* gold.h (is_wildcard_string): New function.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Return the object for an input section.
1753
1754 Relobj*
1755 Output_section::Input_section::relobj() const
1756 {
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768 }
1769
1770 // Return the input section index for an input section.
1771
1772 unsigned int
1773 Output_section::Input_section::shndx() const
1774 {
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786 }
1787
1788 // Set the address and file offset.
1789
1790 void
1791 Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
1795 {
1796 if (this->is_input_section())
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
1799 else
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801 }
1802
1803 // Reset the address and file offset.
1804
1805 void
1806 Output_section::Input_section::reset_address_and_file_offset()
1807 {
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810 }
1811
1812 // Finalize the data size.
1813
1814 void
1815 Output_section::Input_section::finalize_data_size()
1816 {
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
1819 }
1820
1821 // Try to turn an input offset into an output offset. We want to
1822 // return the output offset relative to the start of this
1823 // Input_section in the output section.
1824
1825 inline bool
1826 Output_section::Input_section::output_offset(
1827 const Relobj* object,
1828 unsigned int shndx,
1829 section_offset_type offset,
1830 section_offset_type *poutput) const
1831 {
1832 if (!this->is_input_section())
1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1834 else
1835 {
1836 if (this->shndx_ != shndx || this->u2_.object != object)
1837 return false;
1838 *poutput = offset;
1839 return true;
1840 }
1841 }
1842
1843 // Return whether this is the merge section for the input section
1844 // SHNDX in OBJECT.
1845
1846 inline bool
1847 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1848 unsigned int shndx) const
1849 {
1850 if (this->is_input_section())
1851 return false;
1852 return this->u2_.posd->is_merge_section_for(object, shndx);
1853 }
1854
1855 // Write out the data. We don't have to do anything for an input
1856 // section--they are handled via Object::relocate--but this is where
1857 // we write out the data for an Output_section_data.
1858
1859 void
1860 Output_section::Input_section::write(Output_file* of)
1861 {
1862 if (!this->is_input_section())
1863 this->u2_.posd->write(of);
1864 }
1865
1866 // Write the data to a buffer. As for write(), we don't have to do
1867 // anything for an input section.
1868
1869 void
1870 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871 {
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874 }
1875
1876 // Print to a map file.
1877
1878 void
1879 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880 {
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901 }
1902
1903 // Output_section methods.
1904
1905 // Construct an Output_section. NAME will point into a Stringpool.
1906
1907 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
1910 addralign_(0),
1911 entsize_(0),
1912 load_address_(0),
1913 link_section_(NULL),
1914 link_(0),
1915 info_section_(NULL),
1916 info_symndx_(NULL),
1917 info_(0),
1918 type_(type),
1919 flags_(flags),
1920 out_shndx_(-1U),
1921 symtab_index_(0),
1922 dynsym_index_(0),
1923 input_sections_(),
1924 first_input_offset_(0),
1925 fills_(),
1926 postprocessing_buffer_(NULL),
1927 needs_symtab_index_(false),
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
1930 should_link_to_dynsym_(false),
1931 after_input_sections_(false),
1932 requires_postprocessing_(false),
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
1935 info_uses_section_index_(false),
1936 input_section_order_specified_(false),
1937 may_sort_attached_input_sections_(false),
1938 must_sort_attached_input_sections_(false),
1939 attached_input_sections_are_sorted_(false),
1940 is_relro_(false),
1941 is_relro_local_(false),
1942 is_last_relro_(false),
1943 is_first_non_relro_(false),
1944 is_small_section_(false),
1945 is_large_section_(false),
1946 is_interp_(false),
1947 is_dynamic_linker_section_(false),
1948 generate_code_fills_at_write_(false),
1949 is_entsize_zero_(false),
1950 section_offsets_need_adjustment_(false),
1951 is_noload_(false),
1952 tls_offset_(0),
1953 checkpoint_(NULL),
1954 lookup_maps_(new Output_section_lookup_maps)
1955 {
1956 // An unallocated section has no address. Forcing this means that
1957 // we don't need special treatment for symbols defined in debug
1958 // sections.
1959 if ((flags & elfcpp::SHF_ALLOC) == 0)
1960 this->set_address(0);
1961 }
1962
1963 Output_section::~Output_section()
1964 {
1965 delete this->checkpoint_;
1966 }
1967
1968 // Set the entry size.
1969
1970 void
1971 Output_section::set_entsize(uint64_t v)
1972 {
1973 if (this->is_entsize_zero_)
1974 ;
1975 else if (this->entsize_ == 0)
1976 this->entsize_ = v;
1977 else if (this->entsize_ != v)
1978 {
1979 this->entsize_ = 0;
1980 this->is_entsize_zero_ = 1;
1981 }
1982 }
1983
1984 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1985 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1986 // relocation section which applies to this section, or 0 if none, or
1987 // -1U if more than one. Return the offset of the input section
1988 // within the output section. Return -1 if the input section will
1989 // receive special handling. In the normal case we don't always keep
1990 // track of input sections for an Output_section. Instead, each
1991 // Object keeps track of the Output_section for each of its input
1992 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1993 // track of input sections here; this is used when SECTIONS appears in
1994 // a linker script.
1995
1996 template<int size, bool big_endian>
1997 off_t
1998 Output_section::add_input_section(Layout* layout,
1999 Sized_relobj<size, big_endian>* object,
2000 unsigned int shndx,
2001 const char* secname,
2002 const elfcpp::Shdr<size, big_endian>& shdr,
2003 unsigned int reloc_shndx,
2004 bool have_sections_script)
2005 {
2006 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2007 if ((addralign & (addralign - 1)) != 0)
2008 {
2009 object->error(_("invalid alignment %lu for section \"%s\""),
2010 static_cast<unsigned long>(addralign), secname);
2011 addralign = 1;
2012 }
2013
2014 if (addralign > this->addralign_)
2015 this->addralign_ = addralign;
2016
2017 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2018 uint64_t entsize = shdr.get_sh_entsize();
2019
2020 // .debug_str is a mergeable string section, but is not always so
2021 // marked by compilers. Mark manually here so we can optimize.
2022 if (strcmp(secname, ".debug_str") == 0)
2023 {
2024 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2025 entsize = 1;
2026 }
2027
2028 this->update_flags_for_input_section(sh_flags);
2029 this->set_entsize(entsize);
2030
2031 // If this is a SHF_MERGE section, we pass all the input sections to
2032 // a Output_data_merge. We don't try to handle relocations for such
2033 // a section. We don't try to handle empty merge sections--they
2034 // mess up the mappings, and are useless anyhow.
2035 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2036 && reloc_shndx == 0
2037 && shdr.get_sh_size() > 0)
2038 {
2039 // Keep information about merged input sections for rebuilding fast
2040 // lookup maps if we have sections-script or we do relaxation.
2041 bool keeps_input_sections =
2042 have_sections_script || parameters->target().may_relax();
2043 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2044 addralign, keeps_input_sections))
2045 {
2046 // Tell the relocation routines that they need to call the
2047 // output_offset method to determine the final address.
2048 return -1;
2049 }
2050 }
2051
2052 off_t offset_in_section = this->current_data_size_for_child();
2053 off_t aligned_offset_in_section = align_address(offset_in_section,
2054 addralign);
2055
2056 // Determine if we want to delay code-fill generation until the output
2057 // section is written. When the target is relaxing, we want to delay fill
2058 // generating to avoid adjusting them during relaxation.
2059 if (!this->generate_code_fills_at_write_
2060 && !have_sections_script
2061 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2062 && parameters->target().has_code_fill()
2063 && parameters->target().may_relax())
2064 {
2065 gold_assert(this->fills_.empty());
2066 this->generate_code_fills_at_write_ = true;
2067 }
2068
2069 if (aligned_offset_in_section > offset_in_section
2070 && !this->generate_code_fills_at_write_
2071 && !have_sections_script
2072 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2073 && parameters->target().has_code_fill())
2074 {
2075 // We need to add some fill data. Using fill_list_ when
2076 // possible is an optimization, since we will often have fill
2077 // sections without input sections.
2078 off_t fill_len = aligned_offset_in_section - offset_in_section;
2079 if (this->input_sections_.empty())
2080 this->fills_.push_back(Fill(offset_in_section, fill_len));
2081 else
2082 {
2083 std::string fill_data(parameters->target().code_fill(fill_len));
2084 Output_data_const* odc = new Output_data_const(fill_data, 1);
2085 this->input_sections_.push_back(Input_section(odc));
2086 }
2087 }
2088
2089 this->set_current_data_size_for_child(aligned_offset_in_section
2090 + shdr.get_sh_size());
2091
2092 // We need to keep track of this section if we are already keeping
2093 // track of sections, or if we are relaxing. Also, if this is a
2094 // section which requires sorting, or which may require sorting in
2095 // the future, we keep track of the sections. If the
2096 // --section-ordering-file option is used to specify the order of
2097 // sections, we need to keep track of sections.
2098 if (have_sections_script
2099 || !this->input_sections_.empty()
2100 || this->may_sort_attached_input_sections()
2101 || this->must_sort_attached_input_sections()
2102 || parameters->options().user_set_Map()
2103 || parameters->target().may_relax()
2104 || parameters->options().section_ordering_file())
2105 {
2106 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2107 if (parameters->options().section_ordering_file())
2108 {
2109 unsigned int section_order_index =
2110 layout->find_section_order_index(std::string(secname));
2111 if (section_order_index != 0)
2112 {
2113 isecn.set_section_order_index(section_order_index);
2114 this->set_input_section_order_specified();
2115 }
2116 }
2117 this->input_sections_.push_back(isecn);
2118 }
2119
2120 return aligned_offset_in_section;
2121 }
2122
2123 // Add arbitrary data to an output section.
2124
2125 void
2126 Output_section::add_output_section_data(Output_section_data* posd)
2127 {
2128 Input_section inp(posd);
2129 this->add_output_section_data(&inp);
2130
2131 if (posd->is_data_size_valid())
2132 {
2133 off_t offset_in_section = this->current_data_size_for_child();
2134 off_t aligned_offset_in_section = align_address(offset_in_section,
2135 posd->addralign());
2136 this->set_current_data_size_for_child(aligned_offset_in_section
2137 + posd->data_size());
2138 }
2139 }
2140
2141 // Add a relaxed input section.
2142
2143 void
2144 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2145 {
2146 Input_section inp(poris);
2147 this->add_output_section_data(&inp);
2148 if (this->lookup_maps_->is_valid())
2149 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2150 poris->shndx(), poris);
2151
2152 // For a relaxed section, we use the current data size. Linker scripts
2153 // get all the input sections, including relaxed one from an output
2154 // section and add them back to them same output section to compute the
2155 // output section size. If we do not account for sizes of relaxed input
2156 // sections, an output section would be incorrectly sized.
2157 off_t offset_in_section = this->current_data_size_for_child();
2158 off_t aligned_offset_in_section = align_address(offset_in_section,
2159 poris->addralign());
2160 this->set_current_data_size_for_child(aligned_offset_in_section
2161 + poris->current_data_size());
2162 }
2163
2164 // Add arbitrary data to an output section by Input_section.
2165
2166 void
2167 Output_section::add_output_section_data(Input_section* inp)
2168 {
2169 if (this->input_sections_.empty())
2170 this->first_input_offset_ = this->current_data_size_for_child();
2171
2172 this->input_sections_.push_back(*inp);
2173
2174 uint64_t addralign = inp->addralign();
2175 if (addralign > this->addralign_)
2176 this->addralign_ = addralign;
2177
2178 inp->set_output_section(this);
2179 }
2180
2181 // Add a merge section to an output section.
2182
2183 void
2184 Output_section::add_output_merge_section(Output_section_data* posd,
2185 bool is_string, uint64_t entsize)
2186 {
2187 Input_section inp(posd, is_string, entsize);
2188 this->add_output_section_data(&inp);
2189 }
2190
2191 // Add an input section to a SHF_MERGE section.
2192
2193 bool
2194 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2195 uint64_t flags, uint64_t entsize,
2196 uint64_t addralign,
2197 bool keeps_input_sections)
2198 {
2199 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2200
2201 // We only merge strings if the alignment is not more than the
2202 // character size. This could be handled, but it's unusual.
2203 if (is_string && addralign > entsize)
2204 return false;
2205
2206 // We cannot restore merged input section states.
2207 gold_assert(this->checkpoint_ == NULL);
2208
2209 // Look up merge sections by required properties.
2210 // Currently, we only invalidate the lookup maps in script processing
2211 // and relaxation. We should not have done either when we reach here.
2212 // So we assume that the lookup maps are valid to simply code.
2213 gold_assert(this->lookup_maps_->is_valid());
2214 Merge_section_properties msp(is_string, entsize, addralign);
2215 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2216 bool is_new = false;
2217 if (pomb != NULL)
2218 {
2219 gold_assert(pomb->is_string() == is_string
2220 && pomb->entsize() == entsize
2221 && pomb->addralign() == addralign);
2222 }
2223 else
2224 {
2225 // Create a new Output_merge_data or Output_merge_string_data.
2226 if (!is_string)
2227 pomb = new Output_merge_data(entsize, addralign);
2228 else
2229 {
2230 switch (entsize)
2231 {
2232 case 1:
2233 pomb = new Output_merge_string<char>(addralign);
2234 break;
2235 case 2:
2236 pomb = new Output_merge_string<uint16_t>(addralign);
2237 break;
2238 case 4:
2239 pomb = new Output_merge_string<uint32_t>(addralign);
2240 break;
2241 default:
2242 return false;
2243 }
2244 }
2245 // If we need to do script processing or relaxation, we need to keep
2246 // the original input sections to rebuild the fast lookup maps.
2247 if (keeps_input_sections)
2248 pomb->set_keeps_input_sections();
2249 is_new = true;
2250 }
2251
2252 if (pomb->add_input_section(object, shndx))
2253 {
2254 // Add new merge section to this output section and link merge
2255 // section properties to new merge section in map.
2256 if (is_new)
2257 {
2258 this->add_output_merge_section(pomb, is_string, entsize);
2259 this->lookup_maps_->add_merge_section(msp, pomb);
2260 }
2261
2262 // Add input section to new merge section and link input section to new
2263 // merge section in map.
2264 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2265 return true;
2266 }
2267 else
2268 {
2269 // If add_input_section failed, delete new merge section to avoid
2270 // exporting empty merge sections in Output_section::get_input_section.
2271 if (is_new)
2272 delete pomb;
2273 return false;
2274 }
2275 }
2276
2277 // Build a relaxation map to speed up relaxation of existing input sections.
2278 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2279
2280 void
2281 Output_section::build_relaxation_map(
2282 const Input_section_list& input_sections,
2283 size_t limit,
2284 Relaxation_map* relaxation_map) const
2285 {
2286 for (size_t i = 0; i < limit; ++i)
2287 {
2288 const Input_section& is(input_sections[i]);
2289 if (is.is_input_section() || is.is_relaxed_input_section())
2290 {
2291 Section_id sid(is.relobj(), is.shndx());
2292 (*relaxation_map)[sid] = i;
2293 }
2294 }
2295 }
2296
2297 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2298 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2299 // indices of INPUT_SECTIONS.
2300
2301 void
2302 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2303 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2304 const Relaxation_map& map,
2305 Input_section_list* input_sections)
2306 {
2307 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2308 {
2309 Output_relaxed_input_section* poris = relaxed_sections[i];
2310 Section_id sid(poris->relobj(), poris->shndx());
2311 Relaxation_map::const_iterator p = map.find(sid);
2312 gold_assert(p != map.end());
2313 gold_assert((*input_sections)[p->second].is_input_section());
2314 (*input_sections)[p->second] = Input_section(poris);
2315 }
2316 }
2317
2318 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2319 // is a vector of pointers to Output_relaxed_input_section or its derived
2320 // classes. The relaxed sections must correspond to existing input sections.
2321
2322 void
2323 Output_section::convert_input_sections_to_relaxed_sections(
2324 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2325 {
2326 gold_assert(parameters->target().may_relax());
2327
2328 // We want to make sure that restore_states does not undo the effect of
2329 // this. If there is no checkpoint active, just search the current
2330 // input section list and replace the sections there. If there is
2331 // a checkpoint, also replace the sections there.
2332
2333 // By default, we look at the whole list.
2334 size_t limit = this->input_sections_.size();
2335
2336 if (this->checkpoint_ != NULL)
2337 {
2338 // Replace input sections with relaxed input section in the saved
2339 // copy of the input section list.
2340 if (this->checkpoint_->input_sections_saved())
2341 {
2342 Relaxation_map map;
2343 this->build_relaxation_map(
2344 *(this->checkpoint_->input_sections()),
2345 this->checkpoint_->input_sections()->size(),
2346 &map);
2347 this->convert_input_sections_in_list_to_relaxed_sections(
2348 relaxed_sections,
2349 map,
2350 this->checkpoint_->input_sections());
2351 }
2352 else
2353 {
2354 // We have not copied the input section list yet. Instead, just
2355 // look at the portion that would be saved.
2356 limit = this->checkpoint_->input_sections_size();
2357 }
2358 }
2359
2360 // Convert input sections in input_section_list.
2361 Relaxation_map map;
2362 this->build_relaxation_map(this->input_sections_, limit, &map);
2363 this->convert_input_sections_in_list_to_relaxed_sections(
2364 relaxed_sections,
2365 map,
2366 &this->input_sections_);
2367
2368 // Update fast look-up map.
2369 if (this->lookup_maps_->is_valid())
2370 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2371 {
2372 Output_relaxed_input_section* poris = relaxed_sections[i];
2373 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2374 poris->shndx(), poris);
2375 }
2376 }
2377
2378 // Update the output section flags based on input section flags.
2379
2380 void
2381 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2382 {
2383 // If we created the section with SHF_ALLOC clear, we set the
2384 // address. If we are now setting the SHF_ALLOC flag, we need to
2385 // undo that.
2386 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2387 && (flags & elfcpp::SHF_ALLOC) != 0)
2388 this->mark_address_invalid();
2389
2390 this->flags_ |= (flags
2391 & (elfcpp::SHF_WRITE
2392 | elfcpp::SHF_ALLOC
2393 | elfcpp::SHF_EXECINSTR));
2394
2395 if ((flags & elfcpp::SHF_MERGE) == 0)
2396 this->flags_ &=~ elfcpp::SHF_MERGE;
2397 else
2398 {
2399 if (this->current_data_size_for_child() == 0)
2400 this->flags_ |= elfcpp::SHF_MERGE;
2401 }
2402
2403 if ((flags & elfcpp::SHF_STRINGS) == 0)
2404 this->flags_ &=~ elfcpp::SHF_STRINGS;
2405 else
2406 {
2407 if (this->current_data_size_for_child() == 0)
2408 this->flags_ |= elfcpp::SHF_STRINGS;
2409 }
2410 }
2411
2412 // Find the merge section into which an input section with index SHNDX in
2413 // OBJECT has been added. Return NULL if none found.
2414
2415 Output_section_data*
2416 Output_section::find_merge_section(const Relobj* object,
2417 unsigned int shndx) const
2418 {
2419 if (!this->lookup_maps_->is_valid())
2420 this->build_lookup_maps();
2421 return this->lookup_maps_->find_merge_section(object, shndx);
2422 }
2423
2424 // Build the lookup maps for merge and relaxed sections. This is needs
2425 // to be declared as a const methods so that it is callable with a const
2426 // Output_section pointer. The method only updates states of the maps.
2427
2428 void
2429 Output_section::build_lookup_maps() const
2430 {
2431 this->lookup_maps_->clear();
2432 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2433 p != this->input_sections_.end();
2434 ++p)
2435 {
2436 if (p->is_merge_section())
2437 {
2438 Output_merge_base* pomb = p->output_merge_base();
2439 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2440 pomb->addralign());
2441 this->lookup_maps_->add_merge_section(msp, pomb);
2442 for (Output_merge_base::Input_sections::const_iterator is =
2443 pomb->input_sections_begin();
2444 is != pomb->input_sections_end();
2445 ++is)
2446 {
2447 const Const_section_id& csid = *is;
2448 this->lookup_maps_->add_merge_input_section(csid.first,
2449 csid.second, pomb);
2450 }
2451
2452 }
2453 else if (p->is_relaxed_input_section())
2454 {
2455 Output_relaxed_input_section* poris = p->relaxed_input_section();
2456 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2457 poris->shndx(), poris);
2458 }
2459 }
2460 }
2461
2462 // Find an relaxed input section corresponding to an input section
2463 // in OBJECT with index SHNDX.
2464
2465 const Output_relaxed_input_section*
2466 Output_section::find_relaxed_input_section(const Relobj* object,
2467 unsigned int shndx) const
2468 {
2469 if (!this->lookup_maps_->is_valid())
2470 this->build_lookup_maps();
2471 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2472 }
2473
2474 // Given an address OFFSET relative to the start of input section
2475 // SHNDX in OBJECT, return whether this address is being included in
2476 // the final link. This should only be called if SHNDX in OBJECT has
2477 // a special mapping.
2478
2479 bool
2480 Output_section::is_input_address_mapped(const Relobj* object,
2481 unsigned int shndx,
2482 off_t offset) const
2483 {
2484 // Look at the Output_section_data_maps first.
2485 const Output_section_data* posd = this->find_merge_section(object, shndx);
2486 if (posd == NULL)
2487 posd = this->find_relaxed_input_section(object, shndx);
2488
2489 if (posd != NULL)
2490 {
2491 section_offset_type output_offset;
2492 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2493 gold_assert(found);
2494 return output_offset != -1;
2495 }
2496
2497 // Fall back to the slow look-up.
2498 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2499 p != this->input_sections_.end();
2500 ++p)
2501 {
2502 section_offset_type output_offset;
2503 if (p->output_offset(object, shndx, offset, &output_offset))
2504 return output_offset != -1;
2505 }
2506
2507 // By default we assume that the address is mapped. This should
2508 // only be called after we have passed all sections to Layout. At
2509 // that point we should know what we are discarding.
2510 return true;
2511 }
2512
2513 // Given an address OFFSET relative to the start of input section
2514 // SHNDX in object OBJECT, return the output offset relative to the
2515 // start of the input section in the output section. This should only
2516 // be called if SHNDX in OBJECT has a special mapping.
2517
2518 section_offset_type
2519 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2520 section_offset_type offset) const
2521 {
2522 // This can only be called meaningfully when we know the data size
2523 // of this.
2524 gold_assert(this->is_data_size_valid());
2525
2526 // Look at the Output_section_data_maps first.
2527 const Output_section_data* posd = this->find_merge_section(object, shndx);
2528 if (posd == NULL)
2529 posd = this->find_relaxed_input_section(object, shndx);
2530 if (posd != NULL)
2531 {
2532 section_offset_type output_offset;
2533 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2534 gold_assert(found);
2535 return output_offset;
2536 }
2537
2538 // Fall back to the slow look-up.
2539 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2540 p != this->input_sections_.end();
2541 ++p)
2542 {
2543 section_offset_type output_offset;
2544 if (p->output_offset(object, shndx, offset, &output_offset))
2545 return output_offset;
2546 }
2547 gold_unreachable();
2548 }
2549
2550 // Return the output virtual address of OFFSET relative to the start
2551 // of input section SHNDX in object OBJECT.
2552
2553 uint64_t
2554 Output_section::output_address(const Relobj* object, unsigned int shndx,
2555 off_t offset) const
2556 {
2557 uint64_t addr = this->address() + this->first_input_offset_;
2558
2559 // Look at the Output_section_data_maps first.
2560 const Output_section_data* posd = this->find_merge_section(object, shndx);
2561 if (posd == NULL)
2562 posd = this->find_relaxed_input_section(object, shndx);
2563 if (posd != NULL && posd->is_address_valid())
2564 {
2565 section_offset_type output_offset;
2566 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2567 gold_assert(found);
2568 return posd->address() + output_offset;
2569 }
2570
2571 // Fall back to the slow look-up.
2572 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2573 p != this->input_sections_.end();
2574 ++p)
2575 {
2576 addr = align_address(addr, p->addralign());
2577 section_offset_type output_offset;
2578 if (p->output_offset(object, shndx, offset, &output_offset))
2579 {
2580 if (output_offset == -1)
2581 return -1ULL;
2582 return addr + output_offset;
2583 }
2584 addr += p->data_size();
2585 }
2586
2587 // If we get here, it means that we don't know the mapping for this
2588 // input section. This might happen in principle if
2589 // add_input_section were called before add_output_section_data.
2590 // But it should never actually happen.
2591
2592 gold_unreachable();
2593 }
2594
2595 // Find the output address of the start of the merged section for
2596 // input section SHNDX in object OBJECT.
2597
2598 bool
2599 Output_section::find_starting_output_address(const Relobj* object,
2600 unsigned int shndx,
2601 uint64_t* paddr) const
2602 {
2603 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2604 // Looking up the merge section map does not always work as we sometimes
2605 // find a merge section without its address set.
2606 uint64_t addr = this->address() + this->first_input_offset_;
2607 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2608 p != this->input_sections_.end();
2609 ++p)
2610 {
2611 addr = align_address(addr, p->addralign());
2612
2613 // It would be nice if we could use the existing output_offset
2614 // method to get the output offset of input offset 0.
2615 // Unfortunately we don't know for sure that input offset 0 is
2616 // mapped at all.
2617 if (p->is_merge_section_for(object, shndx))
2618 {
2619 *paddr = addr;
2620 return true;
2621 }
2622
2623 addr += p->data_size();
2624 }
2625
2626 // We couldn't find a merge output section for this input section.
2627 return false;
2628 }
2629
2630 // Set the data size of an Output_section. This is where we handle
2631 // setting the addresses of any Output_section_data objects.
2632
2633 void
2634 Output_section::set_final_data_size()
2635 {
2636 if (this->input_sections_.empty())
2637 {
2638 this->set_data_size(this->current_data_size_for_child());
2639 return;
2640 }
2641
2642 if (this->must_sort_attached_input_sections()
2643 || this->input_section_order_specified())
2644 this->sort_attached_input_sections();
2645
2646 uint64_t address = this->address();
2647 off_t startoff = this->offset();
2648 off_t off = startoff + this->first_input_offset_;
2649 for (Input_section_list::iterator p = this->input_sections_.begin();
2650 p != this->input_sections_.end();
2651 ++p)
2652 {
2653 off = align_address(off, p->addralign());
2654 p->set_address_and_file_offset(address + (off - startoff), off,
2655 startoff);
2656 off += p->data_size();
2657 }
2658
2659 this->set_data_size(off - startoff);
2660 }
2661
2662 // Reset the address and file offset.
2663
2664 void
2665 Output_section::do_reset_address_and_file_offset()
2666 {
2667 // An unallocated section has no address. Forcing this means that
2668 // we don't need special treatment for symbols defined in debug
2669 // sections. We do the same in the constructor. This does not
2670 // apply to NOLOAD sections though.
2671 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2672 this->set_address(0);
2673
2674 for (Input_section_list::iterator p = this->input_sections_.begin();
2675 p != this->input_sections_.end();
2676 ++p)
2677 p->reset_address_and_file_offset();
2678 }
2679
2680 // Return true if address and file offset have the values after reset.
2681
2682 bool
2683 Output_section::do_address_and_file_offset_have_reset_values() const
2684 {
2685 if (this->is_offset_valid())
2686 return false;
2687
2688 // An unallocated section has address 0 after its construction or a reset.
2689 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2690 return this->is_address_valid() && this->address() == 0;
2691 else
2692 return !this->is_address_valid();
2693 }
2694
2695 // Set the TLS offset. Called only for SHT_TLS sections.
2696
2697 void
2698 Output_section::do_set_tls_offset(uint64_t tls_base)
2699 {
2700 this->tls_offset_ = this->address() - tls_base;
2701 }
2702
2703 // In a few cases we need to sort the input sections attached to an
2704 // output section. This is used to implement the type of constructor
2705 // priority ordering implemented by the GNU linker, in which the
2706 // priority becomes part of the section name and the sections are
2707 // sorted by name. We only do this for an output section if we see an
2708 // attached input section matching ".ctor.*", ".dtor.*",
2709 // ".init_array.*" or ".fini_array.*".
2710
2711 class Output_section::Input_section_sort_entry
2712 {
2713 public:
2714 Input_section_sort_entry()
2715 : input_section_(), index_(-1U), section_has_name_(false),
2716 section_name_()
2717 { }
2718
2719 Input_section_sort_entry(const Input_section& input_section,
2720 unsigned int index,
2721 bool must_sort_attached_input_sections)
2722 : input_section_(input_section), index_(index),
2723 section_has_name_(input_section.is_input_section()
2724 || input_section.is_relaxed_input_section())
2725 {
2726 if (this->section_has_name_
2727 && must_sort_attached_input_sections)
2728 {
2729 // This is only called single-threaded from Layout::finalize,
2730 // so it is OK to lock. Unfortunately we have no way to pass
2731 // in a Task token.
2732 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2733 Object* obj = (input_section.is_input_section()
2734 ? input_section.relobj()
2735 : input_section.relaxed_input_section()->relobj());
2736 Task_lock_obj<Object> tl(dummy_task, obj);
2737
2738 // This is a slow operation, which should be cached in
2739 // Layout::layout if this becomes a speed problem.
2740 this->section_name_ = obj->section_name(input_section.shndx());
2741 }
2742 }
2743
2744 // Return the Input_section.
2745 const Input_section&
2746 input_section() const
2747 {
2748 gold_assert(this->index_ != -1U);
2749 return this->input_section_;
2750 }
2751
2752 // The index of this entry in the original list. This is used to
2753 // make the sort stable.
2754 unsigned int
2755 index() const
2756 {
2757 gold_assert(this->index_ != -1U);
2758 return this->index_;
2759 }
2760
2761 // Whether there is a section name.
2762 bool
2763 section_has_name() const
2764 { return this->section_has_name_; }
2765
2766 // The section name.
2767 const std::string&
2768 section_name() const
2769 {
2770 gold_assert(this->section_has_name_);
2771 return this->section_name_;
2772 }
2773
2774 // Return true if the section name has a priority. This is assumed
2775 // to be true if it has a dot after the initial dot.
2776 bool
2777 has_priority() const
2778 {
2779 gold_assert(this->section_has_name_);
2780 return this->section_name_.find('.', 1) != std::string::npos;
2781 }
2782
2783 // Return true if this an input file whose base name matches
2784 // FILE_NAME. The base name must have an extension of ".o", and
2785 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2786 // This is to match crtbegin.o as well as crtbeginS.o without
2787 // getting confused by other possibilities. Overall matching the
2788 // file name this way is a dreadful hack, but the GNU linker does it
2789 // in order to better support gcc, and we need to be compatible.
2790 bool
2791 match_file_name(const char* match_file_name) const
2792 {
2793 const std::string& file_name(this->input_section_.relobj()->name());
2794 const char* base_name = lbasename(file_name.c_str());
2795 size_t match_len = strlen(match_file_name);
2796 if (strncmp(base_name, match_file_name, match_len) != 0)
2797 return false;
2798 size_t base_len = strlen(base_name);
2799 if (base_len != match_len + 2 && base_len != match_len + 3)
2800 return false;
2801 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2802 }
2803
2804 // Returns 0 if sections are not comparable. Returns 1 if THIS is the
2805 // first section in order, returns -1 for S.
2806 int
2807 compare_section_ordering(const Input_section_sort_entry& s) const
2808 {
2809 gold_assert(this->index_ != -1U);
2810 if (this->input_section_.section_order_index() == 0
2811 || s.input_section().section_order_index() == 0)
2812 return 0;
2813 if (this->input_section_.section_order_index()
2814 < s.input_section().section_order_index())
2815 return 1;
2816 else
2817 return -1;
2818 }
2819
2820 private:
2821 // The Input_section we are sorting.
2822 Input_section input_section_;
2823 // The index of this Input_section in the original list.
2824 unsigned int index_;
2825 // Whether this Input_section has a section name--it won't if this
2826 // is some random Output_section_data.
2827 bool section_has_name_;
2828 // The section name if there is one.
2829 std::string section_name_;
2830 };
2831
2832 // Return true if S1 should come before S2 in the output section.
2833
2834 bool
2835 Output_section::Input_section_sort_compare::operator()(
2836 const Output_section::Input_section_sort_entry& s1,
2837 const Output_section::Input_section_sort_entry& s2) const
2838 {
2839 // crtbegin.o must come first.
2840 bool s1_begin = s1.match_file_name("crtbegin");
2841 bool s2_begin = s2.match_file_name("crtbegin");
2842 if (s1_begin || s2_begin)
2843 {
2844 if (!s1_begin)
2845 return false;
2846 if (!s2_begin)
2847 return true;
2848 return s1.index() < s2.index();
2849 }
2850
2851 // crtend.o must come last.
2852 bool s1_end = s1.match_file_name("crtend");
2853 bool s2_end = s2.match_file_name("crtend");
2854 if (s1_end || s2_end)
2855 {
2856 if (!s1_end)
2857 return true;
2858 if (!s2_end)
2859 return false;
2860 return s1.index() < s2.index();
2861 }
2862
2863 // We sort all the sections with no names to the end.
2864 if (!s1.section_has_name() || !s2.section_has_name())
2865 {
2866 if (s1.section_has_name())
2867 return true;
2868 if (s2.section_has_name())
2869 return false;
2870 return s1.index() < s2.index();
2871 }
2872
2873 // A section with a priority follows a section without a priority.
2874 bool s1_has_priority = s1.has_priority();
2875 bool s2_has_priority = s2.has_priority();
2876 if (s1_has_priority && !s2_has_priority)
2877 return false;
2878 if (!s1_has_priority && s2_has_priority)
2879 return true;
2880
2881 // Check if a section order exists for these sections through a section
2882 // ordering file. If sequence_num is 0, an order does not exist.
2883 int sequence_num = s1.compare_section_ordering(s2);
2884 if (sequence_num != 0)
2885 return sequence_num == 1;
2886
2887 // Otherwise we sort by name.
2888 int compare = s1.section_name().compare(s2.section_name());
2889 if (compare != 0)
2890 return compare < 0;
2891
2892 // Otherwise we keep the input order.
2893 return s1.index() < s2.index();
2894 }
2895
2896 // Return true if S1 should come before S2 in an .init_array or .fini_array
2897 // output section.
2898
2899 bool
2900 Output_section::Input_section_sort_init_fini_compare::operator()(
2901 const Output_section::Input_section_sort_entry& s1,
2902 const Output_section::Input_section_sort_entry& s2) const
2903 {
2904 // We sort all the sections with no names to the end.
2905 if (!s1.section_has_name() || !s2.section_has_name())
2906 {
2907 if (s1.section_has_name())
2908 return true;
2909 if (s2.section_has_name())
2910 return false;
2911 return s1.index() < s2.index();
2912 }
2913
2914 // A section without a priority follows a section with a priority.
2915 // This is the reverse of .ctors and .dtors sections.
2916 bool s1_has_priority = s1.has_priority();
2917 bool s2_has_priority = s2.has_priority();
2918 if (s1_has_priority && !s2_has_priority)
2919 return true;
2920 if (!s1_has_priority && s2_has_priority)
2921 return false;
2922
2923 // Check if a section order exists for these sections through a section
2924 // ordering file. If sequence_num is 0, an order does not exist.
2925 int sequence_num = s1.compare_section_ordering(s2);
2926 if (sequence_num != 0)
2927 return sequence_num == 1;
2928
2929 // Otherwise we sort by name.
2930 int compare = s1.section_name().compare(s2.section_name());
2931 if (compare != 0)
2932 return compare < 0;
2933
2934 // Otherwise we keep the input order.
2935 return s1.index() < s2.index();
2936 }
2937
2938 // Return true if S1 should come before S2.
2939 bool
2940 Output_section::Input_section_sort_section_order_index_compare::operator()(
2941 const Output_section::Input_section_sort_entry& s1,
2942 const Output_section::Input_section_sort_entry& s2) const
2943 {
2944 // Check if a section order exists for these sections through a section
2945 // ordering file. If sequence_num is 0, an order does not exist.
2946 int sequence_num = s1.compare_section_ordering(s2);
2947 if (sequence_num != 0)
2948 return sequence_num == 1;
2949
2950 // Otherwise we keep the input order.
2951 return s1.index() < s2.index();
2952 }
2953
2954 // Sort the input sections attached to an output section.
2955
2956 void
2957 Output_section::sort_attached_input_sections()
2958 {
2959 if (this->attached_input_sections_are_sorted_)
2960 return;
2961
2962 if (this->checkpoint_ != NULL
2963 && !this->checkpoint_->input_sections_saved())
2964 this->checkpoint_->save_input_sections();
2965
2966 // The only thing we know about an input section is the object and
2967 // the section index. We need the section name. Recomputing this
2968 // is slow but this is an unusual case. If this becomes a speed
2969 // problem we can cache the names as required in Layout::layout.
2970
2971 // We start by building a larger vector holding a copy of each
2972 // Input_section, plus its current index in the list and its name.
2973 std::vector<Input_section_sort_entry> sort_list;
2974
2975 unsigned int i = 0;
2976 for (Input_section_list::iterator p = this->input_sections_.begin();
2977 p != this->input_sections_.end();
2978 ++p, ++i)
2979 sort_list.push_back(Input_section_sort_entry(*p, i,
2980 this->must_sort_attached_input_sections()));
2981
2982 // Sort the input sections.
2983 if (this->must_sort_attached_input_sections())
2984 {
2985 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2986 || this->type() == elfcpp::SHT_INIT_ARRAY
2987 || this->type() == elfcpp::SHT_FINI_ARRAY)
2988 std::sort(sort_list.begin(), sort_list.end(),
2989 Input_section_sort_init_fini_compare());
2990 else
2991 std::sort(sort_list.begin(), sort_list.end(),
2992 Input_section_sort_compare());
2993 }
2994 else
2995 {
2996 gold_assert(parameters->options().section_ordering_file());
2997 std::sort(sort_list.begin(), sort_list.end(),
2998 Input_section_sort_section_order_index_compare());
2999 }
3000
3001 // Copy the sorted input sections back to our list.
3002 this->input_sections_.clear();
3003 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3004 p != sort_list.end();
3005 ++p)
3006 this->input_sections_.push_back(p->input_section());
3007 sort_list.clear();
3008
3009 // Remember that we sorted the input sections, since we might get
3010 // called again.
3011 this->attached_input_sections_are_sorted_ = true;
3012 }
3013
3014 // Write the section header to *OSHDR.
3015
3016 template<int size, bool big_endian>
3017 void
3018 Output_section::write_header(const Layout* layout,
3019 const Stringpool* secnamepool,
3020 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3021 {
3022 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3023 oshdr->put_sh_type(this->type_);
3024
3025 elfcpp::Elf_Xword flags = this->flags_;
3026 if (this->info_section_ != NULL && this->info_uses_section_index_)
3027 flags |= elfcpp::SHF_INFO_LINK;
3028 oshdr->put_sh_flags(flags);
3029
3030 oshdr->put_sh_addr(this->address());
3031 oshdr->put_sh_offset(this->offset());
3032 oshdr->put_sh_size(this->data_size());
3033 if (this->link_section_ != NULL)
3034 oshdr->put_sh_link(this->link_section_->out_shndx());
3035 else if (this->should_link_to_symtab_)
3036 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3037 else if (this->should_link_to_dynsym_)
3038 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3039 else
3040 oshdr->put_sh_link(this->link_);
3041
3042 elfcpp::Elf_Word info;
3043 if (this->info_section_ != NULL)
3044 {
3045 if (this->info_uses_section_index_)
3046 info = this->info_section_->out_shndx();
3047 else
3048 info = this->info_section_->symtab_index();
3049 }
3050 else if (this->info_symndx_ != NULL)
3051 info = this->info_symndx_->symtab_index();
3052 else
3053 info = this->info_;
3054 oshdr->put_sh_info(info);
3055
3056 oshdr->put_sh_addralign(this->addralign_);
3057 oshdr->put_sh_entsize(this->entsize_);
3058 }
3059
3060 // Write out the data. For input sections the data is written out by
3061 // Object::relocate, but we have to handle Output_section_data objects
3062 // here.
3063
3064 void
3065 Output_section::do_write(Output_file* of)
3066 {
3067 gold_assert(!this->requires_postprocessing());
3068
3069 // If the target performs relaxation, we delay filler generation until now.
3070 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3071
3072 off_t output_section_file_offset = this->offset();
3073 for (Fill_list::iterator p = this->fills_.begin();
3074 p != this->fills_.end();
3075 ++p)
3076 {
3077 std::string fill_data(parameters->target().code_fill(p->length()));
3078 of->write(output_section_file_offset + p->section_offset(),
3079 fill_data.data(), fill_data.size());
3080 }
3081
3082 off_t off = this->offset() + this->first_input_offset_;
3083 for (Input_section_list::iterator p = this->input_sections_.begin();
3084 p != this->input_sections_.end();
3085 ++p)
3086 {
3087 off_t aligned_off = align_address(off, p->addralign());
3088 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3089 {
3090 size_t fill_len = aligned_off - off;
3091 std::string fill_data(parameters->target().code_fill(fill_len));
3092 of->write(off, fill_data.data(), fill_data.size());
3093 }
3094
3095 p->write(of);
3096 off = aligned_off + p->data_size();
3097 }
3098 }
3099
3100 // If a section requires postprocessing, create the buffer to use.
3101
3102 void
3103 Output_section::create_postprocessing_buffer()
3104 {
3105 gold_assert(this->requires_postprocessing());
3106
3107 if (this->postprocessing_buffer_ != NULL)
3108 return;
3109
3110 if (!this->input_sections_.empty())
3111 {
3112 off_t off = this->first_input_offset_;
3113 for (Input_section_list::iterator p = this->input_sections_.begin();
3114 p != this->input_sections_.end();
3115 ++p)
3116 {
3117 off = align_address(off, p->addralign());
3118 p->finalize_data_size();
3119 off += p->data_size();
3120 }
3121 this->set_current_data_size_for_child(off);
3122 }
3123
3124 off_t buffer_size = this->current_data_size_for_child();
3125 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3126 }
3127
3128 // Write all the data of an Output_section into the postprocessing
3129 // buffer. This is used for sections which require postprocessing,
3130 // such as compression. Input sections are handled by
3131 // Object::Relocate.
3132
3133 void
3134 Output_section::write_to_postprocessing_buffer()
3135 {
3136 gold_assert(this->requires_postprocessing());
3137
3138 // If the target performs relaxation, we delay filler generation until now.
3139 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3140
3141 unsigned char* buffer = this->postprocessing_buffer();
3142 for (Fill_list::iterator p = this->fills_.begin();
3143 p != this->fills_.end();
3144 ++p)
3145 {
3146 std::string fill_data(parameters->target().code_fill(p->length()));
3147 memcpy(buffer + p->section_offset(), fill_data.data(),
3148 fill_data.size());
3149 }
3150
3151 off_t off = this->first_input_offset_;
3152 for (Input_section_list::iterator p = this->input_sections_.begin();
3153 p != this->input_sections_.end();
3154 ++p)
3155 {
3156 off_t aligned_off = align_address(off, p->addralign());
3157 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3158 {
3159 size_t fill_len = aligned_off - off;
3160 std::string fill_data(parameters->target().code_fill(fill_len));
3161 memcpy(buffer + off, fill_data.data(), fill_data.size());
3162 }
3163
3164 p->write_to_buffer(buffer + aligned_off);
3165 off = aligned_off + p->data_size();
3166 }
3167 }
3168
3169 // Get the input sections for linker script processing. We leave
3170 // behind the Output_section_data entries. Note that this may be
3171 // slightly incorrect for merge sections. We will leave them behind,
3172 // but it is possible that the script says that they should follow
3173 // some other input sections, as in:
3174 // .rodata { *(.rodata) *(.rodata.cst*) }
3175 // For that matter, we don't handle this correctly:
3176 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3177 // With luck this will never matter.
3178
3179 uint64_t
3180 Output_section::get_input_sections(
3181 uint64_t address,
3182 const std::string& fill,
3183 std::list<Input_section>* input_sections)
3184 {
3185 if (this->checkpoint_ != NULL
3186 && !this->checkpoint_->input_sections_saved())
3187 this->checkpoint_->save_input_sections();
3188
3189 // Invalidate fast look-up maps.
3190 this->lookup_maps_->invalidate();
3191
3192 uint64_t orig_address = address;
3193
3194 address = align_address(address, this->addralign());
3195
3196 Input_section_list remaining;
3197 for (Input_section_list::iterator p = this->input_sections_.begin();
3198 p != this->input_sections_.end();
3199 ++p)
3200 {
3201 if (p->is_input_section()
3202 || p->is_relaxed_input_section()
3203 || p->is_merge_section())
3204 input_sections->push_back(*p);
3205 else
3206 {
3207 uint64_t aligned_address = align_address(address, p->addralign());
3208 if (aligned_address != address && !fill.empty())
3209 {
3210 section_size_type length =
3211 convert_to_section_size_type(aligned_address - address);
3212 std::string this_fill;
3213 this_fill.reserve(length);
3214 while (this_fill.length() + fill.length() <= length)
3215 this_fill += fill;
3216 if (this_fill.length() < length)
3217 this_fill.append(fill, 0, length - this_fill.length());
3218
3219 Output_section_data* posd = new Output_data_const(this_fill, 0);
3220 remaining.push_back(Input_section(posd));
3221 }
3222 address = aligned_address;
3223
3224 remaining.push_back(*p);
3225
3226 p->finalize_data_size();
3227 address += p->data_size();
3228 }
3229 }
3230
3231 this->input_sections_.swap(remaining);
3232 this->first_input_offset_ = 0;
3233
3234 uint64_t data_size = address - orig_address;
3235 this->set_current_data_size_for_child(data_size);
3236 return data_size;
3237 }
3238
3239 // Add a script input section. SIS is an Output_section::Input_section,
3240 // which can be either a plain input section or a special input section like
3241 // a relaxed input section. For a special input section, its size must be
3242 // finalized.
3243
3244 void
3245 Output_section::add_script_input_section(const Input_section& sis)
3246 {
3247 uint64_t data_size = sis.data_size();
3248 uint64_t addralign = sis.addralign();
3249 if (addralign > this->addralign_)
3250 this->addralign_ = addralign;
3251
3252 off_t offset_in_section = this->current_data_size_for_child();
3253 off_t aligned_offset_in_section = align_address(offset_in_section,
3254 addralign);
3255
3256 this->set_current_data_size_for_child(aligned_offset_in_section
3257 + data_size);
3258
3259 this->input_sections_.push_back(sis);
3260
3261 // Update fast lookup maps if necessary.
3262 if (this->lookup_maps_->is_valid())
3263 {
3264 if (sis.is_merge_section())
3265 {
3266 Output_merge_base* pomb = sis.output_merge_base();
3267 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3268 pomb->addralign());
3269 this->lookup_maps_->add_merge_section(msp, pomb);
3270 for (Output_merge_base::Input_sections::const_iterator p =
3271 pomb->input_sections_begin();
3272 p != pomb->input_sections_end();
3273 ++p)
3274 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3275 pomb);
3276 }
3277 else if (sis.is_relaxed_input_section())
3278 {
3279 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3280 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3281 poris->shndx(), poris);
3282 }
3283 }
3284 }
3285
3286 // Save states for relaxation.
3287
3288 void
3289 Output_section::save_states()
3290 {
3291 gold_assert(this->checkpoint_ == NULL);
3292 Checkpoint_output_section* checkpoint =
3293 new Checkpoint_output_section(this->addralign_, this->flags_,
3294 this->input_sections_,
3295 this->first_input_offset_,
3296 this->attached_input_sections_are_sorted_);
3297 this->checkpoint_ = checkpoint;
3298 gold_assert(this->fills_.empty());
3299 }
3300
3301 void
3302 Output_section::discard_states()
3303 {
3304 gold_assert(this->checkpoint_ != NULL);
3305 delete this->checkpoint_;
3306 this->checkpoint_ = NULL;
3307 gold_assert(this->fills_.empty());
3308
3309 // Simply invalidate the fast lookup maps since we do not keep
3310 // track of them.
3311 this->lookup_maps_->invalidate();
3312 }
3313
3314 void
3315 Output_section::restore_states()
3316 {
3317 gold_assert(this->checkpoint_ != NULL);
3318 Checkpoint_output_section* checkpoint = this->checkpoint_;
3319
3320 this->addralign_ = checkpoint->addralign();
3321 this->flags_ = checkpoint->flags();
3322 this->first_input_offset_ = checkpoint->first_input_offset();
3323
3324 if (!checkpoint->input_sections_saved())
3325 {
3326 // If we have not copied the input sections, just resize it.
3327 size_t old_size = checkpoint->input_sections_size();
3328 gold_assert(this->input_sections_.size() >= old_size);
3329 this->input_sections_.resize(old_size);
3330 }
3331 else
3332 {
3333 // We need to copy the whole list. This is not efficient for
3334 // extremely large output with hundreads of thousands of input
3335 // objects. We may need to re-think how we should pass sections
3336 // to scripts.
3337 this->input_sections_ = *checkpoint->input_sections();
3338 }
3339
3340 this->attached_input_sections_are_sorted_ =
3341 checkpoint->attached_input_sections_are_sorted();
3342
3343 // Simply invalidate the fast lookup maps since we do not keep
3344 // track of them.
3345 this->lookup_maps_->invalidate();
3346 }
3347
3348 // Update the section offsets of input sections in this. This is required if
3349 // relaxation causes some input sections to change sizes.
3350
3351 void
3352 Output_section::adjust_section_offsets()
3353 {
3354 if (!this->section_offsets_need_adjustment_)
3355 return;
3356
3357 off_t off = 0;
3358 for (Input_section_list::iterator p = this->input_sections_.begin();
3359 p != this->input_sections_.end();
3360 ++p)
3361 {
3362 off = align_address(off, p->addralign());
3363 if (p->is_input_section())
3364 p->relobj()->set_section_offset(p->shndx(), off);
3365 off += p->data_size();
3366 }
3367
3368 this->section_offsets_need_adjustment_ = false;
3369 }
3370
3371 // Print to the map file.
3372
3373 void
3374 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3375 {
3376 mapfile->print_output_section(this);
3377
3378 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3379 p != this->input_sections_.end();
3380 ++p)
3381 p->print_to_mapfile(mapfile);
3382 }
3383
3384 // Print stats for merge sections to stderr.
3385
3386 void
3387 Output_section::print_merge_stats()
3388 {
3389 Input_section_list::iterator p;
3390 for (p = this->input_sections_.begin();
3391 p != this->input_sections_.end();
3392 ++p)
3393 p->print_merge_stats(this->name_);
3394 }
3395
3396 // Output segment methods.
3397
3398 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3399 : output_data_(),
3400 output_bss_(),
3401 vaddr_(0),
3402 paddr_(0),
3403 memsz_(0),
3404 max_align_(0),
3405 min_p_align_(0),
3406 offset_(0),
3407 filesz_(0),
3408 type_(type),
3409 flags_(flags),
3410 is_max_align_known_(false),
3411 are_addresses_set_(false),
3412 is_large_data_segment_(false)
3413 {
3414 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3415 // the flags.
3416 if (type == elfcpp::PT_TLS)
3417 this->flags_ = elfcpp::PF_R;
3418 }
3419
3420 // Add an Output_section to an Output_segment.
3421
3422 void
3423 Output_segment::add_output_section(Output_section* os,
3424 elfcpp::Elf_Word seg_flags,
3425 bool do_sort)
3426 {
3427 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3428 gold_assert(!this->is_max_align_known_);
3429 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3430 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3431
3432 this->update_flags_for_output_section(seg_flags);
3433
3434 Output_segment::Output_data_list* pdl;
3435 if (os->type() == elfcpp::SHT_NOBITS)
3436 pdl = &this->output_bss_;
3437 else
3438 pdl = &this->output_data_;
3439
3440 // Note that while there may be many input sections in an output
3441 // section, there are normally only a few output sections in an
3442 // output segment. The loops below are expected to be fast.
3443
3444 // So that PT_NOTE segments will work correctly, we need to ensure
3445 // that all SHT_NOTE sections are adjacent.
3446 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3447 {
3448 Output_segment::Output_data_list::iterator p = pdl->end();
3449 do
3450 {
3451 --p;
3452 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3453 {
3454 ++p;
3455 pdl->insert(p, os);
3456 return;
3457 }
3458 }
3459 while (p != pdl->begin());
3460 }
3461
3462 // Similarly, so that PT_TLS segments will work, we need to group
3463 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3464 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3465 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3466 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3467 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3468 // segment.
3469 if (this->type_ != elfcpp::PT_TLS
3470 && (os->flags() & elfcpp::SHF_TLS) != 0)
3471 {
3472 pdl = &this->output_data_;
3473 if (!pdl->empty())
3474 {
3475 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3476 bool sawtls = false;
3477 Output_segment::Output_data_list::iterator p = pdl->end();
3478 gold_assert(p != pdl->begin());
3479 do
3480 {
3481 --p;
3482 bool insert;
3483 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3484 {
3485 sawtls = true;
3486 // Put a NOBITS section after the first TLS section.
3487 // Put a PROGBITS section after the first
3488 // TLS/PROGBITS section.
3489 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3490 }
3491 else
3492 {
3493 // If we've gone past the TLS sections, but we've
3494 // seen a TLS section, then we need to insert this
3495 // section now.
3496 insert = sawtls;
3497 }
3498
3499 if (insert)
3500 {
3501 ++p;
3502 pdl->insert(p, os);
3503 return;
3504 }
3505 }
3506 while (p != pdl->begin());
3507 }
3508
3509 // There are no TLS sections yet; put this one at the requested
3510 // location in the section list.
3511 }
3512
3513 if (do_sort)
3514 {
3515 // For the PT_GNU_RELRO segment, we need to group relro
3516 // sections, and we need to put them before any non-relro
3517 // sections. Any relro local sections go before relro non-local
3518 // sections. One section may be marked as the last relro
3519 // section.
3520 if (os->is_relro())
3521 {
3522 gold_assert(pdl == &this->output_data_);
3523 Output_segment::Output_data_list::iterator p;
3524 for (p = pdl->begin(); p != pdl->end(); ++p)
3525 {
3526 if (!(*p)->is_section())
3527 break;
3528
3529 Output_section* pos = (*p)->output_section();
3530 if (!pos->is_relro()
3531 || (os->is_relro_local() && !pos->is_relro_local())
3532 || (!os->is_last_relro() && pos->is_last_relro()))
3533 break;
3534 }
3535
3536 pdl->insert(p, os);
3537 return;
3538 }
3539
3540 // One section may be marked as the first section which follows
3541 // the relro sections.
3542 if (os->is_first_non_relro())
3543 {
3544 gold_assert(pdl == &this->output_data_);
3545 Output_segment::Output_data_list::iterator p;
3546 for (p = pdl->begin(); p != pdl->end(); ++p)
3547 {
3548 if (!(*p)->is_section())
3549 break;
3550
3551 Output_section* pos = (*p)->output_section();
3552 if (!pos->is_relro())
3553 break;
3554 }
3555
3556 pdl->insert(p, os);
3557 return;
3558 }
3559 }
3560
3561 // Small data sections go at the end of the list of data sections.
3562 // If OS is not small, and there are small sections, we have to
3563 // insert it before the first small section.
3564 if (os->type() != elfcpp::SHT_NOBITS
3565 && !os->is_small_section()
3566 && !pdl->empty()
3567 && pdl->back()->is_section()
3568 && pdl->back()->output_section()->is_small_section())
3569 {
3570 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3571 p != pdl->end();
3572 ++p)
3573 {
3574 if ((*p)->is_section()
3575 && (*p)->output_section()->is_small_section())
3576 {
3577 pdl->insert(p, os);
3578 return;
3579 }
3580 }
3581 gold_unreachable();
3582 }
3583
3584 // A small BSS section goes at the start of the BSS sections, after
3585 // other small BSS sections.
3586 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3587 {
3588 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3589 p != pdl->end();
3590 ++p)
3591 {
3592 if (!(*p)->is_section()
3593 || !(*p)->output_section()->is_small_section())
3594 {
3595 pdl->insert(p, os);
3596 return;
3597 }
3598 }
3599 }
3600
3601 // A large BSS section goes at the end of the BSS sections, which
3602 // means that one that is not large must come before the first large
3603 // one.
3604 if (os->type() == elfcpp::SHT_NOBITS
3605 && !os->is_large_section()
3606 && !pdl->empty()
3607 && pdl->back()->is_section()
3608 && pdl->back()->output_section()->is_large_section())
3609 {
3610 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3611 p != pdl->end();
3612 ++p)
3613 {
3614 if ((*p)->is_section()
3615 && (*p)->output_section()->is_large_section())
3616 {
3617 pdl->insert(p, os);
3618 return;
3619 }
3620 }
3621 gold_unreachable();
3622 }
3623
3624 // We do some further output section sorting in order to make the
3625 // generated program run more efficiently. We should only do this
3626 // when not using a linker script, so it is controled by the DO_SORT
3627 // parameter.
3628 if (do_sort)
3629 {
3630 // FreeBSD requires the .interp section to be in the first page
3631 // of the executable. That is a more efficient location anyhow
3632 // for any OS, since it means that the kernel will have the data
3633 // handy after it reads the program headers.
3634 if (os->is_interp() && !pdl->empty())
3635 {
3636 pdl->insert(pdl->begin(), os);
3637 return;
3638 }
3639
3640 // Put loadable non-writable notes immediately after the .interp
3641 // sections, so that the PT_NOTE segment is on the first page of
3642 // the executable.
3643 if (os->type() == elfcpp::SHT_NOTE
3644 && (os->flags() & elfcpp::SHF_WRITE) == 0
3645 && !pdl->empty())
3646 {
3647 Output_segment::Output_data_list::iterator p = pdl->begin();
3648 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3649 ++p;
3650 pdl->insert(p, os);
3651 return;
3652 }
3653
3654 // If this section is used by the dynamic linker, and it is not
3655 // writable, then put it first, after the .interp section and
3656 // any loadable notes. This makes it more likely that the
3657 // dynamic linker will have to read less data from the disk.
3658 if (os->is_dynamic_linker_section()
3659 && !pdl->empty()
3660 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3661 {
3662 bool is_reloc = (os->type() == elfcpp::SHT_REL
3663 || os->type() == elfcpp::SHT_RELA);
3664 Output_segment::Output_data_list::iterator p = pdl->begin();
3665 while (p != pdl->end()
3666 && (*p)->is_section()
3667 && ((*p)->output_section()->is_dynamic_linker_section()
3668 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3669 {
3670 // Put reloc sections after the other ones. Putting the
3671 // dynamic reloc sections first confuses BFD, notably
3672 // objcopy and strip.
3673 if (!is_reloc
3674 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3675 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3676 break;
3677 ++p;
3678 }
3679 pdl->insert(p, os);
3680 return;
3681 }
3682 }
3683
3684 // If there were no constraints on the output section, just add it
3685 // to the end of the list.
3686 pdl->push_back(os);
3687 }
3688
3689 // Remove an Output_section from this segment. It is an error if it
3690 // is not present.
3691
3692 void
3693 Output_segment::remove_output_section(Output_section* os)
3694 {
3695 // We only need this for SHT_PROGBITS.
3696 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3697 for (Output_data_list::iterator p = this->output_data_.begin();
3698 p != this->output_data_.end();
3699 ++p)
3700 {
3701 if (*p == os)
3702 {
3703 this->output_data_.erase(p);
3704 return;
3705 }
3706 }
3707 gold_unreachable();
3708 }
3709
3710 // Add an Output_data (which need not be an Output_section) to the
3711 // start of a segment.
3712
3713 void
3714 Output_segment::add_initial_output_data(Output_data* od)
3715 {
3716 gold_assert(!this->is_max_align_known_);
3717 this->output_data_.push_front(od);
3718 }
3719
3720 // Return whether the first data section is a relro section.
3721
3722 bool
3723 Output_segment::is_first_section_relro() const
3724 {
3725 return (!this->output_data_.empty()
3726 && this->output_data_.front()->is_section()
3727 && this->output_data_.front()->output_section()->is_relro());
3728 }
3729
3730 // Return the maximum alignment of the Output_data in Output_segment.
3731
3732 uint64_t
3733 Output_segment::maximum_alignment()
3734 {
3735 if (!this->is_max_align_known_)
3736 {
3737 uint64_t addralign;
3738
3739 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3740 if (addralign > this->max_align_)
3741 this->max_align_ = addralign;
3742
3743 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3744 if (addralign > this->max_align_)
3745 this->max_align_ = addralign;
3746
3747 this->is_max_align_known_ = true;
3748 }
3749
3750 return this->max_align_;
3751 }
3752
3753 // Return the maximum alignment of a list of Output_data.
3754
3755 uint64_t
3756 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3757 {
3758 uint64_t ret = 0;
3759 for (Output_data_list::const_iterator p = pdl->begin();
3760 p != pdl->end();
3761 ++p)
3762 {
3763 uint64_t addralign = (*p)->addralign();
3764 if (addralign > ret)
3765 ret = addralign;
3766 }
3767 return ret;
3768 }
3769
3770 // Return the number of dynamic relocs applied to this segment.
3771
3772 unsigned int
3773 Output_segment::dynamic_reloc_count() const
3774 {
3775 return (this->dynamic_reloc_count_list(&this->output_data_)
3776 + this->dynamic_reloc_count_list(&this->output_bss_));
3777 }
3778
3779 // Return the number of dynamic relocs applied to an Output_data_list.
3780
3781 unsigned int
3782 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3783 {
3784 unsigned int count = 0;
3785 for (Output_data_list::const_iterator p = pdl->begin();
3786 p != pdl->end();
3787 ++p)
3788 count += (*p)->dynamic_reloc_count();
3789 return count;
3790 }
3791
3792 // Set the section addresses for an Output_segment. If RESET is true,
3793 // reset the addresses first. ADDR is the address and *POFF is the
3794 // file offset. Set the section indexes starting with *PSHNDX.
3795 // Return the address of the immediately following segment. Update
3796 // *POFF and *PSHNDX.
3797
3798 uint64_t
3799 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3800 uint64_t addr,
3801 unsigned int increase_relro,
3802 off_t* poff,
3803 unsigned int* pshndx)
3804 {
3805 gold_assert(this->type_ == elfcpp::PT_LOAD);
3806
3807 off_t orig_off = *poff;
3808
3809 // If we have relro sections, we need to pad forward now so that the
3810 // relro sections plus INCREASE_RELRO end on a common page boundary.
3811 if (parameters->options().relro()
3812 && this->is_first_section_relro()
3813 && (!this->are_addresses_set_ || reset))
3814 {
3815 uint64_t relro_size = 0;
3816 off_t off = *poff;
3817 for (Output_data_list::iterator p = this->output_data_.begin();
3818 p != this->output_data_.end();
3819 ++p)
3820 {
3821 if (!(*p)->is_section())
3822 break;
3823 Output_section* pos = (*p)->output_section();
3824 if (!pos->is_relro())
3825 break;
3826 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3827 if ((*p)->is_address_valid())
3828 relro_size += (*p)->data_size();
3829 else
3830 {
3831 // FIXME: This could be faster.
3832 (*p)->set_address_and_file_offset(addr + relro_size,
3833 off + relro_size);
3834 relro_size += (*p)->data_size();
3835 (*p)->reset_address_and_file_offset();
3836 }
3837 }
3838 relro_size += increase_relro;
3839
3840 uint64_t page_align = parameters->target().common_pagesize();
3841
3842 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3843 uint64_t desired_align = page_align - (relro_size % page_align);
3844 if (desired_align < *poff % page_align)
3845 *poff += page_align - *poff % page_align;
3846 *poff += desired_align - *poff % page_align;
3847 addr += *poff - orig_off;
3848 orig_off = *poff;
3849 }
3850
3851 if (!reset && this->are_addresses_set_)
3852 {
3853 gold_assert(this->paddr_ == addr);
3854 addr = this->vaddr_;
3855 }
3856 else
3857 {
3858 this->vaddr_ = addr;
3859 this->paddr_ = addr;
3860 this->are_addresses_set_ = true;
3861 }
3862
3863 bool in_tls = false;
3864
3865 this->offset_ = orig_off;
3866
3867 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3868 addr, poff, pshndx, &in_tls);
3869 this->filesz_ = *poff - orig_off;
3870
3871 off_t off = *poff;
3872
3873 uint64_t ret = this->set_section_list_addresses(layout, reset,
3874 &this->output_bss_,
3875 addr, poff, pshndx,
3876 &in_tls);
3877
3878 // If the last section was a TLS section, align upward to the
3879 // alignment of the TLS segment, so that the overall size of the TLS
3880 // segment is aligned.
3881 if (in_tls)
3882 {
3883 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3884 *poff = align_address(*poff, segment_align);
3885 }
3886
3887 this->memsz_ = *poff - orig_off;
3888
3889 // Ignore the file offset adjustments made by the BSS Output_data
3890 // objects.
3891 *poff = off;
3892
3893 return ret;
3894 }
3895
3896 // Set the addresses and file offsets in a list of Output_data
3897 // structures.
3898
3899 uint64_t
3900 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3901 Output_data_list* pdl,
3902 uint64_t addr, off_t* poff,
3903 unsigned int* pshndx,
3904 bool* in_tls)
3905 {
3906 off_t startoff = *poff;
3907
3908 off_t off = startoff;
3909 for (Output_data_list::iterator p = pdl->begin();
3910 p != pdl->end();
3911 ++p)
3912 {
3913 if (reset)
3914 (*p)->reset_address_and_file_offset();
3915
3916 // When using a linker script the section will most likely
3917 // already have an address.
3918 if (!(*p)->is_address_valid())
3919 {
3920 uint64_t align = (*p)->addralign();
3921
3922 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3923 {
3924 // Give the first TLS section the alignment of the
3925 // entire TLS segment. Otherwise the TLS segment as a
3926 // whole may be misaligned.
3927 if (!*in_tls)
3928 {
3929 Output_segment* tls_segment = layout->tls_segment();
3930 gold_assert(tls_segment != NULL);
3931 uint64_t segment_align = tls_segment->maximum_alignment();
3932 gold_assert(segment_align >= align);
3933 align = segment_align;
3934
3935 *in_tls = true;
3936 }
3937 }
3938 else
3939 {
3940 // If this is the first section after the TLS segment,
3941 // align it to at least the alignment of the TLS
3942 // segment, so that the size of the overall TLS segment
3943 // is aligned.
3944 if (*in_tls)
3945 {
3946 uint64_t segment_align =
3947 layout->tls_segment()->maximum_alignment();
3948 if (segment_align > align)
3949 align = segment_align;
3950
3951 *in_tls = false;
3952 }
3953 }
3954
3955 off = align_address(off, align);
3956 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3957 }
3958 else
3959 {
3960 // The script may have inserted a skip forward, but it
3961 // better not have moved backward.
3962 if ((*p)->address() >= addr + (off - startoff))
3963 off += (*p)->address() - (addr + (off - startoff));
3964 else
3965 {
3966 if (!layout->script_options()->saw_sections_clause())
3967 gold_unreachable();
3968 else
3969 {
3970 Output_section* os = (*p)->output_section();
3971
3972 // Cast to unsigned long long to avoid format warnings.
3973 unsigned long long previous_dot =
3974 static_cast<unsigned long long>(addr + (off - startoff));
3975 unsigned long long dot =
3976 static_cast<unsigned long long>((*p)->address());
3977
3978 if (os == NULL)
3979 gold_error(_("dot moves backward in linker script "
3980 "from 0x%llx to 0x%llx"), previous_dot, dot);
3981 else
3982 gold_error(_("address of section '%s' moves backward "
3983 "from 0x%llx to 0x%llx"),
3984 os->name(), previous_dot, dot);
3985 }
3986 }
3987 (*p)->set_file_offset(off);
3988 (*p)->finalize_data_size();
3989 }
3990
3991 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3992 // section. Such a section does not affect the size of a
3993 // PT_LOAD segment.
3994 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3995 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3996 off += (*p)->data_size();
3997
3998 if ((*p)->is_section())
3999 {
4000 (*p)->set_out_shndx(*pshndx);
4001 ++*pshndx;
4002 }
4003 }
4004
4005 *poff = off;
4006 return addr + (off - startoff);
4007 }
4008
4009 // For a non-PT_LOAD segment, set the offset from the sections, if
4010 // any. Add INCREASE to the file size and the memory size.
4011
4012 void
4013 Output_segment::set_offset(unsigned int increase)
4014 {
4015 gold_assert(this->type_ != elfcpp::PT_LOAD);
4016
4017 gold_assert(!this->are_addresses_set_);
4018
4019 if (this->output_data_.empty() && this->output_bss_.empty())
4020 {
4021 gold_assert(increase == 0);
4022 this->vaddr_ = 0;
4023 this->paddr_ = 0;
4024 this->are_addresses_set_ = true;
4025 this->memsz_ = 0;
4026 this->min_p_align_ = 0;
4027 this->offset_ = 0;
4028 this->filesz_ = 0;
4029 return;
4030 }
4031
4032 const Output_data* first;
4033 if (this->output_data_.empty())
4034 first = this->output_bss_.front();
4035 else
4036 first = this->output_data_.front();
4037 this->vaddr_ = first->address();
4038 this->paddr_ = (first->has_load_address()
4039 ? first->load_address()
4040 : this->vaddr_);
4041 this->are_addresses_set_ = true;
4042 this->offset_ = first->offset();
4043
4044 if (this->output_data_.empty())
4045 this->filesz_ = 0;
4046 else
4047 {
4048 const Output_data* last_data = this->output_data_.back();
4049 this->filesz_ = (last_data->address()
4050 + last_data->data_size()
4051 - this->vaddr_);
4052 }
4053
4054 const Output_data* last;
4055 if (this->output_bss_.empty())
4056 last = this->output_data_.back();
4057 else
4058 last = this->output_bss_.back();
4059 this->memsz_ = (last->address()
4060 + last->data_size()
4061 - this->vaddr_);
4062
4063 this->filesz_ += increase;
4064 this->memsz_ += increase;
4065
4066 // If this is a TLS segment, align the memory size. The code in
4067 // set_section_list ensures that the section after the TLS segment
4068 // is aligned to give us room.
4069 if (this->type_ == elfcpp::PT_TLS)
4070 {
4071 uint64_t segment_align = this->maximum_alignment();
4072 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4073 this->memsz_ = align_address(this->memsz_, segment_align);
4074 }
4075 }
4076
4077 // Set the TLS offsets of the sections in the PT_TLS segment.
4078
4079 void
4080 Output_segment::set_tls_offsets()
4081 {
4082 gold_assert(this->type_ == elfcpp::PT_TLS);
4083
4084 for (Output_data_list::iterator p = this->output_data_.begin();
4085 p != this->output_data_.end();
4086 ++p)
4087 (*p)->set_tls_offset(this->vaddr_);
4088
4089 for (Output_data_list::iterator p = this->output_bss_.begin();
4090 p != this->output_bss_.end();
4091 ++p)
4092 (*p)->set_tls_offset(this->vaddr_);
4093 }
4094
4095 // Return the address of the first section.
4096
4097 uint64_t
4098 Output_segment::first_section_load_address() const
4099 {
4100 for (Output_data_list::const_iterator p = this->output_data_.begin();
4101 p != this->output_data_.end();
4102 ++p)
4103 if ((*p)->is_section())
4104 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4105
4106 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4107 p != this->output_bss_.end();
4108 ++p)
4109 if ((*p)->is_section())
4110 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4111
4112 gold_unreachable();
4113 }
4114
4115 // Return the number of Output_sections in an Output_segment.
4116
4117 unsigned int
4118 Output_segment::output_section_count() const
4119 {
4120 return (this->output_section_count_list(&this->output_data_)
4121 + this->output_section_count_list(&this->output_bss_));
4122 }
4123
4124 // Return the number of Output_sections in an Output_data_list.
4125
4126 unsigned int
4127 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4128 {
4129 unsigned int count = 0;
4130 for (Output_data_list::const_iterator p = pdl->begin();
4131 p != pdl->end();
4132 ++p)
4133 {
4134 if ((*p)->is_section())
4135 ++count;
4136 }
4137 return count;
4138 }
4139
4140 // Return the section attached to the list segment with the lowest
4141 // load address. This is used when handling a PHDRS clause in a
4142 // linker script.
4143
4144 Output_section*
4145 Output_segment::section_with_lowest_load_address() const
4146 {
4147 Output_section* found = NULL;
4148 uint64_t found_lma = 0;
4149 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4150
4151 Output_section* found_data = found;
4152 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4153 if (found != found_data && found_data != NULL)
4154 {
4155 gold_error(_("nobits section %s may not precede progbits section %s "
4156 "in same segment"),
4157 found->name(), found_data->name());
4158 return NULL;
4159 }
4160
4161 return found;
4162 }
4163
4164 // Look through a list for a section with a lower load address.
4165
4166 void
4167 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4168 Output_section** found,
4169 uint64_t* found_lma) const
4170 {
4171 for (Output_data_list::const_iterator p = pdl->begin();
4172 p != pdl->end();
4173 ++p)
4174 {
4175 if (!(*p)->is_section())
4176 continue;
4177 Output_section* os = static_cast<Output_section*>(*p);
4178 uint64_t lma = (os->has_load_address()
4179 ? os->load_address()
4180 : os->address());
4181 if (*found == NULL || lma < *found_lma)
4182 {
4183 *found = os;
4184 *found_lma = lma;
4185 }
4186 }
4187 }
4188
4189 // Write the segment data into *OPHDR.
4190
4191 template<int size, bool big_endian>
4192 void
4193 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4194 {
4195 ophdr->put_p_type(this->type_);
4196 ophdr->put_p_offset(this->offset_);
4197 ophdr->put_p_vaddr(this->vaddr_);
4198 ophdr->put_p_paddr(this->paddr_);
4199 ophdr->put_p_filesz(this->filesz_);
4200 ophdr->put_p_memsz(this->memsz_);
4201 ophdr->put_p_flags(this->flags_);
4202 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4203 }
4204
4205 // Write the section headers into V.
4206
4207 template<int size, bool big_endian>
4208 unsigned char*
4209 Output_segment::write_section_headers(const Layout* layout,
4210 const Stringpool* secnamepool,
4211 unsigned char* v,
4212 unsigned int *pshndx) const
4213 {
4214 // Every section that is attached to a segment must be attached to a
4215 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4216 // segments.
4217 if (this->type_ != elfcpp::PT_LOAD)
4218 return v;
4219
4220 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4221 &this->output_data_,
4222 v, pshndx);
4223 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4224 &this->output_bss_,
4225 v, pshndx);
4226 return v;
4227 }
4228
4229 template<int size, bool big_endian>
4230 unsigned char*
4231 Output_segment::write_section_headers_list(const Layout* layout,
4232 const Stringpool* secnamepool,
4233 const Output_data_list* pdl,
4234 unsigned char* v,
4235 unsigned int* pshndx) const
4236 {
4237 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4238 for (Output_data_list::const_iterator p = pdl->begin();
4239 p != pdl->end();
4240 ++p)
4241 {
4242 if ((*p)->is_section())
4243 {
4244 const Output_section* ps = static_cast<const Output_section*>(*p);
4245 gold_assert(*pshndx == ps->out_shndx());
4246 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4247 ps->write_header(layout, secnamepool, &oshdr);
4248 v += shdr_size;
4249 ++*pshndx;
4250 }
4251 }
4252 return v;
4253 }
4254
4255 // Print the output sections to the map file.
4256
4257 void
4258 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4259 {
4260 if (this->type() != elfcpp::PT_LOAD)
4261 return;
4262 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4263 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4264 }
4265
4266 // Print an output section list to the map file.
4267
4268 void
4269 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4270 const Output_data_list* pdl) const
4271 {
4272 for (Output_data_list::const_iterator p = pdl->begin();
4273 p != pdl->end();
4274 ++p)
4275 (*p)->print_to_mapfile(mapfile);
4276 }
4277
4278 // Output_file methods.
4279
4280 Output_file::Output_file(const char* name)
4281 : name_(name),
4282 o_(-1),
4283 file_size_(0),
4284 base_(NULL),
4285 map_is_anonymous_(false),
4286 is_temporary_(false)
4287 {
4288 }
4289
4290 // Try to open an existing file. Returns false if the file doesn't
4291 // exist, has a size of 0 or can't be mmapped.
4292
4293 bool
4294 Output_file::open_for_modification()
4295 {
4296 // The name "-" means "stdout".
4297 if (strcmp(this->name_, "-") == 0)
4298 return false;
4299
4300 // Don't bother opening files with a size of zero.
4301 struct stat s;
4302 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4303 return false;
4304
4305 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4306 if (o < 0)
4307 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4308 this->o_ = o;
4309 this->file_size_ = s.st_size;
4310
4311 // If the file can't be mmapped, copying the content to an anonymous
4312 // map will probably negate the performance benefits of incremental
4313 // linking. This could be helped by using views and loading only
4314 // the necessary parts, but this is not supported as of now.
4315 if (!this->map_no_anonymous())
4316 {
4317 release_descriptor(o, true);
4318 this->o_ = -1;
4319 this->file_size_ = 0;
4320 return false;
4321 }
4322
4323 return true;
4324 }
4325
4326 // Open the output file.
4327
4328 void
4329 Output_file::open(off_t file_size)
4330 {
4331 this->file_size_ = file_size;
4332
4333 // Unlink the file first; otherwise the open() may fail if the file
4334 // is busy (e.g. it's an executable that's currently being executed).
4335 //
4336 // However, the linker may be part of a system where a zero-length
4337 // file is created for it to write to, with tight permissions (gcc
4338 // 2.95 did something like this). Unlinking the file would work
4339 // around those permission controls, so we only unlink if the file
4340 // has a non-zero size. We also unlink only regular files to avoid
4341 // trouble with directories/etc.
4342 //
4343 // If we fail, continue; this command is merely a best-effort attempt
4344 // to improve the odds for open().
4345
4346 // We let the name "-" mean "stdout"
4347 if (!this->is_temporary_)
4348 {
4349 if (strcmp(this->name_, "-") == 0)
4350 this->o_ = STDOUT_FILENO;
4351 else
4352 {
4353 struct stat s;
4354 if (::stat(this->name_, &s) == 0
4355 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4356 {
4357 if (s.st_size != 0)
4358 ::unlink(this->name_);
4359 else if (!parameters->options().relocatable())
4360 {
4361 // If we don't unlink the existing file, add execute
4362 // permission where read permissions already exist
4363 // and where the umask permits.
4364 int mask = ::umask(0);
4365 ::umask(mask);
4366 s.st_mode |= (s.st_mode & 0444) >> 2;
4367 ::chmod(this->name_, s.st_mode & ~mask);
4368 }
4369 }
4370
4371 int mode = parameters->options().relocatable() ? 0666 : 0777;
4372 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4373 mode);
4374 if (o < 0)
4375 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4376 this->o_ = o;
4377 }
4378 }
4379
4380 this->map();
4381 }
4382
4383 // Resize the output file.
4384
4385 void
4386 Output_file::resize(off_t file_size)
4387 {
4388 // If the mmap is mapping an anonymous memory buffer, this is easy:
4389 // just mremap to the new size. If it's mapping to a file, we want
4390 // to unmap to flush to the file, then remap after growing the file.
4391 if (this->map_is_anonymous_)
4392 {
4393 void* base = ::mremap(this->base_, this->file_size_, file_size,
4394 MREMAP_MAYMOVE);
4395 if (base == MAP_FAILED)
4396 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4397 this->base_ = static_cast<unsigned char*>(base);
4398 this->file_size_ = file_size;
4399 }
4400 else
4401 {
4402 this->unmap();
4403 this->file_size_ = file_size;
4404 if (!this->map_no_anonymous())
4405 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4406 }
4407 }
4408
4409 // Map an anonymous block of memory which will later be written to the
4410 // file. Return whether the map succeeded.
4411
4412 bool
4413 Output_file::map_anonymous()
4414 {
4415 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4416 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4417 if (base != MAP_FAILED)
4418 {
4419 this->map_is_anonymous_ = true;
4420 this->base_ = static_cast<unsigned char*>(base);
4421 return true;
4422 }
4423 return false;
4424 }
4425
4426 // Map the file into memory. Return whether the mapping succeeded.
4427
4428 bool
4429 Output_file::map_no_anonymous()
4430 {
4431 const int o = this->o_;
4432
4433 // If the output file is not a regular file, don't try to mmap it;
4434 // instead, we'll mmap a block of memory (an anonymous buffer), and
4435 // then later write the buffer to the file.
4436 void* base;
4437 struct stat statbuf;
4438 if (o == STDOUT_FILENO || o == STDERR_FILENO
4439 || ::fstat(o, &statbuf) != 0
4440 || !S_ISREG(statbuf.st_mode)
4441 || this->is_temporary_)
4442 return false;
4443
4444 // Ensure that we have disk space available for the file. If we
4445 // don't do this, it is possible that we will call munmap, close,
4446 // and exit with dirty buffers still in the cache with no assigned
4447 // disk blocks. If the disk is out of space at that point, the
4448 // output file will wind up incomplete, but we will have already
4449 // exited. The alternative to fallocate would be to use fdatasync,
4450 // but that would be a more significant performance hit.
4451 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4452 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4453
4454 // Map the file into memory.
4455 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4456 MAP_SHARED, o, 0);
4457
4458 // The mmap call might fail because of file system issues: the file
4459 // system might not support mmap at all, or it might not support
4460 // mmap with PROT_WRITE.
4461 if (base == MAP_FAILED)
4462 return false;
4463
4464 this->map_is_anonymous_ = false;
4465 this->base_ = static_cast<unsigned char*>(base);
4466 return true;
4467 }
4468
4469 // Map the file into memory.
4470
4471 void
4472 Output_file::map()
4473 {
4474 if (this->map_no_anonymous())
4475 return;
4476
4477 // The mmap call might fail because of file system issues: the file
4478 // system might not support mmap at all, or it might not support
4479 // mmap with PROT_WRITE. I'm not sure which errno values we will
4480 // see in all cases, so if the mmap fails for any reason and we
4481 // don't care about file contents, try for an anonymous map.
4482 if (this->map_anonymous())
4483 return;
4484
4485 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4486 this->name_, static_cast<unsigned long>(this->file_size_),
4487 strerror(errno));
4488 }
4489
4490 // Unmap the file from memory.
4491
4492 void
4493 Output_file::unmap()
4494 {
4495 if (::munmap(this->base_, this->file_size_) < 0)
4496 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4497 this->base_ = NULL;
4498 }
4499
4500 // Close the output file.
4501
4502 void
4503 Output_file::close()
4504 {
4505 // If the map isn't file-backed, we need to write it now.
4506 if (this->map_is_anonymous_ && !this->is_temporary_)
4507 {
4508 size_t bytes_to_write = this->file_size_;
4509 size_t offset = 0;
4510 while (bytes_to_write > 0)
4511 {
4512 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4513 bytes_to_write);
4514 if (bytes_written == 0)
4515 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4516 else if (bytes_written < 0)
4517 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4518 else
4519 {
4520 bytes_to_write -= bytes_written;
4521 offset += bytes_written;
4522 }
4523 }
4524 }
4525 this->unmap();
4526
4527 // We don't close stdout or stderr
4528 if (this->o_ != STDOUT_FILENO
4529 && this->o_ != STDERR_FILENO
4530 && !this->is_temporary_)
4531 if (::close(this->o_) < 0)
4532 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4533 this->o_ = -1;
4534 }
4535
4536 // Instantiate the templates we need. We could use the configure
4537 // script to restrict this to only the ones for implemented targets.
4538
4539 #ifdef HAVE_TARGET_32_LITTLE
4540 template
4541 off_t
4542 Output_section::add_input_section<32, false>(
4543 Layout* layout,
4544 Sized_relobj<32, false>* object,
4545 unsigned int shndx,
4546 const char* secname,
4547 const elfcpp::Shdr<32, false>& shdr,
4548 unsigned int reloc_shndx,
4549 bool have_sections_script);
4550 #endif
4551
4552 #ifdef HAVE_TARGET_32_BIG
4553 template
4554 off_t
4555 Output_section::add_input_section<32, true>(
4556 Layout* layout,
4557 Sized_relobj<32, true>* object,
4558 unsigned int shndx,
4559 const char* secname,
4560 const elfcpp::Shdr<32, true>& shdr,
4561 unsigned int reloc_shndx,
4562 bool have_sections_script);
4563 #endif
4564
4565 #ifdef HAVE_TARGET_64_LITTLE
4566 template
4567 off_t
4568 Output_section::add_input_section<64, false>(
4569 Layout* layout,
4570 Sized_relobj<64, false>* object,
4571 unsigned int shndx,
4572 const char* secname,
4573 const elfcpp::Shdr<64, false>& shdr,
4574 unsigned int reloc_shndx,
4575 bool have_sections_script);
4576 #endif
4577
4578 #ifdef HAVE_TARGET_64_BIG
4579 template
4580 off_t
4581 Output_section::add_input_section<64, true>(
4582 Layout* layout,
4583 Sized_relobj<64, true>* object,
4584 unsigned int shndx,
4585 const char* secname,
4586 const elfcpp::Shdr<64, true>& shdr,
4587 unsigned int reloc_shndx,
4588 bool have_sections_script);
4589 #endif
4590
4591 #ifdef HAVE_TARGET_32_LITTLE
4592 template
4593 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4594 #endif
4595
4596 #ifdef HAVE_TARGET_32_BIG
4597 template
4598 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4599 #endif
4600
4601 #ifdef HAVE_TARGET_64_LITTLE
4602 template
4603 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4604 #endif
4605
4606 #ifdef HAVE_TARGET_64_BIG
4607 template
4608 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4609 #endif
4610
4611 #ifdef HAVE_TARGET_32_LITTLE
4612 template
4613 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4614 #endif
4615
4616 #ifdef HAVE_TARGET_32_BIG
4617 template
4618 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4619 #endif
4620
4621 #ifdef HAVE_TARGET_64_LITTLE
4622 template
4623 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4624 #endif
4625
4626 #ifdef HAVE_TARGET_64_BIG
4627 template
4628 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4629 #endif
4630
4631 #ifdef HAVE_TARGET_32_LITTLE
4632 template
4633 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4634 #endif
4635
4636 #ifdef HAVE_TARGET_32_BIG
4637 template
4638 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4639 #endif
4640
4641 #ifdef HAVE_TARGET_64_LITTLE
4642 template
4643 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4644 #endif
4645
4646 #ifdef HAVE_TARGET_64_BIG
4647 template
4648 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4649 #endif
4650
4651 #ifdef HAVE_TARGET_32_LITTLE
4652 template
4653 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4654 #endif
4655
4656 #ifdef HAVE_TARGET_32_BIG
4657 template
4658 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4659 #endif
4660
4661 #ifdef HAVE_TARGET_64_LITTLE
4662 template
4663 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4664 #endif
4665
4666 #ifdef HAVE_TARGET_64_BIG
4667 template
4668 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4669 #endif
4670
4671 #ifdef HAVE_TARGET_32_LITTLE
4672 template
4673 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4674 #endif
4675
4676 #ifdef HAVE_TARGET_32_BIG
4677 template
4678 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4679 #endif
4680
4681 #ifdef HAVE_TARGET_64_LITTLE
4682 template
4683 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4684 #endif
4685
4686 #ifdef HAVE_TARGET_64_BIG
4687 template
4688 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4689 #endif
4690
4691 #ifdef HAVE_TARGET_32_LITTLE
4692 template
4693 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4694 #endif
4695
4696 #ifdef HAVE_TARGET_32_BIG
4697 template
4698 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4699 #endif
4700
4701 #ifdef HAVE_TARGET_64_LITTLE
4702 template
4703 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4704 #endif
4705
4706 #ifdef HAVE_TARGET_64_BIG
4707 template
4708 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4709 #endif
4710
4711 #ifdef HAVE_TARGET_32_LITTLE
4712 template
4713 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4714 #endif
4715
4716 #ifdef HAVE_TARGET_32_BIG
4717 template
4718 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4719 #endif
4720
4721 #ifdef HAVE_TARGET_64_LITTLE
4722 template
4723 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4724 #endif
4725
4726 #ifdef HAVE_TARGET_64_BIG
4727 template
4728 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4729 #endif
4730
4731 #ifdef HAVE_TARGET_32_LITTLE
4732 template
4733 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4734 #endif
4735
4736 #ifdef HAVE_TARGET_32_BIG
4737 template
4738 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4739 #endif
4740
4741 #ifdef HAVE_TARGET_64_LITTLE
4742 template
4743 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4744 #endif
4745
4746 #ifdef HAVE_TARGET_64_BIG
4747 template
4748 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4749 #endif
4750
4751 #ifdef HAVE_TARGET_32_LITTLE
4752 template
4753 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4754 #endif
4755
4756 #ifdef HAVE_TARGET_32_BIG
4757 template
4758 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4759 #endif
4760
4761 #ifdef HAVE_TARGET_64_LITTLE
4762 template
4763 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4764 #endif
4765
4766 #ifdef HAVE_TARGET_64_BIG
4767 template
4768 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4769 #endif
4770
4771 #ifdef HAVE_TARGET_32_LITTLE
4772 template
4773 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4774 #endif
4775
4776 #ifdef HAVE_TARGET_32_BIG
4777 template
4778 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4779 #endif
4780
4781 #ifdef HAVE_TARGET_64_LITTLE
4782 template
4783 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4784 #endif
4785
4786 #ifdef HAVE_TARGET_64_BIG
4787 template
4788 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4789 #endif
4790
4791 #ifdef HAVE_TARGET_32_LITTLE
4792 template
4793 class Output_data_group<32, false>;
4794 #endif
4795
4796 #ifdef HAVE_TARGET_32_BIG
4797 template
4798 class Output_data_group<32, true>;
4799 #endif
4800
4801 #ifdef HAVE_TARGET_64_LITTLE
4802 template
4803 class Output_data_group<64, false>;
4804 #endif
4805
4806 #ifdef HAVE_TARGET_64_BIG
4807 template
4808 class Output_data_group<64, true>;
4809 #endif
4810
4811 #ifdef HAVE_TARGET_32_LITTLE
4812 template
4813 class Output_data_got<32, false>;
4814 #endif
4815
4816 #ifdef HAVE_TARGET_32_BIG
4817 template
4818 class Output_data_got<32, true>;
4819 #endif
4820
4821 #ifdef HAVE_TARGET_64_LITTLE
4822 template
4823 class Output_data_got<64, false>;
4824 #endif
4825
4826 #ifdef HAVE_TARGET_64_BIG
4827 template
4828 class Output_data_got<64, true>;
4829 #endif
4830
4831 } // End namespace gold.
This page took 0.122586 seconds and 5 git commands to generate.