* output.h (Output_data_dynamic::add_section_size): New method
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative)
642 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
644 {
645 // this->type_ is a bitfield; make sure TYPE fits.
646 gold_assert(this->type_ == type);
647 this->u1_.gsym = gsym;
648 this->u2_.od = od;
649 if (dynamic)
650 this->set_needs_dynsym_index();
651 }
652
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
655 Symbol* gsym,
656 unsigned int type,
657 Sized_relobj<size, big_endian>* relobj,
658 unsigned int shndx,
659 Address address,
660 bool is_relative)
661 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
663 {
664 gold_assert(shndx != INVALID_CODE);
665 // this->type_ is a bitfield; make sure TYPE fits.
666 gold_assert(this->type_ == type);
667 this->u1_.gsym = gsym;
668 this->u2_.relobj = relobj;
669 if (dynamic)
670 this->set_needs_dynsym_index();
671 }
672
673 // A reloc against a local symbol.
674
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677 Sized_relobj<size, big_endian>* relobj,
678 unsigned int local_sym_index,
679 unsigned int type,
680 Output_data* od,
681 Address address,
682 bool is_relative,
683 bool is_section_symbol)
684 : address_(address), local_sym_index_(local_sym_index), type_(type),
685 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
686 shndx_(INVALID_CODE)
687 {
688 gold_assert(local_sym_index != GSYM_CODE
689 && local_sym_index != INVALID_CODE);
690 // this->type_ is a bitfield; make sure TYPE fits.
691 gold_assert(this->type_ == type);
692 this->u1_.relobj = relobj;
693 this->u2_.od = od;
694 if (dynamic)
695 this->set_needs_dynsym_index();
696 }
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Sized_relobj<size, big_endian>* relobj,
701 unsigned int local_sym_index,
702 unsigned int type,
703 unsigned int shndx,
704 Address address,
705 bool is_relative,
706 bool is_section_symbol)
707 : address_(address), local_sym_index_(local_sym_index), type_(type),
708 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
709 shndx_(shndx)
710 {
711 gold_assert(local_sym_index != GSYM_CODE
712 && local_sym_index != INVALID_CODE);
713 gold_assert(shndx != INVALID_CODE);
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
716 this->u1_.relobj = relobj;
717 this->u2_.relobj = relobj;
718 if (dynamic)
719 this->set_needs_dynsym_index();
720 }
721
722 // A reloc against the STT_SECTION symbol of an output section.
723
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726 Output_section* os,
727 unsigned int type,
728 Output_data* od,
729 Address address)
730 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
732 {
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.os = os;
736 this->u2_.od = od;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
741 }
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Output_section* os,
746 unsigned int type,
747 Sized_relobj<size, big_endian>* relobj,
748 unsigned int shndx,
749 Address address)
750 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
752 {
753 gold_assert(shndx != INVALID_CODE);
754 // this->type_ is a bitfield; make sure TYPE fits.
755 gold_assert(this->type_ == type);
756 this->u1_.os = os;
757 this->u2_.relobj = relobj;
758 if (dynamic)
759 this->set_needs_dynsym_index();
760 else
761 os->set_needs_symtab_index();
762 }
763
764 // An absolute relocation.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 unsigned int type,
769 Output_data* od,
770 Address address)
771 : address_(address), local_sym_index_(0), type_(type),
772 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
773 {
774 // this->type_ is a bitfield; make sure TYPE fits.
775 gold_assert(this->type_ == type);
776 this->u1_.relobj = NULL;
777 this->u2_.od = od;
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 unsigned int type,
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int shndx,
785 Address address)
786 : address_(address), local_sym_index_(0), type_(type),
787 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
788 {
789 gold_assert(shndx != INVALID_CODE);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_ == type);
792 this->u1_.relobj = NULL;
793 this->u2_.relobj = relobj;
794 }
795
796 // A target specific relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800 unsigned int type,
801 void* arg,
802 Output_data* od,
803 Address address)
804 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
806 {
807 // this->type_ is a bitfield; make sure TYPE fits.
808 gold_assert(this->type_ == type);
809 this->u1_.arg = arg;
810 this->u2_.od = od;
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 unsigned int type,
816 void* arg,
817 Sized_relobj<size, big_endian>* relobj,
818 unsigned int shndx,
819 Address address)
820 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
822 {
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
826 this->u1_.arg = arg;
827 this->u2_.relobj = relobj;
828 }
829
830 // Record that we need a dynamic symbol index for this relocation.
831
832 template<bool dynamic, int size, bool big_endian>
833 void
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
836 {
837 if (this->is_relative_)
838 return;
839 switch (this->local_sym_index_)
840 {
841 case INVALID_CODE:
842 gold_unreachable();
843
844 case GSYM_CODE:
845 this->u1_.gsym->set_needs_dynsym_entry();
846 break;
847
848 case SECTION_CODE:
849 this->u1_.os->set_needs_dynsym_index();
850 break;
851
852 case TARGET_CODE:
853 // The target must take care of this if necessary.
854 break;
855
856 case 0:
857 break;
858
859 default:
860 {
861 const unsigned int lsi = this->local_sym_index_;
862 if (!this->is_section_symbol_)
863 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
864 else
865 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
866 }
867 break;
868 }
869 }
870
871 // Get the symbol index of a relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 unsigned int
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
876 const
877 {
878 unsigned int index;
879 switch (this->local_sym_index_)
880 {
881 case INVALID_CODE:
882 gold_unreachable();
883
884 case GSYM_CODE:
885 if (this->u1_.gsym == NULL)
886 index = 0;
887 else if (dynamic)
888 index = this->u1_.gsym->dynsym_index();
889 else
890 index = this->u1_.gsym->symtab_index();
891 break;
892
893 case SECTION_CODE:
894 if (dynamic)
895 index = this->u1_.os->dynsym_index();
896 else
897 index = this->u1_.os->symtab_index();
898 break;
899
900 case TARGET_CODE:
901 index = parameters->target().reloc_symbol_index(this->u1_.arg,
902 this->type_);
903 break;
904
905 case 0:
906 // Relocations without symbols use a symbol index of 0.
907 index = 0;
908 break;
909
910 default:
911 {
912 const unsigned int lsi = this->local_sym_index_;
913 if (!this->is_section_symbol_)
914 {
915 if (dynamic)
916 index = this->u1_.relobj->dynsym_index(lsi);
917 else
918 index = this->u1_.relobj->symtab_index(lsi);
919 }
920 else
921 {
922 Output_section* os = this->u1_.relobj->output_section(lsi);
923 gold_assert(os != NULL);
924 if (dynamic)
925 index = os->dynsym_index();
926 else
927 index = os->symtab_index();
928 }
929 }
930 break;
931 }
932 gold_assert(index != -1U);
933 return index;
934 }
935
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
938
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 local_section_offset(Addend addend) const
943 {
944 gold_assert(this->local_sym_index_ != GSYM_CODE
945 && this->local_sym_index_ != SECTION_CODE
946 && this->local_sym_index_ != TARGET_CODE
947 && this->local_sym_index_ != INVALID_CODE
948 && this->local_sym_index_ != 0
949 && this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 Output_section* os = this->u1_.relobj->output_section(lsi);
952 gold_assert(os != NULL);
953 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954 if (offset != invalid_address)
955 return offset + addend;
956 // This is a merge section.
957 offset = os->output_address(this->u1_.relobj, lsi, addend);
958 gold_assert(offset != invalid_address);
959 return offset;
960 }
961
962 // Get the output address of a relocation.
963
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
967 {
968 Address address = this->address_;
969 if (this->shndx_ != INVALID_CODE)
970 {
971 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972 gold_assert(os != NULL);
973 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974 if (off != invalid_address)
975 address += os->address() + off;
976 else
977 {
978 address = os->output_address(this->u2_.relobj, this->shndx_,
979 address);
980 gold_assert(address != invalid_address);
981 }
982 }
983 else if (this->u2_.od != NULL)
984 address += this->u2_.od->address();
985 return address;
986 }
987
988 // Write out the offset and info fields of a Rel or Rela relocation
989 // entry.
990
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
993 void
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
995 Write_rel* wr) const
996 {
997 wr->put_r_offset(this->get_address());
998 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1000 }
1001
1002 // Write out a Rel relocation.
1003
1004 template<bool dynamic, int size, bool big_endian>
1005 void
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007 unsigned char* pov) const
1008 {
1009 elfcpp::Rel_write<size, big_endian> orel(pov);
1010 this->write_rel(&orel);
1011 }
1012
1013 // Get the value of the symbol referred to by a Rel relocation.
1014
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018 Addend addend) const
1019 {
1020 if (this->local_sym_index_ == GSYM_CODE)
1021 {
1022 const Sized_symbol<size>* sym;
1023 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024 return sym->value() + addend;
1025 }
1026 gold_assert(this->local_sym_index_ != SECTION_CODE
1027 && this->local_sym_index_ != TARGET_CODE
1028 && this->local_sym_index_ != INVALID_CODE
1029 && this->local_sym_index_ != 0
1030 && !this->is_section_symbol_);
1031 const unsigned int lsi = this->local_sym_index_;
1032 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033 return symval->value(this->u1_.relobj, addend);
1034 }
1035
1036 // Reloc comparison. This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker. First we sort all relative relocs
1038 // to the front. Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1040 // address.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 int
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1046 const
1047 {
1048 if (this->is_relative_)
1049 {
1050 if (!r2.is_relative_)
1051 return -1;
1052 // Otherwise sort by reloc address below.
1053 }
1054 else if (r2.is_relative_)
1055 return 1;
1056 else
1057 {
1058 unsigned int sym1 = this->get_symbol_index();
1059 unsigned int sym2 = r2.get_symbol_index();
1060 if (sym1 < sym2)
1061 return -1;
1062 else if (sym1 > sym2)
1063 return 1;
1064 // Otherwise sort by reloc address.
1065 }
1066
1067 section_offset_type addr1 = this->get_address();
1068 section_offset_type addr2 = r2.get_address();
1069 if (addr1 < addr2)
1070 return -1;
1071 else if (addr1 > addr2)
1072 return 1;
1073
1074 // Final tie breaker, in order to generate the same output on any
1075 // host: reloc type.
1076 unsigned int type1 = this->type_;
1077 unsigned int type2 = r2.type_;
1078 if (type1 < type2)
1079 return -1;
1080 else if (type1 > type2)
1081 return 1;
1082
1083 // These relocs appear to be exactly the same.
1084 return 0;
1085 }
1086
1087 // Write out a Rela relocation.
1088
1089 template<bool dynamic, int size, bool big_endian>
1090 void
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092 unsigned char* pov) const
1093 {
1094 elfcpp::Rela_write<size, big_endian> orel(pov);
1095 this->rel_.write_rel(&orel);
1096 Addend addend = this->addend_;
1097 if (this->rel_.is_target_specific())
1098 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099 this->rel_.type(), addend);
1100 else if (this->rel_.is_relative())
1101 addend = this->rel_.symbol_value(addend);
1102 else if (this->rel_.is_local_section_symbol())
1103 addend = this->rel_.local_section_offset(addend);
1104 orel.put_r_addend(addend);
1105 }
1106
1107 // Output_data_reloc_base methods.
1108
1109 // Adjust the output section.
1110
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1112 void
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114 ::do_adjust_output_section(Output_section* os)
1115 {
1116 if (sh_type == elfcpp::SHT_REL)
1117 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118 else if (sh_type == elfcpp::SHT_RELA)
1119 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1120 else
1121 gold_unreachable();
1122 if (dynamic)
1123 os->set_should_link_to_dynsym();
1124 else
1125 os->set_should_link_to_symtab();
1126 }
1127
1128 // Write out relocation data.
1129
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1131 void
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1133 Output_file* of)
1134 {
1135 const off_t off = this->offset();
1136 const off_t oview_size = this->data_size();
1137 unsigned char* const oview = of->get_output_view(off, oview_size);
1138
1139 if (this->sort_relocs())
1140 {
1141 gold_assert(dynamic);
1142 std::sort(this->relocs_.begin(), this->relocs_.end(),
1143 Sort_relocs_comparison());
1144 }
1145
1146 unsigned char* pov = oview;
1147 for (typename Relocs::const_iterator p = this->relocs_.begin();
1148 p != this->relocs_.end();
1149 ++p)
1150 {
1151 p->write(pov);
1152 pov += reloc_size;
1153 }
1154
1155 gold_assert(pov - oview == oview_size);
1156
1157 of->write_output_view(off, oview_size, oview);
1158
1159 // We no longer need the relocation entries.
1160 this->relocs_.clear();
1161 }
1162
1163 // Class Output_relocatable_relocs.
1164
1165 template<int sh_type, int size, bool big_endian>
1166 void
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1168 {
1169 this->set_data_size(this->rr_->output_reloc_count()
1170 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1171 }
1172
1173 // class Output_data_group.
1174
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177 Sized_relobj<size, big_endian>* relobj,
1178 section_size_type entry_count,
1179 elfcpp::Elf_Word flags,
1180 std::vector<unsigned int>* input_shndxes)
1181 : Output_section_data(entry_count * 4, 4, false),
1182 relobj_(relobj),
1183 flags_(flags)
1184 {
1185 this->input_shndxes_.swap(*input_shndxes);
1186 }
1187
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1190
1191 template<int size, bool big_endian>
1192 void
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1194 {
1195 const off_t off = this->offset();
1196 const section_size_type oview_size =
1197 convert_to_section_size_type(this->data_size());
1198 unsigned char* const oview = of->get_output_view(off, oview_size);
1199
1200 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1202 ++contents;
1203
1204 for (std::vector<unsigned int>::const_iterator p =
1205 this->input_shndxes_.begin();
1206 p != this->input_shndxes_.end();
1207 ++p, ++contents)
1208 {
1209 Output_section* os = this->relobj_->output_section(*p);
1210
1211 unsigned int output_shndx;
1212 if (os != NULL)
1213 output_shndx = os->out_shndx();
1214 else
1215 {
1216 this->relobj_->error(_("section group retained but "
1217 "group element discarded"));
1218 output_shndx = 0;
1219 }
1220
1221 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1222 }
1223
1224 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225 gold_assert(wrote == oview_size);
1226
1227 of->write_output_view(off, oview_size, oview);
1228
1229 // We no longer need this information.
1230 this->input_shndxes_.clear();
1231 }
1232
1233 // Output_data_got::Got_entry methods.
1234
1235 // Write out the entry.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1240 {
1241 Valtype val = 0;
1242
1243 switch (this->local_sym_index_)
1244 {
1245 case GSYM_CODE:
1246 {
1247 // If the symbol is resolved locally, we need to write out the
1248 // link-time value, which will be relocated dynamically by a
1249 // RELATIVE relocation.
1250 Symbol* gsym = this->u_.gsym;
1251 Sized_symbol<size>* sgsym;
1252 // This cast is a bit ugly. We don't want to put a
1253 // virtual method in Symbol, because we want Symbol to be
1254 // as small as possible.
1255 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256 val = sgsym->value();
1257 }
1258 break;
1259
1260 case CONSTANT_CODE:
1261 val = this->u_.constant;
1262 break;
1263
1264 default:
1265 {
1266 const unsigned int lsi = this->local_sym_index_;
1267 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268 val = symval->value(this->u_.object, 0);
1269 }
1270 break;
1271 }
1272
1273 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1274 }
1275
1276 // Output_data_got methods.
1277
1278 // Add an entry for a global symbol to the GOT. This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1280 // entry.
1281
1282 template<int size, bool big_endian>
1283 bool
1284 Output_data_got<size, big_endian>::add_global(
1285 Symbol* gsym,
1286 unsigned int got_type)
1287 {
1288 if (gsym->has_got_offset(got_type))
1289 return false;
1290
1291 this->entries_.push_back(Got_entry(gsym));
1292 this->set_got_size();
1293 gsym->set_got_offset(got_type, this->last_got_offset());
1294 return true;
1295 }
1296
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1300 void
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1302 Symbol* gsym,
1303 unsigned int got_type,
1304 Rel_dyn* rel_dyn,
1305 unsigned int r_type)
1306 {
1307 if (gsym->has_got_offset(got_type))
1308 return;
1309
1310 this->entries_.push_back(Got_entry());
1311 this->set_got_size();
1312 unsigned int got_offset = this->last_got_offset();
1313 gsym->set_got_offset(got_type, got_offset);
1314 rel_dyn->add_global(gsym, r_type, this, got_offset);
1315 }
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1320 Symbol* gsym,
1321 unsigned int got_type,
1322 Rela_dyn* rela_dyn,
1323 unsigned int r_type)
1324 {
1325 if (gsym->has_got_offset(got_type))
1326 return;
1327
1328 this->entries_.push_back(Got_entry());
1329 this->set_got_size();
1330 unsigned int got_offset = this->last_got_offset();
1331 gsym->set_got_offset(got_type, got_offset);
1332 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1333 }
1334
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1339 void
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1341 Symbol* gsym,
1342 unsigned int got_type,
1343 Rel_dyn* rel_dyn,
1344 unsigned int r_type_1,
1345 unsigned int r_type_2)
1346 {
1347 if (gsym->has_got_offset(got_type))
1348 return;
1349
1350 this->entries_.push_back(Got_entry());
1351 unsigned int got_offset = this->last_got_offset();
1352 gsym->set_got_offset(got_type, got_offset);
1353 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1354
1355 this->entries_.push_back(Got_entry());
1356 if (r_type_2 != 0)
1357 {
1358 got_offset = this->last_got_offset();
1359 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1360 }
1361
1362 this->set_got_size();
1363 }
1364
1365 template<int size, bool big_endian>
1366 void
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1368 Symbol* gsym,
1369 unsigned int got_type,
1370 Rela_dyn* rela_dyn,
1371 unsigned int r_type_1,
1372 unsigned int r_type_2)
1373 {
1374 if (gsym->has_got_offset(got_type))
1375 return;
1376
1377 this->entries_.push_back(Got_entry());
1378 unsigned int got_offset = this->last_got_offset();
1379 gsym->set_got_offset(got_type, got_offset);
1380 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1381
1382 this->entries_.push_back(Got_entry());
1383 if (r_type_2 != 0)
1384 {
1385 got_offset = this->last_got_offset();
1386 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1387 }
1388
1389 this->set_got_size();
1390 }
1391
1392 // Add an entry for a local symbol to the GOT. This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1394 // entry.
1395
1396 template<int size, bool big_endian>
1397 bool
1398 Output_data_got<size, big_endian>::add_local(
1399 Sized_relobj<size, big_endian>* object,
1400 unsigned int symndx,
1401 unsigned int got_type)
1402 {
1403 if (object->local_has_got_offset(symndx, got_type))
1404 return false;
1405
1406 this->entries_.push_back(Got_entry(object, symndx));
1407 this->set_got_size();
1408 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1409 return true;
1410 }
1411
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417 Sized_relobj<size, big_endian>* object,
1418 unsigned int symndx,
1419 unsigned int got_type,
1420 Rel_dyn* rel_dyn,
1421 unsigned int r_type)
1422 {
1423 if (object->local_has_got_offset(symndx, got_type))
1424 return;
1425
1426 this->entries_.push_back(Got_entry());
1427 this->set_got_size();
1428 unsigned int got_offset = this->last_got_offset();
1429 object->set_local_got_offset(symndx, got_type, got_offset);
1430 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1431 }
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436 Sized_relobj<size, big_endian>* object,
1437 unsigned int symndx,
1438 unsigned int got_type,
1439 Rela_dyn* rela_dyn,
1440 unsigned int r_type)
1441 {
1442 if (object->local_has_got_offset(symndx, got_type))
1443 return;
1444
1445 this->entries_.push_back(Got_entry());
1446 this->set_got_size();
1447 unsigned int got_offset = this->last_got_offset();
1448 object->set_local_got_offset(symndx, got_type, got_offset);
1449 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1450 }
1451
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1456 void
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458 Sized_relobj<size, big_endian>* object,
1459 unsigned int symndx,
1460 unsigned int shndx,
1461 unsigned int got_type,
1462 Rel_dyn* rel_dyn,
1463 unsigned int r_type_1,
1464 unsigned int r_type_2)
1465 {
1466 if (object->local_has_got_offset(symndx, got_type))
1467 return;
1468
1469 this->entries_.push_back(Got_entry());
1470 unsigned int got_offset = this->last_got_offset();
1471 object->set_local_got_offset(symndx, got_type, got_offset);
1472 Output_section* os = object->output_section(shndx);
1473 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1474
1475 this->entries_.push_back(Got_entry(object, symndx));
1476 if (r_type_2 != 0)
1477 {
1478 got_offset = this->last_got_offset();
1479 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1480 }
1481
1482 this->set_got_size();
1483 }
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int shndx,
1491 unsigned int got_type,
1492 Rela_dyn* rela_dyn,
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
1495 {
1496 if (object->local_has_got_offset(symndx, got_type))
1497 return;
1498
1499 this->entries_.push_back(Got_entry());
1500 unsigned int got_offset = this->last_got_offset();
1501 object->set_local_got_offset(symndx, got_type, got_offset);
1502 Output_section* os = object->output_section(shndx);
1503 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1504
1505 this->entries_.push_back(Got_entry(object, symndx));
1506 if (r_type_2 != 0)
1507 {
1508 got_offset = this->last_got_offset();
1509 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1510 }
1511
1512 this->set_got_size();
1513 }
1514
1515 // Write out the GOT.
1516
1517 template<int size, bool big_endian>
1518 void
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1520 {
1521 const int add = size / 8;
1522
1523 const off_t off = this->offset();
1524 const off_t oview_size = this->data_size();
1525 unsigned char* const oview = of->get_output_view(off, oview_size);
1526
1527 unsigned char* pov = oview;
1528 for (typename Got_entries::const_iterator p = this->entries_.begin();
1529 p != this->entries_.end();
1530 ++p)
1531 {
1532 p->write(pov);
1533 pov += add;
1534 }
1535
1536 gold_assert(pov - oview == oview_size);
1537
1538 of->write_output_view(off, oview_size, oview);
1539
1540 // We no longer need the GOT entries.
1541 this->entries_.clear();
1542 }
1543
1544 // Output_data_dynamic::Dynamic_entry methods.
1545
1546 // Write out the entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_dynamic::Dynamic_entry::write(
1551 unsigned char* pov,
1552 const Stringpool* pool) const
1553 {
1554 typename elfcpp::Elf_types<size>::Elf_WXword val;
1555 switch (this->offset_)
1556 {
1557 case DYNAMIC_NUMBER:
1558 val = this->u_.val;
1559 break;
1560
1561 case DYNAMIC_SECTION_SIZE:
1562 val = this->u_.od->data_size();
1563 if (this->od2 != NULL)
1564 val += this->od2->data_size();
1565 break;
1566
1567 case DYNAMIC_SYMBOL:
1568 {
1569 const Sized_symbol<size>* s =
1570 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1571 val = s->value();
1572 }
1573 break;
1574
1575 case DYNAMIC_STRING:
1576 val = pool->get_offset(this->u_.str);
1577 break;
1578
1579 default:
1580 val = this->u_.od->address() + this->offset_;
1581 break;
1582 }
1583
1584 elfcpp::Dyn_write<size, big_endian> dw(pov);
1585 dw.put_d_tag(this->tag_);
1586 dw.put_d_val(val);
1587 }
1588
1589 // Output_data_dynamic methods.
1590
1591 // Adjust the output section to set the entry size.
1592
1593 void
1594 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1595 {
1596 if (parameters->target().get_size() == 32)
1597 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1598 else if (parameters->target().get_size() == 64)
1599 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1600 else
1601 gold_unreachable();
1602 }
1603
1604 // Set the final data size.
1605
1606 void
1607 Output_data_dynamic::set_final_data_size()
1608 {
1609 // Add the terminating entry if it hasn't been added.
1610 // Because of relaxation, we can run this multiple times.
1611 if (this->entries_.empty()
1612 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1613 this->add_constant(elfcpp::DT_NULL, 0);
1614
1615 int dyn_size;
1616 if (parameters->target().get_size() == 32)
1617 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1618 else if (parameters->target().get_size() == 64)
1619 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1620 else
1621 gold_unreachable();
1622 this->set_data_size(this->entries_.size() * dyn_size);
1623 }
1624
1625 // Write out the dynamic entries.
1626
1627 void
1628 Output_data_dynamic::do_write(Output_file* of)
1629 {
1630 switch (parameters->size_and_endianness())
1631 {
1632 #ifdef HAVE_TARGET_32_LITTLE
1633 case Parameters::TARGET_32_LITTLE:
1634 this->sized_write<32, false>(of);
1635 break;
1636 #endif
1637 #ifdef HAVE_TARGET_32_BIG
1638 case Parameters::TARGET_32_BIG:
1639 this->sized_write<32, true>(of);
1640 break;
1641 #endif
1642 #ifdef HAVE_TARGET_64_LITTLE
1643 case Parameters::TARGET_64_LITTLE:
1644 this->sized_write<64, false>(of);
1645 break;
1646 #endif
1647 #ifdef HAVE_TARGET_64_BIG
1648 case Parameters::TARGET_64_BIG:
1649 this->sized_write<64, true>(of);
1650 break;
1651 #endif
1652 default:
1653 gold_unreachable();
1654 }
1655 }
1656
1657 template<int size, bool big_endian>
1658 void
1659 Output_data_dynamic::sized_write(Output_file* of)
1660 {
1661 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1662
1663 const off_t offset = this->offset();
1664 const off_t oview_size = this->data_size();
1665 unsigned char* const oview = of->get_output_view(offset, oview_size);
1666
1667 unsigned char* pov = oview;
1668 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1669 p != this->entries_.end();
1670 ++p)
1671 {
1672 p->write<size, big_endian>(pov, this->pool_);
1673 pov += dyn_size;
1674 }
1675
1676 gold_assert(pov - oview == oview_size);
1677
1678 of->write_output_view(offset, oview_size, oview);
1679
1680 // We no longer need the dynamic entries.
1681 this->entries_.clear();
1682 }
1683
1684 // Class Output_symtab_xindex.
1685
1686 void
1687 Output_symtab_xindex::do_write(Output_file* of)
1688 {
1689 const off_t offset = this->offset();
1690 const off_t oview_size = this->data_size();
1691 unsigned char* const oview = of->get_output_view(offset, oview_size);
1692
1693 memset(oview, 0, oview_size);
1694
1695 if (parameters->target().is_big_endian())
1696 this->endian_do_write<true>(oview);
1697 else
1698 this->endian_do_write<false>(oview);
1699
1700 of->write_output_view(offset, oview_size, oview);
1701
1702 // We no longer need the data.
1703 this->entries_.clear();
1704 }
1705
1706 template<bool big_endian>
1707 void
1708 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1709 {
1710 for (Xindex_entries::const_iterator p = this->entries_.begin();
1711 p != this->entries_.end();
1712 ++p)
1713 {
1714 unsigned int symndx = p->first;
1715 gold_assert(symndx * 4 < this->data_size());
1716 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1717 }
1718 }
1719
1720 // Output_section::Input_section methods.
1721
1722 // Return the data size. For an input section we store the size here.
1723 // For an Output_section_data, we have to ask it for the size.
1724
1725 off_t
1726 Output_section::Input_section::data_size() const
1727 {
1728 if (this->is_input_section())
1729 return this->u1_.data_size;
1730 else
1731 return this->u2_.posd->data_size();
1732 }
1733
1734 // Set the address and file offset.
1735
1736 void
1737 Output_section::Input_section::set_address_and_file_offset(
1738 uint64_t address,
1739 off_t file_offset,
1740 off_t section_file_offset)
1741 {
1742 if (this->is_input_section())
1743 this->u2_.object->set_section_offset(this->shndx_,
1744 file_offset - section_file_offset);
1745 else
1746 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1747 }
1748
1749 // Reset the address and file offset.
1750
1751 void
1752 Output_section::Input_section::reset_address_and_file_offset()
1753 {
1754 if (!this->is_input_section())
1755 this->u2_.posd->reset_address_and_file_offset();
1756 }
1757
1758 // Finalize the data size.
1759
1760 void
1761 Output_section::Input_section::finalize_data_size()
1762 {
1763 if (!this->is_input_section())
1764 this->u2_.posd->finalize_data_size();
1765 }
1766
1767 // Try to turn an input offset into an output offset. We want to
1768 // return the output offset relative to the start of this
1769 // Input_section in the output section.
1770
1771 inline bool
1772 Output_section::Input_section::output_offset(
1773 const Relobj* object,
1774 unsigned int shndx,
1775 section_offset_type offset,
1776 section_offset_type *poutput) const
1777 {
1778 if (!this->is_input_section())
1779 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1780 else
1781 {
1782 if (this->shndx_ != shndx || this->u2_.object != object)
1783 return false;
1784 *poutput = offset;
1785 return true;
1786 }
1787 }
1788
1789 // Return whether this is the merge section for the input section
1790 // SHNDX in OBJECT.
1791
1792 inline bool
1793 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1794 unsigned int shndx) const
1795 {
1796 if (this->is_input_section())
1797 return false;
1798 return this->u2_.posd->is_merge_section_for(object, shndx);
1799 }
1800
1801 // Write out the data. We don't have to do anything for an input
1802 // section--they are handled via Object::relocate--but this is where
1803 // we write out the data for an Output_section_data.
1804
1805 void
1806 Output_section::Input_section::write(Output_file* of)
1807 {
1808 if (!this->is_input_section())
1809 this->u2_.posd->write(of);
1810 }
1811
1812 // Write the data to a buffer. As for write(), we don't have to do
1813 // anything for an input section.
1814
1815 void
1816 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1817 {
1818 if (!this->is_input_section())
1819 this->u2_.posd->write_to_buffer(buffer);
1820 }
1821
1822 // Print to a map file.
1823
1824 void
1825 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1826 {
1827 switch (this->shndx_)
1828 {
1829 case OUTPUT_SECTION_CODE:
1830 case MERGE_DATA_SECTION_CODE:
1831 case MERGE_STRING_SECTION_CODE:
1832 this->u2_.posd->print_to_mapfile(mapfile);
1833 break;
1834
1835 case RELAXED_INPUT_SECTION_CODE:
1836 {
1837 Output_relaxed_input_section* relaxed_section =
1838 this->relaxed_input_section();
1839 mapfile->print_input_section(relaxed_section->relobj(),
1840 relaxed_section->shndx());
1841 }
1842 break;
1843 default:
1844 mapfile->print_input_section(this->u2_.object, this->shndx_);
1845 break;
1846 }
1847 }
1848
1849 // Output_section methods.
1850
1851 // Construct an Output_section. NAME will point into a Stringpool.
1852
1853 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1854 elfcpp::Elf_Xword flags)
1855 : name_(name),
1856 addralign_(0),
1857 entsize_(0),
1858 load_address_(0),
1859 link_section_(NULL),
1860 link_(0),
1861 info_section_(NULL),
1862 info_symndx_(NULL),
1863 info_(0),
1864 type_(type),
1865 flags_(flags),
1866 out_shndx_(-1U),
1867 symtab_index_(0),
1868 dynsym_index_(0),
1869 input_sections_(),
1870 first_input_offset_(0),
1871 fills_(),
1872 postprocessing_buffer_(NULL),
1873 needs_symtab_index_(false),
1874 needs_dynsym_index_(false),
1875 should_link_to_symtab_(false),
1876 should_link_to_dynsym_(false),
1877 after_input_sections_(false),
1878 requires_postprocessing_(false),
1879 found_in_sections_clause_(false),
1880 has_load_address_(false),
1881 info_uses_section_index_(false),
1882 may_sort_attached_input_sections_(false),
1883 must_sort_attached_input_sections_(false),
1884 attached_input_sections_are_sorted_(false),
1885 is_relro_(false),
1886 is_relro_local_(false),
1887 is_last_relro_(false),
1888 is_first_non_relro_(false),
1889 is_small_section_(false),
1890 is_large_section_(false),
1891 is_interp_(false),
1892 is_dynamic_linker_section_(false),
1893 generate_code_fills_at_write_(false),
1894 is_entsize_zero_(false),
1895 section_offsets_need_adjustment_(false),
1896 tls_offset_(0),
1897 checkpoint_(NULL),
1898 merge_section_map_(),
1899 merge_section_by_properties_map_(),
1900 relaxed_input_section_map_(),
1901 is_relaxed_input_section_map_valid_(true)
1902 {
1903 // An unallocated section has no address. Forcing this means that
1904 // we don't need special treatment for symbols defined in debug
1905 // sections.
1906 if ((flags & elfcpp::SHF_ALLOC) == 0)
1907 this->set_address(0);
1908 }
1909
1910 Output_section::~Output_section()
1911 {
1912 delete this->checkpoint_;
1913 }
1914
1915 // Set the entry size.
1916
1917 void
1918 Output_section::set_entsize(uint64_t v)
1919 {
1920 if (this->is_entsize_zero_)
1921 ;
1922 else if (this->entsize_ == 0)
1923 this->entsize_ = v;
1924 else if (this->entsize_ != v)
1925 {
1926 this->entsize_ = 0;
1927 this->is_entsize_zero_ = 1;
1928 }
1929 }
1930
1931 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1932 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1933 // relocation section which applies to this section, or 0 if none, or
1934 // -1U if more than one. Return the offset of the input section
1935 // within the output section. Return -1 if the input section will
1936 // receive special handling. In the normal case we don't always keep
1937 // track of input sections for an Output_section. Instead, each
1938 // Object keeps track of the Output_section for each of its input
1939 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1940 // track of input sections here; this is used when SECTIONS appears in
1941 // a linker script.
1942
1943 template<int size, bool big_endian>
1944 off_t
1945 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1946 unsigned int shndx,
1947 const char* secname,
1948 const elfcpp::Shdr<size, big_endian>& shdr,
1949 unsigned int reloc_shndx,
1950 bool have_sections_script)
1951 {
1952 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1953 if ((addralign & (addralign - 1)) != 0)
1954 {
1955 object->error(_("invalid alignment %lu for section \"%s\""),
1956 static_cast<unsigned long>(addralign), secname);
1957 addralign = 1;
1958 }
1959
1960 if (addralign > this->addralign_)
1961 this->addralign_ = addralign;
1962
1963 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1964 uint64_t entsize = shdr.get_sh_entsize();
1965
1966 // .debug_str is a mergeable string section, but is not always so
1967 // marked by compilers. Mark manually here so we can optimize.
1968 if (strcmp(secname, ".debug_str") == 0)
1969 {
1970 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1971 entsize = 1;
1972 }
1973
1974 this->update_flags_for_input_section(sh_flags);
1975 this->set_entsize(entsize);
1976
1977 // If this is a SHF_MERGE section, we pass all the input sections to
1978 // a Output_data_merge. We don't try to handle relocations for such
1979 // a section. We don't try to handle empty merge sections--they
1980 // mess up the mappings, and are useless anyhow.
1981 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1982 && reloc_shndx == 0
1983 && shdr.get_sh_size() > 0)
1984 {
1985 if (this->add_merge_input_section(object, shndx, sh_flags,
1986 entsize, addralign))
1987 {
1988 // Tell the relocation routines that they need to call the
1989 // output_offset method to determine the final address.
1990 return -1;
1991 }
1992 }
1993
1994 off_t offset_in_section = this->current_data_size_for_child();
1995 off_t aligned_offset_in_section = align_address(offset_in_section,
1996 addralign);
1997
1998 // Determine if we want to delay code-fill generation until the output
1999 // section is written. When the target is relaxing, we want to delay fill
2000 // generating to avoid adjusting them during relaxation.
2001 if (!this->generate_code_fills_at_write_
2002 && !have_sections_script
2003 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2004 && parameters->target().has_code_fill()
2005 && parameters->target().may_relax())
2006 {
2007 gold_assert(this->fills_.empty());
2008 this->generate_code_fills_at_write_ = true;
2009 }
2010
2011 if (aligned_offset_in_section > offset_in_section
2012 && !this->generate_code_fills_at_write_
2013 && !have_sections_script
2014 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2015 && parameters->target().has_code_fill())
2016 {
2017 // We need to add some fill data. Using fill_list_ when
2018 // possible is an optimization, since we will often have fill
2019 // sections without input sections.
2020 off_t fill_len = aligned_offset_in_section - offset_in_section;
2021 if (this->input_sections_.empty())
2022 this->fills_.push_back(Fill(offset_in_section, fill_len));
2023 else
2024 {
2025 std::string fill_data(parameters->target().code_fill(fill_len));
2026 Output_data_const* odc = new Output_data_const(fill_data, 1);
2027 this->input_sections_.push_back(Input_section(odc));
2028 }
2029 }
2030
2031 this->set_current_data_size_for_child(aligned_offset_in_section
2032 + shdr.get_sh_size());
2033
2034 // We need to keep track of this section if we are already keeping
2035 // track of sections, or if we are relaxing. Also, if this is a
2036 // section which requires sorting, or which may require sorting in
2037 // the future, we keep track of the sections.
2038 if (have_sections_script
2039 || !this->input_sections_.empty()
2040 || this->may_sort_attached_input_sections()
2041 || this->must_sort_attached_input_sections()
2042 || parameters->options().user_set_Map()
2043 || parameters->target().may_relax())
2044 this->input_sections_.push_back(Input_section(object, shndx,
2045 shdr.get_sh_size(),
2046 addralign));
2047
2048 return aligned_offset_in_section;
2049 }
2050
2051 // Add arbitrary data to an output section.
2052
2053 void
2054 Output_section::add_output_section_data(Output_section_data* posd)
2055 {
2056 Input_section inp(posd);
2057 this->add_output_section_data(&inp);
2058
2059 if (posd->is_data_size_valid())
2060 {
2061 off_t offset_in_section = this->current_data_size_for_child();
2062 off_t aligned_offset_in_section = align_address(offset_in_section,
2063 posd->addralign());
2064 this->set_current_data_size_for_child(aligned_offset_in_section
2065 + posd->data_size());
2066 }
2067 }
2068
2069 // Add a relaxed input section.
2070
2071 void
2072 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2073 {
2074 Input_section inp(poris);
2075 this->add_output_section_data(&inp);
2076 if (this->is_relaxed_input_section_map_valid_)
2077 {
2078 Const_section_id csid(poris->relobj(), poris->shndx());
2079 this->relaxed_input_section_map_[csid] = poris;
2080 }
2081
2082 // For a relaxed section, we use the current data size. Linker scripts
2083 // get all the input sections, including relaxed one from an output
2084 // section and add them back to them same output section to compute the
2085 // output section size. If we do not account for sizes of relaxed input
2086 // sections, an output section would be incorrectly sized.
2087 off_t offset_in_section = this->current_data_size_for_child();
2088 off_t aligned_offset_in_section = align_address(offset_in_section,
2089 poris->addralign());
2090 this->set_current_data_size_for_child(aligned_offset_in_section
2091 + poris->current_data_size());
2092 }
2093
2094 // Add arbitrary data to an output section by Input_section.
2095
2096 void
2097 Output_section::add_output_section_data(Input_section* inp)
2098 {
2099 if (this->input_sections_.empty())
2100 this->first_input_offset_ = this->current_data_size_for_child();
2101
2102 this->input_sections_.push_back(*inp);
2103
2104 uint64_t addralign = inp->addralign();
2105 if (addralign > this->addralign_)
2106 this->addralign_ = addralign;
2107
2108 inp->set_output_section(this);
2109 }
2110
2111 // Add a merge section to an output section.
2112
2113 void
2114 Output_section::add_output_merge_section(Output_section_data* posd,
2115 bool is_string, uint64_t entsize)
2116 {
2117 Input_section inp(posd, is_string, entsize);
2118 this->add_output_section_data(&inp);
2119 }
2120
2121 // Add an input section to a SHF_MERGE section.
2122
2123 bool
2124 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2125 uint64_t flags, uint64_t entsize,
2126 uint64_t addralign)
2127 {
2128 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2129
2130 // We only merge strings if the alignment is not more than the
2131 // character size. This could be handled, but it's unusual.
2132 if (is_string && addralign > entsize)
2133 return false;
2134
2135 // We cannot restore merged input section states.
2136 gold_assert(this->checkpoint_ == NULL);
2137
2138 // Look up merge sections by required properties.
2139 Merge_section_properties msp(is_string, entsize, addralign);
2140 Merge_section_by_properties_map::const_iterator p =
2141 this->merge_section_by_properties_map_.find(msp);
2142 if (p != this->merge_section_by_properties_map_.end())
2143 {
2144 Output_merge_base* merge_section = p->second;
2145 merge_section->add_input_section(object, shndx);
2146 gold_assert(merge_section->is_string() == is_string
2147 && merge_section->entsize() == entsize
2148 && merge_section->addralign() == addralign);
2149
2150 // Link input section to found merge section.
2151 Const_section_id csid(object, shndx);
2152 this->merge_section_map_[csid] = merge_section;
2153 return true;
2154 }
2155
2156 // We handle the actual constant merging in Output_merge_data or
2157 // Output_merge_string_data.
2158 Output_merge_base* pomb;
2159 if (!is_string)
2160 pomb = new Output_merge_data(entsize, addralign);
2161 else
2162 {
2163 switch (entsize)
2164 {
2165 case 1:
2166 pomb = new Output_merge_string<char>(addralign);
2167 break;
2168 case 2:
2169 pomb = new Output_merge_string<uint16_t>(addralign);
2170 break;
2171 case 4:
2172 pomb = new Output_merge_string<uint32_t>(addralign);
2173 break;
2174 default:
2175 return false;
2176 }
2177 }
2178
2179 // Add new merge section to this output section and link merge section
2180 // properties to new merge section in map.
2181 this->add_output_merge_section(pomb, is_string, entsize);
2182 this->merge_section_by_properties_map_[msp] = pomb;
2183
2184 // Add input section to new merge section and link input section to new
2185 // merge section in map.
2186 pomb->add_input_section(object, shndx);
2187 Const_section_id csid(object, shndx);
2188 this->merge_section_map_[csid] = pomb;
2189
2190 return true;
2191 }
2192
2193 // Build a relaxation map to speed up relaxation of existing input sections.
2194 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2195
2196 void
2197 Output_section::build_relaxation_map(
2198 const Input_section_list& input_sections,
2199 size_t limit,
2200 Relaxation_map* relaxation_map) const
2201 {
2202 for (size_t i = 0; i < limit; ++i)
2203 {
2204 const Input_section& is(input_sections[i]);
2205 if (is.is_input_section() || is.is_relaxed_input_section())
2206 {
2207 Section_id sid(is.relobj(), is.shndx());
2208 (*relaxation_map)[sid] = i;
2209 }
2210 }
2211 }
2212
2213 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2214 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2215 // indices of INPUT_SECTIONS.
2216
2217 void
2218 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2219 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2220 const Relaxation_map& map,
2221 Input_section_list* input_sections)
2222 {
2223 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2224 {
2225 Output_relaxed_input_section* poris = relaxed_sections[i];
2226 Section_id sid(poris->relobj(), poris->shndx());
2227 Relaxation_map::const_iterator p = map.find(sid);
2228 gold_assert(p != map.end());
2229 gold_assert((*input_sections)[p->second].is_input_section());
2230 (*input_sections)[p->second] = Input_section(poris);
2231 }
2232 }
2233
2234 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2235 // is a vector of pointers to Output_relaxed_input_section or its derived
2236 // classes. The relaxed sections must correspond to existing input sections.
2237
2238 void
2239 Output_section::convert_input_sections_to_relaxed_sections(
2240 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2241 {
2242 gold_assert(parameters->target().may_relax());
2243
2244 // We want to make sure that restore_states does not undo the effect of
2245 // this. If there is no checkpoint active, just search the current
2246 // input section list and replace the sections there. If there is
2247 // a checkpoint, also replace the sections there.
2248
2249 // By default, we look at the whole list.
2250 size_t limit = this->input_sections_.size();
2251
2252 if (this->checkpoint_ != NULL)
2253 {
2254 // Replace input sections with relaxed input section in the saved
2255 // copy of the input section list.
2256 if (this->checkpoint_->input_sections_saved())
2257 {
2258 Relaxation_map map;
2259 this->build_relaxation_map(
2260 *(this->checkpoint_->input_sections()),
2261 this->checkpoint_->input_sections()->size(),
2262 &map);
2263 this->convert_input_sections_in_list_to_relaxed_sections(
2264 relaxed_sections,
2265 map,
2266 this->checkpoint_->input_sections());
2267 }
2268 else
2269 {
2270 // We have not copied the input section list yet. Instead, just
2271 // look at the portion that would be saved.
2272 limit = this->checkpoint_->input_sections_size();
2273 }
2274 }
2275
2276 // Convert input sections in input_section_list.
2277 Relaxation_map map;
2278 this->build_relaxation_map(this->input_sections_, limit, &map);
2279 this->convert_input_sections_in_list_to_relaxed_sections(
2280 relaxed_sections,
2281 map,
2282 &this->input_sections_);
2283
2284 // Update fast look-up map.
2285 if (this->is_relaxed_input_section_map_valid_)
2286 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2287 {
2288 Output_relaxed_input_section* poris = relaxed_sections[i];
2289 Const_section_id csid(poris->relobj(), poris->shndx());
2290 this->relaxed_input_section_map_[csid] = poris;
2291 }
2292 }
2293
2294 // Update the output section flags based on input section flags.
2295
2296 void
2297 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2298 {
2299 // If we created the section with SHF_ALLOC clear, we set the
2300 // address. If we are now setting the SHF_ALLOC flag, we need to
2301 // undo that.
2302 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2303 && (flags & elfcpp::SHF_ALLOC) != 0)
2304 this->mark_address_invalid();
2305
2306 this->flags_ |= (flags
2307 & (elfcpp::SHF_WRITE
2308 | elfcpp::SHF_ALLOC
2309 | elfcpp::SHF_EXECINSTR));
2310
2311 if ((flags & elfcpp::SHF_MERGE) == 0)
2312 this->flags_ &=~ elfcpp::SHF_MERGE;
2313 else
2314 {
2315 if (this->current_data_size_for_child() == 0)
2316 this->flags_ |= elfcpp::SHF_MERGE;
2317 }
2318
2319 if ((flags & elfcpp::SHF_STRINGS) == 0)
2320 this->flags_ &=~ elfcpp::SHF_STRINGS;
2321 else
2322 {
2323 if (this->current_data_size_for_child() == 0)
2324 this->flags_ |= elfcpp::SHF_STRINGS;
2325 }
2326 }
2327
2328 // Find the merge section into which an input section with index SHNDX in
2329 // OBJECT has been added. Return NULL if none found.
2330
2331 Output_section_data*
2332 Output_section::find_merge_section(const Relobj* object,
2333 unsigned int shndx) const
2334 {
2335 Const_section_id csid(object, shndx);
2336 Output_section_data_by_input_section_map::const_iterator p =
2337 this->merge_section_map_.find(csid);
2338 if (p != this->merge_section_map_.end())
2339 {
2340 Output_section_data* posd = p->second;
2341 gold_assert(posd->is_merge_section_for(object, shndx));
2342 return posd;
2343 }
2344 else
2345 return NULL;
2346 }
2347
2348 // Find an relaxed input section corresponding to an input section
2349 // in OBJECT with index SHNDX.
2350
2351 const Output_relaxed_input_section*
2352 Output_section::find_relaxed_input_section(const Relobj* object,
2353 unsigned int shndx) const
2354 {
2355 // Be careful that the map may not be valid due to input section export
2356 // to scripts or a check-point restore.
2357 if (!this->is_relaxed_input_section_map_valid_)
2358 {
2359 // Rebuild the map as needed.
2360 this->relaxed_input_section_map_.clear();
2361 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2362 p != this->input_sections_.end();
2363 ++p)
2364 if (p->is_relaxed_input_section())
2365 {
2366 Const_section_id csid(p->relobj(), p->shndx());
2367 this->relaxed_input_section_map_[csid] =
2368 p->relaxed_input_section();
2369 }
2370 this->is_relaxed_input_section_map_valid_ = true;
2371 }
2372
2373 Const_section_id csid(object, shndx);
2374 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2375 this->relaxed_input_section_map_.find(csid);
2376 if (p != this->relaxed_input_section_map_.end())
2377 return p->second;
2378 else
2379 return NULL;
2380 }
2381
2382 // Given an address OFFSET relative to the start of input section
2383 // SHNDX in OBJECT, return whether this address is being included in
2384 // the final link. This should only be called if SHNDX in OBJECT has
2385 // a special mapping.
2386
2387 bool
2388 Output_section::is_input_address_mapped(const Relobj* object,
2389 unsigned int shndx,
2390 off_t offset) const
2391 {
2392 // Look at the Output_section_data_maps first.
2393 const Output_section_data* posd = this->find_merge_section(object, shndx);
2394 if (posd == NULL)
2395 posd = this->find_relaxed_input_section(object, shndx);
2396
2397 if (posd != NULL)
2398 {
2399 section_offset_type output_offset;
2400 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2401 gold_assert(found);
2402 return output_offset != -1;
2403 }
2404
2405 // Fall back to the slow look-up.
2406 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2407 p != this->input_sections_.end();
2408 ++p)
2409 {
2410 section_offset_type output_offset;
2411 if (p->output_offset(object, shndx, offset, &output_offset))
2412 return output_offset != -1;
2413 }
2414
2415 // By default we assume that the address is mapped. This should
2416 // only be called after we have passed all sections to Layout. At
2417 // that point we should know what we are discarding.
2418 return true;
2419 }
2420
2421 // Given an address OFFSET relative to the start of input section
2422 // SHNDX in object OBJECT, return the output offset relative to the
2423 // start of the input section in the output section. This should only
2424 // be called if SHNDX in OBJECT has a special mapping.
2425
2426 section_offset_type
2427 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2428 section_offset_type offset) const
2429 {
2430 // This can only be called meaningfully when we know the data size
2431 // of this.
2432 gold_assert(this->is_data_size_valid());
2433
2434 // Look at the Output_section_data_maps first.
2435 const Output_section_data* posd = this->find_merge_section(object, shndx);
2436 if (posd == NULL)
2437 posd = this->find_relaxed_input_section(object, shndx);
2438 if (posd != NULL)
2439 {
2440 section_offset_type output_offset;
2441 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2442 gold_assert(found);
2443 return output_offset;
2444 }
2445
2446 // Fall back to the slow look-up.
2447 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2448 p != this->input_sections_.end();
2449 ++p)
2450 {
2451 section_offset_type output_offset;
2452 if (p->output_offset(object, shndx, offset, &output_offset))
2453 return output_offset;
2454 }
2455 gold_unreachable();
2456 }
2457
2458 // Return the output virtual address of OFFSET relative to the start
2459 // of input section SHNDX in object OBJECT.
2460
2461 uint64_t
2462 Output_section::output_address(const Relobj* object, unsigned int shndx,
2463 off_t offset) const
2464 {
2465 uint64_t addr = this->address() + this->first_input_offset_;
2466
2467 // Look at the Output_section_data_maps first.
2468 const Output_section_data* posd = this->find_merge_section(object, shndx);
2469 if (posd == NULL)
2470 posd = this->find_relaxed_input_section(object, shndx);
2471 if (posd != NULL && posd->is_address_valid())
2472 {
2473 section_offset_type output_offset;
2474 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2475 gold_assert(found);
2476 return posd->address() + output_offset;
2477 }
2478
2479 // Fall back to the slow look-up.
2480 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2481 p != this->input_sections_.end();
2482 ++p)
2483 {
2484 addr = align_address(addr, p->addralign());
2485 section_offset_type output_offset;
2486 if (p->output_offset(object, shndx, offset, &output_offset))
2487 {
2488 if (output_offset == -1)
2489 return -1ULL;
2490 return addr + output_offset;
2491 }
2492 addr += p->data_size();
2493 }
2494
2495 // If we get here, it means that we don't know the mapping for this
2496 // input section. This might happen in principle if
2497 // add_input_section were called before add_output_section_data.
2498 // But it should never actually happen.
2499
2500 gold_unreachable();
2501 }
2502
2503 // Find the output address of the start of the merged section for
2504 // input section SHNDX in object OBJECT.
2505
2506 bool
2507 Output_section::find_starting_output_address(const Relobj* object,
2508 unsigned int shndx,
2509 uint64_t* paddr) const
2510 {
2511 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2512 // Looking up the merge section map does not always work as we sometimes
2513 // find a merge section without its address set.
2514 uint64_t addr = this->address() + this->first_input_offset_;
2515 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2516 p != this->input_sections_.end();
2517 ++p)
2518 {
2519 addr = align_address(addr, p->addralign());
2520
2521 // It would be nice if we could use the existing output_offset
2522 // method to get the output offset of input offset 0.
2523 // Unfortunately we don't know for sure that input offset 0 is
2524 // mapped at all.
2525 if (p->is_merge_section_for(object, shndx))
2526 {
2527 *paddr = addr;
2528 return true;
2529 }
2530
2531 addr += p->data_size();
2532 }
2533
2534 // We couldn't find a merge output section for this input section.
2535 return false;
2536 }
2537
2538 // Set the data size of an Output_section. This is where we handle
2539 // setting the addresses of any Output_section_data objects.
2540
2541 void
2542 Output_section::set_final_data_size()
2543 {
2544 if (this->input_sections_.empty())
2545 {
2546 this->set_data_size(this->current_data_size_for_child());
2547 return;
2548 }
2549
2550 if (this->must_sort_attached_input_sections())
2551 this->sort_attached_input_sections();
2552
2553 uint64_t address = this->address();
2554 off_t startoff = this->offset();
2555 off_t off = startoff + this->first_input_offset_;
2556 for (Input_section_list::iterator p = this->input_sections_.begin();
2557 p != this->input_sections_.end();
2558 ++p)
2559 {
2560 off = align_address(off, p->addralign());
2561 p->set_address_and_file_offset(address + (off - startoff), off,
2562 startoff);
2563 off += p->data_size();
2564 }
2565
2566 this->set_data_size(off - startoff);
2567 }
2568
2569 // Reset the address and file offset.
2570
2571 void
2572 Output_section::do_reset_address_and_file_offset()
2573 {
2574 // An unallocated section has no address. Forcing this means that
2575 // we don't need special treatment for symbols defined in debug
2576 // sections. We do the same in the constructor.
2577 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2578 this->set_address(0);
2579
2580 for (Input_section_list::iterator p = this->input_sections_.begin();
2581 p != this->input_sections_.end();
2582 ++p)
2583 p->reset_address_and_file_offset();
2584 }
2585
2586 // Return true if address and file offset have the values after reset.
2587
2588 bool
2589 Output_section::do_address_and_file_offset_have_reset_values() const
2590 {
2591 if (this->is_offset_valid())
2592 return false;
2593
2594 // An unallocated section has address 0 after its construction or a reset.
2595 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2596 return this->is_address_valid() && this->address() == 0;
2597 else
2598 return !this->is_address_valid();
2599 }
2600
2601 // Set the TLS offset. Called only for SHT_TLS sections.
2602
2603 void
2604 Output_section::do_set_tls_offset(uint64_t tls_base)
2605 {
2606 this->tls_offset_ = this->address() - tls_base;
2607 }
2608
2609 // In a few cases we need to sort the input sections attached to an
2610 // output section. This is used to implement the type of constructor
2611 // priority ordering implemented by the GNU linker, in which the
2612 // priority becomes part of the section name and the sections are
2613 // sorted by name. We only do this for an output section if we see an
2614 // attached input section matching ".ctor.*", ".dtor.*",
2615 // ".init_array.*" or ".fini_array.*".
2616
2617 class Output_section::Input_section_sort_entry
2618 {
2619 public:
2620 Input_section_sort_entry()
2621 : input_section_(), index_(-1U), section_has_name_(false),
2622 section_name_()
2623 { }
2624
2625 Input_section_sort_entry(const Input_section& input_section,
2626 unsigned int index)
2627 : input_section_(input_section), index_(index),
2628 section_has_name_(input_section.is_input_section()
2629 || input_section.is_relaxed_input_section())
2630 {
2631 if (this->section_has_name_)
2632 {
2633 // This is only called single-threaded from Layout::finalize,
2634 // so it is OK to lock. Unfortunately we have no way to pass
2635 // in a Task token.
2636 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2637 Object* obj = (input_section.is_input_section()
2638 ? input_section.relobj()
2639 : input_section.relaxed_input_section()->relobj());
2640 Task_lock_obj<Object> tl(dummy_task, obj);
2641
2642 // This is a slow operation, which should be cached in
2643 // Layout::layout if this becomes a speed problem.
2644 this->section_name_ = obj->section_name(input_section.shndx());
2645 }
2646 }
2647
2648 // Return the Input_section.
2649 const Input_section&
2650 input_section() const
2651 {
2652 gold_assert(this->index_ != -1U);
2653 return this->input_section_;
2654 }
2655
2656 // The index of this entry in the original list. This is used to
2657 // make the sort stable.
2658 unsigned int
2659 index() const
2660 {
2661 gold_assert(this->index_ != -1U);
2662 return this->index_;
2663 }
2664
2665 // Whether there is a section name.
2666 bool
2667 section_has_name() const
2668 { return this->section_has_name_; }
2669
2670 // The section name.
2671 const std::string&
2672 section_name() const
2673 {
2674 gold_assert(this->section_has_name_);
2675 return this->section_name_;
2676 }
2677
2678 // Return true if the section name has a priority. This is assumed
2679 // to be true if it has a dot after the initial dot.
2680 bool
2681 has_priority() const
2682 {
2683 gold_assert(this->section_has_name_);
2684 return this->section_name_.find('.', 1);
2685 }
2686
2687 // Return true if this an input file whose base name matches
2688 // FILE_NAME. The base name must have an extension of ".o", and
2689 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2690 // This is to match crtbegin.o as well as crtbeginS.o without
2691 // getting confused by other possibilities. Overall matching the
2692 // file name this way is a dreadful hack, but the GNU linker does it
2693 // in order to better support gcc, and we need to be compatible.
2694 bool
2695 match_file_name(const char* match_file_name) const
2696 {
2697 const std::string& file_name(this->input_section_.relobj()->name());
2698 const char* base_name = lbasename(file_name.c_str());
2699 size_t match_len = strlen(match_file_name);
2700 if (strncmp(base_name, match_file_name, match_len) != 0)
2701 return false;
2702 size_t base_len = strlen(base_name);
2703 if (base_len != match_len + 2 && base_len != match_len + 3)
2704 return false;
2705 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2706 }
2707
2708 private:
2709 // The Input_section we are sorting.
2710 Input_section input_section_;
2711 // The index of this Input_section in the original list.
2712 unsigned int index_;
2713 // Whether this Input_section has a section name--it won't if this
2714 // is some random Output_section_data.
2715 bool section_has_name_;
2716 // The section name if there is one.
2717 std::string section_name_;
2718 };
2719
2720 // Return true if S1 should come before S2 in the output section.
2721
2722 bool
2723 Output_section::Input_section_sort_compare::operator()(
2724 const Output_section::Input_section_sort_entry& s1,
2725 const Output_section::Input_section_sort_entry& s2) const
2726 {
2727 // crtbegin.o must come first.
2728 bool s1_begin = s1.match_file_name("crtbegin");
2729 bool s2_begin = s2.match_file_name("crtbegin");
2730 if (s1_begin || s2_begin)
2731 {
2732 if (!s1_begin)
2733 return false;
2734 if (!s2_begin)
2735 return true;
2736 return s1.index() < s2.index();
2737 }
2738
2739 // crtend.o must come last.
2740 bool s1_end = s1.match_file_name("crtend");
2741 bool s2_end = s2.match_file_name("crtend");
2742 if (s1_end || s2_end)
2743 {
2744 if (!s1_end)
2745 return true;
2746 if (!s2_end)
2747 return false;
2748 return s1.index() < s2.index();
2749 }
2750
2751 // We sort all the sections with no names to the end.
2752 if (!s1.section_has_name() || !s2.section_has_name())
2753 {
2754 if (s1.section_has_name())
2755 return true;
2756 if (s2.section_has_name())
2757 return false;
2758 return s1.index() < s2.index();
2759 }
2760
2761 // A section with a priority follows a section without a priority.
2762 // The GNU linker does this for all but .init_array sections; until
2763 // further notice we'll assume that that is an mistake.
2764 bool s1_has_priority = s1.has_priority();
2765 bool s2_has_priority = s2.has_priority();
2766 if (s1_has_priority && !s2_has_priority)
2767 return false;
2768 if (!s1_has_priority && s2_has_priority)
2769 return true;
2770
2771 // Otherwise we sort by name.
2772 int compare = s1.section_name().compare(s2.section_name());
2773 if (compare != 0)
2774 return compare < 0;
2775
2776 // Otherwise we keep the input order.
2777 return s1.index() < s2.index();
2778 }
2779
2780 // Sort the input sections attached to an output section.
2781
2782 void
2783 Output_section::sort_attached_input_sections()
2784 {
2785 if (this->attached_input_sections_are_sorted_)
2786 return;
2787
2788 if (this->checkpoint_ != NULL
2789 && !this->checkpoint_->input_sections_saved())
2790 this->checkpoint_->save_input_sections();
2791
2792 // The only thing we know about an input section is the object and
2793 // the section index. We need the section name. Recomputing this
2794 // is slow but this is an unusual case. If this becomes a speed
2795 // problem we can cache the names as required in Layout::layout.
2796
2797 // We start by building a larger vector holding a copy of each
2798 // Input_section, plus its current index in the list and its name.
2799 std::vector<Input_section_sort_entry> sort_list;
2800
2801 unsigned int i = 0;
2802 for (Input_section_list::iterator p = this->input_sections_.begin();
2803 p != this->input_sections_.end();
2804 ++p, ++i)
2805 sort_list.push_back(Input_section_sort_entry(*p, i));
2806
2807 // Sort the input sections.
2808 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2809
2810 // Copy the sorted input sections back to our list.
2811 this->input_sections_.clear();
2812 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2813 p != sort_list.end();
2814 ++p)
2815 this->input_sections_.push_back(p->input_section());
2816
2817 // Remember that we sorted the input sections, since we might get
2818 // called again.
2819 this->attached_input_sections_are_sorted_ = true;
2820 }
2821
2822 // Write the section header to *OSHDR.
2823
2824 template<int size, bool big_endian>
2825 void
2826 Output_section::write_header(const Layout* layout,
2827 const Stringpool* secnamepool,
2828 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2829 {
2830 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2831 oshdr->put_sh_type(this->type_);
2832
2833 elfcpp::Elf_Xword flags = this->flags_;
2834 if (this->info_section_ != NULL && this->info_uses_section_index_)
2835 flags |= elfcpp::SHF_INFO_LINK;
2836 oshdr->put_sh_flags(flags);
2837
2838 oshdr->put_sh_addr(this->address());
2839 oshdr->put_sh_offset(this->offset());
2840 oshdr->put_sh_size(this->data_size());
2841 if (this->link_section_ != NULL)
2842 oshdr->put_sh_link(this->link_section_->out_shndx());
2843 else if (this->should_link_to_symtab_)
2844 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2845 else if (this->should_link_to_dynsym_)
2846 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2847 else
2848 oshdr->put_sh_link(this->link_);
2849
2850 elfcpp::Elf_Word info;
2851 if (this->info_section_ != NULL)
2852 {
2853 if (this->info_uses_section_index_)
2854 info = this->info_section_->out_shndx();
2855 else
2856 info = this->info_section_->symtab_index();
2857 }
2858 else if (this->info_symndx_ != NULL)
2859 info = this->info_symndx_->symtab_index();
2860 else
2861 info = this->info_;
2862 oshdr->put_sh_info(info);
2863
2864 oshdr->put_sh_addralign(this->addralign_);
2865 oshdr->put_sh_entsize(this->entsize_);
2866 }
2867
2868 // Write out the data. For input sections the data is written out by
2869 // Object::relocate, but we have to handle Output_section_data objects
2870 // here.
2871
2872 void
2873 Output_section::do_write(Output_file* of)
2874 {
2875 gold_assert(!this->requires_postprocessing());
2876
2877 // If the target performs relaxation, we delay filler generation until now.
2878 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2879
2880 off_t output_section_file_offset = this->offset();
2881 for (Fill_list::iterator p = this->fills_.begin();
2882 p != this->fills_.end();
2883 ++p)
2884 {
2885 std::string fill_data(parameters->target().code_fill(p->length()));
2886 of->write(output_section_file_offset + p->section_offset(),
2887 fill_data.data(), fill_data.size());
2888 }
2889
2890 off_t off = this->offset() + this->first_input_offset_;
2891 for (Input_section_list::iterator p = this->input_sections_.begin();
2892 p != this->input_sections_.end();
2893 ++p)
2894 {
2895 off_t aligned_off = align_address(off, p->addralign());
2896 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2897 {
2898 size_t fill_len = aligned_off - off;
2899 std::string fill_data(parameters->target().code_fill(fill_len));
2900 of->write(off, fill_data.data(), fill_data.size());
2901 }
2902
2903 p->write(of);
2904 off = aligned_off + p->data_size();
2905 }
2906 }
2907
2908 // If a section requires postprocessing, create the buffer to use.
2909
2910 void
2911 Output_section::create_postprocessing_buffer()
2912 {
2913 gold_assert(this->requires_postprocessing());
2914
2915 if (this->postprocessing_buffer_ != NULL)
2916 return;
2917
2918 if (!this->input_sections_.empty())
2919 {
2920 off_t off = this->first_input_offset_;
2921 for (Input_section_list::iterator p = this->input_sections_.begin();
2922 p != this->input_sections_.end();
2923 ++p)
2924 {
2925 off = align_address(off, p->addralign());
2926 p->finalize_data_size();
2927 off += p->data_size();
2928 }
2929 this->set_current_data_size_for_child(off);
2930 }
2931
2932 off_t buffer_size = this->current_data_size_for_child();
2933 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2934 }
2935
2936 // Write all the data of an Output_section into the postprocessing
2937 // buffer. This is used for sections which require postprocessing,
2938 // such as compression. Input sections are handled by
2939 // Object::Relocate.
2940
2941 void
2942 Output_section::write_to_postprocessing_buffer()
2943 {
2944 gold_assert(this->requires_postprocessing());
2945
2946 // If the target performs relaxation, we delay filler generation until now.
2947 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2948
2949 unsigned char* buffer = this->postprocessing_buffer();
2950 for (Fill_list::iterator p = this->fills_.begin();
2951 p != this->fills_.end();
2952 ++p)
2953 {
2954 std::string fill_data(parameters->target().code_fill(p->length()));
2955 memcpy(buffer + p->section_offset(), fill_data.data(),
2956 fill_data.size());
2957 }
2958
2959 off_t off = this->first_input_offset_;
2960 for (Input_section_list::iterator p = this->input_sections_.begin();
2961 p != this->input_sections_.end();
2962 ++p)
2963 {
2964 off_t aligned_off = align_address(off, p->addralign());
2965 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2966 {
2967 size_t fill_len = aligned_off - off;
2968 std::string fill_data(parameters->target().code_fill(fill_len));
2969 memcpy(buffer + off, fill_data.data(), fill_data.size());
2970 }
2971
2972 p->write_to_buffer(buffer + aligned_off);
2973 off = aligned_off + p->data_size();
2974 }
2975 }
2976
2977 // Get the input sections for linker script processing. We leave
2978 // behind the Output_section_data entries. Note that this may be
2979 // slightly incorrect for merge sections. We will leave them behind,
2980 // but it is possible that the script says that they should follow
2981 // some other input sections, as in:
2982 // .rodata { *(.rodata) *(.rodata.cst*) }
2983 // For that matter, we don't handle this correctly:
2984 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2985 // With luck this will never matter.
2986
2987 uint64_t
2988 Output_section::get_input_sections(
2989 uint64_t address,
2990 const std::string& fill,
2991 std::list<Simple_input_section>* input_sections)
2992 {
2993 if (this->checkpoint_ != NULL
2994 && !this->checkpoint_->input_sections_saved())
2995 this->checkpoint_->save_input_sections();
2996
2997 // Invalidate the relaxed input section map.
2998 this->is_relaxed_input_section_map_valid_ = false;
2999
3000 uint64_t orig_address = address;
3001
3002 address = align_address(address, this->addralign());
3003
3004 Input_section_list remaining;
3005 for (Input_section_list::iterator p = this->input_sections_.begin();
3006 p != this->input_sections_.end();
3007 ++p)
3008 {
3009 if (p->is_input_section())
3010 input_sections->push_back(Simple_input_section(p->relobj(),
3011 p->shndx()));
3012 else if (p->is_relaxed_input_section())
3013 input_sections->push_back(
3014 Simple_input_section(p->relaxed_input_section()));
3015 else
3016 {
3017 uint64_t aligned_address = align_address(address, p->addralign());
3018 if (aligned_address != address && !fill.empty())
3019 {
3020 section_size_type length =
3021 convert_to_section_size_type(aligned_address - address);
3022 std::string this_fill;
3023 this_fill.reserve(length);
3024 while (this_fill.length() + fill.length() <= length)
3025 this_fill += fill;
3026 if (this_fill.length() < length)
3027 this_fill.append(fill, 0, length - this_fill.length());
3028
3029 Output_section_data* posd = new Output_data_const(this_fill, 0);
3030 remaining.push_back(Input_section(posd));
3031 }
3032 address = aligned_address;
3033
3034 remaining.push_back(*p);
3035
3036 p->finalize_data_size();
3037 address += p->data_size();
3038 }
3039 }
3040
3041 this->input_sections_.swap(remaining);
3042 this->first_input_offset_ = 0;
3043
3044 uint64_t data_size = address - orig_address;
3045 this->set_current_data_size_for_child(data_size);
3046 return data_size;
3047 }
3048
3049 // Add an simple input section.
3050
3051 void
3052 Output_section::add_simple_input_section(const Simple_input_section& sis,
3053 off_t data_size,
3054 uint64_t addralign)
3055 {
3056 if (addralign > this->addralign_)
3057 this->addralign_ = addralign;
3058
3059 off_t offset_in_section = this->current_data_size_for_child();
3060 off_t aligned_offset_in_section = align_address(offset_in_section,
3061 addralign);
3062
3063 this->set_current_data_size_for_child(aligned_offset_in_section
3064 + data_size);
3065
3066 Input_section is =
3067 (sis.is_relaxed_input_section()
3068 ? Input_section(sis.relaxed_input_section())
3069 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3070 this->input_sections_.push_back(is);
3071 }
3072
3073 // Save states for relaxation.
3074
3075 void
3076 Output_section::save_states()
3077 {
3078 gold_assert(this->checkpoint_ == NULL);
3079 Checkpoint_output_section* checkpoint =
3080 new Checkpoint_output_section(this->addralign_, this->flags_,
3081 this->input_sections_,
3082 this->first_input_offset_,
3083 this->attached_input_sections_are_sorted_);
3084 this->checkpoint_ = checkpoint;
3085 gold_assert(this->fills_.empty());
3086 }
3087
3088 void
3089 Output_section::discard_states()
3090 {
3091 gold_assert(this->checkpoint_ != NULL);
3092 delete this->checkpoint_;
3093 this->checkpoint_ = NULL;
3094 gold_assert(this->fills_.empty());
3095
3096 // Simply invalidate the relaxed input section map since we do not keep
3097 // track of it.
3098 this->is_relaxed_input_section_map_valid_ = false;
3099 }
3100
3101 void
3102 Output_section::restore_states()
3103 {
3104 gold_assert(this->checkpoint_ != NULL);
3105 Checkpoint_output_section* checkpoint = this->checkpoint_;
3106
3107 this->addralign_ = checkpoint->addralign();
3108 this->flags_ = checkpoint->flags();
3109 this->first_input_offset_ = checkpoint->first_input_offset();
3110
3111 if (!checkpoint->input_sections_saved())
3112 {
3113 // If we have not copied the input sections, just resize it.
3114 size_t old_size = checkpoint->input_sections_size();
3115 gold_assert(this->input_sections_.size() >= old_size);
3116 this->input_sections_.resize(old_size);
3117 }
3118 else
3119 {
3120 // We need to copy the whole list. This is not efficient for
3121 // extremely large output with hundreads of thousands of input
3122 // objects. We may need to re-think how we should pass sections
3123 // to scripts.
3124 this->input_sections_ = *checkpoint->input_sections();
3125 }
3126
3127 this->attached_input_sections_are_sorted_ =
3128 checkpoint->attached_input_sections_are_sorted();
3129
3130 // Simply invalidate the relaxed input section map since we do not keep
3131 // track of it.
3132 this->is_relaxed_input_section_map_valid_ = false;
3133 }
3134
3135 // Update the section offsets of input sections in this. This is required if
3136 // relaxation causes some input sections to change sizes.
3137
3138 void
3139 Output_section::adjust_section_offsets()
3140 {
3141 if (!this->section_offsets_need_adjustment_)
3142 return;
3143
3144 off_t off = 0;
3145 for (Input_section_list::iterator p = this->input_sections_.begin();
3146 p != this->input_sections_.end();
3147 ++p)
3148 {
3149 off = align_address(off, p->addralign());
3150 if (p->is_input_section())
3151 p->relobj()->set_section_offset(p->shndx(), off);
3152 off += p->data_size();
3153 }
3154
3155 this->section_offsets_need_adjustment_ = false;
3156 }
3157
3158 // Print to the map file.
3159
3160 void
3161 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3162 {
3163 mapfile->print_output_section(this);
3164
3165 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3166 p != this->input_sections_.end();
3167 ++p)
3168 p->print_to_mapfile(mapfile);
3169 }
3170
3171 // Print stats for merge sections to stderr.
3172
3173 void
3174 Output_section::print_merge_stats()
3175 {
3176 Input_section_list::iterator p;
3177 for (p = this->input_sections_.begin();
3178 p != this->input_sections_.end();
3179 ++p)
3180 p->print_merge_stats(this->name_);
3181 }
3182
3183 // Output segment methods.
3184
3185 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3186 : output_data_(),
3187 output_bss_(),
3188 vaddr_(0),
3189 paddr_(0),
3190 memsz_(0),
3191 max_align_(0),
3192 min_p_align_(0),
3193 offset_(0),
3194 filesz_(0),
3195 type_(type),
3196 flags_(flags),
3197 is_max_align_known_(false),
3198 are_addresses_set_(false),
3199 is_large_data_segment_(false)
3200 {
3201 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3202 // the flags.
3203 if (type == elfcpp::PT_TLS)
3204 this->flags_ = elfcpp::PF_R;
3205 }
3206
3207 // Add an Output_section to an Output_segment.
3208
3209 void
3210 Output_segment::add_output_section(Output_section* os,
3211 elfcpp::Elf_Word seg_flags,
3212 bool do_sort)
3213 {
3214 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3215 gold_assert(!this->is_max_align_known_);
3216 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3217 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3218
3219 this->update_flags_for_output_section(seg_flags);
3220
3221 Output_segment::Output_data_list* pdl;
3222 if (os->type() == elfcpp::SHT_NOBITS)
3223 pdl = &this->output_bss_;
3224 else
3225 pdl = &this->output_data_;
3226
3227 // Note that while there may be many input sections in an output
3228 // section, there are normally only a few output sections in an
3229 // output segment. The loops below are expected to be fast.
3230
3231 // So that PT_NOTE segments will work correctly, we need to ensure
3232 // that all SHT_NOTE sections are adjacent.
3233 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3234 {
3235 Output_segment::Output_data_list::iterator p = pdl->end();
3236 do
3237 {
3238 --p;
3239 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3240 {
3241 ++p;
3242 pdl->insert(p, os);
3243 return;
3244 }
3245 }
3246 while (p != pdl->begin());
3247 }
3248
3249 // Similarly, so that PT_TLS segments will work, we need to group
3250 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3251 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3252 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3253 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3254 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3255 // segment.
3256 if (this->type_ != elfcpp::PT_TLS
3257 && (os->flags() & elfcpp::SHF_TLS) != 0)
3258 {
3259 pdl = &this->output_data_;
3260 if (!pdl->empty())
3261 {
3262 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3263 bool sawtls = false;
3264 Output_segment::Output_data_list::iterator p = pdl->end();
3265 gold_assert(p != pdl->begin());
3266 do
3267 {
3268 --p;
3269 bool insert;
3270 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3271 {
3272 sawtls = true;
3273 // Put a NOBITS section after the first TLS section.
3274 // Put a PROGBITS section after the first
3275 // TLS/PROGBITS section.
3276 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3277 }
3278 else
3279 {
3280 // If we've gone past the TLS sections, but we've
3281 // seen a TLS section, then we need to insert this
3282 // section now.
3283 insert = sawtls;
3284 }
3285
3286 if (insert)
3287 {
3288 ++p;
3289 pdl->insert(p, os);
3290 return;
3291 }
3292 }
3293 while (p != pdl->begin());
3294 }
3295
3296 // There are no TLS sections yet; put this one at the requested
3297 // location in the section list.
3298 }
3299
3300 if (do_sort)
3301 {
3302 // For the PT_GNU_RELRO segment, we need to group relro
3303 // sections, and we need to put them before any non-relro
3304 // sections. Any relro local sections go before relro non-local
3305 // sections. One section may be marked as the last relro
3306 // section.
3307 if (os->is_relro())
3308 {
3309 gold_assert(pdl == &this->output_data_);
3310 Output_segment::Output_data_list::iterator p;
3311 for (p = pdl->begin(); p != pdl->end(); ++p)
3312 {
3313 if (!(*p)->is_section())
3314 break;
3315
3316 Output_section* pos = (*p)->output_section();
3317 if (!pos->is_relro()
3318 || (os->is_relro_local() && !pos->is_relro_local())
3319 || (!os->is_last_relro() && pos->is_last_relro()))
3320 break;
3321 }
3322
3323 pdl->insert(p, os);
3324 return;
3325 }
3326
3327 // One section may be marked as the first section which follows
3328 // the relro sections.
3329 if (os->is_first_non_relro())
3330 {
3331 gold_assert(pdl == &this->output_data_);
3332 Output_segment::Output_data_list::iterator p;
3333 for (p = pdl->begin(); p != pdl->end(); ++p)
3334 {
3335 if (!(*p)->is_section())
3336 break;
3337
3338 Output_section* pos = (*p)->output_section();
3339 if (!pos->is_relro())
3340 break;
3341 }
3342
3343 pdl->insert(p, os);
3344 return;
3345 }
3346 }
3347
3348 // Small data sections go at the end of the list of data sections.
3349 // If OS is not small, and there are small sections, we have to
3350 // insert it before the first small section.
3351 if (os->type() != elfcpp::SHT_NOBITS
3352 && !os->is_small_section()
3353 && !pdl->empty()
3354 && pdl->back()->is_section()
3355 && pdl->back()->output_section()->is_small_section())
3356 {
3357 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3358 p != pdl->end();
3359 ++p)
3360 {
3361 if ((*p)->is_section()
3362 && (*p)->output_section()->is_small_section())
3363 {
3364 pdl->insert(p, os);
3365 return;
3366 }
3367 }
3368 gold_unreachable();
3369 }
3370
3371 // A small BSS section goes at the start of the BSS sections, after
3372 // other small BSS sections.
3373 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3374 {
3375 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3376 p != pdl->end();
3377 ++p)
3378 {
3379 if (!(*p)->is_section()
3380 || !(*p)->output_section()->is_small_section())
3381 {
3382 pdl->insert(p, os);
3383 return;
3384 }
3385 }
3386 }
3387
3388 // A large BSS section goes at the end of the BSS sections, which
3389 // means that one that is not large must come before the first large
3390 // one.
3391 if (os->type() == elfcpp::SHT_NOBITS
3392 && !os->is_large_section()
3393 && !pdl->empty()
3394 && pdl->back()->is_section()
3395 && pdl->back()->output_section()->is_large_section())
3396 {
3397 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3398 p != pdl->end();
3399 ++p)
3400 {
3401 if ((*p)->is_section()
3402 && (*p)->output_section()->is_large_section())
3403 {
3404 pdl->insert(p, os);
3405 return;
3406 }
3407 }
3408 gold_unreachable();
3409 }
3410
3411 // We do some further output section sorting in order to make the
3412 // generated program run more efficiently. We should only do this
3413 // when not using a linker script, so it is controled by the DO_SORT
3414 // parameter.
3415 if (do_sort)
3416 {
3417 // FreeBSD requires the .interp section to be in the first page
3418 // of the executable. That is a more efficient location anyhow
3419 // for any OS, since it means that the kernel will have the data
3420 // handy after it reads the program headers.
3421 if (os->is_interp() && !pdl->empty())
3422 {
3423 pdl->insert(pdl->begin(), os);
3424 return;
3425 }
3426
3427 // Put loadable non-writable notes immediately after the .interp
3428 // sections, so that the PT_NOTE segment is on the first page of
3429 // the executable.
3430 if (os->type() == elfcpp::SHT_NOTE
3431 && (os->flags() & elfcpp::SHF_WRITE) == 0
3432 && !pdl->empty())
3433 {
3434 Output_segment::Output_data_list::iterator p = pdl->begin();
3435 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3436 ++p;
3437 pdl->insert(p, os);
3438 return;
3439 }
3440
3441 // If this section is used by the dynamic linker, and it is not
3442 // writable, then put it first, after the .interp section and
3443 // any loadable notes. This makes it more likely that the
3444 // dynamic linker will have to read less data from the disk.
3445 if (os->is_dynamic_linker_section()
3446 && !pdl->empty()
3447 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3448 {
3449 bool is_reloc = (os->type() == elfcpp::SHT_REL
3450 || os->type() == elfcpp::SHT_RELA);
3451 Output_segment::Output_data_list::iterator p = pdl->begin();
3452 while (p != pdl->end()
3453 && (*p)->is_section()
3454 && ((*p)->output_section()->is_dynamic_linker_section()
3455 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3456 {
3457 // Put reloc sections after the other ones. Putting the
3458 // dynamic reloc sections first confuses BFD, notably
3459 // objcopy and strip.
3460 if (!is_reloc
3461 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3462 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3463 break;
3464 ++p;
3465 }
3466 pdl->insert(p, os);
3467 return;
3468 }
3469 }
3470
3471 // If there were no constraints on the output section, just add it
3472 // to the end of the list.
3473 pdl->push_back(os);
3474 }
3475
3476 // Remove an Output_section from this segment. It is an error if it
3477 // is not present.
3478
3479 void
3480 Output_segment::remove_output_section(Output_section* os)
3481 {
3482 // We only need this for SHT_PROGBITS.
3483 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3484 for (Output_data_list::iterator p = this->output_data_.begin();
3485 p != this->output_data_.end();
3486 ++p)
3487 {
3488 if (*p == os)
3489 {
3490 this->output_data_.erase(p);
3491 return;
3492 }
3493 }
3494 gold_unreachable();
3495 }
3496
3497 // Add an Output_data (which need not be an Output_section) to the
3498 // start of a segment.
3499
3500 void
3501 Output_segment::add_initial_output_data(Output_data* od)
3502 {
3503 gold_assert(!this->is_max_align_known_);
3504 this->output_data_.push_front(od);
3505 }
3506
3507 // Return whether the first data section is a relro section.
3508
3509 bool
3510 Output_segment::is_first_section_relro() const
3511 {
3512 return (!this->output_data_.empty()
3513 && this->output_data_.front()->is_section()
3514 && this->output_data_.front()->output_section()->is_relro());
3515 }
3516
3517 // Return the maximum alignment of the Output_data in Output_segment.
3518
3519 uint64_t
3520 Output_segment::maximum_alignment()
3521 {
3522 if (!this->is_max_align_known_)
3523 {
3524 uint64_t addralign;
3525
3526 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3527 if (addralign > this->max_align_)
3528 this->max_align_ = addralign;
3529
3530 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3531 if (addralign > this->max_align_)
3532 this->max_align_ = addralign;
3533
3534 this->is_max_align_known_ = true;
3535 }
3536
3537 return this->max_align_;
3538 }
3539
3540 // Return the maximum alignment of a list of Output_data.
3541
3542 uint64_t
3543 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3544 {
3545 uint64_t ret = 0;
3546 for (Output_data_list::const_iterator p = pdl->begin();
3547 p != pdl->end();
3548 ++p)
3549 {
3550 uint64_t addralign = (*p)->addralign();
3551 if (addralign > ret)
3552 ret = addralign;
3553 }
3554 return ret;
3555 }
3556
3557 // Return the number of dynamic relocs applied to this segment.
3558
3559 unsigned int
3560 Output_segment::dynamic_reloc_count() const
3561 {
3562 return (this->dynamic_reloc_count_list(&this->output_data_)
3563 + this->dynamic_reloc_count_list(&this->output_bss_));
3564 }
3565
3566 // Return the number of dynamic relocs applied to an Output_data_list.
3567
3568 unsigned int
3569 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3570 {
3571 unsigned int count = 0;
3572 for (Output_data_list::const_iterator p = pdl->begin();
3573 p != pdl->end();
3574 ++p)
3575 count += (*p)->dynamic_reloc_count();
3576 return count;
3577 }
3578
3579 // Set the section addresses for an Output_segment. If RESET is true,
3580 // reset the addresses first. ADDR is the address and *POFF is the
3581 // file offset. Set the section indexes starting with *PSHNDX.
3582 // Return the address of the immediately following segment. Update
3583 // *POFF and *PSHNDX.
3584
3585 uint64_t
3586 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3587 uint64_t addr,
3588 unsigned int increase_relro,
3589 off_t* poff,
3590 unsigned int* pshndx)
3591 {
3592 gold_assert(this->type_ == elfcpp::PT_LOAD);
3593
3594 off_t orig_off = *poff;
3595
3596 // If we have relro sections, we need to pad forward now so that the
3597 // relro sections plus INCREASE_RELRO end on a common page boundary.
3598 if (parameters->options().relro()
3599 && this->is_first_section_relro()
3600 && (!this->are_addresses_set_ || reset))
3601 {
3602 uint64_t relro_size = 0;
3603 off_t off = *poff;
3604 for (Output_data_list::iterator p = this->output_data_.begin();
3605 p != this->output_data_.end();
3606 ++p)
3607 {
3608 if (!(*p)->is_section())
3609 break;
3610 Output_section* pos = (*p)->output_section();
3611 if (!pos->is_relro())
3612 break;
3613 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3614 if ((*p)->is_address_valid())
3615 relro_size += (*p)->data_size();
3616 else
3617 {
3618 // FIXME: This could be faster.
3619 (*p)->set_address_and_file_offset(addr + relro_size,
3620 off + relro_size);
3621 relro_size += (*p)->data_size();
3622 (*p)->reset_address_and_file_offset();
3623 }
3624 }
3625 relro_size += increase_relro;
3626
3627 uint64_t page_align = parameters->target().common_pagesize();
3628
3629 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3630 uint64_t desired_align = page_align - (relro_size % page_align);
3631 if (desired_align < *poff % page_align)
3632 *poff += page_align - *poff % page_align;
3633 *poff += desired_align - *poff % page_align;
3634 addr += *poff - orig_off;
3635 orig_off = *poff;
3636 }
3637
3638 if (!reset && this->are_addresses_set_)
3639 {
3640 gold_assert(this->paddr_ == addr);
3641 addr = this->vaddr_;
3642 }
3643 else
3644 {
3645 this->vaddr_ = addr;
3646 this->paddr_ = addr;
3647 this->are_addresses_set_ = true;
3648 }
3649
3650 bool in_tls = false;
3651
3652 this->offset_ = orig_off;
3653
3654 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3655 addr, poff, pshndx, &in_tls);
3656 this->filesz_ = *poff - orig_off;
3657
3658 off_t off = *poff;
3659
3660 uint64_t ret = this->set_section_list_addresses(layout, reset,
3661 &this->output_bss_,
3662 addr, poff, pshndx,
3663 &in_tls);
3664
3665 // If the last section was a TLS section, align upward to the
3666 // alignment of the TLS segment, so that the overall size of the TLS
3667 // segment is aligned.
3668 if (in_tls)
3669 {
3670 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3671 *poff = align_address(*poff, segment_align);
3672 }
3673
3674 this->memsz_ = *poff - orig_off;
3675
3676 // Ignore the file offset adjustments made by the BSS Output_data
3677 // objects.
3678 *poff = off;
3679
3680 return ret;
3681 }
3682
3683 // Set the addresses and file offsets in a list of Output_data
3684 // structures.
3685
3686 uint64_t
3687 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3688 Output_data_list* pdl,
3689 uint64_t addr, off_t* poff,
3690 unsigned int* pshndx,
3691 bool* in_tls)
3692 {
3693 off_t startoff = *poff;
3694
3695 off_t off = startoff;
3696 for (Output_data_list::iterator p = pdl->begin();
3697 p != pdl->end();
3698 ++p)
3699 {
3700 if (reset)
3701 (*p)->reset_address_and_file_offset();
3702
3703 // When using a linker script the section will most likely
3704 // already have an address.
3705 if (!(*p)->is_address_valid())
3706 {
3707 uint64_t align = (*p)->addralign();
3708
3709 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3710 {
3711 // Give the first TLS section the alignment of the
3712 // entire TLS segment. Otherwise the TLS segment as a
3713 // whole may be misaligned.
3714 if (!*in_tls)
3715 {
3716 Output_segment* tls_segment = layout->tls_segment();
3717 gold_assert(tls_segment != NULL);
3718 uint64_t segment_align = tls_segment->maximum_alignment();
3719 gold_assert(segment_align >= align);
3720 align = segment_align;
3721
3722 *in_tls = true;
3723 }
3724 }
3725 else
3726 {
3727 // If this is the first section after the TLS segment,
3728 // align it to at least the alignment of the TLS
3729 // segment, so that the size of the overall TLS segment
3730 // is aligned.
3731 if (*in_tls)
3732 {
3733 uint64_t segment_align =
3734 layout->tls_segment()->maximum_alignment();
3735 if (segment_align > align)
3736 align = segment_align;
3737
3738 *in_tls = false;
3739 }
3740 }
3741
3742 off = align_address(off, align);
3743 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3744 }
3745 else
3746 {
3747 // The script may have inserted a skip forward, but it
3748 // better not have moved backward.
3749 if ((*p)->address() >= addr + (off - startoff))
3750 off += (*p)->address() - (addr + (off - startoff));
3751 else
3752 {
3753 if (!layout->script_options()->saw_sections_clause())
3754 gold_unreachable();
3755 else
3756 {
3757 Output_section* os = (*p)->output_section();
3758
3759 // Cast to unsigned long long to avoid format warnings.
3760 unsigned long long previous_dot =
3761 static_cast<unsigned long long>(addr + (off - startoff));
3762 unsigned long long dot =
3763 static_cast<unsigned long long>((*p)->address());
3764
3765 if (os == NULL)
3766 gold_error(_("dot moves backward in linker script "
3767 "from 0x%llx to 0x%llx"), previous_dot, dot);
3768 else
3769 gold_error(_("address of section '%s' moves backward "
3770 "from 0x%llx to 0x%llx"),
3771 os->name(), previous_dot, dot);
3772 }
3773 }
3774 (*p)->set_file_offset(off);
3775 (*p)->finalize_data_size();
3776 }
3777
3778 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3779 // section. Such a section does not affect the size of a
3780 // PT_LOAD segment.
3781 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3782 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3783 off += (*p)->data_size();
3784
3785 if ((*p)->is_section())
3786 {
3787 (*p)->set_out_shndx(*pshndx);
3788 ++*pshndx;
3789 }
3790 }
3791
3792 *poff = off;
3793 return addr + (off - startoff);
3794 }
3795
3796 // For a non-PT_LOAD segment, set the offset from the sections, if
3797 // any. Add INCREASE to the file size and the memory size.
3798
3799 void
3800 Output_segment::set_offset(unsigned int increase)
3801 {
3802 gold_assert(this->type_ != elfcpp::PT_LOAD);
3803
3804 gold_assert(!this->are_addresses_set_);
3805
3806 if (this->output_data_.empty() && this->output_bss_.empty())
3807 {
3808 gold_assert(increase == 0);
3809 this->vaddr_ = 0;
3810 this->paddr_ = 0;
3811 this->are_addresses_set_ = true;
3812 this->memsz_ = 0;
3813 this->min_p_align_ = 0;
3814 this->offset_ = 0;
3815 this->filesz_ = 0;
3816 return;
3817 }
3818
3819 const Output_data* first;
3820 if (this->output_data_.empty())
3821 first = this->output_bss_.front();
3822 else
3823 first = this->output_data_.front();
3824 this->vaddr_ = first->address();
3825 this->paddr_ = (first->has_load_address()
3826 ? first->load_address()
3827 : this->vaddr_);
3828 this->are_addresses_set_ = true;
3829 this->offset_ = first->offset();
3830
3831 if (this->output_data_.empty())
3832 this->filesz_ = 0;
3833 else
3834 {
3835 const Output_data* last_data = this->output_data_.back();
3836 this->filesz_ = (last_data->address()
3837 + last_data->data_size()
3838 - this->vaddr_);
3839 }
3840
3841 const Output_data* last;
3842 if (this->output_bss_.empty())
3843 last = this->output_data_.back();
3844 else
3845 last = this->output_bss_.back();
3846 this->memsz_ = (last->address()
3847 + last->data_size()
3848 - this->vaddr_);
3849
3850 this->filesz_ += increase;
3851 this->memsz_ += increase;
3852
3853 // If this is a TLS segment, align the memory size. The code in
3854 // set_section_list ensures that the section after the TLS segment
3855 // is aligned to give us room.
3856 if (this->type_ == elfcpp::PT_TLS)
3857 {
3858 uint64_t segment_align = this->maximum_alignment();
3859 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3860 this->memsz_ = align_address(this->memsz_, segment_align);
3861 }
3862 }
3863
3864 // Set the TLS offsets of the sections in the PT_TLS segment.
3865
3866 void
3867 Output_segment::set_tls_offsets()
3868 {
3869 gold_assert(this->type_ == elfcpp::PT_TLS);
3870
3871 for (Output_data_list::iterator p = this->output_data_.begin();
3872 p != this->output_data_.end();
3873 ++p)
3874 (*p)->set_tls_offset(this->vaddr_);
3875
3876 for (Output_data_list::iterator p = this->output_bss_.begin();
3877 p != this->output_bss_.end();
3878 ++p)
3879 (*p)->set_tls_offset(this->vaddr_);
3880 }
3881
3882 // Return the address of the first section.
3883
3884 uint64_t
3885 Output_segment::first_section_load_address() const
3886 {
3887 for (Output_data_list::const_iterator p = this->output_data_.begin();
3888 p != this->output_data_.end();
3889 ++p)
3890 if ((*p)->is_section())
3891 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3892
3893 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3894 p != this->output_bss_.end();
3895 ++p)
3896 if ((*p)->is_section())
3897 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3898
3899 gold_unreachable();
3900 }
3901
3902 // Return the number of Output_sections in an Output_segment.
3903
3904 unsigned int
3905 Output_segment::output_section_count() const
3906 {
3907 return (this->output_section_count_list(&this->output_data_)
3908 + this->output_section_count_list(&this->output_bss_));
3909 }
3910
3911 // Return the number of Output_sections in an Output_data_list.
3912
3913 unsigned int
3914 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3915 {
3916 unsigned int count = 0;
3917 for (Output_data_list::const_iterator p = pdl->begin();
3918 p != pdl->end();
3919 ++p)
3920 {
3921 if ((*p)->is_section())
3922 ++count;
3923 }
3924 return count;
3925 }
3926
3927 // Return the section attached to the list segment with the lowest
3928 // load address. This is used when handling a PHDRS clause in a
3929 // linker script.
3930
3931 Output_section*
3932 Output_segment::section_with_lowest_load_address() const
3933 {
3934 Output_section* found = NULL;
3935 uint64_t found_lma = 0;
3936 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3937
3938 Output_section* found_data = found;
3939 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3940 if (found != found_data && found_data != NULL)
3941 {
3942 gold_error(_("nobits section %s may not precede progbits section %s "
3943 "in same segment"),
3944 found->name(), found_data->name());
3945 return NULL;
3946 }
3947
3948 return found;
3949 }
3950
3951 // Look through a list for a section with a lower load address.
3952
3953 void
3954 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3955 Output_section** found,
3956 uint64_t* found_lma) const
3957 {
3958 for (Output_data_list::const_iterator p = pdl->begin();
3959 p != pdl->end();
3960 ++p)
3961 {
3962 if (!(*p)->is_section())
3963 continue;
3964 Output_section* os = static_cast<Output_section*>(*p);
3965 uint64_t lma = (os->has_load_address()
3966 ? os->load_address()
3967 : os->address());
3968 if (*found == NULL || lma < *found_lma)
3969 {
3970 *found = os;
3971 *found_lma = lma;
3972 }
3973 }
3974 }
3975
3976 // Write the segment data into *OPHDR.
3977
3978 template<int size, bool big_endian>
3979 void
3980 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3981 {
3982 ophdr->put_p_type(this->type_);
3983 ophdr->put_p_offset(this->offset_);
3984 ophdr->put_p_vaddr(this->vaddr_);
3985 ophdr->put_p_paddr(this->paddr_);
3986 ophdr->put_p_filesz(this->filesz_);
3987 ophdr->put_p_memsz(this->memsz_);
3988 ophdr->put_p_flags(this->flags_);
3989 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3990 }
3991
3992 // Write the section headers into V.
3993
3994 template<int size, bool big_endian>
3995 unsigned char*
3996 Output_segment::write_section_headers(const Layout* layout,
3997 const Stringpool* secnamepool,
3998 unsigned char* v,
3999 unsigned int *pshndx) const
4000 {
4001 // Every section that is attached to a segment must be attached to a
4002 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4003 // segments.
4004 if (this->type_ != elfcpp::PT_LOAD)
4005 return v;
4006
4007 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4008 &this->output_data_,
4009 v, pshndx);
4010 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4011 &this->output_bss_,
4012 v, pshndx);
4013 return v;
4014 }
4015
4016 template<int size, bool big_endian>
4017 unsigned char*
4018 Output_segment::write_section_headers_list(const Layout* layout,
4019 const Stringpool* secnamepool,
4020 const Output_data_list* pdl,
4021 unsigned char* v,
4022 unsigned int* pshndx) const
4023 {
4024 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4025 for (Output_data_list::const_iterator p = pdl->begin();
4026 p != pdl->end();
4027 ++p)
4028 {
4029 if ((*p)->is_section())
4030 {
4031 const Output_section* ps = static_cast<const Output_section*>(*p);
4032 gold_assert(*pshndx == ps->out_shndx());
4033 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4034 ps->write_header(layout, secnamepool, &oshdr);
4035 v += shdr_size;
4036 ++*pshndx;
4037 }
4038 }
4039 return v;
4040 }
4041
4042 // Print the output sections to the map file.
4043
4044 void
4045 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4046 {
4047 if (this->type() != elfcpp::PT_LOAD)
4048 return;
4049 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4050 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4051 }
4052
4053 // Print an output section list to the map file.
4054
4055 void
4056 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4057 const Output_data_list* pdl) const
4058 {
4059 for (Output_data_list::const_iterator p = pdl->begin();
4060 p != pdl->end();
4061 ++p)
4062 (*p)->print_to_mapfile(mapfile);
4063 }
4064
4065 // Output_file methods.
4066
4067 Output_file::Output_file(const char* name)
4068 : name_(name),
4069 o_(-1),
4070 file_size_(0),
4071 base_(NULL),
4072 map_is_anonymous_(false),
4073 is_temporary_(false)
4074 {
4075 }
4076
4077 // Try to open an existing file. Returns false if the file doesn't
4078 // exist, has a size of 0 or can't be mmapped.
4079
4080 bool
4081 Output_file::open_for_modification()
4082 {
4083 // The name "-" means "stdout".
4084 if (strcmp(this->name_, "-") == 0)
4085 return false;
4086
4087 // Don't bother opening files with a size of zero.
4088 struct stat s;
4089 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4090 return false;
4091
4092 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4093 if (o < 0)
4094 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4095 this->o_ = o;
4096 this->file_size_ = s.st_size;
4097
4098 // If the file can't be mmapped, copying the content to an anonymous
4099 // map will probably negate the performance benefits of incremental
4100 // linking. This could be helped by using views and loading only
4101 // the necessary parts, but this is not supported as of now.
4102 if (!this->map_no_anonymous())
4103 {
4104 release_descriptor(o, true);
4105 this->o_ = -1;
4106 this->file_size_ = 0;
4107 return false;
4108 }
4109
4110 return true;
4111 }
4112
4113 // Open the output file.
4114
4115 void
4116 Output_file::open(off_t file_size)
4117 {
4118 this->file_size_ = file_size;
4119
4120 // Unlink the file first; otherwise the open() may fail if the file
4121 // is busy (e.g. it's an executable that's currently being executed).
4122 //
4123 // However, the linker may be part of a system where a zero-length
4124 // file is created for it to write to, with tight permissions (gcc
4125 // 2.95 did something like this). Unlinking the file would work
4126 // around those permission controls, so we only unlink if the file
4127 // has a non-zero size. We also unlink only regular files to avoid
4128 // trouble with directories/etc.
4129 //
4130 // If we fail, continue; this command is merely a best-effort attempt
4131 // to improve the odds for open().
4132
4133 // We let the name "-" mean "stdout"
4134 if (!this->is_temporary_)
4135 {
4136 if (strcmp(this->name_, "-") == 0)
4137 this->o_ = STDOUT_FILENO;
4138 else
4139 {
4140 struct stat s;
4141 if (::stat(this->name_, &s) == 0
4142 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4143 {
4144 if (s.st_size != 0)
4145 ::unlink(this->name_);
4146 else if (!parameters->options().relocatable())
4147 {
4148 // If we don't unlink the existing file, add execute
4149 // permission where read permissions already exist
4150 // and where the umask permits.
4151 int mask = ::umask(0);
4152 ::umask(mask);
4153 s.st_mode |= (s.st_mode & 0444) >> 2;
4154 ::chmod(this->name_, s.st_mode & ~mask);
4155 }
4156 }
4157
4158 int mode = parameters->options().relocatable() ? 0666 : 0777;
4159 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4160 mode);
4161 if (o < 0)
4162 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4163 this->o_ = o;
4164 }
4165 }
4166
4167 this->map();
4168 }
4169
4170 // Resize the output file.
4171
4172 void
4173 Output_file::resize(off_t file_size)
4174 {
4175 // If the mmap is mapping an anonymous memory buffer, this is easy:
4176 // just mremap to the new size. If it's mapping to a file, we want
4177 // to unmap to flush to the file, then remap after growing the file.
4178 if (this->map_is_anonymous_)
4179 {
4180 void* base = ::mremap(this->base_, this->file_size_, file_size,
4181 MREMAP_MAYMOVE);
4182 if (base == MAP_FAILED)
4183 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4184 this->base_ = static_cast<unsigned char*>(base);
4185 this->file_size_ = file_size;
4186 }
4187 else
4188 {
4189 this->unmap();
4190 this->file_size_ = file_size;
4191 if (!this->map_no_anonymous())
4192 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4193 }
4194 }
4195
4196 // Map an anonymous block of memory which will later be written to the
4197 // file. Return whether the map succeeded.
4198
4199 bool
4200 Output_file::map_anonymous()
4201 {
4202 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4203 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4204 if (base != MAP_FAILED)
4205 {
4206 this->map_is_anonymous_ = true;
4207 this->base_ = static_cast<unsigned char*>(base);
4208 return true;
4209 }
4210 return false;
4211 }
4212
4213 // Map the file into memory. Return whether the mapping succeeded.
4214
4215 bool
4216 Output_file::map_no_anonymous()
4217 {
4218 const int o = this->o_;
4219
4220 // If the output file is not a regular file, don't try to mmap it;
4221 // instead, we'll mmap a block of memory (an anonymous buffer), and
4222 // then later write the buffer to the file.
4223 void* base;
4224 struct stat statbuf;
4225 if (o == STDOUT_FILENO || o == STDERR_FILENO
4226 || ::fstat(o, &statbuf) != 0
4227 || !S_ISREG(statbuf.st_mode)
4228 || this->is_temporary_)
4229 return false;
4230
4231 // Ensure that we have disk space available for the file. If we
4232 // don't do this, it is possible that we will call munmap, close,
4233 // and exit with dirty buffers still in the cache with no assigned
4234 // disk blocks. If the disk is out of space at that point, the
4235 // output file will wind up incomplete, but we will have already
4236 // exited. The alternative to fallocate would be to use fdatasync,
4237 // but that would be a more significant performance hit.
4238 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4239 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4240
4241 // Map the file into memory.
4242 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4243 MAP_SHARED, o, 0);
4244
4245 // The mmap call might fail because of file system issues: the file
4246 // system might not support mmap at all, or it might not support
4247 // mmap with PROT_WRITE.
4248 if (base == MAP_FAILED)
4249 return false;
4250
4251 this->map_is_anonymous_ = false;
4252 this->base_ = static_cast<unsigned char*>(base);
4253 return true;
4254 }
4255
4256 // Map the file into memory.
4257
4258 void
4259 Output_file::map()
4260 {
4261 if (this->map_no_anonymous())
4262 return;
4263
4264 // The mmap call might fail because of file system issues: the file
4265 // system might not support mmap at all, or it might not support
4266 // mmap with PROT_WRITE. I'm not sure which errno values we will
4267 // see in all cases, so if the mmap fails for any reason and we
4268 // don't care about file contents, try for an anonymous map.
4269 if (this->map_anonymous())
4270 return;
4271
4272 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4273 this->name_, static_cast<unsigned long>(this->file_size_),
4274 strerror(errno));
4275 }
4276
4277 // Unmap the file from memory.
4278
4279 void
4280 Output_file::unmap()
4281 {
4282 if (::munmap(this->base_, this->file_size_) < 0)
4283 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4284 this->base_ = NULL;
4285 }
4286
4287 // Close the output file.
4288
4289 void
4290 Output_file::close()
4291 {
4292 // If the map isn't file-backed, we need to write it now.
4293 if (this->map_is_anonymous_ && !this->is_temporary_)
4294 {
4295 size_t bytes_to_write = this->file_size_;
4296 size_t offset = 0;
4297 while (bytes_to_write > 0)
4298 {
4299 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4300 bytes_to_write);
4301 if (bytes_written == 0)
4302 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4303 else if (bytes_written < 0)
4304 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4305 else
4306 {
4307 bytes_to_write -= bytes_written;
4308 offset += bytes_written;
4309 }
4310 }
4311 }
4312 this->unmap();
4313
4314 // We don't close stdout or stderr
4315 if (this->o_ != STDOUT_FILENO
4316 && this->o_ != STDERR_FILENO
4317 && !this->is_temporary_)
4318 if (::close(this->o_) < 0)
4319 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4320 this->o_ = -1;
4321 }
4322
4323 // Instantiate the templates we need. We could use the configure
4324 // script to restrict this to only the ones for implemented targets.
4325
4326 #ifdef HAVE_TARGET_32_LITTLE
4327 template
4328 off_t
4329 Output_section::add_input_section<32, false>(
4330 Sized_relobj<32, false>* object,
4331 unsigned int shndx,
4332 const char* secname,
4333 const elfcpp::Shdr<32, false>& shdr,
4334 unsigned int reloc_shndx,
4335 bool have_sections_script);
4336 #endif
4337
4338 #ifdef HAVE_TARGET_32_BIG
4339 template
4340 off_t
4341 Output_section::add_input_section<32, true>(
4342 Sized_relobj<32, true>* object,
4343 unsigned int shndx,
4344 const char* secname,
4345 const elfcpp::Shdr<32, true>& shdr,
4346 unsigned int reloc_shndx,
4347 bool have_sections_script);
4348 #endif
4349
4350 #ifdef HAVE_TARGET_64_LITTLE
4351 template
4352 off_t
4353 Output_section::add_input_section<64, false>(
4354 Sized_relobj<64, false>* object,
4355 unsigned int shndx,
4356 const char* secname,
4357 const elfcpp::Shdr<64, false>& shdr,
4358 unsigned int reloc_shndx,
4359 bool have_sections_script);
4360 #endif
4361
4362 #ifdef HAVE_TARGET_64_BIG
4363 template
4364 off_t
4365 Output_section::add_input_section<64, true>(
4366 Sized_relobj<64, true>* object,
4367 unsigned int shndx,
4368 const char* secname,
4369 const elfcpp::Shdr<64, true>& shdr,
4370 unsigned int reloc_shndx,
4371 bool have_sections_script);
4372 #endif
4373
4374 #ifdef HAVE_TARGET_32_LITTLE
4375 template
4376 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4377 #endif
4378
4379 #ifdef HAVE_TARGET_32_BIG
4380 template
4381 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4382 #endif
4383
4384 #ifdef HAVE_TARGET_64_LITTLE
4385 template
4386 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4387 #endif
4388
4389 #ifdef HAVE_TARGET_64_BIG
4390 template
4391 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4392 #endif
4393
4394 #ifdef HAVE_TARGET_32_LITTLE
4395 template
4396 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4397 #endif
4398
4399 #ifdef HAVE_TARGET_32_BIG
4400 template
4401 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4402 #endif
4403
4404 #ifdef HAVE_TARGET_64_LITTLE
4405 template
4406 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4407 #endif
4408
4409 #ifdef HAVE_TARGET_64_BIG
4410 template
4411 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4412 #endif
4413
4414 #ifdef HAVE_TARGET_32_LITTLE
4415 template
4416 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4417 #endif
4418
4419 #ifdef HAVE_TARGET_32_BIG
4420 template
4421 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4422 #endif
4423
4424 #ifdef HAVE_TARGET_64_LITTLE
4425 template
4426 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4427 #endif
4428
4429 #ifdef HAVE_TARGET_64_BIG
4430 template
4431 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4432 #endif
4433
4434 #ifdef HAVE_TARGET_32_LITTLE
4435 template
4436 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4437 #endif
4438
4439 #ifdef HAVE_TARGET_32_BIG
4440 template
4441 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4442 #endif
4443
4444 #ifdef HAVE_TARGET_64_LITTLE
4445 template
4446 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4447 #endif
4448
4449 #ifdef HAVE_TARGET_64_BIG
4450 template
4451 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4452 #endif
4453
4454 #ifdef HAVE_TARGET_32_LITTLE
4455 template
4456 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4457 #endif
4458
4459 #ifdef HAVE_TARGET_32_BIG
4460 template
4461 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4462 #endif
4463
4464 #ifdef HAVE_TARGET_64_LITTLE
4465 template
4466 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4467 #endif
4468
4469 #ifdef HAVE_TARGET_64_BIG
4470 template
4471 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4472 #endif
4473
4474 #ifdef HAVE_TARGET_32_LITTLE
4475 template
4476 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4477 #endif
4478
4479 #ifdef HAVE_TARGET_32_BIG
4480 template
4481 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4482 #endif
4483
4484 #ifdef HAVE_TARGET_64_LITTLE
4485 template
4486 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4487 #endif
4488
4489 #ifdef HAVE_TARGET_64_BIG
4490 template
4491 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4492 #endif
4493
4494 #ifdef HAVE_TARGET_32_LITTLE
4495 template
4496 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4497 #endif
4498
4499 #ifdef HAVE_TARGET_32_BIG
4500 template
4501 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4502 #endif
4503
4504 #ifdef HAVE_TARGET_64_LITTLE
4505 template
4506 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4507 #endif
4508
4509 #ifdef HAVE_TARGET_64_BIG
4510 template
4511 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4512 #endif
4513
4514 #ifdef HAVE_TARGET_32_LITTLE
4515 template
4516 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4517 #endif
4518
4519 #ifdef HAVE_TARGET_32_BIG
4520 template
4521 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4522 #endif
4523
4524 #ifdef HAVE_TARGET_64_LITTLE
4525 template
4526 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4527 #endif
4528
4529 #ifdef HAVE_TARGET_64_BIG
4530 template
4531 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4532 #endif
4533
4534 #ifdef HAVE_TARGET_32_LITTLE
4535 template
4536 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4537 #endif
4538
4539 #ifdef HAVE_TARGET_32_BIG
4540 template
4541 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4542 #endif
4543
4544 #ifdef HAVE_TARGET_64_LITTLE
4545 template
4546 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4547 #endif
4548
4549 #ifdef HAVE_TARGET_64_BIG
4550 template
4551 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4552 #endif
4553
4554 #ifdef HAVE_TARGET_32_LITTLE
4555 template
4556 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4557 #endif
4558
4559 #ifdef HAVE_TARGET_32_BIG
4560 template
4561 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4562 #endif
4563
4564 #ifdef HAVE_TARGET_64_LITTLE
4565 template
4566 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4567 #endif
4568
4569 #ifdef HAVE_TARGET_64_BIG
4570 template
4571 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4572 #endif
4573
4574 #ifdef HAVE_TARGET_32_LITTLE
4575 template
4576 class Output_data_group<32, false>;
4577 #endif
4578
4579 #ifdef HAVE_TARGET_32_BIG
4580 template
4581 class Output_data_group<32, true>;
4582 #endif
4583
4584 #ifdef HAVE_TARGET_64_LITTLE
4585 template
4586 class Output_data_group<64, false>;
4587 #endif
4588
4589 #ifdef HAVE_TARGET_64_BIG
4590 template
4591 class Output_data_group<64, true>;
4592 #endif
4593
4594 #ifdef HAVE_TARGET_32_LITTLE
4595 template
4596 class Output_data_got<32, false>;
4597 #endif
4598
4599 #ifdef HAVE_TARGET_32_BIG
4600 template
4601 class Output_data_got<32, true>;
4602 #endif
4603
4604 #ifdef HAVE_TARGET_64_LITTLE
4605 template
4606 class Output_data_got<64, false>;
4607 #endif
4608
4609 #ifdef HAVE_TARGET_64_BIG
4610 template
4611 class Output_data_got<64, true>;
4612 #endif
4613
4614 } // End namespace gold.
This page took 0.160612 seconds and 5 git commands to generate.