Remove is_merge_section_for.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367 unsigned int got_indx,
1368 unsigned char* pov) const
1369 {
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
1379 Symbol* gsym = this->u_.gsym;
1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381 val = parameters->target().plt_address_for_global(gsym);
1382 else
1383 {
1384 switch (parameters->size_and_endianness())
1385 {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408 #endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
1416 }
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
1427 return;
1428 val = this->u_.constant;
1429 break;
1430
1431 default:
1432 {
1433 const Relobj* object = this->u_.object;
1434 const unsigned int lsi = this->local_sym_index_;
1435 bool is_tls = object->local_is_tls(lsi);
1436 if (this->use_plt_or_tls_offset_ && !is_tls)
1437 val = parameters->target().plt_address_for_local(object, lsi);
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
1446 }
1447 break;
1448 }
1449
1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT. This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462 Symbol* gsym,
1463 unsigned int got_type)
1464 {
1465 if (gsym->has_got_offset(got_type))
1466 return false;
1467
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
1470 return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
1479 {
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
1485 return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494 Symbol* gsym,
1495 unsigned int got_type,
1496 Output_data_reloc_generic* rel_dyn,
1497 unsigned int r_type)
1498 {
1499 if (gsym->has_got_offset(got_type))
1500 return;
1501
1502 unsigned int got_offset = this->add_got_entry(Got_entry());
1503 gsym->set_got_offset(got_type, got_offset);
1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513 Symbol* gsym,
1514 unsigned int got_type,
1515 Output_data_reloc_generic* rel_dyn,
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
1518 {
1519 if (gsym->has_got_offset(got_type))
1520 return;
1521
1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523 gsym->set_got_offset(got_type, got_offset);
1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526 if (r_type_2 != 0)
1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
1528 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT. This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538 Relobj* object,
1539 unsigned int symndx,
1540 unsigned int got_type)
1541 {
1542 if (object->local_has_got_offset(symndx, got_type))
1543 return false;
1544
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
1548 return true;
1549 }
1550
1551 // Like add_local, but use the PLT offset.
1552
1553 template<int got_size, bool big_endian>
1554 bool
1555 Output_data_got<got_size, big_endian>::add_local_plt(
1556 Relobj* object,
1557 unsigned int symndx,
1558 unsigned int got_type)
1559 {
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return false;
1562
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564 true));
1565 object->set_local_got_offset(symndx, got_type, got_offset);
1566 return true;
1567 }
1568
1569 // Add an entry for a local symbol to the GOT, and add a dynamic
1570 // relocation of type R_TYPE for the GOT entry.
1571
1572 template<int got_size, bool big_endian>
1573 void
1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
1575 Relobj* object,
1576 unsigned int symndx,
1577 unsigned int got_type,
1578 Output_data_reloc_generic* rel_dyn,
1579 unsigned int r_type)
1580 {
1581 if (object->local_has_got_offset(symndx, got_type))
1582 return;
1583
1584 unsigned int got_offset = this->add_got_entry(Got_entry());
1585 object->set_local_got_offset(symndx, got_type, got_offset);
1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1587 }
1588
1589 // Add a pair of entries for a local symbol to the GOT, and add
1590 // a dynamic relocation of type R_TYPE using the section symbol of
1591 // the output section to which input section SHNDX maps, on the first.
1592 // The first got entry will have a value of zero, the second the
1593 // value of the local symbol.
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int shndx,
1600 unsigned int got_type,
1601 Output_data_reloc_generic* rel_dyn,
1602 unsigned int r_type)
1603 {
1604 if (object->local_has_got_offset(symndx, got_type))
1605 return;
1606
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
1610 object->set_local_got_offset(symndx, got_type, got_offset);
1611 Output_section* os = object->output_section(shndx);
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613 }
1614
1615 // Add a pair of entries for a local symbol to the GOT, and add
1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617 // The first got entry will have a value of zero, the second the
1618 // value of the local symbol offset by Target::tls_offset_for_local.
1619 template<int got_size, bool big_endian>
1620 void
1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1622 Relobj* object,
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1627 {
1628 if (object->local_has_got_offset(symndx, got_type))
1629 return;
1630
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1636 }
1637
1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
1640 template<int got_size, bool big_endian>
1641 void
1642 Output_data_got<got_size, big_endian>::reserve_local(
1643 unsigned int i,
1644 Relobj* object,
1645 unsigned int sym_index,
1646 unsigned int got_type)
1647 {
1648 this->do_reserve_slot(i);
1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1650 }
1651
1652 // Reserve a slot in the GOT for a global symbol.
1653
1654 template<int got_size, bool big_endian>
1655 void
1656 Output_data_got<got_size, big_endian>::reserve_global(
1657 unsigned int i,
1658 Symbol* gsym,
1659 unsigned int got_type)
1660 {
1661 this->do_reserve_slot(i);
1662 gsym->set_got_offset(got_type, this->got_offset(i));
1663 }
1664
1665 // Write out the GOT.
1666
1667 template<int got_size, bool big_endian>
1668 void
1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1670 {
1671 const int add = got_size / 8;
1672
1673 const off_t off = this->offset();
1674 const off_t oview_size = this->data_size();
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677 unsigned char* pov = oview;
1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1679 {
1680 this->entries_[i].write(i, pov);
1681 pov += add;
1682 }
1683
1684 gold_assert(pov - oview == oview_size);
1685
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int got_size, bool big_endian>
1695 unsigned int
1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1708 got_size / 8, 0);
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (got_size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int got_size, bool big_endian>
1722 unsigned int
1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
1726 {
1727 if (!this->is_data_size_valid())
1728 {
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1734 return got_offset;
1735 }
1736 else
1737 {
1738 // For an incremental update, find an available pair of slots.
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740 got_size / 8, 0);
1741 if (got_offset == -1)
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
1744 unsigned int got_index = got_offset / (got_size / 8);
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1749 }
1750 }
1751
1752 // Replace GOT entry I with a new value.
1753
1754 template<int got_size, bool big_endian>
1755 void
1756 Output_data_got<got_size, big_endian>::replace_got_entry(
1757 unsigned int i,
1758 Got_entry got_entry)
1759 {
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1762 }
1763
1764 // Output_data_dynamic::Dynamic_entry methods.
1765
1766 // Write out the entry.
1767
1768 template<int size, bool big_endian>
1769 void
1770 Output_data_dynamic::Dynamic_entry::write(
1771 unsigned char* pov,
1772 const Stringpool* pool) const
1773 {
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
1775 switch (this->offset_)
1776 {
1777 case DYNAMIC_NUMBER:
1778 val = this->u_.val;
1779 break;
1780
1781 case DYNAMIC_SECTION_SIZE:
1782 val = this->u_.od->data_size();
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
1785 break;
1786
1787 case DYNAMIC_SYMBOL:
1788 {
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1791 val = s->value();
1792 }
1793 break;
1794
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1797 break;
1798
1799 case DYNAMIC_CUSTOM:
1800 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1801 break;
1802
1803 default:
1804 val = this->u_.od->address() + this->offset_;
1805 break;
1806 }
1807
1808 elfcpp::Dyn_write<size, big_endian> dw(pov);
1809 dw.put_d_tag(this->tag_);
1810 dw.put_d_val(val);
1811 }
1812
1813 // Output_data_dynamic methods.
1814
1815 // Adjust the output section to set the entry size.
1816
1817 void
1818 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1819 {
1820 if (parameters->target().get_size() == 32)
1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1822 else if (parameters->target().get_size() == 64)
1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1824 else
1825 gold_unreachable();
1826 }
1827
1828 // Set the final data size.
1829
1830 void
1831 Output_data_dynamic::set_final_data_size()
1832 {
1833 // Add the terminating entry if it hasn't been added.
1834 // Because of relaxation, we can run this multiple times.
1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1836 {
1837 int extra = parameters->options().spare_dynamic_tags();
1838 for (int i = 0; i < extra; ++i)
1839 this->add_constant(elfcpp::DT_NULL, 0);
1840 this->add_constant(elfcpp::DT_NULL, 0);
1841 }
1842
1843 int dyn_size;
1844 if (parameters->target().get_size() == 32)
1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1846 else if (parameters->target().get_size() == 64)
1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1848 else
1849 gold_unreachable();
1850 this->set_data_size(this->entries_.size() * dyn_size);
1851 }
1852
1853 // Write out the dynamic entries.
1854
1855 void
1856 Output_data_dynamic::do_write(Output_file* of)
1857 {
1858 switch (parameters->size_and_endianness())
1859 {
1860 #ifdef HAVE_TARGET_32_LITTLE
1861 case Parameters::TARGET_32_LITTLE:
1862 this->sized_write<32, false>(of);
1863 break;
1864 #endif
1865 #ifdef HAVE_TARGET_32_BIG
1866 case Parameters::TARGET_32_BIG:
1867 this->sized_write<32, true>(of);
1868 break;
1869 #endif
1870 #ifdef HAVE_TARGET_64_LITTLE
1871 case Parameters::TARGET_64_LITTLE:
1872 this->sized_write<64, false>(of);
1873 break;
1874 #endif
1875 #ifdef HAVE_TARGET_64_BIG
1876 case Parameters::TARGET_64_BIG:
1877 this->sized_write<64, true>(of);
1878 break;
1879 #endif
1880 default:
1881 gold_unreachable();
1882 }
1883 }
1884
1885 template<int size, bool big_endian>
1886 void
1887 Output_data_dynamic::sized_write(Output_file* of)
1888 {
1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1890
1891 const off_t offset = this->offset();
1892 const off_t oview_size = this->data_size();
1893 unsigned char* const oview = of->get_output_view(offset, oview_size);
1894
1895 unsigned char* pov = oview;
1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897 p != this->entries_.end();
1898 ++p)
1899 {
1900 p->write<size, big_endian>(pov, this->pool_);
1901 pov += dyn_size;
1902 }
1903
1904 gold_assert(pov - oview == oview_size);
1905
1906 of->write_output_view(offset, oview_size, oview);
1907
1908 // We no longer need the dynamic entries.
1909 this->entries_.clear();
1910 }
1911
1912 // Class Output_symtab_xindex.
1913
1914 void
1915 Output_symtab_xindex::do_write(Output_file* of)
1916 {
1917 const off_t offset = this->offset();
1918 const off_t oview_size = this->data_size();
1919 unsigned char* const oview = of->get_output_view(offset, oview_size);
1920
1921 memset(oview, 0, oview_size);
1922
1923 if (parameters->target().is_big_endian())
1924 this->endian_do_write<true>(oview);
1925 else
1926 this->endian_do_write<false>(oview);
1927
1928 of->write_output_view(offset, oview_size, oview);
1929
1930 // We no longer need the data.
1931 this->entries_.clear();
1932 }
1933
1934 template<bool big_endian>
1935 void
1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1937 {
1938 for (Xindex_entries::const_iterator p = this->entries_.begin();
1939 p != this->entries_.end();
1940 ++p)
1941 {
1942 unsigned int symndx = p->first;
1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945 }
1946 }
1947
1948 // Output_fill_debug_info methods.
1949
1950 // Return the minimum size needed for a dummy compilation unit header.
1951
1952 size_t
1953 Output_fill_debug_info::do_minimum_hole_size() const
1954 {
1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1956 // address_size.
1957 const size_t len = 4 + 2 + 4 + 1;
1958 // For type units, add type_signature, type_offset.
1959 if (this->is_debug_types_)
1960 return len + 8 + 4;
1961 return len;
1962 }
1963
1964 // Write a dummy compilation unit header to fill a hole in the
1965 // .debug_info or .debug_types section.
1966
1967 void
1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1969 {
1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971 static_cast<long>(off), static_cast<long>(len));
1972
1973 gold_assert(len >= this->do_minimum_hole_size());
1974
1975 unsigned char* const oview = of->get_output_view(off, len);
1976 unsigned char* pov = oview;
1977
1978 // Write header fields: unit_length, version, debug_abbrev_offset,
1979 // address_size.
1980 if (this->is_big_endian())
1981 {
1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1985 }
1986 else
1987 {
1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1991 }
1992 pov += 4 + 2 + 4;
1993 *pov++ = 4;
1994
1995 // For type units, the additional header fields -- type_signature,
1996 // type_offset -- can be filled with zeroes.
1997
1998 // Fill the remainder of the free space with zeroes. The first
1999 // zero should tell the consumer there are no DIEs to read in this
2000 // compilation unit.
2001 if (pov < oview + len)
2002 memset(pov, 0, oview + len - pov);
2003
2004 of->write_output_view(off, len, oview);
2005 }
2006
2007 // Output_fill_debug_line methods.
2008
2009 // Return the minimum size needed for a dummy line number program header.
2010
2011 size_t
2012 Output_fill_debug_line::do_minimum_hole_size() const
2013 {
2014 // Line number program header fields: unit_length, version, header_length,
2015 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017 const size_t len = 4 + 2 + 4 + this->header_length;
2018 return len;
2019 }
2020
2021 // Write a dummy line number program header to fill a hole in the
2022 // .debug_line section.
2023
2024 void
2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2026 {
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
2029
2030 gold_assert(len >= this->do_minimum_hole_size());
2031
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2034
2035 // Write header fields: unit_length, version, header_length,
2036 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038 // We set the header_length field to cover the entire hole, so the
2039 // line number program is empty.
2040 if (this->is_big_endian())
2041 {
2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2045 }
2046 else
2047 {
2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2051 }
2052 pov += 4 + 2 + 4;
2053 *pov++ = 1; // minimum_instruction_length
2054 *pov++ = 0; // default_is_stmt
2055 *pov++ = 0; // line_base
2056 *pov++ = 5; // line_range
2057 *pov++ = 13; // opcode_base
2058 *pov++ = 0; // standard_opcode_lengths[1]
2059 *pov++ = 1; // standard_opcode_lengths[2]
2060 *pov++ = 1; // standard_opcode_lengths[3]
2061 *pov++ = 1; // standard_opcode_lengths[4]
2062 *pov++ = 1; // standard_opcode_lengths[5]
2063 *pov++ = 0; // standard_opcode_lengths[6]
2064 *pov++ = 0; // standard_opcode_lengths[7]
2065 *pov++ = 0; // standard_opcode_lengths[8]
2066 *pov++ = 1; // standard_opcode_lengths[9]
2067 *pov++ = 0; // standard_opcode_lengths[10]
2068 *pov++ = 0; // standard_opcode_lengths[11]
2069 *pov++ = 1; // standard_opcode_lengths[12]
2070 *pov++ = 0; // include_directories (empty)
2071 *pov++ = 0; // filenames (empty)
2072
2073 // Some consumers don't check the header_length field, and simply
2074 // start reading the line number program immediately following the
2075 // header. For those consumers, we fill the remainder of the free
2076 // space with DW_LNS_set_basic_block opcodes. These are effectively
2077 // no-ops: the resulting line table program will not create any rows.
2078 if (pov < oview + len)
2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2080
2081 of->write_output_view(off, len, oview);
2082 }
2083
2084 // Output_section::Input_section methods.
2085
2086 // Return the current data size. For an input section we store the size here.
2087 // For an Output_section_data, we have to ask it for the size.
2088
2089 off_t
2090 Output_section::Input_section::current_data_size() const
2091 {
2092 if (this->is_input_section())
2093 return this->u1_.data_size;
2094 else
2095 {
2096 this->u2_.posd->pre_finalize_data_size();
2097 return this->u2_.posd->current_data_size();
2098 }
2099 }
2100
2101 // Return the data size. For an input section we store the size here.
2102 // For an Output_section_data, we have to ask it for the size.
2103
2104 off_t
2105 Output_section::Input_section::data_size() const
2106 {
2107 if (this->is_input_section())
2108 return this->u1_.data_size;
2109 else
2110 return this->u2_.posd->data_size();
2111 }
2112
2113 // Return the object for an input section.
2114
2115 Relobj*
2116 Output_section::Input_section::relobj() const
2117 {
2118 if (this->is_input_section())
2119 return this->u2_.object;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_relobj();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->relobj();
2127 else
2128 gold_unreachable();
2129 }
2130
2131 // Return the input section index for an input section.
2132
2133 unsigned int
2134 Output_section::Input_section::shndx() const
2135 {
2136 if (this->is_input_section())
2137 return this->shndx_;
2138 else if (this->is_merge_section())
2139 {
2140 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141 return this->u2_.pomb->first_shndx();
2142 }
2143 else if (this->is_relaxed_input_section())
2144 return this->u2_.poris->shndx();
2145 else
2146 gold_unreachable();
2147 }
2148
2149 // Set the address and file offset.
2150
2151 void
2152 Output_section::Input_section::set_address_and_file_offset(
2153 uint64_t address,
2154 off_t file_offset,
2155 off_t section_file_offset)
2156 {
2157 if (this->is_input_section())
2158 this->u2_.object->set_section_offset(this->shndx_,
2159 file_offset - section_file_offset);
2160 else
2161 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2162 }
2163
2164 // Reset the address and file offset.
2165
2166 void
2167 Output_section::Input_section::reset_address_and_file_offset()
2168 {
2169 if (!this->is_input_section())
2170 this->u2_.posd->reset_address_and_file_offset();
2171 }
2172
2173 // Finalize the data size.
2174
2175 void
2176 Output_section::Input_section::finalize_data_size()
2177 {
2178 if (!this->is_input_section())
2179 this->u2_.posd->finalize_data_size();
2180 }
2181
2182 // Try to turn an input offset into an output offset. We want to
2183 // return the output offset relative to the start of this
2184 // Input_section in the output section.
2185
2186 inline bool
2187 Output_section::Input_section::output_offset(
2188 const Relobj* object,
2189 unsigned int shndx,
2190 section_offset_type offset,
2191 section_offset_type* poutput) const
2192 {
2193 if (!this->is_input_section())
2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2195 else
2196 {
2197 if (this->shndx_ != shndx || this->u2_.object != object)
2198 return false;
2199 *poutput = offset;
2200 return true;
2201 }
2202 }
2203
2204 // Write out the data. We don't have to do anything for an input
2205 // section--they are handled via Object::relocate--but this is where
2206 // we write out the data for an Output_section_data.
2207
2208 void
2209 Output_section::Input_section::write(Output_file* of)
2210 {
2211 if (!this->is_input_section())
2212 this->u2_.posd->write(of);
2213 }
2214
2215 // Write the data to a buffer. As for write(), we don't have to do
2216 // anything for an input section.
2217
2218 void
2219 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2220 {
2221 if (!this->is_input_section())
2222 this->u2_.posd->write_to_buffer(buffer);
2223 }
2224
2225 // Print to a map file.
2226
2227 void
2228 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2229 {
2230 switch (this->shndx_)
2231 {
2232 case OUTPUT_SECTION_CODE:
2233 case MERGE_DATA_SECTION_CODE:
2234 case MERGE_STRING_SECTION_CODE:
2235 this->u2_.posd->print_to_mapfile(mapfile);
2236 break;
2237
2238 case RELAXED_INPUT_SECTION_CODE:
2239 {
2240 Output_relaxed_input_section* relaxed_section =
2241 this->relaxed_input_section();
2242 mapfile->print_input_section(relaxed_section->relobj(),
2243 relaxed_section->shndx());
2244 }
2245 break;
2246 default:
2247 mapfile->print_input_section(this->u2_.object, this->shndx_);
2248 break;
2249 }
2250 }
2251
2252 // Output_section methods.
2253
2254 // Construct an Output_section. NAME will point into a Stringpool.
2255
2256 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2257 elfcpp::Elf_Xword flags)
2258 : name_(name),
2259 addralign_(0),
2260 entsize_(0),
2261 load_address_(0),
2262 link_section_(NULL),
2263 link_(0),
2264 info_section_(NULL),
2265 info_symndx_(NULL),
2266 info_(0),
2267 type_(type),
2268 flags_(flags),
2269 order_(ORDER_INVALID),
2270 out_shndx_(-1U),
2271 symtab_index_(0),
2272 dynsym_index_(0),
2273 input_sections_(),
2274 first_input_offset_(0),
2275 fills_(),
2276 postprocessing_buffer_(NULL),
2277 needs_symtab_index_(false),
2278 needs_dynsym_index_(false),
2279 should_link_to_symtab_(false),
2280 should_link_to_dynsym_(false),
2281 after_input_sections_(false),
2282 requires_postprocessing_(false),
2283 found_in_sections_clause_(false),
2284 has_load_address_(false),
2285 info_uses_section_index_(false),
2286 input_section_order_specified_(false),
2287 may_sort_attached_input_sections_(false),
2288 must_sort_attached_input_sections_(false),
2289 attached_input_sections_are_sorted_(false),
2290 is_relro_(false),
2291 is_small_section_(false),
2292 is_large_section_(false),
2293 generate_code_fills_at_write_(false),
2294 is_entsize_zero_(false),
2295 section_offsets_need_adjustment_(false),
2296 is_noload_(false),
2297 always_keeps_input_sections_(false),
2298 has_fixed_layout_(false),
2299 is_patch_space_allowed_(false),
2300 is_unique_segment_(false),
2301 tls_offset_(0),
2302 extra_segment_flags_(0),
2303 segment_alignment_(0),
2304 checkpoint_(NULL),
2305 lookup_maps_(new Output_section_lookup_maps),
2306 free_list_(),
2307 free_space_fill_(NULL),
2308 patch_space_(0)
2309 {
2310 // An unallocated section has no address. Forcing this means that
2311 // we don't need special treatment for symbols defined in debug
2312 // sections.
2313 if ((flags & elfcpp::SHF_ALLOC) == 0)
2314 this->set_address(0);
2315 }
2316
2317 Output_section::~Output_section()
2318 {
2319 delete this->checkpoint_;
2320 }
2321
2322 // Set the entry size.
2323
2324 void
2325 Output_section::set_entsize(uint64_t v)
2326 {
2327 if (this->is_entsize_zero_)
2328 ;
2329 else if (this->entsize_ == 0)
2330 this->entsize_ = v;
2331 else if (this->entsize_ != v)
2332 {
2333 this->entsize_ = 0;
2334 this->is_entsize_zero_ = 1;
2335 }
2336 }
2337
2338 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2339 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2340 // relocation section which applies to this section, or 0 if none, or
2341 // -1U if more than one. Return the offset of the input section
2342 // within the output section. Return -1 if the input section will
2343 // receive special handling. In the normal case we don't always keep
2344 // track of input sections for an Output_section. Instead, each
2345 // Object keeps track of the Output_section for each of its input
2346 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2347 // track of input sections here; this is used when SECTIONS appears in
2348 // a linker script.
2349
2350 template<int size, bool big_endian>
2351 off_t
2352 Output_section::add_input_section(Layout* layout,
2353 Sized_relobj_file<size, big_endian>* object,
2354 unsigned int shndx,
2355 const char* secname,
2356 const elfcpp::Shdr<size, big_endian>& shdr,
2357 unsigned int reloc_shndx,
2358 bool have_sections_script)
2359 {
2360 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2361 if ((addralign & (addralign - 1)) != 0)
2362 {
2363 object->error(_("invalid alignment %lu for section \"%s\""),
2364 static_cast<unsigned long>(addralign), secname);
2365 addralign = 1;
2366 }
2367
2368 if (addralign > this->addralign_)
2369 this->addralign_ = addralign;
2370
2371 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2372 uint64_t entsize = shdr.get_sh_entsize();
2373
2374 // .debug_str is a mergeable string section, but is not always so
2375 // marked by compilers. Mark manually here so we can optimize.
2376 if (strcmp(secname, ".debug_str") == 0)
2377 {
2378 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2379 entsize = 1;
2380 }
2381
2382 this->update_flags_for_input_section(sh_flags);
2383 this->set_entsize(entsize);
2384
2385 // If this is a SHF_MERGE section, we pass all the input sections to
2386 // a Output_data_merge. We don't try to handle relocations for such
2387 // a section. We don't try to handle empty merge sections--they
2388 // mess up the mappings, and are useless anyhow.
2389 // FIXME: Need to handle merge sections during incremental update.
2390 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2391 && reloc_shndx == 0
2392 && shdr.get_sh_size() > 0
2393 && !parameters->incremental())
2394 {
2395 // Keep information about merged input sections for rebuilding fast
2396 // lookup maps if we have sections-script or we do relaxation.
2397 bool keeps_input_sections = (this->always_keeps_input_sections_
2398 || have_sections_script
2399 || parameters->target().may_relax());
2400
2401 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2402 addralign, keeps_input_sections))
2403 {
2404 // Tell the relocation routines that they need to call the
2405 // output_offset method to determine the final address.
2406 return -1;
2407 }
2408 }
2409
2410 section_size_type input_section_size = shdr.get_sh_size();
2411 section_size_type uncompressed_size;
2412 if (object->section_is_compressed(shndx, &uncompressed_size))
2413 input_section_size = uncompressed_size;
2414
2415 off_t offset_in_section;
2416
2417 if (this->has_fixed_layout())
2418 {
2419 // For incremental updates, find a chunk of unused space in the section.
2420 offset_in_section = this->free_list_.allocate(input_section_size,
2421 addralign, 0);
2422 if (offset_in_section == -1)
2423 gold_fallback(_("out of patch space in section %s; "
2424 "relink with --incremental-full"),
2425 this->name());
2426 return offset_in_section;
2427 }
2428
2429 offset_in_section = this->current_data_size_for_child();
2430 off_t aligned_offset_in_section = align_address(offset_in_section,
2431 addralign);
2432 this->set_current_data_size_for_child(aligned_offset_in_section
2433 + input_section_size);
2434
2435 // Determine if we want to delay code-fill generation until the output
2436 // section is written. When the target is relaxing, we want to delay fill
2437 // generating to avoid adjusting them during relaxation. Also, if we are
2438 // sorting input sections we must delay fill generation.
2439 if (!this->generate_code_fills_at_write_
2440 && !have_sections_script
2441 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2442 && parameters->target().has_code_fill()
2443 && (parameters->target().may_relax()
2444 || layout->is_section_ordering_specified()))
2445 {
2446 gold_assert(this->fills_.empty());
2447 this->generate_code_fills_at_write_ = true;
2448 }
2449
2450 if (aligned_offset_in_section > offset_in_section
2451 && !this->generate_code_fills_at_write_
2452 && !have_sections_script
2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2454 && parameters->target().has_code_fill())
2455 {
2456 // We need to add some fill data. Using fill_list_ when
2457 // possible is an optimization, since we will often have fill
2458 // sections without input sections.
2459 off_t fill_len = aligned_offset_in_section - offset_in_section;
2460 if (this->input_sections_.empty())
2461 this->fills_.push_back(Fill(offset_in_section, fill_len));
2462 else
2463 {
2464 std::string fill_data(parameters->target().code_fill(fill_len));
2465 Output_data_const* odc = new Output_data_const(fill_data, 1);
2466 this->input_sections_.push_back(Input_section(odc));
2467 }
2468 }
2469
2470 // We need to keep track of this section if we are already keeping
2471 // track of sections, or if we are relaxing. Also, if this is a
2472 // section which requires sorting, or which may require sorting in
2473 // the future, we keep track of the sections. If the
2474 // --section-ordering-file option is used to specify the order of
2475 // sections, we need to keep track of sections.
2476 if (this->always_keeps_input_sections_
2477 || have_sections_script
2478 || !this->input_sections_.empty()
2479 || this->may_sort_attached_input_sections()
2480 || this->must_sort_attached_input_sections()
2481 || parameters->options().user_set_Map()
2482 || parameters->target().may_relax()
2483 || layout->is_section_ordering_specified())
2484 {
2485 Input_section isecn(object, shndx, input_section_size, addralign);
2486 /* If section ordering is requested by specifying a ordering file,
2487 using --section-ordering-file, match the section name with
2488 a pattern. */
2489 if (parameters->options().section_ordering_file())
2490 {
2491 unsigned int section_order_index =
2492 layout->find_section_order_index(std::string(secname));
2493 if (section_order_index != 0)
2494 {
2495 isecn.set_section_order_index(section_order_index);
2496 this->set_input_section_order_specified();
2497 }
2498 }
2499 this->input_sections_.push_back(isecn);
2500 }
2501
2502 return aligned_offset_in_section;
2503 }
2504
2505 // Add arbitrary data to an output section.
2506
2507 void
2508 Output_section::add_output_section_data(Output_section_data* posd)
2509 {
2510 Input_section inp(posd);
2511 this->add_output_section_data(&inp);
2512
2513 if (posd->is_data_size_valid())
2514 {
2515 off_t offset_in_section;
2516 if (this->has_fixed_layout())
2517 {
2518 // For incremental updates, find a chunk of unused space.
2519 offset_in_section = this->free_list_.allocate(posd->data_size(),
2520 posd->addralign(), 0);
2521 if (offset_in_section == -1)
2522 gold_fallback(_("out of patch space in section %s; "
2523 "relink with --incremental-full"),
2524 this->name());
2525 // Finalize the address and offset now.
2526 uint64_t addr = this->address();
2527 off_t offset = this->offset();
2528 posd->set_address_and_file_offset(addr + offset_in_section,
2529 offset + offset_in_section);
2530 }
2531 else
2532 {
2533 offset_in_section = this->current_data_size_for_child();
2534 off_t aligned_offset_in_section = align_address(offset_in_section,
2535 posd->addralign());
2536 this->set_current_data_size_for_child(aligned_offset_in_section
2537 + posd->data_size());
2538 }
2539 }
2540 else if (this->has_fixed_layout())
2541 {
2542 // For incremental updates, arrange for the data to have a fixed layout.
2543 // This will mean that additions to the data must be allocated from
2544 // free space within the containing output section.
2545 uint64_t addr = this->address();
2546 posd->set_address(addr);
2547 posd->set_file_offset(0);
2548 // FIXME: This should eventually be unreachable.
2549 // gold_unreachable();
2550 }
2551 }
2552
2553 // Add a relaxed input section.
2554
2555 void
2556 Output_section::add_relaxed_input_section(Layout* layout,
2557 Output_relaxed_input_section* poris,
2558 const std::string& name)
2559 {
2560 Input_section inp(poris);
2561
2562 // If the --section-ordering-file option is used to specify the order of
2563 // sections, we need to keep track of sections.
2564 if (layout->is_section_ordering_specified())
2565 {
2566 unsigned int section_order_index =
2567 layout->find_section_order_index(name);
2568 if (section_order_index != 0)
2569 {
2570 inp.set_section_order_index(section_order_index);
2571 this->set_input_section_order_specified();
2572 }
2573 }
2574
2575 this->add_output_section_data(&inp);
2576 if (this->lookup_maps_->is_valid())
2577 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2578 poris->shndx(), poris);
2579
2580 // For a relaxed section, we use the current data size. Linker scripts
2581 // get all the input sections, including relaxed one from an output
2582 // section and add them back to the same output section to compute the
2583 // output section size. If we do not account for sizes of relaxed input
2584 // sections, an output section would be incorrectly sized.
2585 off_t offset_in_section = this->current_data_size_for_child();
2586 off_t aligned_offset_in_section = align_address(offset_in_section,
2587 poris->addralign());
2588 this->set_current_data_size_for_child(aligned_offset_in_section
2589 + poris->current_data_size());
2590 }
2591
2592 // Add arbitrary data to an output section by Input_section.
2593
2594 void
2595 Output_section::add_output_section_data(Input_section* inp)
2596 {
2597 if (this->input_sections_.empty())
2598 this->first_input_offset_ = this->current_data_size_for_child();
2599
2600 this->input_sections_.push_back(*inp);
2601
2602 uint64_t addralign = inp->addralign();
2603 if (addralign > this->addralign_)
2604 this->addralign_ = addralign;
2605
2606 inp->set_output_section(this);
2607 }
2608
2609 // Add a merge section to an output section.
2610
2611 void
2612 Output_section::add_output_merge_section(Output_section_data* posd,
2613 bool is_string, uint64_t entsize)
2614 {
2615 Input_section inp(posd, is_string, entsize);
2616 this->add_output_section_data(&inp);
2617 }
2618
2619 // Add an input section to a SHF_MERGE section.
2620
2621 bool
2622 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2623 uint64_t flags, uint64_t entsize,
2624 uint64_t addralign,
2625 bool keeps_input_sections)
2626 {
2627 // We cannot merge sections with entsize == 0.
2628 if (entsize == 0)
2629 return false;
2630
2631 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2632
2633 // We cannot restore merged input section states.
2634 gold_assert(this->checkpoint_ == NULL);
2635
2636 // Look up merge sections by required properties.
2637 // Currently, we only invalidate the lookup maps in script processing
2638 // and relaxation. We should not have done either when we reach here.
2639 // So we assume that the lookup maps are valid to simply code.
2640 gold_assert(this->lookup_maps_->is_valid());
2641 Merge_section_properties msp(is_string, entsize, addralign);
2642 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2643 bool is_new = false;
2644 if (pomb != NULL)
2645 {
2646 gold_assert(pomb->is_string() == is_string
2647 && pomb->entsize() == entsize
2648 && pomb->addralign() == addralign);
2649 }
2650 else
2651 {
2652 // Create a new Output_merge_data or Output_merge_string_data.
2653 if (!is_string)
2654 pomb = new Output_merge_data(entsize, addralign);
2655 else
2656 {
2657 switch (entsize)
2658 {
2659 case 1:
2660 pomb = new Output_merge_string<char>(addralign);
2661 break;
2662 case 2:
2663 pomb = new Output_merge_string<uint16_t>(addralign);
2664 break;
2665 case 4:
2666 pomb = new Output_merge_string<uint32_t>(addralign);
2667 break;
2668 default:
2669 return false;
2670 }
2671 }
2672 // If we need to do script processing or relaxation, we need to keep
2673 // the original input sections to rebuild the fast lookup maps.
2674 if (keeps_input_sections)
2675 pomb->set_keeps_input_sections();
2676 is_new = true;
2677 }
2678
2679 if (pomb->add_input_section(object, shndx))
2680 {
2681 // Add new merge section to this output section and link merge
2682 // section properties to new merge section in map.
2683 if (is_new)
2684 {
2685 this->add_output_merge_section(pomb, is_string, entsize);
2686 this->lookup_maps_->add_merge_section(msp, pomb);
2687 }
2688
2689 return true;
2690 }
2691 else
2692 {
2693 // If add_input_section failed, delete new merge section to avoid
2694 // exporting empty merge sections in Output_section::get_input_section.
2695 if (is_new)
2696 delete pomb;
2697 return false;
2698 }
2699 }
2700
2701 // Build a relaxation map to speed up relaxation of existing input sections.
2702 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2703
2704 void
2705 Output_section::build_relaxation_map(
2706 const Input_section_list& input_sections,
2707 size_t limit,
2708 Relaxation_map* relaxation_map) const
2709 {
2710 for (size_t i = 0; i < limit; ++i)
2711 {
2712 const Input_section& is(input_sections[i]);
2713 if (is.is_input_section() || is.is_relaxed_input_section())
2714 {
2715 Section_id sid(is.relobj(), is.shndx());
2716 (*relaxation_map)[sid] = i;
2717 }
2718 }
2719 }
2720
2721 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2722 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2723 // indices of INPUT_SECTIONS.
2724
2725 void
2726 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728 const Relaxation_map& map,
2729 Input_section_list* input_sections)
2730 {
2731 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732 {
2733 Output_relaxed_input_section* poris = relaxed_sections[i];
2734 Section_id sid(poris->relobj(), poris->shndx());
2735 Relaxation_map::const_iterator p = map.find(sid);
2736 gold_assert(p != map.end());
2737 gold_assert((*input_sections)[p->second].is_input_section());
2738
2739 // Remember section order index of original input section
2740 // if it is set. Copy it to the relaxed input section.
2741 unsigned int soi =
2742 (*input_sections)[p->second].section_order_index();
2743 (*input_sections)[p->second] = Input_section(poris);
2744 (*input_sections)[p->second].set_section_order_index(soi);
2745 }
2746 }
2747
2748 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749 // is a vector of pointers to Output_relaxed_input_section or its derived
2750 // classes. The relaxed sections must correspond to existing input sections.
2751
2752 void
2753 Output_section::convert_input_sections_to_relaxed_sections(
2754 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755 {
2756 gold_assert(parameters->target().may_relax());
2757
2758 // We want to make sure that restore_states does not undo the effect of
2759 // this. If there is no checkpoint active, just search the current
2760 // input section list and replace the sections there. If there is
2761 // a checkpoint, also replace the sections there.
2762
2763 // By default, we look at the whole list.
2764 size_t limit = this->input_sections_.size();
2765
2766 if (this->checkpoint_ != NULL)
2767 {
2768 // Replace input sections with relaxed input section in the saved
2769 // copy of the input section list.
2770 if (this->checkpoint_->input_sections_saved())
2771 {
2772 Relaxation_map map;
2773 this->build_relaxation_map(
2774 *(this->checkpoint_->input_sections()),
2775 this->checkpoint_->input_sections()->size(),
2776 &map);
2777 this->convert_input_sections_in_list_to_relaxed_sections(
2778 relaxed_sections,
2779 map,
2780 this->checkpoint_->input_sections());
2781 }
2782 else
2783 {
2784 // We have not copied the input section list yet. Instead, just
2785 // look at the portion that would be saved.
2786 limit = this->checkpoint_->input_sections_size();
2787 }
2788 }
2789
2790 // Convert input sections in input_section_list.
2791 Relaxation_map map;
2792 this->build_relaxation_map(this->input_sections_, limit, &map);
2793 this->convert_input_sections_in_list_to_relaxed_sections(
2794 relaxed_sections,
2795 map,
2796 &this->input_sections_);
2797
2798 // Update fast look-up map.
2799 if (this->lookup_maps_->is_valid())
2800 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801 {
2802 Output_relaxed_input_section* poris = relaxed_sections[i];
2803 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804 poris->shndx(), poris);
2805 }
2806 }
2807
2808 // Update the output section flags based on input section flags.
2809
2810 void
2811 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2812 {
2813 // If we created the section with SHF_ALLOC clear, we set the
2814 // address. If we are now setting the SHF_ALLOC flag, we need to
2815 // undo that.
2816 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2817 && (flags & elfcpp::SHF_ALLOC) != 0)
2818 this->mark_address_invalid();
2819
2820 this->flags_ |= (flags
2821 & (elfcpp::SHF_WRITE
2822 | elfcpp::SHF_ALLOC
2823 | elfcpp::SHF_EXECINSTR));
2824
2825 if ((flags & elfcpp::SHF_MERGE) == 0)
2826 this->flags_ &=~ elfcpp::SHF_MERGE;
2827 else
2828 {
2829 if (this->current_data_size_for_child() == 0)
2830 this->flags_ |= elfcpp::SHF_MERGE;
2831 }
2832
2833 if ((flags & elfcpp::SHF_STRINGS) == 0)
2834 this->flags_ &=~ elfcpp::SHF_STRINGS;
2835 else
2836 {
2837 if (this->current_data_size_for_child() == 0)
2838 this->flags_ |= elfcpp::SHF_STRINGS;
2839 }
2840 }
2841
2842 // Find the merge section into which an input section with index SHNDX in
2843 // OBJECT has been added. Return NULL if none found.
2844
2845 const Output_section_data*
2846 Output_section::find_merge_section(const Relobj* object,
2847 unsigned int shndx) const
2848 {
2849 return object->find_merge_section(shndx);
2850 }
2851
2852 // Build the lookup maps for relaxed sections. This needs
2853 // to be declared as a const method so that it is callable with a const
2854 // Output_section pointer. The method only updates states of the maps.
2855
2856 void
2857 Output_section::build_lookup_maps() const
2858 {
2859 this->lookup_maps_->clear();
2860 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2861 p != this->input_sections_.end();
2862 ++p)
2863 {
2864 if (p->is_relaxed_input_section())
2865 {
2866 Output_relaxed_input_section* poris = p->relaxed_input_section();
2867 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2868 poris->shndx(), poris);
2869 }
2870 }
2871 }
2872
2873 // Find an relaxed input section corresponding to an input section
2874 // in OBJECT with index SHNDX.
2875
2876 const Output_relaxed_input_section*
2877 Output_section::find_relaxed_input_section(const Relobj* object,
2878 unsigned int shndx) const
2879 {
2880 if (!this->lookup_maps_->is_valid())
2881 this->build_lookup_maps();
2882 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2883 }
2884
2885 // Given an address OFFSET relative to the start of input section
2886 // SHNDX in OBJECT, return whether this address is being included in
2887 // the final link. This should only be called if SHNDX in OBJECT has
2888 // a special mapping.
2889
2890 bool
2891 Output_section::is_input_address_mapped(const Relobj* object,
2892 unsigned int shndx,
2893 off_t offset) const
2894 {
2895 // Look at the Output_section_data_maps first.
2896 const Output_section_data* posd = this->find_merge_section(object, shndx);
2897 if (posd == NULL)
2898 posd = this->find_relaxed_input_section(object, shndx);
2899
2900 if (posd != NULL)
2901 {
2902 section_offset_type output_offset;
2903 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2904 if (!found)
2905 return false;
2906 return output_offset != -1;
2907 }
2908
2909 // Fall back to the slow look-up.
2910 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2911 p != this->input_sections_.end();
2912 ++p)
2913 {
2914 section_offset_type output_offset;
2915 if (p->output_offset(object, shndx, offset, &output_offset))
2916 return output_offset != -1;
2917 }
2918
2919 // By default we assume that the address is mapped. This should
2920 // only be called after we have passed all sections to Layout. At
2921 // that point we should know what we are discarding.
2922 return true;
2923 }
2924
2925 // Given an address OFFSET relative to the start of input section
2926 // SHNDX in object OBJECT, return the output offset relative to the
2927 // start of the input section in the output section. This should only
2928 // be called if SHNDX in OBJECT has a special mapping.
2929
2930 section_offset_type
2931 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2932 section_offset_type offset) const
2933 {
2934 // This can only be called meaningfully when we know the data size
2935 // of this.
2936 gold_assert(this->is_data_size_valid());
2937
2938 // Look at the Output_section_data_maps first.
2939 const Output_section_data* posd = this->find_merge_section(object, shndx);
2940 if (posd == NULL)
2941 posd = this->find_relaxed_input_section(object, shndx);
2942 if (posd != NULL)
2943 {
2944 section_offset_type output_offset;
2945 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2946 gold_assert(found);
2947 return output_offset;
2948 }
2949
2950 // Fall back to the slow look-up.
2951 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2952 p != this->input_sections_.end();
2953 ++p)
2954 {
2955 section_offset_type output_offset;
2956 if (p->output_offset(object, shndx, offset, &output_offset))
2957 return output_offset;
2958 }
2959 gold_unreachable();
2960 }
2961
2962 // Return the output virtual address of OFFSET relative to the start
2963 // of input section SHNDX in object OBJECT.
2964
2965 uint64_t
2966 Output_section::output_address(const Relobj* object, unsigned int shndx,
2967 off_t offset) const
2968 {
2969 uint64_t addr = this->address() + this->first_input_offset_;
2970
2971 // Look at the Output_section_data_maps first.
2972 const Output_section_data* posd = this->find_merge_section(object, shndx);
2973 if (posd == NULL)
2974 posd = this->find_relaxed_input_section(object, shndx);
2975 if (posd != NULL && posd->is_address_valid())
2976 {
2977 section_offset_type output_offset;
2978 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2979 gold_assert(found);
2980 return posd->address() + output_offset;
2981 }
2982
2983 // Fall back to the slow look-up.
2984 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2985 p != this->input_sections_.end();
2986 ++p)
2987 {
2988 addr = align_address(addr, p->addralign());
2989 section_offset_type output_offset;
2990 if (p->output_offset(object, shndx, offset, &output_offset))
2991 {
2992 if (output_offset == -1)
2993 return -1ULL;
2994 return addr + output_offset;
2995 }
2996 addr += p->data_size();
2997 }
2998
2999 // If we get here, it means that we don't know the mapping for this
3000 // input section. This might happen in principle if
3001 // add_input_section were called before add_output_section_data.
3002 // But it should never actually happen.
3003
3004 gold_unreachable();
3005 }
3006
3007 // Find the output address of the start of the merged section for
3008 // input section SHNDX in object OBJECT.
3009
3010 bool
3011 Output_section::find_starting_output_address(const Relobj* object,
3012 unsigned int shndx,
3013 uint64_t* paddr) const
3014 {
3015 const Output_section_data* data = this->find_merge_section(object, shndx);
3016 if (data == NULL)
3017 return false;
3018
3019 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3020 // Looking up the merge section map does not always work as we sometimes
3021 // find a merge section without its address set.
3022 uint64_t addr = this->address() + this->first_input_offset_;
3023 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3024 p != this->input_sections_.end();
3025 ++p)
3026 {
3027 addr = align_address(addr, p->addralign());
3028
3029 // It would be nice if we could use the existing output_offset
3030 // method to get the output offset of input offset 0.
3031 // Unfortunately we don't know for sure that input offset 0 is
3032 // mapped at all.
3033 if (!p->is_input_section() && p->output_section_data() == data)
3034 {
3035 *paddr = addr;
3036 return true;
3037 }
3038
3039 addr += p->data_size();
3040 }
3041
3042 // We couldn't find a merge output section for this input section.
3043 return false;
3044 }
3045
3046 // Update the data size of an Output_section.
3047
3048 void
3049 Output_section::update_data_size()
3050 {
3051 if (this->input_sections_.empty())
3052 return;
3053
3054 if (this->must_sort_attached_input_sections()
3055 || this->input_section_order_specified())
3056 this->sort_attached_input_sections();
3057
3058 off_t off = this->first_input_offset_;
3059 for (Input_section_list::iterator p = this->input_sections_.begin();
3060 p != this->input_sections_.end();
3061 ++p)
3062 {
3063 off = align_address(off, p->addralign());
3064 off += p->current_data_size();
3065 }
3066
3067 this->set_current_data_size_for_child(off);
3068 }
3069
3070 // Set the data size of an Output_section. This is where we handle
3071 // setting the addresses of any Output_section_data objects.
3072
3073 void
3074 Output_section::set_final_data_size()
3075 {
3076 off_t data_size;
3077
3078 if (this->input_sections_.empty())
3079 data_size = this->current_data_size_for_child();
3080 else
3081 {
3082 if (this->must_sort_attached_input_sections()
3083 || this->input_section_order_specified())
3084 this->sort_attached_input_sections();
3085
3086 uint64_t address = this->address();
3087 off_t startoff = this->offset();
3088 off_t off = startoff + this->first_input_offset_;
3089 for (Input_section_list::iterator p = this->input_sections_.begin();
3090 p != this->input_sections_.end();
3091 ++p)
3092 {
3093 off = align_address(off, p->addralign());
3094 p->set_address_and_file_offset(address + (off - startoff), off,
3095 startoff);
3096 off += p->data_size();
3097 }
3098 data_size = off - startoff;
3099 }
3100
3101 // For full incremental links, we want to allocate some patch space
3102 // in most sections for subsequent incremental updates.
3103 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3104 {
3105 double pct = parameters->options().incremental_patch();
3106 size_t extra = static_cast<size_t>(data_size * pct);
3107 if (this->free_space_fill_ != NULL
3108 && this->free_space_fill_->minimum_hole_size() > extra)
3109 extra = this->free_space_fill_->minimum_hole_size();
3110 off_t new_size = align_address(data_size + extra, this->addralign());
3111 this->patch_space_ = new_size - data_size;
3112 gold_debug(DEBUG_INCREMENTAL,
3113 "set_final_data_size: %08lx + %08lx: section %s",
3114 static_cast<long>(data_size),
3115 static_cast<long>(this->patch_space_),
3116 this->name());
3117 data_size = new_size;
3118 }
3119
3120 this->set_data_size(data_size);
3121 }
3122
3123 // Reset the address and file offset.
3124
3125 void
3126 Output_section::do_reset_address_and_file_offset()
3127 {
3128 // An unallocated section has no address. Forcing this means that
3129 // we don't need special treatment for symbols defined in debug
3130 // sections. We do the same in the constructor. This does not
3131 // apply to NOLOAD sections though.
3132 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3133 this->set_address(0);
3134
3135 for (Input_section_list::iterator p = this->input_sections_.begin();
3136 p != this->input_sections_.end();
3137 ++p)
3138 p->reset_address_and_file_offset();
3139
3140 // Remove any patch space that was added in set_final_data_size.
3141 if (this->patch_space_ > 0)
3142 {
3143 this->set_current_data_size_for_child(this->current_data_size_for_child()
3144 - this->patch_space_);
3145 this->patch_space_ = 0;
3146 }
3147 }
3148
3149 // Return true if address and file offset have the values after reset.
3150
3151 bool
3152 Output_section::do_address_and_file_offset_have_reset_values() const
3153 {
3154 if (this->is_offset_valid())
3155 return false;
3156
3157 // An unallocated section has address 0 after its construction or a reset.
3158 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3159 return this->is_address_valid() && this->address() == 0;
3160 else
3161 return !this->is_address_valid();
3162 }
3163
3164 // Set the TLS offset. Called only for SHT_TLS sections.
3165
3166 void
3167 Output_section::do_set_tls_offset(uint64_t tls_base)
3168 {
3169 this->tls_offset_ = this->address() - tls_base;
3170 }
3171
3172 // In a few cases we need to sort the input sections attached to an
3173 // output section. This is used to implement the type of constructor
3174 // priority ordering implemented by the GNU linker, in which the
3175 // priority becomes part of the section name and the sections are
3176 // sorted by name. We only do this for an output section if we see an
3177 // attached input section matching ".ctors.*", ".dtors.*",
3178 // ".init_array.*" or ".fini_array.*".
3179
3180 class Output_section::Input_section_sort_entry
3181 {
3182 public:
3183 Input_section_sort_entry()
3184 : input_section_(), index_(-1U), section_name_()
3185 { }
3186
3187 Input_section_sort_entry(const Input_section& input_section,
3188 unsigned int index,
3189 bool must_sort_attached_input_sections,
3190 const char* output_section_name)
3191 : input_section_(input_section), index_(index), section_name_()
3192 {
3193 if ((input_section.is_input_section()
3194 || input_section.is_relaxed_input_section())
3195 && must_sort_attached_input_sections)
3196 {
3197 // This is only called single-threaded from Layout::finalize,
3198 // so it is OK to lock. Unfortunately we have no way to pass
3199 // in a Task token.
3200 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3201 Object* obj = (input_section.is_input_section()
3202 ? input_section.relobj()
3203 : input_section.relaxed_input_section()->relobj());
3204 Task_lock_obj<Object> tl(dummy_task, obj);
3205
3206 // This is a slow operation, which should be cached in
3207 // Layout::layout if this becomes a speed problem.
3208 this->section_name_ = obj->section_name(input_section.shndx());
3209 }
3210 else if (input_section.is_output_section_data()
3211 && must_sort_attached_input_sections)
3212 {
3213 // For linker-generated sections, use the output section name.
3214 this->section_name_.assign(output_section_name);
3215 }
3216 }
3217
3218 // Return the Input_section.
3219 const Input_section&
3220 input_section() const
3221 {
3222 gold_assert(this->index_ != -1U);
3223 return this->input_section_;
3224 }
3225
3226 // The index of this entry in the original list. This is used to
3227 // make the sort stable.
3228 unsigned int
3229 index() const
3230 {
3231 gold_assert(this->index_ != -1U);
3232 return this->index_;
3233 }
3234
3235 // The section name.
3236 const std::string&
3237 section_name() const
3238 {
3239 return this->section_name_;
3240 }
3241
3242 // Return true if the section name has a priority. This is assumed
3243 // to be true if it has a dot after the initial dot.
3244 bool
3245 has_priority() const
3246 {
3247 return this->section_name_.find('.', 1) != std::string::npos;
3248 }
3249
3250 // Return the priority. Believe it or not, gcc encodes the priority
3251 // differently for .ctors/.dtors and .init_array/.fini_array
3252 // sections.
3253 unsigned int
3254 get_priority() const
3255 {
3256 bool is_ctors;
3257 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3258 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3259 is_ctors = true;
3260 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3261 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3262 is_ctors = false;
3263 else
3264 return 0;
3265 char* end;
3266 unsigned long prio = strtoul((this->section_name_.c_str()
3267 + (is_ctors ? 7 : 12)),
3268 &end, 10);
3269 if (*end != '\0')
3270 return 0;
3271 else if (is_ctors)
3272 return 65535 - prio;
3273 else
3274 return prio;
3275 }
3276
3277 // Return true if this an input file whose base name matches
3278 // FILE_NAME. The base name must have an extension of ".o", and
3279 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3280 // This is to match crtbegin.o as well as crtbeginS.o without
3281 // getting confused by other possibilities. Overall matching the
3282 // file name this way is a dreadful hack, but the GNU linker does it
3283 // in order to better support gcc, and we need to be compatible.
3284 bool
3285 match_file_name(const char* file_name) const
3286 {
3287 if (this->input_section_.is_output_section_data())
3288 return false;
3289 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3290 }
3291
3292 // Returns 1 if THIS should appear before S in section order, -1 if S
3293 // appears before THIS and 0 if they are not comparable.
3294 int
3295 compare_section_ordering(const Input_section_sort_entry& s) const
3296 {
3297 unsigned int this_secn_index = this->input_section_.section_order_index();
3298 unsigned int s_secn_index = s.input_section().section_order_index();
3299 if (this_secn_index > 0 && s_secn_index > 0)
3300 {
3301 if (this_secn_index < s_secn_index)
3302 return 1;
3303 else if (this_secn_index > s_secn_index)
3304 return -1;
3305 }
3306 return 0;
3307 }
3308
3309 private:
3310 // The Input_section we are sorting.
3311 Input_section input_section_;
3312 // The index of this Input_section in the original list.
3313 unsigned int index_;
3314 // The section name if there is one.
3315 std::string section_name_;
3316 };
3317
3318 // Return true if S1 should come before S2 in the output section.
3319
3320 bool
3321 Output_section::Input_section_sort_compare::operator()(
3322 const Output_section::Input_section_sort_entry& s1,
3323 const Output_section::Input_section_sort_entry& s2) const
3324 {
3325 // crtbegin.o must come first.
3326 bool s1_begin = s1.match_file_name("crtbegin");
3327 bool s2_begin = s2.match_file_name("crtbegin");
3328 if (s1_begin || s2_begin)
3329 {
3330 if (!s1_begin)
3331 return false;
3332 if (!s2_begin)
3333 return true;
3334 return s1.index() < s2.index();
3335 }
3336
3337 // crtend.o must come last.
3338 bool s1_end = s1.match_file_name("crtend");
3339 bool s2_end = s2.match_file_name("crtend");
3340 if (s1_end || s2_end)
3341 {
3342 if (!s1_end)
3343 return true;
3344 if (!s2_end)
3345 return false;
3346 return s1.index() < s2.index();
3347 }
3348
3349 // A section with a priority follows a section without a priority.
3350 bool s1_has_priority = s1.has_priority();
3351 bool s2_has_priority = s2.has_priority();
3352 if (s1_has_priority && !s2_has_priority)
3353 return false;
3354 if (!s1_has_priority && s2_has_priority)
3355 return true;
3356
3357 // Check if a section order exists for these sections through a section
3358 // ordering file. If sequence_num is 0, an order does not exist.
3359 int sequence_num = s1.compare_section_ordering(s2);
3360 if (sequence_num != 0)
3361 return sequence_num == 1;
3362
3363 // Otherwise we sort by name.
3364 int compare = s1.section_name().compare(s2.section_name());
3365 if (compare != 0)
3366 return compare < 0;
3367
3368 // Otherwise we keep the input order.
3369 return s1.index() < s2.index();
3370 }
3371
3372 // Return true if S1 should come before S2 in an .init_array or .fini_array
3373 // output section.
3374
3375 bool
3376 Output_section::Input_section_sort_init_fini_compare::operator()(
3377 const Output_section::Input_section_sort_entry& s1,
3378 const Output_section::Input_section_sort_entry& s2) const
3379 {
3380 // A section without a priority follows a section with a priority.
3381 // This is the reverse of .ctors and .dtors sections.
3382 bool s1_has_priority = s1.has_priority();
3383 bool s2_has_priority = s2.has_priority();
3384 if (s1_has_priority && !s2_has_priority)
3385 return true;
3386 if (!s1_has_priority && s2_has_priority)
3387 return false;
3388
3389 // .ctors and .dtors sections without priority come after
3390 // .init_array and .fini_array sections without priority.
3391 if (!s1_has_priority
3392 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3393 && s1.section_name() != s2.section_name())
3394 return false;
3395 if (!s2_has_priority
3396 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3397 && s2.section_name() != s1.section_name())
3398 return true;
3399
3400 // Sort by priority if we can.
3401 if (s1_has_priority)
3402 {
3403 unsigned int s1_prio = s1.get_priority();
3404 unsigned int s2_prio = s2.get_priority();
3405 if (s1_prio < s2_prio)
3406 return true;
3407 else if (s1_prio > s2_prio)
3408 return false;
3409 }
3410
3411 // Check if a section order exists for these sections through a section
3412 // ordering file. If sequence_num is 0, an order does not exist.
3413 int sequence_num = s1.compare_section_ordering(s2);
3414 if (sequence_num != 0)
3415 return sequence_num == 1;
3416
3417 // Otherwise we sort by name.
3418 int compare = s1.section_name().compare(s2.section_name());
3419 if (compare != 0)
3420 return compare < 0;
3421
3422 // Otherwise we keep the input order.
3423 return s1.index() < s2.index();
3424 }
3425
3426 // Return true if S1 should come before S2. Sections that do not match
3427 // any pattern in the section ordering file are placed ahead of the sections
3428 // that match some pattern.
3429
3430 bool
3431 Output_section::Input_section_sort_section_order_index_compare::operator()(
3432 const Output_section::Input_section_sort_entry& s1,
3433 const Output_section::Input_section_sort_entry& s2) const
3434 {
3435 unsigned int s1_secn_index = s1.input_section().section_order_index();
3436 unsigned int s2_secn_index = s2.input_section().section_order_index();
3437
3438 // Keep input order if section ordering cannot determine order.
3439 if (s1_secn_index == s2_secn_index)
3440 return s1.index() < s2.index();
3441
3442 return s1_secn_index < s2_secn_index;
3443 }
3444
3445 // Return true if S1 should come before S2. This is the sort comparison
3446 // function for .text to sort sections with prefixes
3447 // .text.{unlikely,exit,startup,hot} before other sections.
3448
3449 bool
3450 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3451 ::operator()(
3452 const Output_section::Input_section_sort_entry& s1,
3453 const Output_section::Input_section_sort_entry& s2) const
3454 {
3455 // Some input section names have special ordering requirements.
3456 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3457 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3458 if (o1 != o2)
3459 {
3460 if (o1 < 0)
3461 return false;
3462 else if (o2 < 0)
3463 return true;
3464 else
3465 return o1 < o2;
3466 }
3467
3468 // Keep input order otherwise.
3469 return s1.index() < s2.index();
3470 }
3471
3472 // Return true if S1 should come before S2. This is the sort comparison
3473 // function for sections to sort them by name.
3474
3475 bool
3476 Output_section::Input_section_sort_section_name_compare
3477 ::operator()(
3478 const Output_section::Input_section_sort_entry& s1,
3479 const Output_section::Input_section_sort_entry& s2) const
3480 {
3481 // We sort by name.
3482 int compare = s1.section_name().compare(s2.section_name());
3483 if (compare != 0)
3484 return compare < 0;
3485
3486 // Keep input order otherwise.
3487 return s1.index() < s2.index();
3488 }
3489
3490 // This updates the section order index of input sections according to the
3491 // the order specified in the mapping from Section id to order index.
3492
3493 void
3494 Output_section::update_section_layout(
3495 const Section_layout_order* order_map)
3496 {
3497 for (Input_section_list::iterator p = this->input_sections_.begin();
3498 p != this->input_sections_.end();
3499 ++p)
3500 {
3501 if (p->is_input_section()
3502 || p->is_relaxed_input_section())
3503 {
3504 Object* obj = (p->is_input_section()
3505 ? p->relobj()
3506 : p->relaxed_input_section()->relobj());
3507 unsigned int shndx = p->shndx();
3508 Section_layout_order::const_iterator it
3509 = order_map->find(Section_id(obj, shndx));
3510 if (it == order_map->end())
3511 continue;
3512 unsigned int section_order_index = it->second;
3513 if (section_order_index != 0)
3514 {
3515 p->set_section_order_index(section_order_index);
3516 this->set_input_section_order_specified();
3517 }
3518 }
3519 }
3520 }
3521
3522 // Sort the input sections attached to an output section.
3523
3524 void
3525 Output_section::sort_attached_input_sections()
3526 {
3527 if (this->attached_input_sections_are_sorted_)
3528 return;
3529
3530 if (this->checkpoint_ != NULL
3531 && !this->checkpoint_->input_sections_saved())
3532 this->checkpoint_->save_input_sections();
3533
3534 // The only thing we know about an input section is the object and
3535 // the section index. We need the section name. Recomputing this
3536 // is slow but this is an unusual case. If this becomes a speed
3537 // problem we can cache the names as required in Layout::layout.
3538
3539 // We start by building a larger vector holding a copy of each
3540 // Input_section, plus its current index in the list and its name.
3541 std::vector<Input_section_sort_entry> sort_list;
3542
3543 unsigned int i = 0;
3544 for (Input_section_list::iterator p = this->input_sections_.begin();
3545 p != this->input_sections_.end();
3546 ++p, ++i)
3547 sort_list.push_back(Input_section_sort_entry(*p, i,
3548 this->must_sort_attached_input_sections(),
3549 this->name()));
3550
3551 // Sort the input sections.
3552 if (this->must_sort_attached_input_sections())
3553 {
3554 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3555 || this->type() == elfcpp::SHT_INIT_ARRAY
3556 || this->type() == elfcpp::SHT_FINI_ARRAY)
3557 std::sort(sort_list.begin(), sort_list.end(),
3558 Input_section_sort_init_fini_compare());
3559 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3560 std::sort(sort_list.begin(), sort_list.end(),
3561 Input_section_sort_section_name_compare());
3562 else if (strcmp(this->name(), ".text") == 0)
3563 std::sort(sort_list.begin(), sort_list.end(),
3564 Input_section_sort_section_prefix_special_ordering_compare());
3565 else
3566 std::sort(sort_list.begin(), sort_list.end(),
3567 Input_section_sort_compare());
3568 }
3569 else
3570 {
3571 gold_assert(this->input_section_order_specified());
3572 std::sort(sort_list.begin(), sort_list.end(),
3573 Input_section_sort_section_order_index_compare());
3574 }
3575
3576 // Copy the sorted input sections back to our list.
3577 this->input_sections_.clear();
3578 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3579 p != sort_list.end();
3580 ++p)
3581 this->input_sections_.push_back(p->input_section());
3582 sort_list.clear();
3583
3584 // Remember that we sorted the input sections, since we might get
3585 // called again.
3586 this->attached_input_sections_are_sorted_ = true;
3587 }
3588
3589 // Write the section header to *OSHDR.
3590
3591 template<int size, bool big_endian>
3592 void
3593 Output_section::write_header(const Layout* layout,
3594 const Stringpool* secnamepool,
3595 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3596 {
3597 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3598 oshdr->put_sh_type(this->type_);
3599
3600 elfcpp::Elf_Xword flags = this->flags_;
3601 if (this->info_section_ != NULL && this->info_uses_section_index_)
3602 flags |= elfcpp::SHF_INFO_LINK;
3603 oshdr->put_sh_flags(flags);
3604
3605 oshdr->put_sh_addr(this->address());
3606 oshdr->put_sh_offset(this->offset());
3607 oshdr->put_sh_size(this->data_size());
3608 if (this->link_section_ != NULL)
3609 oshdr->put_sh_link(this->link_section_->out_shndx());
3610 else if (this->should_link_to_symtab_)
3611 oshdr->put_sh_link(layout->symtab_section_shndx());
3612 else if (this->should_link_to_dynsym_)
3613 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3614 else
3615 oshdr->put_sh_link(this->link_);
3616
3617 elfcpp::Elf_Word info;
3618 if (this->info_section_ != NULL)
3619 {
3620 if (this->info_uses_section_index_)
3621 info = this->info_section_->out_shndx();
3622 else
3623 info = this->info_section_->symtab_index();
3624 }
3625 else if (this->info_symndx_ != NULL)
3626 info = this->info_symndx_->symtab_index();
3627 else
3628 info = this->info_;
3629 oshdr->put_sh_info(info);
3630
3631 oshdr->put_sh_addralign(this->addralign_);
3632 oshdr->put_sh_entsize(this->entsize_);
3633 }
3634
3635 // Write out the data. For input sections the data is written out by
3636 // Object::relocate, but we have to handle Output_section_data objects
3637 // here.
3638
3639 void
3640 Output_section::do_write(Output_file* of)
3641 {
3642 gold_assert(!this->requires_postprocessing());
3643
3644 // If the target performs relaxation, we delay filler generation until now.
3645 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3646
3647 off_t output_section_file_offset = this->offset();
3648 for (Fill_list::iterator p = this->fills_.begin();
3649 p != this->fills_.end();
3650 ++p)
3651 {
3652 std::string fill_data(parameters->target().code_fill(p->length()));
3653 of->write(output_section_file_offset + p->section_offset(),
3654 fill_data.data(), fill_data.size());
3655 }
3656
3657 off_t off = this->offset() + this->first_input_offset_;
3658 for (Input_section_list::iterator p = this->input_sections_.begin();
3659 p != this->input_sections_.end();
3660 ++p)
3661 {
3662 off_t aligned_off = align_address(off, p->addralign());
3663 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3664 {
3665 size_t fill_len = aligned_off - off;
3666 std::string fill_data(parameters->target().code_fill(fill_len));
3667 of->write(off, fill_data.data(), fill_data.size());
3668 }
3669
3670 p->write(of);
3671 off = aligned_off + p->data_size();
3672 }
3673
3674 // For incremental links, fill in unused chunks in debug sections
3675 // with dummy compilation unit headers.
3676 if (this->free_space_fill_ != NULL)
3677 {
3678 for (Free_list::Const_iterator p = this->free_list_.begin();
3679 p != this->free_list_.end();
3680 ++p)
3681 {
3682 off_t off = p->start_;
3683 size_t len = p->end_ - off;
3684 this->free_space_fill_->write(of, this->offset() + off, len);
3685 }
3686 if (this->patch_space_ > 0)
3687 {
3688 off_t off = this->current_data_size_for_child() - this->patch_space_;
3689 this->free_space_fill_->write(of, this->offset() + off,
3690 this->patch_space_);
3691 }
3692 }
3693 }
3694
3695 // If a section requires postprocessing, create the buffer to use.
3696
3697 void
3698 Output_section::create_postprocessing_buffer()
3699 {
3700 gold_assert(this->requires_postprocessing());
3701
3702 if (this->postprocessing_buffer_ != NULL)
3703 return;
3704
3705 if (!this->input_sections_.empty())
3706 {
3707 off_t off = this->first_input_offset_;
3708 for (Input_section_list::iterator p = this->input_sections_.begin();
3709 p != this->input_sections_.end();
3710 ++p)
3711 {
3712 off = align_address(off, p->addralign());
3713 p->finalize_data_size();
3714 off += p->data_size();
3715 }
3716 this->set_current_data_size_for_child(off);
3717 }
3718
3719 off_t buffer_size = this->current_data_size_for_child();
3720 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3721 }
3722
3723 // Write all the data of an Output_section into the postprocessing
3724 // buffer. This is used for sections which require postprocessing,
3725 // such as compression. Input sections are handled by
3726 // Object::Relocate.
3727
3728 void
3729 Output_section::write_to_postprocessing_buffer()
3730 {
3731 gold_assert(this->requires_postprocessing());
3732
3733 // If the target performs relaxation, we delay filler generation until now.
3734 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3735
3736 unsigned char* buffer = this->postprocessing_buffer();
3737 for (Fill_list::iterator p = this->fills_.begin();
3738 p != this->fills_.end();
3739 ++p)
3740 {
3741 std::string fill_data(parameters->target().code_fill(p->length()));
3742 memcpy(buffer + p->section_offset(), fill_data.data(),
3743 fill_data.size());
3744 }
3745
3746 off_t off = this->first_input_offset_;
3747 for (Input_section_list::iterator p = this->input_sections_.begin();
3748 p != this->input_sections_.end();
3749 ++p)
3750 {
3751 off_t aligned_off = align_address(off, p->addralign());
3752 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3753 {
3754 size_t fill_len = aligned_off - off;
3755 std::string fill_data(parameters->target().code_fill(fill_len));
3756 memcpy(buffer + off, fill_data.data(), fill_data.size());
3757 }
3758
3759 p->write_to_buffer(buffer + aligned_off);
3760 off = aligned_off + p->data_size();
3761 }
3762 }
3763
3764 // Get the input sections for linker script processing. We leave
3765 // behind the Output_section_data entries. Note that this may be
3766 // slightly incorrect for merge sections. We will leave them behind,
3767 // but it is possible that the script says that they should follow
3768 // some other input sections, as in:
3769 // .rodata { *(.rodata) *(.rodata.cst*) }
3770 // For that matter, we don't handle this correctly:
3771 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3772 // With luck this will never matter.
3773
3774 uint64_t
3775 Output_section::get_input_sections(
3776 uint64_t address,
3777 const std::string& fill,
3778 std::list<Input_section>* input_sections)
3779 {
3780 if (this->checkpoint_ != NULL
3781 && !this->checkpoint_->input_sections_saved())
3782 this->checkpoint_->save_input_sections();
3783
3784 // Invalidate fast look-up maps.
3785 this->lookup_maps_->invalidate();
3786
3787 uint64_t orig_address = address;
3788
3789 address = align_address(address, this->addralign());
3790
3791 Input_section_list remaining;
3792 for (Input_section_list::iterator p = this->input_sections_.begin();
3793 p != this->input_sections_.end();
3794 ++p)
3795 {
3796 if (p->is_input_section()
3797 || p->is_relaxed_input_section()
3798 || p->is_merge_section())
3799 input_sections->push_back(*p);
3800 else
3801 {
3802 uint64_t aligned_address = align_address(address, p->addralign());
3803 if (aligned_address != address && !fill.empty())
3804 {
3805 section_size_type length =
3806 convert_to_section_size_type(aligned_address - address);
3807 std::string this_fill;
3808 this_fill.reserve(length);
3809 while (this_fill.length() + fill.length() <= length)
3810 this_fill += fill;
3811 if (this_fill.length() < length)
3812 this_fill.append(fill, 0, length - this_fill.length());
3813
3814 Output_section_data* posd = new Output_data_const(this_fill, 0);
3815 remaining.push_back(Input_section(posd));
3816 }
3817 address = aligned_address;
3818
3819 remaining.push_back(*p);
3820
3821 p->finalize_data_size();
3822 address += p->data_size();
3823 }
3824 }
3825
3826 this->input_sections_.swap(remaining);
3827 this->first_input_offset_ = 0;
3828
3829 uint64_t data_size = address - orig_address;
3830 this->set_current_data_size_for_child(data_size);
3831 return data_size;
3832 }
3833
3834 // Add a script input section. SIS is an Output_section::Input_section,
3835 // which can be either a plain input section or a special input section like
3836 // a relaxed input section. For a special input section, its size must be
3837 // finalized.
3838
3839 void
3840 Output_section::add_script_input_section(const Input_section& sis)
3841 {
3842 uint64_t data_size = sis.data_size();
3843 uint64_t addralign = sis.addralign();
3844 if (addralign > this->addralign_)
3845 this->addralign_ = addralign;
3846
3847 off_t offset_in_section = this->current_data_size_for_child();
3848 off_t aligned_offset_in_section = align_address(offset_in_section,
3849 addralign);
3850
3851 this->set_current_data_size_for_child(aligned_offset_in_section
3852 + data_size);
3853
3854 this->input_sections_.push_back(sis);
3855
3856 // Update fast lookup maps if necessary.
3857 if (this->lookup_maps_->is_valid())
3858 {
3859 if (sis.is_relaxed_input_section())
3860 {
3861 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3862 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3863 poris->shndx(), poris);
3864 }
3865 }
3866 }
3867
3868 // Save states for relaxation.
3869
3870 void
3871 Output_section::save_states()
3872 {
3873 gold_assert(this->checkpoint_ == NULL);
3874 Checkpoint_output_section* checkpoint =
3875 new Checkpoint_output_section(this->addralign_, this->flags_,
3876 this->input_sections_,
3877 this->first_input_offset_,
3878 this->attached_input_sections_are_sorted_);
3879 this->checkpoint_ = checkpoint;
3880 gold_assert(this->fills_.empty());
3881 }
3882
3883 void
3884 Output_section::discard_states()
3885 {
3886 gold_assert(this->checkpoint_ != NULL);
3887 delete this->checkpoint_;
3888 this->checkpoint_ = NULL;
3889 gold_assert(this->fills_.empty());
3890
3891 // Simply invalidate the fast lookup maps since we do not keep
3892 // track of them.
3893 this->lookup_maps_->invalidate();
3894 }
3895
3896 void
3897 Output_section::restore_states()
3898 {
3899 gold_assert(this->checkpoint_ != NULL);
3900 Checkpoint_output_section* checkpoint = this->checkpoint_;
3901
3902 this->addralign_ = checkpoint->addralign();
3903 this->flags_ = checkpoint->flags();
3904 this->first_input_offset_ = checkpoint->first_input_offset();
3905
3906 if (!checkpoint->input_sections_saved())
3907 {
3908 // If we have not copied the input sections, just resize it.
3909 size_t old_size = checkpoint->input_sections_size();
3910 gold_assert(this->input_sections_.size() >= old_size);
3911 this->input_sections_.resize(old_size);
3912 }
3913 else
3914 {
3915 // We need to copy the whole list. This is not efficient for
3916 // extremely large output with hundreads of thousands of input
3917 // objects. We may need to re-think how we should pass sections
3918 // to scripts.
3919 this->input_sections_ = *checkpoint->input_sections();
3920 }
3921
3922 this->attached_input_sections_are_sorted_ =
3923 checkpoint->attached_input_sections_are_sorted();
3924
3925 // Simply invalidate the fast lookup maps since we do not keep
3926 // track of them.
3927 this->lookup_maps_->invalidate();
3928 }
3929
3930 // Update the section offsets of input sections in this. This is required if
3931 // relaxation causes some input sections to change sizes.
3932
3933 void
3934 Output_section::adjust_section_offsets()
3935 {
3936 if (!this->section_offsets_need_adjustment_)
3937 return;
3938
3939 off_t off = 0;
3940 for (Input_section_list::iterator p = this->input_sections_.begin();
3941 p != this->input_sections_.end();
3942 ++p)
3943 {
3944 off = align_address(off, p->addralign());
3945 if (p->is_input_section())
3946 p->relobj()->set_section_offset(p->shndx(), off);
3947 off += p->data_size();
3948 }
3949
3950 this->section_offsets_need_adjustment_ = false;
3951 }
3952
3953 // Print to the map file.
3954
3955 void
3956 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3957 {
3958 mapfile->print_output_section(this);
3959
3960 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3961 p != this->input_sections_.end();
3962 ++p)
3963 p->print_to_mapfile(mapfile);
3964 }
3965
3966 // Print stats for merge sections to stderr.
3967
3968 void
3969 Output_section::print_merge_stats()
3970 {
3971 Input_section_list::iterator p;
3972 for (p = this->input_sections_.begin();
3973 p != this->input_sections_.end();
3974 ++p)
3975 p->print_merge_stats(this->name_);
3976 }
3977
3978 // Set a fixed layout for the section. Used for incremental update links.
3979
3980 void
3981 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3982 off_t sh_size, uint64_t sh_addralign)
3983 {
3984 this->addralign_ = sh_addralign;
3985 this->set_current_data_size(sh_size);
3986 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3987 this->set_address(sh_addr);
3988 this->set_file_offset(sh_offset);
3989 this->finalize_data_size();
3990 this->free_list_.init(sh_size, false);
3991 this->has_fixed_layout_ = true;
3992 }
3993
3994 // Reserve space within the fixed layout for the section. Used for
3995 // incremental update links.
3996
3997 void
3998 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3999 {
4000 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4001 }
4002
4003 // Allocate space from the free list for the section. Used for
4004 // incremental update links.
4005
4006 off_t
4007 Output_section::allocate(off_t len, uint64_t addralign)
4008 {
4009 return this->free_list_.allocate(len, addralign, 0);
4010 }
4011
4012 // Output segment methods.
4013
4014 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4015 : vaddr_(0),
4016 paddr_(0),
4017 memsz_(0),
4018 max_align_(0),
4019 min_p_align_(0),
4020 offset_(0),
4021 filesz_(0),
4022 type_(type),
4023 flags_(flags),
4024 is_max_align_known_(false),
4025 are_addresses_set_(false),
4026 is_large_data_segment_(false),
4027 is_unique_segment_(false)
4028 {
4029 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4030 // the flags.
4031 if (type == elfcpp::PT_TLS)
4032 this->flags_ = elfcpp::PF_R;
4033 }
4034
4035 // Add an Output_section to a PT_LOAD Output_segment.
4036
4037 void
4038 Output_segment::add_output_section_to_load(Layout* layout,
4039 Output_section* os,
4040 elfcpp::Elf_Word seg_flags)
4041 {
4042 gold_assert(this->type() == elfcpp::PT_LOAD);
4043 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4044 gold_assert(!this->is_max_align_known_);
4045 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4046
4047 this->update_flags_for_output_section(seg_flags);
4048
4049 // We don't want to change the ordering if we have a linker script
4050 // with a SECTIONS clause.
4051 Output_section_order order = os->order();
4052 if (layout->script_options()->saw_sections_clause())
4053 order = static_cast<Output_section_order>(0);
4054 else
4055 gold_assert(order != ORDER_INVALID);
4056
4057 this->output_lists_[order].push_back(os);
4058 }
4059
4060 // Add an Output_section to a non-PT_LOAD Output_segment.
4061
4062 void
4063 Output_segment::add_output_section_to_nonload(Output_section* os,
4064 elfcpp::Elf_Word seg_flags)
4065 {
4066 gold_assert(this->type() != elfcpp::PT_LOAD);
4067 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4068 gold_assert(!this->is_max_align_known_);
4069
4070 this->update_flags_for_output_section(seg_flags);
4071
4072 this->output_lists_[0].push_back(os);
4073 }
4074
4075 // Remove an Output_section from this segment. It is an error if it
4076 // is not present.
4077
4078 void
4079 Output_segment::remove_output_section(Output_section* os)
4080 {
4081 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4082 {
4083 Output_data_list* pdl = &this->output_lists_[i];
4084 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4085 {
4086 if (*p == os)
4087 {
4088 pdl->erase(p);
4089 return;
4090 }
4091 }
4092 }
4093 gold_unreachable();
4094 }
4095
4096 // Add an Output_data (which need not be an Output_section) to the
4097 // start of a segment.
4098
4099 void
4100 Output_segment::add_initial_output_data(Output_data* od)
4101 {
4102 gold_assert(!this->is_max_align_known_);
4103 Output_data_list::iterator p = this->output_lists_[0].begin();
4104 this->output_lists_[0].insert(p, od);
4105 }
4106
4107 // Return true if this segment has any sections which hold actual
4108 // data, rather than being a BSS section.
4109
4110 bool
4111 Output_segment::has_any_data_sections() const
4112 {
4113 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4114 {
4115 const Output_data_list* pdl = &this->output_lists_[i];
4116 for (Output_data_list::const_iterator p = pdl->begin();
4117 p != pdl->end();
4118 ++p)
4119 {
4120 if (!(*p)->is_section())
4121 return true;
4122 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4123 return true;
4124 }
4125 }
4126 return false;
4127 }
4128
4129 // Return whether the first data section (not counting TLS sections)
4130 // is a relro section.
4131
4132 bool
4133 Output_segment::is_first_section_relro() const
4134 {
4135 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4136 {
4137 if (i == static_cast<int>(ORDER_TLS_BSS))
4138 continue;
4139 const Output_data_list* pdl = &this->output_lists_[i];
4140 if (!pdl->empty())
4141 {
4142 Output_data* p = pdl->front();
4143 return p->is_section() && p->output_section()->is_relro();
4144 }
4145 }
4146 return false;
4147 }
4148
4149 // Return the maximum alignment of the Output_data in Output_segment.
4150
4151 uint64_t
4152 Output_segment::maximum_alignment()
4153 {
4154 if (!this->is_max_align_known_)
4155 {
4156 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4157 {
4158 const Output_data_list* pdl = &this->output_lists_[i];
4159 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4160 if (addralign > this->max_align_)
4161 this->max_align_ = addralign;
4162 }
4163 this->is_max_align_known_ = true;
4164 }
4165
4166 return this->max_align_;
4167 }
4168
4169 // Return the maximum alignment of a list of Output_data.
4170
4171 uint64_t
4172 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4173 {
4174 uint64_t ret = 0;
4175 for (Output_data_list::const_iterator p = pdl->begin();
4176 p != pdl->end();
4177 ++p)
4178 {
4179 uint64_t addralign = (*p)->addralign();
4180 if (addralign > ret)
4181 ret = addralign;
4182 }
4183 return ret;
4184 }
4185
4186 // Return whether this segment has any dynamic relocs.
4187
4188 bool
4189 Output_segment::has_dynamic_reloc() const
4190 {
4191 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4192 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4193 return true;
4194 return false;
4195 }
4196
4197 // Return whether this Output_data_list has any dynamic relocs.
4198
4199 bool
4200 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4201 {
4202 for (Output_data_list::const_iterator p = pdl->begin();
4203 p != pdl->end();
4204 ++p)
4205 if ((*p)->has_dynamic_reloc())
4206 return true;
4207 return false;
4208 }
4209
4210 // Set the section addresses for an Output_segment. If RESET is true,
4211 // reset the addresses first. ADDR is the address and *POFF is the
4212 // file offset. Set the section indexes starting with *PSHNDX.
4213 // INCREASE_RELRO is the size of the portion of the first non-relro
4214 // section that should be included in the PT_GNU_RELRO segment.
4215 // If this segment has relro sections, and has been aligned for
4216 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4217 // the immediately following segment. Update *HAS_RELRO, *POFF,
4218 // and *PSHNDX.
4219
4220 uint64_t
4221 Output_segment::set_section_addresses(const Target* target,
4222 Layout* layout, bool reset,
4223 uint64_t addr,
4224 unsigned int* increase_relro,
4225 bool* has_relro,
4226 off_t* poff,
4227 unsigned int* pshndx)
4228 {
4229 gold_assert(this->type_ == elfcpp::PT_LOAD);
4230
4231 uint64_t last_relro_pad = 0;
4232 off_t orig_off = *poff;
4233
4234 bool in_tls = false;
4235
4236 // If we have relro sections, we need to pad forward now so that the
4237 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4238 if (parameters->options().relro()
4239 && this->is_first_section_relro()
4240 && (!this->are_addresses_set_ || reset))
4241 {
4242 uint64_t relro_size = 0;
4243 off_t off = *poff;
4244 uint64_t max_align = 0;
4245 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4246 {
4247 Output_data_list* pdl = &this->output_lists_[i];
4248 Output_data_list::iterator p;
4249 for (p = pdl->begin(); p != pdl->end(); ++p)
4250 {
4251 if (!(*p)->is_section())
4252 break;
4253 uint64_t align = (*p)->addralign();
4254 if (align > max_align)
4255 max_align = align;
4256 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4257 in_tls = true;
4258 else if (in_tls)
4259 {
4260 // Align the first non-TLS section to the alignment
4261 // of the TLS segment.
4262 align = max_align;
4263 in_tls = false;
4264 }
4265 // Ignore the size of the .tbss section.
4266 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4267 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4268 continue;
4269 relro_size = align_address(relro_size, align);
4270 if ((*p)->is_address_valid())
4271 relro_size += (*p)->data_size();
4272 else
4273 {
4274 // FIXME: This could be faster.
4275 (*p)->set_address_and_file_offset(relro_size,
4276 relro_size);
4277 relro_size += (*p)->data_size();
4278 (*p)->reset_address_and_file_offset();
4279 }
4280 }
4281 if (p != pdl->end())
4282 break;
4283 }
4284 relro_size += *increase_relro;
4285 // Pad the total relro size to a multiple of the maximum
4286 // section alignment seen.
4287 uint64_t aligned_size = align_address(relro_size, max_align);
4288 // Note the amount of padding added after the last relro section.
4289 last_relro_pad = aligned_size - relro_size;
4290 *has_relro = true;
4291
4292 uint64_t page_align = parameters->target().abi_pagesize();
4293
4294 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4295 uint64_t desired_align = page_align - (aligned_size % page_align);
4296 if (desired_align < off % page_align)
4297 off += page_align;
4298 off += desired_align - off % page_align;
4299 addr += off - orig_off;
4300 orig_off = off;
4301 *poff = off;
4302 }
4303
4304 if (!reset && this->are_addresses_set_)
4305 {
4306 gold_assert(this->paddr_ == addr);
4307 addr = this->vaddr_;
4308 }
4309 else
4310 {
4311 this->vaddr_ = addr;
4312 this->paddr_ = addr;
4313 this->are_addresses_set_ = true;
4314 }
4315
4316 in_tls = false;
4317
4318 this->offset_ = orig_off;
4319
4320 off_t off = 0;
4321 uint64_t ret;
4322 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4323 {
4324 if (i == static_cast<int>(ORDER_RELRO_LAST))
4325 {
4326 *poff += last_relro_pad;
4327 addr += last_relro_pad;
4328 if (this->output_lists_[i].empty())
4329 {
4330 // If there is nothing in the ORDER_RELRO_LAST list,
4331 // the padding will occur at the end of the relro
4332 // segment, and we need to add it to *INCREASE_RELRO.
4333 *increase_relro += last_relro_pad;
4334 }
4335 }
4336 addr = this->set_section_list_addresses(layout, reset,
4337 &this->output_lists_[i],
4338 addr, poff, pshndx, &in_tls);
4339 if (i < static_cast<int>(ORDER_SMALL_BSS))
4340 {
4341 this->filesz_ = *poff - orig_off;
4342 off = *poff;
4343 }
4344
4345 ret = addr;
4346 }
4347
4348 // If the last section was a TLS section, align upward to the
4349 // alignment of the TLS segment, so that the overall size of the TLS
4350 // segment is aligned.
4351 if (in_tls)
4352 {
4353 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4354 *poff = align_address(*poff, segment_align);
4355 }
4356
4357 this->memsz_ = *poff - orig_off;
4358
4359 // Ignore the file offset adjustments made by the BSS Output_data
4360 // objects.
4361 *poff = off;
4362
4363 // If code segments must contain only code, and this code segment is
4364 // page-aligned in the file, then fill it out to a whole page with
4365 // code fill (the tail of the segment will not be within any section).
4366 // Thus the entire code segment can be mapped from the file as whole
4367 // pages and that mapping will contain only valid instructions.
4368 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4369 {
4370 uint64_t abi_pagesize = target->abi_pagesize();
4371 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4372 {
4373 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4374
4375 std::string fill_data;
4376 if (target->has_code_fill())
4377 fill_data = target->code_fill(fill_size);
4378 else
4379 fill_data.resize(fill_size); // Zero fill.
4380
4381 Output_data_const* fill = new Output_data_const(fill_data, 0);
4382 fill->set_address(this->vaddr_ + this->memsz_);
4383 fill->set_file_offset(off);
4384 layout->add_relax_output(fill);
4385
4386 off += fill_size;
4387 gold_assert(off % abi_pagesize == 0);
4388 ret += fill_size;
4389 gold_assert(ret % abi_pagesize == 0);
4390
4391 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4392 this->memsz_ = this->filesz_ += fill_size;
4393
4394 *poff = off;
4395 }
4396 }
4397
4398 return ret;
4399 }
4400
4401 // Set the addresses and file offsets in a list of Output_data
4402 // structures.
4403
4404 uint64_t
4405 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4406 Output_data_list* pdl,
4407 uint64_t addr, off_t* poff,
4408 unsigned int* pshndx,
4409 bool* in_tls)
4410 {
4411 off_t startoff = *poff;
4412 // For incremental updates, we may allocate non-fixed sections from
4413 // free space in the file. This keeps track of the high-water mark.
4414 off_t maxoff = startoff;
4415
4416 off_t off = startoff;
4417 for (Output_data_list::iterator p = pdl->begin();
4418 p != pdl->end();
4419 ++p)
4420 {
4421 if (reset)
4422 (*p)->reset_address_and_file_offset();
4423
4424 // When doing an incremental update or when using a linker script,
4425 // the section will most likely already have an address.
4426 if (!(*p)->is_address_valid())
4427 {
4428 uint64_t align = (*p)->addralign();
4429
4430 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4431 {
4432 // Give the first TLS section the alignment of the
4433 // entire TLS segment. Otherwise the TLS segment as a
4434 // whole may be misaligned.
4435 if (!*in_tls)
4436 {
4437 Output_segment* tls_segment = layout->tls_segment();
4438 gold_assert(tls_segment != NULL);
4439 uint64_t segment_align = tls_segment->maximum_alignment();
4440 gold_assert(segment_align >= align);
4441 align = segment_align;
4442
4443 *in_tls = true;
4444 }
4445 }
4446 else
4447 {
4448 // If this is the first section after the TLS segment,
4449 // align it to at least the alignment of the TLS
4450 // segment, so that the size of the overall TLS segment
4451 // is aligned.
4452 if (*in_tls)
4453 {
4454 uint64_t segment_align =
4455 layout->tls_segment()->maximum_alignment();
4456 if (segment_align > align)
4457 align = segment_align;
4458
4459 *in_tls = false;
4460 }
4461 }
4462
4463 if (!parameters->incremental_update())
4464 {
4465 off = align_address(off, align);
4466 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4467 }
4468 else
4469 {
4470 // Incremental update: allocate file space from free list.
4471 (*p)->pre_finalize_data_size();
4472 off_t current_size = (*p)->current_data_size();
4473 off = layout->allocate(current_size, align, startoff);
4474 if (off == -1)
4475 {
4476 gold_assert((*p)->output_section() != NULL);
4477 gold_fallback(_("out of patch space for section %s; "
4478 "relink with --incremental-full"),
4479 (*p)->output_section()->name());
4480 }
4481 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4482 if ((*p)->data_size() > current_size)
4483 {
4484 gold_assert((*p)->output_section() != NULL);
4485 gold_fallback(_("%s: section changed size; "
4486 "relink with --incremental-full"),
4487 (*p)->output_section()->name());
4488 }
4489 }
4490 }
4491 else if (parameters->incremental_update())
4492 {
4493 // For incremental updates, use the fixed offset for the
4494 // high-water mark computation.
4495 off = (*p)->offset();
4496 }
4497 else
4498 {
4499 // The script may have inserted a skip forward, but it
4500 // better not have moved backward.
4501 if ((*p)->address() >= addr + (off - startoff))
4502 off += (*p)->address() - (addr + (off - startoff));
4503 else
4504 {
4505 if (!layout->script_options()->saw_sections_clause())
4506 gold_unreachable();
4507 else
4508 {
4509 Output_section* os = (*p)->output_section();
4510
4511 // Cast to unsigned long long to avoid format warnings.
4512 unsigned long long previous_dot =
4513 static_cast<unsigned long long>(addr + (off - startoff));
4514 unsigned long long dot =
4515 static_cast<unsigned long long>((*p)->address());
4516
4517 if (os == NULL)
4518 gold_error(_("dot moves backward in linker script "
4519 "from 0x%llx to 0x%llx"), previous_dot, dot);
4520 else
4521 gold_error(_("address of section '%s' moves backward "
4522 "from 0x%llx to 0x%llx"),
4523 os->name(), previous_dot, dot);
4524 }
4525 }
4526 (*p)->set_file_offset(off);
4527 (*p)->finalize_data_size();
4528 }
4529
4530 if (parameters->incremental_update())
4531 gold_debug(DEBUG_INCREMENTAL,
4532 "set_section_list_addresses: %08lx %08lx %s",
4533 static_cast<long>(off),
4534 static_cast<long>((*p)->data_size()),
4535 ((*p)->output_section() != NULL
4536 ? (*p)->output_section()->name() : "(special)"));
4537
4538 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4539 // section. Such a section does not affect the size of a
4540 // PT_LOAD segment.
4541 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4542 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4543 off += (*p)->data_size();
4544
4545 if (off > maxoff)
4546 maxoff = off;
4547
4548 if ((*p)->is_section())
4549 {
4550 (*p)->set_out_shndx(*pshndx);
4551 ++*pshndx;
4552 }
4553 }
4554
4555 *poff = maxoff;
4556 return addr + (maxoff - startoff);
4557 }
4558
4559 // For a non-PT_LOAD segment, set the offset from the sections, if
4560 // any. Add INCREASE to the file size and the memory size.
4561
4562 void
4563 Output_segment::set_offset(unsigned int increase)
4564 {
4565 gold_assert(this->type_ != elfcpp::PT_LOAD);
4566
4567 gold_assert(!this->are_addresses_set_);
4568
4569 // A non-load section only uses output_lists_[0].
4570
4571 Output_data_list* pdl = &this->output_lists_[0];
4572
4573 if (pdl->empty())
4574 {
4575 gold_assert(increase == 0);
4576 this->vaddr_ = 0;
4577 this->paddr_ = 0;
4578 this->are_addresses_set_ = true;
4579 this->memsz_ = 0;
4580 this->min_p_align_ = 0;
4581 this->offset_ = 0;
4582 this->filesz_ = 0;
4583 return;
4584 }
4585
4586 // Find the first and last section by address.
4587 const Output_data* first = NULL;
4588 const Output_data* last_data = NULL;
4589 const Output_data* last_bss = NULL;
4590 for (Output_data_list::const_iterator p = pdl->begin();
4591 p != pdl->end();
4592 ++p)
4593 {
4594 if (first == NULL
4595 || (*p)->address() < first->address()
4596 || ((*p)->address() == first->address()
4597 && (*p)->data_size() < first->data_size()))
4598 first = *p;
4599 const Output_data** plast;
4600 if ((*p)->is_section()
4601 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4602 plast = &last_bss;
4603 else
4604 plast = &last_data;
4605 if (*plast == NULL
4606 || (*p)->address() > (*plast)->address()
4607 || ((*p)->address() == (*plast)->address()
4608 && (*p)->data_size() > (*plast)->data_size()))
4609 *plast = *p;
4610 }
4611
4612 this->vaddr_ = first->address();
4613 this->paddr_ = (first->has_load_address()
4614 ? first->load_address()
4615 : this->vaddr_);
4616 this->are_addresses_set_ = true;
4617 this->offset_ = first->offset();
4618
4619 if (last_data == NULL)
4620 this->filesz_ = 0;
4621 else
4622 this->filesz_ = (last_data->address()
4623 + last_data->data_size()
4624 - this->vaddr_);
4625
4626 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4627 this->memsz_ = (last->address()
4628 + last->data_size()
4629 - this->vaddr_);
4630
4631 this->filesz_ += increase;
4632 this->memsz_ += increase;
4633
4634 // If this is a RELRO segment, verify that the segment ends at a
4635 // page boundary.
4636 if (this->type_ == elfcpp::PT_GNU_RELRO)
4637 {
4638 uint64_t page_align = parameters->target().abi_pagesize();
4639 uint64_t segment_end = this->vaddr_ + this->memsz_;
4640 if (parameters->incremental_update())
4641 {
4642 // The INCREASE_RELRO calculation is bypassed for an incremental
4643 // update, so we need to adjust the segment size manually here.
4644 segment_end = align_address(segment_end, page_align);
4645 this->memsz_ = segment_end - this->vaddr_;
4646 }
4647 else
4648 gold_assert(segment_end == align_address(segment_end, page_align));
4649 }
4650
4651 // If this is a TLS segment, align the memory size. The code in
4652 // set_section_list ensures that the section after the TLS segment
4653 // is aligned to give us room.
4654 if (this->type_ == elfcpp::PT_TLS)
4655 {
4656 uint64_t segment_align = this->maximum_alignment();
4657 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4658 this->memsz_ = align_address(this->memsz_, segment_align);
4659 }
4660 }
4661
4662 // Set the TLS offsets of the sections in the PT_TLS segment.
4663
4664 void
4665 Output_segment::set_tls_offsets()
4666 {
4667 gold_assert(this->type_ == elfcpp::PT_TLS);
4668
4669 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4670 p != this->output_lists_[0].end();
4671 ++p)
4672 (*p)->set_tls_offset(this->vaddr_);
4673 }
4674
4675 // Return the first section.
4676
4677 Output_section*
4678 Output_segment::first_section() const
4679 {
4680 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4681 {
4682 const Output_data_list* pdl = &this->output_lists_[i];
4683 for (Output_data_list::const_iterator p = pdl->begin();
4684 p != pdl->end();
4685 ++p)
4686 {
4687 if ((*p)->is_section())
4688 return (*p)->output_section();
4689 }
4690 }
4691 gold_unreachable();
4692 }
4693
4694 // Return the number of Output_sections in an Output_segment.
4695
4696 unsigned int
4697 Output_segment::output_section_count() const
4698 {
4699 unsigned int ret = 0;
4700 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4701 ret += this->output_section_count_list(&this->output_lists_[i]);
4702 return ret;
4703 }
4704
4705 // Return the number of Output_sections in an Output_data_list.
4706
4707 unsigned int
4708 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4709 {
4710 unsigned int count = 0;
4711 for (Output_data_list::const_iterator p = pdl->begin();
4712 p != pdl->end();
4713 ++p)
4714 {
4715 if ((*p)->is_section())
4716 ++count;
4717 }
4718 return count;
4719 }
4720
4721 // Return the section attached to the list segment with the lowest
4722 // load address. This is used when handling a PHDRS clause in a
4723 // linker script.
4724
4725 Output_section*
4726 Output_segment::section_with_lowest_load_address() const
4727 {
4728 Output_section* found = NULL;
4729 uint64_t found_lma = 0;
4730 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4731 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4732 &found_lma);
4733 return found;
4734 }
4735
4736 // Look through a list for a section with a lower load address.
4737
4738 void
4739 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4740 Output_section** found,
4741 uint64_t* found_lma) const
4742 {
4743 for (Output_data_list::const_iterator p = pdl->begin();
4744 p != pdl->end();
4745 ++p)
4746 {
4747 if (!(*p)->is_section())
4748 continue;
4749 Output_section* os = static_cast<Output_section*>(*p);
4750 uint64_t lma = (os->has_load_address()
4751 ? os->load_address()
4752 : os->address());
4753 if (*found == NULL || lma < *found_lma)
4754 {
4755 *found = os;
4756 *found_lma = lma;
4757 }
4758 }
4759 }
4760
4761 // Write the segment data into *OPHDR.
4762
4763 template<int size, bool big_endian>
4764 void
4765 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4766 {
4767 ophdr->put_p_type(this->type_);
4768 ophdr->put_p_offset(this->offset_);
4769 ophdr->put_p_vaddr(this->vaddr_);
4770 ophdr->put_p_paddr(this->paddr_);
4771 ophdr->put_p_filesz(this->filesz_);
4772 ophdr->put_p_memsz(this->memsz_);
4773 ophdr->put_p_flags(this->flags_);
4774 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4775 }
4776
4777 // Write the section headers into V.
4778
4779 template<int size, bool big_endian>
4780 unsigned char*
4781 Output_segment::write_section_headers(const Layout* layout,
4782 const Stringpool* secnamepool,
4783 unsigned char* v,
4784 unsigned int* pshndx) const
4785 {
4786 // Every section that is attached to a segment must be attached to a
4787 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4788 // segments.
4789 if (this->type_ != elfcpp::PT_LOAD)
4790 return v;
4791
4792 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4793 {
4794 const Output_data_list* pdl = &this->output_lists_[i];
4795 v = this->write_section_headers_list<size, big_endian>(layout,
4796 secnamepool,
4797 pdl,
4798 v, pshndx);
4799 }
4800
4801 return v;
4802 }
4803
4804 template<int size, bool big_endian>
4805 unsigned char*
4806 Output_segment::write_section_headers_list(const Layout* layout,
4807 const Stringpool* secnamepool,
4808 const Output_data_list* pdl,
4809 unsigned char* v,
4810 unsigned int* pshndx) const
4811 {
4812 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4813 for (Output_data_list::const_iterator p = pdl->begin();
4814 p != pdl->end();
4815 ++p)
4816 {
4817 if ((*p)->is_section())
4818 {
4819 const Output_section* ps = static_cast<const Output_section*>(*p);
4820 gold_assert(*pshndx == ps->out_shndx());
4821 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4822 ps->write_header(layout, secnamepool, &oshdr);
4823 v += shdr_size;
4824 ++*pshndx;
4825 }
4826 }
4827 return v;
4828 }
4829
4830 // Print the output sections to the map file.
4831
4832 void
4833 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4834 {
4835 if (this->type() != elfcpp::PT_LOAD)
4836 return;
4837 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4838 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4839 }
4840
4841 // Print an output section list to the map file.
4842
4843 void
4844 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4845 const Output_data_list* pdl) const
4846 {
4847 for (Output_data_list::const_iterator p = pdl->begin();
4848 p != pdl->end();
4849 ++p)
4850 (*p)->print_to_mapfile(mapfile);
4851 }
4852
4853 // Output_file methods.
4854
4855 Output_file::Output_file(const char* name)
4856 : name_(name),
4857 o_(-1),
4858 file_size_(0),
4859 base_(NULL),
4860 map_is_anonymous_(false),
4861 map_is_allocated_(false),
4862 is_temporary_(false)
4863 {
4864 }
4865
4866 // Try to open an existing file. Returns false if the file doesn't
4867 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4868 // NULL, open that file as the base for incremental linking, and
4869 // copy its contents to the new output file. This routine can
4870 // be called for incremental updates, in which case WRITABLE should
4871 // be true, or by the incremental-dump utility, in which case
4872 // WRITABLE should be false.
4873
4874 bool
4875 Output_file::open_base_file(const char* base_name, bool writable)
4876 {
4877 // The name "-" means "stdout".
4878 if (strcmp(this->name_, "-") == 0)
4879 return false;
4880
4881 bool use_base_file = base_name != NULL;
4882 if (!use_base_file)
4883 base_name = this->name_;
4884 else if (strcmp(base_name, this->name_) == 0)
4885 gold_fatal(_("%s: incremental base and output file name are the same"),
4886 base_name);
4887
4888 // Don't bother opening files with a size of zero.
4889 struct stat s;
4890 if (::stat(base_name, &s) != 0)
4891 {
4892 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4893 return false;
4894 }
4895 if (s.st_size == 0)
4896 {
4897 gold_info(_("%s: incremental base file is empty"), base_name);
4898 return false;
4899 }
4900
4901 // If we're using a base file, we want to open it read-only.
4902 if (use_base_file)
4903 writable = false;
4904
4905 int oflags = writable ? O_RDWR : O_RDONLY;
4906 int o = open_descriptor(-1, base_name, oflags, 0);
4907 if (o < 0)
4908 {
4909 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4910 return false;
4911 }
4912
4913 // If the base file and the output file are different, open a
4914 // new output file and read the contents from the base file into
4915 // the newly-mapped region.
4916 if (use_base_file)
4917 {
4918 this->open(s.st_size);
4919 ssize_t bytes_to_read = s.st_size;
4920 unsigned char* p = this->base_;
4921 while (bytes_to_read > 0)
4922 {
4923 ssize_t len = ::read(o, p, bytes_to_read);
4924 if (len < 0)
4925 {
4926 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4927 return false;
4928 }
4929 if (len == 0)
4930 {
4931 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4932 base_name,
4933 static_cast<long long>(s.st_size - bytes_to_read),
4934 static_cast<long long>(s.st_size));
4935 return false;
4936 }
4937 p += len;
4938 bytes_to_read -= len;
4939 }
4940 ::close(o);
4941 return true;
4942 }
4943
4944 this->o_ = o;
4945 this->file_size_ = s.st_size;
4946
4947 if (!this->map_no_anonymous(writable))
4948 {
4949 release_descriptor(o, true);
4950 this->o_ = -1;
4951 this->file_size_ = 0;
4952 return false;
4953 }
4954
4955 return true;
4956 }
4957
4958 // Open the output file.
4959
4960 void
4961 Output_file::open(off_t file_size)
4962 {
4963 this->file_size_ = file_size;
4964
4965 // Unlink the file first; otherwise the open() may fail if the file
4966 // is busy (e.g. it's an executable that's currently being executed).
4967 //
4968 // However, the linker may be part of a system where a zero-length
4969 // file is created for it to write to, with tight permissions (gcc
4970 // 2.95 did something like this). Unlinking the file would work
4971 // around those permission controls, so we only unlink if the file
4972 // has a non-zero size. We also unlink only regular files to avoid
4973 // trouble with directories/etc.
4974 //
4975 // If we fail, continue; this command is merely a best-effort attempt
4976 // to improve the odds for open().
4977
4978 // We let the name "-" mean "stdout"
4979 if (!this->is_temporary_)
4980 {
4981 if (strcmp(this->name_, "-") == 0)
4982 this->o_ = STDOUT_FILENO;
4983 else
4984 {
4985 struct stat s;
4986 if (::stat(this->name_, &s) == 0
4987 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4988 {
4989 if (s.st_size != 0)
4990 ::unlink(this->name_);
4991 else if (!parameters->options().relocatable())
4992 {
4993 // If we don't unlink the existing file, add execute
4994 // permission where read permissions already exist
4995 // and where the umask permits.
4996 int mask = ::umask(0);
4997 ::umask(mask);
4998 s.st_mode |= (s.st_mode & 0444) >> 2;
4999 ::chmod(this->name_, s.st_mode & ~mask);
5000 }
5001 }
5002
5003 int mode = parameters->options().relocatable() ? 0666 : 0777;
5004 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5005 mode);
5006 if (o < 0)
5007 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5008 this->o_ = o;
5009 }
5010 }
5011
5012 this->map();
5013 }
5014
5015 // Resize the output file.
5016
5017 void
5018 Output_file::resize(off_t file_size)
5019 {
5020 // If the mmap is mapping an anonymous memory buffer, this is easy:
5021 // just mremap to the new size. If it's mapping to a file, we want
5022 // to unmap to flush to the file, then remap after growing the file.
5023 if (this->map_is_anonymous_)
5024 {
5025 void* base;
5026 if (!this->map_is_allocated_)
5027 {
5028 base = ::mremap(this->base_, this->file_size_, file_size,
5029 MREMAP_MAYMOVE);
5030 if (base == MAP_FAILED)
5031 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5032 }
5033 else
5034 {
5035 base = realloc(this->base_, file_size);
5036 if (base == NULL)
5037 gold_nomem();
5038 if (file_size > this->file_size_)
5039 memset(static_cast<char*>(base) + this->file_size_, 0,
5040 file_size - this->file_size_);
5041 }
5042 this->base_ = static_cast<unsigned char*>(base);
5043 this->file_size_ = file_size;
5044 }
5045 else
5046 {
5047 this->unmap();
5048 this->file_size_ = file_size;
5049 if (!this->map_no_anonymous(true))
5050 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5051 }
5052 }
5053
5054 // Map an anonymous block of memory which will later be written to the
5055 // file. Return whether the map succeeded.
5056
5057 bool
5058 Output_file::map_anonymous()
5059 {
5060 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5061 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5062 if (base == MAP_FAILED)
5063 {
5064 base = malloc(this->file_size_);
5065 if (base == NULL)
5066 return false;
5067 memset(base, 0, this->file_size_);
5068 this->map_is_allocated_ = true;
5069 }
5070 this->base_ = static_cast<unsigned char*>(base);
5071 this->map_is_anonymous_ = true;
5072 return true;
5073 }
5074
5075 // Map the file into memory. Return whether the mapping succeeded.
5076 // If WRITABLE is true, map with write access.
5077
5078 bool
5079 Output_file::map_no_anonymous(bool writable)
5080 {
5081 const int o = this->o_;
5082
5083 // If the output file is not a regular file, don't try to mmap it;
5084 // instead, we'll mmap a block of memory (an anonymous buffer), and
5085 // then later write the buffer to the file.
5086 void* base;
5087 struct stat statbuf;
5088 if (o == STDOUT_FILENO || o == STDERR_FILENO
5089 || ::fstat(o, &statbuf) != 0
5090 || !S_ISREG(statbuf.st_mode)
5091 || this->is_temporary_)
5092 return false;
5093
5094 // Ensure that we have disk space available for the file. If we
5095 // don't do this, it is possible that we will call munmap, close,
5096 // and exit with dirty buffers still in the cache with no assigned
5097 // disk blocks. If the disk is out of space at that point, the
5098 // output file will wind up incomplete, but we will have already
5099 // exited. The alternative to fallocate would be to use fdatasync,
5100 // but that would be a more significant performance hit.
5101 if (writable)
5102 {
5103 int err = gold_fallocate(o, 0, this->file_size_);
5104 if (err != 0)
5105 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5106 }
5107
5108 // Map the file into memory.
5109 int prot = PROT_READ;
5110 if (writable)
5111 prot |= PROT_WRITE;
5112 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5113
5114 // The mmap call might fail because of file system issues: the file
5115 // system might not support mmap at all, or it might not support
5116 // mmap with PROT_WRITE.
5117 if (base == MAP_FAILED)
5118 return false;
5119
5120 this->map_is_anonymous_ = false;
5121 this->base_ = static_cast<unsigned char*>(base);
5122 return true;
5123 }
5124
5125 // Map the file into memory.
5126
5127 void
5128 Output_file::map()
5129 {
5130 if (parameters->options().mmap_output_file()
5131 && this->map_no_anonymous(true))
5132 return;
5133
5134 // The mmap call might fail because of file system issues: the file
5135 // system might not support mmap at all, or it might not support
5136 // mmap with PROT_WRITE. I'm not sure which errno values we will
5137 // see in all cases, so if the mmap fails for any reason and we
5138 // don't care about file contents, try for an anonymous map.
5139 if (this->map_anonymous())
5140 return;
5141
5142 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5143 this->name_, static_cast<unsigned long>(this->file_size_),
5144 strerror(errno));
5145 }
5146
5147 // Unmap the file from memory.
5148
5149 void
5150 Output_file::unmap()
5151 {
5152 if (this->map_is_anonymous_)
5153 {
5154 // We've already written out the data, so there is no reason to
5155 // waste time unmapping or freeing the memory.
5156 }
5157 else
5158 {
5159 if (::munmap(this->base_, this->file_size_) < 0)
5160 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5161 }
5162 this->base_ = NULL;
5163 }
5164
5165 // Close the output file.
5166
5167 void
5168 Output_file::close()
5169 {
5170 // If the map isn't file-backed, we need to write it now.
5171 if (this->map_is_anonymous_ && !this->is_temporary_)
5172 {
5173 size_t bytes_to_write = this->file_size_;
5174 size_t offset = 0;
5175 while (bytes_to_write > 0)
5176 {
5177 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5178 bytes_to_write);
5179 if (bytes_written == 0)
5180 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5181 else if (bytes_written < 0)
5182 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5183 else
5184 {
5185 bytes_to_write -= bytes_written;
5186 offset += bytes_written;
5187 }
5188 }
5189 }
5190 this->unmap();
5191
5192 // We don't close stdout or stderr
5193 if (this->o_ != STDOUT_FILENO
5194 && this->o_ != STDERR_FILENO
5195 && !this->is_temporary_)
5196 if (::close(this->o_) < 0)
5197 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5198 this->o_ = -1;
5199 }
5200
5201 // Instantiate the templates we need. We could use the configure
5202 // script to restrict this to only the ones for implemented targets.
5203
5204 #ifdef HAVE_TARGET_32_LITTLE
5205 template
5206 off_t
5207 Output_section::add_input_section<32, false>(
5208 Layout* layout,
5209 Sized_relobj_file<32, false>* object,
5210 unsigned int shndx,
5211 const char* secname,
5212 const elfcpp::Shdr<32, false>& shdr,
5213 unsigned int reloc_shndx,
5214 bool have_sections_script);
5215 #endif
5216
5217 #ifdef HAVE_TARGET_32_BIG
5218 template
5219 off_t
5220 Output_section::add_input_section<32, true>(
5221 Layout* layout,
5222 Sized_relobj_file<32, true>* object,
5223 unsigned int shndx,
5224 const char* secname,
5225 const elfcpp::Shdr<32, true>& shdr,
5226 unsigned int reloc_shndx,
5227 bool have_sections_script);
5228 #endif
5229
5230 #ifdef HAVE_TARGET_64_LITTLE
5231 template
5232 off_t
5233 Output_section::add_input_section<64, false>(
5234 Layout* layout,
5235 Sized_relobj_file<64, false>* object,
5236 unsigned int shndx,
5237 const char* secname,
5238 const elfcpp::Shdr<64, false>& shdr,
5239 unsigned int reloc_shndx,
5240 bool have_sections_script);
5241 #endif
5242
5243 #ifdef HAVE_TARGET_64_BIG
5244 template
5245 off_t
5246 Output_section::add_input_section<64, true>(
5247 Layout* layout,
5248 Sized_relobj_file<64, true>* object,
5249 unsigned int shndx,
5250 const char* secname,
5251 const elfcpp::Shdr<64, true>& shdr,
5252 unsigned int reloc_shndx,
5253 bool have_sections_script);
5254 #endif
5255
5256 #ifdef HAVE_TARGET_32_LITTLE
5257 template
5258 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5259 #endif
5260
5261 #ifdef HAVE_TARGET_32_BIG
5262 template
5263 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5264 #endif
5265
5266 #ifdef HAVE_TARGET_64_LITTLE
5267 template
5268 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5269 #endif
5270
5271 #ifdef HAVE_TARGET_64_BIG
5272 template
5273 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5274 #endif
5275
5276 #ifdef HAVE_TARGET_32_LITTLE
5277 template
5278 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5279 #endif
5280
5281 #ifdef HAVE_TARGET_32_BIG
5282 template
5283 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5284 #endif
5285
5286 #ifdef HAVE_TARGET_64_LITTLE
5287 template
5288 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5289 #endif
5290
5291 #ifdef HAVE_TARGET_64_BIG
5292 template
5293 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5294 #endif
5295
5296 #ifdef HAVE_TARGET_32_LITTLE
5297 template
5298 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5299 #endif
5300
5301 #ifdef HAVE_TARGET_32_BIG
5302 template
5303 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5304 #endif
5305
5306 #ifdef HAVE_TARGET_64_LITTLE
5307 template
5308 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5309 #endif
5310
5311 #ifdef HAVE_TARGET_64_BIG
5312 template
5313 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5314 #endif
5315
5316 #ifdef HAVE_TARGET_32_LITTLE
5317 template
5318 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5319 #endif
5320
5321 #ifdef HAVE_TARGET_32_BIG
5322 template
5323 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5324 #endif
5325
5326 #ifdef HAVE_TARGET_64_LITTLE
5327 template
5328 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5329 #endif
5330
5331 #ifdef HAVE_TARGET_64_BIG
5332 template
5333 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5334 #endif
5335
5336 #ifdef HAVE_TARGET_32_LITTLE
5337 template
5338 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5339 #endif
5340
5341 #ifdef HAVE_TARGET_32_BIG
5342 template
5343 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5344 #endif
5345
5346 #ifdef HAVE_TARGET_64_LITTLE
5347 template
5348 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5349 #endif
5350
5351 #ifdef HAVE_TARGET_64_BIG
5352 template
5353 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5354 #endif
5355
5356 #ifdef HAVE_TARGET_32_LITTLE
5357 template
5358 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5359 #endif
5360
5361 #ifdef HAVE_TARGET_32_BIG
5362 template
5363 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5364 #endif
5365
5366 #ifdef HAVE_TARGET_64_LITTLE
5367 template
5368 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5369 #endif
5370
5371 #ifdef HAVE_TARGET_64_BIG
5372 template
5373 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5374 #endif
5375
5376 #ifdef HAVE_TARGET_32_LITTLE
5377 template
5378 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5379 #endif
5380
5381 #ifdef HAVE_TARGET_32_BIG
5382 template
5383 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_64_LITTLE
5387 template
5388 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_64_BIG
5392 template
5393 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_32_LITTLE
5397 template
5398 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_32_BIG
5402 template
5403 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_64_LITTLE
5407 template
5408 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_64_BIG
5412 template
5413 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_32_LITTLE
5417 template
5418 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_32_BIG
5422 template
5423 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_64_LITTLE
5427 template
5428 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_64_BIG
5432 template
5433 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_32_LITTLE
5437 template
5438 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_32_BIG
5442 template
5443 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_64_LITTLE
5447 template
5448 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_64_BIG
5452 template
5453 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_32_LITTLE
5457 template
5458 class Output_data_group<32, false>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_32_BIG
5462 template
5463 class Output_data_group<32, true>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_64_LITTLE
5467 template
5468 class Output_data_group<64, false>;
5469 #endif
5470
5471 #ifdef HAVE_TARGET_64_BIG
5472 template
5473 class Output_data_group<64, true>;
5474 #endif
5475
5476 template
5477 class Output_data_got<32, false>;
5478
5479 template
5480 class Output_data_got<32, true>;
5481
5482 template
5483 class Output_data_got<64, false>;
5484
5485 template
5486 class Output_data_got<64, true>;
5487
5488 } // End namespace gold.
This page took 0.168298 seconds and 5 git commands to generate.