 {
4336 // The name "-" means "stdout".
4337 if (strcmp(this->name_, "-") == 0)
4338 return false;
4339
4340 // Don't bother opening files with a size of zero.
4341 struct stat s;
4342 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4343 return false;
4344
4345 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4346 if (o < 0)
4347 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4348 this->o_ = o;
4349 this->file_size_ = s.st_size;
4350
4351 // If the file can't be mmapped, copying the content to an anonymous
4352 // map will probably negate the performance benefits of incremental
4353 // linking. This could be helped by using views and loading only
4354 // the necessary parts, but this is not supported as of now.
4355 if (!this->map_no_anonymous())
4356 {
4357 release_descriptor(o, true);
4358 this->o_ = -1;
4359 this->file_size_ = 0;
4360 return false;
4361 }
4362
4363 return true;
4364 }
4365
4366 // Open the output file.
4367
4368 void
4369 Output_file::open(off_t file_size)
4370 {
4371 this->file_size_ = file_size;
4372
4373 // Unlink the file first; otherwise the open() may fail if the file
4374 // is busy (e.g. it's an executable that's currently being executed).
4375 //
4376 // However, the linker may be part of a system where a zero-length
4377 // file is created for it to write to, with tight permissions (gcc
4378 // 2.95 did something like this). Unlinking the file would work
4379 // around those permission controls, so we only unlink if the file
4380 // has a non-zero size. We also unlink only regular files to avoid
4381 // trouble with directories/etc.
4382 //
4383 // If we fail, continue; this command is merely a best-effort attempt
4384 // to improve the odds for open().
4385
4386 // We let the name "-" mean "stdout"
4387 if (!this->is_temporary_)
4388 {
4389 if (strcmp(this->name_, "-") == 0)
4390 this->o_ = STDOUT_FILENO;
4391 else
4392 {
4393 struct stat s;
4394 if (::stat(this->name_, &s) == 0
4395 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4396 {
4397 if (s.st_size != 0)
4398 ::unlink(this->name_);
4399 else if (!parameters->options().relocatable())
4400 {
4401 // If we don't unlink the existing file, add execute
4402 // permission where read permissions already exist
4403 // and where the umask permits.
4404 int mask = ::umask(0);
4405 ::umask(mask);
4406 s.st_mode |= (s.st_mode & 0444) >> 2;
4407 ::chmod(this->name_, s.st_mode & ~mask);
4408 }
4409 }
4410
4411 int mode = parameters->options().relocatable() ? 0666 : 0777;
4412 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4413 mode);
4414 if (o < 0)
4415 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4416 this->o_ = o;
4417 }
4418 }
4419
4420 this->map();
4421 }
4422
4423 // Resize the output file.
4424
4425 void
4426 Output_file::resize(off_t file_size)
4427 {
4428 // If the mmap is mapping an anonymous memory buffer, this is easy:
4429 // just mremap to the new size. If it's mapping to a file, we want
4430 // to unmap to flush to the file, then remap after growing the file.
4431 if (this->map_is_anonymous_)
4432 {
4433 void* base = ::mremap(this->base_, this->file_size_, file_size,
4434 MREMAP_MAYMOVE);
4435 if (base == MAP_FAILED)
4436 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4437 this->base_ = static_cast<unsigned char*>(base);
4438 this->file_size_ = file_size;
4439 }
4440 else
4441 {
4442 this->unmap();
4443 this->file_size_ = file_size;
4444 if (!this->map_no_anonymous())
4445 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4446 }
4447 }
4448
4449 // Map an anonymous block of memory which will later be written to the
4450 // file. Return whether the map succeeded.
4451
4452 bool
4453 Output_file::map_anonymous()
4454 {
4455 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4456 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4457 if (base != MAP_FAILED)
4458 {
4459 this->map_is_anonymous_ = true;
4460 this->base_ = static_cast<unsigned char*>(base);
4461 return true;
4462 }
4463 return false;
4464 }
4465
4466 // Map the file into memory. Return whether the mapping succeeded.
4467
4468 bool
4469 Output_file::map_no_anonymous()
4470 {
4471 const int o = this->o_;
4472
4473 // If the output file is not a regular file, don't try to mmap it;
4474 // instead, we'll mmap a block of memory (an anonymous buffer), and
4475 // then later write the buffer to the file.
4476 void* base;
4477 struct stat statbuf;
4478 if (o == STDOUT_FILENO || o == STDERR_FILENO
4479 || ::fstat(o, &statbuf) != 0
4480 || !S_ISREG(statbuf.st_mode)
4481 || this->is_temporary_)
4482 return false;
4483
4484 // Ensure that we have disk space available for the file. If we
4485 // don't do this, it is possible that we will call munmap, close,
4486 // and exit with dirty buffers still in the cache with no assigned
4487 // disk blocks. If the disk is out of space at that point, the
4488 // output file will wind up incomplete, but we will have already
4489 // exited. The alternative to fallocate would be to use fdatasync,
4490 // but that would be a more significant performance hit.
4491 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4492 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4493
4494 // Map the file into memory.
4495 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4496 MAP_SHARED, o, 0);
4497
4498 // The mmap call might fail because of file system issues: the file
4499 // system might not support mmap at all, or it might not support
4500 // mmap with PROT_WRITE.
4501 if (base == MAP_FAILED)
4502 return false;
4503
4504 this->map_is_anonymous_ = false;
4505 this->base_ = static_cast<unsigned char*>(base);
4506 return true;
4507 }
4508
4509 // Map the file into memory.
4510
4511 void
4512 Output_file::map()
4513 {
4514 if (this->map_no_anonymous())
4515 return;
4516
4517 // The mmap call might fail because of file system issues: the file
4518 // system might not support mmap at all, or it might not support
4519 // mmap with PROT_WRITE. I'm not sure which errno values we will
4520 // see in all cases, so if the mmap fails for any reason and we
4521 // don't care about file contents, try for an anonymous map.
4522 if (this->map_anonymous())
4523 return;
4524
4525 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4526 this->name_, static_cast<unsigned long>(this->file_size_),
4527 strerror(errno));
4528 }
4529
4530 // Unmap the file from memory.
4531
4532 void
4533 Output_file::unmap()
4534 {
4535 if (::munmap(this->base_, this->file_size_) < 0)
4536 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4537 this->base_ = NULL;
4538 }
4539
4540 // Close the output file.
4541
4542 void
4543 Output_file::close()
4544 {
4545 // If the map isn't file-backed, we need to write it now.
4546 if (this->map_is_anonymous_ && !this->is_temporary_)
4547 {
4548 size_t bytes_to_write = this->file_size_;
4549 size_t offset = 0;
4550 while (bytes_to_write > 0)
4551 {
4552 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4553 bytes_to_write);
4554 if (bytes_written == 0)
4555 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4556 else if (bytes_written < 0)
4557 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4558 else
4559 {
4560 bytes_to_write -= bytes_written;
4561 offset += bytes_written;
4562 }
4563 }
4564 }
4565 this->unmap();
4566
4567 // We don't close stdout or stderr
4568 if (this->o_ != STDOUT_FILENO
4569 && this->o_ != STDERR_FILENO
4570 && !this->is_temporary_)
4571 if (::close(this->o_) < 0)
4572 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4573 this->o_ = -1;
4574 }
4575
4576 // Instantiate the templates we need. We could use the configure
4577 // script to restrict this to only the ones for implemented targets.
4578
4579 #ifdef HAVE_TARGET_32_LITTLE
4580 template
4581 off_t
4582 Output_section::add_input_section<32, false>(
4583 Layout* layout,
4584 Sized_relobj<32, false>* object,
4585 unsigned int shndx,
4586 const char* secname,
4587 const elfcpp::Shdr<32, false>& shdr,
4588 unsigned int reloc_shndx,
4589 bool have_sections_script);
4590 #endif
4591
4592 #ifdef HAVE_TARGET_32_BIG
4593 template
4594 off_t
4595 Output_section::add_input_section<32, true>(
4596 Layout* layout,
4597 Sized_relobj<32, true>* object,
4598 unsigned int shndx,
4599 const char* secname,
4600 const elfcpp::Shdr<32, true>& shdr,
4601 unsigned int reloc_shndx,
4602 bool have_sections_script);
4603 #endif
4604
4605 #ifdef HAVE_TARGET_64_LITTLE
4606 template
4607 off_t
4608 Output_section::add_input_section<64, false>(
4609 Layout* layout,
4610 Sized_relobj<64, false>* object,
4611 unsigned int shndx,
4612 const char* secname,
4613 const elfcpp::Shdr<64, false>& shdr,
4614 unsigned int reloc_shndx,
4615 bool have_sections_script);
4616 #endif
4617
4618 #ifdef HAVE_TARGET_64_BIG
4619 template
4620 off_t
4621 Output_section::add_input_section<64, true>(
4622 Layout* layout,
4623 Sized_relobj<64, true>* object,
4624 unsigned int shndx,
4625 const char* secname,
4626 const elfcpp::Shdr<64, true>& shdr,
4627 unsigned int reloc_shndx,
4628 bool have_sections_script);
4629 #endif
4630
4631 #ifdef HAVE_TARGET_32_LITTLE
4632 template
4633 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4634 #endif
4635
4636 #ifdef HAVE_TARGET_32_BIG
4637 template
4638 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4639 #endif
4640
4641 #ifdef HAVE_TARGET_64_LITTLE
4642 template
4643 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4644 #endif
4645
4646 #ifdef HAVE_TARGET_64_BIG
4647 template
4648 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4649 #endif
4650
4651 #ifdef HAVE_TARGET_32_LITTLE
4652 template
4653 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4654 #endif
4655
4656 #ifdef HAVE_TARGET_32_BIG
4657 template
4658 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4659 #endif
4660
4661 #ifdef HAVE_TARGET_64_LITTLE
4662 template
4663 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4664 #endif
4665
4666 #ifdef HAVE_TARGET_64_BIG
4667 template
4668 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4669 #endif
4670
4671 #ifdef HAVE_TARGET_32_LITTLE
4672 template
4673 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4674 #endif
4675
4676 #ifdef HAVE_TARGET_32_BIG
4677 template
4678 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4679 #endif
4680
4681 #ifdef HAVE_TARGET_64_LITTLE
4682 template
4683 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4684 #endif
4685
4686 #ifdef HAVE_TARGET_64_BIG
4687 template
4688 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4689 #endif
4690
4691 #ifdef HAVE_TARGET_32_LITTLE
4692 template
4693 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4694 #endif
4695
4696 #ifdef HAVE_TARGET_32_BIG
4697 template
4698 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4699 #endif
4700
4701 #ifdef HAVE_TARGET_64_LITTLE
4702 template
4703 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4704 #endif
4705
4706 #ifdef HAVE_TARGET_64_BIG
4707 template
4708 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4709 #endif
4710
4711 #ifdef HAVE_TARGET_32_LITTLE
4712 template
4713 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4714 #endif
4715
4716 #ifdef HAVE_TARGET_32_BIG
4717 template
4718 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4719 #endif
4720
4721 #ifdef HAVE_TARGET_64_LITTLE
4722 template
4723 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4724 #endif
4725
4726 #ifdef HAVE_TARGET_64_BIG
4727 template
4728 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4729 #endif
4730
4731 #ifdef HAVE_TARGET_32_LITTLE
4732 template
4733 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4734 #endif
4735
4736 #ifdef HAVE_TARGET_32_BIG
4737 template
4738 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4739 #endif
4740
4741 #ifdef HAVE_TARGET_64_LITTLE
4742 template
4743 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4744 #endif
4745
4746 #ifdef HAVE_TARGET_64_BIG
4747 template
4748 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4749 #endif
4750
4751 #ifdef HAVE_TARGET_32_LITTLE
4752 template
4753 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4754 #endif
4755
4756 #ifdef HAVE_TARGET_32_BIG
4757 template
4758 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4759 #endif
4760
4761 #ifdef HAVE_TARGET_64_LITTLE
4762 template
4763 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4764 #endif
4765
4766 #ifdef HAVE_TARGET_64_BIG
4767 template
4768 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4769 #endif
4770
4771 #ifdef HAVE_TARGET_32_LITTLE
4772 template
4773 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4774 #endif
4775
4776 #ifdef HAVE_TARGET_32_BIG
4777 template
4778 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4779 #endif
4780
4781 #ifdef HAVE_TARGET_64_LITTLE
4782 template
4783 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4784 #endif
4785
4786 #ifdef HAVE_TARGET_64_BIG
4787 template
4788 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4789 #endif
4790
4791 #ifdef HAVE_TARGET_32_LITTLE
4792 template
4793 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4794 #endif
4795
4796 #ifdef HAVE_TARGET_32_BIG
4797 template
4798 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4799 #endif
4800
4801 #ifdef HAVE_TARGET_64_LITTLE
4802 template
4803 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4804 #endif
4805
4806 #ifdef HAVE_TARGET_64_BIG
4807 template
4808 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4809 #endif
4810
4811 #ifdef HAVE_TARGET_32_LITTLE
4812 template
4813 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4814 #endif
4815
4816 #ifdef HAVE_TARGET_32_BIG
4817 template
4818 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4819 #endif
4820
4821 #ifdef HAVE_TARGET_64_LITTLE
4822 template
4823 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4824 #endif
4825
4826 #ifdef HAVE_TARGET_64_BIG
4827 template
4828 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4829 #endif
4830
4831 #ifdef HAVE_TARGET_32_LITTLE
4832 template
4833 class Output_data_group<32, false>;
4834 #endif
4835
4836 #ifdef HAVE_TARGET_32_BIG
4837 template
4838 class Output_data_group<32, true>;
4839 #endif
4840
4841 #ifdef HAVE_TARGET_64_LITTLE
4842 template
4843 class Output_data_group<64, false>;
4844 #endif
4845
4846 #ifdef HAVE_TARGET_64_BIG
4847 template
4848 class Output_data_group<64, true>;
4849 #endif
4850
4851 #ifdef HAVE_TARGET_32_LITTLE
4852 template
4853 class Output_data_got<32, false>;
4854 #endif
4855
4856 #ifdef HAVE_TARGET_32_BIG
4857 template
4858 class Output_data_got<32, true>;
4859 #endif
4860
4861 #ifdef HAVE_TARGET_64_LITTLE
4862 template
4863 class Output_data_got<64, false>;
4864 #endif
4865
4866 #ifdef HAVE_TARGET_64_BIG
4867 template
4868 class Output_data_got<64, true>;
4869 #endif
4870
4871 } // End namespace gold.
This page took 0.136196 seconds and 5 git commands to generate.