gold: Get alignment of uncompressed section from ch_addralign
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 if (len <= 0)
131 return 0;
132
133 #ifdef HAVE_POSIX_FALLOCATE
134 if (parameters->options().posix_fallocate())
135 {
136 int err = ::posix_fallocate(o, offset, len);
137 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
138 return err;
139 }
140 #endif // defined(HAVE_POSIX_FALLOCATE)
141
142 #ifdef HAVE_FALLOCATE
143 {
144 int err = ::fallocate(o, 0, offset, len);
145 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
146 return err;
147 }
148 #endif // defined(HAVE_FALLOCATE)
149
150 if (::ftruncate(o, offset + len) < 0)
151 return errno;
152 return 0;
153 }
154
155 // Output_data variables.
156
157 bool Output_data::allocated_sizes_are_fixed;
158
159 // Output_data methods.
160
161 Output_data::~Output_data()
162 {
163 }
164
165 // Return the default alignment for the target size.
166
167 uint64_t
168 Output_data::default_alignment()
169 {
170 return Output_data::default_alignment_for_size(
171 parameters->target().get_size());
172 }
173
174 // Return the default alignment for a size--32 or 64.
175
176 uint64_t
177 Output_data::default_alignment_for_size(int size)
178 {
179 if (size == 32)
180 return 4;
181 else if (size == 64)
182 return 8;
183 else
184 gold_unreachable();
185 }
186
187 // Output_section_header methods. This currently assumes that the
188 // segment and section lists are complete at construction time.
189
190 Output_section_headers::Output_section_headers(
191 const Layout* layout,
192 const Layout::Segment_list* segment_list,
193 const Layout::Section_list* section_list,
194 const Layout::Section_list* unattached_section_list,
195 const Stringpool* secnamepool,
196 const Output_section* shstrtab_section)
197 : layout_(layout),
198 segment_list_(segment_list),
199 section_list_(section_list),
200 unattached_section_list_(unattached_section_list),
201 secnamepool_(secnamepool),
202 shstrtab_section_(shstrtab_section)
203 {
204 }
205
206 // Compute the current data size.
207
208 off_t
209 Output_section_headers::do_size() const
210 {
211 // Count all the sections. Start with 1 for the null section.
212 off_t count = 1;
213 if (!parameters->options().relocatable())
214 {
215 for (Layout::Segment_list::const_iterator p =
216 this->segment_list_->begin();
217 p != this->segment_list_->end();
218 ++p)
219 if ((*p)->type() == elfcpp::PT_LOAD)
220 count += (*p)->output_section_count();
221 }
222 else
223 {
224 for (Layout::Section_list::const_iterator p =
225 this->section_list_->begin();
226 p != this->section_list_->end();
227 ++p)
228 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
229 ++count;
230 }
231 count += this->unattached_section_list_->size();
232
233 const int size = parameters->target().get_size();
234 int shdr_size;
235 if (size == 32)
236 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
237 else if (size == 64)
238 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
239 else
240 gold_unreachable();
241
242 return count * shdr_size;
243 }
244
245 // Write out the section headers.
246
247 void
248 Output_section_headers::do_write(Output_file* of)
249 {
250 switch (parameters->size_and_endianness())
251 {
252 #ifdef HAVE_TARGET_32_LITTLE
253 case Parameters::TARGET_32_LITTLE:
254 this->do_sized_write<32, false>(of);
255 break;
256 #endif
257 #ifdef HAVE_TARGET_32_BIG
258 case Parameters::TARGET_32_BIG:
259 this->do_sized_write<32, true>(of);
260 break;
261 #endif
262 #ifdef HAVE_TARGET_64_LITTLE
263 case Parameters::TARGET_64_LITTLE:
264 this->do_sized_write<64, false>(of);
265 break;
266 #endif
267 #ifdef HAVE_TARGET_64_BIG
268 case Parameters::TARGET_64_BIG:
269 this->do_sized_write<64, true>(of);
270 break;
271 #endif
272 default:
273 gold_unreachable();
274 }
275 }
276
277 template<int size, bool big_endian>
278 void
279 Output_section_headers::do_sized_write(Output_file* of)
280 {
281 off_t all_shdrs_size = this->data_size();
282 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
283
284 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
285 unsigned char* v = view;
286
287 {
288 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
289 oshdr.put_sh_name(0);
290 oshdr.put_sh_type(elfcpp::SHT_NULL);
291 oshdr.put_sh_flags(0);
292 oshdr.put_sh_addr(0);
293 oshdr.put_sh_offset(0);
294
295 size_t section_count = (this->data_size()
296 / elfcpp::Elf_sizes<size>::shdr_size);
297 if (section_count < elfcpp::SHN_LORESERVE)
298 oshdr.put_sh_size(0);
299 else
300 oshdr.put_sh_size(section_count);
301
302 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
303 if (shstrndx < elfcpp::SHN_LORESERVE)
304 oshdr.put_sh_link(0);
305 else
306 oshdr.put_sh_link(shstrndx);
307
308 size_t segment_count = this->segment_list_->size();
309 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
310
311 oshdr.put_sh_addralign(0);
312 oshdr.put_sh_entsize(0);
313 }
314
315 v += shdr_size;
316
317 unsigned int shndx = 1;
318 if (!parameters->options().relocatable())
319 {
320 for (Layout::Segment_list::const_iterator p =
321 this->segment_list_->begin();
322 p != this->segment_list_->end();
323 ++p)
324 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
325 this->secnamepool_,
326 v,
327 &shndx);
328 }
329 else
330 {
331 for (Layout::Section_list::const_iterator p =
332 this->section_list_->begin();
333 p != this->section_list_->end();
334 ++p)
335 {
336 // We do unallocated sections below, except that group
337 // sections have to come first.
338 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
339 && (*p)->type() != elfcpp::SHT_GROUP)
340 continue;
341 gold_assert(shndx == (*p)->out_shndx());
342 elfcpp::Shdr_write<size, big_endian> oshdr(v);
343 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
344 v += shdr_size;
345 ++shndx;
346 }
347 }
348
349 for (Layout::Section_list::const_iterator p =
350 this->unattached_section_list_->begin();
351 p != this->unattached_section_list_->end();
352 ++p)
353 {
354 // For a relocatable link, we did unallocated group sections
355 // above, since they have to come first.
356 if ((*p)->type() == elfcpp::SHT_GROUP
357 && parameters->options().relocatable())
358 continue;
359 gold_assert(shndx == (*p)->out_shndx());
360 elfcpp::Shdr_write<size, big_endian> oshdr(v);
361 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
362 v += shdr_size;
363 ++shndx;
364 }
365
366 of->write_output_view(this->offset(), all_shdrs_size, view);
367 }
368
369 // Output_segment_header methods.
370
371 Output_segment_headers::Output_segment_headers(
372 const Layout::Segment_list& segment_list)
373 : segment_list_(segment_list)
374 {
375 this->set_current_data_size_for_child(this->do_size());
376 }
377
378 void
379 Output_segment_headers::do_write(Output_file* of)
380 {
381 switch (parameters->size_and_endianness())
382 {
383 #ifdef HAVE_TARGET_32_LITTLE
384 case Parameters::TARGET_32_LITTLE:
385 this->do_sized_write<32, false>(of);
386 break;
387 #endif
388 #ifdef HAVE_TARGET_32_BIG
389 case Parameters::TARGET_32_BIG:
390 this->do_sized_write<32, true>(of);
391 break;
392 #endif
393 #ifdef HAVE_TARGET_64_LITTLE
394 case Parameters::TARGET_64_LITTLE:
395 this->do_sized_write<64, false>(of);
396 break;
397 #endif
398 #ifdef HAVE_TARGET_64_BIG
399 case Parameters::TARGET_64_BIG:
400 this->do_sized_write<64, true>(of);
401 break;
402 #endif
403 default:
404 gold_unreachable();
405 }
406 }
407
408 template<int size, bool big_endian>
409 void
410 Output_segment_headers::do_sized_write(Output_file* of)
411 {
412 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
413 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
414 gold_assert(all_phdrs_size == this->data_size());
415 unsigned char* view = of->get_output_view(this->offset(),
416 all_phdrs_size);
417 unsigned char* v = view;
418 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
419 p != this->segment_list_.end();
420 ++p)
421 {
422 elfcpp::Phdr_write<size, big_endian> ophdr(v);
423 (*p)->write_header(&ophdr);
424 v += phdr_size;
425 }
426
427 gold_assert(v - view == all_phdrs_size);
428
429 of->write_output_view(this->offset(), all_phdrs_size, view);
430 }
431
432 off_t
433 Output_segment_headers::do_size() const
434 {
435 const int size = parameters->target().get_size();
436 int phdr_size;
437 if (size == 32)
438 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
439 else if (size == 64)
440 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
441 else
442 gold_unreachable();
443
444 return this->segment_list_.size() * phdr_size;
445 }
446
447 // Output_file_header methods.
448
449 Output_file_header::Output_file_header(Target* target,
450 const Symbol_table* symtab,
451 const Output_segment_headers* osh)
452 : target_(target),
453 symtab_(symtab),
454 segment_header_(osh),
455 section_header_(NULL),
456 shstrtab_(NULL)
457 {
458 this->set_data_size(this->do_size());
459 }
460
461 // Set the section table information for a file header.
462
463 void
464 Output_file_header::set_section_info(const Output_section_headers* shdrs,
465 const Output_section* shstrtab)
466 {
467 this->section_header_ = shdrs;
468 this->shstrtab_ = shstrtab;
469 }
470
471 // Write out the file header.
472
473 void
474 Output_file_header::do_write(Output_file* of)
475 {
476 gold_assert(this->offset() == 0);
477
478 switch (parameters->size_and_endianness())
479 {
480 #ifdef HAVE_TARGET_32_LITTLE
481 case Parameters::TARGET_32_LITTLE:
482 this->do_sized_write<32, false>(of);
483 break;
484 #endif
485 #ifdef HAVE_TARGET_32_BIG
486 case Parameters::TARGET_32_BIG:
487 this->do_sized_write<32, true>(of);
488 break;
489 #endif
490 #ifdef HAVE_TARGET_64_LITTLE
491 case Parameters::TARGET_64_LITTLE:
492 this->do_sized_write<64, false>(of);
493 break;
494 #endif
495 #ifdef HAVE_TARGET_64_BIG
496 case Parameters::TARGET_64_BIG:
497 this->do_sized_write<64, true>(of);
498 break;
499 #endif
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Write out the file header with appropriate size and endianness.
506
507 template<int size, bool big_endian>
508 void
509 Output_file_header::do_sized_write(Output_file* of)
510 {
511 gold_assert(this->offset() == 0);
512
513 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
514 unsigned char* view = of->get_output_view(0, ehdr_size);
515 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
516
517 unsigned char e_ident[elfcpp::EI_NIDENT];
518 memset(e_ident, 0, elfcpp::EI_NIDENT);
519 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
520 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
521 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
522 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
523 if (size == 32)
524 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
525 else if (size == 64)
526 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
527 else
528 gold_unreachable();
529 e_ident[elfcpp::EI_DATA] = (big_endian
530 ? elfcpp::ELFDATA2MSB
531 : elfcpp::ELFDATA2LSB);
532 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
533 oehdr.put_e_ident(e_ident);
534
535 elfcpp::ET e_type;
536 if (parameters->options().relocatable())
537 e_type = elfcpp::ET_REL;
538 else if (parameters->options().output_is_position_independent())
539 e_type = elfcpp::ET_DYN;
540 else
541 e_type = elfcpp::ET_EXEC;
542 oehdr.put_e_type(e_type);
543
544 oehdr.put_e_machine(this->target_->machine_code());
545 oehdr.put_e_version(elfcpp::EV_CURRENT);
546
547 oehdr.put_e_entry(this->entry<size>());
548
549 if (this->segment_header_ == NULL)
550 oehdr.put_e_phoff(0);
551 else
552 oehdr.put_e_phoff(this->segment_header_->offset());
553
554 oehdr.put_e_shoff(this->section_header_->offset());
555 oehdr.put_e_flags(this->target_->processor_specific_flags());
556 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
557
558 if (this->segment_header_ == NULL)
559 {
560 oehdr.put_e_phentsize(0);
561 oehdr.put_e_phnum(0);
562 }
563 else
564 {
565 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
566 size_t phnum = (this->segment_header_->data_size()
567 / elfcpp::Elf_sizes<size>::phdr_size);
568 if (phnum > elfcpp::PN_XNUM)
569 phnum = elfcpp::PN_XNUM;
570 oehdr.put_e_phnum(phnum);
571 }
572
573 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
574 size_t section_count = (this->section_header_->data_size()
575 / elfcpp::Elf_sizes<size>::shdr_size);
576
577 if (section_count < elfcpp::SHN_LORESERVE)
578 oehdr.put_e_shnum(this->section_header_->data_size()
579 / elfcpp::Elf_sizes<size>::shdr_size);
580 else
581 oehdr.put_e_shnum(0);
582
583 unsigned int shstrndx = this->shstrtab_->out_shndx();
584 if (shstrndx < elfcpp::SHN_LORESERVE)
585 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
586 else
587 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
588
589 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
590 // the e_ident field.
591 this->target_->adjust_elf_header(view, ehdr_size);
592
593 of->write_output_view(0, ehdr_size, view);
594 }
595
596 // Return the value to use for the entry address.
597
598 template<int size>
599 typename elfcpp::Elf_types<size>::Elf_Addr
600 Output_file_header::entry()
601 {
602 const bool should_issue_warning = (parameters->options().entry() != NULL
603 && !parameters->options().relocatable()
604 && !parameters->options().shared());
605 const char* entry = parameters->entry();
606 Symbol* sym = this->symtab_->lookup(entry);
607
608 typename Sized_symbol<size>::Value_type v;
609 if (sym != NULL)
610 {
611 Sized_symbol<size>* ssym;
612 ssym = this->symtab_->get_sized_symbol<size>(sym);
613 if (!ssym->is_defined() && should_issue_warning)
614 gold_warning("entry symbol '%s' exists but is not defined", entry);
615 v = ssym->value();
616 }
617 else
618 {
619 // We couldn't find the entry symbol. See if we can parse it as
620 // a number. This supports, e.g., -e 0x1000.
621 char* endptr;
622 v = strtoull(entry, &endptr, 0);
623 if (*endptr != '\0')
624 {
625 if (should_issue_warning)
626 gold_warning("cannot find entry symbol '%s'", entry);
627 v = 0;
628 }
629 }
630
631 return v;
632 }
633
634 // Compute the current data size.
635
636 off_t
637 Output_file_header::do_size() const
638 {
639 const int size = parameters->target().get_size();
640 if (size == 32)
641 return elfcpp::Elf_sizes<32>::ehdr_size;
642 else if (size == 64)
643 return elfcpp::Elf_sizes<64>::ehdr_size;
644 else
645 gold_unreachable();
646 }
647
648 // Output_data_const methods.
649
650 void
651 Output_data_const::do_write(Output_file* of)
652 {
653 of->write(this->offset(), this->data_.data(), this->data_.size());
654 }
655
656 // Output_data_const_buffer methods.
657
658 void
659 Output_data_const_buffer::do_write(Output_file* of)
660 {
661 of->write(this->offset(), this->p_, this->data_size());
662 }
663
664 // Output_section_data methods.
665
666 // Record the output section, and set the entry size and such.
667
668 void
669 Output_section_data::set_output_section(Output_section* os)
670 {
671 gold_assert(this->output_section_ == NULL);
672 this->output_section_ = os;
673 this->do_adjust_output_section(os);
674 }
675
676 // Return the section index of the output section.
677
678 unsigned int
679 Output_section_data::do_out_shndx() const
680 {
681 gold_assert(this->output_section_ != NULL);
682 return this->output_section_->out_shndx();
683 }
684
685 // Set the alignment, which means we may need to update the alignment
686 // of the output section.
687
688 void
689 Output_section_data::set_addralign(uint64_t addralign)
690 {
691 this->addralign_ = addralign;
692 if (this->output_section_ != NULL
693 && this->output_section_->addralign() < addralign)
694 this->output_section_->set_addralign(addralign);
695 }
696
697 // Output_data_strtab methods.
698
699 // Set the final data size.
700
701 void
702 Output_data_strtab::set_final_data_size()
703 {
704 this->strtab_->set_string_offsets();
705 this->set_data_size(this->strtab_->get_strtab_size());
706 }
707
708 // Write out a string table.
709
710 void
711 Output_data_strtab::do_write(Output_file* of)
712 {
713 this->strtab_->write(of, this->offset());
714 }
715
716 // Output_reloc methods.
717
718 // A reloc against a global symbol.
719
720 template<bool dynamic, int size, bool big_endian>
721 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
722 Symbol* gsym,
723 unsigned int type,
724 Output_data* od,
725 Address address,
726 bool is_relative,
727 bool is_symbolless,
728 bool use_plt_offset)
729 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
730 is_relative_(is_relative), is_symbolless_(is_symbolless),
731 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
732 {
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.od = od;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 }
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Symbol* gsym,
744 unsigned int type,
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int shndx,
747 Address address,
748 bool is_relative,
749 bool is_symbolless,
750 bool use_plt_offset)
751 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
752 is_relative_(is_relative), is_symbolless_(is_symbolless),
753 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
754 {
755 gold_assert(shndx != INVALID_CODE);
756 // this->type_ is a bitfield; make sure TYPE fits.
757 gold_assert(this->type_ == type);
758 this->u1_.gsym = gsym;
759 this->u2_.relobj = relobj;
760 if (dynamic)
761 this->set_needs_dynsym_index();
762 }
763
764 // A reloc against a local symbol.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 Sized_relobj<size, big_endian>* relobj,
769 unsigned int local_sym_index,
770 unsigned int type,
771 Output_data* od,
772 Address address,
773 bool is_relative,
774 bool is_symbolless,
775 bool is_section_symbol,
776 bool use_plt_offset)
777 : address_(address), local_sym_index_(local_sym_index), type_(type),
778 is_relative_(is_relative), is_symbolless_(is_symbolless),
779 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
780 shndx_(INVALID_CODE)
781 {
782 gold_assert(local_sym_index != GSYM_CODE
783 && local_sym_index != INVALID_CODE);
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_ == type);
786 this->u1_.relobj = relobj;
787 this->u2_.od = od;
788 if (dynamic)
789 this->set_needs_dynsym_index();
790 }
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794 Sized_relobj<size, big_endian>* relobj,
795 unsigned int local_sym_index,
796 unsigned int type,
797 unsigned int shndx,
798 Address address,
799 bool is_relative,
800 bool is_symbolless,
801 bool is_section_symbol,
802 bool use_plt_offset)
803 : address_(address), local_sym_index_(local_sym_index), type_(type),
804 is_relative_(is_relative), is_symbolless_(is_symbolless),
805 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
806 shndx_(shndx)
807 {
808 gold_assert(local_sym_index != GSYM_CODE
809 && local_sym_index != INVALID_CODE);
810 gold_assert(shndx != INVALID_CODE);
811 // this->type_ is a bitfield; make sure TYPE fits.
812 gold_assert(this->type_ == type);
813 this->u1_.relobj = relobj;
814 this->u2_.relobj = relobj;
815 if (dynamic)
816 this->set_needs_dynsym_index();
817 }
818
819 // A reloc against the STT_SECTION symbol of an output section.
820
821 template<bool dynamic, int size, bool big_endian>
822 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
823 Output_section* os,
824 unsigned int type,
825 Output_data* od,
826 Address address,
827 bool is_relative)
828 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
829 is_relative_(is_relative), is_symbolless_(is_relative),
830 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
831 {
832 // this->type_ is a bitfield; make sure TYPE fits.
833 gold_assert(this->type_ == type);
834 this->u1_.os = os;
835 this->u2_.od = od;
836 if (dynamic)
837 this->set_needs_dynsym_index();
838 else
839 os->set_needs_symtab_index();
840 }
841
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844 Output_section* os,
845 unsigned int type,
846 Sized_relobj<size, big_endian>* relobj,
847 unsigned int shndx,
848 Address address,
849 bool is_relative)
850 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
851 is_relative_(is_relative), is_symbolless_(is_relative),
852 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
853 {
854 gold_assert(shndx != INVALID_CODE);
855 // this->type_ is a bitfield; make sure TYPE fits.
856 gold_assert(this->type_ == type);
857 this->u1_.os = os;
858 this->u2_.relobj = relobj;
859 if (dynamic)
860 this->set_needs_dynsym_index();
861 else
862 os->set_needs_symtab_index();
863 }
864
865 // An absolute or relative relocation.
866
867 template<bool dynamic, int size, bool big_endian>
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
869 unsigned int type,
870 Output_data* od,
871 Address address,
872 bool is_relative)
873 : address_(address), local_sym_index_(0), type_(type),
874 is_relative_(is_relative), is_symbolless_(false),
875 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
876 {
877 // this->type_ is a bitfield; make sure TYPE fits.
878 gold_assert(this->type_ == type);
879 this->u1_.relobj = NULL;
880 this->u2_.od = od;
881 }
882
883 template<bool dynamic, int size, bool big_endian>
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
885 unsigned int type,
886 Sized_relobj<size, big_endian>* relobj,
887 unsigned int shndx,
888 Address address,
889 bool is_relative)
890 : address_(address), local_sym_index_(0), type_(type),
891 is_relative_(is_relative), is_symbolless_(false),
892 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
893 {
894 gold_assert(shndx != INVALID_CODE);
895 // this->type_ is a bitfield; make sure TYPE fits.
896 gold_assert(this->type_ == type);
897 this->u1_.relobj = NULL;
898 this->u2_.relobj = relobj;
899 }
900
901 // A target specific relocation.
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Output_data* od,
908 Address address)
909 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
910 is_relative_(false), is_symbolless_(false),
911 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
912 {
913 // this->type_ is a bitfield; make sure TYPE fits.
914 gold_assert(this->type_ == type);
915 this->u1_.arg = arg;
916 this->u2_.od = od;
917 }
918
919 template<bool dynamic, int size, bool big_endian>
920 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
921 unsigned int type,
922 void* arg,
923 Sized_relobj<size, big_endian>* relobj,
924 unsigned int shndx,
925 Address address)
926 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
927 is_relative_(false), is_symbolless_(false),
928 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
929 {
930 gold_assert(shndx != INVALID_CODE);
931 // this->type_ is a bitfield; make sure TYPE fits.
932 gold_assert(this->type_ == type);
933 this->u1_.arg = arg;
934 this->u2_.relobj = relobj;
935 }
936
937 // Record that we need a dynamic symbol index for this relocation.
938
939 template<bool dynamic, int size, bool big_endian>
940 void
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 set_needs_dynsym_index()
943 {
944 if (this->is_symbolless_)
945 return;
946 switch (this->local_sym_index_)
947 {
948 case INVALID_CODE:
949 gold_unreachable();
950
951 case GSYM_CODE:
952 this->u1_.gsym->set_needs_dynsym_entry();
953 break;
954
955 case SECTION_CODE:
956 this->u1_.os->set_needs_dynsym_index();
957 break;
958
959 case TARGET_CODE:
960 // The target must take care of this if necessary.
961 break;
962
963 case 0:
964 break;
965
966 default:
967 {
968 const unsigned int lsi = this->local_sym_index_;
969 Sized_relobj_file<size, big_endian>* relobj =
970 this->u1_.relobj->sized_relobj();
971 gold_assert(relobj != NULL);
972 if (!this->is_section_symbol_)
973 relobj->set_needs_output_dynsym_entry(lsi);
974 else
975 relobj->output_section(lsi)->set_needs_dynsym_index();
976 }
977 break;
978 }
979 }
980
981 // Get the symbol index of a relocation.
982
983 template<bool dynamic, int size, bool big_endian>
984 unsigned int
985 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
986 const
987 {
988 unsigned int index;
989 if (this->is_symbolless_)
990 return 0;
991 switch (this->local_sym_index_)
992 {
993 case INVALID_CODE:
994 gold_unreachable();
995
996 case GSYM_CODE:
997 if (this->u1_.gsym == NULL)
998 index = 0;
999 else if (dynamic)
1000 index = this->u1_.gsym->dynsym_index();
1001 else
1002 index = this->u1_.gsym->symtab_index();
1003 break;
1004
1005 case SECTION_CODE:
1006 if (dynamic)
1007 index = this->u1_.os->dynsym_index();
1008 else
1009 index = this->u1_.os->symtab_index();
1010 break;
1011
1012 case TARGET_CODE:
1013 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1014 this->type_);
1015 break;
1016
1017 case 0:
1018 // Relocations without symbols use a symbol index of 0.
1019 index = 0;
1020 break;
1021
1022 default:
1023 {
1024 const unsigned int lsi = this->local_sym_index_;
1025 Sized_relobj_file<size, big_endian>* relobj =
1026 this->u1_.relobj->sized_relobj();
1027 gold_assert(relobj != NULL);
1028 if (!this->is_section_symbol_)
1029 {
1030 if (dynamic)
1031 index = relobj->dynsym_index(lsi);
1032 else
1033 index = relobj->symtab_index(lsi);
1034 }
1035 else
1036 {
1037 Output_section* os = relobj->output_section(lsi);
1038 gold_assert(os != NULL);
1039 if (dynamic)
1040 index = os->dynsym_index();
1041 else
1042 index = os->symtab_index();
1043 }
1044 }
1045 break;
1046 }
1047 gold_assert(index != -1U);
1048 return index;
1049 }
1050
1051 // For a local section symbol, get the address of the offset ADDEND
1052 // within the input section.
1053
1054 template<bool dynamic, int size, bool big_endian>
1055 typename elfcpp::Elf_types<size>::Elf_Addr
1056 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1057 local_section_offset(Addend addend) const
1058 {
1059 gold_assert(this->local_sym_index_ != GSYM_CODE
1060 && this->local_sym_index_ != SECTION_CODE
1061 && this->local_sym_index_ != TARGET_CODE
1062 && this->local_sym_index_ != INVALID_CODE
1063 && this->local_sym_index_ != 0
1064 && this->is_section_symbol_);
1065 const unsigned int lsi = this->local_sym_index_;
1066 Output_section* os = this->u1_.relobj->output_section(lsi);
1067 gold_assert(os != NULL);
1068 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1069 if (offset != invalid_address)
1070 return offset + addend;
1071 // This is a merge section.
1072 Sized_relobj_file<size, big_endian>* relobj =
1073 this->u1_.relobj->sized_relobj();
1074 gold_assert(relobj != NULL);
1075 offset = os->output_address(relobj, lsi, addend);
1076 gold_assert(offset != invalid_address);
1077 return offset;
1078 }
1079
1080 // Get the output address of a relocation.
1081
1082 template<bool dynamic, int size, bool big_endian>
1083 typename elfcpp::Elf_types<size>::Elf_Addr
1084 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1085 {
1086 Address address = this->address_;
1087 if (this->shndx_ != INVALID_CODE)
1088 {
1089 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1090 gold_assert(os != NULL);
1091 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1092 if (off != invalid_address)
1093 address += os->address() + off;
1094 else
1095 {
1096 Sized_relobj_file<size, big_endian>* relobj =
1097 this->u2_.relobj->sized_relobj();
1098 gold_assert(relobj != NULL);
1099 address = os->output_address(relobj, this->shndx_, address);
1100 gold_assert(address != invalid_address);
1101 }
1102 }
1103 else if (this->u2_.od != NULL)
1104 address += this->u2_.od->address();
1105 return address;
1106 }
1107
1108 // Write out the offset and info fields of a Rel or Rela relocation
1109 // entry.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 template<typename Write_rel>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1115 Write_rel* wr) const
1116 {
1117 wr->put_r_offset(this->get_address());
1118 unsigned int sym_index = this->get_symbol_index();
1119 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1120 }
1121
1122 // Write out a Rel relocation.
1123
1124 template<bool dynamic, int size, bool big_endian>
1125 void
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1127 unsigned char* pov) const
1128 {
1129 elfcpp::Rel_write<size, big_endian> orel(pov);
1130 this->write_rel(&orel);
1131 }
1132
1133 // Get the value of the symbol referred to by a Rel relocation.
1134
1135 template<bool dynamic, int size, bool big_endian>
1136 typename elfcpp::Elf_types<size>::Elf_Addr
1137 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1138 Addend addend) const
1139 {
1140 if (this->local_sym_index_ == GSYM_CODE)
1141 {
1142 const Sized_symbol<size>* sym;
1143 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1144 if (this->use_plt_offset_ && sym->has_plt_offset())
1145 return parameters->target().plt_address_for_global(sym);
1146 else
1147 return sym->value() + addend;
1148 }
1149 if (this->local_sym_index_ == SECTION_CODE)
1150 {
1151 gold_assert(!this->use_plt_offset_);
1152 return this->u1_.os->address() + addend;
1153 }
1154 gold_assert(this->local_sym_index_ != TARGET_CODE
1155 && this->local_sym_index_ != INVALID_CODE
1156 && this->local_sym_index_ != 0
1157 && !this->is_section_symbol_);
1158 const unsigned int lsi = this->local_sym_index_;
1159 Sized_relobj_file<size, big_endian>* relobj =
1160 this->u1_.relobj->sized_relobj();
1161 gold_assert(relobj != NULL);
1162 if (this->use_plt_offset_)
1163 return parameters->target().plt_address_for_local(relobj, lsi);
1164 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1165 return symval->value(relobj, addend);
1166 }
1167
1168 // Reloc comparison. This function sorts the dynamic relocs for the
1169 // benefit of the dynamic linker. First we sort all relative relocs
1170 // to the front. Among relative relocs, we sort by output address.
1171 // Among non-relative relocs, we sort by symbol index, then by output
1172 // address.
1173
1174 template<bool dynamic, int size, bool big_endian>
1175 int
1176 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1177 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1178 const
1179 {
1180 if (this->is_relative_)
1181 {
1182 if (!r2.is_relative_)
1183 return -1;
1184 // Otherwise sort by reloc address below.
1185 }
1186 else if (r2.is_relative_)
1187 return 1;
1188 else
1189 {
1190 unsigned int sym1 = this->get_symbol_index();
1191 unsigned int sym2 = r2.get_symbol_index();
1192 if (sym1 < sym2)
1193 return -1;
1194 else if (sym1 > sym2)
1195 return 1;
1196 // Otherwise sort by reloc address.
1197 }
1198
1199 section_offset_type addr1 = this->get_address();
1200 section_offset_type addr2 = r2.get_address();
1201 if (addr1 < addr2)
1202 return -1;
1203 else if (addr1 > addr2)
1204 return 1;
1205
1206 // Final tie breaker, in order to generate the same output on any
1207 // host: reloc type.
1208 unsigned int type1 = this->type_;
1209 unsigned int type2 = r2.type_;
1210 if (type1 < type2)
1211 return -1;
1212 else if (type1 > type2)
1213 return 1;
1214
1215 // These relocs appear to be exactly the same.
1216 return 0;
1217 }
1218
1219 // Write out a Rela relocation.
1220
1221 template<bool dynamic, int size, bool big_endian>
1222 void
1223 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1224 unsigned char* pov) const
1225 {
1226 elfcpp::Rela_write<size, big_endian> orel(pov);
1227 this->rel_.write_rel(&orel);
1228 Addend addend = this->addend_;
1229 if (this->rel_.is_target_specific())
1230 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1231 this->rel_.type(), addend);
1232 else if (this->rel_.is_symbolless())
1233 addend = this->rel_.symbol_value(addend);
1234 else if (this->rel_.is_local_section_symbol())
1235 addend = this->rel_.local_section_offset(addend);
1236 orel.put_r_addend(addend);
1237 }
1238
1239 // Output_data_reloc_base methods.
1240
1241 // Adjust the output section.
1242
1243 template<int sh_type, bool dynamic, int size, bool big_endian>
1244 void
1245 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1246 ::do_adjust_output_section(Output_section* os)
1247 {
1248 if (sh_type == elfcpp::SHT_REL)
1249 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250 else if (sh_type == elfcpp::SHT_RELA)
1251 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1252 else
1253 gold_unreachable();
1254
1255 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1256 // static link. The backends will generate a dynamic reloc section
1257 // to hold this. In that case we don't want to link to the dynsym
1258 // section, because there isn't one.
1259 if (!dynamic)
1260 os->set_should_link_to_symtab();
1261 else if (parameters->doing_static_link())
1262 ;
1263 else
1264 os->set_should_link_to_dynsym();
1265 }
1266
1267 // Standard relocation writer, which just calls Output_reloc::write().
1268
1269 template<int sh_type, bool dynamic, int size, bool big_endian>
1270 struct Output_reloc_writer
1271 {
1272 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1273 typedef std::vector<Output_reloc_type> Relocs;
1274
1275 static void
1276 write(typename Relocs::const_iterator p, unsigned char* pov)
1277 { p->write(pov); }
1278 };
1279
1280 // Write out relocation data.
1281
1282 template<int sh_type, bool dynamic, int size, bool big_endian>
1283 void
1284 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1285 Output_file* of)
1286 {
1287 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1288 this->do_write_generic<Writer>(of);
1289 }
1290
1291 // Class Output_relocatable_relocs.
1292
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300
1301 // class Output_data_group.
1302
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305 Sized_relobj_file<size, big_endian>* relobj,
1306 section_size_type entry_count,
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
1309 : Output_section_data(entry_count * 4, 4, false),
1310 relobj_(relobj),
1311 flags_(flags)
1312 {
1313 this->input_shndxes_.swap(*input_shndxes);
1314 }
1315
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330 ++contents;
1331
1332 for (std::vector<unsigned int>::const_iterator p =
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
1335 ++p, ++contents)
1336 {
1337 Output_section* os = this->relobj_->output_section(*p);
1338
1339 unsigned int output_shndx;
1340 if (os != NULL)
1341 output_shndx = os->out_shndx();
1342 else
1343 {
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1346 output_shndx = 0;
1347 }
1348
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350 }
1351
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1354
1355 of->write_output_view(off, oview_size, oview);
1356
1357 // We no longer need this information.
1358 this->input_shndxes_.clear();
1359 }
1360
1361 // Output_data_got::Got_entry methods.
1362
1363 // Write out the entry.
1364
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368 unsigned int got_indx,
1369 unsigned char* pov) const
1370 {
1371 Valtype val = 0;
1372
1373 switch (this->local_sym_index_)
1374 {
1375 case GSYM_CODE:
1376 {
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
1380 Symbol* gsym = this->u_.gsym;
1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382 val = parameters->target().plt_address_for_global(gsym);
1383 else
1384 {
1385 switch (parameters->size_and_endianness())
1386 {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1390 {
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 }
1398 break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1403 {
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 }
1408 break;
1409 #endif
1410 default:
1411 gold_unreachable();
1412 }
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
1415 val += parameters->target().tls_offset_for_global(gsym,
1416 got_indx);
1417 }
1418 }
1419 break;
1420
1421 case CONSTANT_CODE:
1422 val = this->u_.constant;
1423 break;
1424
1425 case RESERVED_CODE:
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1428 return;
1429 val = this->u_.constant;
1430 break;
1431
1432 default:
1433 {
1434 const Relobj* object = this->u_.object;
1435 const unsigned int lsi = this->local_sym_index_;
1436 bool is_tls = object->local_is_tls(lsi);
1437 if (this->use_plt_or_tls_offset_ && !is_tls)
1438 val = parameters->target().plt_address_for_local(object, lsi);
1439 else
1440 {
1441 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1445 got_indx);
1446 }
1447 }
1448 break;
1449 }
1450
1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453
1454 // Output_data_got methods.
1455
1456 // Add an entry for a global symbol to the GOT. This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463 Symbol* gsym,
1464 unsigned int got_type)
1465 {
1466 if (gsym->has_got_offset(got_type))
1467 return false;
1468
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
1471 return true;
1472 }
1473
1474 // Like add_global, but use the PLT offset.
1475
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
1480 {
1481 if (gsym->has_got_offset(got_type))
1482 return false;
1483
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
1486 return true;
1487 }
1488
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495 Symbol* gsym,
1496 unsigned int got_type,
1497 Output_data_reloc_generic* rel_dyn,
1498 unsigned int r_type)
1499 {
1500 if (gsym->has_got_offset(got_type))
1501 return;
1502
1503 unsigned int got_offset = this->add_got_entry(Got_entry());
1504 gsym->set_got_offset(got_type, got_offset);
1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514 Symbol* gsym,
1515 unsigned int got_type,
1516 Output_data_reloc_generic* rel_dyn,
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
1519 {
1520 if (gsym->has_got_offset(got_type))
1521 return;
1522
1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524 gsym->set_got_offset(got_type, got_offset);
1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526
1527 if (r_type_2 != 0)
1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
1529 got_offset + got_size / 8, 0);
1530 }
1531
1532 // Add an entry for a local symbol to the GOT. This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539 Relobj* object,
1540 unsigned int symndx,
1541 unsigned int got_type)
1542 {
1543 if (object->local_has_got_offset(symndx, got_type))
1544 return false;
1545
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 false));
1548 object->set_local_got_offset(symndx, got_type, got_offset);
1549 return true;
1550 }
1551
1552 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1553 // true if this is a new GOT entry, false if the symbol already has a GOT
1554 // entry.
1555
1556 template<int got_size, bool big_endian>
1557 bool
1558 Output_data_got<got_size, big_endian>::add_local(
1559 Relobj* object,
1560 unsigned int symndx,
1561 unsigned int got_type,
1562 uint64_t addend)
1563 {
1564 if (object->local_has_got_offset(symndx, got_type, addend))
1565 return false;
1566
1567 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1568 false, addend));
1569 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1570 return true;
1571 }
1572
1573 // Like add_local, but use the PLT offset.
1574
1575 template<int got_size, bool big_endian>
1576 bool
1577 Output_data_got<got_size, big_endian>::add_local_plt(
1578 Relobj* object,
1579 unsigned int symndx,
1580 unsigned int got_type)
1581 {
1582 if (object->local_has_got_offset(symndx, got_type))
1583 return false;
1584
1585 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1586 true));
1587 object->set_local_got_offset(symndx, got_type, got_offset);
1588 return true;
1589 }
1590
1591 // Add an entry for a local symbol to the GOT, and add a dynamic
1592 // relocation of type R_TYPE for the GOT entry.
1593
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int got_type,
1600 Output_data_reloc_generic* rel_dyn,
1601 unsigned int r_type)
1602 {
1603 if (object->local_has_got_offset(symndx, got_type))
1604 return;
1605
1606 unsigned int got_offset = this->add_got_entry(Got_entry());
1607 object->set_local_got_offset(symndx, got_type, got_offset);
1608 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1609 }
1610
1611 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1612 // relocation of type R_TYPE for the GOT entry.
1613
1614 template<int got_size, bool big_endian>
1615 void
1616 Output_data_got<got_size, big_endian>::add_local_with_rel(
1617 Relobj* object,
1618 unsigned int symndx,
1619 unsigned int got_type,
1620 Output_data_reloc_generic* rel_dyn,
1621 unsigned int r_type, uint64_t addend)
1622 {
1623 if (object->local_has_got_offset(symndx, got_type, addend))
1624 return;
1625
1626 unsigned int got_offset = this->add_got_entry(Got_entry());
1627 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1628 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1629 addend);
1630 }
1631
1632 // Add a pair of entries for a local symbol to the GOT, and add
1633 // a dynamic relocation of type R_TYPE using the section symbol of
1634 // the output section to which input section SHNDX maps, on the first.
1635 // The first got entry will have a value of zero, the second the
1636 // value of the local symbol.
1637 template<int got_size, bool big_endian>
1638 void
1639 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1640 Relobj* object,
1641 unsigned int symndx,
1642 unsigned int shndx,
1643 unsigned int got_type,
1644 Output_data_reloc_generic* rel_dyn,
1645 unsigned int r_type)
1646 {
1647 if (object->local_has_got_offset(symndx, got_type))
1648 return;
1649
1650 unsigned int got_offset =
1651 this->add_got_entry_pair(Got_entry(),
1652 Got_entry(object, symndx, false));
1653 object->set_local_got_offset(symndx, got_type, got_offset);
1654 Output_section* os = object->output_section(shndx);
1655 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1656 }
1657
1658 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1659 // a dynamic relocation of type R_TYPE using the section symbol of
1660 // the output section to which input section SHNDX maps, on the first.
1661 // The first got entry will have a value of zero, the second the
1662 // value of the local symbol.
1663 template<int got_size, bool big_endian>
1664 void
1665 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1666 Relobj* object,
1667 unsigned int symndx,
1668 unsigned int shndx,
1669 unsigned int got_type,
1670 Output_data_reloc_generic* rel_dyn,
1671 unsigned int r_type, uint64_t addend)
1672 {
1673 if (object->local_has_got_offset(symndx, got_type, addend))
1674 return;
1675
1676 unsigned int got_offset =
1677 this->add_got_entry_pair(Got_entry(),
1678 Got_entry(object, symndx, false, addend));
1679 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1680 Output_section* os = object->output_section(shndx);
1681 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1682 }
1683
1684 // Add a pair of entries for a local symbol to the GOT, and add
1685 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1686 // The first got entry will have a value of zero, the second the
1687 // value of the local symbol offset by Target::tls_offset_for_local.
1688 template<int got_size, bool big_endian>
1689 void
1690 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1691 Relobj* object,
1692 unsigned int symndx,
1693 unsigned int got_type,
1694 Output_data_reloc_generic* rel_dyn,
1695 unsigned int r_type)
1696 {
1697 if (object->local_has_got_offset(symndx, got_type))
1698 return;
1699
1700 unsigned int got_offset
1701 = this->add_got_entry_pair(Got_entry(),
1702 Got_entry(object, symndx, true));
1703 object->set_local_got_offset(symndx, got_type, got_offset);
1704 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1705 }
1706
1707 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1708
1709 template<int got_size, bool big_endian>
1710 void
1711 Output_data_got<got_size, big_endian>::reserve_local(
1712 unsigned int i,
1713 Relobj* object,
1714 unsigned int sym_index,
1715 unsigned int got_type)
1716 {
1717 this->do_reserve_slot(i);
1718 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1719 }
1720
1721 // Reserve a slot in the GOT for a global symbol.
1722
1723 template<int got_size, bool big_endian>
1724 void
1725 Output_data_got<got_size, big_endian>::reserve_global(
1726 unsigned int i,
1727 Symbol* gsym,
1728 unsigned int got_type)
1729 {
1730 this->do_reserve_slot(i);
1731 gsym->set_got_offset(got_type, this->got_offset(i));
1732 }
1733
1734 // Write out the GOT.
1735
1736 template<int got_size, bool big_endian>
1737 void
1738 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1739 {
1740 const int add = got_size / 8;
1741
1742 const off_t off = this->offset();
1743 const off_t oview_size = this->data_size();
1744 unsigned char* const oview = of->get_output_view(off, oview_size);
1745
1746 unsigned char* pov = oview;
1747 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1748 {
1749 this->entries_[i].write(i, pov);
1750 pov += add;
1751 }
1752
1753 gold_assert(pov - oview == oview_size);
1754
1755 of->write_output_view(off, oview_size, oview);
1756
1757 // We no longer need the GOT entries.
1758 this->entries_.clear();
1759 }
1760
1761 // Create a new GOT entry and return its offset.
1762
1763 template<int got_size, bool big_endian>
1764 unsigned int
1765 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1766 {
1767 if (!this->is_data_size_valid())
1768 {
1769 this->entries_.push_back(got_entry);
1770 this->set_got_size();
1771 return this->last_got_offset();
1772 }
1773 else
1774 {
1775 // For an incremental update, find an available slot.
1776 off_t got_offset = this->free_list_.allocate(got_size / 8,
1777 got_size / 8, 0);
1778 if (got_offset == -1)
1779 gold_fallback(_("out of patch space (GOT);"
1780 " relink with --incremental-full"));
1781 unsigned int got_index = got_offset / (got_size / 8);
1782 gold_assert(got_index < this->entries_.size());
1783 this->entries_[got_index] = got_entry;
1784 return static_cast<unsigned int>(got_offset);
1785 }
1786 }
1787
1788 // Create a pair of new GOT entries and return the offset of the first.
1789
1790 template<int got_size, bool big_endian>
1791 unsigned int
1792 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1793 Got_entry got_entry_1,
1794 Got_entry got_entry_2)
1795 {
1796 if (!this->is_data_size_valid())
1797 {
1798 unsigned int got_offset;
1799 this->entries_.push_back(got_entry_1);
1800 got_offset = this->last_got_offset();
1801 this->entries_.push_back(got_entry_2);
1802 this->set_got_size();
1803 return got_offset;
1804 }
1805 else
1806 {
1807 // For an incremental update, find an available pair of slots.
1808 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1809 got_size / 8, 0);
1810 if (got_offset == -1)
1811 gold_fallback(_("out of patch space (GOT);"
1812 " relink with --incremental-full"));
1813 unsigned int got_index = got_offset / (got_size / 8);
1814 gold_assert(got_index < this->entries_.size());
1815 this->entries_[got_index] = got_entry_1;
1816 this->entries_[got_index + 1] = got_entry_2;
1817 return static_cast<unsigned int>(got_offset);
1818 }
1819 }
1820
1821 // Replace GOT entry I with a new value.
1822
1823 template<int got_size, bool big_endian>
1824 void
1825 Output_data_got<got_size, big_endian>::replace_got_entry(
1826 unsigned int i,
1827 Got_entry got_entry)
1828 {
1829 gold_assert(i < this->entries_.size());
1830 this->entries_[i] = got_entry;
1831 }
1832
1833 // Output_data_dynamic::Dynamic_entry methods.
1834
1835 // Write out the entry.
1836
1837 template<int size, bool big_endian>
1838 void
1839 Output_data_dynamic::Dynamic_entry::write(
1840 unsigned char* pov,
1841 const Stringpool* pool) const
1842 {
1843 typename elfcpp::Elf_types<size>::Elf_WXword val;
1844 switch (this->offset_)
1845 {
1846 case DYNAMIC_NUMBER:
1847 val = this->u_.val;
1848 break;
1849
1850 case DYNAMIC_SECTION_SIZE:
1851 val = this->u_.od->data_size();
1852 if (this->od2 != NULL)
1853 val += this->od2->data_size();
1854 break;
1855
1856 case DYNAMIC_SYMBOL:
1857 {
1858 const Sized_symbol<size>* s =
1859 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1860 val = s->value();
1861 }
1862 break;
1863
1864 case DYNAMIC_STRING:
1865 val = pool->get_offset(this->u_.str);
1866 break;
1867
1868 case DYNAMIC_CUSTOM:
1869 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1870 break;
1871
1872 default:
1873 val = this->u_.od->address() + this->offset_;
1874 break;
1875 }
1876
1877 elfcpp::Dyn_write<size, big_endian> dw(pov);
1878 dw.put_d_tag(this->tag_);
1879 dw.put_d_val(val);
1880 }
1881
1882 // Output_data_dynamic methods.
1883
1884 // Adjust the output section to set the entry size.
1885
1886 void
1887 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1888 {
1889 if (parameters->target().get_size() == 32)
1890 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1891 else if (parameters->target().get_size() == 64)
1892 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1893 else
1894 gold_unreachable();
1895 }
1896
1897 // Get a dynamic entry offset.
1898
1899 unsigned int
1900 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1901 {
1902 int dyn_size;
1903
1904 if (parameters->target().get_size() == 32)
1905 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1906 else if (parameters->target().get_size() == 64)
1907 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1908 else
1909 gold_unreachable();
1910
1911 for (size_t i = 0; i < entries_.size(); ++i)
1912 if (entries_[i].tag() == tag)
1913 return i * dyn_size;
1914
1915 return -1U;
1916 }
1917
1918 // Set the final data size.
1919
1920 void
1921 Output_data_dynamic::set_final_data_size()
1922 {
1923 // Add the terminating entry if it hasn't been added.
1924 // Because of relaxation, we can run this multiple times.
1925 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1926 {
1927 int extra = parameters->options().spare_dynamic_tags();
1928 for (int i = 0; i < extra; ++i)
1929 this->add_constant(elfcpp::DT_NULL, 0);
1930 this->add_constant(elfcpp::DT_NULL, 0);
1931 }
1932
1933 int dyn_size;
1934 if (parameters->target().get_size() == 32)
1935 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1936 else if (parameters->target().get_size() == 64)
1937 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1938 else
1939 gold_unreachable();
1940 this->set_data_size(this->entries_.size() * dyn_size);
1941 }
1942
1943 // Write out the dynamic entries.
1944
1945 void
1946 Output_data_dynamic::do_write(Output_file* of)
1947 {
1948 switch (parameters->size_and_endianness())
1949 {
1950 #ifdef HAVE_TARGET_32_LITTLE
1951 case Parameters::TARGET_32_LITTLE:
1952 this->sized_write<32, false>(of);
1953 break;
1954 #endif
1955 #ifdef HAVE_TARGET_32_BIG
1956 case Parameters::TARGET_32_BIG:
1957 this->sized_write<32, true>(of);
1958 break;
1959 #endif
1960 #ifdef HAVE_TARGET_64_LITTLE
1961 case Parameters::TARGET_64_LITTLE:
1962 this->sized_write<64, false>(of);
1963 break;
1964 #endif
1965 #ifdef HAVE_TARGET_64_BIG
1966 case Parameters::TARGET_64_BIG:
1967 this->sized_write<64, true>(of);
1968 break;
1969 #endif
1970 default:
1971 gold_unreachable();
1972 }
1973 }
1974
1975 template<int size, bool big_endian>
1976 void
1977 Output_data_dynamic::sized_write(Output_file* of)
1978 {
1979 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1980
1981 const off_t offset = this->offset();
1982 const off_t oview_size = this->data_size();
1983 unsigned char* const oview = of->get_output_view(offset, oview_size);
1984
1985 unsigned char* pov = oview;
1986 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1987 p != this->entries_.end();
1988 ++p)
1989 {
1990 p->write<size, big_endian>(pov, this->pool_);
1991 pov += dyn_size;
1992 }
1993
1994 gold_assert(pov - oview == oview_size);
1995
1996 of->write_output_view(offset, oview_size, oview);
1997
1998 // We no longer need the dynamic entries.
1999 this->entries_.clear();
2000 }
2001
2002 // Class Output_symtab_xindex.
2003
2004 void
2005 Output_symtab_xindex::do_write(Output_file* of)
2006 {
2007 const off_t offset = this->offset();
2008 const off_t oview_size = this->data_size();
2009 unsigned char* const oview = of->get_output_view(offset, oview_size);
2010
2011 memset(oview, 0, oview_size);
2012
2013 if (parameters->target().is_big_endian())
2014 this->endian_do_write<true>(oview);
2015 else
2016 this->endian_do_write<false>(oview);
2017
2018 of->write_output_view(offset, oview_size, oview);
2019
2020 // We no longer need the data.
2021 this->entries_.clear();
2022 }
2023
2024 template<bool big_endian>
2025 void
2026 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2027 {
2028 for (Xindex_entries::const_iterator p = this->entries_.begin();
2029 p != this->entries_.end();
2030 ++p)
2031 {
2032 unsigned int symndx = p->first;
2033 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2034 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2035 }
2036 }
2037
2038 // Output_fill_debug_info methods.
2039
2040 // Return the minimum size needed for a dummy compilation unit header.
2041
2042 size_t
2043 Output_fill_debug_info::do_minimum_hole_size() const
2044 {
2045 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2046 // address_size.
2047 const size_t len = 4 + 2 + 4 + 1;
2048 // For type units, add type_signature, type_offset.
2049 if (this->is_debug_types_)
2050 return len + 8 + 4;
2051 return len;
2052 }
2053
2054 // Write a dummy compilation unit header to fill a hole in the
2055 // .debug_info or .debug_types section.
2056
2057 void
2058 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2059 {
2060 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2061 static_cast<long>(off), static_cast<long>(len));
2062
2063 gold_assert(len >= this->do_minimum_hole_size());
2064
2065 unsigned char* const oview = of->get_output_view(off, len);
2066 unsigned char* pov = oview;
2067
2068 // Write header fields: unit_length, version, debug_abbrev_offset,
2069 // address_size.
2070 if (this->is_big_endian())
2071 {
2072 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2073 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2074 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2075 }
2076 else
2077 {
2078 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2079 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2080 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2081 }
2082 pov += 4 + 2 + 4;
2083 *pov++ = 4;
2084
2085 // For type units, the additional header fields -- type_signature,
2086 // type_offset -- can be filled with zeroes.
2087
2088 // Fill the remainder of the free space with zeroes. The first
2089 // zero should tell the consumer there are no DIEs to read in this
2090 // compilation unit.
2091 if (pov < oview + len)
2092 memset(pov, 0, oview + len - pov);
2093
2094 of->write_output_view(off, len, oview);
2095 }
2096
2097 // Output_fill_debug_line methods.
2098
2099 // Return the minimum size needed for a dummy line number program header.
2100
2101 size_t
2102 Output_fill_debug_line::do_minimum_hole_size() const
2103 {
2104 // Line number program header fields: unit_length, version, header_length,
2105 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2106 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2107 const size_t len = 4 + 2 + 4 + this->header_length;
2108 return len;
2109 }
2110
2111 // Write a dummy line number program header to fill a hole in the
2112 // .debug_line section.
2113
2114 void
2115 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2116 {
2117 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2118 static_cast<long>(off), static_cast<long>(len));
2119
2120 gold_assert(len >= this->do_minimum_hole_size());
2121
2122 unsigned char* const oview = of->get_output_view(off, len);
2123 unsigned char* pov = oview;
2124
2125 // Write header fields: unit_length, version, header_length,
2126 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2127 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2128 // We set the header_length field to cover the entire hole, so the
2129 // line number program is empty.
2130 if (this->is_big_endian())
2131 {
2132 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2133 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2134 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2135 }
2136 else
2137 {
2138 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2139 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2140 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2141 }
2142 pov += 4 + 2 + 4;
2143 *pov++ = 1; // minimum_instruction_length
2144 *pov++ = 0; // default_is_stmt
2145 *pov++ = 0; // line_base
2146 *pov++ = 5; // line_range
2147 *pov++ = 13; // opcode_base
2148 *pov++ = 0; // standard_opcode_lengths[1]
2149 *pov++ = 1; // standard_opcode_lengths[2]
2150 *pov++ = 1; // standard_opcode_lengths[3]
2151 *pov++ = 1; // standard_opcode_lengths[4]
2152 *pov++ = 1; // standard_opcode_lengths[5]
2153 *pov++ = 0; // standard_opcode_lengths[6]
2154 *pov++ = 0; // standard_opcode_lengths[7]
2155 *pov++ = 0; // standard_opcode_lengths[8]
2156 *pov++ = 1; // standard_opcode_lengths[9]
2157 *pov++ = 0; // standard_opcode_lengths[10]
2158 *pov++ = 0; // standard_opcode_lengths[11]
2159 *pov++ = 1; // standard_opcode_lengths[12]
2160 *pov++ = 0; // include_directories (empty)
2161 *pov++ = 0; // filenames (empty)
2162
2163 // Some consumers don't check the header_length field, and simply
2164 // start reading the line number program immediately following the
2165 // header. For those consumers, we fill the remainder of the free
2166 // space with DW_LNS_set_basic_block opcodes. These are effectively
2167 // no-ops: the resulting line table program will not create any rows.
2168 if (pov < oview + len)
2169 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2170
2171 of->write_output_view(off, len, oview);
2172 }
2173
2174 // Output_section::Input_section methods.
2175
2176 // Return the current data size. For an input section we store the size here.
2177 // For an Output_section_data, we have to ask it for the size.
2178
2179 off_t
2180 Output_section::Input_section::current_data_size() const
2181 {
2182 if (this->is_input_section())
2183 return this->u1_.data_size;
2184 else
2185 {
2186 this->u2_.posd->pre_finalize_data_size();
2187 return this->u2_.posd->current_data_size();
2188 }
2189 }
2190
2191 // Return the data size. For an input section we store the size here.
2192 // For an Output_section_data, we have to ask it for the size.
2193
2194 off_t
2195 Output_section::Input_section::data_size() const
2196 {
2197 if (this->is_input_section())
2198 return this->u1_.data_size;
2199 else
2200 return this->u2_.posd->data_size();
2201 }
2202
2203 // Return the object for an input section.
2204
2205 Relobj*
2206 Output_section::Input_section::relobj() const
2207 {
2208 if (this->is_input_section())
2209 return this->u2_.object;
2210 else if (this->is_merge_section())
2211 {
2212 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2213 return this->u2_.pomb->first_relobj();
2214 }
2215 else if (this->is_relaxed_input_section())
2216 return this->u2_.poris->relobj();
2217 else
2218 gold_unreachable();
2219 }
2220
2221 // Return the input section index for an input section.
2222
2223 unsigned int
2224 Output_section::Input_section::shndx() const
2225 {
2226 if (this->is_input_section())
2227 return this->shndx_;
2228 else if (this->is_merge_section())
2229 {
2230 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2231 return this->u2_.pomb->first_shndx();
2232 }
2233 else if (this->is_relaxed_input_section())
2234 return this->u2_.poris->shndx();
2235 else
2236 gold_unreachable();
2237 }
2238
2239 // Set the address and file offset.
2240
2241 void
2242 Output_section::Input_section::set_address_and_file_offset(
2243 uint64_t address,
2244 off_t file_offset,
2245 off_t section_file_offset)
2246 {
2247 if (this->is_input_section())
2248 this->u2_.object->set_section_offset(this->shndx_,
2249 file_offset - section_file_offset);
2250 else
2251 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2252 }
2253
2254 // Reset the address and file offset.
2255
2256 void
2257 Output_section::Input_section::reset_address_and_file_offset()
2258 {
2259 if (!this->is_input_section())
2260 this->u2_.posd->reset_address_and_file_offset();
2261 }
2262
2263 // Finalize the data size.
2264
2265 void
2266 Output_section::Input_section::finalize_data_size()
2267 {
2268 if (!this->is_input_section())
2269 this->u2_.posd->finalize_data_size();
2270 }
2271
2272 // Try to turn an input offset into an output offset. We want to
2273 // return the output offset relative to the start of this
2274 // Input_section in the output section.
2275
2276 inline bool
2277 Output_section::Input_section::output_offset(
2278 const Relobj* object,
2279 unsigned int shndx,
2280 section_offset_type offset,
2281 section_offset_type* poutput) const
2282 {
2283 if (!this->is_input_section())
2284 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2285 else
2286 {
2287 if (this->shndx_ != shndx || this->u2_.object != object)
2288 return false;
2289 *poutput = offset;
2290 return true;
2291 }
2292 }
2293
2294 // Write out the data. We don't have to do anything for an input
2295 // section--they are handled via Object::relocate--but this is where
2296 // we write out the data for an Output_section_data.
2297
2298 void
2299 Output_section::Input_section::write(Output_file* of)
2300 {
2301 if (!this->is_input_section())
2302 this->u2_.posd->write(of);
2303 }
2304
2305 // Write the data to a buffer. As for write(), we don't have to do
2306 // anything for an input section.
2307
2308 void
2309 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2310 {
2311 if (!this->is_input_section())
2312 this->u2_.posd->write_to_buffer(buffer);
2313 }
2314
2315 // Print to a map file.
2316
2317 void
2318 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2319 {
2320 switch (this->shndx_)
2321 {
2322 case OUTPUT_SECTION_CODE:
2323 case MERGE_DATA_SECTION_CODE:
2324 case MERGE_STRING_SECTION_CODE:
2325 this->u2_.posd->print_to_mapfile(mapfile);
2326 break;
2327
2328 case RELAXED_INPUT_SECTION_CODE:
2329 {
2330 Output_relaxed_input_section* relaxed_section =
2331 this->relaxed_input_section();
2332 mapfile->print_input_section(relaxed_section->relobj(),
2333 relaxed_section->shndx());
2334 }
2335 break;
2336 default:
2337 mapfile->print_input_section(this->u2_.object, this->shndx_);
2338 break;
2339 }
2340 }
2341
2342 // Output_section methods.
2343
2344 // Construct an Output_section. NAME will point into a Stringpool.
2345
2346 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2347 elfcpp::Elf_Xword flags)
2348 : name_(name),
2349 addralign_(0),
2350 entsize_(0),
2351 load_address_(0),
2352 link_section_(NULL),
2353 link_(0),
2354 info_section_(NULL),
2355 info_symndx_(NULL),
2356 info_(0),
2357 type_(type),
2358 flags_(flags),
2359 order_(ORDER_INVALID),
2360 out_shndx_(-1U),
2361 symtab_index_(0),
2362 dynsym_index_(0),
2363 input_sections_(),
2364 first_input_offset_(0),
2365 fills_(),
2366 postprocessing_buffer_(NULL),
2367 needs_symtab_index_(false),
2368 needs_dynsym_index_(false),
2369 should_link_to_symtab_(false),
2370 should_link_to_dynsym_(false),
2371 after_input_sections_(false),
2372 requires_postprocessing_(false),
2373 found_in_sections_clause_(false),
2374 has_load_address_(false),
2375 info_uses_section_index_(false),
2376 input_section_order_specified_(false),
2377 may_sort_attached_input_sections_(false),
2378 must_sort_attached_input_sections_(false),
2379 attached_input_sections_are_sorted_(false),
2380 is_relro_(false),
2381 is_small_section_(false),
2382 is_large_section_(false),
2383 generate_code_fills_at_write_(false),
2384 is_entsize_zero_(false),
2385 section_offsets_need_adjustment_(false),
2386 is_noload_(false),
2387 always_keeps_input_sections_(false),
2388 has_fixed_layout_(false),
2389 is_patch_space_allowed_(false),
2390 is_unique_segment_(false),
2391 tls_offset_(0),
2392 extra_segment_flags_(0),
2393 segment_alignment_(0),
2394 checkpoint_(NULL),
2395 lookup_maps_(new Output_section_lookup_maps),
2396 free_list_(),
2397 free_space_fill_(NULL),
2398 patch_space_(0),
2399 reloc_section_(NULL)
2400 {
2401 // An unallocated section has no address. Forcing this means that
2402 // we don't need special treatment for symbols defined in debug
2403 // sections.
2404 if ((flags & elfcpp::SHF_ALLOC) == 0)
2405 this->set_address(0);
2406 }
2407
2408 Output_section::~Output_section()
2409 {
2410 delete this->checkpoint_;
2411 }
2412
2413 // Set the entry size.
2414
2415 void
2416 Output_section::set_entsize(uint64_t v)
2417 {
2418 if (this->is_entsize_zero_)
2419 ;
2420 else if (this->entsize_ == 0)
2421 this->entsize_ = v;
2422 else if (this->entsize_ != v)
2423 {
2424 this->entsize_ = 0;
2425 this->is_entsize_zero_ = 1;
2426 }
2427 }
2428
2429 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2430 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2431 // relocation section which applies to this section, or 0 if none, or
2432 // -1U if more than one. Return the offset of the input section
2433 // within the output section. Return -1 if the input section will
2434 // receive special handling. In the normal case we don't always keep
2435 // track of input sections for an Output_section. Instead, each
2436 // Object keeps track of the Output_section for each of its input
2437 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2438 // track of input sections here; this is used when SECTIONS appears in
2439 // a linker script.
2440
2441 template<int size, bool big_endian>
2442 off_t
2443 Output_section::add_input_section(Layout* layout,
2444 Sized_relobj_file<size, big_endian>* object,
2445 unsigned int shndx,
2446 const char* secname,
2447 const elfcpp::Shdr<size, big_endian>& shdr,
2448 unsigned int reloc_shndx,
2449 bool have_sections_script)
2450 {
2451 section_size_type input_section_size = shdr.get_sh_size();
2452 section_size_type uncompressed_size;
2453 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2454 if (object->section_is_compressed(shndx, &uncompressed_size,
2455 &addralign))
2456 input_section_size = uncompressed_size;
2457
2458 if ((addralign & (addralign - 1)) != 0)
2459 {
2460 object->error(_("invalid alignment %lu for section \"%s\""),
2461 static_cast<unsigned long>(addralign), secname);
2462 addralign = 1;
2463 }
2464
2465 if (addralign > this->addralign_)
2466 this->addralign_ = addralign;
2467
2468 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2469 uint64_t entsize = shdr.get_sh_entsize();
2470
2471 // .debug_str is a mergeable string section, but is not always so
2472 // marked by compilers. Mark manually here so we can optimize.
2473 if (strcmp(secname, ".debug_str") == 0)
2474 {
2475 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2476 entsize = 1;
2477 }
2478
2479 this->update_flags_for_input_section(sh_flags);
2480 this->set_entsize(entsize);
2481
2482 // If this is a SHF_MERGE section, we pass all the input sections to
2483 // a Output_data_merge. We don't try to handle relocations for such
2484 // a section. We don't try to handle empty merge sections--they
2485 // mess up the mappings, and are useless anyhow.
2486 // FIXME: Need to handle merge sections during incremental update.
2487 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2488 && reloc_shndx == 0
2489 && shdr.get_sh_size() > 0
2490 && !parameters->incremental())
2491 {
2492 // Keep information about merged input sections for rebuilding fast
2493 // lookup maps if we have sections-script or we do relaxation.
2494 bool keeps_input_sections = (this->always_keeps_input_sections_
2495 || have_sections_script
2496 || parameters->target().may_relax());
2497
2498 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2499 addralign, keeps_input_sections))
2500 {
2501 // Tell the relocation routines that they need to call the
2502 // output_offset method to determine the final address.
2503 return -1;
2504 }
2505 }
2506
2507 off_t offset_in_section;
2508
2509 if (this->has_fixed_layout())
2510 {
2511 // For incremental updates, find a chunk of unused space in the section.
2512 offset_in_section = this->free_list_.allocate(input_section_size,
2513 addralign, 0);
2514 if (offset_in_section == -1)
2515 gold_fallback(_("out of patch space in section %s; "
2516 "relink with --incremental-full"),
2517 this->name());
2518 return offset_in_section;
2519 }
2520
2521 offset_in_section = this->current_data_size_for_child();
2522 off_t aligned_offset_in_section = align_address(offset_in_section,
2523 addralign);
2524 this->set_current_data_size_for_child(aligned_offset_in_section
2525 + input_section_size);
2526
2527 // Determine if we want to delay code-fill generation until the output
2528 // section is written. When the target is relaxing, we want to delay fill
2529 // generating to avoid adjusting them during relaxation. Also, if we are
2530 // sorting input sections we must delay fill generation.
2531 if (!this->generate_code_fills_at_write_
2532 && !have_sections_script
2533 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2534 && parameters->target().has_code_fill()
2535 && (parameters->target().may_relax()
2536 || layout->is_section_ordering_specified()))
2537 {
2538 gold_assert(this->fills_.empty());
2539 this->generate_code_fills_at_write_ = true;
2540 }
2541
2542 if (aligned_offset_in_section > offset_in_section
2543 && !this->generate_code_fills_at_write_
2544 && !have_sections_script
2545 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2546 && parameters->target().has_code_fill())
2547 {
2548 // We need to add some fill data. Using fill_list_ when
2549 // possible is an optimization, since we will often have fill
2550 // sections without input sections.
2551 off_t fill_len = aligned_offset_in_section - offset_in_section;
2552 if (this->input_sections_.empty())
2553 this->fills_.push_back(Fill(offset_in_section, fill_len));
2554 else
2555 {
2556 std::string fill_data(parameters->target().code_fill(fill_len));
2557 Output_data_const* odc = new Output_data_const(fill_data, 1);
2558 this->input_sections_.push_back(Input_section(odc));
2559 }
2560 }
2561
2562 // We need to keep track of this section if we are already keeping
2563 // track of sections, or if we are relaxing. Also, if this is a
2564 // section which requires sorting, or which may require sorting in
2565 // the future, we keep track of the sections. If the
2566 // --section-ordering-file option is used to specify the order of
2567 // sections, we need to keep track of sections.
2568 if (this->always_keeps_input_sections_
2569 || have_sections_script
2570 || !this->input_sections_.empty()
2571 || this->may_sort_attached_input_sections()
2572 || this->must_sort_attached_input_sections()
2573 || parameters->options().user_set_Map()
2574 || parameters->target().may_relax()
2575 || layout->is_section_ordering_specified())
2576 {
2577 Input_section isecn(object, shndx, input_section_size, addralign);
2578 /* If section ordering is requested by specifying a ordering file,
2579 using --section-ordering-file, match the section name with
2580 a pattern. */
2581 if (parameters->options().section_ordering_file())
2582 {
2583 unsigned int section_order_index =
2584 layout->find_section_order_index(std::string(secname));
2585 if (section_order_index != 0)
2586 {
2587 isecn.set_section_order_index(section_order_index);
2588 this->set_input_section_order_specified();
2589 }
2590 }
2591 this->input_sections_.push_back(isecn);
2592 }
2593
2594 return aligned_offset_in_section;
2595 }
2596
2597 // Add arbitrary data to an output section.
2598
2599 void
2600 Output_section::add_output_section_data(Output_section_data* posd)
2601 {
2602 Input_section inp(posd);
2603 this->add_output_section_data(&inp);
2604
2605 if (posd->is_data_size_valid())
2606 {
2607 off_t offset_in_section;
2608 if (this->has_fixed_layout())
2609 {
2610 // For incremental updates, find a chunk of unused space.
2611 offset_in_section = this->free_list_.allocate(posd->data_size(),
2612 posd->addralign(), 0);
2613 if (offset_in_section == -1)
2614 gold_fallback(_("out of patch space in section %s; "
2615 "relink with --incremental-full"),
2616 this->name());
2617 // Finalize the address and offset now.
2618 uint64_t addr = this->address();
2619 off_t offset = this->offset();
2620 posd->set_address_and_file_offset(addr + offset_in_section,
2621 offset + offset_in_section);
2622 }
2623 else
2624 {
2625 offset_in_section = this->current_data_size_for_child();
2626 off_t aligned_offset_in_section = align_address(offset_in_section,
2627 posd->addralign());
2628 this->set_current_data_size_for_child(aligned_offset_in_section
2629 + posd->data_size());
2630 }
2631 }
2632 else if (this->has_fixed_layout())
2633 {
2634 // For incremental updates, arrange for the data to have a fixed layout.
2635 // This will mean that additions to the data must be allocated from
2636 // free space within the containing output section.
2637 uint64_t addr = this->address();
2638 posd->set_address(addr);
2639 posd->set_file_offset(0);
2640 // FIXME: This should eventually be unreachable.
2641 // gold_unreachable();
2642 }
2643 }
2644
2645 // Add a relaxed input section.
2646
2647 void
2648 Output_section::add_relaxed_input_section(Layout* layout,
2649 Output_relaxed_input_section* poris,
2650 const std::string& name)
2651 {
2652 Input_section inp(poris);
2653
2654 // If the --section-ordering-file option is used to specify the order of
2655 // sections, we need to keep track of sections.
2656 if (layout->is_section_ordering_specified())
2657 {
2658 unsigned int section_order_index =
2659 layout->find_section_order_index(name);
2660 if (section_order_index != 0)
2661 {
2662 inp.set_section_order_index(section_order_index);
2663 this->set_input_section_order_specified();
2664 }
2665 }
2666
2667 this->add_output_section_data(&inp);
2668 if (this->lookup_maps_->is_valid())
2669 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2670 poris->shndx(), poris);
2671
2672 // For a relaxed section, we use the current data size. Linker scripts
2673 // get all the input sections, including relaxed one from an output
2674 // section and add them back to the same output section to compute the
2675 // output section size. If we do not account for sizes of relaxed input
2676 // sections, an output section would be incorrectly sized.
2677 off_t offset_in_section = this->current_data_size_for_child();
2678 off_t aligned_offset_in_section = align_address(offset_in_section,
2679 poris->addralign());
2680 this->set_current_data_size_for_child(aligned_offset_in_section
2681 + poris->current_data_size());
2682 }
2683
2684 // Add arbitrary data to an output section by Input_section.
2685
2686 void
2687 Output_section::add_output_section_data(Input_section* inp)
2688 {
2689 if (this->input_sections_.empty())
2690 this->first_input_offset_ = this->current_data_size_for_child();
2691
2692 this->input_sections_.push_back(*inp);
2693
2694 uint64_t addralign = inp->addralign();
2695 if (addralign > this->addralign_)
2696 this->addralign_ = addralign;
2697
2698 inp->set_output_section(this);
2699 }
2700
2701 // Add a merge section to an output section.
2702
2703 void
2704 Output_section::add_output_merge_section(Output_section_data* posd,
2705 bool is_string, uint64_t entsize)
2706 {
2707 Input_section inp(posd, is_string, entsize);
2708 this->add_output_section_data(&inp);
2709 }
2710
2711 // Add an input section to a SHF_MERGE section.
2712
2713 bool
2714 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2715 uint64_t flags, uint64_t entsize,
2716 uint64_t addralign,
2717 bool keeps_input_sections)
2718 {
2719 // We cannot merge sections with entsize == 0.
2720 if (entsize == 0)
2721 return false;
2722
2723 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2724
2725 // We cannot restore merged input section states.
2726 gold_assert(this->checkpoint_ == NULL);
2727
2728 // Look up merge sections by required properties.
2729 // Currently, we only invalidate the lookup maps in script processing
2730 // and relaxation. We should not have done either when we reach here.
2731 // So we assume that the lookup maps are valid to simply code.
2732 gold_assert(this->lookup_maps_->is_valid());
2733 Merge_section_properties msp(is_string, entsize, addralign);
2734 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2735 bool is_new = false;
2736 if (pomb != NULL)
2737 {
2738 gold_assert(pomb->is_string() == is_string
2739 && pomb->entsize() == entsize
2740 && pomb->addralign() == addralign);
2741 }
2742 else
2743 {
2744 // Create a new Output_merge_data or Output_merge_string_data.
2745 if (!is_string)
2746 pomb = new Output_merge_data(entsize, addralign);
2747 else
2748 {
2749 switch (entsize)
2750 {
2751 case 1:
2752 pomb = new Output_merge_string<char>(addralign);
2753 break;
2754 case 2:
2755 pomb = new Output_merge_string<uint16_t>(addralign);
2756 break;
2757 case 4:
2758 pomb = new Output_merge_string<uint32_t>(addralign);
2759 break;
2760 default:
2761 return false;
2762 }
2763 }
2764 // If we need to do script processing or relaxation, we need to keep
2765 // the original input sections to rebuild the fast lookup maps.
2766 if (keeps_input_sections)
2767 pomb->set_keeps_input_sections();
2768 is_new = true;
2769 }
2770
2771 if (pomb->add_input_section(object, shndx))
2772 {
2773 // Add new merge section to this output section and link merge
2774 // section properties to new merge section in map.
2775 if (is_new)
2776 {
2777 this->add_output_merge_section(pomb, is_string, entsize);
2778 this->lookup_maps_->add_merge_section(msp, pomb);
2779 }
2780
2781 return true;
2782 }
2783 else
2784 {
2785 // If add_input_section failed, delete new merge section to avoid
2786 // exporting empty merge sections in Output_section::get_input_section.
2787 if (is_new)
2788 delete pomb;
2789 return false;
2790 }
2791 }
2792
2793 // Build a relaxation map to speed up relaxation of existing input sections.
2794 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2795
2796 void
2797 Output_section::build_relaxation_map(
2798 const Input_section_list& input_sections,
2799 size_t limit,
2800 Relaxation_map* relaxation_map) const
2801 {
2802 for (size_t i = 0; i < limit; ++i)
2803 {
2804 const Input_section& is(input_sections[i]);
2805 if (is.is_input_section() || is.is_relaxed_input_section())
2806 {
2807 Section_id sid(is.relobj(), is.shndx());
2808 (*relaxation_map)[sid] = i;
2809 }
2810 }
2811 }
2812
2813 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2814 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2815 // indices of INPUT_SECTIONS.
2816
2817 void
2818 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2819 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2820 const Relaxation_map& map,
2821 Input_section_list* input_sections)
2822 {
2823 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2824 {
2825 Output_relaxed_input_section* poris = relaxed_sections[i];
2826 Section_id sid(poris->relobj(), poris->shndx());
2827 Relaxation_map::const_iterator p = map.find(sid);
2828 gold_assert(p != map.end());
2829 gold_assert((*input_sections)[p->second].is_input_section());
2830
2831 // Remember section order index of original input section
2832 // if it is set. Copy it to the relaxed input section.
2833 unsigned int soi =
2834 (*input_sections)[p->second].section_order_index();
2835 (*input_sections)[p->second] = Input_section(poris);
2836 (*input_sections)[p->second].set_section_order_index(soi);
2837 }
2838 }
2839
2840 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2841 // is a vector of pointers to Output_relaxed_input_section or its derived
2842 // classes. The relaxed sections must correspond to existing input sections.
2843
2844 void
2845 Output_section::convert_input_sections_to_relaxed_sections(
2846 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2847 {
2848 gold_assert(parameters->target().may_relax());
2849
2850 // We want to make sure that restore_states does not undo the effect of
2851 // this. If there is no checkpoint active, just search the current
2852 // input section list and replace the sections there. If there is
2853 // a checkpoint, also replace the sections there.
2854
2855 // By default, we look at the whole list.
2856 size_t limit = this->input_sections_.size();
2857
2858 if (this->checkpoint_ != NULL)
2859 {
2860 // Replace input sections with relaxed input section in the saved
2861 // copy of the input section list.
2862 if (this->checkpoint_->input_sections_saved())
2863 {
2864 Relaxation_map map;
2865 this->build_relaxation_map(
2866 *(this->checkpoint_->input_sections()),
2867 this->checkpoint_->input_sections()->size(),
2868 &map);
2869 this->convert_input_sections_in_list_to_relaxed_sections(
2870 relaxed_sections,
2871 map,
2872 this->checkpoint_->input_sections());
2873 }
2874 else
2875 {
2876 // We have not copied the input section list yet. Instead, just
2877 // look at the portion that would be saved.
2878 limit = this->checkpoint_->input_sections_size();
2879 }
2880 }
2881
2882 // Convert input sections in input_section_list.
2883 Relaxation_map map;
2884 this->build_relaxation_map(this->input_sections_, limit, &map);
2885 this->convert_input_sections_in_list_to_relaxed_sections(
2886 relaxed_sections,
2887 map,
2888 &this->input_sections_);
2889
2890 // Update fast look-up map.
2891 if (this->lookup_maps_->is_valid())
2892 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2893 {
2894 Output_relaxed_input_section* poris = relaxed_sections[i];
2895 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2896 poris->shndx(), poris);
2897 }
2898 }
2899
2900 // Update the output section flags based on input section flags.
2901
2902 void
2903 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2904 {
2905 // If we created the section with SHF_ALLOC clear, we set the
2906 // address. If we are now setting the SHF_ALLOC flag, we need to
2907 // undo that.
2908 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2909 && (flags & elfcpp::SHF_ALLOC) != 0)
2910 this->mark_address_invalid();
2911
2912 this->flags_ |= (flags
2913 & (elfcpp::SHF_WRITE
2914 | elfcpp::SHF_ALLOC
2915 | elfcpp::SHF_EXECINSTR));
2916
2917 if ((flags & elfcpp::SHF_MERGE) == 0)
2918 this->flags_ &=~ elfcpp::SHF_MERGE;
2919 else
2920 {
2921 if (this->current_data_size_for_child() == 0)
2922 this->flags_ |= elfcpp::SHF_MERGE;
2923 }
2924
2925 if ((flags & elfcpp::SHF_STRINGS) == 0)
2926 this->flags_ &=~ elfcpp::SHF_STRINGS;
2927 else
2928 {
2929 if (this->current_data_size_for_child() == 0)
2930 this->flags_ |= elfcpp::SHF_STRINGS;
2931 }
2932 }
2933
2934 // Find the merge section into which an input section with index SHNDX in
2935 // OBJECT has been added. Return NULL if none found.
2936
2937 const Output_section_data*
2938 Output_section::find_merge_section(const Relobj* object,
2939 unsigned int shndx) const
2940 {
2941 return object->find_merge_section(shndx);
2942 }
2943
2944 // Build the lookup maps for relaxed sections. This needs
2945 // to be declared as a const method so that it is callable with a const
2946 // Output_section pointer. The method only updates states of the maps.
2947
2948 void
2949 Output_section::build_lookup_maps() const
2950 {
2951 this->lookup_maps_->clear();
2952 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2953 p != this->input_sections_.end();
2954 ++p)
2955 {
2956 if (p->is_relaxed_input_section())
2957 {
2958 Output_relaxed_input_section* poris = p->relaxed_input_section();
2959 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2960 poris->shndx(), poris);
2961 }
2962 }
2963 }
2964
2965 // Find an relaxed input section corresponding to an input section
2966 // in OBJECT with index SHNDX.
2967
2968 const Output_relaxed_input_section*
2969 Output_section::find_relaxed_input_section(const Relobj* object,
2970 unsigned int shndx) const
2971 {
2972 if (!this->lookup_maps_->is_valid())
2973 this->build_lookup_maps();
2974 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2975 }
2976
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in OBJECT, return whether this address is being included in
2979 // the final link. This should only be called if SHNDX in OBJECT has
2980 // a special mapping.
2981
2982 bool
2983 Output_section::is_input_address_mapped(const Relobj* object,
2984 unsigned int shndx,
2985 off_t offset) const
2986 {
2987 // Look at the Output_section_data_maps first.
2988 const Output_section_data* posd = this->find_merge_section(object, shndx);
2989 if (posd == NULL)
2990 posd = this->find_relaxed_input_section(object, shndx);
2991
2992 if (posd != NULL)
2993 {
2994 section_offset_type output_offset;
2995 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2996 // By default we assume that the address is mapped. See comment at the
2997 // end.
2998 if (!found)
2999 return true;
3000 return output_offset != -1;
3001 }
3002
3003 // Fall back to the slow look-up.
3004 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3005 p != this->input_sections_.end();
3006 ++p)
3007 {
3008 section_offset_type output_offset;
3009 if (p->output_offset(object, shndx, offset, &output_offset))
3010 return output_offset != -1;
3011 }
3012
3013 // By default we assume that the address is mapped. This should
3014 // only be called after we have passed all sections to Layout. At
3015 // that point we should know what we are discarding.
3016 return true;
3017 }
3018
3019 // Given an address OFFSET relative to the start of input section
3020 // SHNDX in object OBJECT, return the output offset relative to the
3021 // start of the input section in the output section. This should only
3022 // be called if SHNDX in OBJECT has a special mapping.
3023
3024 section_offset_type
3025 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3026 section_offset_type offset) const
3027 {
3028 // This can only be called meaningfully when we know the data size
3029 // of this.
3030 gold_assert(this->is_data_size_valid());
3031
3032 // Look at the Output_section_data_maps first.
3033 const Output_section_data* posd = this->find_merge_section(object, shndx);
3034 if (posd == NULL)
3035 posd = this->find_relaxed_input_section(object, shndx);
3036 if (posd != NULL)
3037 {
3038 section_offset_type output_offset;
3039 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3040 gold_assert(found);
3041 return output_offset;
3042 }
3043
3044 // Fall back to the slow look-up.
3045 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3046 p != this->input_sections_.end();
3047 ++p)
3048 {
3049 section_offset_type output_offset;
3050 if (p->output_offset(object, shndx, offset, &output_offset))
3051 return output_offset;
3052 }
3053 gold_unreachable();
3054 }
3055
3056 // Return the output virtual address of OFFSET relative to the start
3057 // of input section SHNDX in object OBJECT.
3058
3059 uint64_t
3060 Output_section::output_address(const Relobj* object, unsigned int shndx,
3061 off_t offset) const
3062 {
3063 uint64_t addr = this->address() + this->first_input_offset_;
3064
3065 // Look at the Output_section_data_maps first.
3066 const Output_section_data* posd = this->find_merge_section(object, shndx);
3067 if (posd == NULL)
3068 posd = this->find_relaxed_input_section(object, shndx);
3069 if (posd != NULL && posd->is_address_valid())
3070 {
3071 section_offset_type output_offset;
3072 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3073 gold_assert(found);
3074 return posd->address() + output_offset;
3075 }
3076
3077 // Fall back to the slow look-up.
3078 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3079 p != this->input_sections_.end();
3080 ++p)
3081 {
3082 addr = align_address(addr, p->addralign());
3083 section_offset_type output_offset;
3084 if (p->output_offset(object, shndx, offset, &output_offset))
3085 {
3086 if (output_offset == -1)
3087 return -1ULL;
3088 return addr + output_offset;
3089 }
3090 addr += p->data_size();
3091 }
3092
3093 // If we get here, it means that we don't know the mapping for this
3094 // input section. This might happen in principle if
3095 // add_input_section were called before add_output_section_data.
3096 // But it should never actually happen.
3097
3098 gold_unreachable();
3099 }
3100
3101 // Find the output address of the start of the merged section for
3102 // input section SHNDX in object OBJECT.
3103
3104 bool
3105 Output_section::find_starting_output_address(const Relobj* object,
3106 unsigned int shndx,
3107 uint64_t* paddr) const
3108 {
3109 const Output_section_data* data = this->find_merge_section(object, shndx);
3110 if (data == NULL)
3111 return false;
3112
3113 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3114 // Looking up the merge section map does not always work as we sometimes
3115 // find a merge section without its address set.
3116 uint64_t addr = this->address() + this->first_input_offset_;
3117 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3118 p != this->input_sections_.end();
3119 ++p)
3120 {
3121 addr = align_address(addr, p->addralign());
3122
3123 // It would be nice if we could use the existing output_offset
3124 // method to get the output offset of input offset 0.
3125 // Unfortunately we don't know for sure that input offset 0 is
3126 // mapped at all.
3127 if (!p->is_input_section() && p->output_section_data() == data)
3128 {
3129 *paddr = addr;
3130 return true;
3131 }
3132
3133 addr += p->data_size();
3134 }
3135
3136 // We couldn't find a merge output section for this input section.
3137 return false;
3138 }
3139
3140 // Update the data size of an Output_section.
3141
3142 void
3143 Output_section::update_data_size()
3144 {
3145 if (this->input_sections_.empty())
3146 return;
3147
3148 if (this->must_sort_attached_input_sections()
3149 || this->input_section_order_specified())
3150 this->sort_attached_input_sections();
3151
3152 off_t off = this->first_input_offset_;
3153 for (Input_section_list::iterator p = this->input_sections_.begin();
3154 p != this->input_sections_.end();
3155 ++p)
3156 {
3157 off = align_address(off, p->addralign());
3158 off += p->current_data_size();
3159 }
3160
3161 this->set_current_data_size_for_child(off);
3162 }
3163
3164 // Set the data size of an Output_section. This is where we handle
3165 // setting the addresses of any Output_section_data objects.
3166
3167 void
3168 Output_section::set_final_data_size()
3169 {
3170 off_t data_size;
3171
3172 if (this->input_sections_.empty())
3173 data_size = this->current_data_size_for_child();
3174 else
3175 {
3176 if (this->must_sort_attached_input_sections()
3177 || this->input_section_order_specified())
3178 this->sort_attached_input_sections();
3179
3180 uint64_t address = this->address();
3181 off_t startoff = this->offset();
3182 off_t off = this->first_input_offset_;
3183 for (Input_section_list::iterator p = this->input_sections_.begin();
3184 p != this->input_sections_.end();
3185 ++p)
3186 {
3187 off = align_address(off, p->addralign());
3188 p->set_address_and_file_offset(address + off, startoff + off,
3189 startoff);
3190 off += p->data_size();
3191 }
3192 data_size = off;
3193 }
3194
3195 // For full incremental links, we want to allocate some patch space
3196 // in most sections for subsequent incremental updates.
3197 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3198 {
3199 double pct = parameters->options().incremental_patch();
3200 size_t extra = static_cast<size_t>(data_size * pct);
3201 if (this->free_space_fill_ != NULL
3202 && this->free_space_fill_->minimum_hole_size() > extra)
3203 extra = this->free_space_fill_->minimum_hole_size();
3204 off_t new_size = align_address(data_size + extra, this->addralign());
3205 this->patch_space_ = new_size - data_size;
3206 gold_debug(DEBUG_INCREMENTAL,
3207 "set_final_data_size: %08lx + %08lx: section %s",
3208 static_cast<long>(data_size),
3209 static_cast<long>(this->patch_space_),
3210 this->name());
3211 data_size = new_size;
3212 }
3213
3214 this->set_data_size(data_size);
3215 }
3216
3217 // Reset the address and file offset.
3218
3219 void
3220 Output_section::do_reset_address_and_file_offset()
3221 {
3222 // An unallocated section has no address. Forcing this means that
3223 // we don't need special treatment for symbols defined in debug
3224 // sections. We do the same in the constructor. This does not
3225 // apply to NOLOAD sections though.
3226 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3227 this->set_address(0);
3228
3229 for (Input_section_list::iterator p = this->input_sections_.begin();
3230 p != this->input_sections_.end();
3231 ++p)
3232 p->reset_address_and_file_offset();
3233
3234 // Remove any patch space that was added in set_final_data_size.
3235 if (this->patch_space_ > 0)
3236 {
3237 this->set_current_data_size_for_child(this->current_data_size_for_child()
3238 - this->patch_space_);
3239 this->patch_space_ = 0;
3240 }
3241 }
3242
3243 // Return true if address and file offset have the values after reset.
3244
3245 bool
3246 Output_section::do_address_and_file_offset_have_reset_values() const
3247 {
3248 if (this->is_offset_valid())
3249 return false;
3250
3251 // An unallocated section has address 0 after its construction or a reset.
3252 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3253 return this->is_address_valid() && this->address() == 0;
3254 else
3255 return !this->is_address_valid();
3256 }
3257
3258 // Set the TLS offset. Called only for SHT_TLS sections.
3259
3260 void
3261 Output_section::do_set_tls_offset(uint64_t tls_base)
3262 {
3263 this->tls_offset_ = this->address() - tls_base;
3264 }
3265
3266 // In a few cases we need to sort the input sections attached to an
3267 // output section. This is used to implement the type of constructor
3268 // priority ordering implemented by the GNU linker, in which the
3269 // priority becomes part of the section name and the sections are
3270 // sorted by name. We only do this for an output section if we see an
3271 // attached input section matching ".ctors.*", ".dtors.*",
3272 // ".init_array.*" or ".fini_array.*".
3273
3274 class Output_section::Input_section_sort_entry
3275 {
3276 public:
3277 Input_section_sort_entry()
3278 : input_section_(), index_(-1U), section_name_()
3279 { }
3280
3281 Input_section_sort_entry(const Input_section& input_section,
3282 unsigned int index,
3283 bool must_sort_attached_input_sections,
3284 const char* output_section_name)
3285 : input_section_(input_section), index_(index), section_name_()
3286 {
3287 if ((input_section.is_input_section()
3288 || input_section.is_relaxed_input_section())
3289 && must_sort_attached_input_sections)
3290 {
3291 // This is only called single-threaded from Layout::finalize,
3292 // so it is OK to lock. Unfortunately we have no way to pass
3293 // in a Task token.
3294 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3295 Object* obj = (input_section.is_input_section()
3296 ? input_section.relobj()
3297 : input_section.relaxed_input_section()->relobj());
3298 Task_lock_obj<Object> tl(dummy_task, obj);
3299
3300 // This is a slow operation, which should be cached in
3301 // Layout::layout if this becomes a speed problem.
3302 this->section_name_ = obj->section_name(input_section.shndx());
3303 }
3304 else if (input_section.is_output_section_data()
3305 && must_sort_attached_input_sections)
3306 {
3307 // For linker-generated sections, use the output section name.
3308 this->section_name_.assign(output_section_name);
3309 }
3310 }
3311
3312 // Return the Input_section.
3313 const Input_section&
3314 input_section() const
3315 {
3316 gold_assert(this->index_ != -1U);
3317 return this->input_section_;
3318 }
3319
3320 // The index of this entry in the original list. This is used to
3321 // make the sort stable.
3322 unsigned int
3323 index() const
3324 {
3325 gold_assert(this->index_ != -1U);
3326 return this->index_;
3327 }
3328
3329 // The section name.
3330 const std::string&
3331 section_name() const
3332 {
3333 return this->section_name_;
3334 }
3335
3336 // Return true if the section name has a priority. This is assumed
3337 // to be true if it has a dot after the initial dot.
3338 bool
3339 has_priority() const
3340 {
3341 return this->section_name_.find('.', 1) != std::string::npos;
3342 }
3343
3344 // Return the priority. Believe it or not, gcc encodes the priority
3345 // differently for .ctors/.dtors and .init_array/.fini_array
3346 // sections.
3347 unsigned int
3348 get_priority() const
3349 {
3350 bool is_ctors;
3351 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3352 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3353 is_ctors = true;
3354 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3355 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3356 is_ctors = false;
3357 else
3358 return 0;
3359 char* end;
3360 unsigned long prio = strtoul((this->section_name_.c_str()
3361 + (is_ctors ? 7 : 12)),
3362 &end, 10);
3363 if (*end != '\0')
3364 return 0;
3365 else if (is_ctors)
3366 return 65535 - prio;
3367 else
3368 return prio;
3369 }
3370
3371 // Return true if this an input file whose base name matches
3372 // FILE_NAME. The base name must have an extension of ".o", and
3373 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3374 // This is to match crtbegin.o as well as crtbeginS.o without
3375 // getting confused by other possibilities. Overall matching the
3376 // file name this way is a dreadful hack, but the GNU linker does it
3377 // in order to better support gcc, and we need to be compatible.
3378 bool
3379 match_file_name(const char* file_name) const
3380 {
3381 if (this->input_section_.is_output_section_data())
3382 return false;
3383 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3384 }
3385
3386 // Returns 1 if THIS should appear before S in section order, -1 if S
3387 // appears before THIS and 0 if they are not comparable.
3388 int
3389 compare_section_ordering(const Input_section_sort_entry& s) const
3390 {
3391 unsigned int this_secn_index = this->input_section_.section_order_index();
3392 unsigned int s_secn_index = s.input_section().section_order_index();
3393 if (this_secn_index > 0 && s_secn_index > 0)
3394 {
3395 if (this_secn_index < s_secn_index)
3396 return 1;
3397 else if (this_secn_index > s_secn_index)
3398 return -1;
3399 }
3400 return 0;
3401 }
3402
3403 private:
3404 // The Input_section we are sorting.
3405 Input_section input_section_;
3406 // The index of this Input_section in the original list.
3407 unsigned int index_;
3408 // The section name if there is one.
3409 std::string section_name_;
3410 };
3411
3412 // Return true if S1 should come before S2 in the output section.
3413
3414 bool
3415 Output_section::Input_section_sort_compare::operator()(
3416 const Output_section::Input_section_sort_entry& s1,
3417 const Output_section::Input_section_sort_entry& s2) const
3418 {
3419 // crtbegin.o must come first.
3420 bool s1_begin = s1.match_file_name("crtbegin");
3421 bool s2_begin = s2.match_file_name("crtbegin");
3422 if (s1_begin || s2_begin)
3423 {
3424 if (!s1_begin)
3425 return false;
3426 if (!s2_begin)
3427 return true;
3428 return s1.index() < s2.index();
3429 }
3430
3431 // crtend.o must come last.
3432 bool s1_end = s1.match_file_name("crtend");
3433 bool s2_end = s2.match_file_name("crtend");
3434 if (s1_end || s2_end)
3435 {
3436 if (!s1_end)
3437 return true;
3438 if (!s2_end)
3439 return false;
3440 return s1.index() < s2.index();
3441 }
3442
3443 // A section with a priority follows a section without a priority.
3444 bool s1_has_priority = s1.has_priority();
3445 bool s2_has_priority = s2.has_priority();
3446 if (s1_has_priority && !s2_has_priority)
3447 return false;
3448 if (!s1_has_priority && s2_has_priority)
3449 return true;
3450
3451 // Check if a section order exists for these sections through a section
3452 // ordering file. If sequence_num is 0, an order does not exist.
3453 int sequence_num = s1.compare_section_ordering(s2);
3454 if (sequence_num != 0)
3455 return sequence_num == 1;
3456
3457 // Otherwise we sort by name.
3458 int compare = s1.section_name().compare(s2.section_name());
3459 if (compare != 0)
3460 return compare < 0;
3461
3462 // Otherwise we keep the input order.
3463 return s1.index() < s2.index();
3464 }
3465
3466 // Return true if S1 should come before S2 in an .init_array or .fini_array
3467 // output section.
3468
3469 bool
3470 Output_section::Input_section_sort_init_fini_compare::operator()(
3471 const Output_section::Input_section_sort_entry& s1,
3472 const Output_section::Input_section_sort_entry& s2) const
3473 {
3474 // A section without a priority follows a section with a priority.
3475 // This is the reverse of .ctors and .dtors sections.
3476 bool s1_has_priority = s1.has_priority();
3477 bool s2_has_priority = s2.has_priority();
3478 if (s1_has_priority && !s2_has_priority)
3479 return true;
3480 if (!s1_has_priority && s2_has_priority)
3481 return false;
3482
3483 // .ctors and .dtors sections without priority come after
3484 // .init_array and .fini_array sections without priority.
3485 if (!s1_has_priority
3486 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3487 && s1.section_name() != s2.section_name())
3488 return false;
3489 if (!s2_has_priority
3490 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3491 && s2.section_name() != s1.section_name())
3492 return true;
3493
3494 // Sort by priority if we can.
3495 if (s1_has_priority)
3496 {
3497 unsigned int s1_prio = s1.get_priority();
3498 unsigned int s2_prio = s2.get_priority();
3499 if (s1_prio < s2_prio)
3500 return true;
3501 else if (s1_prio > s2_prio)
3502 return false;
3503 }
3504
3505 // Check if a section order exists for these sections through a section
3506 // ordering file. If sequence_num is 0, an order does not exist.
3507 int sequence_num = s1.compare_section_ordering(s2);
3508 if (sequence_num != 0)
3509 return sequence_num == 1;
3510
3511 // Otherwise we sort by name.
3512 int compare = s1.section_name().compare(s2.section_name());
3513 if (compare != 0)
3514 return compare < 0;
3515
3516 // Otherwise we keep the input order.
3517 return s1.index() < s2.index();
3518 }
3519
3520 // Return true if S1 should come before S2. Sections that do not match
3521 // any pattern in the section ordering file are placed ahead of the sections
3522 // that match some pattern.
3523
3524 bool
3525 Output_section::Input_section_sort_section_order_index_compare::operator()(
3526 const Output_section::Input_section_sort_entry& s1,
3527 const Output_section::Input_section_sort_entry& s2) const
3528 {
3529 unsigned int s1_secn_index = s1.input_section().section_order_index();
3530 unsigned int s2_secn_index = s2.input_section().section_order_index();
3531
3532 // Keep input order if section ordering cannot determine order.
3533 if (s1_secn_index == s2_secn_index)
3534 return s1.index() < s2.index();
3535
3536 return s1_secn_index < s2_secn_index;
3537 }
3538
3539 // Return true if S1 should come before S2. This is the sort comparison
3540 // function for .text to sort sections with prefixes
3541 // .text.{unlikely,exit,startup,hot} before other sections.
3542
3543 bool
3544 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3545 ::operator()(
3546 const Output_section::Input_section_sort_entry& s1,
3547 const Output_section::Input_section_sort_entry& s2) const
3548 {
3549 // Some input section names have special ordering requirements.
3550 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3551 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3552 if (o1 != o2)
3553 {
3554 if (o1 < 0)
3555 return false;
3556 else if (o2 < 0)
3557 return true;
3558 else
3559 return o1 < o2;
3560 }
3561
3562 // Keep input order otherwise.
3563 return s1.index() < s2.index();
3564 }
3565
3566 // Return true if S1 should come before S2. This is the sort comparison
3567 // function for sections to sort them by name.
3568
3569 bool
3570 Output_section::Input_section_sort_section_name_compare
3571 ::operator()(
3572 const Output_section::Input_section_sort_entry& s1,
3573 const Output_section::Input_section_sort_entry& s2) const
3574 {
3575 // We sort by name.
3576 int compare = s1.section_name().compare(s2.section_name());
3577 if (compare != 0)
3578 return compare < 0;
3579
3580 // Keep input order otherwise.
3581 return s1.index() < s2.index();
3582 }
3583
3584 // This updates the section order index of input sections according to the
3585 // the order specified in the mapping from Section id to order index.
3586
3587 void
3588 Output_section::update_section_layout(
3589 const Section_layout_order* order_map)
3590 {
3591 for (Input_section_list::iterator p = this->input_sections_.begin();
3592 p != this->input_sections_.end();
3593 ++p)
3594 {
3595 if (p->is_input_section()
3596 || p->is_relaxed_input_section())
3597 {
3598 Relobj* obj = (p->is_input_section()
3599 ? p->relobj()
3600 : p->relaxed_input_section()->relobj());
3601 unsigned int shndx = p->shndx();
3602 Section_layout_order::const_iterator it
3603 = order_map->find(Section_id(obj, shndx));
3604 if (it == order_map->end())
3605 continue;
3606 unsigned int section_order_index = it->second;
3607 if (section_order_index != 0)
3608 {
3609 p->set_section_order_index(section_order_index);
3610 this->set_input_section_order_specified();
3611 }
3612 }
3613 }
3614 }
3615
3616 // Sort the input sections attached to an output section.
3617
3618 void
3619 Output_section::sort_attached_input_sections()
3620 {
3621 if (this->attached_input_sections_are_sorted_)
3622 return;
3623
3624 if (this->checkpoint_ != NULL
3625 && !this->checkpoint_->input_sections_saved())
3626 this->checkpoint_->save_input_sections();
3627
3628 // The only thing we know about an input section is the object and
3629 // the section index. We need the section name. Recomputing this
3630 // is slow but this is an unusual case. If this becomes a speed
3631 // problem we can cache the names as required in Layout::layout.
3632
3633 // We start by building a larger vector holding a copy of each
3634 // Input_section, plus its current index in the list and its name.
3635 std::vector<Input_section_sort_entry> sort_list;
3636
3637 unsigned int i = 0;
3638 for (Input_section_list::iterator p = this->input_sections_.begin();
3639 p != this->input_sections_.end();
3640 ++p, ++i)
3641 sort_list.push_back(Input_section_sort_entry(*p, i,
3642 this->must_sort_attached_input_sections(),
3643 this->name()));
3644
3645 // Sort the input sections.
3646 if (this->must_sort_attached_input_sections())
3647 {
3648 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3649 || this->type() == elfcpp::SHT_INIT_ARRAY
3650 || this->type() == elfcpp::SHT_FINI_ARRAY)
3651 std::sort(sort_list.begin(), sort_list.end(),
3652 Input_section_sort_init_fini_compare());
3653 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3654 std::sort(sort_list.begin(), sort_list.end(),
3655 Input_section_sort_section_name_compare());
3656 else if (strcmp(this->name(), ".text") == 0)
3657 std::sort(sort_list.begin(), sort_list.end(),
3658 Input_section_sort_section_prefix_special_ordering_compare());
3659 else
3660 std::sort(sort_list.begin(), sort_list.end(),
3661 Input_section_sort_compare());
3662 }
3663 else
3664 {
3665 gold_assert(this->input_section_order_specified());
3666 std::sort(sort_list.begin(), sort_list.end(),
3667 Input_section_sort_section_order_index_compare());
3668 }
3669
3670 // Copy the sorted input sections back to our list.
3671 this->input_sections_.clear();
3672 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3673 p != sort_list.end();
3674 ++p)
3675 this->input_sections_.push_back(p->input_section());
3676 sort_list.clear();
3677
3678 // Remember that we sorted the input sections, since we might get
3679 // called again.
3680 this->attached_input_sections_are_sorted_ = true;
3681 }
3682
3683 // Write the section header to *OSHDR.
3684
3685 template<int size, bool big_endian>
3686 void
3687 Output_section::write_header(const Layout* layout,
3688 const Stringpool* secnamepool,
3689 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3690 {
3691 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3692 oshdr->put_sh_type(this->type_);
3693
3694 elfcpp::Elf_Xword flags = this->flags_;
3695 if (this->info_section_ != NULL && this->info_uses_section_index_)
3696 flags |= elfcpp::SHF_INFO_LINK;
3697 oshdr->put_sh_flags(flags);
3698
3699 oshdr->put_sh_addr(this->address());
3700 oshdr->put_sh_offset(this->offset());
3701 oshdr->put_sh_size(this->data_size());
3702 if (this->link_section_ != NULL)
3703 oshdr->put_sh_link(this->link_section_->out_shndx());
3704 else if (this->should_link_to_symtab_)
3705 oshdr->put_sh_link(layout->symtab_section_shndx());
3706 else if (this->should_link_to_dynsym_)
3707 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3708 else
3709 oshdr->put_sh_link(this->link_);
3710
3711 elfcpp::Elf_Word info;
3712 if (this->info_section_ != NULL)
3713 {
3714 if (this->info_uses_section_index_)
3715 info = this->info_section_->out_shndx();
3716 else
3717 info = this->info_section_->symtab_index();
3718 }
3719 else if (this->info_symndx_ != NULL)
3720 info = this->info_symndx_->symtab_index();
3721 else
3722 info = this->info_;
3723 oshdr->put_sh_info(info);
3724
3725 oshdr->put_sh_addralign(this->addralign_);
3726 oshdr->put_sh_entsize(this->entsize_);
3727 }
3728
3729 // Write out the data. For input sections the data is written out by
3730 // Object::relocate, but we have to handle Output_section_data objects
3731 // here.
3732
3733 void
3734 Output_section::do_write(Output_file* of)
3735 {
3736 gold_assert(!this->requires_postprocessing());
3737
3738 // If the target performs relaxation, we delay filler generation until now.
3739 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3740
3741 off_t output_section_file_offset = this->offset();
3742 for (Fill_list::iterator p = this->fills_.begin();
3743 p != this->fills_.end();
3744 ++p)
3745 {
3746 std::string fill_data(parameters->target().code_fill(p->length()));
3747 of->write(output_section_file_offset + p->section_offset(),
3748 fill_data.data(), fill_data.size());
3749 }
3750
3751 off_t off = this->offset() + this->first_input_offset_;
3752 for (Input_section_list::iterator p = this->input_sections_.begin();
3753 p != this->input_sections_.end();
3754 ++p)
3755 {
3756 off_t aligned_off = align_address(off, p->addralign());
3757 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3758 {
3759 size_t fill_len = aligned_off - off;
3760 std::string fill_data(parameters->target().code_fill(fill_len));
3761 of->write(off, fill_data.data(), fill_data.size());
3762 }
3763
3764 p->write(of);
3765 off = aligned_off + p->data_size();
3766 }
3767
3768 // For incremental links, fill in unused chunks in debug sections
3769 // with dummy compilation unit headers.
3770 if (this->free_space_fill_ != NULL)
3771 {
3772 for (Free_list::Const_iterator p = this->free_list_.begin();
3773 p != this->free_list_.end();
3774 ++p)
3775 {
3776 off_t off = p->start_;
3777 size_t len = p->end_ - off;
3778 this->free_space_fill_->write(of, this->offset() + off, len);
3779 }
3780 if (this->patch_space_ > 0)
3781 {
3782 off_t off = this->current_data_size_for_child() - this->patch_space_;
3783 this->free_space_fill_->write(of, this->offset() + off,
3784 this->patch_space_);
3785 }
3786 }
3787 }
3788
3789 // If a section requires postprocessing, create the buffer to use.
3790
3791 void
3792 Output_section::create_postprocessing_buffer()
3793 {
3794 gold_assert(this->requires_postprocessing());
3795
3796 if (this->postprocessing_buffer_ != NULL)
3797 return;
3798
3799 if (!this->input_sections_.empty())
3800 {
3801 off_t off = this->first_input_offset_;
3802 for (Input_section_list::iterator p = this->input_sections_.begin();
3803 p != this->input_sections_.end();
3804 ++p)
3805 {
3806 off = align_address(off, p->addralign());
3807 p->finalize_data_size();
3808 off += p->data_size();
3809 }
3810 this->set_current_data_size_for_child(off);
3811 }
3812
3813 off_t buffer_size = this->current_data_size_for_child();
3814 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3815 }
3816
3817 // Write all the data of an Output_section into the postprocessing
3818 // buffer. This is used for sections which require postprocessing,
3819 // such as compression. Input sections are handled by
3820 // Object::Relocate.
3821
3822 void
3823 Output_section::write_to_postprocessing_buffer()
3824 {
3825 gold_assert(this->requires_postprocessing());
3826
3827 // If the target performs relaxation, we delay filler generation until now.
3828 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3829
3830 unsigned char* buffer = this->postprocessing_buffer();
3831 for (Fill_list::iterator p = this->fills_.begin();
3832 p != this->fills_.end();
3833 ++p)
3834 {
3835 std::string fill_data(parameters->target().code_fill(p->length()));
3836 memcpy(buffer + p->section_offset(), fill_data.data(),
3837 fill_data.size());
3838 }
3839
3840 off_t off = this->first_input_offset_;
3841 for (Input_section_list::iterator p = this->input_sections_.begin();
3842 p != this->input_sections_.end();
3843 ++p)
3844 {
3845 off_t aligned_off = align_address(off, p->addralign());
3846 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3847 {
3848 size_t fill_len = aligned_off - off;
3849 std::string fill_data(parameters->target().code_fill(fill_len));
3850 memcpy(buffer + off, fill_data.data(), fill_data.size());
3851 }
3852
3853 p->write_to_buffer(buffer + aligned_off);
3854 off = aligned_off + p->data_size();
3855 }
3856 }
3857
3858 // Get the input sections for linker script processing. We leave
3859 // behind the Output_section_data entries. Note that this may be
3860 // slightly incorrect for merge sections. We will leave them behind,
3861 // but it is possible that the script says that they should follow
3862 // some other input sections, as in:
3863 // .rodata { *(.rodata) *(.rodata.cst*) }
3864 // For that matter, we don't handle this correctly:
3865 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3866 // With luck this will never matter.
3867
3868 uint64_t
3869 Output_section::get_input_sections(
3870 uint64_t address,
3871 const std::string& fill,
3872 std::list<Input_section>* input_sections)
3873 {
3874 if (this->checkpoint_ != NULL
3875 && !this->checkpoint_->input_sections_saved())
3876 this->checkpoint_->save_input_sections();
3877
3878 // Invalidate fast look-up maps.
3879 this->lookup_maps_->invalidate();
3880
3881 uint64_t orig_address = address;
3882
3883 address = align_address(address, this->addralign());
3884
3885 Input_section_list remaining;
3886 for (Input_section_list::iterator p = this->input_sections_.begin();
3887 p != this->input_sections_.end();
3888 ++p)
3889 {
3890 if (p->is_input_section()
3891 || p->is_relaxed_input_section()
3892 || p->is_merge_section())
3893 input_sections->push_back(*p);
3894 else
3895 {
3896 uint64_t aligned_address = align_address(address, p->addralign());
3897 if (aligned_address != address && !fill.empty())
3898 {
3899 section_size_type length =
3900 convert_to_section_size_type(aligned_address - address);
3901 std::string this_fill;
3902 this_fill.reserve(length);
3903 while (this_fill.length() + fill.length() <= length)
3904 this_fill += fill;
3905 if (this_fill.length() < length)
3906 this_fill.append(fill, 0, length - this_fill.length());
3907
3908 Output_section_data* posd = new Output_data_const(this_fill, 0);
3909 remaining.push_back(Input_section(posd));
3910 }
3911 address = aligned_address;
3912
3913 remaining.push_back(*p);
3914
3915 p->finalize_data_size();
3916 address += p->data_size();
3917 }
3918 }
3919
3920 this->input_sections_.swap(remaining);
3921 this->first_input_offset_ = 0;
3922
3923 uint64_t data_size = address - orig_address;
3924 this->set_current_data_size_for_child(data_size);
3925 return data_size;
3926 }
3927
3928 // Add a script input section. SIS is an Output_section::Input_section,
3929 // which can be either a plain input section or a special input section like
3930 // a relaxed input section. For a special input section, its size must be
3931 // finalized.
3932
3933 void
3934 Output_section::add_script_input_section(const Input_section& sis)
3935 {
3936 uint64_t data_size = sis.data_size();
3937 uint64_t addralign = sis.addralign();
3938 if (addralign > this->addralign_)
3939 this->addralign_ = addralign;
3940
3941 off_t offset_in_section = this->current_data_size_for_child();
3942 off_t aligned_offset_in_section = align_address(offset_in_section,
3943 addralign);
3944
3945 this->set_current_data_size_for_child(aligned_offset_in_section
3946 + data_size);
3947
3948 this->input_sections_.push_back(sis);
3949
3950 // Update fast lookup maps if necessary.
3951 if (this->lookup_maps_->is_valid())
3952 {
3953 if (sis.is_relaxed_input_section())
3954 {
3955 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3956 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3957 poris->shndx(), poris);
3958 }
3959 }
3960 }
3961
3962 // Save states for relaxation.
3963
3964 void
3965 Output_section::save_states()
3966 {
3967 gold_assert(this->checkpoint_ == NULL);
3968 Checkpoint_output_section* checkpoint =
3969 new Checkpoint_output_section(this->addralign_, this->flags_,
3970 this->input_sections_,
3971 this->first_input_offset_,
3972 this->attached_input_sections_are_sorted_);
3973 this->checkpoint_ = checkpoint;
3974 gold_assert(this->fills_.empty());
3975 }
3976
3977 void
3978 Output_section::discard_states()
3979 {
3980 gold_assert(this->checkpoint_ != NULL);
3981 delete this->checkpoint_;
3982 this->checkpoint_ = NULL;
3983 gold_assert(this->fills_.empty());
3984
3985 // Simply invalidate the fast lookup maps since we do not keep
3986 // track of them.
3987 this->lookup_maps_->invalidate();
3988 }
3989
3990 void
3991 Output_section::restore_states()
3992 {
3993 gold_assert(this->checkpoint_ != NULL);
3994 Checkpoint_output_section* checkpoint = this->checkpoint_;
3995
3996 this->addralign_ = checkpoint->addralign();
3997 this->flags_ = checkpoint->flags();
3998 this->first_input_offset_ = checkpoint->first_input_offset();
3999
4000 if (!checkpoint->input_sections_saved())
4001 {
4002 // If we have not copied the input sections, just resize it.
4003 size_t old_size = checkpoint->input_sections_size();
4004 gold_assert(this->input_sections_.size() >= old_size);
4005 this->input_sections_.resize(old_size);
4006 }
4007 else
4008 {
4009 // We need to copy the whole list. This is not efficient for
4010 // extremely large output with hundreads of thousands of input
4011 // objects. We may need to re-think how we should pass sections
4012 // to scripts.
4013 this->input_sections_ = *checkpoint->input_sections();
4014 }
4015
4016 this->attached_input_sections_are_sorted_ =
4017 checkpoint->attached_input_sections_are_sorted();
4018
4019 // Simply invalidate the fast lookup maps since we do not keep
4020 // track of them.
4021 this->lookup_maps_->invalidate();
4022 }
4023
4024 // Update the section offsets of input sections in this. This is required if
4025 // relaxation causes some input sections to change sizes.
4026
4027 void
4028 Output_section::adjust_section_offsets()
4029 {
4030 if (!this->section_offsets_need_adjustment_)
4031 return;
4032
4033 off_t off = 0;
4034 for (Input_section_list::iterator p = this->input_sections_.begin();
4035 p != this->input_sections_.end();
4036 ++p)
4037 {
4038 off = align_address(off, p->addralign());
4039 if (p->is_input_section())
4040 p->relobj()->set_section_offset(p->shndx(), off);
4041 off += p->data_size();
4042 }
4043
4044 this->section_offsets_need_adjustment_ = false;
4045 }
4046
4047 // Print to the map file.
4048
4049 void
4050 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4051 {
4052 mapfile->print_output_section(this);
4053
4054 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4055 p != this->input_sections_.end();
4056 ++p)
4057 p->print_to_mapfile(mapfile);
4058 }
4059
4060 // Print stats for merge sections to stderr.
4061
4062 void
4063 Output_section::print_merge_stats()
4064 {
4065 Input_section_list::iterator p;
4066 for (p = this->input_sections_.begin();
4067 p != this->input_sections_.end();
4068 ++p)
4069 p->print_merge_stats(this->name_);
4070 }
4071
4072 // Set a fixed layout for the section. Used for incremental update links.
4073
4074 void
4075 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4076 off_t sh_size, uint64_t sh_addralign)
4077 {
4078 this->addralign_ = sh_addralign;
4079 this->set_current_data_size(sh_size);
4080 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4081 this->set_address(sh_addr);
4082 this->set_file_offset(sh_offset);
4083 this->finalize_data_size();
4084 this->free_list_.init(sh_size, false);
4085 this->has_fixed_layout_ = true;
4086 }
4087
4088 // Reserve space within the fixed layout for the section. Used for
4089 // incremental update links.
4090
4091 void
4092 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4093 {
4094 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4095 }
4096
4097 // Allocate space from the free list for the section. Used for
4098 // incremental update links.
4099
4100 off_t
4101 Output_section::allocate(off_t len, uint64_t addralign)
4102 {
4103 return this->free_list_.allocate(len, addralign, 0);
4104 }
4105
4106 // Output segment methods.
4107
4108 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4109 : vaddr_(0),
4110 paddr_(0),
4111 memsz_(0),
4112 max_align_(0),
4113 min_p_align_(0),
4114 offset_(0),
4115 filesz_(0),
4116 type_(type),
4117 flags_(flags),
4118 is_max_align_known_(false),
4119 are_addresses_set_(false),
4120 is_large_data_segment_(false),
4121 is_unique_segment_(false)
4122 {
4123 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4124 // the flags.
4125 if (type == elfcpp::PT_TLS)
4126 this->flags_ = elfcpp::PF_R;
4127 }
4128
4129 // Add an Output_section to a PT_LOAD Output_segment.
4130
4131 void
4132 Output_segment::add_output_section_to_load(Layout* layout,
4133 Output_section* os,
4134 elfcpp::Elf_Word seg_flags)
4135 {
4136 gold_assert(this->type() == elfcpp::PT_LOAD);
4137 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4138 gold_assert(!this->is_max_align_known_);
4139 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4140
4141 this->update_flags_for_output_section(seg_flags);
4142
4143 // We don't want to change the ordering if we have a linker script
4144 // with a SECTIONS clause.
4145 Output_section_order order = os->order();
4146 if (layout->script_options()->saw_sections_clause())
4147 order = static_cast<Output_section_order>(0);
4148 else
4149 gold_assert(order != ORDER_INVALID);
4150
4151 this->output_lists_[order].push_back(os);
4152 }
4153
4154 // Add an Output_section to a non-PT_LOAD Output_segment.
4155
4156 void
4157 Output_segment::add_output_section_to_nonload(Output_section* os,
4158 elfcpp::Elf_Word seg_flags)
4159 {
4160 gold_assert(this->type() != elfcpp::PT_LOAD);
4161 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4162 gold_assert(!this->is_max_align_known_);
4163
4164 this->update_flags_for_output_section(seg_flags);
4165
4166 this->output_lists_[0].push_back(os);
4167 }
4168
4169 // Remove an Output_section from this segment. It is an error if it
4170 // is not present.
4171
4172 void
4173 Output_segment::remove_output_section(Output_section* os)
4174 {
4175 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4176 {
4177 Output_data_list* pdl = &this->output_lists_[i];
4178 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4179 {
4180 if (*p == os)
4181 {
4182 pdl->erase(p);
4183 return;
4184 }
4185 }
4186 }
4187 gold_unreachable();
4188 }
4189
4190 // Add an Output_data (which need not be an Output_section) to the
4191 // start of a segment.
4192
4193 void
4194 Output_segment::add_initial_output_data(Output_data* od)
4195 {
4196 gold_assert(!this->is_max_align_known_);
4197 Output_data_list::iterator p = this->output_lists_[0].begin();
4198 this->output_lists_[0].insert(p, od);
4199 }
4200
4201 // Return true if this segment has any sections which hold actual
4202 // data, rather than being a BSS section.
4203
4204 bool
4205 Output_segment::has_any_data_sections() const
4206 {
4207 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4208 {
4209 const Output_data_list* pdl = &this->output_lists_[i];
4210 for (Output_data_list::const_iterator p = pdl->begin();
4211 p != pdl->end();
4212 ++p)
4213 {
4214 if (!(*p)->is_section())
4215 return true;
4216 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4217 return true;
4218 }
4219 }
4220 return false;
4221 }
4222
4223 // Return whether the first data section (not counting TLS sections)
4224 // is a relro section.
4225
4226 bool
4227 Output_segment::is_first_section_relro() const
4228 {
4229 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4230 {
4231 if (i == static_cast<int>(ORDER_TLS_BSS))
4232 continue;
4233 const Output_data_list* pdl = &this->output_lists_[i];
4234 if (!pdl->empty())
4235 {
4236 Output_data* p = pdl->front();
4237 return p->is_section() && p->output_section()->is_relro();
4238 }
4239 }
4240 return false;
4241 }
4242
4243 // Return the maximum alignment of the Output_data in Output_segment.
4244
4245 uint64_t
4246 Output_segment::maximum_alignment()
4247 {
4248 if (!this->is_max_align_known_)
4249 {
4250 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4251 {
4252 const Output_data_list* pdl = &this->output_lists_[i];
4253 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4254 if (addralign > this->max_align_)
4255 this->max_align_ = addralign;
4256 }
4257 this->is_max_align_known_ = true;
4258 }
4259
4260 return this->max_align_;
4261 }
4262
4263 // Return the maximum alignment of a list of Output_data.
4264
4265 uint64_t
4266 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4267 {
4268 uint64_t ret = 0;
4269 for (Output_data_list::const_iterator p = pdl->begin();
4270 p != pdl->end();
4271 ++p)
4272 {
4273 uint64_t addralign = (*p)->addralign();
4274 if (addralign > ret)
4275 ret = addralign;
4276 }
4277 return ret;
4278 }
4279
4280 // Return whether this segment has any dynamic relocs.
4281
4282 bool
4283 Output_segment::has_dynamic_reloc() const
4284 {
4285 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4286 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4287 return true;
4288 return false;
4289 }
4290
4291 // Return whether this Output_data_list has any dynamic relocs.
4292
4293 bool
4294 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4295 {
4296 for (Output_data_list::const_iterator p = pdl->begin();
4297 p != pdl->end();
4298 ++p)
4299 if ((*p)->has_dynamic_reloc())
4300 return true;
4301 return false;
4302 }
4303
4304 // Set the section addresses for an Output_segment. If RESET is true,
4305 // reset the addresses first. ADDR is the address and *POFF is the
4306 // file offset. Set the section indexes starting with *PSHNDX.
4307 // INCREASE_RELRO is the size of the portion of the first non-relro
4308 // section that should be included in the PT_GNU_RELRO segment.
4309 // If this segment has relro sections, and has been aligned for
4310 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4311 // the immediately following segment. Update *HAS_RELRO, *POFF,
4312 // and *PSHNDX.
4313
4314 uint64_t
4315 Output_segment::set_section_addresses(const Target* target,
4316 Layout* layout, bool reset,
4317 uint64_t addr,
4318 unsigned int* increase_relro,
4319 bool* has_relro,
4320 off_t* poff,
4321 unsigned int* pshndx)
4322 {
4323 gold_assert(this->type_ == elfcpp::PT_LOAD);
4324
4325 uint64_t last_relro_pad = 0;
4326 off_t orig_off = *poff;
4327
4328 bool in_tls = false;
4329
4330 // If we have relro sections, we need to pad forward now so that the
4331 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4332 if (parameters->options().relro()
4333 && this->is_first_section_relro()
4334 && (!this->are_addresses_set_ || reset))
4335 {
4336 uint64_t relro_size = 0;
4337 off_t off = *poff;
4338 uint64_t max_align = 0;
4339 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4340 {
4341 Output_data_list* pdl = &this->output_lists_[i];
4342 Output_data_list::iterator p;
4343 for (p = pdl->begin(); p != pdl->end(); ++p)
4344 {
4345 if (!(*p)->is_section())
4346 break;
4347 uint64_t align = (*p)->addralign();
4348 if (align > max_align)
4349 max_align = align;
4350 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4351 in_tls = true;
4352 else if (in_tls)
4353 {
4354 // Align the first non-TLS section to the alignment
4355 // of the TLS segment.
4356 align = max_align;
4357 in_tls = false;
4358 }
4359 // Ignore the size of the .tbss section.
4360 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4361 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4362 continue;
4363 relro_size = align_address(relro_size, align);
4364 if ((*p)->is_address_valid())
4365 relro_size += (*p)->data_size();
4366 else
4367 {
4368 // FIXME: This could be faster.
4369 (*p)->set_address_and_file_offset(relro_size,
4370 relro_size);
4371 relro_size += (*p)->data_size();
4372 (*p)->reset_address_and_file_offset();
4373 }
4374 }
4375 if (p != pdl->end())
4376 break;
4377 }
4378 relro_size += *increase_relro;
4379 // Pad the total relro size to a multiple of the maximum
4380 // section alignment seen.
4381 uint64_t aligned_size = align_address(relro_size, max_align);
4382 // Note the amount of padding added after the last relro section.
4383 last_relro_pad = aligned_size - relro_size;
4384 *has_relro = true;
4385
4386 uint64_t page_align = parameters->target().abi_pagesize();
4387
4388 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4389 uint64_t desired_align = page_align - (aligned_size % page_align);
4390 if (desired_align < off % page_align)
4391 off += page_align;
4392 off += desired_align - off % page_align;
4393 addr += off - orig_off;
4394 orig_off = off;
4395 *poff = off;
4396 }
4397
4398 if (!reset && this->are_addresses_set_)
4399 {
4400 gold_assert(this->paddr_ == addr);
4401 addr = this->vaddr_;
4402 }
4403 else
4404 {
4405 this->vaddr_ = addr;
4406 this->paddr_ = addr;
4407 this->are_addresses_set_ = true;
4408 }
4409
4410 in_tls = false;
4411
4412 this->offset_ = orig_off;
4413
4414 off_t off = 0;
4415 off_t foff = *poff;
4416 uint64_t ret = 0;
4417 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4418 {
4419 if (i == static_cast<int>(ORDER_RELRO_LAST))
4420 {
4421 *poff += last_relro_pad;
4422 foff += last_relro_pad;
4423 addr += last_relro_pad;
4424 if (this->output_lists_[i].empty())
4425 {
4426 // If there is nothing in the ORDER_RELRO_LAST list,
4427 // the padding will occur at the end of the relro
4428 // segment, and we need to add it to *INCREASE_RELRO.
4429 *increase_relro += last_relro_pad;
4430 }
4431 }
4432 addr = this->set_section_list_addresses(layout, reset,
4433 &this->output_lists_[i],
4434 addr, poff, &foff, pshndx,
4435 &in_tls);
4436
4437 // FOFF tracks the last offset used for the file image,
4438 // and *POFF tracks the last offset used for the memory image.
4439 // When not using a linker script, bss sections should all
4440 // be processed in the ORDER_SMALL_BSS and later buckets.
4441 gold_assert(*poff == foff
4442 || i == static_cast<int>(ORDER_TLS_BSS)
4443 || i >= static_cast<int>(ORDER_SMALL_BSS)
4444 || layout->script_options()->saw_sections_clause());
4445
4446 this->filesz_ = foff - orig_off;
4447 off = foff;
4448
4449 ret = addr;
4450 }
4451
4452 // If the last section was a TLS section, align upward to the
4453 // alignment of the TLS segment, so that the overall size of the TLS
4454 // segment is aligned.
4455 if (in_tls)
4456 {
4457 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4458 *poff = align_address(*poff, segment_align);
4459 }
4460
4461 this->memsz_ = *poff - orig_off;
4462
4463 // Ignore the file offset adjustments made by the BSS Output_data
4464 // objects.
4465 *poff = off;
4466
4467 // If code segments must contain only code, and this code segment is
4468 // page-aligned in the file, then fill it out to a whole page with
4469 // code fill (the tail of the segment will not be within any section).
4470 // Thus the entire code segment can be mapped from the file as whole
4471 // pages and that mapping will contain only valid instructions.
4472 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4473 {
4474 uint64_t abi_pagesize = target->abi_pagesize();
4475 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4476 {
4477 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4478
4479 std::string fill_data;
4480 if (target->has_code_fill())
4481 fill_data = target->code_fill(fill_size);
4482 else
4483 fill_data.resize(fill_size); // Zero fill.
4484
4485 Output_data_const* fill = new Output_data_const(fill_data, 0);
4486 fill->set_address(this->vaddr_ + this->memsz_);
4487 fill->set_file_offset(off);
4488 layout->add_relax_output(fill);
4489
4490 off += fill_size;
4491 gold_assert(off % abi_pagesize == 0);
4492 ret += fill_size;
4493 gold_assert(ret % abi_pagesize == 0);
4494
4495 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4496 this->memsz_ = this->filesz_ += fill_size;
4497
4498 *poff = off;
4499 }
4500 }
4501
4502 return ret;
4503 }
4504
4505 // Set the addresses and file offsets in a list of Output_data
4506 // structures.
4507
4508 uint64_t
4509 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4510 Output_data_list* pdl,
4511 uint64_t addr, off_t* poff,
4512 off_t* pfoff,
4513 unsigned int* pshndx,
4514 bool* in_tls)
4515 {
4516 off_t startoff = *poff;
4517 // For incremental updates, we may allocate non-fixed sections from
4518 // free space in the file. This keeps track of the high-water mark.
4519 off_t maxoff = startoff;
4520
4521 off_t off = startoff;
4522 off_t foff = *pfoff;
4523 for (Output_data_list::iterator p = pdl->begin();
4524 p != pdl->end();
4525 ++p)
4526 {
4527 bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4528 bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4529
4530 if (reset)
4531 (*p)->reset_address_and_file_offset();
4532
4533 // When doing an incremental update or when using a linker script,
4534 // the section will most likely already have an address.
4535 if (!(*p)->is_address_valid())
4536 {
4537 uint64_t align = (*p)->addralign();
4538
4539 if (is_tls)
4540 {
4541 // Give the first TLS section the alignment of the
4542 // entire TLS segment. Otherwise the TLS segment as a
4543 // whole may be misaligned.
4544 if (!*in_tls)
4545 {
4546 Output_segment* tls_segment = layout->tls_segment();
4547 gold_assert(tls_segment != NULL);
4548 uint64_t segment_align = tls_segment->maximum_alignment();
4549 gold_assert(segment_align >= align);
4550 align = segment_align;
4551
4552 *in_tls = true;
4553 }
4554 }
4555 else
4556 {
4557 // If this is the first section after the TLS segment,
4558 // align it to at least the alignment of the TLS
4559 // segment, so that the size of the overall TLS segment
4560 // is aligned.
4561 if (*in_tls)
4562 {
4563 uint64_t segment_align =
4564 layout->tls_segment()->maximum_alignment();
4565 if (segment_align > align)
4566 align = segment_align;
4567
4568 *in_tls = false;
4569 }
4570 }
4571
4572 if (!parameters->incremental_update())
4573 {
4574 gold_assert(off == foff || is_bss);
4575 off = align_address(off, align);
4576 if (is_tls || !is_bss)
4577 foff = off;
4578 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4579 }
4580 else
4581 {
4582 // Incremental update: allocate file space from free list.
4583 (*p)->pre_finalize_data_size();
4584 off_t current_size = (*p)->current_data_size();
4585 off = layout->allocate(current_size, align, startoff);
4586 foff = off;
4587 if (off == -1)
4588 {
4589 gold_assert((*p)->output_section() != NULL);
4590 gold_fallback(_("out of patch space for section %s; "
4591 "relink with --incremental-full"),
4592 (*p)->output_section()->name());
4593 }
4594 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4595 if ((*p)->data_size() > current_size)
4596 {
4597 gold_assert((*p)->output_section() != NULL);
4598 gold_fallback(_("%s: section changed size; "
4599 "relink with --incremental-full"),
4600 (*p)->output_section()->name());
4601 }
4602 }
4603 }
4604 else if (parameters->incremental_update())
4605 {
4606 // For incremental updates, use the fixed offset for the
4607 // high-water mark computation.
4608 off = (*p)->offset();
4609 foff = off;
4610 }
4611 else
4612 {
4613 // The script may have inserted a skip forward, but it
4614 // better not have moved backward.
4615 if ((*p)->address() >= addr + (off - startoff))
4616 {
4617 if (!is_bss && off > foff)
4618 gold_warning(_("script places BSS section in the middle "
4619 "of a LOAD segment; space will be allocated "
4620 "in the file"));
4621 off += (*p)->address() - (addr + (off - startoff));
4622 if (is_tls || !is_bss)
4623 foff = off;
4624 }
4625 else
4626 {
4627 if (!layout->script_options()->saw_sections_clause())
4628 gold_unreachable();
4629 else
4630 {
4631 Output_section* os = (*p)->output_section();
4632
4633 // Cast to unsigned long long to avoid format warnings.
4634 unsigned long long previous_dot =
4635 static_cast<unsigned long long>(addr + (off - startoff));
4636 unsigned long long dot =
4637 static_cast<unsigned long long>((*p)->address());
4638
4639 if (os == NULL)
4640 gold_error(_("dot moves backward in linker script "
4641 "from 0x%llx to 0x%llx"), previous_dot, dot);
4642 else
4643 gold_error(_("address of section '%s' moves backward "
4644 "from 0x%llx to 0x%llx"),
4645 os->name(), previous_dot, dot);
4646 }
4647 }
4648 (*p)->set_file_offset(foff);
4649 (*p)->finalize_data_size();
4650 }
4651
4652 if (parameters->incremental_update())
4653 gold_debug(DEBUG_INCREMENTAL,
4654 "set_section_list_addresses: %08lx %08lx %s",
4655 static_cast<long>(off),
4656 static_cast<long>((*p)->data_size()),
4657 ((*p)->output_section() != NULL
4658 ? (*p)->output_section()->name() : "(special)"));
4659
4660 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4661 // section. Such a section does not affect the size of a
4662 // PT_LOAD segment.
4663 if (!is_tls || !is_bss)
4664 off += (*p)->data_size();
4665
4666 // We don't allocate space in the file for SHT_NOBITS sections,
4667 // unless a script has force-placed one in the middle of a segment.
4668 if (!is_bss)
4669 foff = off;
4670
4671 if (off > maxoff)
4672 maxoff = off;
4673
4674 if ((*p)->is_section())
4675 {
4676 (*p)->set_out_shndx(*pshndx);
4677 ++*pshndx;
4678 }
4679 }
4680
4681 *poff = maxoff;
4682 *pfoff = foff;
4683 return addr + (maxoff - startoff);
4684 }
4685
4686 // For a non-PT_LOAD segment, set the offset from the sections, if
4687 // any. Add INCREASE to the file size and the memory size.
4688
4689 void
4690 Output_segment::set_offset(unsigned int increase)
4691 {
4692 gold_assert(this->type_ != elfcpp::PT_LOAD);
4693
4694 gold_assert(!this->are_addresses_set_);
4695
4696 // A non-load section only uses output_lists_[0].
4697
4698 Output_data_list* pdl = &this->output_lists_[0];
4699
4700 if (pdl->empty())
4701 {
4702 gold_assert(increase == 0);
4703 this->vaddr_ = 0;
4704 this->paddr_ = 0;
4705 this->are_addresses_set_ = true;
4706 this->memsz_ = 0;
4707 this->min_p_align_ = 0;
4708 this->offset_ = 0;
4709 this->filesz_ = 0;
4710 return;
4711 }
4712
4713 // Find the first and last section by address.
4714 const Output_data* first = NULL;
4715 const Output_data* last_data = NULL;
4716 const Output_data* last_bss = NULL;
4717 for (Output_data_list::const_iterator p = pdl->begin();
4718 p != pdl->end();
4719 ++p)
4720 {
4721 if (first == NULL
4722 || (*p)->address() < first->address()
4723 || ((*p)->address() == first->address()
4724 && (*p)->data_size() < first->data_size()))
4725 first = *p;
4726 const Output_data** plast;
4727 if ((*p)->is_section()
4728 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4729 plast = &last_bss;
4730 else
4731 plast = &last_data;
4732 if (*plast == NULL
4733 || (*p)->address() > (*plast)->address()
4734 || ((*p)->address() == (*plast)->address()
4735 && (*p)->data_size() > (*plast)->data_size()))
4736 *plast = *p;
4737 }
4738
4739 this->vaddr_ = first->address();
4740 this->paddr_ = (first->has_load_address()
4741 ? first->load_address()
4742 : this->vaddr_);
4743 this->are_addresses_set_ = true;
4744 this->offset_ = first->offset();
4745
4746 if (last_data == NULL)
4747 this->filesz_ = 0;
4748 else
4749 this->filesz_ = (last_data->address()
4750 + last_data->data_size()
4751 - this->vaddr_);
4752
4753 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4754 this->memsz_ = (last->address()
4755 + last->data_size()
4756 - this->vaddr_);
4757
4758 this->filesz_ += increase;
4759 this->memsz_ += increase;
4760
4761 // If this is a RELRO segment, verify that the segment ends at a
4762 // page boundary.
4763 if (this->type_ == elfcpp::PT_GNU_RELRO)
4764 {
4765 uint64_t page_align = parameters->target().abi_pagesize();
4766 uint64_t segment_end = this->vaddr_ + this->memsz_;
4767 if (parameters->incremental_update())
4768 {
4769 // The INCREASE_RELRO calculation is bypassed for an incremental
4770 // update, so we need to adjust the segment size manually here.
4771 segment_end = align_address(segment_end, page_align);
4772 this->memsz_ = segment_end - this->vaddr_;
4773 }
4774 else
4775 gold_assert(segment_end == align_address(segment_end, page_align));
4776 }
4777
4778 // If this is a TLS segment, align the memory size. The code in
4779 // set_section_list ensures that the section after the TLS segment
4780 // is aligned to give us room.
4781 if (this->type_ == elfcpp::PT_TLS)
4782 {
4783 uint64_t segment_align = this->maximum_alignment();
4784 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4785 this->memsz_ = align_address(this->memsz_, segment_align);
4786 }
4787 }
4788
4789 // Set the TLS offsets of the sections in the PT_TLS segment.
4790
4791 void
4792 Output_segment::set_tls_offsets()
4793 {
4794 gold_assert(this->type_ == elfcpp::PT_TLS);
4795
4796 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4797 p != this->output_lists_[0].end();
4798 ++p)
4799 (*p)->set_tls_offset(this->vaddr_);
4800 }
4801
4802 // Return the first section.
4803
4804 Output_section*
4805 Output_segment::first_section() const
4806 {
4807 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4808 {
4809 const Output_data_list* pdl = &this->output_lists_[i];
4810 for (Output_data_list::const_iterator p = pdl->begin();
4811 p != pdl->end();
4812 ++p)
4813 {
4814 if ((*p)->is_section())
4815 return (*p)->output_section();
4816 }
4817 }
4818 return NULL;
4819 }
4820
4821 // Return the number of Output_sections in an Output_segment.
4822
4823 unsigned int
4824 Output_segment::output_section_count() const
4825 {
4826 unsigned int ret = 0;
4827 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4828 ret += this->output_section_count_list(&this->output_lists_[i]);
4829 return ret;
4830 }
4831
4832 // Return the number of Output_sections in an Output_data_list.
4833
4834 unsigned int
4835 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4836 {
4837 unsigned int count = 0;
4838 for (Output_data_list::const_iterator p = pdl->begin();
4839 p != pdl->end();
4840 ++p)
4841 {
4842 if ((*p)->is_section())
4843 ++count;
4844 }
4845 return count;
4846 }
4847
4848 // Return the section attached to the list segment with the lowest
4849 // load address. This is used when handling a PHDRS clause in a
4850 // linker script.
4851
4852 Output_section*
4853 Output_segment::section_with_lowest_load_address() const
4854 {
4855 Output_section* found = NULL;
4856 uint64_t found_lma = 0;
4857 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4858 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4859 &found_lma);
4860 return found;
4861 }
4862
4863 // Look through a list for a section with a lower load address.
4864
4865 void
4866 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4867 Output_section** found,
4868 uint64_t* found_lma) const
4869 {
4870 for (Output_data_list::const_iterator p = pdl->begin();
4871 p != pdl->end();
4872 ++p)
4873 {
4874 if (!(*p)->is_section())
4875 continue;
4876 Output_section* os = static_cast<Output_section*>(*p);
4877 uint64_t lma = (os->has_load_address()
4878 ? os->load_address()
4879 : os->address());
4880 if (*found == NULL || lma < *found_lma)
4881 {
4882 *found = os;
4883 *found_lma = lma;
4884 }
4885 }
4886 }
4887
4888 // Write the segment data into *OPHDR.
4889
4890 template<int size, bool big_endian>
4891 void
4892 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4893 {
4894 ophdr->put_p_type(this->type_);
4895 ophdr->put_p_offset(this->offset_);
4896 ophdr->put_p_vaddr(this->vaddr_);
4897 ophdr->put_p_paddr(this->paddr_);
4898 ophdr->put_p_filesz(this->filesz_);
4899 ophdr->put_p_memsz(this->memsz_);
4900 ophdr->put_p_flags(this->flags_);
4901 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4902 }
4903
4904 // Write the section headers into V.
4905
4906 template<int size, bool big_endian>
4907 unsigned char*
4908 Output_segment::write_section_headers(const Layout* layout,
4909 const Stringpool* secnamepool,
4910 unsigned char* v,
4911 unsigned int* pshndx) const
4912 {
4913 // Every section that is attached to a segment must be attached to a
4914 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4915 // segments.
4916 if (this->type_ != elfcpp::PT_LOAD)
4917 return v;
4918
4919 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4920 {
4921 const Output_data_list* pdl = &this->output_lists_[i];
4922 v = this->write_section_headers_list<size, big_endian>(layout,
4923 secnamepool,
4924 pdl,
4925 v, pshndx);
4926 }
4927
4928 return v;
4929 }
4930
4931 template<int size, bool big_endian>
4932 unsigned char*
4933 Output_segment::write_section_headers_list(const Layout* layout,
4934 const Stringpool* secnamepool,
4935 const Output_data_list* pdl,
4936 unsigned char* v,
4937 unsigned int* pshndx) const
4938 {
4939 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4940 for (Output_data_list::const_iterator p = pdl->begin();
4941 p != pdl->end();
4942 ++p)
4943 {
4944 if ((*p)->is_section())
4945 {
4946 const Output_section* ps = static_cast<const Output_section*>(*p);
4947 gold_assert(*pshndx == ps->out_shndx());
4948 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4949 ps->write_header(layout, secnamepool, &oshdr);
4950 v += shdr_size;
4951 ++*pshndx;
4952 }
4953 }
4954 return v;
4955 }
4956
4957 // Print the output sections to the map file.
4958
4959 void
4960 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4961 {
4962 if (this->type() != elfcpp::PT_LOAD)
4963 return;
4964 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4965 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4966 }
4967
4968 // Print an output section list to the map file.
4969
4970 void
4971 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4972 const Output_data_list* pdl) const
4973 {
4974 for (Output_data_list::const_iterator p = pdl->begin();
4975 p != pdl->end();
4976 ++p)
4977 (*p)->print_to_mapfile(mapfile);
4978 }
4979
4980 // Output_file methods.
4981
4982 Output_file::Output_file(const char* name)
4983 : name_(name),
4984 o_(-1),
4985 file_size_(0),
4986 base_(NULL),
4987 map_is_anonymous_(false),
4988 map_is_allocated_(false),
4989 is_temporary_(false)
4990 {
4991 }
4992
4993 // Try to open an existing file. Returns false if the file doesn't
4994 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4995 // NULL, open that file as the base for incremental linking, and
4996 // copy its contents to the new output file. This routine can
4997 // be called for incremental updates, in which case WRITABLE should
4998 // be true, or by the incremental-dump utility, in which case
4999 // WRITABLE should be false.
5000
5001 bool
5002 Output_file::open_base_file(const char* base_name, bool writable)
5003 {
5004 // The name "-" means "stdout".
5005 if (strcmp(this->name_, "-") == 0)
5006 return false;
5007
5008 bool use_base_file = base_name != NULL;
5009 if (!use_base_file)
5010 base_name = this->name_;
5011 else if (strcmp(base_name, this->name_) == 0)
5012 gold_fatal(_("%s: incremental base and output file name are the same"),
5013 base_name);
5014
5015 // Don't bother opening files with a size of zero.
5016 struct stat s;
5017 if (::stat(base_name, &s) != 0)
5018 {
5019 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5020 return false;
5021 }
5022 if (s.st_size == 0)
5023 {
5024 gold_info(_("%s: incremental base file is empty"), base_name);
5025 return false;
5026 }
5027
5028 // If we're using a base file, we want to open it read-only.
5029 if (use_base_file)
5030 writable = false;
5031
5032 int oflags = writable ? O_RDWR : O_RDONLY;
5033 int o = open_descriptor(-1, base_name, oflags, 0);
5034 if (o < 0)
5035 {
5036 gold_info(_("%s: open: %s"), base_name, strerror(errno));
5037 return false;
5038 }
5039
5040 // If the base file and the output file are different, open a
5041 // new output file and read the contents from the base file into
5042 // the newly-mapped region.
5043 if (use_base_file)
5044 {
5045 this->open(s.st_size);
5046 ssize_t bytes_to_read = s.st_size;
5047 unsigned char* p = this->base_;
5048 while (bytes_to_read > 0)
5049 {
5050 ssize_t len = ::read(o, p, bytes_to_read);
5051 if (len < 0)
5052 {
5053 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5054 return false;
5055 }
5056 if (len == 0)
5057 {
5058 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5059 base_name,
5060 static_cast<long long>(s.st_size - bytes_to_read),
5061 static_cast<long long>(s.st_size));
5062 return false;
5063 }
5064 p += len;
5065 bytes_to_read -= len;
5066 }
5067 ::close(o);
5068 return true;
5069 }
5070
5071 this->o_ = o;
5072 this->file_size_ = s.st_size;
5073
5074 if (!this->map_no_anonymous(writable))
5075 {
5076 release_descriptor(o, true);
5077 this->o_ = -1;
5078 this->file_size_ = 0;
5079 return false;
5080 }
5081
5082 return true;
5083 }
5084
5085 // Open the output file.
5086
5087 void
5088 Output_file::open(off_t file_size)
5089 {
5090 this->file_size_ = file_size;
5091
5092 // Unlink the file first; otherwise the open() may fail if the file
5093 // is busy (e.g. it's an executable that's currently being executed).
5094 //
5095 // However, the linker may be part of a system where a zero-length
5096 // file is created for it to write to, with tight permissions (gcc
5097 // 2.95 did something like this). Unlinking the file would work
5098 // around those permission controls, so we only unlink if the file
5099 // has a non-zero size. We also unlink only regular files to avoid
5100 // trouble with directories/etc.
5101 //
5102 // If we fail, continue; this command is merely a best-effort attempt
5103 // to improve the odds for open().
5104
5105 // We let the name "-" mean "stdout"
5106 if (!this->is_temporary_)
5107 {
5108 if (strcmp(this->name_, "-") == 0)
5109 this->o_ = STDOUT_FILENO;
5110 else
5111 {
5112 struct stat s;
5113 if (::stat(this->name_, &s) == 0
5114 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5115 {
5116 if (s.st_size != 0)
5117 ::unlink(this->name_);
5118 else if (!parameters->options().relocatable())
5119 {
5120 // If we don't unlink the existing file, add execute
5121 // permission where read permissions already exist
5122 // and where the umask permits.
5123 int mask = ::umask(0);
5124 ::umask(mask);
5125 s.st_mode |= (s.st_mode & 0444) >> 2;
5126 ::chmod(this->name_, s.st_mode & ~mask);
5127 }
5128 }
5129
5130 int mode = parameters->options().relocatable() ? 0666 : 0777;
5131 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5132 mode);
5133 if (o < 0)
5134 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5135 this->o_ = o;
5136 }
5137 }
5138
5139 this->map();
5140 }
5141
5142 // Resize the output file.
5143
5144 void
5145 Output_file::resize(off_t file_size)
5146 {
5147 // If the mmap is mapping an anonymous memory buffer, this is easy:
5148 // just mremap to the new size. If it's mapping to a file, we want
5149 // to unmap to flush to the file, then remap after growing the file.
5150 if (this->map_is_anonymous_)
5151 {
5152 void* base;
5153 if (!this->map_is_allocated_)
5154 {
5155 base = ::mremap(this->base_, this->file_size_, file_size,
5156 MREMAP_MAYMOVE);
5157 if (base == MAP_FAILED)
5158 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5159 }
5160 else
5161 {
5162 base = realloc(this->base_, file_size);
5163 if (base == NULL)
5164 gold_nomem();
5165 if (file_size > this->file_size_)
5166 memset(static_cast<char*>(base) + this->file_size_, 0,
5167 file_size - this->file_size_);
5168 }
5169 this->base_ = static_cast<unsigned char*>(base);
5170 this->file_size_ = file_size;
5171 }
5172 else
5173 {
5174 this->unmap();
5175 this->file_size_ = file_size;
5176 if (!this->map_no_anonymous(true))
5177 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5178 }
5179 }
5180
5181 // Map an anonymous block of memory which will later be written to the
5182 // file. Return whether the map succeeded.
5183
5184 bool
5185 Output_file::map_anonymous()
5186 {
5187 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5188 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5189 if (base == MAP_FAILED)
5190 {
5191 base = malloc(this->file_size_);
5192 if (base == NULL)
5193 return false;
5194 memset(base, 0, this->file_size_);
5195 this->map_is_allocated_ = true;
5196 }
5197 this->base_ = static_cast<unsigned char*>(base);
5198 this->map_is_anonymous_ = true;
5199 return true;
5200 }
5201
5202 // Map the file into memory. Return whether the mapping succeeded.
5203 // If WRITABLE is true, map with write access.
5204
5205 bool
5206 Output_file::map_no_anonymous(bool writable)
5207 {
5208 const int o = this->o_;
5209
5210 // If the output file is not a regular file, don't try to mmap it;
5211 // instead, we'll mmap a block of memory (an anonymous buffer), and
5212 // then later write the buffer to the file.
5213 void* base;
5214 struct stat statbuf;
5215 if (o == STDOUT_FILENO || o == STDERR_FILENO
5216 || ::fstat(o, &statbuf) != 0
5217 || !S_ISREG(statbuf.st_mode)
5218 || this->is_temporary_)
5219 return false;
5220
5221 // Ensure that we have disk space available for the file. If we
5222 // don't do this, it is possible that we will call munmap, close,
5223 // and exit with dirty buffers still in the cache with no assigned
5224 // disk blocks. If the disk is out of space at that point, the
5225 // output file will wind up incomplete, but we will have already
5226 // exited. The alternative to fallocate would be to use fdatasync,
5227 // but that would be a more significant performance hit.
5228 if (writable)
5229 {
5230 int err = gold_fallocate(o, 0, this->file_size_);
5231 if (err != 0)
5232 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5233 }
5234
5235 // Map the file into memory.
5236 int prot = PROT_READ;
5237 if (writable)
5238 prot |= PROT_WRITE;
5239 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5240
5241 // The mmap call might fail because of file system issues: the file
5242 // system might not support mmap at all, or it might not support
5243 // mmap with PROT_WRITE.
5244 if (base == MAP_FAILED)
5245 return false;
5246
5247 this->map_is_anonymous_ = false;
5248 this->base_ = static_cast<unsigned char*>(base);
5249 return true;
5250 }
5251
5252 // Map the file into memory.
5253
5254 void
5255 Output_file::map()
5256 {
5257 if (parameters->options().mmap_output_file()
5258 && this->map_no_anonymous(true))
5259 return;
5260
5261 // The mmap call might fail because of file system issues: the file
5262 // system might not support mmap at all, or it might not support
5263 // mmap with PROT_WRITE. I'm not sure which errno values we will
5264 // see in all cases, so if the mmap fails for any reason and we
5265 // don't care about file contents, try for an anonymous map.
5266 if (this->map_anonymous())
5267 return;
5268
5269 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5270 this->name_, static_cast<unsigned long>(this->file_size_),
5271 strerror(errno));
5272 }
5273
5274 // Unmap the file from memory.
5275
5276 void
5277 Output_file::unmap()
5278 {
5279 if (this->map_is_anonymous_)
5280 {
5281 // We've already written out the data, so there is no reason to
5282 // waste time unmapping or freeing the memory.
5283 }
5284 else
5285 {
5286 if (::munmap(this->base_, this->file_size_) < 0)
5287 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5288 }
5289 this->base_ = NULL;
5290 }
5291
5292 // Close the output file.
5293
5294 void
5295 Output_file::close()
5296 {
5297 // If the map isn't file-backed, we need to write it now.
5298 if (this->map_is_anonymous_ && !this->is_temporary_)
5299 {
5300 size_t bytes_to_write = this->file_size_;
5301 size_t offset = 0;
5302 while (bytes_to_write > 0)
5303 {
5304 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5305 bytes_to_write);
5306 if (bytes_written == 0)
5307 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5308 else if (bytes_written < 0)
5309 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5310 else
5311 {
5312 bytes_to_write -= bytes_written;
5313 offset += bytes_written;
5314 }
5315 }
5316 }
5317 this->unmap();
5318
5319 // We don't close stdout or stderr
5320 if (this->o_ != STDOUT_FILENO
5321 && this->o_ != STDERR_FILENO
5322 && !this->is_temporary_)
5323 if (::close(this->o_) < 0)
5324 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5325 this->o_ = -1;
5326 }
5327
5328 // Instantiate the templates we need. We could use the configure
5329 // script to restrict this to only the ones for implemented targets.
5330
5331 #ifdef HAVE_TARGET_32_LITTLE
5332 template
5333 off_t
5334 Output_section::add_input_section<32, false>(
5335 Layout* layout,
5336 Sized_relobj_file<32, false>* object,
5337 unsigned int shndx,
5338 const char* secname,
5339 const elfcpp::Shdr<32, false>& shdr,
5340 unsigned int reloc_shndx,
5341 bool have_sections_script);
5342 #endif
5343
5344 #ifdef HAVE_TARGET_32_BIG
5345 template
5346 off_t
5347 Output_section::add_input_section<32, true>(
5348 Layout* layout,
5349 Sized_relobj_file<32, true>* object,
5350 unsigned int shndx,
5351 const char* secname,
5352 const elfcpp::Shdr<32, true>& shdr,
5353 unsigned int reloc_shndx,
5354 bool have_sections_script);
5355 #endif
5356
5357 #ifdef HAVE_TARGET_64_LITTLE
5358 template
5359 off_t
5360 Output_section::add_input_section<64, false>(
5361 Layout* layout,
5362 Sized_relobj_file<64, false>* object,
5363 unsigned int shndx,
5364 const char* secname,
5365 const elfcpp::Shdr<64, false>& shdr,
5366 unsigned int reloc_shndx,
5367 bool have_sections_script);
5368 #endif
5369
5370 #ifdef HAVE_TARGET_64_BIG
5371 template
5372 off_t
5373 Output_section::add_input_section<64, true>(
5374 Layout* layout,
5375 Sized_relobj_file<64, true>* object,
5376 unsigned int shndx,
5377 const char* secname,
5378 const elfcpp::Shdr<64, true>& shdr,
5379 unsigned int reloc_shndx,
5380 bool have_sections_script);
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_LITTLE
5384 template
5385 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_32_BIG
5389 template
5390 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_LITTLE
5394 template
5395 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_64_BIG
5399 template
5400 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_LITTLE
5404 template
5405 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_32_BIG
5409 template
5410 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_LITTLE
5414 template
5415 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_64_BIG
5419 template
5420 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_LITTLE
5424 template
5425 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_32_BIG
5429 template
5430 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_LITTLE
5434 template
5435 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_64_BIG
5439 template
5440 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5441 #endif
5442
5443 #ifdef HAVE_TARGET_32_LITTLE
5444 template
5445 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5446 #endif
5447
5448 #ifdef HAVE_TARGET_32_BIG
5449 template
5450 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5451 #endif
5452
5453 #ifdef HAVE_TARGET_64_LITTLE
5454 template
5455 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5456 #endif
5457
5458 #ifdef HAVE_TARGET_64_BIG
5459 template
5460 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5461 #endif
5462
5463 #ifdef HAVE_TARGET_32_LITTLE
5464 template
5465 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5466 #endif
5467
5468 #ifdef HAVE_TARGET_32_BIG
5469 template
5470 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5471 #endif
5472
5473 #ifdef HAVE_TARGET_64_LITTLE
5474 template
5475 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5476 #endif
5477
5478 #ifdef HAVE_TARGET_64_BIG
5479 template
5480 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5481 #endif
5482
5483 #ifdef HAVE_TARGET_32_LITTLE
5484 template
5485 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5486 #endif
5487
5488 #ifdef HAVE_TARGET_32_BIG
5489 template
5490 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5491 #endif
5492
5493 #ifdef HAVE_TARGET_64_LITTLE
5494 template
5495 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5496 #endif
5497
5498 #ifdef HAVE_TARGET_64_BIG
5499 template
5500 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5501 #endif
5502
5503 #ifdef HAVE_TARGET_32_LITTLE
5504 template
5505 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5506 #endif
5507
5508 #ifdef HAVE_TARGET_32_BIG
5509 template
5510 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5511 #endif
5512
5513 #ifdef HAVE_TARGET_64_LITTLE
5514 template
5515 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5516 #endif
5517
5518 #ifdef HAVE_TARGET_64_BIG
5519 template
5520 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5521 #endif
5522
5523 #ifdef HAVE_TARGET_32_LITTLE
5524 template
5525 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5526 #endif
5527
5528 #ifdef HAVE_TARGET_32_BIG
5529 template
5530 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5531 #endif
5532
5533 #ifdef HAVE_TARGET_64_LITTLE
5534 template
5535 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5536 #endif
5537
5538 #ifdef HAVE_TARGET_64_BIG
5539 template
5540 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5541 #endif
5542
5543 #ifdef HAVE_TARGET_32_LITTLE
5544 template
5545 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5546 #endif
5547
5548 #ifdef HAVE_TARGET_32_BIG
5549 template
5550 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5551 #endif
5552
5553 #ifdef HAVE_TARGET_64_LITTLE
5554 template
5555 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5556 #endif
5557
5558 #ifdef HAVE_TARGET_64_BIG
5559 template
5560 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5561 #endif
5562
5563 #ifdef HAVE_TARGET_32_LITTLE
5564 template
5565 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5566 #endif
5567
5568 #ifdef HAVE_TARGET_32_BIG
5569 template
5570 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5571 #endif
5572
5573 #ifdef HAVE_TARGET_64_LITTLE
5574 template
5575 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5576 #endif
5577
5578 #ifdef HAVE_TARGET_64_BIG
5579 template
5580 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5581 #endif
5582
5583 #ifdef HAVE_TARGET_32_LITTLE
5584 template
5585 class Output_data_group<32, false>;
5586 #endif
5587
5588 #ifdef HAVE_TARGET_32_BIG
5589 template
5590 class Output_data_group<32, true>;
5591 #endif
5592
5593 #ifdef HAVE_TARGET_64_LITTLE
5594 template
5595 class Output_data_group<64, false>;
5596 #endif
5597
5598 #ifdef HAVE_TARGET_64_BIG
5599 template
5600 class Output_data_group<64, true>;
5601 #endif
5602
5603 template
5604 class Output_data_got<32, false>;
5605
5606 template
5607 class Output_data_got<32, true>;
5608
5609 template
5610 class Output_data_got<64, false>;
5611
5612 template
5613 class Output_data_got<64, true>;
5614
5615 } // End namespace gold.
This page took 0.164062 seconds and 5 git commands to generate.