2010-04-08 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Set the address and file offset.
1753
1754 void
1755 Output_section::Input_section::set_address_and_file_offset(
1756 uint64_t address,
1757 off_t file_offset,
1758 off_t section_file_offset)
1759 {
1760 if (this->is_input_section())
1761 this->u2_.object->set_section_offset(this->shndx_,
1762 file_offset - section_file_offset);
1763 else
1764 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1765 }
1766
1767 // Reset the address and file offset.
1768
1769 void
1770 Output_section::Input_section::reset_address_and_file_offset()
1771 {
1772 if (!this->is_input_section())
1773 this->u2_.posd->reset_address_and_file_offset();
1774 }
1775
1776 // Finalize the data size.
1777
1778 void
1779 Output_section::Input_section::finalize_data_size()
1780 {
1781 if (!this->is_input_section())
1782 this->u2_.posd->finalize_data_size();
1783 }
1784
1785 // Try to turn an input offset into an output offset. We want to
1786 // return the output offset relative to the start of this
1787 // Input_section in the output section.
1788
1789 inline bool
1790 Output_section::Input_section::output_offset(
1791 const Relobj* object,
1792 unsigned int shndx,
1793 section_offset_type offset,
1794 section_offset_type *poutput) const
1795 {
1796 if (!this->is_input_section())
1797 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1798 else
1799 {
1800 if (this->shndx_ != shndx || this->u2_.object != object)
1801 return false;
1802 *poutput = offset;
1803 return true;
1804 }
1805 }
1806
1807 // Return whether this is the merge section for the input section
1808 // SHNDX in OBJECT.
1809
1810 inline bool
1811 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1812 unsigned int shndx) const
1813 {
1814 if (this->is_input_section())
1815 return false;
1816 return this->u2_.posd->is_merge_section_for(object, shndx);
1817 }
1818
1819 // Write out the data. We don't have to do anything for an input
1820 // section--they are handled via Object::relocate--but this is where
1821 // we write out the data for an Output_section_data.
1822
1823 void
1824 Output_section::Input_section::write(Output_file* of)
1825 {
1826 if (!this->is_input_section())
1827 this->u2_.posd->write(of);
1828 }
1829
1830 // Write the data to a buffer. As for write(), we don't have to do
1831 // anything for an input section.
1832
1833 void
1834 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1835 {
1836 if (!this->is_input_section())
1837 this->u2_.posd->write_to_buffer(buffer);
1838 }
1839
1840 // Print to a map file.
1841
1842 void
1843 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1844 {
1845 switch (this->shndx_)
1846 {
1847 case OUTPUT_SECTION_CODE:
1848 case MERGE_DATA_SECTION_CODE:
1849 case MERGE_STRING_SECTION_CODE:
1850 this->u2_.posd->print_to_mapfile(mapfile);
1851 break;
1852
1853 case RELAXED_INPUT_SECTION_CODE:
1854 {
1855 Output_relaxed_input_section* relaxed_section =
1856 this->relaxed_input_section();
1857 mapfile->print_input_section(relaxed_section->relobj(),
1858 relaxed_section->shndx());
1859 }
1860 break;
1861 default:
1862 mapfile->print_input_section(this->u2_.object, this->shndx_);
1863 break;
1864 }
1865 }
1866
1867 // Output_section methods.
1868
1869 // Construct an Output_section. NAME will point into a Stringpool.
1870
1871 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1872 elfcpp::Elf_Xword flags)
1873 : name_(name),
1874 addralign_(0),
1875 entsize_(0),
1876 load_address_(0),
1877 link_section_(NULL),
1878 link_(0),
1879 info_section_(NULL),
1880 info_symndx_(NULL),
1881 info_(0),
1882 type_(type),
1883 flags_(flags),
1884 out_shndx_(-1U),
1885 symtab_index_(0),
1886 dynsym_index_(0),
1887 input_sections_(),
1888 first_input_offset_(0),
1889 fills_(),
1890 postprocessing_buffer_(NULL),
1891 needs_symtab_index_(false),
1892 needs_dynsym_index_(false),
1893 should_link_to_symtab_(false),
1894 should_link_to_dynsym_(false),
1895 after_input_sections_(false),
1896 requires_postprocessing_(false),
1897 found_in_sections_clause_(false),
1898 has_load_address_(false),
1899 info_uses_section_index_(false),
1900 may_sort_attached_input_sections_(false),
1901 must_sort_attached_input_sections_(false),
1902 attached_input_sections_are_sorted_(false),
1903 is_relro_(false),
1904 is_relro_local_(false),
1905 is_last_relro_(false),
1906 is_first_non_relro_(false),
1907 is_small_section_(false),
1908 is_large_section_(false),
1909 is_interp_(false),
1910 is_dynamic_linker_section_(false),
1911 generate_code_fills_at_write_(false),
1912 is_entsize_zero_(false),
1913 section_offsets_need_adjustment_(false),
1914 tls_offset_(0),
1915 checkpoint_(NULL),
1916 merge_section_map_(),
1917 merge_section_by_properties_map_(),
1918 relaxed_input_section_map_(),
1919 is_relaxed_input_section_map_valid_(true)
1920 {
1921 // An unallocated section has no address. Forcing this means that
1922 // we don't need special treatment for symbols defined in debug
1923 // sections.
1924 if ((flags & elfcpp::SHF_ALLOC) == 0)
1925 this->set_address(0);
1926 }
1927
1928 Output_section::~Output_section()
1929 {
1930 delete this->checkpoint_;
1931 }
1932
1933 // Set the entry size.
1934
1935 void
1936 Output_section::set_entsize(uint64_t v)
1937 {
1938 if (this->is_entsize_zero_)
1939 ;
1940 else if (this->entsize_ == 0)
1941 this->entsize_ = v;
1942 else if (this->entsize_ != v)
1943 {
1944 this->entsize_ = 0;
1945 this->is_entsize_zero_ = 1;
1946 }
1947 }
1948
1949 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1950 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1951 // relocation section which applies to this section, or 0 if none, or
1952 // -1U if more than one. Return the offset of the input section
1953 // within the output section. Return -1 if the input section will
1954 // receive special handling. In the normal case we don't always keep
1955 // track of input sections for an Output_section. Instead, each
1956 // Object keeps track of the Output_section for each of its input
1957 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1958 // track of input sections here; this is used when SECTIONS appears in
1959 // a linker script.
1960
1961 template<int size, bool big_endian>
1962 off_t
1963 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1964 unsigned int shndx,
1965 const char* secname,
1966 const elfcpp::Shdr<size, big_endian>& shdr,
1967 unsigned int reloc_shndx,
1968 bool have_sections_script)
1969 {
1970 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1971 if ((addralign & (addralign - 1)) != 0)
1972 {
1973 object->error(_("invalid alignment %lu for section \"%s\""),
1974 static_cast<unsigned long>(addralign), secname);
1975 addralign = 1;
1976 }
1977
1978 if (addralign > this->addralign_)
1979 this->addralign_ = addralign;
1980
1981 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1982 uint64_t entsize = shdr.get_sh_entsize();
1983
1984 // .debug_str is a mergeable string section, but is not always so
1985 // marked by compilers. Mark manually here so we can optimize.
1986 if (strcmp(secname, ".debug_str") == 0)
1987 {
1988 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1989 entsize = 1;
1990 }
1991
1992 this->update_flags_for_input_section(sh_flags);
1993 this->set_entsize(entsize);
1994
1995 // If this is a SHF_MERGE section, we pass all the input sections to
1996 // a Output_data_merge. We don't try to handle relocations for such
1997 // a section. We don't try to handle empty merge sections--they
1998 // mess up the mappings, and are useless anyhow.
1999 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2000 && reloc_shndx == 0
2001 && shdr.get_sh_size() > 0)
2002 {
2003 if (this->add_merge_input_section(object, shndx, sh_flags,
2004 entsize, addralign))
2005 {
2006 // Tell the relocation routines that they need to call the
2007 // output_offset method to determine the final address.
2008 return -1;
2009 }
2010 }
2011
2012 off_t offset_in_section = this->current_data_size_for_child();
2013 off_t aligned_offset_in_section = align_address(offset_in_section,
2014 addralign);
2015
2016 // Determine if we want to delay code-fill generation until the output
2017 // section is written. When the target is relaxing, we want to delay fill
2018 // generating to avoid adjusting them during relaxation.
2019 if (!this->generate_code_fills_at_write_
2020 && !have_sections_script
2021 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2022 && parameters->target().has_code_fill()
2023 && parameters->target().may_relax())
2024 {
2025 gold_assert(this->fills_.empty());
2026 this->generate_code_fills_at_write_ = true;
2027 }
2028
2029 if (aligned_offset_in_section > offset_in_section
2030 && !this->generate_code_fills_at_write_
2031 && !have_sections_script
2032 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2033 && parameters->target().has_code_fill())
2034 {
2035 // We need to add some fill data. Using fill_list_ when
2036 // possible is an optimization, since we will often have fill
2037 // sections without input sections.
2038 off_t fill_len = aligned_offset_in_section - offset_in_section;
2039 if (this->input_sections_.empty())
2040 this->fills_.push_back(Fill(offset_in_section, fill_len));
2041 else
2042 {
2043 std::string fill_data(parameters->target().code_fill(fill_len));
2044 Output_data_const* odc = new Output_data_const(fill_data, 1);
2045 this->input_sections_.push_back(Input_section(odc));
2046 }
2047 }
2048
2049 this->set_current_data_size_for_child(aligned_offset_in_section
2050 + shdr.get_sh_size());
2051
2052 // We need to keep track of this section if we are already keeping
2053 // track of sections, or if we are relaxing. Also, if this is a
2054 // section which requires sorting, or which may require sorting in
2055 // the future, we keep track of the sections.
2056 if (have_sections_script
2057 || !this->input_sections_.empty()
2058 || this->may_sort_attached_input_sections()
2059 || this->must_sort_attached_input_sections()
2060 || parameters->options().user_set_Map()
2061 || parameters->target().may_relax())
2062 this->input_sections_.push_back(Input_section(object, shndx,
2063 shdr.get_sh_size(),
2064 addralign));
2065
2066 return aligned_offset_in_section;
2067 }
2068
2069 // Add arbitrary data to an output section.
2070
2071 void
2072 Output_section::add_output_section_data(Output_section_data* posd)
2073 {
2074 Input_section inp(posd);
2075 this->add_output_section_data(&inp);
2076
2077 if (posd->is_data_size_valid())
2078 {
2079 off_t offset_in_section = this->current_data_size_for_child();
2080 off_t aligned_offset_in_section = align_address(offset_in_section,
2081 posd->addralign());
2082 this->set_current_data_size_for_child(aligned_offset_in_section
2083 + posd->data_size());
2084 }
2085 }
2086
2087 // Add a relaxed input section.
2088
2089 void
2090 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2091 {
2092 Input_section inp(poris);
2093 this->add_output_section_data(&inp);
2094 if (this->is_relaxed_input_section_map_valid_)
2095 {
2096 Const_section_id csid(poris->relobj(), poris->shndx());
2097 this->relaxed_input_section_map_[csid] = poris;
2098 }
2099
2100 // For a relaxed section, we use the current data size. Linker scripts
2101 // get all the input sections, including relaxed one from an output
2102 // section and add them back to them same output section to compute the
2103 // output section size. If we do not account for sizes of relaxed input
2104 // sections, an output section would be incorrectly sized.
2105 off_t offset_in_section = this->current_data_size_for_child();
2106 off_t aligned_offset_in_section = align_address(offset_in_section,
2107 poris->addralign());
2108 this->set_current_data_size_for_child(aligned_offset_in_section
2109 + poris->current_data_size());
2110 }
2111
2112 // Add arbitrary data to an output section by Input_section.
2113
2114 void
2115 Output_section::add_output_section_data(Input_section* inp)
2116 {
2117 if (this->input_sections_.empty())
2118 this->first_input_offset_ = this->current_data_size_for_child();
2119
2120 this->input_sections_.push_back(*inp);
2121
2122 uint64_t addralign = inp->addralign();
2123 if (addralign > this->addralign_)
2124 this->addralign_ = addralign;
2125
2126 inp->set_output_section(this);
2127 }
2128
2129 // Add a merge section to an output section.
2130
2131 void
2132 Output_section::add_output_merge_section(Output_section_data* posd,
2133 bool is_string, uint64_t entsize)
2134 {
2135 Input_section inp(posd, is_string, entsize);
2136 this->add_output_section_data(&inp);
2137 }
2138
2139 // Add an input section to a SHF_MERGE section.
2140
2141 bool
2142 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2143 uint64_t flags, uint64_t entsize,
2144 uint64_t addralign)
2145 {
2146 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2147
2148 // We only merge strings if the alignment is not more than the
2149 // character size. This could be handled, but it's unusual.
2150 if (is_string && addralign > entsize)
2151 return false;
2152
2153 // We cannot restore merged input section states.
2154 gold_assert(this->checkpoint_ == NULL);
2155
2156 // Look up merge sections by required properties.
2157 Output_merge_base* pomb;
2158 Merge_section_properties msp(is_string, entsize, addralign);
2159 Merge_section_by_properties_map::const_iterator p =
2160 this->merge_section_by_properties_map_.find(msp);
2161 if (p != this->merge_section_by_properties_map_.end())
2162 {
2163 pomb = p->second;
2164 gold_assert(pomb->is_string() == is_string
2165 && pomb->entsize() == entsize
2166 && pomb->addralign() == addralign);
2167 }
2168 else
2169 {
2170 // Create a new Output_merge_data or Output_merge_string_data.
2171 if (!is_string)
2172 pomb = new Output_merge_data(entsize, addralign);
2173 else
2174 {
2175 switch (entsize)
2176 {
2177 case 1:
2178 pomb = new Output_merge_string<char>(addralign);
2179 break;
2180 case 2:
2181 pomb = new Output_merge_string<uint16_t>(addralign);
2182 break;
2183 case 4:
2184 pomb = new Output_merge_string<uint32_t>(addralign);
2185 break;
2186 default:
2187 return false;
2188 }
2189 }
2190 // Add new merge section to this output section and link merge
2191 // section properties to new merge section in map.
2192 this->add_output_merge_section(pomb, is_string, entsize);
2193 this->merge_section_by_properties_map_[msp] = pomb;
2194 }
2195
2196 if (pomb->add_input_section(object, shndx))
2197 {
2198 // Add input section to new merge section and link input section to new
2199 // merge section in map.
2200 Const_section_id csid(object, shndx);
2201 this->merge_section_map_[csid] = pomb;
2202 return true;
2203 }
2204 else
2205 return false;
2206 }
2207
2208 // Build a relaxation map to speed up relaxation of existing input sections.
2209 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2210
2211 void
2212 Output_section::build_relaxation_map(
2213 const Input_section_list& input_sections,
2214 size_t limit,
2215 Relaxation_map* relaxation_map) const
2216 {
2217 for (size_t i = 0; i < limit; ++i)
2218 {
2219 const Input_section& is(input_sections[i]);
2220 if (is.is_input_section() || is.is_relaxed_input_section())
2221 {
2222 Section_id sid(is.relobj(), is.shndx());
2223 (*relaxation_map)[sid] = i;
2224 }
2225 }
2226 }
2227
2228 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2229 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2230 // indices of INPUT_SECTIONS.
2231
2232 void
2233 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2234 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2235 const Relaxation_map& map,
2236 Input_section_list* input_sections)
2237 {
2238 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2239 {
2240 Output_relaxed_input_section* poris = relaxed_sections[i];
2241 Section_id sid(poris->relobj(), poris->shndx());
2242 Relaxation_map::const_iterator p = map.find(sid);
2243 gold_assert(p != map.end());
2244 gold_assert((*input_sections)[p->second].is_input_section());
2245 (*input_sections)[p->second] = Input_section(poris);
2246 }
2247 }
2248
2249 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2250 // is a vector of pointers to Output_relaxed_input_section or its derived
2251 // classes. The relaxed sections must correspond to existing input sections.
2252
2253 void
2254 Output_section::convert_input_sections_to_relaxed_sections(
2255 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2256 {
2257 gold_assert(parameters->target().may_relax());
2258
2259 // We want to make sure that restore_states does not undo the effect of
2260 // this. If there is no checkpoint active, just search the current
2261 // input section list and replace the sections there. If there is
2262 // a checkpoint, also replace the sections there.
2263
2264 // By default, we look at the whole list.
2265 size_t limit = this->input_sections_.size();
2266
2267 if (this->checkpoint_ != NULL)
2268 {
2269 // Replace input sections with relaxed input section in the saved
2270 // copy of the input section list.
2271 if (this->checkpoint_->input_sections_saved())
2272 {
2273 Relaxation_map map;
2274 this->build_relaxation_map(
2275 *(this->checkpoint_->input_sections()),
2276 this->checkpoint_->input_sections()->size(),
2277 &map);
2278 this->convert_input_sections_in_list_to_relaxed_sections(
2279 relaxed_sections,
2280 map,
2281 this->checkpoint_->input_sections());
2282 }
2283 else
2284 {
2285 // We have not copied the input section list yet. Instead, just
2286 // look at the portion that would be saved.
2287 limit = this->checkpoint_->input_sections_size();
2288 }
2289 }
2290
2291 // Convert input sections in input_section_list.
2292 Relaxation_map map;
2293 this->build_relaxation_map(this->input_sections_, limit, &map);
2294 this->convert_input_sections_in_list_to_relaxed_sections(
2295 relaxed_sections,
2296 map,
2297 &this->input_sections_);
2298
2299 // Update fast look-up map.
2300 if (this->is_relaxed_input_section_map_valid_)
2301 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2302 {
2303 Output_relaxed_input_section* poris = relaxed_sections[i];
2304 Const_section_id csid(poris->relobj(), poris->shndx());
2305 this->relaxed_input_section_map_[csid] = poris;
2306 }
2307 }
2308
2309 // Update the output section flags based on input section flags.
2310
2311 void
2312 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2313 {
2314 // If we created the section with SHF_ALLOC clear, we set the
2315 // address. If we are now setting the SHF_ALLOC flag, we need to
2316 // undo that.
2317 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2318 && (flags & elfcpp::SHF_ALLOC) != 0)
2319 this->mark_address_invalid();
2320
2321 this->flags_ |= (flags
2322 & (elfcpp::SHF_WRITE
2323 | elfcpp::SHF_ALLOC
2324 | elfcpp::SHF_EXECINSTR));
2325
2326 if ((flags & elfcpp::SHF_MERGE) == 0)
2327 this->flags_ &=~ elfcpp::SHF_MERGE;
2328 else
2329 {
2330 if (this->current_data_size_for_child() == 0)
2331 this->flags_ |= elfcpp::SHF_MERGE;
2332 }
2333
2334 if ((flags & elfcpp::SHF_STRINGS) == 0)
2335 this->flags_ &=~ elfcpp::SHF_STRINGS;
2336 else
2337 {
2338 if (this->current_data_size_for_child() == 0)
2339 this->flags_ |= elfcpp::SHF_STRINGS;
2340 }
2341 }
2342
2343 // Find the merge section into which an input section with index SHNDX in
2344 // OBJECT has been added. Return NULL if none found.
2345
2346 Output_section_data*
2347 Output_section::find_merge_section(const Relobj* object,
2348 unsigned int shndx) const
2349 {
2350 Const_section_id csid(object, shndx);
2351 Output_section_data_by_input_section_map::const_iterator p =
2352 this->merge_section_map_.find(csid);
2353 if (p != this->merge_section_map_.end())
2354 {
2355 Output_section_data* posd = p->second;
2356 gold_assert(posd->is_merge_section_for(object, shndx));
2357 return posd;
2358 }
2359 else
2360 return NULL;
2361 }
2362
2363 // Find an relaxed input section corresponding to an input section
2364 // in OBJECT with index SHNDX.
2365
2366 const Output_relaxed_input_section*
2367 Output_section::find_relaxed_input_section(const Relobj* object,
2368 unsigned int shndx) const
2369 {
2370 // Be careful that the map may not be valid due to input section export
2371 // to scripts or a check-point restore.
2372 if (!this->is_relaxed_input_section_map_valid_)
2373 {
2374 // Rebuild the map as needed.
2375 this->relaxed_input_section_map_.clear();
2376 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2377 p != this->input_sections_.end();
2378 ++p)
2379 if (p->is_relaxed_input_section())
2380 {
2381 Const_section_id csid(p->relobj(), p->shndx());
2382 this->relaxed_input_section_map_[csid] =
2383 p->relaxed_input_section();
2384 }
2385 this->is_relaxed_input_section_map_valid_ = true;
2386 }
2387
2388 Const_section_id csid(object, shndx);
2389 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2390 this->relaxed_input_section_map_.find(csid);
2391 if (p != this->relaxed_input_section_map_.end())
2392 return p->second;
2393 else
2394 return NULL;
2395 }
2396
2397 // Given an address OFFSET relative to the start of input section
2398 // SHNDX in OBJECT, return whether this address is being included in
2399 // the final link. This should only be called if SHNDX in OBJECT has
2400 // a special mapping.
2401
2402 bool
2403 Output_section::is_input_address_mapped(const Relobj* object,
2404 unsigned int shndx,
2405 off_t offset) const
2406 {
2407 // Look at the Output_section_data_maps first.
2408 const Output_section_data* posd = this->find_merge_section(object, shndx);
2409 if (posd == NULL)
2410 posd = this->find_relaxed_input_section(object, shndx);
2411
2412 if (posd != NULL)
2413 {
2414 section_offset_type output_offset;
2415 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2416 gold_assert(found);
2417 return output_offset != -1;
2418 }
2419
2420 // Fall back to the slow look-up.
2421 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2422 p != this->input_sections_.end();
2423 ++p)
2424 {
2425 section_offset_type output_offset;
2426 if (p->output_offset(object, shndx, offset, &output_offset))
2427 return output_offset != -1;
2428 }
2429
2430 // By default we assume that the address is mapped. This should
2431 // only be called after we have passed all sections to Layout. At
2432 // that point we should know what we are discarding.
2433 return true;
2434 }
2435
2436 // Given an address OFFSET relative to the start of input section
2437 // SHNDX in object OBJECT, return the output offset relative to the
2438 // start of the input section in the output section. This should only
2439 // be called if SHNDX in OBJECT has a special mapping.
2440
2441 section_offset_type
2442 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2443 section_offset_type offset) const
2444 {
2445 // This can only be called meaningfully when we know the data size
2446 // of this.
2447 gold_assert(this->is_data_size_valid());
2448
2449 // Look at the Output_section_data_maps first.
2450 const Output_section_data* posd = this->find_merge_section(object, shndx);
2451 if (posd == NULL)
2452 posd = this->find_relaxed_input_section(object, shndx);
2453 if (posd != NULL)
2454 {
2455 section_offset_type output_offset;
2456 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2457 gold_assert(found);
2458 return output_offset;
2459 }
2460
2461 // Fall back to the slow look-up.
2462 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2463 p != this->input_sections_.end();
2464 ++p)
2465 {
2466 section_offset_type output_offset;
2467 if (p->output_offset(object, shndx, offset, &output_offset))
2468 return output_offset;
2469 }
2470 gold_unreachable();
2471 }
2472
2473 // Return the output virtual address of OFFSET relative to the start
2474 // of input section SHNDX in object OBJECT.
2475
2476 uint64_t
2477 Output_section::output_address(const Relobj* object, unsigned int shndx,
2478 off_t offset) const
2479 {
2480 uint64_t addr = this->address() + this->first_input_offset_;
2481
2482 // Look at the Output_section_data_maps first.
2483 const Output_section_data* posd = this->find_merge_section(object, shndx);
2484 if (posd == NULL)
2485 posd = this->find_relaxed_input_section(object, shndx);
2486 if (posd != NULL && posd->is_address_valid())
2487 {
2488 section_offset_type output_offset;
2489 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2490 gold_assert(found);
2491 return posd->address() + output_offset;
2492 }
2493
2494 // Fall back to the slow look-up.
2495 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2496 p != this->input_sections_.end();
2497 ++p)
2498 {
2499 addr = align_address(addr, p->addralign());
2500 section_offset_type output_offset;
2501 if (p->output_offset(object, shndx, offset, &output_offset))
2502 {
2503 if (output_offset == -1)
2504 return -1ULL;
2505 return addr + output_offset;
2506 }
2507 addr += p->data_size();
2508 }
2509
2510 // If we get here, it means that we don't know the mapping for this
2511 // input section. This might happen in principle if
2512 // add_input_section were called before add_output_section_data.
2513 // But it should never actually happen.
2514
2515 gold_unreachable();
2516 }
2517
2518 // Find the output address of the start of the merged section for
2519 // input section SHNDX in object OBJECT.
2520
2521 bool
2522 Output_section::find_starting_output_address(const Relobj* object,
2523 unsigned int shndx,
2524 uint64_t* paddr) const
2525 {
2526 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2527 // Looking up the merge section map does not always work as we sometimes
2528 // find a merge section without its address set.
2529 uint64_t addr = this->address() + this->first_input_offset_;
2530 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2531 p != this->input_sections_.end();
2532 ++p)
2533 {
2534 addr = align_address(addr, p->addralign());
2535
2536 // It would be nice if we could use the existing output_offset
2537 // method to get the output offset of input offset 0.
2538 // Unfortunately we don't know for sure that input offset 0 is
2539 // mapped at all.
2540 if (p->is_merge_section_for(object, shndx))
2541 {
2542 *paddr = addr;
2543 return true;
2544 }
2545
2546 addr += p->data_size();
2547 }
2548
2549 // We couldn't find a merge output section for this input section.
2550 return false;
2551 }
2552
2553 // Set the data size of an Output_section. This is where we handle
2554 // setting the addresses of any Output_section_data objects.
2555
2556 void
2557 Output_section::set_final_data_size()
2558 {
2559 if (this->input_sections_.empty())
2560 {
2561 this->set_data_size(this->current_data_size_for_child());
2562 return;
2563 }
2564
2565 if (this->must_sort_attached_input_sections())
2566 this->sort_attached_input_sections();
2567
2568 uint64_t address = this->address();
2569 off_t startoff = this->offset();
2570 off_t off = startoff + this->first_input_offset_;
2571 for (Input_section_list::iterator p = this->input_sections_.begin();
2572 p != this->input_sections_.end();
2573 ++p)
2574 {
2575 off = align_address(off, p->addralign());
2576 p->set_address_and_file_offset(address + (off - startoff), off,
2577 startoff);
2578 off += p->data_size();
2579 }
2580
2581 this->set_data_size(off - startoff);
2582 }
2583
2584 // Reset the address and file offset.
2585
2586 void
2587 Output_section::do_reset_address_and_file_offset()
2588 {
2589 // An unallocated section has no address. Forcing this means that
2590 // we don't need special treatment for symbols defined in debug
2591 // sections. We do the same in the constructor.
2592 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2593 this->set_address(0);
2594
2595 for (Input_section_list::iterator p = this->input_sections_.begin();
2596 p != this->input_sections_.end();
2597 ++p)
2598 p->reset_address_and_file_offset();
2599 }
2600
2601 // Return true if address and file offset have the values after reset.
2602
2603 bool
2604 Output_section::do_address_and_file_offset_have_reset_values() const
2605 {
2606 if (this->is_offset_valid())
2607 return false;
2608
2609 // An unallocated section has address 0 after its construction or a reset.
2610 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2611 return this->is_address_valid() && this->address() == 0;
2612 else
2613 return !this->is_address_valid();
2614 }
2615
2616 // Set the TLS offset. Called only for SHT_TLS sections.
2617
2618 void
2619 Output_section::do_set_tls_offset(uint64_t tls_base)
2620 {
2621 this->tls_offset_ = this->address() - tls_base;
2622 }
2623
2624 // In a few cases we need to sort the input sections attached to an
2625 // output section. This is used to implement the type of constructor
2626 // priority ordering implemented by the GNU linker, in which the
2627 // priority becomes part of the section name and the sections are
2628 // sorted by name. We only do this for an output section if we see an
2629 // attached input section matching ".ctor.*", ".dtor.*",
2630 // ".init_array.*" or ".fini_array.*".
2631
2632 class Output_section::Input_section_sort_entry
2633 {
2634 public:
2635 Input_section_sort_entry()
2636 : input_section_(), index_(-1U), section_has_name_(false),
2637 section_name_()
2638 { }
2639
2640 Input_section_sort_entry(const Input_section& input_section,
2641 unsigned int index)
2642 : input_section_(input_section), index_(index),
2643 section_has_name_(input_section.is_input_section()
2644 || input_section.is_relaxed_input_section())
2645 {
2646 if (this->section_has_name_)
2647 {
2648 // This is only called single-threaded from Layout::finalize,
2649 // so it is OK to lock. Unfortunately we have no way to pass
2650 // in a Task token.
2651 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2652 Object* obj = (input_section.is_input_section()
2653 ? input_section.relobj()
2654 : input_section.relaxed_input_section()->relobj());
2655 Task_lock_obj<Object> tl(dummy_task, obj);
2656
2657 // This is a slow operation, which should be cached in
2658 // Layout::layout if this becomes a speed problem.
2659 this->section_name_ = obj->section_name(input_section.shndx());
2660 }
2661 }
2662
2663 // Return the Input_section.
2664 const Input_section&
2665 input_section() const
2666 {
2667 gold_assert(this->index_ != -1U);
2668 return this->input_section_;
2669 }
2670
2671 // The index of this entry in the original list. This is used to
2672 // make the sort stable.
2673 unsigned int
2674 index() const
2675 {
2676 gold_assert(this->index_ != -1U);
2677 return this->index_;
2678 }
2679
2680 // Whether there is a section name.
2681 bool
2682 section_has_name() const
2683 { return this->section_has_name_; }
2684
2685 // The section name.
2686 const std::string&
2687 section_name() const
2688 {
2689 gold_assert(this->section_has_name_);
2690 return this->section_name_;
2691 }
2692
2693 // Return true if the section name has a priority. This is assumed
2694 // to be true if it has a dot after the initial dot.
2695 bool
2696 has_priority() const
2697 {
2698 gold_assert(this->section_has_name_);
2699 return this->section_name_.find('.', 1) != std::string::npos;
2700 }
2701
2702 // Return true if this an input file whose base name matches
2703 // FILE_NAME. The base name must have an extension of ".o", and
2704 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2705 // This is to match crtbegin.o as well as crtbeginS.o without
2706 // getting confused by other possibilities. Overall matching the
2707 // file name this way is a dreadful hack, but the GNU linker does it
2708 // in order to better support gcc, and we need to be compatible.
2709 bool
2710 match_file_name(const char* match_file_name) const
2711 {
2712 const std::string& file_name(this->input_section_.relobj()->name());
2713 const char* base_name = lbasename(file_name.c_str());
2714 size_t match_len = strlen(match_file_name);
2715 if (strncmp(base_name, match_file_name, match_len) != 0)
2716 return false;
2717 size_t base_len = strlen(base_name);
2718 if (base_len != match_len + 2 && base_len != match_len + 3)
2719 return false;
2720 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2721 }
2722
2723 private:
2724 // The Input_section we are sorting.
2725 Input_section input_section_;
2726 // The index of this Input_section in the original list.
2727 unsigned int index_;
2728 // Whether this Input_section has a section name--it won't if this
2729 // is some random Output_section_data.
2730 bool section_has_name_;
2731 // The section name if there is one.
2732 std::string section_name_;
2733 };
2734
2735 // Return true if S1 should come before S2 in the output section.
2736
2737 bool
2738 Output_section::Input_section_sort_compare::operator()(
2739 const Output_section::Input_section_sort_entry& s1,
2740 const Output_section::Input_section_sort_entry& s2) const
2741 {
2742 // crtbegin.o must come first.
2743 bool s1_begin = s1.match_file_name("crtbegin");
2744 bool s2_begin = s2.match_file_name("crtbegin");
2745 if (s1_begin || s2_begin)
2746 {
2747 if (!s1_begin)
2748 return false;
2749 if (!s2_begin)
2750 return true;
2751 return s1.index() < s2.index();
2752 }
2753
2754 // crtend.o must come last.
2755 bool s1_end = s1.match_file_name("crtend");
2756 bool s2_end = s2.match_file_name("crtend");
2757 if (s1_end || s2_end)
2758 {
2759 if (!s1_end)
2760 return true;
2761 if (!s2_end)
2762 return false;
2763 return s1.index() < s2.index();
2764 }
2765
2766 // We sort all the sections with no names to the end.
2767 if (!s1.section_has_name() || !s2.section_has_name())
2768 {
2769 if (s1.section_has_name())
2770 return true;
2771 if (s2.section_has_name())
2772 return false;
2773 return s1.index() < s2.index();
2774 }
2775
2776 // A section with a priority follows a section without a priority.
2777 bool s1_has_priority = s1.has_priority();
2778 bool s2_has_priority = s2.has_priority();
2779 if (s1_has_priority && !s2_has_priority)
2780 return false;
2781 if (!s1_has_priority && s2_has_priority)
2782 return true;
2783
2784 // Otherwise we sort by name.
2785 int compare = s1.section_name().compare(s2.section_name());
2786 if (compare != 0)
2787 return compare < 0;
2788
2789 // Otherwise we keep the input order.
2790 return s1.index() < s2.index();
2791 }
2792
2793 // Return true if S1 should come before S2 in an .init_array or .fini_array
2794 // output section.
2795
2796 bool
2797 Output_section::Input_section_sort_init_fini_compare::operator()(
2798 const Output_section::Input_section_sort_entry& s1,
2799 const Output_section::Input_section_sort_entry& s2) const
2800 {
2801 // We sort all the sections with no names to the end.
2802 if (!s1.section_has_name() || !s2.section_has_name())
2803 {
2804 if (s1.section_has_name())
2805 return true;
2806 if (s2.section_has_name())
2807 return false;
2808 return s1.index() < s2.index();
2809 }
2810
2811 // A section without a priority follows a section with a priority.
2812 // This is the reverse of .ctors and .dtors sections.
2813 bool s1_has_priority = s1.has_priority();
2814 bool s2_has_priority = s2.has_priority();
2815 if (s1_has_priority && !s2_has_priority)
2816 return true;
2817 if (!s1_has_priority && s2_has_priority)
2818 return false;
2819
2820 // Otherwise we sort by name.
2821 int compare = s1.section_name().compare(s2.section_name());
2822 if (compare != 0)
2823 return compare < 0;
2824
2825 // Otherwise we keep the input order.
2826 return s1.index() < s2.index();
2827 }
2828
2829 // Sort the input sections attached to an output section.
2830
2831 void
2832 Output_section::sort_attached_input_sections()
2833 {
2834 if (this->attached_input_sections_are_sorted_)
2835 return;
2836
2837 if (this->checkpoint_ != NULL
2838 && !this->checkpoint_->input_sections_saved())
2839 this->checkpoint_->save_input_sections();
2840
2841 // The only thing we know about an input section is the object and
2842 // the section index. We need the section name. Recomputing this
2843 // is slow but this is an unusual case. If this becomes a speed
2844 // problem we can cache the names as required in Layout::layout.
2845
2846 // We start by building a larger vector holding a copy of each
2847 // Input_section, plus its current index in the list and its name.
2848 std::vector<Input_section_sort_entry> sort_list;
2849
2850 unsigned int i = 0;
2851 for (Input_section_list::iterator p = this->input_sections_.begin();
2852 p != this->input_sections_.end();
2853 ++p, ++i)
2854 sort_list.push_back(Input_section_sort_entry(*p, i));
2855
2856 // Sort the input sections.
2857 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2858 || this->type() == elfcpp::SHT_INIT_ARRAY
2859 || this->type() == elfcpp::SHT_FINI_ARRAY)
2860 std::sort(sort_list.begin(), sort_list.end(),
2861 Input_section_sort_init_fini_compare());
2862 else
2863 std::sort(sort_list.begin(), sort_list.end(),
2864 Input_section_sort_compare());
2865
2866 // Copy the sorted input sections back to our list.
2867 this->input_sections_.clear();
2868 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2869 p != sort_list.end();
2870 ++p)
2871 this->input_sections_.push_back(p->input_section());
2872
2873 // Remember that we sorted the input sections, since we might get
2874 // called again.
2875 this->attached_input_sections_are_sorted_ = true;
2876 }
2877
2878 // Write the section header to *OSHDR.
2879
2880 template<int size, bool big_endian>
2881 void
2882 Output_section::write_header(const Layout* layout,
2883 const Stringpool* secnamepool,
2884 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2885 {
2886 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2887 oshdr->put_sh_type(this->type_);
2888
2889 elfcpp::Elf_Xword flags = this->flags_;
2890 if (this->info_section_ != NULL && this->info_uses_section_index_)
2891 flags |= elfcpp::SHF_INFO_LINK;
2892 oshdr->put_sh_flags(flags);
2893
2894 oshdr->put_sh_addr(this->address());
2895 oshdr->put_sh_offset(this->offset());
2896 oshdr->put_sh_size(this->data_size());
2897 if (this->link_section_ != NULL)
2898 oshdr->put_sh_link(this->link_section_->out_shndx());
2899 else if (this->should_link_to_symtab_)
2900 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2901 else if (this->should_link_to_dynsym_)
2902 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2903 else
2904 oshdr->put_sh_link(this->link_);
2905
2906 elfcpp::Elf_Word info;
2907 if (this->info_section_ != NULL)
2908 {
2909 if (this->info_uses_section_index_)
2910 info = this->info_section_->out_shndx();
2911 else
2912 info = this->info_section_->symtab_index();
2913 }
2914 else if (this->info_symndx_ != NULL)
2915 info = this->info_symndx_->symtab_index();
2916 else
2917 info = this->info_;
2918 oshdr->put_sh_info(info);
2919
2920 oshdr->put_sh_addralign(this->addralign_);
2921 oshdr->put_sh_entsize(this->entsize_);
2922 }
2923
2924 // Write out the data. For input sections the data is written out by
2925 // Object::relocate, but we have to handle Output_section_data objects
2926 // here.
2927
2928 void
2929 Output_section::do_write(Output_file* of)
2930 {
2931 gold_assert(!this->requires_postprocessing());
2932
2933 // If the target performs relaxation, we delay filler generation until now.
2934 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2935
2936 off_t output_section_file_offset = this->offset();
2937 for (Fill_list::iterator p = this->fills_.begin();
2938 p != this->fills_.end();
2939 ++p)
2940 {
2941 std::string fill_data(parameters->target().code_fill(p->length()));
2942 of->write(output_section_file_offset + p->section_offset(),
2943 fill_data.data(), fill_data.size());
2944 }
2945
2946 off_t off = this->offset() + this->first_input_offset_;
2947 for (Input_section_list::iterator p = this->input_sections_.begin();
2948 p != this->input_sections_.end();
2949 ++p)
2950 {
2951 off_t aligned_off = align_address(off, p->addralign());
2952 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2953 {
2954 size_t fill_len = aligned_off - off;
2955 std::string fill_data(parameters->target().code_fill(fill_len));
2956 of->write(off, fill_data.data(), fill_data.size());
2957 }
2958
2959 p->write(of);
2960 off = aligned_off + p->data_size();
2961 }
2962 }
2963
2964 // If a section requires postprocessing, create the buffer to use.
2965
2966 void
2967 Output_section::create_postprocessing_buffer()
2968 {
2969 gold_assert(this->requires_postprocessing());
2970
2971 if (this->postprocessing_buffer_ != NULL)
2972 return;
2973
2974 if (!this->input_sections_.empty())
2975 {
2976 off_t off = this->first_input_offset_;
2977 for (Input_section_list::iterator p = this->input_sections_.begin();
2978 p != this->input_sections_.end();
2979 ++p)
2980 {
2981 off = align_address(off, p->addralign());
2982 p->finalize_data_size();
2983 off += p->data_size();
2984 }
2985 this->set_current_data_size_for_child(off);
2986 }
2987
2988 off_t buffer_size = this->current_data_size_for_child();
2989 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2990 }
2991
2992 // Write all the data of an Output_section into the postprocessing
2993 // buffer. This is used for sections which require postprocessing,
2994 // such as compression. Input sections are handled by
2995 // Object::Relocate.
2996
2997 void
2998 Output_section::write_to_postprocessing_buffer()
2999 {
3000 gold_assert(this->requires_postprocessing());
3001
3002 // If the target performs relaxation, we delay filler generation until now.
3003 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3004
3005 unsigned char* buffer = this->postprocessing_buffer();
3006 for (Fill_list::iterator p = this->fills_.begin();
3007 p != this->fills_.end();
3008 ++p)
3009 {
3010 std::string fill_data(parameters->target().code_fill(p->length()));
3011 memcpy(buffer + p->section_offset(), fill_data.data(),
3012 fill_data.size());
3013 }
3014
3015 off_t off = this->first_input_offset_;
3016 for (Input_section_list::iterator p = this->input_sections_.begin();
3017 p != this->input_sections_.end();
3018 ++p)
3019 {
3020 off_t aligned_off = align_address(off, p->addralign());
3021 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3022 {
3023 size_t fill_len = aligned_off - off;
3024 std::string fill_data(parameters->target().code_fill(fill_len));
3025 memcpy(buffer + off, fill_data.data(), fill_data.size());
3026 }
3027
3028 p->write_to_buffer(buffer + aligned_off);
3029 off = aligned_off + p->data_size();
3030 }
3031 }
3032
3033 // Get the input sections for linker script processing. We leave
3034 // behind the Output_section_data entries. Note that this may be
3035 // slightly incorrect for merge sections. We will leave them behind,
3036 // but it is possible that the script says that they should follow
3037 // some other input sections, as in:
3038 // .rodata { *(.rodata) *(.rodata.cst*) }
3039 // For that matter, we don't handle this correctly:
3040 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3041 // With luck this will never matter.
3042
3043 uint64_t
3044 Output_section::get_input_sections(
3045 uint64_t address,
3046 const std::string& fill,
3047 std::list<Simple_input_section>* input_sections)
3048 {
3049 if (this->checkpoint_ != NULL
3050 && !this->checkpoint_->input_sections_saved())
3051 this->checkpoint_->save_input_sections();
3052
3053 // Invalidate the relaxed input section map.
3054 this->is_relaxed_input_section_map_valid_ = false;
3055
3056 uint64_t orig_address = address;
3057
3058 address = align_address(address, this->addralign());
3059
3060 Input_section_list remaining;
3061 for (Input_section_list::iterator p = this->input_sections_.begin();
3062 p != this->input_sections_.end();
3063 ++p)
3064 {
3065 if (p->is_input_section())
3066 input_sections->push_back(Simple_input_section(p->relobj(),
3067 p->shndx()));
3068 else if (p->is_relaxed_input_section())
3069 input_sections->push_back(
3070 Simple_input_section(p->relaxed_input_section()));
3071 else
3072 {
3073 uint64_t aligned_address = align_address(address, p->addralign());
3074 if (aligned_address != address && !fill.empty())
3075 {
3076 section_size_type length =
3077 convert_to_section_size_type(aligned_address - address);
3078 std::string this_fill;
3079 this_fill.reserve(length);
3080 while (this_fill.length() + fill.length() <= length)
3081 this_fill += fill;
3082 if (this_fill.length() < length)
3083 this_fill.append(fill, 0, length - this_fill.length());
3084
3085 Output_section_data* posd = new Output_data_const(this_fill, 0);
3086 remaining.push_back(Input_section(posd));
3087 }
3088 address = aligned_address;
3089
3090 remaining.push_back(*p);
3091
3092 p->finalize_data_size();
3093 address += p->data_size();
3094 }
3095 }
3096
3097 this->input_sections_.swap(remaining);
3098 this->first_input_offset_ = 0;
3099
3100 uint64_t data_size = address - orig_address;
3101 this->set_current_data_size_for_child(data_size);
3102 return data_size;
3103 }
3104
3105 // Add an simple input section.
3106
3107 void
3108 Output_section::add_simple_input_section(const Simple_input_section& sis,
3109 off_t data_size,
3110 uint64_t addralign)
3111 {
3112 if (addralign > this->addralign_)
3113 this->addralign_ = addralign;
3114
3115 off_t offset_in_section = this->current_data_size_for_child();
3116 off_t aligned_offset_in_section = align_address(offset_in_section,
3117 addralign);
3118
3119 this->set_current_data_size_for_child(aligned_offset_in_section
3120 + data_size);
3121
3122 Input_section is =
3123 (sis.is_relaxed_input_section()
3124 ? Input_section(sis.relaxed_input_section())
3125 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3126 this->input_sections_.push_back(is);
3127 }
3128
3129 // Save states for relaxation.
3130
3131 void
3132 Output_section::save_states()
3133 {
3134 gold_assert(this->checkpoint_ == NULL);
3135 Checkpoint_output_section* checkpoint =
3136 new Checkpoint_output_section(this->addralign_, this->flags_,
3137 this->input_sections_,
3138 this->first_input_offset_,
3139 this->attached_input_sections_are_sorted_);
3140 this->checkpoint_ = checkpoint;
3141 gold_assert(this->fills_.empty());
3142 }
3143
3144 void
3145 Output_section::discard_states()
3146 {
3147 gold_assert(this->checkpoint_ != NULL);
3148 delete this->checkpoint_;
3149 this->checkpoint_ = NULL;
3150 gold_assert(this->fills_.empty());
3151
3152 // Simply invalidate the relaxed input section map since we do not keep
3153 // track of it.
3154 this->is_relaxed_input_section_map_valid_ = false;
3155 }
3156
3157 void
3158 Output_section::restore_states()
3159 {
3160 gold_assert(this->checkpoint_ != NULL);
3161 Checkpoint_output_section* checkpoint = this->checkpoint_;
3162
3163 this->addralign_ = checkpoint->addralign();
3164 this->flags_ = checkpoint->flags();
3165 this->first_input_offset_ = checkpoint->first_input_offset();
3166
3167 if (!checkpoint->input_sections_saved())
3168 {
3169 // If we have not copied the input sections, just resize it.
3170 size_t old_size = checkpoint->input_sections_size();
3171 gold_assert(this->input_sections_.size() >= old_size);
3172 this->input_sections_.resize(old_size);
3173 }
3174 else
3175 {
3176 // We need to copy the whole list. This is not efficient for
3177 // extremely large output with hundreads of thousands of input
3178 // objects. We may need to re-think how we should pass sections
3179 // to scripts.
3180 this->input_sections_ = *checkpoint->input_sections();
3181 }
3182
3183 this->attached_input_sections_are_sorted_ =
3184 checkpoint->attached_input_sections_are_sorted();
3185
3186 // Simply invalidate the relaxed input section map since we do not keep
3187 // track of it.
3188 this->is_relaxed_input_section_map_valid_ = false;
3189 }
3190
3191 // Update the section offsets of input sections in this. This is required if
3192 // relaxation causes some input sections to change sizes.
3193
3194 void
3195 Output_section::adjust_section_offsets()
3196 {
3197 if (!this->section_offsets_need_adjustment_)
3198 return;
3199
3200 off_t off = 0;
3201 for (Input_section_list::iterator p = this->input_sections_.begin();
3202 p != this->input_sections_.end();
3203 ++p)
3204 {
3205 off = align_address(off, p->addralign());
3206 if (p->is_input_section())
3207 p->relobj()->set_section_offset(p->shndx(), off);
3208 off += p->data_size();
3209 }
3210
3211 this->section_offsets_need_adjustment_ = false;
3212 }
3213
3214 // Print to the map file.
3215
3216 void
3217 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3218 {
3219 mapfile->print_output_section(this);
3220
3221 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3222 p != this->input_sections_.end();
3223 ++p)
3224 p->print_to_mapfile(mapfile);
3225 }
3226
3227 // Print stats for merge sections to stderr.
3228
3229 void
3230 Output_section::print_merge_stats()
3231 {
3232 Input_section_list::iterator p;
3233 for (p = this->input_sections_.begin();
3234 p != this->input_sections_.end();
3235 ++p)
3236 p->print_merge_stats(this->name_);
3237 }
3238
3239 // Output segment methods.
3240
3241 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3242 : output_data_(),
3243 output_bss_(),
3244 vaddr_(0),
3245 paddr_(0),
3246 memsz_(0),
3247 max_align_(0),
3248 min_p_align_(0),
3249 offset_(0),
3250 filesz_(0),
3251 type_(type),
3252 flags_(flags),
3253 is_max_align_known_(false),
3254 are_addresses_set_(false),
3255 is_large_data_segment_(false)
3256 {
3257 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3258 // the flags.
3259 if (type == elfcpp::PT_TLS)
3260 this->flags_ = elfcpp::PF_R;
3261 }
3262
3263 // Add an Output_section to an Output_segment.
3264
3265 void
3266 Output_segment::add_output_section(Output_section* os,
3267 elfcpp::Elf_Word seg_flags,
3268 bool do_sort)
3269 {
3270 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3271 gold_assert(!this->is_max_align_known_);
3272 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3273 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3274
3275 this->update_flags_for_output_section(seg_flags);
3276
3277 Output_segment::Output_data_list* pdl;
3278 if (os->type() == elfcpp::SHT_NOBITS)
3279 pdl = &this->output_bss_;
3280 else
3281 pdl = &this->output_data_;
3282
3283 // Note that while there may be many input sections in an output
3284 // section, there are normally only a few output sections in an
3285 // output segment. The loops below are expected to be fast.
3286
3287 // So that PT_NOTE segments will work correctly, we need to ensure
3288 // that all SHT_NOTE sections are adjacent.
3289 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3290 {
3291 Output_segment::Output_data_list::iterator p = pdl->end();
3292 do
3293 {
3294 --p;
3295 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3296 {
3297 ++p;
3298 pdl->insert(p, os);
3299 return;
3300 }
3301 }
3302 while (p != pdl->begin());
3303 }
3304
3305 // Similarly, so that PT_TLS segments will work, we need to group
3306 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3307 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3308 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3309 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3310 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3311 // segment.
3312 if (this->type_ != elfcpp::PT_TLS
3313 && (os->flags() & elfcpp::SHF_TLS) != 0)
3314 {
3315 pdl = &this->output_data_;
3316 if (!pdl->empty())
3317 {
3318 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3319 bool sawtls = false;
3320 Output_segment::Output_data_list::iterator p = pdl->end();
3321 gold_assert(p != pdl->begin());
3322 do
3323 {
3324 --p;
3325 bool insert;
3326 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3327 {
3328 sawtls = true;
3329 // Put a NOBITS section after the first TLS section.
3330 // Put a PROGBITS section after the first
3331 // TLS/PROGBITS section.
3332 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3333 }
3334 else
3335 {
3336 // If we've gone past the TLS sections, but we've
3337 // seen a TLS section, then we need to insert this
3338 // section now.
3339 insert = sawtls;
3340 }
3341
3342 if (insert)
3343 {
3344 ++p;
3345 pdl->insert(p, os);
3346 return;
3347 }
3348 }
3349 while (p != pdl->begin());
3350 }
3351
3352 // There are no TLS sections yet; put this one at the requested
3353 // location in the section list.
3354 }
3355
3356 if (do_sort)
3357 {
3358 // For the PT_GNU_RELRO segment, we need to group relro
3359 // sections, and we need to put them before any non-relro
3360 // sections. Any relro local sections go before relro non-local
3361 // sections. One section may be marked as the last relro
3362 // section.
3363 if (os->is_relro())
3364 {
3365 gold_assert(pdl == &this->output_data_);
3366 Output_segment::Output_data_list::iterator p;
3367 for (p = pdl->begin(); p != pdl->end(); ++p)
3368 {
3369 if (!(*p)->is_section())
3370 break;
3371
3372 Output_section* pos = (*p)->output_section();
3373 if (!pos->is_relro()
3374 || (os->is_relro_local() && !pos->is_relro_local())
3375 || (!os->is_last_relro() && pos->is_last_relro()))
3376 break;
3377 }
3378
3379 pdl->insert(p, os);
3380 return;
3381 }
3382
3383 // One section may be marked as the first section which follows
3384 // the relro sections.
3385 if (os->is_first_non_relro())
3386 {
3387 gold_assert(pdl == &this->output_data_);
3388 Output_segment::Output_data_list::iterator p;
3389 for (p = pdl->begin(); p != pdl->end(); ++p)
3390 {
3391 if (!(*p)->is_section())
3392 break;
3393
3394 Output_section* pos = (*p)->output_section();
3395 if (!pos->is_relro())
3396 break;
3397 }
3398
3399 pdl->insert(p, os);
3400 return;
3401 }
3402 }
3403
3404 // Small data sections go at the end of the list of data sections.
3405 // If OS is not small, and there are small sections, we have to
3406 // insert it before the first small section.
3407 if (os->type() != elfcpp::SHT_NOBITS
3408 && !os->is_small_section()
3409 && !pdl->empty()
3410 && pdl->back()->is_section()
3411 && pdl->back()->output_section()->is_small_section())
3412 {
3413 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3414 p != pdl->end();
3415 ++p)
3416 {
3417 if ((*p)->is_section()
3418 && (*p)->output_section()->is_small_section())
3419 {
3420 pdl->insert(p, os);
3421 return;
3422 }
3423 }
3424 gold_unreachable();
3425 }
3426
3427 // A small BSS section goes at the start of the BSS sections, after
3428 // other small BSS sections.
3429 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3430 {
3431 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3432 p != pdl->end();
3433 ++p)
3434 {
3435 if (!(*p)->is_section()
3436 || !(*p)->output_section()->is_small_section())
3437 {
3438 pdl->insert(p, os);
3439 return;
3440 }
3441 }
3442 }
3443
3444 // A large BSS section goes at the end of the BSS sections, which
3445 // means that one that is not large must come before the first large
3446 // one.
3447 if (os->type() == elfcpp::SHT_NOBITS
3448 && !os->is_large_section()
3449 && !pdl->empty()
3450 && pdl->back()->is_section()
3451 && pdl->back()->output_section()->is_large_section())
3452 {
3453 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3454 p != pdl->end();
3455 ++p)
3456 {
3457 if ((*p)->is_section()
3458 && (*p)->output_section()->is_large_section())
3459 {
3460 pdl->insert(p, os);
3461 return;
3462 }
3463 }
3464 gold_unreachable();
3465 }
3466
3467 // We do some further output section sorting in order to make the
3468 // generated program run more efficiently. We should only do this
3469 // when not using a linker script, so it is controled by the DO_SORT
3470 // parameter.
3471 if (do_sort)
3472 {
3473 // FreeBSD requires the .interp section to be in the first page
3474 // of the executable. That is a more efficient location anyhow
3475 // for any OS, since it means that the kernel will have the data
3476 // handy after it reads the program headers.
3477 if (os->is_interp() && !pdl->empty())
3478 {
3479 pdl->insert(pdl->begin(), os);
3480 return;
3481 }
3482
3483 // Put loadable non-writable notes immediately after the .interp
3484 // sections, so that the PT_NOTE segment is on the first page of
3485 // the executable.
3486 if (os->type() == elfcpp::SHT_NOTE
3487 && (os->flags() & elfcpp::SHF_WRITE) == 0
3488 && !pdl->empty())
3489 {
3490 Output_segment::Output_data_list::iterator p = pdl->begin();
3491 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3492 ++p;
3493 pdl->insert(p, os);
3494 return;
3495 }
3496
3497 // If this section is used by the dynamic linker, and it is not
3498 // writable, then put it first, after the .interp section and
3499 // any loadable notes. This makes it more likely that the
3500 // dynamic linker will have to read less data from the disk.
3501 if (os->is_dynamic_linker_section()
3502 && !pdl->empty()
3503 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3504 {
3505 bool is_reloc = (os->type() == elfcpp::SHT_REL
3506 || os->type() == elfcpp::SHT_RELA);
3507 Output_segment::Output_data_list::iterator p = pdl->begin();
3508 while (p != pdl->end()
3509 && (*p)->is_section()
3510 && ((*p)->output_section()->is_dynamic_linker_section()
3511 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3512 {
3513 // Put reloc sections after the other ones. Putting the
3514 // dynamic reloc sections first confuses BFD, notably
3515 // objcopy and strip.
3516 if (!is_reloc
3517 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3518 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3519 break;
3520 ++p;
3521 }
3522 pdl->insert(p, os);
3523 return;
3524 }
3525 }
3526
3527 // If there were no constraints on the output section, just add it
3528 // to the end of the list.
3529 pdl->push_back(os);
3530 }
3531
3532 // Remove an Output_section from this segment. It is an error if it
3533 // is not present.
3534
3535 void
3536 Output_segment::remove_output_section(Output_section* os)
3537 {
3538 // We only need this for SHT_PROGBITS.
3539 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3540 for (Output_data_list::iterator p = this->output_data_.begin();
3541 p != this->output_data_.end();
3542 ++p)
3543 {
3544 if (*p == os)
3545 {
3546 this->output_data_.erase(p);
3547 return;
3548 }
3549 }
3550 gold_unreachable();
3551 }
3552
3553 // Add an Output_data (which need not be an Output_section) to the
3554 // start of a segment.
3555
3556 void
3557 Output_segment::add_initial_output_data(Output_data* od)
3558 {
3559 gold_assert(!this->is_max_align_known_);
3560 this->output_data_.push_front(od);
3561 }
3562
3563 // Return whether the first data section is a relro section.
3564
3565 bool
3566 Output_segment::is_first_section_relro() const
3567 {
3568 return (!this->output_data_.empty()
3569 && this->output_data_.front()->is_section()
3570 && this->output_data_.front()->output_section()->is_relro());
3571 }
3572
3573 // Return the maximum alignment of the Output_data in Output_segment.
3574
3575 uint64_t
3576 Output_segment::maximum_alignment()
3577 {
3578 if (!this->is_max_align_known_)
3579 {
3580 uint64_t addralign;
3581
3582 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3583 if (addralign > this->max_align_)
3584 this->max_align_ = addralign;
3585
3586 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3587 if (addralign > this->max_align_)
3588 this->max_align_ = addralign;
3589
3590 this->is_max_align_known_ = true;
3591 }
3592
3593 return this->max_align_;
3594 }
3595
3596 // Return the maximum alignment of a list of Output_data.
3597
3598 uint64_t
3599 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3600 {
3601 uint64_t ret = 0;
3602 for (Output_data_list::const_iterator p = pdl->begin();
3603 p != pdl->end();
3604 ++p)
3605 {
3606 uint64_t addralign = (*p)->addralign();
3607 if (addralign > ret)
3608 ret = addralign;
3609 }
3610 return ret;
3611 }
3612
3613 // Return the number of dynamic relocs applied to this segment.
3614
3615 unsigned int
3616 Output_segment::dynamic_reloc_count() const
3617 {
3618 return (this->dynamic_reloc_count_list(&this->output_data_)
3619 + this->dynamic_reloc_count_list(&this->output_bss_));
3620 }
3621
3622 // Return the number of dynamic relocs applied to an Output_data_list.
3623
3624 unsigned int
3625 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3626 {
3627 unsigned int count = 0;
3628 for (Output_data_list::const_iterator p = pdl->begin();
3629 p != pdl->end();
3630 ++p)
3631 count += (*p)->dynamic_reloc_count();
3632 return count;
3633 }
3634
3635 // Set the section addresses for an Output_segment. If RESET is true,
3636 // reset the addresses first. ADDR is the address and *POFF is the
3637 // file offset. Set the section indexes starting with *PSHNDX.
3638 // Return the address of the immediately following segment. Update
3639 // *POFF and *PSHNDX.
3640
3641 uint64_t
3642 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3643 uint64_t addr,
3644 unsigned int increase_relro,
3645 off_t* poff,
3646 unsigned int* pshndx)
3647 {
3648 gold_assert(this->type_ == elfcpp::PT_LOAD);
3649
3650 off_t orig_off = *poff;
3651
3652 // If we have relro sections, we need to pad forward now so that the
3653 // relro sections plus INCREASE_RELRO end on a common page boundary.
3654 if (parameters->options().relro()
3655 && this->is_first_section_relro()
3656 && (!this->are_addresses_set_ || reset))
3657 {
3658 uint64_t relro_size = 0;
3659 off_t off = *poff;
3660 for (Output_data_list::iterator p = this->output_data_.begin();
3661 p != this->output_data_.end();
3662 ++p)
3663 {
3664 if (!(*p)->is_section())
3665 break;
3666 Output_section* pos = (*p)->output_section();
3667 if (!pos->is_relro())
3668 break;
3669 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3670 if ((*p)->is_address_valid())
3671 relro_size += (*p)->data_size();
3672 else
3673 {
3674 // FIXME: This could be faster.
3675 (*p)->set_address_and_file_offset(addr + relro_size,
3676 off + relro_size);
3677 relro_size += (*p)->data_size();
3678 (*p)->reset_address_and_file_offset();
3679 }
3680 }
3681 relro_size += increase_relro;
3682
3683 uint64_t page_align = parameters->target().common_pagesize();
3684
3685 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3686 uint64_t desired_align = page_align - (relro_size % page_align);
3687 if (desired_align < *poff % page_align)
3688 *poff += page_align - *poff % page_align;
3689 *poff += desired_align - *poff % page_align;
3690 addr += *poff - orig_off;
3691 orig_off = *poff;
3692 }
3693
3694 if (!reset && this->are_addresses_set_)
3695 {
3696 gold_assert(this->paddr_ == addr);
3697 addr = this->vaddr_;
3698 }
3699 else
3700 {
3701 this->vaddr_ = addr;
3702 this->paddr_ = addr;
3703 this->are_addresses_set_ = true;
3704 }
3705
3706 bool in_tls = false;
3707
3708 this->offset_ = orig_off;
3709
3710 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3711 addr, poff, pshndx, &in_tls);
3712 this->filesz_ = *poff - orig_off;
3713
3714 off_t off = *poff;
3715
3716 uint64_t ret = this->set_section_list_addresses(layout, reset,
3717 &this->output_bss_,
3718 addr, poff, pshndx,
3719 &in_tls);
3720
3721 // If the last section was a TLS section, align upward to the
3722 // alignment of the TLS segment, so that the overall size of the TLS
3723 // segment is aligned.
3724 if (in_tls)
3725 {
3726 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3727 *poff = align_address(*poff, segment_align);
3728 }
3729
3730 this->memsz_ = *poff - orig_off;
3731
3732 // Ignore the file offset adjustments made by the BSS Output_data
3733 // objects.
3734 *poff = off;
3735
3736 return ret;
3737 }
3738
3739 // Set the addresses and file offsets in a list of Output_data
3740 // structures.
3741
3742 uint64_t
3743 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3744 Output_data_list* pdl,
3745 uint64_t addr, off_t* poff,
3746 unsigned int* pshndx,
3747 bool* in_tls)
3748 {
3749 off_t startoff = *poff;
3750
3751 off_t off = startoff;
3752 for (Output_data_list::iterator p = pdl->begin();
3753 p != pdl->end();
3754 ++p)
3755 {
3756 if (reset)
3757 (*p)->reset_address_and_file_offset();
3758
3759 // When using a linker script the section will most likely
3760 // already have an address.
3761 if (!(*p)->is_address_valid())
3762 {
3763 uint64_t align = (*p)->addralign();
3764
3765 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3766 {
3767 // Give the first TLS section the alignment of the
3768 // entire TLS segment. Otherwise the TLS segment as a
3769 // whole may be misaligned.
3770 if (!*in_tls)
3771 {
3772 Output_segment* tls_segment = layout->tls_segment();
3773 gold_assert(tls_segment != NULL);
3774 uint64_t segment_align = tls_segment->maximum_alignment();
3775 gold_assert(segment_align >= align);
3776 align = segment_align;
3777
3778 *in_tls = true;
3779 }
3780 }
3781 else
3782 {
3783 // If this is the first section after the TLS segment,
3784 // align it to at least the alignment of the TLS
3785 // segment, so that the size of the overall TLS segment
3786 // is aligned.
3787 if (*in_tls)
3788 {
3789 uint64_t segment_align =
3790 layout->tls_segment()->maximum_alignment();
3791 if (segment_align > align)
3792 align = segment_align;
3793
3794 *in_tls = false;
3795 }
3796 }
3797
3798 off = align_address(off, align);
3799 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3800 }
3801 else
3802 {
3803 // The script may have inserted a skip forward, but it
3804 // better not have moved backward.
3805 if ((*p)->address() >= addr + (off - startoff))
3806 off += (*p)->address() - (addr + (off - startoff));
3807 else
3808 {
3809 if (!layout->script_options()->saw_sections_clause())
3810 gold_unreachable();
3811 else
3812 {
3813 Output_section* os = (*p)->output_section();
3814
3815 // Cast to unsigned long long to avoid format warnings.
3816 unsigned long long previous_dot =
3817 static_cast<unsigned long long>(addr + (off - startoff));
3818 unsigned long long dot =
3819 static_cast<unsigned long long>((*p)->address());
3820
3821 if (os == NULL)
3822 gold_error(_("dot moves backward in linker script "
3823 "from 0x%llx to 0x%llx"), previous_dot, dot);
3824 else
3825 gold_error(_("address of section '%s' moves backward "
3826 "from 0x%llx to 0x%llx"),
3827 os->name(), previous_dot, dot);
3828 }
3829 }
3830 (*p)->set_file_offset(off);
3831 (*p)->finalize_data_size();
3832 }
3833
3834 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3835 // section. Such a section does not affect the size of a
3836 // PT_LOAD segment.
3837 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3838 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3839 off += (*p)->data_size();
3840
3841 if ((*p)->is_section())
3842 {
3843 (*p)->set_out_shndx(*pshndx);
3844 ++*pshndx;
3845 }
3846 }
3847
3848 *poff = off;
3849 return addr + (off - startoff);
3850 }
3851
3852 // For a non-PT_LOAD segment, set the offset from the sections, if
3853 // any. Add INCREASE to the file size and the memory size.
3854
3855 void
3856 Output_segment::set_offset(unsigned int increase)
3857 {
3858 gold_assert(this->type_ != elfcpp::PT_LOAD);
3859
3860 gold_assert(!this->are_addresses_set_);
3861
3862 if (this->output_data_.empty() && this->output_bss_.empty())
3863 {
3864 gold_assert(increase == 0);
3865 this->vaddr_ = 0;
3866 this->paddr_ = 0;
3867 this->are_addresses_set_ = true;
3868 this->memsz_ = 0;
3869 this->min_p_align_ = 0;
3870 this->offset_ = 0;
3871 this->filesz_ = 0;
3872 return;
3873 }
3874
3875 const Output_data* first;
3876 if (this->output_data_.empty())
3877 first = this->output_bss_.front();
3878 else
3879 first = this->output_data_.front();
3880 this->vaddr_ = first->address();
3881 this->paddr_ = (first->has_load_address()
3882 ? first->load_address()
3883 : this->vaddr_);
3884 this->are_addresses_set_ = true;
3885 this->offset_ = first->offset();
3886
3887 if (this->output_data_.empty())
3888 this->filesz_ = 0;
3889 else
3890 {
3891 const Output_data* last_data = this->output_data_.back();
3892 this->filesz_ = (last_data->address()
3893 + last_data->data_size()
3894 - this->vaddr_);
3895 }
3896
3897 const Output_data* last;
3898 if (this->output_bss_.empty())
3899 last = this->output_data_.back();
3900 else
3901 last = this->output_bss_.back();
3902 this->memsz_ = (last->address()
3903 + last->data_size()
3904 - this->vaddr_);
3905
3906 this->filesz_ += increase;
3907 this->memsz_ += increase;
3908
3909 // If this is a TLS segment, align the memory size. The code in
3910 // set_section_list ensures that the section after the TLS segment
3911 // is aligned to give us room.
3912 if (this->type_ == elfcpp::PT_TLS)
3913 {
3914 uint64_t segment_align = this->maximum_alignment();
3915 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3916 this->memsz_ = align_address(this->memsz_, segment_align);
3917 }
3918 }
3919
3920 // Set the TLS offsets of the sections in the PT_TLS segment.
3921
3922 void
3923 Output_segment::set_tls_offsets()
3924 {
3925 gold_assert(this->type_ == elfcpp::PT_TLS);
3926
3927 for (Output_data_list::iterator p = this->output_data_.begin();
3928 p != this->output_data_.end();
3929 ++p)
3930 (*p)->set_tls_offset(this->vaddr_);
3931
3932 for (Output_data_list::iterator p = this->output_bss_.begin();
3933 p != this->output_bss_.end();
3934 ++p)
3935 (*p)->set_tls_offset(this->vaddr_);
3936 }
3937
3938 // Return the address of the first section.
3939
3940 uint64_t
3941 Output_segment::first_section_load_address() const
3942 {
3943 for (Output_data_list::const_iterator p = this->output_data_.begin();
3944 p != this->output_data_.end();
3945 ++p)
3946 if ((*p)->is_section())
3947 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3948
3949 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3950 p != this->output_bss_.end();
3951 ++p)
3952 if ((*p)->is_section())
3953 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3954
3955 gold_unreachable();
3956 }
3957
3958 // Return the number of Output_sections in an Output_segment.
3959
3960 unsigned int
3961 Output_segment::output_section_count() const
3962 {
3963 return (this->output_section_count_list(&this->output_data_)
3964 + this->output_section_count_list(&this->output_bss_));
3965 }
3966
3967 // Return the number of Output_sections in an Output_data_list.
3968
3969 unsigned int
3970 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3971 {
3972 unsigned int count = 0;
3973 for (Output_data_list::const_iterator p = pdl->begin();
3974 p != pdl->end();
3975 ++p)
3976 {
3977 if ((*p)->is_section())
3978 ++count;
3979 }
3980 return count;
3981 }
3982
3983 // Return the section attached to the list segment with the lowest
3984 // load address. This is used when handling a PHDRS clause in a
3985 // linker script.
3986
3987 Output_section*
3988 Output_segment::section_with_lowest_load_address() const
3989 {
3990 Output_section* found = NULL;
3991 uint64_t found_lma = 0;
3992 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3993
3994 Output_section* found_data = found;
3995 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3996 if (found != found_data && found_data != NULL)
3997 {
3998 gold_error(_("nobits section %s may not precede progbits section %s "
3999 "in same segment"),
4000 found->name(), found_data->name());
4001 return NULL;
4002 }
4003
4004 return found;
4005 }
4006
4007 // Look through a list for a section with a lower load address.
4008
4009 void
4010 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4011 Output_section** found,
4012 uint64_t* found_lma) const
4013 {
4014 for (Output_data_list::const_iterator p = pdl->begin();
4015 p != pdl->end();
4016 ++p)
4017 {
4018 if (!(*p)->is_section())
4019 continue;
4020 Output_section* os = static_cast<Output_section*>(*p);
4021 uint64_t lma = (os->has_load_address()
4022 ? os->load_address()
4023 : os->address());
4024 if (*found == NULL || lma < *found_lma)
4025 {
4026 *found = os;
4027 *found_lma = lma;
4028 }
4029 }
4030 }
4031
4032 // Write the segment data into *OPHDR.
4033
4034 template<int size, bool big_endian>
4035 void
4036 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4037 {
4038 ophdr->put_p_type(this->type_);
4039 ophdr->put_p_offset(this->offset_);
4040 ophdr->put_p_vaddr(this->vaddr_);
4041 ophdr->put_p_paddr(this->paddr_);
4042 ophdr->put_p_filesz(this->filesz_);
4043 ophdr->put_p_memsz(this->memsz_);
4044 ophdr->put_p_flags(this->flags_);
4045 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4046 }
4047
4048 // Write the section headers into V.
4049
4050 template<int size, bool big_endian>
4051 unsigned char*
4052 Output_segment::write_section_headers(const Layout* layout,
4053 const Stringpool* secnamepool,
4054 unsigned char* v,
4055 unsigned int *pshndx) const
4056 {
4057 // Every section that is attached to a segment must be attached to a
4058 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4059 // segments.
4060 if (this->type_ != elfcpp::PT_LOAD)
4061 return v;
4062
4063 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4064 &this->output_data_,
4065 v, pshndx);
4066 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4067 &this->output_bss_,
4068 v, pshndx);
4069 return v;
4070 }
4071
4072 template<int size, bool big_endian>
4073 unsigned char*
4074 Output_segment::write_section_headers_list(const Layout* layout,
4075 const Stringpool* secnamepool,
4076 const Output_data_list* pdl,
4077 unsigned char* v,
4078 unsigned int* pshndx) const
4079 {
4080 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4081 for (Output_data_list::const_iterator p = pdl->begin();
4082 p != pdl->end();
4083 ++p)
4084 {
4085 if ((*p)->is_section())
4086 {
4087 const Output_section* ps = static_cast<const Output_section*>(*p);
4088 gold_assert(*pshndx == ps->out_shndx());
4089 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4090 ps->write_header(layout, secnamepool, &oshdr);
4091 v += shdr_size;
4092 ++*pshndx;
4093 }
4094 }
4095 return v;
4096 }
4097
4098 // Print the output sections to the map file.
4099
4100 void
4101 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4102 {
4103 if (this->type() != elfcpp::PT_LOAD)
4104 return;
4105 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4106 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4107 }
4108
4109 // Print an output section list to the map file.
4110
4111 void
4112 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4113 const Output_data_list* pdl) const
4114 {
4115 for (Output_data_list::const_iterator p = pdl->begin();
4116 p != pdl->end();
4117 ++p)
4118 (*p)->print_to_mapfile(mapfile);
4119 }
4120
4121 // Output_file methods.
4122
4123 Output_file::Output_file(const char* name)
4124 : name_(name),
4125 o_(-1),
4126 file_size_(0),
4127 base_(NULL),
4128 map_is_anonymous_(false),
4129 is_temporary_(false)
4130 {
4131 }
4132
4133 // Try to open an existing file. Returns false if the file doesn't
4134 // exist, has a size of 0 or can't be mmapped.
4135
4136 bool
4137 Output_file::open_for_modification()
4138 {
4139 // The name "-" means "stdout".
4140 if (strcmp(this->name_, "-") == 0)
4141 return false;
4142
4143 // Don't bother opening files with a size of zero.
4144 struct stat s;
4145 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4146 return false;
4147
4148 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4149 if (o < 0)
4150 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4151 this->o_ = o;
4152 this->file_size_ = s.st_size;
4153
4154 // If the file can't be mmapped, copying the content to an anonymous
4155 // map will probably negate the performance benefits of incremental
4156 // linking. This could be helped by using views and loading only
4157 // the necessary parts, but this is not supported as of now.
4158 if (!this->map_no_anonymous())
4159 {
4160 release_descriptor(o, true);
4161 this->o_ = -1;
4162 this->file_size_ = 0;
4163 return false;
4164 }
4165
4166 return true;
4167 }
4168
4169 // Open the output file.
4170
4171 void
4172 Output_file::open(off_t file_size)
4173 {
4174 this->file_size_ = file_size;
4175
4176 // Unlink the file first; otherwise the open() may fail if the file
4177 // is busy (e.g. it's an executable that's currently being executed).
4178 //
4179 // However, the linker may be part of a system where a zero-length
4180 // file is created for it to write to, with tight permissions (gcc
4181 // 2.95 did something like this). Unlinking the file would work
4182 // around those permission controls, so we only unlink if the file
4183 // has a non-zero size. We also unlink only regular files to avoid
4184 // trouble with directories/etc.
4185 //
4186 // If we fail, continue; this command is merely a best-effort attempt
4187 // to improve the odds for open().
4188
4189 // We let the name "-" mean "stdout"
4190 if (!this->is_temporary_)
4191 {
4192 if (strcmp(this->name_, "-") == 0)
4193 this->o_ = STDOUT_FILENO;
4194 else
4195 {
4196 struct stat s;
4197 if (::stat(this->name_, &s) == 0
4198 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4199 {
4200 if (s.st_size != 0)
4201 ::unlink(this->name_);
4202 else if (!parameters->options().relocatable())
4203 {
4204 // If we don't unlink the existing file, add execute
4205 // permission where read permissions already exist
4206 // and where the umask permits.
4207 int mask = ::umask(0);
4208 ::umask(mask);
4209 s.st_mode |= (s.st_mode & 0444) >> 2;
4210 ::chmod(this->name_, s.st_mode & ~mask);
4211 }
4212 }
4213
4214 int mode = parameters->options().relocatable() ? 0666 : 0777;
4215 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4216 mode);
4217 if (o < 0)
4218 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4219 this->o_ = o;
4220 }
4221 }
4222
4223 this->map();
4224 }
4225
4226 // Resize the output file.
4227
4228 void
4229 Output_file::resize(off_t file_size)
4230 {
4231 // If the mmap is mapping an anonymous memory buffer, this is easy:
4232 // just mremap to the new size. If it's mapping to a file, we want
4233 // to unmap to flush to the file, then remap after growing the file.
4234 if (this->map_is_anonymous_)
4235 {
4236 void* base = ::mremap(this->base_, this->file_size_, file_size,
4237 MREMAP_MAYMOVE);
4238 if (base == MAP_FAILED)
4239 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4240 this->base_ = static_cast<unsigned char*>(base);
4241 this->file_size_ = file_size;
4242 }
4243 else
4244 {
4245 this->unmap();
4246 this->file_size_ = file_size;
4247 if (!this->map_no_anonymous())
4248 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4249 }
4250 }
4251
4252 // Map an anonymous block of memory which will later be written to the
4253 // file. Return whether the map succeeded.
4254
4255 bool
4256 Output_file::map_anonymous()
4257 {
4258 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4259 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4260 if (base != MAP_FAILED)
4261 {
4262 this->map_is_anonymous_ = true;
4263 this->base_ = static_cast<unsigned char*>(base);
4264 return true;
4265 }
4266 return false;
4267 }
4268
4269 // Map the file into memory. Return whether the mapping succeeded.
4270
4271 bool
4272 Output_file::map_no_anonymous()
4273 {
4274 const int o = this->o_;
4275
4276 // If the output file is not a regular file, don't try to mmap it;
4277 // instead, we'll mmap a block of memory (an anonymous buffer), and
4278 // then later write the buffer to the file.
4279 void* base;
4280 struct stat statbuf;
4281 if (o == STDOUT_FILENO || o == STDERR_FILENO
4282 || ::fstat(o, &statbuf) != 0
4283 || !S_ISREG(statbuf.st_mode)
4284 || this->is_temporary_)
4285 return false;
4286
4287 // Ensure that we have disk space available for the file. If we
4288 // don't do this, it is possible that we will call munmap, close,
4289 // and exit with dirty buffers still in the cache with no assigned
4290 // disk blocks. If the disk is out of space at that point, the
4291 // output file will wind up incomplete, but we will have already
4292 // exited. The alternative to fallocate would be to use fdatasync,
4293 // but that would be a more significant performance hit.
4294 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4295 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4296
4297 // Map the file into memory.
4298 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4299 MAP_SHARED, o, 0);
4300
4301 // The mmap call might fail because of file system issues: the file
4302 // system might not support mmap at all, or it might not support
4303 // mmap with PROT_WRITE.
4304 if (base == MAP_FAILED)
4305 return false;
4306
4307 this->map_is_anonymous_ = false;
4308 this->base_ = static_cast<unsigned char*>(base);
4309 return true;
4310 }
4311
4312 // Map the file into memory.
4313
4314 void
4315 Output_file::map()
4316 {
4317 if (this->map_no_anonymous())
4318 return;
4319
4320 // The mmap call might fail because of file system issues: the file
4321 // system might not support mmap at all, or it might not support
4322 // mmap with PROT_WRITE. I'm not sure which errno values we will
4323 // see in all cases, so if the mmap fails for any reason and we
4324 // don't care about file contents, try for an anonymous map.
4325 if (this->map_anonymous())
4326 return;
4327
4328 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4329 this->name_, static_cast<unsigned long>(this->file_size_),
4330 strerror(errno));
4331 }
4332
4333 // Unmap the file from memory.
4334
4335 void
4336 Output_file::unmap()
4337 {
4338 if (::munmap(this->base_, this->file_size_) < 0)
4339 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4340 this->base_ = NULL;
4341 }
4342
4343 // Close the output file.
4344
4345 void
4346 Output_file::close()
4347 {
4348 // If the map isn't file-backed, we need to write it now.
4349 if (this->map_is_anonymous_ && !this->is_temporary_)
4350 {
4351 size_t bytes_to_write = this->file_size_;
4352 size_t offset = 0;
4353 while (bytes_to_write > 0)
4354 {
4355 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4356 bytes_to_write);
4357 if (bytes_written == 0)
4358 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4359 else if (bytes_written < 0)
4360 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4361 else
4362 {
4363 bytes_to_write -= bytes_written;
4364 offset += bytes_written;
4365 }
4366 }
4367 }
4368 this->unmap();
4369
4370 // We don't close stdout or stderr
4371 if (this->o_ != STDOUT_FILENO
4372 && this->o_ != STDERR_FILENO
4373 && !this->is_temporary_)
4374 if (::close(this->o_) < 0)
4375 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4376 this->o_ = -1;
4377 }
4378
4379 // Instantiate the templates we need. We could use the configure
4380 // script to restrict this to only the ones for implemented targets.
4381
4382 #ifdef HAVE_TARGET_32_LITTLE
4383 template
4384 off_t
4385 Output_section::add_input_section<32, false>(
4386 Sized_relobj<32, false>* object,
4387 unsigned int shndx,
4388 const char* secname,
4389 const elfcpp::Shdr<32, false>& shdr,
4390 unsigned int reloc_shndx,
4391 bool have_sections_script);
4392 #endif
4393
4394 #ifdef HAVE_TARGET_32_BIG
4395 template
4396 off_t
4397 Output_section::add_input_section<32, true>(
4398 Sized_relobj<32, true>* object,
4399 unsigned int shndx,
4400 const char* secname,
4401 const elfcpp::Shdr<32, true>& shdr,
4402 unsigned int reloc_shndx,
4403 bool have_sections_script);
4404 #endif
4405
4406 #ifdef HAVE_TARGET_64_LITTLE
4407 template
4408 off_t
4409 Output_section::add_input_section<64, false>(
4410 Sized_relobj<64, false>* object,
4411 unsigned int shndx,
4412 const char* secname,
4413 const elfcpp::Shdr<64, false>& shdr,
4414 unsigned int reloc_shndx,
4415 bool have_sections_script);
4416 #endif
4417
4418 #ifdef HAVE_TARGET_64_BIG
4419 template
4420 off_t
4421 Output_section::add_input_section<64, true>(
4422 Sized_relobj<64, true>* object,
4423 unsigned int shndx,
4424 const char* secname,
4425 const elfcpp::Shdr<64, true>& shdr,
4426 unsigned int reloc_shndx,
4427 bool have_sections_script);
4428 #endif
4429
4430 #ifdef HAVE_TARGET_32_LITTLE
4431 template
4432 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4433 #endif
4434
4435 #ifdef HAVE_TARGET_32_BIG
4436 template
4437 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4438 #endif
4439
4440 #ifdef HAVE_TARGET_64_LITTLE
4441 template
4442 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4443 #endif
4444
4445 #ifdef HAVE_TARGET_64_BIG
4446 template
4447 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4448 #endif
4449
4450 #ifdef HAVE_TARGET_32_LITTLE
4451 template
4452 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4453 #endif
4454
4455 #ifdef HAVE_TARGET_32_BIG
4456 template
4457 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4458 #endif
4459
4460 #ifdef HAVE_TARGET_64_LITTLE
4461 template
4462 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4463 #endif
4464
4465 #ifdef HAVE_TARGET_64_BIG
4466 template
4467 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4468 #endif
4469
4470 #ifdef HAVE_TARGET_32_LITTLE
4471 template
4472 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4473 #endif
4474
4475 #ifdef HAVE_TARGET_32_BIG
4476 template
4477 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4478 #endif
4479
4480 #ifdef HAVE_TARGET_64_LITTLE
4481 template
4482 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4483 #endif
4484
4485 #ifdef HAVE_TARGET_64_BIG
4486 template
4487 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4488 #endif
4489
4490 #ifdef HAVE_TARGET_32_LITTLE
4491 template
4492 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4493 #endif
4494
4495 #ifdef HAVE_TARGET_32_BIG
4496 template
4497 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4498 #endif
4499
4500 #ifdef HAVE_TARGET_64_LITTLE
4501 template
4502 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4503 #endif
4504
4505 #ifdef HAVE_TARGET_64_BIG
4506 template
4507 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4508 #endif
4509
4510 #ifdef HAVE_TARGET_32_LITTLE
4511 template
4512 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4513 #endif
4514
4515 #ifdef HAVE_TARGET_32_BIG
4516 template
4517 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4518 #endif
4519
4520 #ifdef HAVE_TARGET_64_LITTLE
4521 template
4522 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4523 #endif
4524
4525 #ifdef HAVE_TARGET_64_BIG
4526 template
4527 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4528 #endif
4529
4530 #ifdef HAVE_TARGET_32_LITTLE
4531 template
4532 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4533 #endif
4534
4535 #ifdef HAVE_TARGET_32_BIG
4536 template
4537 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4538 #endif
4539
4540 #ifdef HAVE_TARGET_64_LITTLE
4541 template
4542 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4543 #endif
4544
4545 #ifdef HAVE_TARGET_64_BIG
4546 template
4547 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4548 #endif
4549
4550 #ifdef HAVE_TARGET_32_LITTLE
4551 template
4552 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4553 #endif
4554
4555 #ifdef HAVE_TARGET_32_BIG
4556 template
4557 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4558 #endif
4559
4560 #ifdef HAVE_TARGET_64_LITTLE
4561 template
4562 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4563 #endif
4564
4565 #ifdef HAVE_TARGET_64_BIG
4566 template
4567 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4568 #endif
4569
4570 #ifdef HAVE_TARGET_32_LITTLE
4571 template
4572 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4573 #endif
4574
4575 #ifdef HAVE_TARGET_32_BIG
4576 template
4577 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4578 #endif
4579
4580 #ifdef HAVE_TARGET_64_LITTLE
4581 template
4582 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4583 #endif
4584
4585 #ifdef HAVE_TARGET_64_BIG
4586 template
4587 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4588 #endif
4589
4590 #ifdef HAVE_TARGET_32_LITTLE
4591 template
4592 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4593 #endif
4594
4595 #ifdef HAVE_TARGET_32_BIG
4596 template
4597 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4598 #endif
4599
4600 #ifdef HAVE_TARGET_64_LITTLE
4601 template
4602 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4603 #endif
4604
4605 #ifdef HAVE_TARGET_64_BIG
4606 template
4607 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4608 #endif
4609
4610 #ifdef HAVE_TARGET_32_LITTLE
4611 template
4612 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4613 #endif
4614
4615 #ifdef HAVE_TARGET_32_BIG
4616 template
4617 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4618 #endif
4619
4620 #ifdef HAVE_TARGET_64_LITTLE
4621 template
4622 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4623 #endif
4624
4625 #ifdef HAVE_TARGET_64_BIG
4626 template
4627 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4628 #endif
4629
4630 #ifdef HAVE_TARGET_32_LITTLE
4631 template
4632 class Output_data_group<32, false>;
4633 #endif
4634
4635 #ifdef HAVE_TARGET_32_BIG
4636 template
4637 class Output_data_group<32, true>;
4638 #endif
4639
4640 #ifdef HAVE_TARGET_64_LITTLE
4641 template
4642 class Output_data_group<64, false>;
4643 #endif
4644
4645 #ifdef HAVE_TARGET_64_BIG
4646 template
4647 class Output_data_group<64, true>;
4648 #endif
4649
4650 #ifdef HAVE_TARGET_32_LITTLE
4651 template
4652 class Output_data_got<32, false>;
4653 #endif
4654
4655 #ifdef HAVE_TARGET_32_BIG
4656 template
4657 class Output_data_got<32, true>;
4658 #endif
4659
4660 #ifdef HAVE_TARGET_64_LITTLE
4661 template
4662 class Output_data_got<64, false>;
4663 #endif
4664
4665 #ifdef HAVE_TARGET_64_BIG
4666 template
4667 class Output_data_got<64, true>;
4668 #endif
4669
4670 } // End namespace gold.
This page took 0.123035 seconds and 5 git commands to generate.