PR gold/12372
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "layout.h"
46 #include "output.h"
47
48 // For systems without mmap support.
49 #ifndef HAVE_MMAP
50 # define mmap gold_mmap
51 # define munmap gold_munmap
52 # define mremap gold_mremap
53 # ifndef MAP_FAILED
54 # define MAP_FAILED (reinterpret_cast<void*>(-1))
55 # endif
56 # ifndef PROT_READ
57 # define PROT_READ 0
58 # endif
59 # ifndef PROT_WRITE
60 # define PROT_WRITE 0
61 # endif
62 # ifndef MAP_PRIVATE
63 # define MAP_PRIVATE 0
64 # endif
65 # ifndef MAP_ANONYMOUS
66 # define MAP_ANONYMOUS 0
67 # endif
68 # ifndef MAP_SHARED
69 # define MAP_SHARED 0
70 # endif
71
72 # ifndef ENOSYS
73 # define ENOSYS EINVAL
74 # endif
75
76 static void *
77 gold_mmap(void *, size_t, int, int, int, off_t)
78 {
79 errno = ENOSYS;
80 return MAP_FAILED;
81 }
82
83 static int
84 gold_munmap(void *, size_t)
85 {
86 errno = ENOSYS;
87 return -1;
88 }
89
90 static void *
91 gold_mremap(void *, size_t, size_t, int)
92 {
93 errno = ENOSYS;
94 return MAP_FAILED;
95 }
96
97 #endif
98
99 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
100 # define mremap gold_mremap
101 extern "C" void *gold_mremap(void *, size_t, size_t, int);
102 #endif
103
104 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
105 #ifndef MAP_ANONYMOUS
106 # define MAP_ANONYMOUS MAP_ANON
107 #endif
108
109 #ifndef MREMAP_MAYMOVE
110 # define MREMAP_MAYMOVE 1
111 #endif
112
113 #ifndef HAVE_POSIX_FALLOCATE
114 // A dummy, non general, version of posix_fallocate. Here we just set
115 // the file size and hope that there is enough disk space. FIXME: We
116 // could allocate disk space by walking block by block and writing a
117 // zero byte into each block.
118 static int
119 posix_fallocate(int o, off_t offset, off_t len)
120 {
121 return ftruncate(o, offset + len);
122 }
123 #endif // !defined(HAVE_POSIX_FALLOCATE)
124
125 // Mingw does not have S_ISLNK.
126 #ifndef S_ISLNK
127 # define S_ISLNK(mode) 0
128 #endif
129
130 namespace gold
131 {
132
133 // Output_data variables.
134
135 bool Output_data::allocated_sizes_are_fixed;
136
137 // Output_data methods.
138
139 Output_data::~Output_data()
140 {
141 }
142
143 // Return the default alignment for the target size.
144
145 uint64_t
146 Output_data::default_alignment()
147 {
148 return Output_data::default_alignment_for_size(
149 parameters->target().get_size());
150 }
151
152 // Return the default alignment for a size--32 or 64.
153
154 uint64_t
155 Output_data::default_alignment_for_size(int size)
156 {
157 if (size == 32)
158 return 4;
159 else if (size == 64)
160 return 8;
161 else
162 gold_unreachable();
163 }
164
165 // Output_section_header methods. This currently assumes that the
166 // segment and section lists are complete at construction time.
167
168 Output_section_headers::Output_section_headers(
169 const Layout* layout,
170 const Layout::Segment_list* segment_list,
171 const Layout::Section_list* section_list,
172 const Layout::Section_list* unattached_section_list,
173 const Stringpool* secnamepool,
174 const Output_section* shstrtab_section)
175 : layout_(layout),
176 segment_list_(segment_list),
177 section_list_(section_list),
178 unattached_section_list_(unattached_section_list),
179 secnamepool_(secnamepool),
180 shstrtab_section_(shstrtab_section)
181 {
182 }
183
184 // Compute the current data size.
185
186 off_t
187 Output_section_headers::do_size() const
188 {
189 // Count all the sections. Start with 1 for the null section.
190 off_t count = 1;
191 if (!parameters->options().relocatable())
192 {
193 for (Layout::Segment_list::const_iterator p =
194 this->segment_list_->begin();
195 p != this->segment_list_->end();
196 ++p)
197 if ((*p)->type() == elfcpp::PT_LOAD)
198 count += (*p)->output_section_count();
199 }
200 else
201 {
202 for (Layout::Section_list::const_iterator p =
203 this->section_list_->begin();
204 p != this->section_list_->end();
205 ++p)
206 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
207 ++count;
208 }
209 count += this->unattached_section_list_->size();
210
211 const int size = parameters->target().get_size();
212 int shdr_size;
213 if (size == 32)
214 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
215 else if (size == 64)
216 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
217 else
218 gold_unreachable();
219
220 return count * shdr_size;
221 }
222
223 // Write out the section headers.
224
225 void
226 Output_section_headers::do_write(Output_file* of)
227 {
228 switch (parameters->size_and_endianness())
229 {
230 #ifdef HAVE_TARGET_32_LITTLE
231 case Parameters::TARGET_32_LITTLE:
232 this->do_sized_write<32, false>(of);
233 break;
234 #endif
235 #ifdef HAVE_TARGET_32_BIG
236 case Parameters::TARGET_32_BIG:
237 this->do_sized_write<32, true>(of);
238 break;
239 #endif
240 #ifdef HAVE_TARGET_64_LITTLE
241 case Parameters::TARGET_64_LITTLE:
242 this->do_sized_write<64, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_64_BIG
246 case Parameters::TARGET_64_BIG:
247 this->do_sized_write<64, true>(of);
248 break;
249 #endif
250 default:
251 gold_unreachable();
252 }
253 }
254
255 template<int size, bool big_endian>
256 void
257 Output_section_headers::do_sized_write(Output_file* of)
258 {
259 off_t all_shdrs_size = this->data_size();
260 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
261
262 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
263 unsigned char* v = view;
264
265 {
266 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
267 oshdr.put_sh_name(0);
268 oshdr.put_sh_type(elfcpp::SHT_NULL);
269 oshdr.put_sh_flags(0);
270 oshdr.put_sh_addr(0);
271 oshdr.put_sh_offset(0);
272
273 size_t section_count = (this->data_size()
274 / elfcpp::Elf_sizes<size>::shdr_size);
275 if (section_count < elfcpp::SHN_LORESERVE)
276 oshdr.put_sh_size(0);
277 else
278 oshdr.put_sh_size(section_count);
279
280 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
281 if (shstrndx < elfcpp::SHN_LORESERVE)
282 oshdr.put_sh_link(0);
283 else
284 oshdr.put_sh_link(shstrndx);
285
286 size_t segment_count = this->segment_list_->size();
287 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
288
289 oshdr.put_sh_addralign(0);
290 oshdr.put_sh_entsize(0);
291 }
292
293 v += shdr_size;
294
295 unsigned int shndx = 1;
296 if (!parameters->options().relocatable())
297 {
298 for (Layout::Segment_list::const_iterator p =
299 this->segment_list_->begin();
300 p != this->segment_list_->end();
301 ++p)
302 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
303 this->secnamepool_,
304 v,
305 &shndx);
306 }
307 else
308 {
309 for (Layout::Section_list::const_iterator p =
310 this->section_list_->begin();
311 p != this->section_list_->end();
312 ++p)
313 {
314 // We do unallocated sections below, except that group
315 // sections have to come first.
316 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
317 && (*p)->type() != elfcpp::SHT_GROUP)
318 continue;
319 gold_assert(shndx == (*p)->out_shndx());
320 elfcpp::Shdr_write<size, big_endian> oshdr(v);
321 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
322 v += shdr_size;
323 ++shndx;
324 }
325 }
326
327 for (Layout::Section_list::const_iterator p =
328 this->unattached_section_list_->begin();
329 p != this->unattached_section_list_->end();
330 ++p)
331 {
332 // For a relocatable link, we did unallocated group sections
333 // above, since they have to come first.
334 if ((*p)->type() == elfcpp::SHT_GROUP
335 && parameters->options().relocatable())
336 continue;
337 gold_assert(shndx == (*p)->out_shndx());
338 elfcpp::Shdr_write<size, big_endian> oshdr(v);
339 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
340 v += shdr_size;
341 ++shndx;
342 }
343
344 of->write_output_view(this->offset(), all_shdrs_size, view);
345 }
346
347 // Output_segment_header methods.
348
349 Output_segment_headers::Output_segment_headers(
350 const Layout::Segment_list& segment_list)
351 : segment_list_(segment_list)
352 {
353 this->set_current_data_size_for_child(this->do_size());
354 }
355
356 void
357 Output_segment_headers::do_write(Output_file* of)
358 {
359 switch (parameters->size_and_endianness())
360 {
361 #ifdef HAVE_TARGET_32_LITTLE
362 case Parameters::TARGET_32_LITTLE:
363 this->do_sized_write<32, false>(of);
364 break;
365 #endif
366 #ifdef HAVE_TARGET_32_BIG
367 case Parameters::TARGET_32_BIG:
368 this->do_sized_write<32, true>(of);
369 break;
370 #endif
371 #ifdef HAVE_TARGET_64_LITTLE
372 case Parameters::TARGET_64_LITTLE:
373 this->do_sized_write<64, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_64_BIG
377 case Parameters::TARGET_64_BIG:
378 this->do_sized_write<64, true>(of);
379 break;
380 #endif
381 default:
382 gold_unreachable();
383 }
384 }
385
386 template<int size, bool big_endian>
387 void
388 Output_segment_headers::do_sized_write(Output_file* of)
389 {
390 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
391 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
392 gold_assert(all_phdrs_size == this->data_size());
393 unsigned char* view = of->get_output_view(this->offset(),
394 all_phdrs_size);
395 unsigned char* v = view;
396 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
397 p != this->segment_list_.end();
398 ++p)
399 {
400 elfcpp::Phdr_write<size, big_endian> ophdr(v);
401 (*p)->write_header(&ophdr);
402 v += phdr_size;
403 }
404
405 gold_assert(v - view == all_phdrs_size);
406
407 of->write_output_view(this->offset(), all_phdrs_size, view);
408 }
409
410 off_t
411 Output_segment_headers::do_size() const
412 {
413 const int size = parameters->target().get_size();
414 int phdr_size;
415 if (size == 32)
416 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
417 else if (size == 64)
418 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
419 else
420 gold_unreachable();
421
422 return this->segment_list_.size() * phdr_size;
423 }
424
425 // Output_file_header methods.
426
427 Output_file_header::Output_file_header(const Target* target,
428 const Symbol_table* symtab,
429 const Output_segment_headers* osh)
430 : target_(target),
431 symtab_(symtab),
432 segment_header_(osh),
433 section_header_(NULL),
434 shstrtab_(NULL)
435 {
436 this->set_data_size(this->do_size());
437 }
438
439 // Set the section table information for a file header.
440
441 void
442 Output_file_header::set_section_info(const Output_section_headers* shdrs,
443 const Output_section* shstrtab)
444 {
445 this->section_header_ = shdrs;
446 this->shstrtab_ = shstrtab;
447 }
448
449 // Write out the file header.
450
451 void
452 Output_file_header::do_write(Output_file* of)
453 {
454 gold_assert(this->offset() == 0);
455
456 switch (parameters->size_and_endianness())
457 {
458 #ifdef HAVE_TARGET_32_LITTLE
459 case Parameters::TARGET_32_LITTLE:
460 this->do_sized_write<32, false>(of);
461 break;
462 #endif
463 #ifdef HAVE_TARGET_32_BIG
464 case Parameters::TARGET_32_BIG:
465 this->do_sized_write<32, true>(of);
466 break;
467 #endif
468 #ifdef HAVE_TARGET_64_LITTLE
469 case Parameters::TARGET_64_LITTLE:
470 this->do_sized_write<64, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_64_BIG
474 case Parameters::TARGET_64_BIG:
475 this->do_sized_write<64, true>(of);
476 break;
477 #endif
478 default:
479 gold_unreachable();
480 }
481 }
482
483 // Write out the file header with appropriate size and endianness.
484
485 template<int size, bool big_endian>
486 void
487 Output_file_header::do_sized_write(Output_file* of)
488 {
489 gold_assert(this->offset() == 0);
490
491 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
492 unsigned char* view = of->get_output_view(0, ehdr_size);
493 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
494
495 unsigned char e_ident[elfcpp::EI_NIDENT];
496 memset(e_ident, 0, elfcpp::EI_NIDENT);
497 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
498 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
499 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
500 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
501 if (size == 32)
502 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
503 else if (size == 64)
504 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
505 else
506 gold_unreachable();
507 e_ident[elfcpp::EI_DATA] = (big_endian
508 ? elfcpp::ELFDATA2MSB
509 : elfcpp::ELFDATA2LSB);
510 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
511 oehdr.put_e_ident(e_ident);
512
513 elfcpp::ET e_type;
514 if (parameters->options().relocatable())
515 e_type = elfcpp::ET_REL;
516 else if (parameters->options().output_is_position_independent())
517 e_type = elfcpp::ET_DYN;
518 else
519 e_type = elfcpp::ET_EXEC;
520 oehdr.put_e_type(e_type);
521
522 oehdr.put_e_machine(this->target_->machine_code());
523 oehdr.put_e_version(elfcpp::EV_CURRENT);
524
525 oehdr.put_e_entry(this->entry<size>());
526
527 if (this->segment_header_ == NULL)
528 oehdr.put_e_phoff(0);
529 else
530 oehdr.put_e_phoff(this->segment_header_->offset());
531
532 oehdr.put_e_shoff(this->section_header_->offset());
533 oehdr.put_e_flags(this->target_->processor_specific_flags());
534 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
535
536 if (this->segment_header_ == NULL)
537 {
538 oehdr.put_e_phentsize(0);
539 oehdr.put_e_phnum(0);
540 }
541 else
542 {
543 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
544 size_t phnum = (this->segment_header_->data_size()
545 / elfcpp::Elf_sizes<size>::phdr_size);
546 if (phnum > elfcpp::PN_XNUM)
547 phnum = elfcpp::PN_XNUM;
548 oehdr.put_e_phnum(phnum);
549 }
550
551 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
552 size_t section_count = (this->section_header_->data_size()
553 / elfcpp::Elf_sizes<size>::shdr_size);
554
555 if (section_count < elfcpp::SHN_LORESERVE)
556 oehdr.put_e_shnum(this->section_header_->data_size()
557 / elfcpp::Elf_sizes<size>::shdr_size);
558 else
559 oehdr.put_e_shnum(0);
560
561 unsigned int shstrndx = this->shstrtab_->out_shndx();
562 if (shstrndx < elfcpp::SHN_LORESERVE)
563 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
564 else
565 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
566
567 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
568 // the e_ident field.
569 parameters->target().adjust_elf_header(view, ehdr_size);
570
571 of->write_output_view(0, ehdr_size, view);
572 }
573
574 // Return the value to use for the entry address.
575
576 template<int size>
577 typename elfcpp::Elf_types<size>::Elf_Addr
578 Output_file_header::entry()
579 {
580 const bool should_issue_warning = (parameters->options().entry() != NULL
581 && !parameters->options().relocatable()
582 && !parameters->options().shared());
583 const char* entry = parameters->entry();
584 Symbol* sym = this->symtab_->lookup(entry);
585
586 typename Sized_symbol<size>::Value_type v;
587 if (sym != NULL)
588 {
589 Sized_symbol<size>* ssym;
590 ssym = this->symtab_->get_sized_symbol<size>(sym);
591 if (!ssym->is_defined() && should_issue_warning)
592 gold_warning("entry symbol '%s' exists but is not defined", entry);
593 v = ssym->value();
594 }
595 else
596 {
597 // We couldn't find the entry symbol. See if we can parse it as
598 // a number. This supports, e.g., -e 0x1000.
599 char* endptr;
600 v = strtoull(entry, &endptr, 0);
601 if (*endptr != '\0')
602 {
603 if (should_issue_warning)
604 gold_warning("cannot find entry symbol '%s'", entry);
605 v = 0;
606 }
607 }
608
609 return v;
610 }
611
612 // Compute the current data size.
613
614 off_t
615 Output_file_header::do_size() const
616 {
617 const int size = parameters->target().get_size();
618 if (size == 32)
619 return elfcpp::Elf_sizes<32>::ehdr_size;
620 else if (size == 64)
621 return elfcpp::Elf_sizes<64>::ehdr_size;
622 else
623 gold_unreachable();
624 }
625
626 // Output_data_const methods.
627
628 void
629 Output_data_const::do_write(Output_file* of)
630 {
631 of->write(this->offset(), this->data_.data(), this->data_.size());
632 }
633
634 // Output_data_const_buffer methods.
635
636 void
637 Output_data_const_buffer::do_write(Output_file* of)
638 {
639 of->write(this->offset(), this->p_, this->data_size());
640 }
641
642 // Output_section_data methods.
643
644 // Record the output section, and set the entry size and such.
645
646 void
647 Output_section_data::set_output_section(Output_section* os)
648 {
649 gold_assert(this->output_section_ == NULL);
650 this->output_section_ = os;
651 this->do_adjust_output_section(os);
652 }
653
654 // Return the section index of the output section.
655
656 unsigned int
657 Output_section_data::do_out_shndx() const
658 {
659 gold_assert(this->output_section_ != NULL);
660 return this->output_section_->out_shndx();
661 }
662
663 // Set the alignment, which means we may need to update the alignment
664 // of the output section.
665
666 void
667 Output_section_data::set_addralign(uint64_t addralign)
668 {
669 this->addralign_ = addralign;
670 if (this->output_section_ != NULL
671 && this->output_section_->addralign() < addralign)
672 this->output_section_->set_addralign(addralign);
673 }
674
675 // Output_data_strtab methods.
676
677 // Set the final data size.
678
679 void
680 Output_data_strtab::set_final_data_size()
681 {
682 this->strtab_->set_string_offsets();
683 this->set_data_size(this->strtab_->get_strtab_size());
684 }
685
686 // Write out a string table.
687
688 void
689 Output_data_strtab::do_write(Output_file* of)
690 {
691 this->strtab_->write(of, this->offset());
692 }
693
694 // Output_reloc methods.
695
696 // A reloc against a global symbol.
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Symbol* gsym,
701 unsigned int type,
702 Output_data* od,
703 Address address,
704 bool is_relative,
705 bool is_symbolless)
706 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
707 is_relative_(is_relative), is_symbolless_(is_symbolless),
708 is_section_symbol_(false), shndx_(INVALID_CODE)
709 {
710 // this->type_ is a bitfield; make sure TYPE fits.
711 gold_assert(this->type_ == type);
712 this->u1_.gsym = gsym;
713 this->u2_.od = od;
714 if (dynamic)
715 this->set_needs_dynsym_index();
716 }
717
718 template<bool dynamic, int size, bool big_endian>
719 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
720 Symbol* gsym,
721 unsigned int type,
722 Sized_relobj<size, big_endian>* relobj,
723 unsigned int shndx,
724 Address address,
725 bool is_relative,
726 bool is_symbolless)
727 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
728 is_relative_(is_relative), is_symbolless_(is_symbolless),
729 is_section_symbol_(false), shndx_(shndx)
730 {
731 gold_assert(shndx != INVALID_CODE);
732 // this->type_ is a bitfield; make sure TYPE fits.
733 gold_assert(this->type_ == type);
734 this->u1_.gsym = gsym;
735 this->u2_.relobj = relobj;
736 if (dynamic)
737 this->set_needs_dynsym_index();
738 }
739
740 // A reloc against a local symbol.
741
742 template<bool dynamic, int size, bool big_endian>
743 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
744 Sized_relobj<size, big_endian>* relobj,
745 unsigned int local_sym_index,
746 unsigned int type,
747 Output_data* od,
748 Address address,
749 bool is_relative,
750 bool is_symbolless,
751 bool is_section_symbol)
752 : address_(address), local_sym_index_(local_sym_index), type_(type),
753 is_relative_(is_relative), is_symbolless_(is_symbolless),
754 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
755 {
756 gold_assert(local_sym_index != GSYM_CODE
757 && local_sym_index != INVALID_CODE);
758 // this->type_ is a bitfield; make sure TYPE fits.
759 gold_assert(this->type_ == type);
760 this->u1_.relobj = relobj;
761 this->u2_.od = od;
762 if (dynamic)
763 this->set_needs_dynsym_index();
764 }
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 Sized_relobj<size, big_endian>* relobj,
769 unsigned int local_sym_index,
770 unsigned int type,
771 unsigned int shndx,
772 Address address,
773 bool is_relative,
774 bool is_symbolless,
775 bool is_section_symbol)
776 : address_(address), local_sym_index_(local_sym_index), type_(type),
777 is_relative_(is_relative), is_symbolless_(is_symbolless),
778 is_section_symbol_(is_section_symbol), shndx_(shndx)
779 {
780 gold_assert(local_sym_index != GSYM_CODE
781 && local_sym_index != INVALID_CODE);
782 gold_assert(shndx != INVALID_CODE);
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = relobj;
786 this->u2_.relobj = relobj;
787 if (dynamic)
788 this->set_needs_dynsym_index();
789 }
790
791 // A reloc against the STT_SECTION symbol of an output section.
792
793 template<bool dynamic, int size, bool big_endian>
794 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
795 Output_section* os,
796 unsigned int type,
797 Output_data* od,
798 Address address)
799 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
800 is_relative_(false), is_symbolless_(false),
801 is_section_symbol_(true), shndx_(INVALID_CODE)
802 {
803 // this->type_ is a bitfield; make sure TYPE fits.
804 gold_assert(this->type_ == type);
805 this->u1_.os = os;
806 this->u2_.od = od;
807 if (dynamic)
808 this->set_needs_dynsym_index();
809 else
810 os->set_needs_symtab_index();
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 Output_section* os,
816 unsigned int type,
817 Sized_relobj<size, big_endian>* relobj,
818 unsigned int shndx,
819 Address address)
820 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
821 is_relative_(false), is_symbolless_(false),
822 is_section_symbol_(true), shndx_(shndx)
823 {
824 gold_assert(shndx != INVALID_CODE);
825 // this->type_ is a bitfield; make sure TYPE fits.
826 gold_assert(this->type_ == type);
827 this->u1_.os = os;
828 this->u2_.relobj = relobj;
829 if (dynamic)
830 this->set_needs_dynsym_index();
831 else
832 os->set_needs_symtab_index();
833 }
834
835 // An absolute relocation.
836
837 template<bool dynamic, int size, bool big_endian>
838 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
839 unsigned int type,
840 Output_data* od,
841 Address address)
842 : address_(address), local_sym_index_(0), type_(type),
843 is_relative_(false), is_symbolless_(false),
844 is_section_symbol_(false), shndx_(INVALID_CODE)
845 {
846 // this->type_ is a bitfield; make sure TYPE fits.
847 gold_assert(this->type_ == type);
848 this->u1_.relobj = NULL;
849 this->u2_.od = od;
850 }
851
852 template<bool dynamic, int size, bool big_endian>
853 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
854 unsigned int type,
855 Sized_relobj<size, big_endian>* relobj,
856 unsigned int shndx,
857 Address address)
858 : address_(address), local_sym_index_(0), type_(type),
859 is_relative_(false), is_symbolless_(false),
860 is_section_symbol_(false), shndx_(shndx)
861 {
862 gold_assert(shndx != INVALID_CODE);
863 // this->type_ is a bitfield; make sure TYPE fits.
864 gold_assert(this->type_ == type);
865 this->u1_.relobj = NULL;
866 this->u2_.relobj = relobj;
867 }
868
869 // A target specific relocation.
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 void* arg,
875 Output_data* od,
876 Address address)
877 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
878 is_relative_(false), is_symbolless_(false),
879 is_section_symbol_(false), shndx_(INVALID_CODE)
880 {
881 // this->type_ is a bitfield; make sure TYPE fits.
882 gold_assert(this->type_ == type);
883 this->u1_.arg = arg;
884 this->u2_.od = od;
885 }
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889 unsigned int type,
890 void* arg,
891 Sized_relobj<size, big_endian>* relobj,
892 unsigned int shndx,
893 Address address)
894 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
895 is_relative_(false), is_symbolless_(false),
896 is_section_symbol_(false), shndx_(shndx)
897 {
898 gold_assert(shndx != INVALID_CODE);
899 // this->type_ is a bitfield; make sure TYPE fits.
900 gold_assert(this->type_ == type);
901 this->u1_.arg = arg;
902 this->u2_.relobj = relobj;
903 }
904
905 // Record that we need a dynamic symbol index for this relocation.
906
907 template<bool dynamic, int size, bool big_endian>
908 void
909 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
910 set_needs_dynsym_index()
911 {
912 if (this->is_symbolless_)
913 return;
914 switch (this->local_sym_index_)
915 {
916 case INVALID_CODE:
917 gold_unreachable();
918
919 case GSYM_CODE:
920 this->u1_.gsym->set_needs_dynsym_entry();
921 break;
922
923 case SECTION_CODE:
924 this->u1_.os->set_needs_dynsym_index();
925 break;
926
927 case TARGET_CODE:
928 // The target must take care of this if necessary.
929 break;
930
931 case 0:
932 break;
933
934 default:
935 {
936 const unsigned int lsi = this->local_sym_index_;
937 Sized_relobj_file<size, big_endian>* relobj =
938 this->u1_.relobj->sized_relobj();
939 gold_assert(relobj != NULL);
940 if (!this->is_section_symbol_)
941 relobj->set_needs_output_dynsym_entry(lsi);
942 else
943 relobj->output_section(lsi)->set_needs_dynsym_index();
944 }
945 break;
946 }
947 }
948
949 // Get the symbol index of a relocation.
950
951 template<bool dynamic, int size, bool big_endian>
952 unsigned int
953 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
954 const
955 {
956 unsigned int index;
957 if (this->is_symbolless_)
958 return 0;
959 switch (this->local_sym_index_)
960 {
961 case INVALID_CODE:
962 gold_unreachable();
963
964 case GSYM_CODE:
965 if (this->u1_.gsym == NULL)
966 index = 0;
967 else if (dynamic)
968 index = this->u1_.gsym->dynsym_index();
969 else
970 index = this->u1_.gsym->symtab_index();
971 break;
972
973 case SECTION_CODE:
974 if (dynamic)
975 index = this->u1_.os->dynsym_index();
976 else
977 index = this->u1_.os->symtab_index();
978 break;
979
980 case TARGET_CODE:
981 index = parameters->target().reloc_symbol_index(this->u1_.arg,
982 this->type_);
983 break;
984
985 case 0:
986 // Relocations without symbols use a symbol index of 0.
987 index = 0;
988 break;
989
990 default:
991 {
992 const unsigned int lsi = this->local_sym_index_;
993 Sized_relobj_file<size, big_endian>* relobj =
994 this->u1_.relobj->sized_relobj();
995 gold_assert(relobj != NULL);
996 if (!this->is_section_symbol_)
997 {
998 if (dynamic)
999 index = relobj->dynsym_index(lsi);
1000 else
1001 index = relobj->symtab_index(lsi);
1002 }
1003 else
1004 {
1005 Output_section* os = relobj->output_section(lsi);
1006 gold_assert(os != NULL);
1007 if (dynamic)
1008 index = os->dynsym_index();
1009 else
1010 index = os->symtab_index();
1011 }
1012 }
1013 break;
1014 }
1015 gold_assert(index != -1U);
1016 return index;
1017 }
1018
1019 // For a local section symbol, get the address of the offset ADDEND
1020 // within the input section.
1021
1022 template<bool dynamic, int size, bool big_endian>
1023 typename elfcpp::Elf_types<size>::Elf_Addr
1024 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1025 local_section_offset(Addend addend) const
1026 {
1027 gold_assert(this->local_sym_index_ != GSYM_CODE
1028 && this->local_sym_index_ != SECTION_CODE
1029 && this->local_sym_index_ != TARGET_CODE
1030 && this->local_sym_index_ != INVALID_CODE
1031 && this->local_sym_index_ != 0
1032 && this->is_section_symbol_);
1033 const unsigned int lsi = this->local_sym_index_;
1034 Output_section* os = this->u1_.relobj->output_section(lsi);
1035 gold_assert(os != NULL);
1036 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1037 if (offset != invalid_address)
1038 return offset + addend;
1039 // This is a merge section.
1040 Sized_relobj_file<size, big_endian>* relobj =
1041 this->u1_.relobj->sized_relobj();
1042 gold_assert(relobj != NULL);
1043 offset = os->output_address(relobj, lsi, addend);
1044 gold_assert(offset != invalid_address);
1045 return offset;
1046 }
1047
1048 // Get the output address of a relocation.
1049
1050 template<bool dynamic, int size, bool big_endian>
1051 typename elfcpp::Elf_types<size>::Elf_Addr
1052 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1053 {
1054 Address address = this->address_;
1055 if (this->shndx_ != INVALID_CODE)
1056 {
1057 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1058 gold_assert(os != NULL);
1059 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1060 if (off != invalid_address)
1061 address += os->address() + off;
1062 else
1063 {
1064 Sized_relobj_file<size, big_endian>* relobj =
1065 this->u2_.relobj->sized_relobj();
1066 gold_assert(relobj != NULL);
1067 address = os->output_address(relobj, this->shndx_, address);
1068 gold_assert(address != invalid_address);
1069 }
1070 }
1071 else if (this->u2_.od != NULL)
1072 address += this->u2_.od->address();
1073 return address;
1074 }
1075
1076 // Write out the offset and info fields of a Rel or Rela relocation
1077 // entry.
1078
1079 template<bool dynamic, int size, bool big_endian>
1080 template<typename Write_rel>
1081 void
1082 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1083 Write_rel* wr) const
1084 {
1085 wr->put_r_offset(this->get_address());
1086 unsigned int sym_index = this->get_symbol_index();
1087 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1088 }
1089
1090 // Write out a Rel relocation.
1091
1092 template<bool dynamic, int size, bool big_endian>
1093 void
1094 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1095 unsigned char* pov) const
1096 {
1097 elfcpp::Rel_write<size, big_endian> orel(pov);
1098 this->write_rel(&orel);
1099 }
1100
1101 // Get the value of the symbol referred to by a Rel relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 typename elfcpp::Elf_types<size>::Elf_Addr
1105 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1106 Addend addend) const
1107 {
1108 if (this->local_sym_index_ == GSYM_CODE)
1109 {
1110 const Sized_symbol<size>* sym;
1111 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1112 return sym->value() + addend;
1113 }
1114 gold_assert(this->local_sym_index_ != SECTION_CODE
1115 && this->local_sym_index_ != TARGET_CODE
1116 && this->local_sym_index_ != INVALID_CODE
1117 && this->local_sym_index_ != 0
1118 && !this->is_section_symbol_);
1119 const unsigned int lsi = this->local_sym_index_;
1120 Sized_relobj_file<size, big_endian>* relobj =
1121 this->u1_.relobj->sized_relobj();
1122 gold_assert(relobj != NULL);
1123 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1124 return symval->value(relobj, addend);
1125 }
1126
1127 // Reloc comparison. This function sorts the dynamic relocs for the
1128 // benefit of the dynamic linker. First we sort all relative relocs
1129 // to the front. Among relative relocs, we sort by output address.
1130 // Among non-relative relocs, we sort by symbol index, then by output
1131 // address.
1132
1133 template<bool dynamic, int size, bool big_endian>
1134 int
1135 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1136 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1137 const
1138 {
1139 if (this->is_relative_)
1140 {
1141 if (!r2.is_relative_)
1142 return -1;
1143 // Otherwise sort by reloc address below.
1144 }
1145 else if (r2.is_relative_)
1146 return 1;
1147 else
1148 {
1149 unsigned int sym1 = this->get_symbol_index();
1150 unsigned int sym2 = r2.get_symbol_index();
1151 if (sym1 < sym2)
1152 return -1;
1153 else if (sym1 > sym2)
1154 return 1;
1155 // Otherwise sort by reloc address.
1156 }
1157
1158 section_offset_type addr1 = this->get_address();
1159 section_offset_type addr2 = r2.get_address();
1160 if (addr1 < addr2)
1161 return -1;
1162 else if (addr1 > addr2)
1163 return 1;
1164
1165 // Final tie breaker, in order to generate the same output on any
1166 // host: reloc type.
1167 unsigned int type1 = this->type_;
1168 unsigned int type2 = r2.type_;
1169 if (type1 < type2)
1170 return -1;
1171 else if (type1 > type2)
1172 return 1;
1173
1174 // These relocs appear to be exactly the same.
1175 return 0;
1176 }
1177
1178 // Write out a Rela relocation.
1179
1180 template<bool dynamic, int size, bool big_endian>
1181 void
1182 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1183 unsigned char* pov) const
1184 {
1185 elfcpp::Rela_write<size, big_endian> orel(pov);
1186 this->rel_.write_rel(&orel);
1187 Addend addend = this->addend_;
1188 if (this->rel_.is_target_specific())
1189 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1190 this->rel_.type(), addend);
1191 else if (this->rel_.is_symbolless())
1192 addend = this->rel_.symbol_value(addend);
1193 else if (this->rel_.is_local_section_symbol())
1194 addend = this->rel_.local_section_offset(addend);
1195 orel.put_r_addend(addend);
1196 }
1197
1198 // Output_data_reloc_base methods.
1199
1200 // Adjust the output section.
1201
1202 template<int sh_type, bool dynamic, int size, bool big_endian>
1203 void
1204 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1205 ::do_adjust_output_section(Output_section* os)
1206 {
1207 if (sh_type == elfcpp::SHT_REL)
1208 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1209 else if (sh_type == elfcpp::SHT_RELA)
1210 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1211 else
1212 gold_unreachable();
1213
1214 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1215 // static link. The backends will generate a dynamic reloc section
1216 // to hold this. In that case we don't want to link to the dynsym
1217 // section, because there isn't one.
1218 if (!dynamic)
1219 os->set_should_link_to_symtab();
1220 else if (parameters->doing_static_link())
1221 ;
1222 else
1223 os->set_should_link_to_dynsym();
1224 }
1225
1226 // Write out relocation data.
1227
1228 template<int sh_type, bool dynamic, int size, bool big_endian>
1229 void
1230 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1231 Output_file* of)
1232 {
1233 const off_t off = this->offset();
1234 const off_t oview_size = this->data_size();
1235 unsigned char* const oview = of->get_output_view(off, oview_size);
1236
1237 if (this->sort_relocs())
1238 {
1239 gold_assert(dynamic);
1240 std::sort(this->relocs_.begin(), this->relocs_.end(),
1241 Sort_relocs_comparison());
1242 }
1243
1244 unsigned char* pov = oview;
1245 for (typename Relocs::const_iterator p = this->relocs_.begin();
1246 p != this->relocs_.end();
1247 ++p)
1248 {
1249 p->write(pov);
1250 pov += reloc_size;
1251 }
1252
1253 gold_assert(pov - oview == oview_size);
1254
1255 of->write_output_view(off, oview_size, oview);
1256
1257 // We no longer need the relocation entries.
1258 this->relocs_.clear();
1259 }
1260
1261 // Class Output_relocatable_relocs.
1262
1263 template<int sh_type, int size, bool big_endian>
1264 void
1265 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1266 {
1267 this->set_data_size(this->rr_->output_reloc_count()
1268 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1269 }
1270
1271 // class Output_data_group.
1272
1273 template<int size, bool big_endian>
1274 Output_data_group<size, big_endian>::Output_data_group(
1275 Sized_relobj_file<size, big_endian>* relobj,
1276 section_size_type entry_count,
1277 elfcpp::Elf_Word flags,
1278 std::vector<unsigned int>* input_shndxes)
1279 : Output_section_data(entry_count * 4, 4, false),
1280 relobj_(relobj),
1281 flags_(flags)
1282 {
1283 this->input_shndxes_.swap(*input_shndxes);
1284 }
1285
1286 // Write out the section group, which means translating the section
1287 // indexes to apply to the output file.
1288
1289 template<int size, bool big_endian>
1290 void
1291 Output_data_group<size, big_endian>::do_write(Output_file* of)
1292 {
1293 const off_t off = this->offset();
1294 const section_size_type oview_size =
1295 convert_to_section_size_type(this->data_size());
1296 unsigned char* const oview = of->get_output_view(off, oview_size);
1297
1298 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1299 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1300 ++contents;
1301
1302 for (std::vector<unsigned int>::const_iterator p =
1303 this->input_shndxes_.begin();
1304 p != this->input_shndxes_.end();
1305 ++p, ++contents)
1306 {
1307 Output_section* os = this->relobj_->output_section(*p);
1308
1309 unsigned int output_shndx;
1310 if (os != NULL)
1311 output_shndx = os->out_shndx();
1312 else
1313 {
1314 this->relobj_->error(_("section group retained but "
1315 "group element discarded"));
1316 output_shndx = 0;
1317 }
1318
1319 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1320 }
1321
1322 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1323 gold_assert(wrote == oview_size);
1324
1325 of->write_output_view(off, oview_size, oview);
1326
1327 // We no longer need this information.
1328 this->input_shndxes_.clear();
1329 }
1330
1331 // Output_data_got::Got_entry methods.
1332
1333 // Write out the entry.
1334
1335 template<int size, bool big_endian>
1336 void
1337 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1338 {
1339 Valtype val = 0;
1340
1341 switch (this->local_sym_index_)
1342 {
1343 case GSYM_CODE:
1344 {
1345 // If the symbol is resolved locally, we need to write out the
1346 // link-time value, which will be relocated dynamically by a
1347 // RELATIVE relocation.
1348 Symbol* gsym = this->u_.gsym;
1349 if (this->use_plt_offset_ && gsym->has_plt_offset())
1350 val = (parameters->target().plt_address_for_global(gsym)
1351 + gsym->plt_offset());
1352 else
1353 {
1354 Sized_symbol<size>* sgsym;
1355 // This cast is a bit ugly. We don't want to put a
1356 // virtual method in Symbol, because we want Symbol to be
1357 // as small as possible.
1358 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1359 val = sgsym->value();
1360 }
1361 }
1362 break;
1363
1364 case CONSTANT_CODE:
1365 val = this->u_.constant;
1366 break;
1367
1368 case RESERVED_CODE:
1369 // If we're doing an incremental update, don't touch this GOT entry.
1370 if (parameters->incremental_update())
1371 return;
1372 val = this->u_.constant;
1373 break;
1374
1375 default:
1376 {
1377 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1378 const unsigned int lsi = this->local_sym_index_;
1379 const Symbol_value<size>* symval = object->local_symbol(lsi);
1380 if (!this->use_plt_offset_)
1381 val = symval->value(this->u_.object, 0);
1382 else
1383 {
1384 uint64_t plt_address =
1385 parameters->target().plt_address_for_local(object, lsi);
1386 val = plt_address + object->local_plt_offset(lsi);
1387 }
1388 }
1389 break;
1390 }
1391
1392 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1393 }
1394
1395 // Output_data_got methods.
1396
1397 // Add an entry for a global symbol to the GOT. This returns true if
1398 // this is a new GOT entry, false if the symbol already had a GOT
1399 // entry.
1400
1401 template<int size, bool big_endian>
1402 bool
1403 Output_data_got<size, big_endian>::add_global(
1404 Symbol* gsym,
1405 unsigned int got_type)
1406 {
1407 if (gsym->has_got_offset(got_type))
1408 return false;
1409
1410 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1411 gsym->set_got_offset(got_type, got_offset);
1412 return true;
1413 }
1414
1415 // Like add_global, but use the PLT offset.
1416
1417 template<int size, bool big_endian>
1418 bool
1419 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1420 unsigned int got_type)
1421 {
1422 if (gsym->has_got_offset(got_type))
1423 return false;
1424
1425 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1426 gsym->set_got_offset(got_type, got_offset);
1427 return true;
1428 }
1429
1430 // Add an entry for a global symbol to the GOT, and add a dynamic
1431 // relocation of type R_TYPE for the GOT entry.
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_global_with_rel(
1436 Symbol* gsym,
1437 unsigned int got_type,
1438 Rel_dyn* rel_dyn,
1439 unsigned int r_type)
1440 {
1441 if (gsym->has_got_offset(got_type))
1442 return;
1443
1444 unsigned int got_offset = this->add_got_entry(Got_entry());
1445 gsym->set_got_offset(got_type, got_offset);
1446 rel_dyn->add_global(gsym, r_type, this, got_offset);
1447 }
1448
1449 template<int size, bool big_endian>
1450 void
1451 Output_data_got<size, big_endian>::add_global_with_rela(
1452 Symbol* gsym,
1453 unsigned int got_type,
1454 Rela_dyn* rela_dyn,
1455 unsigned int r_type)
1456 {
1457 if (gsym->has_got_offset(got_type))
1458 return;
1459
1460 unsigned int got_offset = this->add_got_entry(Got_entry());
1461 gsym->set_got_offset(got_type, got_offset);
1462 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1463 }
1464
1465 // Add a pair of entries for a global symbol to the GOT, and add
1466 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1467 // If R_TYPE_2 == 0, add the second entry with no relocation.
1468 template<int size, bool big_endian>
1469 void
1470 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1471 Symbol* gsym,
1472 unsigned int got_type,
1473 Rel_dyn* rel_dyn,
1474 unsigned int r_type_1,
1475 unsigned int r_type_2)
1476 {
1477 if (gsym->has_got_offset(got_type))
1478 return;
1479
1480 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1481 gsym->set_got_offset(got_type, got_offset);
1482 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1483
1484 if (r_type_2 != 0)
1485 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1486 }
1487
1488 template<int size, bool big_endian>
1489 void
1490 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1491 Symbol* gsym,
1492 unsigned int got_type,
1493 Rela_dyn* rela_dyn,
1494 unsigned int r_type_1,
1495 unsigned int r_type_2)
1496 {
1497 if (gsym->has_got_offset(got_type))
1498 return;
1499
1500 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1501 gsym->set_got_offset(got_type, got_offset);
1502 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1503
1504 if (r_type_2 != 0)
1505 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1506 }
1507
1508 // Add an entry for a local symbol to the GOT. This returns true if
1509 // this is a new GOT entry, false if the symbol already has a GOT
1510 // entry.
1511
1512 template<int size, bool big_endian>
1513 bool
1514 Output_data_got<size, big_endian>::add_local(
1515 Sized_relobj_file<size, big_endian>* object,
1516 unsigned int symndx,
1517 unsigned int got_type)
1518 {
1519 if (object->local_has_got_offset(symndx, got_type))
1520 return false;
1521
1522 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1523 false));
1524 object->set_local_got_offset(symndx, got_type, got_offset);
1525 return true;
1526 }
1527
1528 // Like add_local, but use the PLT offset.
1529
1530 template<int size, bool big_endian>
1531 bool
1532 Output_data_got<size, big_endian>::add_local_plt(
1533 Sized_relobj_file<size, big_endian>* object,
1534 unsigned int symndx,
1535 unsigned int got_type)
1536 {
1537 if (object->local_has_got_offset(symndx, got_type))
1538 return false;
1539
1540 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1541 true));
1542 object->set_local_got_offset(symndx, got_type, got_offset);
1543 return true;
1544 }
1545
1546 // Add an entry for a local symbol to the GOT, and add a dynamic
1547 // relocation of type R_TYPE for the GOT entry.
1548
1549 template<int size, bool big_endian>
1550 void
1551 Output_data_got<size, big_endian>::add_local_with_rel(
1552 Sized_relobj_file<size, big_endian>* object,
1553 unsigned int symndx,
1554 unsigned int got_type,
1555 Rel_dyn* rel_dyn,
1556 unsigned int r_type)
1557 {
1558 if (object->local_has_got_offset(symndx, got_type))
1559 return;
1560
1561 unsigned int got_offset = this->add_got_entry(Got_entry());
1562 object->set_local_got_offset(symndx, got_type, got_offset);
1563 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1564 }
1565
1566 template<int size, bool big_endian>
1567 void
1568 Output_data_got<size, big_endian>::add_local_with_rela(
1569 Sized_relobj_file<size, big_endian>* object,
1570 unsigned int symndx,
1571 unsigned int got_type,
1572 Rela_dyn* rela_dyn,
1573 unsigned int r_type)
1574 {
1575 if (object->local_has_got_offset(symndx, got_type))
1576 return;
1577
1578 unsigned int got_offset = this->add_got_entry(Got_entry());
1579 object->set_local_got_offset(symndx, got_type, got_offset);
1580 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1581 }
1582
1583 // Add a pair of entries for a local symbol to the GOT, and add
1584 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1585 // If R_TYPE_2 == 0, add the second entry with no relocation.
1586 template<int size, bool big_endian>
1587 void
1588 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1589 Sized_relobj_file<size, big_endian>* object,
1590 unsigned int symndx,
1591 unsigned int shndx,
1592 unsigned int got_type,
1593 Rel_dyn* rel_dyn,
1594 unsigned int r_type_1,
1595 unsigned int r_type_2)
1596 {
1597 if (object->local_has_got_offset(symndx, got_type))
1598 return;
1599
1600 unsigned int got_offset =
1601 this->add_got_entry_pair(Got_entry(),
1602 Got_entry(object, symndx, false));
1603 object->set_local_got_offset(symndx, got_type, got_offset);
1604 Output_section* os = object->output_section(shndx);
1605 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1606
1607 if (r_type_2 != 0)
1608 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1609 }
1610
1611 template<int size, bool big_endian>
1612 void
1613 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1614 Sized_relobj_file<size, big_endian>* object,
1615 unsigned int symndx,
1616 unsigned int shndx,
1617 unsigned int got_type,
1618 Rela_dyn* rela_dyn,
1619 unsigned int r_type_1,
1620 unsigned int r_type_2)
1621 {
1622 if (object->local_has_got_offset(symndx, got_type))
1623 return;
1624
1625 unsigned int got_offset =
1626 this->add_got_entry_pair(Got_entry(),
1627 Got_entry(object, symndx, false));
1628 object->set_local_got_offset(symndx, got_type, got_offset);
1629 Output_section* os = object->output_section(shndx);
1630 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1631
1632 if (r_type_2 != 0)
1633 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1634 }
1635
1636 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1637
1638 template<int size, bool big_endian>
1639 void
1640 Output_data_got<size, big_endian>::reserve_local(
1641 unsigned int i,
1642 Sized_relobj<size, big_endian>* object,
1643 unsigned int sym_index,
1644 unsigned int got_type)
1645 {
1646 this->reserve_slot(i);
1647 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1648 }
1649
1650 // Reserve a slot in the GOT for a global symbol.
1651
1652 template<int size, bool big_endian>
1653 void
1654 Output_data_got<size, big_endian>::reserve_global(
1655 unsigned int i,
1656 Symbol* gsym,
1657 unsigned int got_type)
1658 {
1659 this->reserve_slot(i);
1660 gsym->set_got_offset(got_type, this->got_offset(i));
1661 }
1662
1663 // Write out the GOT.
1664
1665 template<int size, bool big_endian>
1666 void
1667 Output_data_got<size, big_endian>::do_write(Output_file* of)
1668 {
1669 const int add = size / 8;
1670
1671 const off_t off = this->offset();
1672 const off_t oview_size = this->data_size();
1673 unsigned char* const oview = of->get_output_view(off, oview_size);
1674
1675 unsigned char* pov = oview;
1676 for (typename Got_entries::const_iterator p = this->entries_.begin();
1677 p != this->entries_.end();
1678 ++p)
1679 {
1680 p->write(pov);
1681 pov += add;
1682 }
1683
1684 gold_assert(pov - oview == oview_size);
1685
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int size, bool big_endian>
1695 unsigned int
1696 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1708 if (got_offset == -1)
1709 gold_fallback(_("out of patch space (GOT);"
1710 " relink with --incremental-full"));
1711 unsigned int got_index = got_offset / (size / 8);
1712 gold_assert(got_index < this->entries_.size());
1713 this->entries_[got_index] = got_entry;
1714 return static_cast<unsigned int>(got_offset);
1715 }
1716 }
1717
1718 // Create a pair of new GOT entries and return the offset of the first.
1719
1720 template<int size, bool big_endian>
1721 unsigned int
1722 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1723 Got_entry got_entry_2)
1724 {
1725 if (!this->is_data_size_valid())
1726 {
1727 unsigned int got_offset;
1728 this->entries_.push_back(got_entry_1);
1729 got_offset = this->last_got_offset();
1730 this->entries_.push_back(got_entry_2);
1731 this->set_got_size();
1732 return got_offset;
1733 }
1734 else
1735 {
1736 // For an incremental update, find an available pair of slots.
1737 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1738 if (got_offset == -1)
1739 gold_fallback(_("out of patch space (GOT);"
1740 " relink with --incremental-full"));
1741 unsigned int got_index = got_offset / (size / 8);
1742 gold_assert(got_index < this->entries_.size());
1743 this->entries_[got_index] = got_entry_1;
1744 this->entries_[got_index + 1] = got_entry_2;
1745 return static_cast<unsigned int>(got_offset);
1746 }
1747 }
1748
1749 // Output_data_dynamic::Dynamic_entry methods.
1750
1751 // Write out the entry.
1752
1753 template<int size, bool big_endian>
1754 void
1755 Output_data_dynamic::Dynamic_entry::write(
1756 unsigned char* pov,
1757 const Stringpool* pool) const
1758 {
1759 typename elfcpp::Elf_types<size>::Elf_WXword val;
1760 switch (this->offset_)
1761 {
1762 case DYNAMIC_NUMBER:
1763 val = this->u_.val;
1764 break;
1765
1766 case DYNAMIC_SECTION_SIZE:
1767 val = this->u_.od->data_size();
1768 if (this->od2 != NULL)
1769 val += this->od2->data_size();
1770 break;
1771
1772 case DYNAMIC_SYMBOL:
1773 {
1774 const Sized_symbol<size>* s =
1775 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1776 val = s->value();
1777 }
1778 break;
1779
1780 case DYNAMIC_STRING:
1781 val = pool->get_offset(this->u_.str);
1782 break;
1783
1784 default:
1785 val = this->u_.od->address() + this->offset_;
1786 break;
1787 }
1788
1789 elfcpp::Dyn_write<size, big_endian> dw(pov);
1790 dw.put_d_tag(this->tag_);
1791 dw.put_d_val(val);
1792 }
1793
1794 // Output_data_dynamic methods.
1795
1796 // Adjust the output section to set the entry size.
1797
1798 void
1799 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1800 {
1801 if (parameters->target().get_size() == 32)
1802 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1803 else if (parameters->target().get_size() == 64)
1804 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1805 else
1806 gold_unreachable();
1807 }
1808
1809 // Set the final data size.
1810
1811 void
1812 Output_data_dynamic::set_final_data_size()
1813 {
1814 // Add the terminating entry if it hasn't been added.
1815 // Because of relaxation, we can run this multiple times.
1816 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1817 {
1818 int extra = parameters->options().spare_dynamic_tags();
1819 for (int i = 0; i < extra; ++i)
1820 this->add_constant(elfcpp::DT_NULL, 0);
1821 this->add_constant(elfcpp::DT_NULL, 0);
1822 }
1823
1824 int dyn_size;
1825 if (parameters->target().get_size() == 32)
1826 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1827 else if (parameters->target().get_size() == 64)
1828 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1829 else
1830 gold_unreachable();
1831 this->set_data_size(this->entries_.size() * dyn_size);
1832 }
1833
1834 // Write out the dynamic entries.
1835
1836 void
1837 Output_data_dynamic::do_write(Output_file* of)
1838 {
1839 switch (parameters->size_and_endianness())
1840 {
1841 #ifdef HAVE_TARGET_32_LITTLE
1842 case Parameters::TARGET_32_LITTLE:
1843 this->sized_write<32, false>(of);
1844 break;
1845 #endif
1846 #ifdef HAVE_TARGET_32_BIG
1847 case Parameters::TARGET_32_BIG:
1848 this->sized_write<32, true>(of);
1849 break;
1850 #endif
1851 #ifdef HAVE_TARGET_64_LITTLE
1852 case Parameters::TARGET_64_LITTLE:
1853 this->sized_write<64, false>(of);
1854 break;
1855 #endif
1856 #ifdef HAVE_TARGET_64_BIG
1857 case Parameters::TARGET_64_BIG:
1858 this->sized_write<64, true>(of);
1859 break;
1860 #endif
1861 default:
1862 gold_unreachable();
1863 }
1864 }
1865
1866 template<int size, bool big_endian>
1867 void
1868 Output_data_dynamic::sized_write(Output_file* of)
1869 {
1870 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1871
1872 const off_t offset = this->offset();
1873 const off_t oview_size = this->data_size();
1874 unsigned char* const oview = of->get_output_view(offset, oview_size);
1875
1876 unsigned char* pov = oview;
1877 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1878 p != this->entries_.end();
1879 ++p)
1880 {
1881 p->write<size, big_endian>(pov, this->pool_);
1882 pov += dyn_size;
1883 }
1884
1885 gold_assert(pov - oview == oview_size);
1886
1887 of->write_output_view(offset, oview_size, oview);
1888
1889 // We no longer need the dynamic entries.
1890 this->entries_.clear();
1891 }
1892
1893 // Class Output_symtab_xindex.
1894
1895 void
1896 Output_symtab_xindex::do_write(Output_file* of)
1897 {
1898 const off_t offset = this->offset();
1899 const off_t oview_size = this->data_size();
1900 unsigned char* const oview = of->get_output_view(offset, oview_size);
1901
1902 memset(oview, 0, oview_size);
1903
1904 if (parameters->target().is_big_endian())
1905 this->endian_do_write<true>(oview);
1906 else
1907 this->endian_do_write<false>(oview);
1908
1909 of->write_output_view(offset, oview_size, oview);
1910
1911 // We no longer need the data.
1912 this->entries_.clear();
1913 }
1914
1915 template<bool big_endian>
1916 void
1917 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1918 {
1919 for (Xindex_entries::const_iterator p = this->entries_.begin();
1920 p != this->entries_.end();
1921 ++p)
1922 {
1923 unsigned int symndx = p->first;
1924 gold_assert(symndx * 4 < this->data_size());
1925 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1926 }
1927 }
1928
1929 // Output_section::Input_section methods.
1930
1931 // Return the current data size. For an input section we store the size here.
1932 // For an Output_section_data, we have to ask it for the size.
1933
1934 off_t
1935 Output_section::Input_section::current_data_size() const
1936 {
1937 if (this->is_input_section())
1938 return this->u1_.data_size;
1939 else
1940 {
1941 this->u2_.posd->pre_finalize_data_size();
1942 return this->u2_.posd->current_data_size();
1943 }
1944 }
1945
1946 // Return the data size. For an input section we store the size here.
1947 // For an Output_section_data, we have to ask it for the size.
1948
1949 off_t
1950 Output_section::Input_section::data_size() const
1951 {
1952 if (this->is_input_section())
1953 return this->u1_.data_size;
1954 else
1955 return this->u2_.posd->data_size();
1956 }
1957
1958 // Return the object for an input section.
1959
1960 Relobj*
1961 Output_section::Input_section::relobj() const
1962 {
1963 if (this->is_input_section())
1964 return this->u2_.object;
1965 else if (this->is_merge_section())
1966 {
1967 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1968 return this->u2_.pomb->first_relobj();
1969 }
1970 else if (this->is_relaxed_input_section())
1971 return this->u2_.poris->relobj();
1972 else
1973 gold_unreachable();
1974 }
1975
1976 // Return the input section index for an input section.
1977
1978 unsigned int
1979 Output_section::Input_section::shndx() const
1980 {
1981 if (this->is_input_section())
1982 return this->shndx_;
1983 else if (this->is_merge_section())
1984 {
1985 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1986 return this->u2_.pomb->first_shndx();
1987 }
1988 else if (this->is_relaxed_input_section())
1989 return this->u2_.poris->shndx();
1990 else
1991 gold_unreachable();
1992 }
1993
1994 // Set the address and file offset.
1995
1996 void
1997 Output_section::Input_section::set_address_and_file_offset(
1998 uint64_t address,
1999 off_t file_offset,
2000 off_t section_file_offset)
2001 {
2002 if (this->is_input_section())
2003 this->u2_.object->set_section_offset(this->shndx_,
2004 file_offset - section_file_offset);
2005 else
2006 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2007 }
2008
2009 // Reset the address and file offset.
2010
2011 void
2012 Output_section::Input_section::reset_address_and_file_offset()
2013 {
2014 if (!this->is_input_section())
2015 this->u2_.posd->reset_address_and_file_offset();
2016 }
2017
2018 // Finalize the data size.
2019
2020 void
2021 Output_section::Input_section::finalize_data_size()
2022 {
2023 if (!this->is_input_section())
2024 this->u2_.posd->finalize_data_size();
2025 }
2026
2027 // Try to turn an input offset into an output offset. We want to
2028 // return the output offset relative to the start of this
2029 // Input_section in the output section.
2030
2031 inline bool
2032 Output_section::Input_section::output_offset(
2033 const Relobj* object,
2034 unsigned int shndx,
2035 section_offset_type offset,
2036 section_offset_type* poutput) const
2037 {
2038 if (!this->is_input_section())
2039 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2040 else
2041 {
2042 if (this->shndx_ != shndx || this->u2_.object != object)
2043 return false;
2044 *poutput = offset;
2045 return true;
2046 }
2047 }
2048
2049 // Return whether this is the merge section for the input section
2050 // SHNDX in OBJECT.
2051
2052 inline bool
2053 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2054 unsigned int shndx) const
2055 {
2056 if (this->is_input_section())
2057 return false;
2058 return this->u2_.posd->is_merge_section_for(object, shndx);
2059 }
2060
2061 // Write out the data. We don't have to do anything for an input
2062 // section--they are handled via Object::relocate--but this is where
2063 // we write out the data for an Output_section_data.
2064
2065 void
2066 Output_section::Input_section::write(Output_file* of)
2067 {
2068 if (!this->is_input_section())
2069 this->u2_.posd->write(of);
2070 }
2071
2072 // Write the data to a buffer. As for write(), we don't have to do
2073 // anything for an input section.
2074
2075 void
2076 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2077 {
2078 if (!this->is_input_section())
2079 this->u2_.posd->write_to_buffer(buffer);
2080 }
2081
2082 // Print to a map file.
2083
2084 void
2085 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2086 {
2087 switch (this->shndx_)
2088 {
2089 case OUTPUT_SECTION_CODE:
2090 case MERGE_DATA_SECTION_CODE:
2091 case MERGE_STRING_SECTION_CODE:
2092 this->u2_.posd->print_to_mapfile(mapfile);
2093 break;
2094
2095 case RELAXED_INPUT_SECTION_CODE:
2096 {
2097 Output_relaxed_input_section* relaxed_section =
2098 this->relaxed_input_section();
2099 mapfile->print_input_section(relaxed_section->relobj(),
2100 relaxed_section->shndx());
2101 }
2102 break;
2103 default:
2104 mapfile->print_input_section(this->u2_.object, this->shndx_);
2105 break;
2106 }
2107 }
2108
2109 // Output_section methods.
2110
2111 // Construct an Output_section. NAME will point into a Stringpool.
2112
2113 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2114 elfcpp::Elf_Xword flags)
2115 : name_(name),
2116 addralign_(0),
2117 entsize_(0),
2118 load_address_(0),
2119 link_section_(NULL),
2120 link_(0),
2121 info_section_(NULL),
2122 info_symndx_(NULL),
2123 info_(0),
2124 type_(type),
2125 flags_(flags),
2126 order_(ORDER_INVALID),
2127 out_shndx_(-1U),
2128 symtab_index_(0),
2129 dynsym_index_(0),
2130 input_sections_(),
2131 first_input_offset_(0),
2132 fills_(),
2133 postprocessing_buffer_(NULL),
2134 needs_symtab_index_(false),
2135 needs_dynsym_index_(false),
2136 should_link_to_symtab_(false),
2137 should_link_to_dynsym_(false),
2138 after_input_sections_(false),
2139 requires_postprocessing_(false),
2140 found_in_sections_clause_(false),
2141 has_load_address_(false),
2142 info_uses_section_index_(false),
2143 input_section_order_specified_(false),
2144 may_sort_attached_input_sections_(false),
2145 must_sort_attached_input_sections_(false),
2146 attached_input_sections_are_sorted_(false),
2147 is_relro_(false),
2148 is_small_section_(false),
2149 is_large_section_(false),
2150 generate_code_fills_at_write_(false),
2151 is_entsize_zero_(false),
2152 section_offsets_need_adjustment_(false),
2153 is_noload_(false),
2154 always_keeps_input_sections_(false),
2155 has_fixed_layout_(false),
2156 is_patch_space_allowed_(false),
2157 tls_offset_(0),
2158 checkpoint_(NULL),
2159 lookup_maps_(new Output_section_lookup_maps),
2160 free_list_(),
2161 patch_space_(0)
2162 {
2163 // An unallocated section has no address. Forcing this means that
2164 // we don't need special treatment for symbols defined in debug
2165 // sections.
2166 if ((flags & elfcpp::SHF_ALLOC) == 0)
2167 this->set_address(0);
2168 }
2169
2170 Output_section::~Output_section()
2171 {
2172 delete this->checkpoint_;
2173 }
2174
2175 // Set the entry size.
2176
2177 void
2178 Output_section::set_entsize(uint64_t v)
2179 {
2180 if (this->is_entsize_zero_)
2181 ;
2182 else if (this->entsize_ == 0)
2183 this->entsize_ = v;
2184 else if (this->entsize_ != v)
2185 {
2186 this->entsize_ = 0;
2187 this->is_entsize_zero_ = 1;
2188 }
2189 }
2190
2191 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2192 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2193 // relocation section which applies to this section, or 0 if none, or
2194 // -1U if more than one. Return the offset of the input section
2195 // within the output section. Return -1 if the input section will
2196 // receive special handling. In the normal case we don't always keep
2197 // track of input sections for an Output_section. Instead, each
2198 // Object keeps track of the Output_section for each of its input
2199 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2200 // track of input sections here; this is used when SECTIONS appears in
2201 // a linker script.
2202
2203 template<int size, bool big_endian>
2204 off_t
2205 Output_section::add_input_section(Layout* layout,
2206 Sized_relobj_file<size, big_endian>* object,
2207 unsigned int shndx,
2208 const char* secname,
2209 const elfcpp::Shdr<size, big_endian>& shdr,
2210 unsigned int reloc_shndx,
2211 bool have_sections_script)
2212 {
2213 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2214 if ((addralign & (addralign - 1)) != 0)
2215 {
2216 object->error(_("invalid alignment %lu for section \"%s\""),
2217 static_cast<unsigned long>(addralign), secname);
2218 addralign = 1;
2219 }
2220
2221 if (addralign > this->addralign_)
2222 this->addralign_ = addralign;
2223
2224 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2225 uint64_t entsize = shdr.get_sh_entsize();
2226
2227 // .debug_str is a mergeable string section, but is not always so
2228 // marked by compilers. Mark manually here so we can optimize.
2229 if (strcmp(secname, ".debug_str") == 0)
2230 {
2231 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2232 entsize = 1;
2233 }
2234
2235 this->update_flags_for_input_section(sh_flags);
2236 this->set_entsize(entsize);
2237
2238 // If this is a SHF_MERGE section, we pass all the input sections to
2239 // a Output_data_merge. We don't try to handle relocations for such
2240 // a section. We don't try to handle empty merge sections--they
2241 // mess up the mappings, and are useless anyhow.
2242 // FIXME: Need to handle merge sections during incremental update.
2243 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2244 && reloc_shndx == 0
2245 && shdr.get_sh_size() > 0
2246 && !parameters->incremental())
2247 {
2248 // Keep information about merged input sections for rebuilding fast
2249 // lookup maps if we have sections-script or we do relaxation.
2250 bool keeps_input_sections = (this->always_keeps_input_sections_
2251 || have_sections_script
2252 || parameters->target().may_relax());
2253
2254 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2255 addralign, keeps_input_sections))
2256 {
2257 // Tell the relocation routines that they need to call the
2258 // output_offset method to determine the final address.
2259 return -1;
2260 }
2261 }
2262
2263 section_size_type input_section_size = shdr.get_sh_size();
2264 section_size_type uncompressed_size;
2265 if (object->section_is_compressed(shndx, &uncompressed_size))
2266 input_section_size = uncompressed_size;
2267
2268 off_t offset_in_section;
2269 off_t aligned_offset_in_section;
2270 if (this->has_fixed_layout())
2271 {
2272 // For incremental updates, find a chunk of unused space in the section.
2273 offset_in_section = this->free_list_.allocate(input_section_size,
2274 addralign, 0);
2275 if (offset_in_section == -1)
2276 gold_fallback(_("out of patch space in section %s; "
2277 "relink with --incremental-full"),
2278 this->name());
2279 aligned_offset_in_section = offset_in_section;
2280 }
2281 else
2282 {
2283 offset_in_section = this->current_data_size_for_child();
2284 aligned_offset_in_section = align_address(offset_in_section,
2285 addralign);
2286 this->set_current_data_size_for_child(aligned_offset_in_section
2287 + input_section_size);
2288 }
2289
2290 // Determine if we want to delay code-fill generation until the output
2291 // section is written. When the target is relaxing, we want to delay fill
2292 // generating to avoid adjusting them during relaxation. Also, if we are
2293 // sorting input sections we must delay fill generation.
2294 if (!this->generate_code_fills_at_write_
2295 && !have_sections_script
2296 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2297 && parameters->target().has_code_fill()
2298 && (parameters->target().may_relax()
2299 || parameters->options().section_ordering_file()))
2300 {
2301 gold_assert(this->fills_.empty());
2302 this->generate_code_fills_at_write_ = true;
2303 }
2304
2305 if (aligned_offset_in_section > offset_in_section
2306 && !this->generate_code_fills_at_write_
2307 && !have_sections_script
2308 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2309 && parameters->target().has_code_fill())
2310 {
2311 // We need to add some fill data. Using fill_list_ when
2312 // possible is an optimization, since we will often have fill
2313 // sections without input sections.
2314 off_t fill_len = aligned_offset_in_section - offset_in_section;
2315 if (this->input_sections_.empty())
2316 this->fills_.push_back(Fill(offset_in_section, fill_len));
2317 else
2318 {
2319 std::string fill_data(parameters->target().code_fill(fill_len));
2320 Output_data_const* odc = new Output_data_const(fill_data, 1);
2321 this->input_sections_.push_back(Input_section(odc));
2322 }
2323 }
2324
2325 // We need to keep track of this section if we are already keeping
2326 // track of sections, or if we are relaxing. Also, if this is a
2327 // section which requires sorting, or which may require sorting in
2328 // the future, we keep track of the sections. If the
2329 // --section-ordering-file option is used to specify the order of
2330 // sections, we need to keep track of sections.
2331 if (this->always_keeps_input_sections_
2332 || have_sections_script
2333 || !this->input_sections_.empty()
2334 || this->may_sort_attached_input_sections()
2335 || this->must_sort_attached_input_sections()
2336 || parameters->options().user_set_Map()
2337 || parameters->target().may_relax()
2338 || parameters->options().section_ordering_file())
2339 {
2340 Input_section isecn(object, shndx, input_section_size, addralign);
2341 if (parameters->options().section_ordering_file())
2342 {
2343 unsigned int section_order_index =
2344 layout->find_section_order_index(std::string(secname));
2345 if (section_order_index != 0)
2346 {
2347 isecn.set_section_order_index(section_order_index);
2348 this->set_input_section_order_specified();
2349 }
2350 }
2351 if (this->has_fixed_layout())
2352 {
2353 // For incremental updates, finalize the address and offset now.
2354 uint64_t addr = this->address();
2355 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2356 aligned_offset_in_section,
2357 this->offset());
2358 }
2359 this->input_sections_.push_back(isecn);
2360 }
2361
2362 return aligned_offset_in_section;
2363 }
2364
2365 // Add arbitrary data to an output section.
2366
2367 void
2368 Output_section::add_output_section_data(Output_section_data* posd)
2369 {
2370 Input_section inp(posd);
2371 this->add_output_section_data(&inp);
2372
2373 if (posd->is_data_size_valid())
2374 {
2375 off_t offset_in_section;
2376 if (this->has_fixed_layout())
2377 {
2378 // For incremental updates, find a chunk of unused space.
2379 offset_in_section = this->free_list_.allocate(posd->data_size(),
2380 posd->addralign(), 0);
2381 if (offset_in_section == -1)
2382 gold_fallback(_("out of patch space in section %s; "
2383 "relink with --incremental-full"),
2384 this->name());
2385 // Finalize the address and offset now.
2386 uint64_t addr = this->address();
2387 off_t offset = this->offset();
2388 posd->set_address_and_file_offset(addr + offset_in_section,
2389 offset + offset_in_section);
2390 }
2391 else
2392 {
2393 offset_in_section = this->current_data_size_for_child();
2394 off_t aligned_offset_in_section = align_address(offset_in_section,
2395 posd->addralign());
2396 this->set_current_data_size_for_child(aligned_offset_in_section
2397 + posd->data_size());
2398 }
2399 }
2400 else if (this->has_fixed_layout())
2401 {
2402 // For incremental updates, arrange for the data to have a fixed layout.
2403 // This will mean that additions to the data must be allocated from
2404 // free space within the containing output section.
2405 uint64_t addr = this->address();
2406 posd->set_address(addr);
2407 posd->set_file_offset(0);
2408 // FIXME: This should eventually be unreachable.
2409 // gold_unreachable();
2410 }
2411 }
2412
2413 // Add a relaxed input section.
2414
2415 void
2416 Output_section::add_relaxed_input_section(Layout* layout,
2417 Output_relaxed_input_section* poris,
2418 const std::string& name)
2419 {
2420 Input_section inp(poris);
2421
2422 // If the --section-ordering-file option is used to specify the order of
2423 // sections, we need to keep track of sections.
2424 if (parameters->options().section_ordering_file())
2425 {
2426 unsigned int section_order_index =
2427 layout->find_section_order_index(name);
2428 if (section_order_index != 0)
2429 {
2430 inp.set_section_order_index(section_order_index);
2431 this->set_input_section_order_specified();
2432 }
2433 }
2434
2435 this->add_output_section_data(&inp);
2436 if (this->lookup_maps_->is_valid())
2437 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2438 poris->shndx(), poris);
2439
2440 // For a relaxed section, we use the current data size. Linker scripts
2441 // get all the input sections, including relaxed one from an output
2442 // section and add them back to them same output section to compute the
2443 // output section size. If we do not account for sizes of relaxed input
2444 // sections, an output section would be incorrectly sized.
2445 off_t offset_in_section = this->current_data_size_for_child();
2446 off_t aligned_offset_in_section = align_address(offset_in_section,
2447 poris->addralign());
2448 this->set_current_data_size_for_child(aligned_offset_in_section
2449 + poris->current_data_size());
2450 }
2451
2452 // Add arbitrary data to an output section by Input_section.
2453
2454 void
2455 Output_section::add_output_section_data(Input_section* inp)
2456 {
2457 if (this->input_sections_.empty())
2458 this->first_input_offset_ = this->current_data_size_for_child();
2459
2460 this->input_sections_.push_back(*inp);
2461
2462 uint64_t addralign = inp->addralign();
2463 if (addralign > this->addralign_)
2464 this->addralign_ = addralign;
2465
2466 inp->set_output_section(this);
2467 }
2468
2469 // Add a merge section to an output section.
2470
2471 void
2472 Output_section::add_output_merge_section(Output_section_data* posd,
2473 bool is_string, uint64_t entsize)
2474 {
2475 Input_section inp(posd, is_string, entsize);
2476 this->add_output_section_data(&inp);
2477 }
2478
2479 // Add an input section to a SHF_MERGE section.
2480
2481 bool
2482 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2483 uint64_t flags, uint64_t entsize,
2484 uint64_t addralign,
2485 bool keeps_input_sections)
2486 {
2487 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2488
2489 // We only merge strings if the alignment is not more than the
2490 // character size. This could be handled, but it's unusual.
2491 if (is_string && addralign > entsize)
2492 return false;
2493
2494 // We cannot restore merged input section states.
2495 gold_assert(this->checkpoint_ == NULL);
2496
2497 // Look up merge sections by required properties.
2498 // Currently, we only invalidate the lookup maps in script processing
2499 // and relaxation. We should not have done either when we reach here.
2500 // So we assume that the lookup maps are valid to simply code.
2501 gold_assert(this->lookup_maps_->is_valid());
2502 Merge_section_properties msp(is_string, entsize, addralign);
2503 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2504 bool is_new = false;
2505 if (pomb != NULL)
2506 {
2507 gold_assert(pomb->is_string() == is_string
2508 && pomb->entsize() == entsize
2509 && pomb->addralign() == addralign);
2510 }
2511 else
2512 {
2513 // Create a new Output_merge_data or Output_merge_string_data.
2514 if (!is_string)
2515 pomb = new Output_merge_data(entsize, addralign);
2516 else
2517 {
2518 switch (entsize)
2519 {
2520 case 1:
2521 pomb = new Output_merge_string<char>(addralign);
2522 break;
2523 case 2:
2524 pomb = new Output_merge_string<uint16_t>(addralign);
2525 break;
2526 case 4:
2527 pomb = new Output_merge_string<uint32_t>(addralign);
2528 break;
2529 default:
2530 return false;
2531 }
2532 }
2533 // If we need to do script processing or relaxation, we need to keep
2534 // the original input sections to rebuild the fast lookup maps.
2535 if (keeps_input_sections)
2536 pomb->set_keeps_input_sections();
2537 is_new = true;
2538 }
2539
2540 if (pomb->add_input_section(object, shndx))
2541 {
2542 // Add new merge section to this output section and link merge
2543 // section properties to new merge section in map.
2544 if (is_new)
2545 {
2546 this->add_output_merge_section(pomb, is_string, entsize);
2547 this->lookup_maps_->add_merge_section(msp, pomb);
2548 }
2549
2550 // Add input section to new merge section and link input section to new
2551 // merge section in map.
2552 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2553 return true;
2554 }
2555 else
2556 {
2557 // If add_input_section failed, delete new merge section to avoid
2558 // exporting empty merge sections in Output_section::get_input_section.
2559 if (is_new)
2560 delete pomb;
2561 return false;
2562 }
2563 }
2564
2565 // Build a relaxation map to speed up relaxation of existing input sections.
2566 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2567
2568 void
2569 Output_section::build_relaxation_map(
2570 const Input_section_list& input_sections,
2571 size_t limit,
2572 Relaxation_map* relaxation_map) const
2573 {
2574 for (size_t i = 0; i < limit; ++i)
2575 {
2576 const Input_section& is(input_sections[i]);
2577 if (is.is_input_section() || is.is_relaxed_input_section())
2578 {
2579 Section_id sid(is.relobj(), is.shndx());
2580 (*relaxation_map)[sid] = i;
2581 }
2582 }
2583 }
2584
2585 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2586 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2587 // indices of INPUT_SECTIONS.
2588
2589 void
2590 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2591 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2592 const Relaxation_map& map,
2593 Input_section_list* input_sections)
2594 {
2595 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2596 {
2597 Output_relaxed_input_section* poris = relaxed_sections[i];
2598 Section_id sid(poris->relobj(), poris->shndx());
2599 Relaxation_map::const_iterator p = map.find(sid);
2600 gold_assert(p != map.end());
2601 gold_assert((*input_sections)[p->second].is_input_section());
2602
2603 // Remember section order index of original input section
2604 // if it is set. Copy it to the relaxed input section.
2605 unsigned int soi =
2606 (*input_sections)[p->second].section_order_index();
2607 (*input_sections)[p->second] = Input_section(poris);
2608 (*input_sections)[p->second].set_section_order_index(soi);
2609 }
2610 }
2611
2612 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2613 // is a vector of pointers to Output_relaxed_input_section or its derived
2614 // classes. The relaxed sections must correspond to existing input sections.
2615
2616 void
2617 Output_section::convert_input_sections_to_relaxed_sections(
2618 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2619 {
2620 gold_assert(parameters->target().may_relax());
2621
2622 // We want to make sure that restore_states does not undo the effect of
2623 // this. If there is no checkpoint active, just search the current
2624 // input section list and replace the sections there. If there is
2625 // a checkpoint, also replace the sections there.
2626
2627 // By default, we look at the whole list.
2628 size_t limit = this->input_sections_.size();
2629
2630 if (this->checkpoint_ != NULL)
2631 {
2632 // Replace input sections with relaxed input section in the saved
2633 // copy of the input section list.
2634 if (this->checkpoint_->input_sections_saved())
2635 {
2636 Relaxation_map map;
2637 this->build_relaxation_map(
2638 *(this->checkpoint_->input_sections()),
2639 this->checkpoint_->input_sections()->size(),
2640 &map);
2641 this->convert_input_sections_in_list_to_relaxed_sections(
2642 relaxed_sections,
2643 map,
2644 this->checkpoint_->input_sections());
2645 }
2646 else
2647 {
2648 // We have not copied the input section list yet. Instead, just
2649 // look at the portion that would be saved.
2650 limit = this->checkpoint_->input_sections_size();
2651 }
2652 }
2653
2654 // Convert input sections in input_section_list.
2655 Relaxation_map map;
2656 this->build_relaxation_map(this->input_sections_, limit, &map);
2657 this->convert_input_sections_in_list_to_relaxed_sections(
2658 relaxed_sections,
2659 map,
2660 &this->input_sections_);
2661
2662 // Update fast look-up map.
2663 if (this->lookup_maps_->is_valid())
2664 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2665 {
2666 Output_relaxed_input_section* poris = relaxed_sections[i];
2667 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2668 poris->shndx(), poris);
2669 }
2670 }
2671
2672 // Update the output section flags based on input section flags.
2673
2674 void
2675 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2676 {
2677 // If we created the section with SHF_ALLOC clear, we set the
2678 // address. If we are now setting the SHF_ALLOC flag, we need to
2679 // undo that.
2680 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2681 && (flags & elfcpp::SHF_ALLOC) != 0)
2682 this->mark_address_invalid();
2683
2684 this->flags_ |= (flags
2685 & (elfcpp::SHF_WRITE
2686 | elfcpp::SHF_ALLOC
2687 | elfcpp::SHF_EXECINSTR));
2688
2689 if ((flags & elfcpp::SHF_MERGE) == 0)
2690 this->flags_ &=~ elfcpp::SHF_MERGE;
2691 else
2692 {
2693 if (this->current_data_size_for_child() == 0)
2694 this->flags_ |= elfcpp::SHF_MERGE;
2695 }
2696
2697 if ((flags & elfcpp::SHF_STRINGS) == 0)
2698 this->flags_ &=~ elfcpp::SHF_STRINGS;
2699 else
2700 {
2701 if (this->current_data_size_for_child() == 0)
2702 this->flags_ |= elfcpp::SHF_STRINGS;
2703 }
2704 }
2705
2706 // Find the merge section into which an input section with index SHNDX in
2707 // OBJECT has been added. Return NULL if none found.
2708
2709 Output_section_data*
2710 Output_section::find_merge_section(const Relobj* object,
2711 unsigned int shndx) const
2712 {
2713 if (!this->lookup_maps_->is_valid())
2714 this->build_lookup_maps();
2715 return this->lookup_maps_->find_merge_section(object, shndx);
2716 }
2717
2718 // Build the lookup maps for merge and relaxed sections. This is needs
2719 // to be declared as a const methods so that it is callable with a const
2720 // Output_section pointer. The method only updates states of the maps.
2721
2722 void
2723 Output_section::build_lookup_maps() const
2724 {
2725 this->lookup_maps_->clear();
2726 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2727 p != this->input_sections_.end();
2728 ++p)
2729 {
2730 if (p->is_merge_section())
2731 {
2732 Output_merge_base* pomb = p->output_merge_base();
2733 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2734 pomb->addralign());
2735 this->lookup_maps_->add_merge_section(msp, pomb);
2736 for (Output_merge_base::Input_sections::const_iterator is =
2737 pomb->input_sections_begin();
2738 is != pomb->input_sections_end();
2739 ++is)
2740 {
2741 const Const_section_id& csid = *is;
2742 this->lookup_maps_->add_merge_input_section(csid.first,
2743 csid.second, pomb);
2744 }
2745
2746 }
2747 else if (p->is_relaxed_input_section())
2748 {
2749 Output_relaxed_input_section* poris = p->relaxed_input_section();
2750 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2751 poris->shndx(), poris);
2752 }
2753 }
2754 }
2755
2756 // Find an relaxed input section corresponding to an input section
2757 // in OBJECT with index SHNDX.
2758
2759 const Output_relaxed_input_section*
2760 Output_section::find_relaxed_input_section(const Relobj* object,
2761 unsigned int shndx) const
2762 {
2763 if (!this->lookup_maps_->is_valid())
2764 this->build_lookup_maps();
2765 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2766 }
2767
2768 // Given an address OFFSET relative to the start of input section
2769 // SHNDX in OBJECT, return whether this address is being included in
2770 // the final link. This should only be called if SHNDX in OBJECT has
2771 // a special mapping.
2772
2773 bool
2774 Output_section::is_input_address_mapped(const Relobj* object,
2775 unsigned int shndx,
2776 off_t offset) const
2777 {
2778 // Look at the Output_section_data_maps first.
2779 const Output_section_data* posd = this->find_merge_section(object, shndx);
2780 if (posd == NULL)
2781 posd = this->find_relaxed_input_section(object, shndx);
2782
2783 if (posd != NULL)
2784 {
2785 section_offset_type output_offset;
2786 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2787 gold_assert(found);
2788 return output_offset != -1;
2789 }
2790
2791 // Fall back to the slow look-up.
2792 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2793 p != this->input_sections_.end();
2794 ++p)
2795 {
2796 section_offset_type output_offset;
2797 if (p->output_offset(object, shndx, offset, &output_offset))
2798 return output_offset != -1;
2799 }
2800
2801 // By default we assume that the address is mapped. This should
2802 // only be called after we have passed all sections to Layout. At
2803 // that point we should know what we are discarding.
2804 return true;
2805 }
2806
2807 // Given an address OFFSET relative to the start of input section
2808 // SHNDX in object OBJECT, return the output offset relative to the
2809 // start of the input section in the output section. This should only
2810 // be called if SHNDX in OBJECT has a special mapping.
2811
2812 section_offset_type
2813 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2814 section_offset_type offset) const
2815 {
2816 // This can only be called meaningfully when we know the data size
2817 // of this.
2818 gold_assert(this->is_data_size_valid());
2819
2820 // Look at the Output_section_data_maps first.
2821 const Output_section_data* posd = this->find_merge_section(object, shndx);
2822 if (posd == NULL)
2823 posd = this->find_relaxed_input_section(object, shndx);
2824 if (posd != NULL)
2825 {
2826 section_offset_type output_offset;
2827 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2828 gold_assert(found);
2829 return output_offset;
2830 }
2831
2832 // Fall back to the slow look-up.
2833 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2834 p != this->input_sections_.end();
2835 ++p)
2836 {
2837 section_offset_type output_offset;
2838 if (p->output_offset(object, shndx, offset, &output_offset))
2839 return output_offset;
2840 }
2841 gold_unreachable();
2842 }
2843
2844 // Return the output virtual address of OFFSET relative to the start
2845 // of input section SHNDX in object OBJECT.
2846
2847 uint64_t
2848 Output_section::output_address(const Relobj* object, unsigned int shndx,
2849 off_t offset) const
2850 {
2851 uint64_t addr = this->address() + this->first_input_offset_;
2852
2853 // Look at the Output_section_data_maps first.
2854 const Output_section_data* posd = this->find_merge_section(object, shndx);
2855 if (posd == NULL)
2856 posd = this->find_relaxed_input_section(object, shndx);
2857 if (posd != NULL && posd->is_address_valid())
2858 {
2859 section_offset_type output_offset;
2860 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2861 gold_assert(found);
2862 return posd->address() + output_offset;
2863 }
2864
2865 // Fall back to the slow look-up.
2866 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2867 p != this->input_sections_.end();
2868 ++p)
2869 {
2870 addr = align_address(addr, p->addralign());
2871 section_offset_type output_offset;
2872 if (p->output_offset(object, shndx, offset, &output_offset))
2873 {
2874 if (output_offset == -1)
2875 return -1ULL;
2876 return addr + output_offset;
2877 }
2878 addr += p->data_size();
2879 }
2880
2881 // If we get here, it means that we don't know the mapping for this
2882 // input section. This might happen in principle if
2883 // add_input_section were called before add_output_section_data.
2884 // But it should never actually happen.
2885
2886 gold_unreachable();
2887 }
2888
2889 // Find the output address of the start of the merged section for
2890 // input section SHNDX in object OBJECT.
2891
2892 bool
2893 Output_section::find_starting_output_address(const Relobj* object,
2894 unsigned int shndx,
2895 uint64_t* paddr) const
2896 {
2897 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2898 // Looking up the merge section map does not always work as we sometimes
2899 // find a merge section without its address set.
2900 uint64_t addr = this->address() + this->first_input_offset_;
2901 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2902 p != this->input_sections_.end();
2903 ++p)
2904 {
2905 addr = align_address(addr, p->addralign());
2906
2907 // It would be nice if we could use the existing output_offset
2908 // method to get the output offset of input offset 0.
2909 // Unfortunately we don't know for sure that input offset 0 is
2910 // mapped at all.
2911 if (p->is_merge_section_for(object, shndx))
2912 {
2913 *paddr = addr;
2914 return true;
2915 }
2916
2917 addr += p->data_size();
2918 }
2919
2920 // We couldn't find a merge output section for this input section.
2921 return false;
2922 }
2923
2924 // Update the data size of an Output_section.
2925
2926 void
2927 Output_section::update_data_size()
2928 {
2929 if (this->input_sections_.empty())
2930 return;
2931
2932 if (this->must_sort_attached_input_sections()
2933 || this->input_section_order_specified())
2934 this->sort_attached_input_sections();
2935
2936 off_t off = this->first_input_offset_;
2937 for (Input_section_list::iterator p = this->input_sections_.begin();
2938 p != this->input_sections_.end();
2939 ++p)
2940 {
2941 off = align_address(off, p->addralign());
2942 off += p->current_data_size();
2943 }
2944
2945 this->set_current_data_size_for_child(off);
2946 }
2947
2948 // Set the data size of an Output_section. This is where we handle
2949 // setting the addresses of any Output_section_data objects.
2950
2951 void
2952 Output_section::set_final_data_size()
2953 {
2954 off_t data_size;
2955
2956 if (this->input_sections_.empty())
2957 data_size = this->current_data_size_for_child();
2958 else
2959 {
2960 if (this->must_sort_attached_input_sections()
2961 || this->input_section_order_specified())
2962 this->sort_attached_input_sections();
2963
2964 uint64_t address = this->address();
2965 off_t startoff = this->offset();
2966 off_t off = startoff + this->first_input_offset_;
2967 for (Input_section_list::iterator p = this->input_sections_.begin();
2968 p != this->input_sections_.end();
2969 ++p)
2970 {
2971 off = align_address(off, p->addralign());
2972 p->set_address_and_file_offset(address + (off - startoff), off,
2973 startoff);
2974 off += p->data_size();
2975 }
2976 data_size = off - startoff;
2977 }
2978
2979 // For full incremental links, we want to allocate some patch space
2980 // in most sections for subsequent incremental updates.
2981 if (this->is_patch_space_allowed_ && parameters->incremental_full())
2982 {
2983 double pct = parameters->options().incremental_patch();
2984 off_t extra = static_cast<off_t>(data_size * pct);
2985 off_t new_size = align_address(data_size + extra, this->addralign());
2986 this->patch_space_ = new_size - data_size;
2987 gold_debug(DEBUG_INCREMENTAL,
2988 "set_final_data_size: %08lx + %08lx: section %s",
2989 static_cast<long>(data_size),
2990 static_cast<long>(this->patch_space_),
2991 this->name());
2992 data_size = new_size;
2993 }
2994
2995 this->set_data_size(data_size);
2996 }
2997
2998 // Reset the address and file offset.
2999
3000 void
3001 Output_section::do_reset_address_and_file_offset()
3002 {
3003 // An unallocated section has no address. Forcing this means that
3004 // we don't need special treatment for symbols defined in debug
3005 // sections. We do the same in the constructor. This does not
3006 // apply to NOLOAD sections though.
3007 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3008 this->set_address(0);
3009
3010 for (Input_section_list::iterator p = this->input_sections_.begin();
3011 p != this->input_sections_.end();
3012 ++p)
3013 p->reset_address_and_file_offset();
3014
3015 // Remove any patch space that was added in set_final_data_size.
3016 if (this->patch_space_ > 0)
3017 {
3018 this->set_current_data_size_for_child(this->current_data_size_for_child()
3019 - this->patch_space_);
3020 this->patch_space_ = 0;
3021 }
3022 }
3023
3024 // Return true if address and file offset have the values after reset.
3025
3026 bool
3027 Output_section::do_address_and_file_offset_have_reset_values() const
3028 {
3029 if (this->is_offset_valid())
3030 return false;
3031
3032 // An unallocated section has address 0 after its construction or a reset.
3033 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3034 return this->is_address_valid() && this->address() == 0;
3035 else
3036 return !this->is_address_valid();
3037 }
3038
3039 // Set the TLS offset. Called only for SHT_TLS sections.
3040
3041 void
3042 Output_section::do_set_tls_offset(uint64_t tls_base)
3043 {
3044 this->tls_offset_ = this->address() - tls_base;
3045 }
3046
3047 // In a few cases we need to sort the input sections attached to an
3048 // output section. This is used to implement the type of constructor
3049 // priority ordering implemented by the GNU linker, in which the
3050 // priority becomes part of the section name and the sections are
3051 // sorted by name. We only do this for an output section if we see an
3052 // attached input section matching ".ctors.*", ".dtors.*",
3053 // ".init_array.*" or ".fini_array.*".
3054
3055 class Output_section::Input_section_sort_entry
3056 {
3057 public:
3058 Input_section_sort_entry()
3059 : input_section_(), index_(-1U), section_has_name_(false),
3060 section_name_()
3061 { }
3062
3063 Input_section_sort_entry(const Input_section& input_section,
3064 unsigned int index,
3065 bool must_sort_attached_input_sections)
3066 : input_section_(input_section), index_(index),
3067 section_has_name_(input_section.is_input_section()
3068 || input_section.is_relaxed_input_section())
3069 {
3070 if (this->section_has_name_
3071 && must_sort_attached_input_sections)
3072 {
3073 // This is only called single-threaded from Layout::finalize,
3074 // so it is OK to lock. Unfortunately we have no way to pass
3075 // in a Task token.
3076 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3077 Object* obj = (input_section.is_input_section()
3078 ? input_section.relobj()
3079 : input_section.relaxed_input_section()->relobj());
3080 Task_lock_obj<Object> tl(dummy_task, obj);
3081
3082 // This is a slow operation, which should be cached in
3083 // Layout::layout if this becomes a speed problem.
3084 this->section_name_ = obj->section_name(input_section.shndx());
3085 }
3086 }
3087
3088 // Return the Input_section.
3089 const Input_section&
3090 input_section() const
3091 {
3092 gold_assert(this->index_ != -1U);
3093 return this->input_section_;
3094 }
3095
3096 // The index of this entry in the original list. This is used to
3097 // make the sort stable.
3098 unsigned int
3099 index() const
3100 {
3101 gold_assert(this->index_ != -1U);
3102 return this->index_;
3103 }
3104
3105 // Whether there is a section name.
3106 bool
3107 section_has_name() const
3108 { return this->section_has_name_; }
3109
3110 // The section name.
3111 const std::string&
3112 section_name() const
3113 {
3114 gold_assert(this->section_has_name_);
3115 return this->section_name_;
3116 }
3117
3118 // Return true if the section name has a priority. This is assumed
3119 // to be true if it has a dot after the initial dot.
3120 bool
3121 has_priority() const
3122 {
3123 gold_assert(this->section_has_name_);
3124 return this->section_name_.find('.', 1) != std::string::npos;
3125 }
3126
3127 // Return the priority. Believe it or not, gcc encodes the priority
3128 // differently for .ctors/.dtors and .init_array/.fini_array
3129 // sections.
3130 unsigned int
3131 get_priority() const
3132 {
3133 gold_assert(this->section_has_name_);
3134 bool is_ctors;
3135 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3136 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3137 is_ctors = true;
3138 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3139 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3140 is_ctors = false;
3141 else
3142 return 0;
3143 char* end;
3144 unsigned long prio = strtoul((this->section_name_.c_str()
3145 + (is_ctors ? 7 : 12)),
3146 &end, 10);
3147 if (*end != '\0')
3148 return 0;
3149 else if (is_ctors)
3150 return 65535 - prio;
3151 else
3152 return prio;
3153 }
3154
3155 // Return true if this an input file whose base name matches
3156 // FILE_NAME. The base name must have an extension of ".o", and
3157 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3158 // This is to match crtbegin.o as well as crtbeginS.o without
3159 // getting confused by other possibilities. Overall matching the
3160 // file name this way is a dreadful hack, but the GNU linker does it
3161 // in order to better support gcc, and we need to be compatible.
3162 bool
3163 match_file_name(const char* file_name) const
3164 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3165
3166 // Returns 1 if THIS should appear before S in section order, -1 if S
3167 // appears before THIS and 0 if they are not comparable.
3168 int
3169 compare_section_ordering(const Input_section_sort_entry& s) const
3170 {
3171 unsigned int this_secn_index = this->input_section_.section_order_index();
3172 unsigned int s_secn_index = s.input_section().section_order_index();
3173 if (this_secn_index > 0 && s_secn_index > 0)
3174 {
3175 if (this_secn_index < s_secn_index)
3176 return 1;
3177 else if (this_secn_index > s_secn_index)
3178 return -1;
3179 }
3180 return 0;
3181 }
3182
3183 private:
3184 // The Input_section we are sorting.
3185 Input_section input_section_;
3186 // The index of this Input_section in the original list.
3187 unsigned int index_;
3188 // Whether this Input_section has a section name--it won't if this
3189 // is some random Output_section_data.
3190 bool section_has_name_;
3191 // The section name if there is one.
3192 std::string section_name_;
3193 };
3194
3195 // Return true if S1 should come before S2 in the output section.
3196
3197 bool
3198 Output_section::Input_section_sort_compare::operator()(
3199 const Output_section::Input_section_sort_entry& s1,
3200 const Output_section::Input_section_sort_entry& s2) const
3201 {
3202 // crtbegin.o must come first.
3203 bool s1_begin = s1.match_file_name("crtbegin");
3204 bool s2_begin = s2.match_file_name("crtbegin");
3205 if (s1_begin || s2_begin)
3206 {
3207 if (!s1_begin)
3208 return false;
3209 if (!s2_begin)
3210 return true;
3211 return s1.index() < s2.index();
3212 }
3213
3214 // crtend.o must come last.
3215 bool s1_end = s1.match_file_name("crtend");
3216 bool s2_end = s2.match_file_name("crtend");
3217 if (s1_end || s2_end)
3218 {
3219 if (!s1_end)
3220 return true;
3221 if (!s2_end)
3222 return false;
3223 return s1.index() < s2.index();
3224 }
3225
3226 // We sort all the sections with no names to the end.
3227 if (!s1.section_has_name() || !s2.section_has_name())
3228 {
3229 if (s1.section_has_name())
3230 return true;
3231 if (s2.section_has_name())
3232 return false;
3233 return s1.index() < s2.index();
3234 }
3235
3236 // A section with a priority follows a section without a priority.
3237 bool s1_has_priority = s1.has_priority();
3238 bool s2_has_priority = s2.has_priority();
3239 if (s1_has_priority && !s2_has_priority)
3240 return false;
3241 if (!s1_has_priority && s2_has_priority)
3242 return true;
3243
3244 // Check if a section order exists for these sections through a section
3245 // ordering file. If sequence_num is 0, an order does not exist.
3246 int sequence_num = s1.compare_section_ordering(s2);
3247 if (sequence_num != 0)
3248 return sequence_num == 1;
3249
3250 // Otherwise we sort by name.
3251 int compare = s1.section_name().compare(s2.section_name());
3252 if (compare != 0)
3253 return compare < 0;
3254
3255 // Otherwise we keep the input order.
3256 return s1.index() < s2.index();
3257 }
3258
3259 // Return true if S1 should come before S2 in an .init_array or .fini_array
3260 // output section.
3261
3262 bool
3263 Output_section::Input_section_sort_init_fini_compare::operator()(
3264 const Output_section::Input_section_sort_entry& s1,
3265 const Output_section::Input_section_sort_entry& s2) const
3266 {
3267 // We sort all the sections with no names to the end.
3268 if (!s1.section_has_name() || !s2.section_has_name())
3269 {
3270 if (s1.section_has_name())
3271 return true;
3272 if (s2.section_has_name())
3273 return false;
3274 return s1.index() < s2.index();
3275 }
3276
3277 // A section without a priority follows a section with a priority.
3278 // This is the reverse of .ctors and .dtors sections.
3279 bool s1_has_priority = s1.has_priority();
3280 bool s2_has_priority = s2.has_priority();
3281 if (s1_has_priority && !s2_has_priority)
3282 return true;
3283 if (!s1_has_priority && s2_has_priority)
3284 return false;
3285
3286 // .ctors and .dtors sections without priority come after
3287 // .init_array and .fini_array sections without priority.
3288 if (!s1_has_priority
3289 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3290 && s1.section_name() != s2.section_name())
3291 return false;
3292 if (!s2_has_priority
3293 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3294 && s2.section_name() != s1.section_name())
3295 return true;
3296
3297 // Sort by priority if we can.
3298 if (s1_has_priority)
3299 {
3300 unsigned int s1_prio = s1.get_priority();
3301 unsigned int s2_prio = s2.get_priority();
3302 if (s1_prio < s2_prio)
3303 return true;
3304 else if (s1_prio > s2_prio)
3305 return false;
3306 }
3307
3308 // Check if a section order exists for these sections through a section
3309 // ordering file. If sequence_num is 0, an order does not exist.
3310 int sequence_num = s1.compare_section_ordering(s2);
3311 if (sequence_num != 0)
3312 return sequence_num == 1;
3313
3314 // Otherwise we sort by name.
3315 int compare = s1.section_name().compare(s2.section_name());
3316 if (compare != 0)
3317 return compare < 0;
3318
3319 // Otherwise we keep the input order.
3320 return s1.index() < s2.index();
3321 }
3322
3323 // Return true if S1 should come before S2. Sections that do not match
3324 // any pattern in the section ordering file are placed ahead of the sections
3325 // that match some pattern.
3326
3327 bool
3328 Output_section::Input_section_sort_section_order_index_compare::operator()(
3329 const Output_section::Input_section_sort_entry& s1,
3330 const Output_section::Input_section_sort_entry& s2) const
3331 {
3332 unsigned int s1_secn_index = s1.input_section().section_order_index();
3333 unsigned int s2_secn_index = s2.input_section().section_order_index();
3334
3335 // Keep input order if section ordering cannot determine order.
3336 if (s1_secn_index == s2_secn_index)
3337 return s1.index() < s2.index();
3338
3339 return s1_secn_index < s2_secn_index;
3340 }
3341
3342 // Sort the input sections attached to an output section.
3343
3344 void
3345 Output_section::sort_attached_input_sections()
3346 {
3347 if (this->attached_input_sections_are_sorted_)
3348 return;
3349
3350 if (this->checkpoint_ != NULL
3351 && !this->checkpoint_->input_sections_saved())
3352 this->checkpoint_->save_input_sections();
3353
3354 // The only thing we know about an input section is the object and
3355 // the section index. We need the section name. Recomputing this
3356 // is slow but this is an unusual case. If this becomes a speed
3357 // problem we can cache the names as required in Layout::layout.
3358
3359 // We start by building a larger vector holding a copy of each
3360 // Input_section, plus its current index in the list and its name.
3361 std::vector<Input_section_sort_entry> sort_list;
3362
3363 unsigned int i = 0;
3364 for (Input_section_list::iterator p = this->input_sections_.begin();
3365 p != this->input_sections_.end();
3366 ++p, ++i)
3367 sort_list.push_back(Input_section_sort_entry(*p, i,
3368 this->must_sort_attached_input_sections()));
3369
3370 // Sort the input sections.
3371 if (this->must_sort_attached_input_sections())
3372 {
3373 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3374 || this->type() == elfcpp::SHT_INIT_ARRAY
3375 || this->type() == elfcpp::SHT_FINI_ARRAY)
3376 std::sort(sort_list.begin(), sort_list.end(),
3377 Input_section_sort_init_fini_compare());
3378 else
3379 std::sort(sort_list.begin(), sort_list.end(),
3380 Input_section_sort_compare());
3381 }
3382 else
3383 {
3384 gold_assert(parameters->options().section_ordering_file());
3385 std::sort(sort_list.begin(), sort_list.end(),
3386 Input_section_sort_section_order_index_compare());
3387 }
3388
3389 // Copy the sorted input sections back to our list.
3390 this->input_sections_.clear();
3391 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3392 p != sort_list.end();
3393 ++p)
3394 this->input_sections_.push_back(p->input_section());
3395 sort_list.clear();
3396
3397 // Remember that we sorted the input sections, since we might get
3398 // called again.
3399 this->attached_input_sections_are_sorted_ = true;
3400 }
3401
3402 // Write the section header to *OSHDR.
3403
3404 template<int size, bool big_endian>
3405 void
3406 Output_section::write_header(const Layout* layout,
3407 const Stringpool* secnamepool,
3408 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3409 {
3410 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3411 oshdr->put_sh_type(this->type_);
3412
3413 elfcpp::Elf_Xword flags = this->flags_;
3414 if (this->info_section_ != NULL && this->info_uses_section_index_)
3415 flags |= elfcpp::SHF_INFO_LINK;
3416 oshdr->put_sh_flags(flags);
3417
3418 oshdr->put_sh_addr(this->address());
3419 oshdr->put_sh_offset(this->offset());
3420 oshdr->put_sh_size(this->data_size());
3421 if (this->link_section_ != NULL)
3422 oshdr->put_sh_link(this->link_section_->out_shndx());
3423 else if (this->should_link_to_symtab_)
3424 oshdr->put_sh_link(layout->symtab_section_shndx());
3425 else if (this->should_link_to_dynsym_)
3426 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3427 else
3428 oshdr->put_sh_link(this->link_);
3429
3430 elfcpp::Elf_Word info;
3431 if (this->info_section_ != NULL)
3432 {
3433 if (this->info_uses_section_index_)
3434 info = this->info_section_->out_shndx();
3435 else
3436 info = this->info_section_->symtab_index();
3437 }
3438 else if (this->info_symndx_ != NULL)
3439 info = this->info_symndx_->symtab_index();
3440 else
3441 info = this->info_;
3442 oshdr->put_sh_info(info);
3443
3444 oshdr->put_sh_addralign(this->addralign_);
3445 oshdr->put_sh_entsize(this->entsize_);
3446 }
3447
3448 // Write out the data. For input sections the data is written out by
3449 // Object::relocate, but we have to handle Output_section_data objects
3450 // here.
3451
3452 void
3453 Output_section::do_write(Output_file* of)
3454 {
3455 gold_assert(!this->requires_postprocessing());
3456
3457 // If the target performs relaxation, we delay filler generation until now.
3458 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3459
3460 off_t output_section_file_offset = this->offset();
3461 for (Fill_list::iterator p = this->fills_.begin();
3462 p != this->fills_.end();
3463 ++p)
3464 {
3465 std::string fill_data(parameters->target().code_fill(p->length()));
3466 of->write(output_section_file_offset + p->section_offset(),
3467 fill_data.data(), fill_data.size());
3468 }
3469
3470 off_t off = this->offset() + this->first_input_offset_;
3471 for (Input_section_list::iterator p = this->input_sections_.begin();
3472 p != this->input_sections_.end();
3473 ++p)
3474 {
3475 off_t aligned_off = align_address(off, p->addralign());
3476 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3477 {
3478 size_t fill_len = aligned_off - off;
3479 std::string fill_data(parameters->target().code_fill(fill_len));
3480 of->write(off, fill_data.data(), fill_data.size());
3481 }
3482
3483 p->write(of);
3484 off = aligned_off + p->data_size();
3485 }
3486 }
3487
3488 // If a section requires postprocessing, create the buffer to use.
3489
3490 void
3491 Output_section::create_postprocessing_buffer()
3492 {
3493 gold_assert(this->requires_postprocessing());
3494
3495 if (this->postprocessing_buffer_ != NULL)
3496 return;
3497
3498 if (!this->input_sections_.empty())
3499 {
3500 off_t off = this->first_input_offset_;
3501 for (Input_section_list::iterator p = this->input_sections_.begin();
3502 p != this->input_sections_.end();
3503 ++p)
3504 {
3505 off = align_address(off, p->addralign());
3506 p->finalize_data_size();
3507 off += p->data_size();
3508 }
3509 this->set_current_data_size_for_child(off);
3510 }
3511
3512 off_t buffer_size = this->current_data_size_for_child();
3513 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3514 }
3515
3516 // Write all the data of an Output_section into the postprocessing
3517 // buffer. This is used for sections which require postprocessing,
3518 // such as compression. Input sections are handled by
3519 // Object::Relocate.
3520
3521 void
3522 Output_section::write_to_postprocessing_buffer()
3523 {
3524 gold_assert(this->requires_postprocessing());
3525
3526 // If the target performs relaxation, we delay filler generation until now.
3527 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3528
3529 unsigned char* buffer = this->postprocessing_buffer();
3530 for (Fill_list::iterator p = this->fills_.begin();
3531 p != this->fills_.end();
3532 ++p)
3533 {
3534 std::string fill_data(parameters->target().code_fill(p->length()));
3535 memcpy(buffer + p->section_offset(), fill_data.data(),
3536 fill_data.size());
3537 }
3538
3539 off_t off = this->first_input_offset_;
3540 for (Input_section_list::iterator p = this->input_sections_.begin();
3541 p != this->input_sections_.end();
3542 ++p)
3543 {
3544 off_t aligned_off = align_address(off, p->addralign());
3545 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3546 {
3547 size_t fill_len = aligned_off - off;
3548 std::string fill_data(parameters->target().code_fill(fill_len));
3549 memcpy(buffer + off, fill_data.data(), fill_data.size());
3550 }
3551
3552 p->write_to_buffer(buffer + aligned_off);
3553 off = aligned_off + p->data_size();
3554 }
3555 }
3556
3557 // Get the input sections for linker script processing. We leave
3558 // behind the Output_section_data entries. Note that this may be
3559 // slightly incorrect for merge sections. We will leave them behind,
3560 // but it is possible that the script says that they should follow
3561 // some other input sections, as in:
3562 // .rodata { *(.rodata) *(.rodata.cst*) }
3563 // For that matter, we don't handle this correctly:
3564 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3565 // With luck this will never matter.
3566
3567 uint64_t
3568 Output_section::get_input_sections(
3569 uint64_t address,
3570 const std::string& fill,
3571 std::list<Input_section>* input_sections)
3572 {
3573 if (this->checkpoint_ != NULL
3574 && !this->checkpoint_->input_sections_saved())
3575 this->checkpoint_->save_input_sections();
3576
3577 // Invalidate fast look-up maps.
3578 this->lookup_maps_->invalidate();
3579
3580 uint64_t orig_address = address;
3581
3582 address = align_address(address, this->addralign());
3583
3584 Input_section_list remaining;
3585 for (Input_section_list::iterator p = this->input_sections_.begin();
3586 p != this->input_sections_.end();
3587 ++p)
3588 {
3589 if (p->is_input_section()
3590 || p->is_relaxed_input_section()
3591 || p->is_merge_section())
3592 input_sections->push_back(*p);
3593 else
3594 {
3595 uint64_t aligned_address = align_address(address, p->addralign());
3596 if (aligned_address != address && !fill.empty())
3597 {
3598 section_size_type length =
3599 convert_to_section_size_type(aligned_address - address);
3600 std::string this_fill;
3601 this_fill.reserve(length);
3602 while (this_fill.length() + fill.length() <= length)
3603 this_fill += fill;
3604 if (this_fill.length() < length)
3605 this_fill.append(fill, 0, length - this_fill.length());
3606
3607 Output_section_data* posd = new Output_data_const(this_fill, 0);
3608 remaining.push_back(Input_section(posd));
3609 }
3610 address = aligned_address;
3611
3612 remaining.push_back(*p);
3613
3614 p->finalize_data_size();
3615 address += p->data_size();
3616 }
3617 }
3618
3619 this->input_sections_.swap(remaining);
3620 this->first_input_offset_ = 0;
3621
3622 uint64_t data_size = address - orig_address;
3623 this->set_current_data_size_for_child(data_size);
3624 return data_size;
3625 }
3626
3627 // Add a script input section. SIS is an Output_section::Input_section,
3628 // which can be either a plain input section or a special input section like
3629 // a relaxed input section. For a special input section, its size must be
3630 // finalized.
3631
3632 void
3633 Output_section::add_script_input_section(const Input_section& sis)
3634 {
3635 uint64_t data_size = sis.data_size();
3636 uint64_t addralign = sis.addralign();
3637 if (addralign > this->addralign_)
3638 this->addralign_ = addralign;
3639
3640 off_t offset_in_section = this->current_data_size_for_child();
3641 off_t aligned_offset_in_section = align_address(offset_in_section,
3642 addralign);
3643
3644 this->set_current_data_size_for_child(aligned_offset_in_section
3645 + data_size);
3646
3647 this->input_sections_.push_back(sis);
3648
3649 // Update fast lookup maps if necessary.
3650 if (this->lookup_maps_->is_valid())
3651 {
3652 if (sis.is_merge_section())
3653 {
3654 Output_merge_base* pomb = sis.output_merge_base();
3655 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3656 pomb->addralign());
3657 this->lookup_maps_->add_merge_section(msp, pomb);
3658 for (Output_merge_base::Input_sections::const_iterator p =
3659 pomb->input_sections_begin();
3660 p != pomb->input_sections_end();
3661 ++p)
3662 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3663 pomb);
3664 }
3665 else if (sis.is_relaxed_input_section())
3666 {
3667 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3668 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3669 poris->shndx(), poris);
3670 }
3671 }
3672 }
3673
3674 // Save states for relaxation.
3675
3676 void
3677 Output_section::save_states()
3678 {
3679 gold_assert(this->checkpoint_ == NULL);
3680 Checkpoint_output_section* checkpoint =
3681 new Checkpoint_output_section(this->addralign_, this->flags_,
3682 this->input_sections_,
3683 this->first_input_offset_,
3684 this->attached_input_sections_are_sorted_);
3685 this->checkpoint_ = checkpoint;
3686 gold_assert(this->fills_.empty());
3687 }
3688
3689 void
3690 Output_section::discard_states()
3691 {
3692 gold_assert(this->checkpoint_ != NULL);
3693 delete this->checkpoint_;
3694 this->checkpoint_ = NULL;
3695 gold_assert(this->fills_.empty());
3696
3697 // Simply invalidate the fast lookup maps since we do not keep
3698 // track of them.
3699 this->lookup_maps_->invalidate();
3700 }
3701
3702 void
3703 Output_section::restore_states()
3704 {
3705 gold_assert(this->checkpoint_ != NULL);
3706 Checkpoint_output_section* checkpoint = this->checkpoint_;
3707
3708 this->addralign_ = checkpoint->addralign();
3709 this->flags_ = checkpoint->flags();
3710 this->first_input_offset_ = checkpoint->first_input_offset();
3711
3712 if (!checkpoint->input_sections_saved())
3713 {
3714 // If we have not copied the input sections, just resize it.
3715 size_t old_size = checkpoint->input_sections_size();
3716 gold_assert(this->input_sections_.size() >= old_size);
3717 this->input_sections_.resize(old_size);
3718 }
3719 else
3720 {
3721 // We need to copy the whole list. This is not efficient for
3722 // extremely large output with hundreads of thousands of input
3723 // objects. We may need to re-think how we should pass sections
3724 // to scripts.
3725 this->input_sections_ = *checkpoint->input_sections();
3726 }
3727
3728 this->attached_input_sections_are_sorted_ =
3729 checkpoint->attached_input_sections_are_sorted();
3730
3731 // Simply invalidate the fast lookup maps since we do not keep
3732 // track of them.
3733 this->lookup_maps_->invalidate();
3734 }
3735
3736 // Update the section offsets of input sections in this. This is required if
3737 // relaxation causes some input sections to change sizes.
3738
3739 void
3740 Output_section::adjust_section_offsets()
3741 {
3742 if (!this->section_offsets_need_adjustment_)
3743 return;
3744
3745 off_t off = 0;
3746 for (Input_section_list::iterator p = this->input_sections_.begin();
3747 p != this->input_sections_.end();
3748 ++p)
3749 {
3750 off = align_address(off, p->addralign());
3751 if (p->is_input_section())
3752 p->relobj()->set_section_offset(p->shndx(), off);
3753 off += p->data_size();
3754 }
3755
3756 this->section_offsets_need_adjustment_ = false;
3757 }
3758
3759 // Print to the map file.
3760
3761 void
3762 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3763 {
3764 mapfile->print_output_section(this);
3765
3766 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3767 p != this->input_sections_.end();
3768 ++p)
3769 p->print_to_mapfile(mapfile);
3770 }
3771
3772 // Print stats for merge sections to stderr.
3773
3774 void
3775 Output_section::print_merge_stats()
3776 {
3777 Input_section_list::iterator p;
3778 for (p = this->input_sections_.begin();
3779 p != this->input_sections_.end();
3780 ++p)
3781 p->print_merge_stats(this->name_);
3782 }
3783
3784 // Set a fixed layout for the section. Used for incremental update links.
3785
3786 void
3787 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3788 off_t sh_size, uint64_t sh_addralign)
3789 {
3790 this->addralign_ = sh_addralign;
3791 this->set_current_data_size(sh_size);
3792 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3793 this->set_address(sh_addr);
3794 this->set_file_offset(sh_offset);
3795 this->finalize_data_size();
3796 this->free_list_.init(sh_size, false);
3797 this->has_fixed_layout_ = true;
3798 }
3799
3800 // Reserve space within the fixed layout for the section. Used for
3801 // incremental update links.
3802
3803 void
3804 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3805 {
3806 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3807 }
3808
3809 // Allocate space from the free list for the section. Used for
3810 // incremental update links.
3811
3812 off_t
3813 Output_section::allocate(off_t len, uint64_t addralign)
3814 {
3815 return this->free_list_.allocate(len, addralign, 0);
3816 }
3817
3818 // Output segment methods.
3819
3820 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3821 : vaddr_(0),
3822 paddr_(0),
3823 memsz_(0),
3824 max_align_(0),
3825 min_p_align_(0),
3826 offset_(0),
3827 filesz_(0),
3828 type_(type),
3829 flags_(flags),
3830 is_max_align_known_(false),
3831 are_addresses_set_(false),
3832 is_large_data_segment_(false)
3833 {
3834 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3835 // the flags.
3836 if (type == elfcpp::PT_TLS)
3837 this->flags_ = elfcpp::PF_R;
3838 }
3839
3840 // Add an Output_section to a PT_LOAD Output_segment.
3841
3842 void
3843 Output_segment::add_output_section_to_load(Layout* layout,
3844 Output_section* os,
3845 elfcpp::Elf_Word seg_flags)
3846 {
3847 gold_assert(this->type() == elfcpp::PT_LOAD);
3848 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3849 gold_assert(!this->is_max_align_known_);
3850 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3851
3852 this->update_flags_for_output_section(seg_flags);
3853
3854 // We don't want to change the ordering if we have a linker script
3855 // with a SECTIONS clause.
3856 Output_section_order order = os->order();
3857 if (layout->script_options()->saw_sections_clause())
3858 order = static_cast<Output_section_order>(0);
3859 else
3860 gold_assert(order != ORDER_INVALID);
3861
3862 this->output_lists_[order].push_back(os);
3863 }
3864
3865 // Add an Output_section to a non-PT_LOAD Output_segment.
3866
3867 void
3868 Output_segment::add_output_section_to_nonload(Output_section* os,
3869 elfcpp::Elf_Word seg_flags)
3870 {
3871 gold_assert(this->type() != elfcpp::PT_LOAD);
3872 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3873 gold_assert(!this->is_max_align_known_);
3874
3875 this->update_flags_for_output_section(seg_flags);
3876
3877 this->output_lists_[0].push_back(os);
3878 }
3879
3880 // Remove an Output_section from this segment. It is an error if it
3881 // is not present.
3882
3883 void
3884 Output_segment::remove_output_section(Output_section* os)
3885 {
3886 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3887 {
3888 Output_data_list* pdl = &this->output_lists_[i];
3889 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3890 {
3891 if (*p == os)
3892 {
3893 pdl->erase(p);
3894 return;
3895 }
3896 }
3897 }
3898 gold_unreachable();
3899 }
3900
3901 // Add an Output_data (which need not be an Output_section) to the
3902 // start of a segment.
3903
3904 void
3905 Output_segment::add_initial_output_data(Output_data* od)
3906 {
3907 gold_assert(!this->is_max_align_known_);
3908 Output_data_list::iterator p = this->output_lists_[0].begin();
3909 this->output_lists_[0].insert(p, od);
3910 }
3911
3912 // Return true if this segment has any sections which hold actual
3913 // data, rather than being a BSS section.
3914
3915 bool
3916 Output_segment::has_any_data_sections() const
3917 {
3918 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3919 {
3920 const Output_data_list* pdl = &this->output_lists_[i];
3921 for (Output_data_list::const_iterator p = pdl->begin();
3922 p != pdl->end();
3923 ++p)
3924 {
3925 if (!(*p)->is_section())
3926 return true;
3927 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3928 return true;
3929 }
3930 }
3931 return false;
3932 }
3933
3934 // Return whether the first data section (not counting TLS sections)
3935 // is a relro section.
3936
3937 bool
3938 Output_segment::is_first_section_relro() const
3939 {
3940 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3941 {
3942 if (i == static_cast<int>(ORDER_TLS_DATA)
3943 || i == static_cast<int>(ORDER_TLS_BSS))
3944 continue;
3945 const Output_data_list* pdl = &this->output_lists_[i];
3946 if (!pdl->empty())
3947 {
3948 Output_data* p = pdl->front();
3949 return p->is_section() && p->output_section()->is_relro();
3950 }
3951 }
3952 return false;
3953 }
3954
3955 // Return the maximum alignment of the Output_data in Output_segment.
3956
3957 uint64_t
3958 Output_segment::maximum_alignment()
3959 {
3960 if (!this->is_max_align_known_)
3961 {
3962 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3963 {
3964 const Output_data_list* pdl = &this->output_lists_[i];
3965 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3966 if (addralign > this->max_align_)
3967 this->max_align_ = addralign;
3968 }
3969 this->is_max_align_known_ = true;
3970 }
3971
3972 return this->max_align_;
3973 }
3974
3975 // Return the maximum alignment of a list of Output_data.
3976
3977 uint64_t
3978 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3979 {
3980 uint64_t ret = 0;
3981 for (Output_data_list::const_iterator p = pdl->begin();
3982 p != pdl->end();
3983 ++p)
3984 {
3985 uint64_t addralign = (*p)->addralign();
3986 if (addralign > ret)
3987 ret = addralign;
3988 }
3989 return ret;
3990 }
3991
3992 // Return whether this segment has any dynamic relocs.
3993
3994 bool
3995 Output_segment::has_dynamic_reloc() const
3996 {
3997 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3998 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3999 return true;
4000 return false;
4001 }
4002
4003 // Return whether this Output_data_list has any dynamic relocs.
4004
4005 bool
4006 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4007 {
4008 for (Output_data_list::const_iterator p = pdl->begin();
4009 p != pdl->end();
4010 ++p)
4011 if ((*p)->has_dynamic_reloc())
4012 return true;
4013 return false;
4014 }
4015
4016 // Set the section addresses for an Output_segment. If RESET is true,
4017 // reset the addresses first. ADDR is the address and *POFF is the
4018 // file offset. Set the section indexes starting with *PSHNDX.
4019 // INCREASE_RELRO is the size of the portion of the first non-relro
4020 // section that should be included in the PT_GNU_RELRO segment.
4021 // If this segment has relro sections, and has been aligned for
4022 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4023 // the immediately following segment. Update *HAS_RELRO, *POFF,
4024 // and *PSHNDX.
4025
4026 uint64_t
4027 Output_segment::set_section_addresses(Layout* layout, bool reset,
4028 uint64_t addr,
4029 unsigned int* increase_relro,
4030 bool* has_relro,
4031 off_t* poff,
4032 unsigned int* pshndx)
4033 {
4034 gold_assert(this->type_ == elfcpp::PT_LOAD);
4035
4036 uint64_t last_relro_pad = 0;
4037 off_t orig_off = *poff;
4038
4039 bool in_tls = false;
4040
4041 // If we have relro sections, we need to pad forward now so that the
4042 // relro sections plus INCREASE_RELRO end on a common page boundary.
4043 if (parameters->options().relro()
4044 && this->is_first_section_relro()
4045 && (!this->are_addresses_set_ || reset))
4046 {
4047 uint64_t relro_size = 0;
4048 off_t off = *poff;
4049 uint64_t max_align = 0;
4050 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4051 {
4052 Output_data_list* pdl = &this->output_lists_[i];
4053 Output_data_list::iterator p;
4054 for (p = pdl->begin(); p != pdl->end(); ++p)
4055 {
4056 if (!(*p)->is_section())
4057 break;
4058 uint64_t align = (*p)->addralign();
4059 if (align > max_align)
4060 max_align = align;
4061 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4062 in_tls = true;
4063 else if (in_tls)
4064 {
4065 // Align the first non-TLS section to the alignment
4066 // of the TLS segment.
4067 align = max_align;
4068 in_tls = false;
4069 }
4070 relro_size = align_address(relro_size, align);
4071 // Ignore the size of the .tbss section.
4072 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4073 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4074 continue;
4075 if ((*p)->is_address_valid())
4076 relro_size += (*p)->data_size();
4077 else
4078 {
4079 // FIXME: This could be faster.
4080 (*p)->set_address_and_file_offset(addr + relro_size,
4081 off + relro_size);
4082 relro_size += (*p)->data_size();
4083 (*p)->reset_address_and_file_offset();
4084 }
4085 }
4086 if (p != pdl->end())
4087 break;
4088 }
4089 relro_size += *increase_relro;
4090 // Pad the total relro size to a multiple of the maximum
4091 // section alignment seen.
4092 uint64_t aligned_size = align_address(relro_size, max_align);
4093 // Note the amount of padding added after the last relro section.
4094 last_relro_pad = aligned_size - relro_size;
4095 *has_relro = true;
4096
4097 uint64_t page_align = parameters->target().common_pagesize();
4098
4099 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4100 uint64_t desired_align = page_align - (aligned_size % page_align);
4101 if (desired_align < *poff % page_align)
4102 *poff += page_align - *poff % page_align;
4103 *poff += desired_align - *poff % page_align;
4104 addr += *poff - orig_off;
4105 orig_off = *poff;
4106 }
4107
4108 if (!reset && this->are_addresses_set_)
4109 {
4110 gold_assert(this->paddr_ == addr);
4111 addr = this->vaddr_;
4112 }
4113 else
4114 {
4115 this->vaddr_ = addr;
4116 this->paddr_ = addr;
4117 this->are_addresses_set_ = true;
4118 }
4119
4120 in_tls = false;
4121
4122 this->offset_ = orig_off;
4123
4124 off_t off = 0;
4125 uint64_t ret;
4126 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4127 {
4128 if (i == static_cast<int>(ORDER_RELRO_LAST))
4129 {
4130 *poff += last_relro_pad;
4131 addr += last_relro_pad;
4132 if (this->output_lists_[i].empty())
4133 {
4134 // If there is nothing in the ORDER_RELRO_LAST list,
4135 // the padding will occur at the end of the relro
4136 // segment, and we need to add it to *INCREASE_RELRO.
4137 *increase_relro += last_relro_pad;
4138 }
4139 }
4140 addr = this->set_section_list_addresses(layout, reset,
4141 &this->output_lists_[i],
4142 addr, poff, pshndx, &in_tls);
4143 if (i < static_cast<int>(ORDER_SMALL_BSS))
4144 {
4145 this->filesz_ = *poff - orig_off;
4146 off = *poff;
4147 }
4148
4149 ret = addr;
4150 }
4151
4152 // If the last section was a TLS section, align upward to the
4153 // alignment of the TLS segment, so that the overall size of the TLS
4154 // segment is aligned.
4155 if (in_tls)
4156 {
4157 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4158 *poff = align_address(*poff, segment_align);
4159 }
4160
4161 this->memsz_ = *poff - orig_off;
4162
4163 // Ignore the file offset adjustments made by the BSS Output_data
4164 // objects.
4165 *poff = off;
4166
4167 return ret;
4168 }
4169
4170 // Set the addresses and file offsets in a list of Output_data
4171 // structures.
4172
4173 uint64_t
4174 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4175 Output_data_list* pdl,
4176 uint64_t addr, off_t* poff,
4177 unsigned int* pshndx,
4178 bool* in_tls)
4179 {
4180 off_t startoff = *poff;
4181 // For incremental updates, we may allocate non-fixed sections from
4182 // free space in the file. This keeps track of the high-water mark.
4183 off_t maxoff = startoff;
4184
4185 off_t off = startoff;
4186 for (Output_data_list::iterator p = pdl->begin();
4187 p != pdl->end();
4188 ++p)
4189 {
4190 if (reset)
4191 (*p)->reset_address_and_file_offset();
4192
4193 // When doing an incremental update or when using a linker script,
4194 // the section will most likely already have an address.
4195 if (!(*p)->is_address_valid())
4196 {
4197 uint64_t align = (*p)->addralign();
4198
4199 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4200 {
4201 // Give the first TLS section the alignment of the
4202 // entire TLS segment. Otherwise the TLS segment as a
4203 // whole may be misaligned.
4204 if (!*in_tls)
4205 {
4206 Output_segment* tls_segment = layout->tls_segment();
4207 gold_assert(tls_segment != NULL);
4208 uint64_t segment_align = tls_segment->maximum_alignment();
4209 gold_assert(segment_align >= align);
4210 align = segment_align;
4211
4212 *in_tls = true;
4213 }
4214 }
4215 else
4216 {
4217 // If this is the first section after the TLS segment,
4218 // align it to at least the alignment of the TLS
4219 // segment, so that the size of the overall TLS segment
4220 // is aligned.
4221 if (*in_tls)
4222 {
4223 uint64_t segment_align =
4224 layout->tls_segment()->maximum_alignment();
4225 if (segment_align > align)
4226 align = segment_align;
4227
4228 *in_tls = false;
4229 }
4230 }
4231
4232 if (!parameters->incremental_update())
4233 {
4234 off = align_address(off, align);
4235 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4236 }
4237 else
4238 {
4239 // Incremental update: allocate file space from free list.
4240 (*p)->pre_finalize_data_size();
4241 off_t current_size = (*p)->current_data_size();
4242 off = layout->allocate(current_size, align, startoff);
4243 if (off == -1)
4244 {
4245 gold_assert((*p)->output_section() != NULL);
4246 gold_fallback(_("out of patch space for section %s; "
4247 "relink with --incremental-full"),
4248 (*p)->output_section()->name());
4249 }
4250 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4251 if ((*p)->data_size() > current_size)
4252 {
4253 gold_assert((*p)->output_section() != NULL);
4254 gold_fallback(_("%s: section changed size; "
4255 "relink with --incremental-full"),
4256 (*p)->output_section()->name());
4257 }
4258 }
4259 }
4260 else if (parameters->incremental_update())
4261 {
4262 // For incremental updates, use the fixed offset for the
4263 // high-water mark computation.
4264 off = (*p)->offset();
4265 }
4266 else
4267 {
4268 // The script may have inserted a skip forward, but it
4269 // better not have moved backward.
4270 if ((*p)->address() >= addr + (off - startoff))
4271 off += (*p)->address() - (addr + (off - startoff));
4272 else
4273 {
4274 if (!layout->script_options()->saw_sections_clause())
4275 gold_unreachable();
4276 else
4277 {
4278 Output_section* os = (*p)->output_section();
4279
4280 // Cast to unsigned long long to avoid format warnings.
4281 unsigned long long previous_dot =
4282 static_cast<unsigned long long>(addr + (off - startoff));
4283 unsigned long long dot =
4284 static_cast<unsigned long long>((*p)->address());
4285
4286 if (os == NULL)
4287 gold_error(_("dot moves backward in linker script "
4288 "from 0x%llx to 0x%llx"), previous_dot, dot);
4289 else
4290 gold_error(_("address of section '%s' moves backward "
4291 "from 0x%llx to 0x%llx"),
4292 os->name(), previous_dot, dot);
4293 }
4294 }
4295 (*p)->set_file_offset(off);
4296 (*p)->finalize_data_size();
4297 }
4298
4299 if (parameters->incremental_update())
4300 gold_debug(DEBUG_INCREMENTAL,
4301 "set_section_list_addresses: %08lx %08lx %s",
4302 static_cast<long>(off),
4303 static_cast<long>((*p)->data_size()),
4304 ((*p)->output_section() != NULL
4305 ? (*p)->output_section()->name() : "(special)"));
4306
4307 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4308 // section. Such a section does not affect the size of a
4309 // PT_LOAD segment.
4310 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4311 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4312 off += (*p)->data_size();
4313
4314 if (off > maxoff)
4315 maxoff = off;
4316
4317 if ((*p)->is_section())
4318 {
4319 (*p)->set_out_shndx(*pshndx);
4320 ++*pshndx;
4321 }
4322 }
4323
4324 *poff = maxoff;
4325 return addr + (maxoff - startoff);
4326 }
4327
4328 // For a non-PT_LOAD segment, set the offset from the sections, if
4329 // any. Add INCREASE to the file size and the memory size.
4330
4331 void
4332 Output_segment::set_offset(unsigned int increase)
4333 {
4334 gold_assert(this->type_ != elfcpp::PT_LOAD);
4335
4336 gold_assert(!this->are_addresses_set_);
4337
4338 // A non-load section only uses output_lists_[0].
4339
4340 Output_data_list* pdl = &this->output_lists_[0];
4341
4342 if (pdl->empty())
4343 {
4344 gold_assert(increase == 0);
4345 this->vaddr_ = 0;
4346 this->paddr_ = 0;
4347 this->are_addresses_set_ = true;
4348 this->memsz_ = 0;
4349 this->min_p_align_ = 0;
4350 this->offset_ = 0;
4351 this->filesz_ = 0;
4352 return;
4353 }
4354
4355 // Find the first and last section by address.
4356 const Output_data* first = NULL;
4357 const Output_data* last_data = NULL;
4358 const Output_data* last_bss = NULL;
4359 for (Output_data_list::const_iterator p = pdl->begin();
4360 p != pdl->end();
4361 ++p)
4362 {
4363 if (first == NULL
4364 || (*p)->address() < first->address()
4365 || ((*p)->address() == first->address()
4366 && (*p)->data_size() < first->data_size()))
4367 first = *p;
4368 const Output_data** plast;
4369 if ((*p)->is_section()
4370 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4371 plast = &last_bss;
4372 else
4373 plast = &last_data;
4374 if (*plast == NULL
4375 || (*p)->address() > (*plast)->address()
4376 || ((*p)->address() == (*plast)->address()
4377 && (*p)->data_size() > (*plast)->data_size()))
4378 *plast = *p;
4379 }
4380
4381 this->vaddr_ = first->address();
4382 this->paddr_ = (first->has_load_address()
4383 ? first->load_address()
4384 : this->vaddr_);
4385 this->are_addresses_set_ = true;
4386 this->offset_ = first->offset();
4387
4388 if (last_data == NULL)
4389 this->filesz_ = 0;
4390 else
4391 this->filesz_ = (last_data->address()
4392 + last_data->data_size()
4393 - this->vaddr_);
4394
4395 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4396 this->memsz_ = (last->address()
4397 + last->data_size()
4398 - this->vaddr_);
4399
4400 this->filesz_ += increase;
4401 this->memsz_ += increase;
4402
4403 // If this is a RELRO segment, verify that the segment ends at a
4404 // page boundary.
4405 if (this->type_ == elfcpp::PT_GNU_RELRO)
4406 {
4407 uint64_t page_align = parameters->target().common_pagesize();
4408 uint64_t segment_end = this->vaddr_ + this->memsz_;
4409 if (parameters->incremental_update())
4410 {
4411 // The INCREASE_RELRO calculation is bypassed for an incremental
4412 // update, so we need to adjust the segment size manually here.
4413 segment_end = align_address(segment_end, page_align);
4414 this->memsz_ = segment_end - this->vaddr_;
4415 }
4416 else
4417 gold_assert(segment_end == align_address(segment_end, page_align));
4418 }
4419
4420 // If this is a TLS segment, align the memory size. The code in
4421 // set_section_list ensures that the section after the TLS segment
4422 // is aligned to give us room.
4423 if (this->type_ == elfcpp::PT_TLS)
4424 {
4425 uint64_t segment_align = this->maximum_alignment();
4426 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4427 this->memsz_ = align_address(this->memsz_, segment_align);
4428 }
4429 }
4430
4431 // Set the TLS offsets of the sections in the PT_TLS segment.
4432
4433 void
4434 Output_segment::set_tls_offsets()
4435 {
4436 gold_assert(this->type_ == elfcpp::PT_TLS);
4437
4438 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4439 p != this->output_lists_[0].end();
4440 ++p)
4441 (*p)->set_tls_offset(this->vaddr_);
4442 }
4443
4444 // Return the load address of the first section.
4445
4446 uint64_t
4447 Output_segment::first_section_load_address() const
4448 {
4449 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4450 {
4451 const Output_data_list* pdl = &this->output_lists_[i];
4452 for (Output_data_list::const_iterator p = pdl->begin();
4453 p != pdl->end();
4454 ++p)
4455 {
4456 if ((*p)->is_section())
4457 return ((*p)->has_load_address()
4458 ? (*p)->load_address()
4459 : (*p)->address());
4460 }
4461 }
4462 gold_unreachable();
4463 }
4464
4465 // Return the number of Output_sections in an Output_segment.
4466
4467 unsigned int
4468 Output_segment::output_section_count() const
4469 {
4470 unsigned int ret = 0;
4471 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4472 ret += this->output_section_count_list(&this->output_lists_[i]);
4473 return ret;
4474 }
4475
4476 // Return the number of Output_sections in an Output_data_list.
4477
4478 unsigned int
4479 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4480 {
4481 unsigned int count = 0;
4482 for (Output_data_list::const_iterator p = pdl->begin();
4483 p != pdl->end();
4484 ++p)
4485 {
4486 if ((*p)->is_section())
4487 ++count;
4488 }
4489 return count;
4490 }
4491
4492 // Return the section attached to the list segment with the lowest
4493 // load address. This is used when handling a PHDRS clause in a
4494 // linker script.
4495
4496 Output_section*
4497 Output_segment::section_with_lowest_load_address() const
4498 {
4499 Output_section* found = NULL;
4500 uint64_t found_lma = 0;
4501 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4502 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4503 &found_lma);
4504 return found;
4505 }
4506
4507 // Look through a list for a section with a lower load address.
4508
4509 void
4510 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4511 Output_section** found,
4512 uint64_t* found_lma) const
4513 {
4514 for (Output_data_list::const_iterator p = pdl->begin();
4515 p != pdl->end();
4516 ++p)
4517 {
4518 if (!(*p)->is_section())
4519 continue;
4520 Output_section* os = static_cast<Output_section*>(*p);
4521 uint64_t lma = (os->has_load_address()
4522 ? os->load_address()
4523 : os->address());
4524 if (*found == NULL || lma < *found_lma)
4525 {
4526 *found = os;
4527 *found_lma = lma;
4528 }
4529 }
4530 }
4531
4532 // Write the segment data into *OPHDR.
4533
4534 template<int size, bool big_endian>
4535 void
4536 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4537 {
4538 ophdr->put_p_type(this->type_);
4539 ophdr->put_p_offset(this->offset_);
4540 ophdr->put_p_vaddr(this->vaddr_);
4541 ophdr->put_p_paddr(this->paddr_);
4542 ophdr->put_p_filesz(this->filesz_);
4543 ophdr->put_p_memsz(this->memsz_);
4544 ophdr->put_p_flags(this->flags_);
4545 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4546 }
4547
4548 // Write the section headers into V.
4549
4550 template<int size, bool big_endian>
4551 unsigned char*
4552 Output_segment::write_section_headers(const Layout* layout,
4553 const Stringpool* secnamepool,
4554 unsigned char* v,
4555 unsigned int* pshndx) const
4556 {
4557 // Every section that is attached to a segment must be attached to a
4558 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4559 // segments.
4560 if (this->type_ != elfcpp::PT_LOAD)
4561 return v;
4562
4563 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4564 {
4565 const Output_data_list* pdl = &this->output_lists_[i];
4566 v = this->write_section_headers_list<size, big_endian>(layout,
4567 secnamepool,
4568 pdl,
4569 v, pshndx);
4570 }
4571
4572 return v;
4573 }
4574
4575 template<int size, bool big_endian>
4576 unsigned char*
4577 Output_segment::write_section_headers_list(const Layout* layout,
4578 const Stringpool* secnamepool,
4579 const Output_data_list* pdl,
4580 unsigned char* v,
4581 unsigned int* pshndx) const
4582 {
4583 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4584 for (Output_data_list::const_iterator p = pdl->begin();
4585 p != pdl->end();
4586 ++p)
4587 {
4588 if ((*p)->is_section())
4589 {
4590 const Output_section* ps = static_cast<const Output_section*>(*p);
4591 gold_assert(*pshndx == ps->out_shndx());
4592 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4593 ps->write_header(layout, secnamepool, &oshdr);
4594 v += shdr_size;
4595 ++*pshndx;
4596 }
4597 }
4598 return v;
4599 }
4600
4601 // Print the output sections to the map file.
4602
4603 void
4604 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4605 {
4606 if (this->type() != elfcpp::PT_LOAD)
4607 return;
4608 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4609 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4610 }
4611
4612 // Print an output section list to the map file.
4613
4614 void
4615 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4616 const Output_data_list* pdl) const
4617 {
4618 for (Output_data_list::const_iterator p = pdl->begin();
4619 p != pdl->end();
4620 ++p)
4621 (*p)->print_to_mapfile(mapfile);
4622 }
4623
4624 // Output_file methods.
4625
4626 Output_file::Output_file(const char* name)
4627 : name_(name),
4628 o_(-1),
4629 file_size_(0),
4630 base_(NULL),
4631 map_is_anonymous_(false),
4632 map_is_allocated_(false),
4633 is_temporary_(false)
4634 {
4635 }
4636
4637 // Try to open an existing file. Returns false if the file doesn't
4638 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4639 // NULL, open that file as the base for incremental linking, and
4640 // copy its contents to the new output file. This routine can
4641 // be called for incremental updates, in which case WRITABLE should
4642 // be true, or by the incremental-dump utility, in which case
4643 // WRITABLE should be false.
4644
4645 bool
4646 Output_file::open_base_file(const char* base_name, bool writable)
4647 {
4648 // The name "-" means "stdout".
4649 if (strcmp(this->name_, "-") == 0)
4650 return false;
4651
4652 bool use_base_file = base_name != NULL;
4653 if (!use_base_file)
4654 base_name = this->name_;
4655 else if (strcmp(base_name, this->name_) == 0)
4656 gold_fatal(_("%s: incremental base and output file name are the same"),
4657 base_name);
4658
4659 // Don't bother opening files with a size of zero.
4660 struct stat s;
4661 if (::stat(base_name, &s) != 0)
4662 {
4663 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4664 return false;
4665 }
4666 if (s.st_size == 0)
4667 {
4668 gold_info(_("%s: incremental base file is empty"), base_name);
4669 return false;
4670 }
4671
4672 // If we're using a base file, we want to open it read-only.
4673 if (use_base_file)
4674 writable = false;
4675
4676 int oflags = writable ? O_RDWR : O_RDONLY;
4677 int o = open_descriptor(-1, base_name, oflags, 0);
4678 if (o < 0)
4679 {
4680 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4681 return false;
4682 }
4683
4684 // If the base file and the output file are different, open a
4685 // new output file and read the contents from the base file into
4686 // the newly-mapped region.
4687 if (use_base_file)
4688 {
4689 this->open(s.st_size);
4690 ssize_t len = ::read(o, this->base_, s.st_size);
4691 if (len < 0)
4692 {
4693 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4694 return false;
4695 }
4696 if (len < s.st_size)
4697 {
4698 gold_info(_("%s: file too short"), base_name);
4699 return false;
4700 }
4701 ::close(o);
4702 return true;
4703 }
4704
4705 this->o_ = o;
4706 this->file_size_ = s.st_size;
4707
4708 if (!this->map_no_anonymous(writable))
4709 {
4710 release_descriptor(o, true);
4711 this->o_ = -1;
4712 this->file_size_ = 0;
4713 return false;
4714 }
4715
4716 return true;
4717 }
4718
4719 // Open the output file.
4720
4721 void
4722 Output_file::open(off_t file_size)
4723 {
4724 this->file_size_ = file_size;
4725
4726 // Unlink the file first; otherwise the open() may fail if the file
4727 // is busy (e.g. it's an executable that's currently being executed).
4728 //
4729 // However, the linker may be part of a system where a zero-length
4730 // file is created for it to write to, with tight permissions (gcc
4731 // 2.95 did something like this). Unlinking the file would work
4732 // around those permission controls, so we only unlink if the file
4733 // has a non-zero size. We also unlink only regular files to avoid
4734 // trouble with directories/etc.
4735 //
4736 // If we fail, continue; this command is merely a best-effort attempt
4737 // to improve the odds for open().
4738
4739 // We let the name "-" mean "stdout"
4740 if (!this->is_temporary_)
4741 {
4742 if (strcmp(this->name_, "-") == 0)
4743 this->o_ = STDOUT_FILENO;
4744 else
4745 {
4746 struct stat s;
4747 if (::stat(this->name_, &s) == 0
4748 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4749 {
4750 if (s.st_size != 0)
4751 ::unlink(this->name_);
4752 else if (!parameters->options().relocatable())
4753 {
4754 // If we don't unlink the existing file, add execute
4755 // permission where read permissions already exist
4756 // and where the umask permits.
4757 int mask = ::umask(0);
4758 ::umask(mask);
4759 s.st_mode |= (s.st_mode & 0444) >> 2;
4760 ::chmod(this->name_, s.st_mode & ~mask);
4761 }
4762 }
4763
4764 int mode = parameters->options().relocatable() ? 0666 : 0777;
4765 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4766 mode);
4767 if (o < 0)
4768 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4769 this->o_ = o;
4770 }
4771 }
4772
4773 this->map();
4774 }
4775
4776 // Resize the output file.
4777
4778 void
4779 Output_file::resize(off_t file_size)
4780 {
4781 // If the mmap is mapping an anonymous memory buffer, this is easy:
4782 // just mremap to the new size. If it's mapping to a file, we want
4783 // to unmap to flush to the file, then remap after growing the file.
4784 if (this->map_is_anonymous_)
4785 {
4786 void* base;
4787 if (!this->map_is_allocated_)
4788 {
4789 base = ::mremap(this->base_, this->file_size_, file_size,
4790 MREMAP_MAYMOVE);
4791 if (base == MAP_FAILED)
4792 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4793 }
4794 else
4795 {
4796 base = realloc(this->base_, file_size);
4797 if (base == NULL)
4798 gold_nomem();
4799 if (file_size > this->file_size_)
4800 memset(static_cast<char*>(base) + this->file_size_, 0,
4801 file_size - this->file_size_);
4802 }
4803 this->base_ = static_cast<unsigned char*>(base);
4804 this->file_size_ = file_size;
4805 }
4806 else
4807 {
4808 this->unmap();
4809 this->file_size_ = file_size;
4810 if (!this->map_no_anonymous(true))
4811 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4812 }
4813 }
4814
4815 // Map an anonymous block of memory which will later be written to the
4816 // file. Return whether the map succeeded.
4817
4818 bool
4819 Output_file::map_anonymous()
4820 {
4821 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4822 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4823 if (base == MAP_FAILED)
4824 {
4825 base = malloc(this->file_size_);
4826 if (base == NULL)
4827 return false;
4828 memset(base, 0, this->file_size_);
4829 this->map_is_allocated_ = true;
4830 }
4831 this->base_ = static_cast<unsigned char*>(base);
4832 this->map_is_anonymous_ = true;
4833 return true;
4834 }
4835
4836 // Map the file into memory. Return whether the mapping succeeded.
4837 // If WRITABLE is true, map with write access.
4838
4839 bool
4840 Output_file::map_no_anonymous(bool writable)
4841 {
4842 const int o = this->o_;
4843
4844 // If the output file is not a regular file, don't try to mmap it;
4845 // instead, we'll mmap a block of memory (an anonymous buffer), and
4846 // then later write the buffer to the file.
4847 void* base;
4848 struct stat statbuf;
4849 if (o == STDOUT_FILENO || o == STDERR_FILENO
4850 || ::fstat(o, &statbuf) != 0
4851 || !S_ISREG(statbuf.st_mode)
4852 || this->is_temporary_)
4853 return false;
4854
4855 // Ensure that we have disk space available for the file. If we
4856 // don't do this, it is possible that we will call munmap, close,
4857 // and exit with dirty buffers still in the cache with no assigned
4858 // disk blocks. If the disk is out of space at that point, the
4859 // output file will wind up incomplete, but we will have already
4860 // exited. The alternative to fallocate would be to use fdatasync,
4861 // but that would be a more significant performance hit.
4862 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4863 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4864
4865 // Map the file into memory.
4866 int prot = PROT_READ;
4867 if (writable)
4868 prot |= PROT_WRITE;
4869 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4870
4871 // The mmap call might fail because of file system issues: the file
4872 // system might not support mmap at all, or it might not support
4873 // mmap with PROT_WRITE.
4874 if (base == MAP_FAILED)
4875 return false;
4876
4877 this->map_is_anonymous_ = false;
4878 this->base_ = static_cast<unsigned char*>(base);
4879 return true;
4880 }
4881
4882 // Map the file into memory.
4883
4884 void
4885 Output_file::map()
4886 {
4887 if (this->map_no_anonymous(true))
4888 return;
4889
4890 // The mmap call might fail because of file system issues: the file
4891 // system might not support mmap at all, or it might not support
4892 // mmap with PROT_WRITE. I'm not sure which errno values we will
4893 // see in all cases, so if the mmap fails for any reason and we
4894 // don't care about file contents, try for an anonymous map.
4895 if (this->map_anonymous())
4896 return;
4897
4898 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4899 this->name_, static_cast<unsigned long>(this->file_size_),
4900 strerror(errno));
4901 }
4902
4903 // Unmap the file from memory.
4904
4905 void
4906 Output_file::unmap()
4907 {
4908 if (this->map_is_anonymous_)
4909 {
4910 // We've already written out the data, so there is no reason to
4911 // waste time unmapping or freeing the memory.
4912 }
4913 else
4914 {
4915 if (::munmap(this->base_, this->file_size_) < 0)
4916 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4917 }
4918 this->base_ = NULL;
4919 }
4920
4921 // Close the output file.
4922
4923 void
4924 Output_file::close()
4925 {
4926 // If the map isn't file-backed, we need to write it now.
4927 if (this->map_is_anonymous_ && !this->is_temporary_)
4928 {
4929 size_t bytes_to_write = this->file_size_;
4930 size_t offset = 0;
4931 while (bytes_to_write > 0)
4932 {
4933 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4934 bytes_to_write);
4935 if (bytes_written == 0)
4936 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4937 else if (bytes_written < 0)
4938 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4939 else
4940 {
4941 bytes_to_write -= bytes_written;
4942 offset += bytes_written;
4943 }
4944 }
4945 }
4946 this->unmap();
4947
4948 // We don't close stdout or stderr
4949 if (this->o_ != STDOUT_FILENO
4950 && this->o_ != STDERR_FILENO
4951 && !this->is_temporary_)
4952 if (::close(this->o_) < 0)
4953 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4954 this->o_ = -1;
4955 }
4956
4957 // Instantiate the templates we need. We could use the configure
4958 // script to restrict this to only the ones for implemented targets.
4959
4960 #ifdef HAVE_TARGET_32_LITTLE
4961 template
4962 off_t
4963 Output_section::add_input_section<32, false>(
4964 Layout* layout,
4965 Sized_relobj_file<32, false>* object,
4966 unsigned int shndx,
4967 const char* secname,
4968 const elfcpp::Shdr<32, false>& shdr,
4969 unsigned int reloc_shndx,
4970 bool have_sections_script);
4971 #endif
4972
4973 #ifdef HAVE_TARGET_32_BIG
4974 template
4975 off_t
4976 Output_section::add_input_section<32, true>(
4977 Layout* layout,
4978 Sized_relobj_file<32, true>* object,
4979 unsigned int shndx,
4980 const char* secname,
4981 const elfcpp::Shdr<32, true>& shdr,
4982 unsigned int reloc_shndx,
4983 bool have_sections_script);
4984 #endif
4985
4986 #ifdef HAVE_TARGET_64_LITTLE
4987 template
4988 off_t
4989 Output_section::add_input_section<64, false>(
4990 Layout* layout,
4991 Sized_relobj_file<64, false>* object,
4992 unsigned int shndx,
4993 const char* secname,
4994 const elfcpp::Shdr<64, false>& shdr,
4995 unsigned int reloc_shndx,
4996 bool have_sections_script);
4997 #endif
4998
4999 #ifdef HAVE_TARGET_64_BIG
5000 template
5001 off_t
5002 Output_section::add_input_section<64, true>(
5003 Layout* layout,
5004 Sized_relobj_file<64, true>* object,
5005 unsigned int shndx,
5006 const char* secname,
5007 const elfcpp::Shdr<64, true>& shdr,
5008 unsigned int reloc_shndx,
5009 bool have_sections_script);
5010 #endif
5011
5012 #ifdef HAVE_TARGET_32_LITTLE
5013 template
5014 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5015 #endif
5016
5017 #ifdef HAVE_TARGET_32_BIG
5018 template
5019 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5020 #endif
5021
5022 #ifdef HAVE_TARGET_64_LITTLE
5023 template
5024 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5025 #endif
5026
5027 #ifdef HAVE_TARGET_64_BIG
5028 template
5029 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5030 #endif
5031
5032 #ifdef HAVE_TARGET_32_LITTLE
5033 template
5034 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5035 #endif
5036
5037 #ifdef HAVE_TARGET_32_BIG
5038 template
5039 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5040 #endif
5041
5042 #ifdef HAVE_TARGET_64_LITTLE
5043 template
5044 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5045 #endif
5046
5047 #ifdef HAVE_TARGET_64_BIG
5048 template
5049 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5050 #endif
5051
5052 #ifdef HAVE_TARGET_32_LITTLE
5053 template
5054 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5055 #endif
5056
5057 #ifdef HAVE_TARGET_32_BIG
5058 template
5059 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5060 #endif
5061
5062 #ifdef HAVE_TARGET_64_LITTLE
5063 template
5064 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5065 #endif
5066
5067 #ifdef HAVE_TARGET_64_BIG
5068 template
5069 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5070 #endif
5071
5072 #ifdef HAVE_TARGET_32_LITTLE
5073 template
5074 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5075 #endif
5076
5077 #ifdef HAVE_TARGET_32_BIG
5078 template
5079 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5080 #endif
5081
5082 #ifdef HAVE_TARGET_64_LITTLE
5083 template
5084 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5085 #endif
5086
5087 #ifdef HAVE_TARGET_64_BIG
5088 template
5089 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5090 #endif
5091
5092 #ifdef HAVE_TARGET_32_LITTLE
5093 template
5094 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5095 #endif
5096
5097 #ifdef HAVE_TARGET_32_BIG
5098 template
5099 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5100 #endif
5101
5102 #ifdef HAVE_TARGET_64_LITTLE
5103 template
5104 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5105 #endif
5106
5107 #ifdef HAVE_TARGET_64_BIG
5108 template
5109 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5110 #endif
5111
5112 #ifdef HAVE_TARGET_32_LITTLE
5113 template
5114 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5115 #endif
5116
5117 #ifdef HAVE_TARGET_32_BIG
5118 template
5119 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5120 #endif
5121
5122 #ifdef HAVE_TARGET_64_LITTLE
5123 template
5124 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5125 #endif
5126
5127 #ifdef HAVE_TARGET_64_BIG
5128 template
5129 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5130 #endif
5131
5132 #ifdef HAVE_TARGET_32_LITTLE
5133 template
5134 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5135 #endif
5136
5137 #ifdef HAVE_TARGET_32_BIG
5138 template
5139 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5140 #endif
5141
5142 #ifdef HAVE_TARGET_64_LITTLE
5143 template
5144 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5145 #endif
5146
5147 #ifdef HAVE_TARGET_64_BIG
5148 template
5149 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5150 #endif
5151
5152 #ifdef HAVE_TARGET_32_LITTLE
5153 template
5154 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5155 #endif
5156
5157 #ifdef HAVE_TARGET_32_BIG
5158 template
5159 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5160 #endif
5161
5162 #ifdef HAVE_TARGET_64_LITTLE
5163 template
5164 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5165 #endif
5166
5167 #ifdef HAVE_TARGET_64_BIG
5168 template
5169 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5170 #endif
5171
5172 #ifdef HAVE_TARGET_32_LITTLE
5173 template
5174 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5175 #endif
5176
5177 #ifdef HAVE_TARGET_32_BIG
5178 template
5179 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5180 #endif
5181
5182 #ifdef HAVE_TARGET_64_LITTLE
5183 template
5184 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5185 #endif
5186
5187 #ifdef HAVE_TARGET_64_BIG
5188 template
5189 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5190 #endif
5191
5192 #ifdef HAVE_TARGET_32_LITTLE
5193 template
5194 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5195 #endif
5196
5197 #ifdef HAVE_TARGET_32_BIG
5198 template
5199 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5200 #endif
5201
5202 #ifdef HAVE_TARGET_64_LITTLE
5203 template
5204 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5205 #endif
5206
5207 #ifdef HAVE_TARGET_64_BIG
5208 template
5209 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5210 #endif
5211
5212 #ifdef HAVE_TARGET_32_LITTLE
5213 template
5214 class Output_data_group<32, false>;
5215 #endif
5216
5217 #ifdef HAVE_TARGET_32_BIG
5218 template
5219 class Output_data_group<32, true>;
5220 #endif
5221
5222 #ifdef HAVE_TARGET_64_LITTLE
5223 template
5224 class Output_data_group<64, false>;
5225 #endif
5226
5227 #ifdef HAVE_TARGET_64_BIG
5228 template
5229 class Output_data_group<64, true>;
5230 #endif
5231
5232 #ifdef HAVE_TARGET_32_LITTLE
5233 template
5234 class Output_data_got<32, false>;
5235 #endif
5236
5237 #ifdef HAVE_TARGET_32_BIG
5238 template
5239 class Output_data_got<32, true>;
5240 #endif
5241
5242 #ifdef HAVE_TARGET_64_LITTLE
5243 template
5244 class Output_data_got<64, false>;
5245 #endif
5246
5247 #ifdef HAVE_TARGET_64_BIG
5248 template
5249 class Output_data_got<64, true>;
5250 #endif
5251
5252 } // End namespace gold.
This page took 0.144041 seconds and 5 git commands to generate.