Copyright update for binutils
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367 unsigned int got_indx,
1368 unsigned char* pov) const
1369 {
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
1379 Symbol* gsym = this->u_.gsym;
1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381 val = parameters->target().plt_address_for_global(gsym);
1382 else
1383 {
1384 switch (parameters->size_and_endianness())
1385 {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408 #endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
1416 }
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
1427 return;
1428 val = this->u_.constant;
1429 break;
1430
1431 default:
1432 {
1433 const Relobj* object = this->u_.object;
1434 const unsigned int lsi = this->local_sym_index_;
1435 bool is_tls = object->local_is_tls(lsi);
1436 if (this->use_plt_or_tls_offset_ && !is_tls)
1437 val = parameters->target().plt_address_for_local(object, lsi);
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
1446 }
1447 break;
1448 }
1449
1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT. This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462 Symbol* gsym,
1463 unsigned int got_type)
1464 {
1465 if (gsym->has_got_offset(got_type))
1466 return false;
1467
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
1470 return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
1479 {
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
1485 return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494 Symbol* gsym,
1495 unsigned int got_type,
1496 Output_data_reloc_generic* rel_dyn,
1497 unsigned int r_type)
1498 {
1499 if (gsym->has_got_offset(got_type))
1500 return;
1501
1502 unsigned int got_offset = this->add_got_entry(Got_entry());
1503 gsym->set_got_offset(got_type, got_offset);
1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513 Symbol* gsym,
1514 unsigned int got_type,
1515 Output_data_reloc_generic* rel_dyn,
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
1518 {
1519 if (gsym->has_got_offset(got_type))
1520 return;
1521
1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523 gsym->set_got_offset(got_type, got_offset);
1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526 if (r_type_2 != 0)
1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
1528 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT. This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538 Relobj* object,
1539 unsigned int symndx,
1540 unsigned int got_type)
1541 {
1542 if (object->local_has_got_offset(symndx, got_type))
1543 return false;
1544
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
1548 return true;
1549 }
1550
1551 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1552 // true if this is a new GOT entry, false if the symbol already has a GOT
1553 // entry.
1554
1555 template<int got_size, bool big_endian>
1556 bool
1557 Output_data_got<got_size, big_endian>::add_local(
1558 Relobj* object,
1559 unsigned int symndx,
1560 unsigned int got_type,
1561 uint64_t addend)
1562 {
1563 if (object->local_has_got_offset(symndx, got_type, addend))
1564 return false;
1565
1566 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1567 false, addend));
1568 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1569 return true;
1570 }
1571
1572 // Like add_local, but use the PLT offset.
1573
1574 template<int got_size, bool big_endian>
1575 bool
1576 Output_data_got<got_size, big_endian>::add_local_plt(
1577 Relobj* object,
1578 unsigned int symndx,
1579 unsigned int got_type)
1580 {
1581 if (object->local_has_got_offset(symndx, got_type))
1582 return false;
1583
1584 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1585 true));
1586 object->set_local_got_offset(symndx, got_type, got_offset);
1587 return true;
1588 }
1589
1590 // Add an entry for a local symbol to the GOT, and add a dynamic
1591 // relocation of type R_TYPE for the GOT entry.
1592
1593 template<int got_size, bool big_endian>
1594 void
1595 Output_data_got<got_size, big_endian>::add_local_with_rel(
1596 Relobj* object,
1597 unsigned int symndx,
1598 unsigned int got_type,
1599 Output_data_reloc_generic* rel_dyn,
1600 unsigned int r_type)
1601 {
1602 if (object->local_has_got_offset(symndx, got_type))
1603 return;
1604
1605 unsigned int got_offset = this->add_got_entry(Got_entry());
1606 object->set_local_got_offset(symndx, got_type, got_offset);
1607 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1608 }
1609
1610 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1611 // relocation of type R_TYPE for the GOT entry.
1612
1613 template<int got_size, bool big_endian>
1614 void
1615 Output_data_got<got_size, big_endian>::add_local_with_rel(
1616 Relobj* object,
1617 unsigned int symndx,
1618 unsigned int got_type,
1619 Output_data_reloc_generic* rel_dyn,
1620 unsigned int r_type, uint64_t addend)
1621 {
1622 if (object->local_has_got_offset(symndx, got_type, addend))
1623 return;
1624
1625 unsigned int got_offset = this->add_got_entry(Got_entry());
1626 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1627 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1628 addend);
1629 }
1630
1631 // Add a pair of entries for a local symbol to the GOT, and add
1632 // a dynamic relocation of type R_TYPE using the section symbol of
1633 // the output section to which input section SHNDX maps, on the first.
1634 // The first got entry will have a value of zero, the second the
1635 // value of the local symbol.
1636 template<int got_size, bool big_endian>
1637 void
1638 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1639 Relobj* object,
1640 unsigned int symndx,
1641 unsigned int shndx,
1642 unsigned int got_type,
1643 Output_data_reloc_generic* rel_dyn,
1644 unsigned int r_type)
1645 {
1646 if (object->local_has_got_offset(symndx, got_type))
1647 return;
1648
1649 unsigned int got_offset =
1650 this->add_got_entry_pair(Got_entry(),
1651 Got_entry(object, symndx, false));
1652 object->set_local_got_offset(symndx, got_type, got_offset);
1653 Output_section* os = object->output_section(shndx);
1654 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1655 }
1656
1657 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1658 // a dynamic relocation of type R_TYPE using the section symbol of
1659 // the output section to which input section SHNDX maps, on the first.
1660 // The first got entry will have a value of zero, the second the
1661 // value of the local symbol.
1662 template<int got_size, bool big_endian>
1663 void
1664 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1665 Relobj* object,
1666 unsigned int symndx,
1667 unsigned int shndx,
1668 unsigned int got_type,
1669 Output_data_reloc_generic* rel_dyn,
1670 unsigned int r_type, uint64_t addend)
1671 {
1672 if (object->local_has_got_offset(symndx, got_type, addend))
1673 return;
1674
1675 unsigned int got_offset =
1676 this->add_got_entry_pair(Got_entry(),
1677 Got_entry(object, symndx, false, addend));
1678 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1679 Output_section* os = object->output_section(shndx);
1680 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1681 }
1682
1683 // Add a pair of entries for a local symbol to the GOT, and add
1684 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1685 // The first got entry will have a value of zero, the second the
1686 // value of the local symbol offset by Target::tls_offset_for_local.
1687 template<int got_size, bool big_endian>
1688 void
1689 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1690 Relobj* object,
1691 unsigned int symndx,
1692 unsigned int got_type,
1693 Output_data_reloc_generic* rel_dyn,
1694 unsigned int r_type)
1695 {
1696 if (object->local_has_got_offset(symndx, got_type))
1697 return;
1698
1699 unsigned int got_offset
1700 = this->add_got_entry_pair(Got_entry(),
1701 Got_entry(object, symndx, true));
1702 object->set_local_got_offset(symndx, got_type, got_offset);
1703 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1704 }
1705
1706 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1707
1708 template<int got_size, bool big_endian>
1709 void
1710 Output_data_got<got_size, big_endian>::reserve_local(
1711 unsigned int i,
1712 Relobj* object,
1713 unsigned int sym_index,
1714 unsigned int got_type)
1715 {
1716 this->do_reserve_slot(i);
1717 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1718 }
1719
1720 // Reserve a slot in the GOT for a global symbol.
1721
1722 template<int got_size, bool big_endian>
1723 void
1724 Output_data_got<got_size, big_endian>::reserve_global(
1725 unsigned int i,
1726 Symbol* gsym,
1727 unsigned int got_type)
1728 {
1729 this->do_reserve_slot(i);
1730 gsym->set_got_offset(got_type, this->got_offset(i));
1731 }
1732
1733 // Write out the GOT.
1734
1735 template<int got_size, bool big_endian>
1736 void
1737 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1738 {
1739 const int add = got_size / 8;
1740
1741 const off_t off = this->offset();
1742 const off_t oview_size = this->data_size();
1743 unsigned char* const oview = of->get_output_view(off, oview_size);
1744
1745 unsigned char* pov = oview;
1746 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1747 {
1748 this->entries_[i].write(i, pov);
1749 pov += add;
1750 }
1751
1752 gold_assert(pov - oview == oview_size);
1753
1754 of->write_output_view(off, oview_size, oview);
1755
1756 // We no longer need the GOT entries.
1757 this->entries_.clear();
1758 }
1759
1760 // Create a new GOT entry and return its offset.
1761
1762 template<int got_size, bool big_endian>
1763 unsigned int
1764 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1765 {
1766 if (!this->is_data_size_valid())
1767 {
1768 this->entries_.push_back(got_entry);
1769 this->set_got_size();
1770 return this->last_got_offset();
1771 }
1772 else
1773 {
1774 // For an incremental update, find an available slot.
1775 off_t got_offset = this->free_list_.allocate(got_size / 8,
1776 got_size / 8, 0);
1777 if (got_offset == -1)
1778 gold_fallback(_("out of patch space (GOT);"
1779 " relink with --incremental-full"));
1780 unsigned int got_index = got_offset / (got_size / 8);
1781 gold_assert(got_index < this->entries_.size());
1782 this->entries_[got_index] = got_entry;
1783 return static_cast<unsigned int>(got_offset);
1784 }
1785 }
1786
1787 // Create a pair of new GOT entries and return the offset of the first.
1788
1789 template<int got_size, bool big_endian>
1790 unsigned int
1791 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1792 Got_entry got_entry_1,
1793 Got_entry got_entry_2)
1794 {
1795 if (!this->is_data_size_valid())
1796 {
1797 unsigned int got_offset;
1798 this->entries_.push_back(got_entry_1);
1799 got_offset = this->last_got_offset();
1800 this->entries_.push_back(got_entry_2);
1801 this->set_got_size();
1802 return got_offset;
1803 }
1804 else
1805 {
1806 // For an incremental update, find an available pair of slots.
1807 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1808 got_size / 8, 0);
1809 if (got_offset == -1)
1810 gold_fallback(_("out of patch space (GOT);"
1811 " relink with --incremental-full"));
1812 unsigned int got_index = got_offset / (got_size / 8);
1813 gold_assert(got_index < this->entries_.size());
1814 this->entries_[got_index] = got_entry_1;
1815 this->entries_[got_index + 1] = got_entry_2;
1816 return static_cast<unsigned int>(got_offset);
1817 }
1818 }
1819
1820 // Replace GOT entry I with a new value.
1821
1822 template<int got_size, bool big_endian>
1823 void
1824 Output_data_got<got_size, big_endian>::replace_got_entry(
1825 unsigned int i,
1826 Got_entry got_entry)
1827 {
1828 gold_assert(i < this->entries_.size());
1829 this->entries_[i] = got_entry;
1830 }
1831
1832 // Output_data_dynamic::Dynamic_entry methods.
1833
1834 // Write out the entry.
1835
1836 template<int size, bool big_endian>
1837 void
1838 Output_data_dynamic::Dynamic_entry::write(
1839 unsigned char* pov,
1840 const Stringpool* pool) const
1841 {
1842 typename elfcpp::Elf_types<size>::Elf_WXword val;
1843 switch (this->offset_)
1844 {
1845 case DYNAMIC_NUMBER:
1846 val = this->u_.val;
1847 break;
1848
1849 case DYNAMIC_SECTION_SIZE:
1850 val = this->u_.od->data_size();
1851 if (this->od2 != NULL)
1852 val += this->od2->data_size();
1853 break;
1854
1855 case DYNAMIC_SYMBOL:
1856 {
1857 const Sized_symbol<size>* s =
1858 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1859 val = s->value();
1860 }
1861 break;
1862
1863 case DYNAMIC_STRING:
1864 val = pool->get_offset(this->u_.str);
1865 break;
1866
1867 case DYNAMIC_CUSTOM:
1868 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1869 break;
1870
1871 default:
1872 val = this->u_.od->address() + this->offset_;
1873 break;
1874 }
1875
1876 elfcpp::Dyn_write<size, big_endian> dw(pov);
1877 dw.put_d_tag(this->tag_);
1878 dw.put_d_val(val);
1879 }
1880
1881 // Output_data_dynamic methods.
1882
1883 // Adjust the output section to set the entry size.
1884
1885 void
1886 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1887 {
1888 if (parameters->target().get_size() == 32)
1889 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1890 else if (parameters->target().get_size() == 64)
1891 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1892 else
1893 gold_unreachable();
1894 }
1895
1896 // Set the final data size.
1897
1898 void
1899 Output_data_dynamic::set_final_data_size()
1900 {
1901 // Add the terminating entry if it hasn't been added.
1902 // Because of relaxation, we can run this multiple times.
1903 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1904 {
1905 int extra = parameters->options().spare_dynamic_tags();
1906 for (int i = 0; i < extra; ++i)
1907 this->add_constant(elfcpp::DT_NULL, 0);
1908 this->add_constant(elfcpp::DT_NULL, 0);
1909 }
1910
1911 int dyn_size;
1912 if (parameters->target().get_size() == 32)
1913 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1914 else if (parameters->target().get_size() == 64)
1915 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1916 else
1917 gold_unreachable();
1918 this->set_data_size(this->entries_.size() * dyn_size);
1919 }
1920
1921 // Write out the dynamic entries.
1922
1923 void
1924 Output_data_dynamic::do_write(Output_file* of)
1925 {
1926 switch (parameters->size_and_endianness())
1927 {
1928 #ifdef HAVE_TARGET_32_LITTLE
1929 case Parameters::TARGET_32_LITTLE:
1930 this->sized_write<32, false>(of);
1931 break;
1932 #endif
1933 #ifdef HAVE_TARGET_32_BIG
1934 case Parameters::TARGET_32_BIG:
1935 this->sized_write<32, true>(of);
1936 break;
1937 #endif
1938 #ifdef HAVE_TARGET_64_LITTLE
1939 case Parameters::TARGET_64_LITTLE:
1940 this->sized_write<64, false>(of);
1941 break;
1942 #endif
1943 #ifdef HAVE_TARGET_64_BIG
1944 case Parameters::TARGET_64_BIG:
1945 this->sized_write<64, true>(of);
1946 break;
1947 #endif
1948 default:
1949 gold_unreachable();
1950 }
1951 }
1952
1953 template<int size, bool big_endian>
1954 void
1955 Output_data_dynamic::sized_write(Output_file* of)
1956 {
1957 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1958
1959 const off_t offset = this->offset();
1960 const off_t oview_size = this->data_size();
1961 unsigned char* const oview = of->get_output_view(offset, oview_size);
1962
1963 unsigned char* pov = oview;
1964 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1965 p != this->entries_.end();
1966 ++p)
1967 {
1968 p->write<size, big_endian>(pov, this->pool_);
1969 pov += dyn_size;
1970 }
1971
1972 gold_assert(pov - oview == oview_size);
1973
1974 of->write_output_view(offset, oview_size, oview);
1975
1976 // We no longer need the dynamic entries.
1977 this->entries_.clear();
1978 }
1979
1980 // Class Output_symtab_xindex.
1981
1982 void
1983 Output_symtab_xindex::do_write(Output_file* of)
1984 {
1985 const off_t offset = this->offset();
1986 const off_t oview_size = this->data_size();
1987 unsigned char* const oview = of->get_output_view(offset, oview_size);
1988
1989 memset(oview, 0, oview_size);
1990
1991 if (parameters->target().is_big_endian())
1992 this->endian_do_write<true>(oview);
1993 else
1994 this->endian_do_write<false>(oview);
1995
1996 of->write_output_view(offset, oview_size, oview);
1997
1998 // We no longer need the data.
1999 this->entries_.clear();
2000 }
2001
2002 template<bool big_endian>
2003 void
2004 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2005 {
2006 for (Xindex_entries::const_iterator p = this->entries_.begin();
2007 p != this->entries_.end();
2008 ++p)
2009 {
2010 unsigned int symndx = p->first;
2011 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2012 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2013 }
2014 }
2015
2016 // Output_fill_debug_info methods.
2017
2018 // Return the minimum size needed for a dummy compilation unit header.
2019
2020 size_t
2021 Output_fill_debug_info::do_minimum_hole_size() const
2022 {
2023 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2024 // address_size.
2025 const size_t len = 4 + 2 + 4 + 1;
2026 // For type units, add type_signature, type_offset.
2027 if (this->is_debug_types_)
2028 return len + 8 + 4;
2029 return len;
2030 }
2031
2032 // Write a dummy compilation unit header to fill a hole in the
2033 // .debug_info or .debug_types section.
2034
2035 void
2036 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2037 {
2038 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2039 static_cast<long>(off), static_cast<long>(len));
2040
2041 gold_assert(len >= this->do_minimum_hole_size());
2042
2043 unsigned char* const oview = of->get_output_view(off, len);
2044 unsigned char* pov = oview;
2045
2046 // Write header fields: unit_length, version, debug_abbrev_offset,
2047 // address_size.
2048 if (this->is_big_endian())
2049 {
2050 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2051 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2052 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2053 }
2054 else
2055 {
2056 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2057 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2058 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2059 }
2060 pov += 4 + 2 + 4;
2061 *pov++ = 4;
2062
2063 // For type units, the additional header fields -- type_signature,
2064 // type_offset -- can be filled with zeroes.
2065
2066 // Fill the remainder of the free space with zeroes. The first
2067 // zero should tell the consumer there are no DIEs to read in this
2068 // compilation unit.
2069 if (pov < oview + len)
2070 memset(pov, 0, oview + len - pov);
2071
2072 of->write_output_view(off, len, oview);
2073 }
2074
2075 // Output_fill_debug_line methods.
2076
2077 // Return the minimum size needed for a dummy line number program header.
2078
2079 size_t
2080 Output_fill_debug_line::do_minimum_hole_size() const
2081 {
2082 // Line number program header fields: unit_length, version, header_length,
2083 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2084 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2085 const size_t len = 4 + 2 + 4 + this->header_length;
2086 return len;
2087 }
2088
2089 // Write a dummy line number program header to fill a hole in the
2090 // .debug_line section.
2091
2092 void
2093 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2094 {
2095 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2096 static_cast<long>(off), static_cast<long>(len));
2097
2098 gold_assert(len >= this->do_minimum_hole_size());
2099
2100 unsigned char* const oview = of->get_output_view(off, len);
2101 unsigned char* pov = oview;
2102
2103 // Write header fields: unit_length, version, header_length,
2104 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2105 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2106 // We set the header_length field to cover the entire hole, so the
2107 // line number program is empty.
2108 if (this->is_big_endian())
2109 {
2110 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2111 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2112 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2113 }
2114 else
2115 {
2116 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2117 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2118 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2119 }
2120 pov += 4 + 2 + 4;
2121 *pov++ = 1; // minimum_instruction_length
2122 *pov++ = 0; // default_is_stmt
2123 *pov++ = 0; // line_base
2124 *pov++ = 5; // line_range
2125 *pov++ = 13; // opcode_base
2126 *pov++ = 0; // standard_opcode_lengths[1]
2127 *pov++ = 1; // standard_opcode_lengths[2]
2128 *pov++ = 1; // standard_opcode_lengths[3]
2129 *pov++ = 1; // standard_opcode_lengths[4]
2130 *pov++ = 1; // standard_opcode_lengths[5]
2131 *pov++ = 0; // standard_opcode_lengths[6]
2132 *pov++ = 0; // standard_opcode_lengths[7]
2133 *pov++ = 0; // standard_opcode_lengths[8]
2134 *pov++ = 1; // standard_opcode_lengths[9]
2135 *pov++ = 0; // standard_opcode_lengths[10]
2136 *pov++ = 0; // standard_opcode_lengths[11]
2137 *pov++ = 1; // standard_opcode_lengths[12]
2138 *pov++ = 0; // include_directories (empty)
2139 *pov++ = 0; // filenames (empty)
2140
2141 // Some consumers don't check the header_length field, and simply
2142 // start reading the line number program immediately following the
2143 // header. For those consumers, we fill the remainder of the free
2144 // space with DW_LNS_set_basic_block opcodes. These are effectively
2145 // no-ops: the resulting line table program will not create any rows.
2146 if (pov < oview + len)
2147 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2148
2149 of->write_output_view(off, len, oview);
2150 }
2151
2152 // Output_section::Input_section methods.
2153
2154 // Return the current data size. For an input section we store the size here.
2155 // For an Output_section_data, we have to ask it for the size.
2156
2157 off_t
2158 Output_section::Input_section::current_data_size() const
2159 {
2160 if (this->is_input_section())
2161 return this->u1_.data_size;
2162 else
2163 {
2164 this->u2_.posd->pre_finalize_data_size();
2165 return this->u2_.posd->current_data_size();
2166 }
2167 }
2168
2169 // Return the data size. For an input section we store the size here.
2170 // For an Output_section_data, we have to ask it for the size.
2171
2172 off_t
2173 Output_section::Input_section::data_size() const
2174 {
2175 if (this->is_input_section())
2176 return this->u1_.data_size;
2177 else
2178 return this->u2_.posd->data_size();
2179 }
2180
2181 // Return the object for an input section.
2182
2183 Relobj*
2184 Output_section::Input_section::relobj() const
2185 {
2186 if (this->is_input_section())
2187 return this->u2_.object;
2188 else if (this->is_merge_section())
2189 {
2190 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2191 return this->u2_.pomb->first_relobj();
2192 }
2193 else if (this->is_relaxed_input_section())
2194 return this->u2_.poris->relobj();
2195 else
2196 gold_unreachable();
2197 }
2198
2199 // Return the input section index for an input section.
2200
2201 unsigned int
2202 Output_section::Input_section::shndx() const
2203 {
2204 if (this->is_input_section())
2205 return this->shndx_;
2206 else if (this->is_merge_section())
2207 {
2208 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2209 return this->u2_.pomb->first_shndx();
2210 }
2211 else if (this->is_relaxed_input_section())
2212 return this->u2_.poris->shndx();
2213 else
2214 gold_unreachable();
2215 }
2216
2217 // Set the address and file offset.
2218
2219 void
2220 Output_section::Input_section::set_address_and_file_offset(
2221 uint64_t address,
2222 off_t file_offset,
2223 off_t section_file_offset)
2224 {
2225 if (this->is_input_section())
2226 this->u2_.object->set_section_offset(this->shndx_,
2227 file_offset - section_file_offset);
2228 else
2229 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2230 }
2231
2232 // Reset the address and file offset.
2233
2234 void
2235 Output_section::Input_section::reset_address_and_file_offset()
2236 {
2237 if (!this->is_input_section())
2238 this->u2_.posd->reset_address_and_file_offset();
2239 }
2240
2241 // Finalize the data size.
2242
2243 void
2244 Output_section::Input_section::finalize_data_size()
2245 {
2246 if (!this->is_input_section())
2247 this->u2_.posd->finalize_data_size();
2248 }
2249
2250 // Try to turn an input offset into an output offset. We want to
2251 // return the output offset relative to the start of this
2252 // Input_section in the output section.
2253
2254 inline bool
2255 Output_section::Input_section::output_offset(
2256 const Relobj* object,
2257 unsigned int shndx,
2258 section_offset_type offset,
2259 section_offset_type* poutput) const
2260 {
2261 if (!this->is_input_section())
2262 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2263 else
2264 {
2265 if (this->shndx_ != shndx || this->u2_.object != object)
2266 return false;
2267 *poutput = offset;
2268 return true;
2269 }
2270 }
2271
2272 // Write out the data. We don't have to do anything for an input
2273 // section--they are handled via Object::relocate--but this is where
2274 // we write out the data for an Output_section_data.
2275
2276 void
2277 Output_section::Input_section::write(Output_file* of)
2278 {
2279 if (!this->is_input_section())
2280 this->u2_.posd->write(of);
2281 }
2282
2283 // Write the data to a buffer. As for write(), we don't have to do
2284 // anything for an input section.
2285
2286 void
2287 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2288 {
2289 if (!this->is_input_section())
2290 this->u2_.posd->write_to_buffer(buffer);
2291 }
2292
2293 // Print to a map file.
2294
2295 void
2296 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2297 {
2298 switch (this->shndx_)
2299 {
2300 case OUTPUT_SECTION_CODE:
2301 case MERGE_DATA_SECTION_CODE:
2302 case MERGE_STRING_SECTION_CODE:
2303 this->u2_.posd->print_to_mapfile(mapfile);
2304 break;
2305
2306 case RELAXED_INPUT_SECTION_CODE:
2307 {
2308 Output_relaxed_input_section* relaxed_section =
2309 this->relaxed_input_section();
2310 mapfile->print_input_section(relaxed_section->relobj(),
2311 relaxed_section->shndx());
2312 }
2313 break;
2314 default:
2315 mapfile->print_input_section(this->u2_.object, this->shndx_);
2316 break;
2317 }
2318 }
2319
2320 // Output_section methods.
2321
2322 // Construct an Output_section. NAME will point into a Stringpool.
2323
2324 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2325 elfcpp::Elf_Xword flags)
2326 : name_(name),
2327 addralign_(0),
2328 entsize_(0),
2329 load_address_(0),
2330 link_section_(NULL),
2331 link_(0),
2332 info_section_(NULL),
2333 info_symndx_(NULL),
2334 info_(0),
2335 type_(type),
2336 flags_(flags),
2337 order_(ORDER_INVALID),
2338 out_shndx_(-1U),
2339 symtab_index_(0),
2340 dynsym_index_(0),
2341 input_sections_(),
2342 first_input_offset_(0),
2343 fills_(),
2344 postprocessing_buffer_(NULL),
2345 needs_symtab_index_(false),
2346 needs_dynsym_index_(false),
2347 should_link_to_symtab_(false),
2348 should_link_to_dynsym_(false),
2349 after_input_sections_(false),
2350 requires_postprocessing_(false),
2351 found_in_sections_clause_(false),
2352 has_load_address_(false),
2353 info_uses_section_index_(false),
2354 input_section_order_specified_(false),
2355 may_sort_attached_input_sections_(false),
2356 must_sort_attached_input_sections_(false),
2357 attached_input_sections_are_sorted_(false),
2358 is_relro_(false),
2359 is_small_section_(false),
2360 is_large_section_(false),
2361 generate_code_fills_at_write_(false),
2362 is_entsize_zero_(false),
2363 section_offsets_need_adjustment_(false),
2364 is_noload_(false),
2365 always_keeps_input_sections_(false),
2366 has_fixed_layout_(false),
2367 is_patch_space_allowed_(false),
2368 is_unique_segment_(false),
2369 tls_offset_(0),
2370 extra_segment_flags_(0),
2371 segment_alignment_(0),
2372 checkpoint_(NULL),
2373 lookup_maps_(new Output_section_lookup_maps),
2374 free_list_(),
2375 free_space_fill_(NULL),
2376 patch_space_(0)
2377 {
2378 // An unallocated section has no address. Forcing this means that
2379 // we don't need special treatment for symbols defined in debug
2380 // sections.
2381 if ((flags & elfcpp::SHF_ALLOC) == 0)
2382 this->set_address(0);
2383 }
2384
2385 Output_section::~Output_section()
2386 {
2387 delete this->checkpoint_;
2388 }
2389
2390 // Set the entry size.
2391
2392 void
2393 Output_section::set_entsize(uint64_t v)
2394 {
2395 if (this->is_entsize_zero_)
2396 ;
2397 else if (this->entsize_ == 0)
2398 this->entsize_ = v;
2399 else if (this->entsize_ != v)
2400 {
2401 this->entsize_ = 0;
2402 this->is_entsize_zero_ = 1;
2403 }
2404 }
2405
2406 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2407 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2408 // relocation section which applies to this section, or 0 if none, or
2409 // -1U if more than one. Return the offset of the input section
2410 // within the output section. Return -1 if the input section will
2411 // receive special handling. In the normal case we don't always keep
2412 // track of input sections for an Output_section. Instead, each
2413 // Object keeps track of the Output_section for each of its input
2414 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2415 // track of input sections here; this is used when SECTIONS appears in
2416 // a linker script.
2417
2418 template<int size, bool big_endian>
2419 off_t
2420 Output_section::add_input_section(Layout* layout,
2421 Sized_relobj_file<size, big_endian>* object,
2422 unsigned int shndx,
2423 const char* secname,
2424 const elfcpp::Shdr<size, big_endian>& shdr,
2425 unsigned int reloc_shndx,
2426 bool have_sections_script)
2427 {
2428 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2429 if ((addralign & (addralign - 1)) != 0)
2430 {
2431 object->error(_("invalid alignment %lu for section \"%s\""),
2432 static_cast<unsigned long>(addralign), secname);
2433 addralign = 1;
2434 }
2435
2436 if (addralign > this->addralign_)
2437 this->addralign_ = addralign;
2438
2439 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2440 uint64_t entsize = shdr.get_sh_entsize();
2441
2442 // .debug_str is a mergeable string section, but is not always so
2443 // marked by compilers. Mark manually here so we can optimize.
2444 if (strcmp(secname, ".debug_str") == 0)
2445 {
2446 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2447 entsize = 1;
2448 }
2449
2450 this->update_flags_for_input_section(sh_flags);
2451 this->set_entsize(entsize);
2452
2453 // If this is a SHF_MERGE section, we pass all the input sections to
2454 // a Output_data_merge. We don't try to handle relocations for such
2455 // a section. We don't try to handle empty merge sections--they
2456 // mess up the mappings, and are useless anyhow.
2457 // FIXME: Need to handle merge sections during incremental update.
2458 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2459 && reloc_shndx == 0
2460 && shdr.get_sh_size() > 0
2461 && !parameters->incremental())
2462 {
2463 // Keep information about merged input sections for rebuilding fast
2464 // lookup maps if we have sections-script or we do relaxation.
2465 bool keeps_input_sections = (this->always_keeps_input_sections_
2466 || have_sections_script
2467 || parameters->target().may_relax());
2468
2469 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2470 addralign, keeps_input_sections))
2471 {
2472 // Tell the relocation routines that they need to call the
2473 // output_offset method to determine the final address.
2474 return -1;
2475 }
2476 }
2477
2478 section_size_type input_section_size = shdr.get_sh_size();
2479 section_size_type uncompressed_size;
2480 if (object->section_is_compressed(shndx, &uncompressed_size))
2481 input_section_size = uncompressed_size;
2482
2483 off_t offset_in_section;
2484
2485 if (this->has_fixed_layout())
2486 {
2487 // For incremental updates, find a chunk of unused space in the section.
2488 offset_in_section = this->free_list_.allocate(input_section_size,
2489 addralign, 0);
2490 if (offset_in_section == -1)
2491 gold_fallback(_("out of patch space in section %s; "
2492 "relink with --incremental-full"),
2493 this->name());
2494 return offset_in_section;
2495 }
2496
2497 offset_in_section = this->current_data_size_for_child();
2498 off_t aligned_offset_in_section = align_address(offset_in_section,
2499 addralign);
2500 this->set_current_data_size_for_child(aligned_offset_in_section
2501 + input_section_size);
2502
2503 // Determine if we want to delay code-fill generation until the output
2504 // section is written. When the target is relaxing, we want to delay fill
2505 // generating to avoid adjusting them during relaxation. Also, if we are
2506 // sorting input sections we must delay fill generation.
2507 if (!this->generate_code_fills_at_write_
2508 && !have_sections_script
2509 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2510 && parameters->target().has_code_fill()
2511 && (parameters->target().may_relax()
2512 || layout->is_section_ordering_specified()))
2513 {
2514 gold_assert(this->fills_.empty());
2515 this->generate_code_fills_at_write_ = true;
2516 }
2517
2518 if (aligned_offset_in_section > offset_in_section
2519 && !this->generate_code_fills_at_write_
2520 && !have_sections_script
2521 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2522 && parameters->target().has_code_fill())
2523 {
2524 // We need to add some fill data. Using fill_list_ when
2525 // possible is an optimization, since we will often have fill
2526 // sections without input sections.
2527 off_t fill_len = aligned_offset_in_section - offset_in_section;
2528 if (this->input_sections_.empty())
2529 this->fills_.push_back(Fill(offset_in_section, fill_len));
2530 else
2531 {
2532 std::string fill_data(parameters->target().code_fill(fill_len));
2533 Output_data_const* odc = new Output_data_const(fill_data, 1);
2534 this->input_sections_.push_back(Input_section(odc));
2535 }
2536 }
2537
2538 // We need to keep track of this section if we are already keeping
2539 // track of sections, or if we are relaxing. Also, if this is a
2540 // section which requires sorting, or which may require sorting in
2541 // the future, we keep track of the sections. If the
2542 // --section-ordering-file option is used to specify the order of
2543 // sections, we need to keep track of sections.
2544 if (this->always_keeps_input_sections_
2545 || have_sections_script
2546 || !this->input_sections_.empty()
2547 || this->may_sort_attached_input_sections()
2548 || this->must_sort_attached_input_sections()
2549 || parameters->options().user_set_Map()
2550 || parameters->target().may_relax()
2551 || layout->is_section_ordering_specified())
2552 {
2553 Input_section isecn(object, shndx, input_section_size, addralign);
2554 /* If section ordering is requested by specifying a ordering file,
2555 using --section-ordering-file, match the section name with
2556 a pattern. */
2557 if (parameters->options().section_ordering_file())
2558 {
2559 unsigned int section_order_index =
2560 layout->find_section_order_index(std::string(secname));
2561 if (section_order_index != 0)
2562 {
2563 isecn.set_section_order_index(section_order_index);
2564 this->set_input_section_order_specified();
2565 }
2566 }
2567 this->input_sections_.push_back(isecn);
2568 }
2569
2570 return aligned_offset_in_section;
2571 }
2572
2573 // Add arbitrary data to an output section.
2574
2575 void
2576 Output_section::add_output_section_data(Output_section_data* posd)
2577 {
2578 Input_section inp(posd);
2579 this->add_output_section_data(&inp);
2580
2581 if (posd->is_data_size_valid())
2582 {
2583 off_t offset_in_section;
2584 if (this->has_fixed_layout())
2585 {
2586 // For incremental updates, find a chunk of unused space.
2587 offset_in_section = this->free_list_.allocate(posd->data_size(),
2588 posd->addralign(), 0);
2589 if (offset_in_section == -1)
2590 gold_fallback(_("out of patch space in section %s; "
2591 "relink with --incremental-full"),
2592 this->name());
2593 // Finalize the address and offset now.
2594 uint64_t addr = this->address();
2595 off_t offset = this->offset();
2596 posd->set_address_and_file_offset(addr + offset_in_section,
2597 offset + offset_in_section);
2598 }
2599 else
2600 {
2601 offset_in_section = this->current_data_size_for_child();
2602 off_t aligned_offset_in_section = align_address(offset_in_section,
2603 posd->addralign());
2604 this->set_current_data_size_for_child(aligned_offset_in_section
2605 + posd->data_size());
2606 }
2607 }
2608 else if (this->has_fixed_layout())
2609 {
2610 // For incremental updates, arrange for the data to have a fixed layout.
2611 // This will mean that additions to the data must be allocated from
2612 // free space within the containing output section.
2613 uint64_t addr = this->address();
2614 posd->set_address(addr);
2615 posd->set_file_offset(0);
2616 // FIXME: This should eventually be unreachable.
2617 // gold_unreachable();
2618 }
2619 }
2620
2621 // Add a relaxed input section.
2622
2623 void
2624 Output_section::add_relaxed_input_section(Layout* layout,
2625 Output_relaxed_input_section* poris,
2626 const std::string& name)
2627 {
2628 Input_section inp(poris);
2629
2630 // If the --section-ordering-file option is used to specify the order of
2631 // sections, we need to keep track of sections.
2632 if (layout->is_section_ordering_specified())
2633 {
2634 unsigned int section_order_index =
2635 layout->find_section_order_index(name);
2636 if (section_order_index != 0)
2637 {
2638 inp.set_section_order_index(section_order_index);
2639 this->set_input_section_order_specified();
2640 }
2641 }
2642
2643 this->add_output_section_data(&inp);
2644 if (this->lookup_maps_->is_valid())
2645 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2646 poris->shndx(), poris);
2647
2648 // For a relaxed section, we use the current data size. Linker scripts
2649 // get all the input sections, including relaxed one from an output
2650 // section and add them back to the same output section to compute the
2651 // output section size. If we do not account for sizes of relaxed input
2652 // sections, an output section would be incorrectly sized.
2653 off_t offset_in_section = this->current_data_size_for_child();
2654 off_t aligned_offset_in_section = align_address(offset_in_section,
2655 poris->addralign());
2656 this->set_current_data_size_for_child(aligned_offset_in_section
2657 + poris->current_data_size());
2658 }
2659
2660 // Add arbitrary data to an output section by Input_section.
2661
2662 void
2663 Output_section::add_output_section_data(Input_section* inp)
2664 {
2665 if (this->input_sections_.empty())
2666 this->first_input_offset_ = this->current_data_size_for_child();
2667
2668 this->input_sections_.push_back(*inp);
2669
2670 uint64_t addralign = inp->addralign();
2671 if (addralign > this->addralign_)
2672 this->addralign_ = addralign;
2673
2674 inp->set_output_section(this);
2675 }
2676
2677 // Add a merge section to an output section.
2678
2679 void
2680 Output_section::add_output_merge_section(Output_section_data* posd,
2681 bool is_string, uint64_t entsize)
2682 {
2683 Input_section inp(posd, is_string, entsize);
2684 this->add_output_section_data(&inp);
2685 }
2686
2687 // Add an input section to a SHF_MERGE section.
2688
2689 bool
2690 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2691 uint64_t flags, uint64_t entsize,
2692 uint64_t addralign,
2693 bool keeps_input_sections)
2694 {
2695 // We cannot merge sections with entsize == 0.
2696 if (entsize == 0)
2697 return false;
2698
2699 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2700
2701 // We cannot restore merged input section states.
2702 gold_assert(this->checkpoint_ == NULL);
2703
2704 // Look up merge sections by required properties.
2705 // Currently, we only invalidate the lookup maps in script processing
2706 // and relaxation. We should not have done either when we reach here.
2707 // So we assume that the lookup maps are valid to simply code.
2708 gold_assert(this->lookup_maps_->is_valid());
2709 Merge_section_properties msp(is_string, entsize, addralign);
2710 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2711 bool is_new = false;
2712 if (pomb != NULL)
2713 {
2714 gold_assert(pomb->is_string() == is_string
2715 && pomb->entsize() == entsize
2716 && pomb->addralign() == addralign);
2717 }
2718 else
2719 {
2720 // Create a new Output_merge_data or Output_merge_string_data.
2721 if (!is_string)
2722 pomb = new Output_merge_data(entsize, addralign);
2723 else
2724 {
2725 switch (entsize)
2726 {
2727 case 1:
2728 pomb = new Output_merge_string<char>(addralign);
2729 break;
2730 case 2:
2731 pomb = new Output_merge_string<uint16_t>(addralign);
2732 break;
2733 case 4:
2734 pomb = new Output_merge_string<uint32_t>(addralign);
2735 break;
2736 default:
2737 return false;
2738 }
2739 }
2740 // If we need to do script processing or relaxation, we need to keep
2741 // the original input sections to rebuild the fast lookup maps.
2742 if (keeps_input_sections)
2743 pomb->set_keeps_input_sections();
2744 is_new = true;
2745 }
2746
2747 if (pomb->add_input_section(object, shndx))
2748 {
2749 // Add new merge section to this output section and link merge
2750 // section properties to new merge section in map.
2751 if (is_new)
2752 {
2753 this->add_output_merge_section(pomb, is_string, entsize);
2754 this->lookup_maps_->add_merge_section(msp, pomb);
2755 }
2756
2757 return true;
2758 }
2759 else
2760 {
2761 // If add_input_section failed, delete new merge section to avoid
2762 // exporting empty merge sections in Output_section::get_input_section.
2763 if (is_new)
2764 delete pomb;
2765 return false;
2766 }
2767 }
2768
2769 // Build a relaxation map to speed up relaxation of existing input sections.
2770 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2771
2772 void
2773 Output_section::build_relaxation_map(
2774 const Input_section_list& input_sections,
2775 size_t limit,
2776 Relaxation_map* relaxation_map) const
2777 {
2778 for (size_t i = 0; i < limit; ++i)
2779 {
2780 const Input_section& is(input_sections[i]);
2781 if (is.is_input_section() || is.is_relaxed_input_section())
2782 {
2783 Section_id sid(is.relobj(), is.shndx());
2784 (*relaxation_map)[sid] = i;
2785 }
2786 }
2787 }
2788
2789 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2790 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2791 // indices of INPUT_SECTIONS.
2792
2793 void
2794 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2795 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2796 const Relaxation_map& map,
2797 Input_section_list* input_sections)
2798 {
2799 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2800 {
2801 Output_relaxed_input_section* poris = relaxed_sections[i];
2802 Section_id sid(poris->relobj(), poris->shndx());
2803 Relaxation_map::const_iterator p = map.find(sid);
2804 gold_assert(p != map.end());
2805 gold_assert((*input_sections)[p->second].is_input_section());
2806
2807 // Remember section order index of original input section
2808 // if it is set. Copy it to the relaxed input section.
2809 unsigned int soi =
2810 (*input_sections)[p->second].section_order_index();
2811 (*input_sections)[p->second] = Input_section(poris);
2812 (*input_sections)[p->second].set_section_order_index(soi);
2813 }
2814 }
2815
2816 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2817 // is a vector of pointers to Output_relaxed_input_section or its derived
2818 // classes. The relaxed sections must correspond to existing input sections.
2819
2820 void
2821 Output_section::convert_input_sections_to_relaxed_sections(
2822 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2823 {
2824 gold_assert(parameters->target().may_relax());
2825
2826 // We want to make sure that restore_states does not undo the effect of
2827 // this. If there is no checkpoint active, just search the current
2828 // input section list and replace the sections there. If there is
2829 // a checkpoint, also replace the sections there.
2830
2831 // By default, we look at the whole list.
2832 size_t limit = this->input_sections_.size();
2833
2834 if (this->checkpoint_ != NULL)
2835 {
2836 // Replace input sections with relaxed input section in the saved
2837 // copy of the input section list.
2838 if (this->checkpoint_->input_sections_saved())
2839 {
2840 Relaxation_map map;
2841 this->build_relaxation_map(
2842 *(this->checkpoint_->input_sections()),
2843 this->checkpoint_->input_sections()->size(),
2844 &map);
2845 this->convert_input_sections_in_list_to_relaxed_sections(
2846 relaxed_sections,
2847 map,
2848 this->checkpoint_->input_sections());
2849 }
2850 else
2851 {
2852 // We have not copied the input section list yet. Instead, just
2853 // look at the portion that would be saved.
2854 limit = this->checkpoint_->input_sections_size();
2855 }
2856 }
2857
2858 // Convert input sections in input_section_list.
2859 Relaxation_map map;
2860 this->build_relaxation_map(this->input_sections_, limit, &map);
2861 this->convert_input_sections_in_list_to_relaxed_sections(
2862 relaxed_sections,
2863 map,
2864 &this->input_sections_);
2865
2866 // Update fast look-up map.
2867 if (this->lookup_maps_->is_valid())
2868 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2869 {
2870 Output_relaxed_input_section* poris = relaxed_sections[i];
2871 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2872 poris->shndx(), poris);
2873 }
2874 }
2875
2876 // Update the output section flags based on input section flags.
2877
2878 void
2879 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2880 {
2881 // If we created the section with SHF_ALLOC clear, we set the
2882 // address. If we are now setting the SHF_ALLOC flag, we need to
2883 // undo that.
2884 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2885 && (flags & elfcpp::SHF_ALLOC) != 0)
2886 this->mark_address_invalid();
2887
2888 this->flags_ |= (flags
2889 & (elfcpp::SHF_WRITE
2890 | elfcpp::SHF_ALLOC
2891 | elfcpp::SHF_EXECINSTR));
2892
2893 if ((flags & elfcpp::SHF_MERGE) == 0)
2894 this->flags_ &=~ elfcpp::SHF_MERGE;
2895 else
2896 {
2897 if (this->current_data_size_for_child() == 0)
2898 this->flags_ |= elfcpp::SHF_MERGE;
2899 }
2900
2901 if ((flags & elfcpp::SHF_STRINGS) == 0)
2902 this->flags_ &=~ elfcpp::SHF_STRINGS;
2903 else
2904 {
2905 if (this->current_data_size_for_child() == 0)
2906 this->flags_ |= elfcpp::SHF_STRINGS;
2907 }
2908 }
2909
2910 // Find the merge section into which an input section with index SHNDX in
2911 // OBJECT has been added. Return NULL if none found.
2912
2913 const Output_section_data*
2914 Output_section::find_merge_section(const Relobj* object,
2915 unsigned int shndx) const
2916 {
2917 return object->find_merge_section(shndx);
2918 }
2919
2920 // Build the lookup maps for relaxed sections. This needs
2921 // to be declared as a const method so that it is callable with a const
2922 // Output_section pointer. The method only updates states of the maps.
2923
2924 void
2925 Output_section::build_lookup_maps() const
2926 {
2927 this->lookup_maps_->clear();
2928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929 p != this->input_sections_.end();
2930 ++p)
2931 {
2932 if (p->is_relaxed_input_section())
2933 {
2934 Output_relaxed_input_section* poris = p->relaxed_input_section();
2935 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2936 poris->shndx(), poris);
2937 }
2938 }
2939 }
2940
2941 // Find an relaxed input section corresponding to an input section
2942 // in OBJECT with index SHNDX.
2943
2944 const Output_relaxed_input_section*
2945 Output_section::find_relaxed_input_section(const Relobj* object,
2946 unsigned int shndx) const
2947 {
2948 if (!this->lookup_maps_->is_valid())
2949 this->build_lookup_maps();
2950 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2951 }
2952
2953 // Given an address OFFSET relative to the start of input section
2954 // SHNDX in OBJECT, return whether this address is being included in
2955 // the final link. This should only be called if SHNDX in OBJECT has
2956 // a special mapping.
2957
2958 bool
2959 Output_section::is_input_address_mapped(const Relobj* object,
2960 unsigned int shndx,
2961 off_t offset) const
2962 {
2963 // Look at the Output_section_data_maps first.
2964 const Output_section_data* posd = this->find_merge_section(object, shndx);
2965 if (posd == NULL)
2966 posd = this->find_relaxed_input_section(object, shndx);
2967
2968 if (posd != NULL)
2969 {
2970 section_offset_type output_offset;
2971 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2972 // By default we assume that the address is mapped. See comment at the
2973 // end.
2974 if (!found)
2975 return true;
2976 return output_offset != -1;
2977 }
2978
2979 // Fall back to the slow look-up.
2980 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2981 p != this->input_sections_.end();
2982 ++p)
2983 {
2984 section_offset_type output_offset;
2985 if (p->output_offset(object, shndx, offset, &output_offset))
2986 return output_offset != -1;
2987 }
2988
2989 // By default we assume that the address is mapped. This should
2990 // only be called after we have passed all sections to Layout. At
2991 // that point we should know what we are discarding.
2992 return true;
2993 }
2994
2995 // Given an address OFFSET relative to the start of input section
2996 // SHNDX in object OBJECT, return the output offset relative to the
2997 // start of the input section in the output section. This should only
2998 // be called if SHNDX in OBJECT has a special mapping.
2999
3000 section_offset_type
3001 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3002 section_offset_type offset) const
3003 {
3004 // This can only be called meaningfully when we know the data size
3005 // of this.
3006 gold_assert(this->is_data_size_valid());
3007
3008 // Look at the Output_section_data_maps first.
3009 const Output_section_data* posd = this->find_merge_section(object, shndx);
3010 if (posd == NULL)
3011 posd = this->find_relaxed_input_section(object, shndx);
3012 if (posd != NULL)
3013 {
3014 section_offset_type output_offset;
3015 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3016 gold_assert(found);
3017 return output_offset;
3018 }
3019
3020 // Fall back to the slow look-up.
3021 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3022 p != this->input_sections_.end();
3023 ++p)
3024 {
3025 section_offset_type output_offset;
3026 if (p->output_offset(object, shndx, offset, &output_offset))
3027 return output_offset;
3028 }
3029 gold_unreachable();
3030 }
3031
3032 // Return the output virtual address of OFFSET relative to the start
3033 // of input section SHNDX in object OBJECT.
3034
3035 uint64_t
3036 Output_section::output_address(const Relobj* object, unsigned int shndx,
3037 off_t offset) const
3038 {
3039 uint64_t addr = this->address() + this->first_input_offset_;
3040
3041 // Look at the Output_section_data_maps first.
3042 const Output_section_data* posd = this->find_merge_section(object, shndx);
3043 if (posd == NULL)
3044 posd = this->find_relaxed_input_section(object, shndx);
3045 if (posd != NULL && posd->is_address_valid())
3046 {
3047 section_offset_type output_offset;
3048 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3049 gold_assert(found);
3050 return posd->address() + output_offset;
3051 }
3052
3053 // Fall back to the slow look-up.
3054 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3055 p != this->input_sections_.end();
3056 ++p)
3057 {
3058 addr = align_address(addr, p->addralign());
3059 section_offset_type output_offset;
3060 if (p->output_offset(object, shndx, offset, &output_offset))
3061 {
3062 if (output_offset == -1)
3063 return -1ULL;
3064 return addr + output_offset;
3065 }
3066 addr += p->data_size();
3067 }
3068
3069 // If we get here, it means that we don't know the mapping for this
3070 // input section. This might happen in principle if
3071 // add_input_section were called before add_output_section_data.
3072 // But it should never actually happen.
3073
3074 gold_unreachable();
3075 }
3076
3077 // Find the output address of the start of the merged section for
3078 // input section SHNDX in object OBJECT.
3079
3080 bool
3081 Output_section::find_starting_output_address(const Relobj* object,
3082 unsigned int shndx,
3083 uint64_t* paddr) const
3084 {
3085 const Output_section_data* data = this->find_merge_section(object, shndx);
3086 if (data == NULL)
3087 return false;
3088
3089 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3090 // Looking up the merge section map does not always work as we sometimes
3091 // find a merge section without its address set.
3092 uint64_t addr = this->address() + this->first_input_offset_;
3093 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3094 p != this->input_sections_.end();
3095 ++p)
3096 {
3097 addr = align_address(addr, p->addralign());
3098
3099 // It would be nice if we could use the existing output_offset
3100 // method to get the output offset of input offset 0.
3101 // Unfortunately we don't know for sure that input offset 0 is
3102 // mapped at all.
3103 if (!p->is_input_section() && p->output_section_data() == data)
3104 {
3105 *paddr = addr;
3106 return true;
3107 }
3108
3109 addr += p->data_size();
3110 }
3111
3112 // We couldn't find a merge output section for this input section.
3113 return false;
3114 }
3115
3116 // Update the data size of an Output_section.
3117
3118 void
3119 Output_section::update_data_size()
3120 {
3121 if (this->input_sections_.empty())
3122 return;
3123
3124 if (this->must_sort_attached_input_sections()
3125 || this->input_section_order_specified())
3126 this->sort_attached_input_sections();
3127
3128 off_t off = this->first_input_offset_;
3129 for (Input_section_list::iterator p = this->input_sections_.begin();
3130 p != this->input_sections_.end();
3131 ++p)
3132 {
3133 off = align_address(off, p->addralign());
3134 off += p->current_data_size();
3135 }
3136
3137 this->set_current_data_size_for_child(off);
3138 }
3139
3140 // Set the data size of an Output_section. This is where we handle
3141 // setting the addresses of any Output_section_data objects.
3142
3143 void
3144 Output_section::set_final_data_size()
3145 {
3146 off_t data_size;
3147
3148 if (this->input_sections_.empty())
3149 data_size = this->current_data_size_for_child();
3150 else
3151 {
3152 if (this->must_sort_attached_input_sections()
3153 || this->input_section_order_specified())
3154 this->sort_attached_input_sections();
3155
3156 uint64_t address = this->address();
3157 off_t startoff = this->offset();
3158 off_t off = startoff + this->first_input_offset_;
3159 for (Input_section_list::iterator p = this->input_sections_.begin();
3160 p != this->input_sections_.end();
3161 ++p)
3162 {
3163 off = align_address(off, p->addralign());
3164 p->set_address_and_file_offset(address + (off - startoff), off,
3165 startoff);
3166 off += p->data_size();
3167 }
3168 data_size = off - startoff;
3169 }
3170
3171 // For full incremental links, we want to allocate some patch space
3172 // in most sections for subsequent incremental updates.
3173 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3174 {
3175 double pct = parameters->options().incremental_patch();
3176 size_t extra = static_cast<size_t>(data_size * pct);
3177 if (this->free_space_fill_ != NULL
3178 && this->free_space_fill_->minimum_hole_size() > extra)
3179 extra = this->free_space_fill_->minimum_hole_size();
3180 off_t new_size = align_address(data_size + extra, this->addralign());
3181 this->patch_space_ = new_size - data_size;
3182 gold_debug(DEBUG_INCREMENTAL,
3183 "set_final_data_size: %08lx + %08lx: section %s",
3184 static_cast<long>(data_size),
3185 static_cast<long>(this->patch_space_),
3186 this->name());
3187 data_size = new_size;
3188 }
3189
3190 this->set_data_size(data_size);
3191 }
3192
3193 // Reset the address and file offset.
3194
3195 void
3196 Output_section::do_reset_address_and_file_offset()
3197 {
3198 // An unallocated section has no address. Forcing this means that
3199 // we don't need special treatment for symbols defined in debug
3200 // sections. We do the same in the constructor. This does not
3201 // apply to NOLOAD sections though.
3202 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3203 this->set_address(0);
3204
3205 for (Input_section_list::iterator p = this->input_sections_.begin();
3206 p != this->input_sections_.end();
3207 ++p)
3208 p->reset_address_and_file_offset();
3209
3210 // Remove any patch space that was added in set_final_data_size.
3211 if (this->patch_space_ > 0)
3212 {
3213 this->set_current_data_size_for_child(this->current_data_size_for_child()
3214 - this->patch_space_);
3215 this->patch_space_ = 0;
3216 }
3217 }
3218
3219 // Return true if address and file offset have the values after reset.
3220
3221 bool
3222 Output_section::do_address_and_file_offset_have_reset_values() const
3223 {
3224 if (this->is_offset_valid())
3225 return false;
3226
3227 // An unallocated section has address 0 after its construction or a reset.
3228 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3229 return this->is_address_valid() && this->address() == 0;
3230 else
3231 return !this->is_address_valid();
3232 }
3233
3234 // Set the TLS offset. Called only for SHT_TLS sections.
3235
3236 void
3237 Output_section::do_set_tls_offset(uint64_t tls_base)
3238 {
3239 this->tls_offset_ = this->address() - tls_base;
3240 }
3241
3242 // In a few cases we need to sort the input sections attached to an
3243 // output section. This is used to implement the type of constructor
3244 // priority ordering implemented by the GNU linker, in which the
3245 // priority becomes part of the section name and the sections are
3246 // sorted by name. We only do this for an output section if we see an
3247 // attached input section matching ".ctors.*", ".dtors.*",
3248 // ".init_array.*" or ".fini_array.*".
3249
3250 class Output_section::Input_section_sort_entry
3251 {
3252 public:
3253 Input_section_sort_entry()
3254 : input_section_(), index_(-1U), section_name_()
3255 { }
3256
3257 Input_section_sort_entry(const Input_section& input_section,
3258 unsigned int index,
3259 bool must_sort_attached_input_sections,
3260 const char* output_section_name)
3261 : input_section_(input_section), index_(index), section_name_()
3262 {
3263 if ((input_section.is_input_section()
3264 || input_section.is_relaxed_input_section())
3265 && must_sort_attached_input_sections)
3266 {
3267 // This is only called single-threaded from Layout::finalize,
3268 // so it is OK to lock. Unfortunately we have no way to pass
3269 // in a Task token.
3270 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3271 Object* obj = (input_section.is_input_section()
3272 ? input_section.relobj()
3273 : input_section.relaxed_input_section()->relobj());
3274 Task_lock_obj<Object> tl(dummy_task, obj);
3275
3276 // This is a slow operation, which should be cached in
3277 // Layout::layout if this becomes a speed problem.
3278 this->section_name_ = obj->section_name(input_section.shndx());
3279 }
3280 else if (input_section.is_output_section_data()
3281 && must_sort_attached_input_sections)
3282 {
3283 // For linker-generated sections, use the output section name.
3284 this->section_name_.assign(output_section_name);
3285 }
3286 }
3287
3288 // Return the Input_section.
3289 const Input_section&
3290 input_section() const
3291 {
3292 gold_assert(this->index_ != -1U);
3293 return this->input_section_;
3294 }
3295
3296 // The index of this entry in the original list. This is used to
3297 // make the sort stable.
3298 unsigned int
3299 index() const
3300 {
3301 gold_assert(this->index_ != -1U);
3302 return this->index_;
3303 }
3304
3305 // The section name.
3306 const std::string&
3307 section_name() const
3308 {
3309 return this->section_name_;
3310 }
3311
3312 // Return true if the section name has a priority. This is assumed
3313 // to be true if it has a dot after the initial dot.
3314 bool
3315 has_priority() const
3316 {
3317 return this->section_name_.find('.', 1) != std::string::npos;
3318 }
3319
3320 // Return the priority. Believe it or not, gcc encodes the priority
3321 // differently for .ctors/.dtors and .init_array/.fini_array
3322 // sections.
3323 unsigned int
3324 get_priority() const
3325 {
3326 bool is_ctors;
3327 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3328 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3329 is_ctors = true;
3330 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3331 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3332 is_ctors = false;
3333 else
3334 return 0;
3335 char* end;
3336 unsigned long prio = strtoul((this->section_name_.c_str()
3337 + (is_ctors ? 7 : 12)),
3338 &end, 10);
3339 if (*end != '\0')
3340 return 0;
3341 else if (is_ctors)
3342 return 65535 - prio;
3343 else
3344 return prio;
3345 }
3346
3347 // Return true if this an input file whose base name matches
3348 // FILE_NAME. The base name must have an extension of ".o", and
3349 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3350 // This is to match crtbegin.o as well as crtbeginS.o without
3351 // getting confused by other possibilities. Overall matching the
3352 // file name this way is a dreadful hack, but the GNU linker does it
3353 // in order to better support gcc, and we need to be compatible.
3354 bool
3355 match_file_name(const char* file_name) const
3356 {
3357 if (this->input_section_.is_output_section_data())
3358 return false;
3359 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3360 }
3361
3362 // Returns 1 if THIS should appear before S in section order, -1 if S
3363 // appears before THIS and 0 if they are not comparable.
3364 int
3365 compare_section_ordering(const Input_section_sort_entry& s) const
3366 {
3367 unsigned int this_secn_index = this->input_section_.section_order_index();
3368 unsigned int s_secn_index = s.input_section().section_order_index();
3369 if (this_secn_index > 0 && s_secn_index > 0)
3370 {
3371 if (this_secn_index < s_secn_index)
3372 return 1;
3373 else if (this_secn_index > s_secn_index)
3374 return -1;
3375 }
3376 return 0;
3377 }
3378
3379 private:
3380 // The Input_section we are sorting.
3381 Input_section input_section_;
3382 // The index of this Input_section in the original list.
3383 unsigned int index_;
3384 // The section name if there is one.
3385 std::string section_name_;
3386 };
3387
3388 // Return true if S1 should come before S2 in the output section.
3389
3390 bool
3391 Output_section::Input_section_sort_compare::operator()(
3392 const Output_section::Input_section_sort_entry& s1,
3393 const Output_section::Input_section_sort_entry& s2) const
3394 {
3395 // crtbegin.o must come first.
3396 bool s1_begin = s1.match_file_name("crtbegin");
3397 bool s2_begin = s2.match_file_name("crtbegin");
3398 if (s1_begin || s2_begin)
3399 {
3400 if (!s1_begin)
3401 return false;
3402 if (!s2_begin)
3403 return true;
3404 return s1.index() < s2.index();
3405 }
3406
3407 // crtend.o must come last.
3408 bool s1_end = s1.match_file_name("crtend");
3409 bool s2_end = s2.match_file_name("crtend");
3410 if (s1_end || s2_end)
3411 {
3412 if (!s1_end)
3413 return true;
3414 if (!s2_end)
3415 return false;
3416 return s1.index() < s2.index();
3417 }
3418
3419 // A section with a priority follows a section without a priority.
3420 bool s1_has_priority = s1.has_priority();
3421 bool s2_has_priority = s2.has_priority();
3422 if (s1_has_priority && !s2_has_priority)
3423 return false;
3424 if (!s1_has_priority && s2_has_priority)
3425 return true;
3426
3427 // Check if a section order exists for these sections through a section
3428 // ordering file. If sequence_num is 0, an order does not exist.
3429 int sequence_num = s1.compare_section_ordering(s2);
3430 if (sequence_num != 0)
3431 return sequence_num == 1;
3432
3433 // Otherwise we sort by name.
3434 int compare = s1.section_name().compare(s2.section_name());
3435 if (compare != 0)
3436 return compare < 0;
3437
3438 // Otherwise we keep the input order.
3439 return s1.index() < s2.index();
3440 }
3441
3442 // Return true if S1 should come before S2 in an .init_array or .fini_array
3443 // output section.
3444
3445 bool
3446 Output_section::Input_section_sort_init_fini_compare::operator()(
3447 const Output_section::Input_section_sort_entry& s1,
3448 const Output_section::Input_section_sort_entry& s2) const
3449 {
3450 // A section without a priority follows a section with a priority.
3451 // This is the reverse of .ctors and .dtors sections.
3452 bool s1_has_priority = s1.has_priority();
3453 bool s2_has_priority = s2.has_priority();
3454 if (s1_has_priority && !s2_has_priority)
3455 return true;
3456 if (!s1_has_priority && s2_has_priority)
3457 return false;
3458
3459 // .ctors and .dtors sections without priority come after
3460 // .init_array and .fini_array sections without priority.
3461 if (!s1_has_priority
3462 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3463 && s1.section_name() != s2.section_name())
3464 return false;
3465 if (!s2_has_priority
3466 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3467 && s2.section_name() != s1.section_name())
3468 return true;
3469
3470 // Sort by priority if we can.
3471 if (s1_has_priority)
3472 {
3473 unsigned int s1_prio = s1.get_priority();
3474 unsigned int s2_prio = s2.get_priority();
3475 if (s1_prio < s2_prio)
3476 return true;
3477 else if (s1_prio > s2_prio)
3478 return false;
3479 }
3480
3481 // Check if a section order exists for these sections through a section
3482 // ordering file. If sequence_num is 0, an order does not exist.
3483 int sequence_num = s1.compare_section_ordering(s2);
3484 if (sequence_num != 0)
3485 return sequence_num == 1;
3486
3487 // Otherwise we sort by name.
3488 int compare = s1.section_name().compare(s2.section_name());
3489 if (compare != 0)
3490 return compare < 0;
3491
3492 // Otherwise we keep the input order.
3493 return s1.index() < s2.index();
3494 }
3495
3496 // Return true if S1 should come before S2. Sections that do not match
3497 // any pattern in the section ordering file are placed ahead of the sections
3498 // that match some pattern.
3499
3500 bool
3501 Output_section::Input_section_sort_section_order_index_compare::operator()(
3502 const Output_section::Input_section_sort_entry& s1,
3503 const Output_section::Input_section_sort_entry& s2) const
3504 {
3505 unsigned int s1_secn_index = s1.input_section().section_order_index();
3506 unsigned int s2_secn_index = s2.input_section().section_order_index();
3507
3508 // Keep input order if section ordering cannot determine order.
3509 if (s1_secn_index == s2_secn_index)
3510 return s1.index() < s2.index();
3511
3512 return s1_secn_index < s2_secn_index;
3513 }
3514
3515 // Return true if S1 should come before S2. This is the sort comparison
3516 // function for .text to sort sections with prefixes
3517 // .text.{unlikely,exit,startup,hot} before other sections.
3518
3519 bool
3520 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3521 ::operator()(
3522 const Output_section::Input_section_sort_entry& s1,
3523 const Output_section::Input_section_sort_entry& s2) const
3524 {
3525 // Some input section names have special ordering requirements.
3526 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3527 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3528 if (o1 != o2)
3529 {
3530 if (o1 < 0)
3531 return false;
3532 else if (o2 < 0)
3533 return true;
3534 else
3535 return o1 < o2;
3536 }
3537
3538 // Keep input order otherwise.
3539 return s1.index() < s2.index();
3540 }
3541
3542 // Return true if S1 should come before S2. This is the sort comparison
3543 // function for sections to sort them by name.
3544
3545 bool
3546 Output_section::Input_section_sort_section_name_compare
3547 ::operator()(
3548 const Output_section::Input_section_sort_entry& s1,
3549 const Output_section::Input_section_sort_entry& s2) const
3550 {
3551 // We sort by name.
3552 int compare = s1.section_name().compare(s2.section_name());
3553 if (compare != 0)
3554 return compare < 0;
3555
3556 // Keep input order otherwise.
3557 return s1.index() < s2.index();
3558 }
3559
3560 // This updates the section order index of input sections according to the
3561 // the order specified in the mapping from Section id to order index.
3562
3563 void
3564 Output_section::update_section_layout(
3565 const Section_layout_order* order_map)
3566 {
3567 for (Input_section_list::iterator p = this->input_sections_.begin();
3568 p != this->input_sections_.end();
3569 ++p)
3570 {
3571 if (p->is_input_section()
3572 || p->is_relaxed_input_section())
3573 {
3574 Relobj* obj = (p->is_input_section()
3575 ? p->relobj()
3576 : p->relaxed_input_section()->relobj());
3577 unsigned int shndx = p->shndx();
3578 Section_layout_order::const_iterator it
3579 = order_map->find(Section_id(obj, shndx));
3580 if (it == order_map->end())
3581 continue;
3582 unsigned int section_order_index = it->second;
3583 if (section_order_index != 0)
3584 {
3585 p->set_section_order_index(section_order_index);
3586 this->set_input_section_order_specified();
3587 }
3588 }
3589 }
3590 }
3591
3592 // Sort the input sections attached to an output section.
3593
3594 void
3595 Output_section::sort_attached_input_sections()
3596 {
3597 if (this->attached_input_sections_are_sorted_)
3598 return;
3599
3600 if (this->checkpoint_ != NULL
3601 && !this->checkpoint_->input_sections_saved())
3602 this->checkpoint_->save_input_sections();
3603
3604 // The only thing we know about an input section is the object and
3605 // the section index. We need the section name. Recomputing this
3606 // is slow but this is an unusual case. If this becomes a speed
3607 // problem we can cache the names as required in Layout::layout.
3608
3609 // We start by building a larger vector holding a copy of each
3610 // Input_section, plus its current index in the list and its name.
3611 std::vector<Input_section_sort_entry> sort_list;
3612
3613 unsigned int i = 0;
3614 for (Input_section_list::iterator p = this->input_sections_.begin();
3615 p != this->input_sections_.end();
3616 ++p, ++i)
3617 sort_list.push_back(Input_section_sort_entry(*p, i,
3618 this->must_sort_attached_input_sections(),
3619 this->name()));
3620
3621 // Sort the input sections.
3622 if (this->must_sort_attached_input_sections())
3623 {
3624 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3625 || this->type() == elfcpp::SHT_INIT_ARRAY
3626 || this->type() == elfcpp::SHT_FINI_ARRAY)
3627 std::sort(sort_list.begin(), sort_list.end(),
3628 Input_section_sort_init_fini_compare());
3629 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3630 std::sort(sort_list.begin(), sort_list.end(),
3631 Input_section_sort_section_name_compare());
3632 else if (strcmp(this->name(), ".text") == 0)
3633 std::sort(sort_list.begin(), sort_list.end(),
3634 Input_section_sort_section_prefix_special_ordering_compare());
3635 else
3636 std::sort(sort_list.begin(), sort_list.end(),
3637 Input_section_sort_compare());
3638 }
3639 else
3640 {
3641 gold_assert(this->input_section_order_specified());
3642 std::sort(sort_list.begin(), sort_list.end(),
3643 Input_section_sort_section_order_index_compare());
3644 }
3645
3646 // Copy the sorted input sections back to our list.
3647 this->input_sections_.clear();
3648 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3649 p != sort_list.end();
3650 ++p)
3651 this->input_sections_.push_back(p->input_section());
3652 sort_list.clear();
3653
3654 // Remember that we sorted the input sections, since we might get
3655 // called again.
3656 this->attached_input_sections_are_sorted_ = true;
3657 }
3658
3659 // Write the section header to *OSHDR.
3660
3661 template<int size, bool big_endian>
3662 void
3663 Output_section::write_header(const Layout* layout,
3664 const Stringpool* secnamepool,
3665 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3666 {
3667 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3668 oshdr->put_sh_type(this->type_);
3669
3670 elfcpp::Elf_Xword flags = this->flags_;
3671 if (this->info_section_ != NULL && this->info_uses_section_index_)
3672 flags |= elfcpp::SHF_INFO_LINK;
3673 oshdr->put_sh_flags(flags);
3674
3675 oshdr->put_sh_addr(this->address());
3676 oshdr->put_sh_offset(this->offset());
3677 oshdr->put_sh_size(this->data_size());
3678 if (this->link_section_ != NULL)
3679 oshdr->put_sh_link(this->link_section_->out_shndx());
3680 else if (this->should_link_to_symtab_)
3681 oshdr->put_sh_link(layout->symtab_section_shndx());
3682 else if (this->should_link_to_dynsym_)
3683 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3684 else
3685 oshdr->put_sh_link(this->link_);
3686
3687 elfcpp::Elf_Word info;
3688 if (this->info_section_ != NULL)
3689 {
3690 if (this->info_uses_section_index_)
3691 info = this->info_section_->out_shndx();
3692 else
3693 info = this->info_section_->symtab_index();
3694 }
3695 else if (this->info_symndx_ != NULL)
3696 info = this->info_symndx_->symtab_index();
3697 else
3698 info = this->info_;
3699 oshdr->put_sh_info(info);
3700
3701 oshdr->put_sh_addralign(this->addralign_);
3702 oshdr->put_sh_entsize(this->entsize_);
3703 }
3704
3705 // Write out the data. For input sections the data is written out by
3706 // Object::relocate, but we have to handle Output_section_data objects
3707 // here.
3708
3709 void
3710 Output_section::do_write(Output_file* of)
3711 {
3712 gold_assert(!this->requires_postprocessing());
3713
3714 // If the target performs relaxation, we delay filler generation until now.
3715 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3716
3717 off_t output_section_file_offset = this->offset();
3718 for (Fill_list::iterator p = this->fills_.begin();
3719 p != this->fills_.end();
3720 ++p)
3721 {
3722 std::string fill_data(parameters->target().code_fill(p->length()));
3723 of->write(output_section_file_offset + p->section_offset(),
3724 fill_data.data(), fill_data.size());
3725 }
3726
3727 off_t off = this->offset() + this->first_input_offset_;
3728 for (Input_section_list::iterator p = this->input_sections_.begin();
3729 p != this->input_sections_.end();
3730 ++p)
3731 {
3732 off_t aligned_off = align_address(off, p->addralign());
3733 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3734 {
3735 size_t fill_len = aligned_off - off;
3736 std::string fill_data(parameters->target().code_fill(fill_len));
3737 of->write(off, fill_data.data(), fill_data.size());
3738 }
3739
3740 p->write(of);
3741 off = aligned_off + p->data_size();
3742 }
3743
3744 // For incremental links, fill in unused chunks in debug sections
3745 // with dummy compilation unit headers.
3746 if (this->free_space_fill_ != NULL)
3747 {
3748 for (Free_list::Const_iterator p = this->free_list_.begin();
3749 p != this->free_list_.end();
3750 ++p)
3751 {
3752 off_t off = p->start_;
3753 size_t len = p->end_ - off;
3754 this->free_space_fill_->write(of, this->offset() + off, len);
3755 }
3756 if (this->patch_space_ > 0)
3757 {
3758 off_t off = this->current_data_size_for_child() - this->patch_space_;
3759 this->free_space_fill_->write(of, this->offset() + off,
3760 this->patch_space_);
3761 }
3762 }
3763 }
3764
3765 // If a section requires postprocessing, create the buffer to use.
3766
3767 void
3768 Output_section::create_postprocessing_buffer()
3769 {
3770 gold_assert(this->requires_postprocessing());
3771
3772 if (this->postprocessing_buffer_ != NULL)
3773 return;
3774
3775 if (!this->input_sections_.empty())
3776 {
3777 off_t off = this->first_input_offset_;
3778 for (Input_section_list::iterator p = this->input_sections_.begin();
3779 p != this->input_sections_.end();
3780 ++p)
3781 {
3782 off = align_address(off, p->addralign());
3783 p->finalize_data_size();
3784 off += p->data_size();
3785 }
3786 this->set_current_data_size_for_child(off);
3787 }
3788
3789 off_t buffer_size = this->current_data_size_for_child();
3790 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3791 }
3792
3793 // Write all the data of an Output_section into the postprocessing
3794 // buffer. This is used for sections which require postprocessing,
3795 // such as compression. Input sections are handled by
3796 // Object::Relocate.
3797
3798 void
3799 Output_section::write_to_postprocessing_buffer()
3800 {
3801 gold_assert(this->requires_postprocessing());
3802
3803 // If the target performs relaxation, we delay filler generation until now.
3804 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3805
3806 unsigned char* buffer = this->postprocessing_buffer();
3807 for (Fill_list::iterator p = this->fills_.begin();
3808 p != this->fills_.end();
3809 ++p)
3810 {
3811 std::string fill_data(parameters->target().code_fill(p->length()));
3812 memcpy(buffer + p->section_offset(), fill_data.data(),
3813 fill_data.size());
3814 }
3815
3816 off_t off = this->first_input_offset_;
3817 for (Input_section_list::iterator p = this->input_sections_.begin();
3818 p != this->input_sections_.end();
3819 ++p)
3820 {
3821 off_t aligned_off = align_address(off, p->addralign());
3822 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3823 {
3824 size_t fill_len = aligned_off - off;
3825 std::string fill_data(parameters->target().code_fill(fill_len));
3826 memcpy(buffer + off, fill_data.data(), fill_data.size());
3827 }
3828
3829 p->write_to_buffer(buffer + aligned_off);
3830 off = aligned_off + p->data_size();
3831 }
3832 }
3833
3834 // Get the input sections for linker script processing. We leave
3835 // behind the Output_section_data entries. Note that this may be
3836 // slightly incorrect for merge sections. We will leave them behind,
3837 // but it is possible that the script says that they should follow
3838 // some other input sections, as in:
3839 // .rodata { *(.rodata) *(.rodata.cst*) }
3840 // For that matter, we don't handle this correctly:
3841 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3842 // With luck this will never matter.
3843
3844 uint64_t
3845 Output_section::get_input_sections(
3846 uint64_t address,
3847 const std::string& fill,
3848 std::list<Input_section>* input_sections)
3849 {
3850 if (this->checkpoint_ != NULL
3851 && !this->checkpoint_->input_sections_saved())
3852 this->checkpoint_->save_input_sections();
3853
3854 // Invalidate fast look-up maps.
3855 this->lookup_maps_->invalidate();
3856
3857 uint64_t orig_address = address;
3858
3859 address = align_address(address, this->addralign());
3860
3861 Input_section_list remaining;
3862 for (Input_section_list::iterator p = this->input_sections_.begin();
3863 p != this->input_sections_.end();
3864 ++p)
3865 {
3866 if (p->is_input_section()
3867 || p->is_relaxed_input_section()
3868 || p->is_merge_section())
3869 input_sections->push_back(*p);
3870 else
3871 {
3872 uint64_t aligned_address = align_address(address, p->addralign());
3873 if (aligned_address != address && !fill.empty())
3874 {
3875 section_size_type length =
3876 convert_to_section_size_type(aligned_address - address);
3877 std::string this_fill;
3878 this_fill.reserve(length);
3879 while (this_fill.length() + fill.length() <= length)
3880 this_fill += fill;
3881 if (this_fill.length() < length)
3882 this_fill.append(fill, 0, length - this_fill.length());
3883
3884 Output_section_data* posd = new Output_data_const(this_fill, 0);
3885 remaining.push_back(Input_section(posd));
3886 }
3887 address = aligned_address;
3888
3889 remaining.push_back(*p);
3890
3891 p->finalize_data_size();
3892 address += p->data_size();
3893 }
3894 }
3895
3896 this->input_sections_.swap(remaining);
3897 this->first_input_offset_ = 0;
3898
3899 uint64_t data_size = address - orig_address;
3900 this->set_current_data_size_for_child(data_size);
3901 return data_size;
3902 }
3903
3904 // Add a script input section. SIS is an Output_section::Input_section,
3905 // which can be either a plain input section or a special input section like
3906 // a relaxed input section. For a special input section, its size must be
3907 // finalized.
3908
3909 void
3910 Output_section::add_script_input_section(const Input_section& sis)
3911 {
3912 uint64_t data_size = sis.data_size();
3913 uint64_t addralign = sis.addralign();
3914 if (addralign > this->addralign_)
3915 this->addralign_ = addralign;
3916
3917 off_t offset_in_section = this->current_data_size_for_child();
3918 off_t aligned_offset_in_section = align_address(offset_in_section,
3919 addralign);
3920
3921 this->set_current_data_size_for_child(aligned_offset_in_section
3922 + data_size);
3923
3924 this->input_sections_.push_back(sis);
3925
3926 // Update fast lookup maps if necessary.
3927 if (this->lookup_maps_->is_valid())
3928 {
3929 if (sis.is_relaxed_input_section())
3930 {
3931 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3932 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3933 poris->shndx(), poris);
3934 }
3935 }
3936 }
3937
3938 // Save states for relaxation.
3939
3940 void
3941 Output_section::save_states()
3942 {
3943 gold_assert(this->checkpoint_ == NULL);
3944 Checkpoint_output_section* checkpoint =
3945 new Checkpoint_output_section(this->addralign_, this->flags_,
3946 this->input_sections_,
3947 this->first_input_offset_,
3948 this->attached_input_sections_are_sorted_);
3949 this->checkpoint_ = checkpoint;
3950 gold_assert(this->fills_.empty());
3951 }
3952
3953 void
3954 Output_section::discard_states()
3955 {
3956 gold_assert(this->checkpoint_ != NULL);
3957 delete this->checkpoint_;
3958 this->checkpoint_ = NULL;
3959 gold_assert(this->fills_.empty());
3960
3961 // Simply invalidate the fast lookup maps since we do not keep
3962 // track of them.
3963 this->lookup_maps_->invalidate();
3964 }
3965
3966 void
3967 Output_section::restore_states()
3968 {
3969 gold_assert(this->checkpoint_ != NULL);
3970 Checkpoint_output_section* checkpoint = this->checkpoint_;
3971
3972 this->addralign_ = checkpoint->addralign();
3973 this->flags_ = checkpoint->flags();
3974 this->first_input_offset_ = checkpoint->first_input_offset();
3975
3976 if (!checkpoint->input_sections_saved())
3977 {
3978 // If we have not copied the input sections, just resize it.
3979 size_t old_size = checkpoint->input_sections_size();
3980 gold_assert(this->input_sections_.size() >= old_size);
3981 this->input_sections_.resize(old_size);
3982 }
3983 else
3984 {
3985 // We need to copy the whole list. This is not efficient for
3986 // extremely large output with hundreads of thousands of input
3987 // objects. We may need to re-think how we should pass sections
3988 // to scripts.
3989 this->input_sections_ = *checkpoint->input_sections();
3990 }
3991
3992 this->attached_input_sections_are_sorted_ =
3993 checkpoint->attached_input_sections_are_sorted();
3994
3995 // Simply invalidate the fast lookup maps since we do not keep
3996 // track of them.
3997 this->lookup_maps_->invalidate();
3998 }
3999
4000 // Update the section offsets of input sections in this. This is required if
4001 // relaxation causes some input sections to change sizes.
4002
4003 void
4004 Output_section::adjust_section_offsets()
4005 {
4006 if (!this->section_offsets_need_adjustment_)
4007 return;
4008
4009 off_t off = 0;
4010 for (Input_section_list::iterator p = this->input_sections_.begin();
4011 p != this->input_sections_.end();
4012 ++p)
4013 {
4014 off = align_address(off, p->addralign());
4015 if (p->is_input_section())
4016 p->relobj()->set_section_offset(p->shndx(), off);
4017 off += p->data_size();
4018 }
4019
4020 this->section_offsets_need_adjustment_ = false;
4021 }
4022
4023 // Print to the map file.
4024
4025 void
4026 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4027 {
4028 mapfile->print_output_section(this);
4029
4030 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4031 p != this->input_sections_.end();
4032 ++p)
4033 p->print_to_mapfile(mapfile);
4034 }
4035
4036 // Print stats for merge sections to stderr.
4037
4038 void
4039 Output_section::print_merge_stats()
4040 {
4041 Input_section_list::iterator p;
4042 for (p = this->input_sections_.begin();
4043 p != this->input_sections_.end();
4044 ++p)
4045 p->print_merge_stats(this->name_);
4046 }
4047
4048 // Set a fixed layout for the section. Used for incremental update links.
4049
4050 void
4051 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4052 off_t sh_size, uint64_t sh_addralign)
4053 {
4054 this->addralign_ = sh_addralign;
4055 this->set_current_data_size(sh_size);
4056 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4057 this->set_address(sh_addr);
4058 this->set_file_offset(sh_offset);
4059 this->finalize_data_size();
4060 this->free_list_.init(sh_size, false);
4061 this->has_fixed_layout_ = true;
4062 }
4063
4064 // Reserve space within the fixed layout for the section. Used for
4065 // incremental update links.
4066
4067 void
4068 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4069 {
4070 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4071 }
4072
4073 // Allocate space from the free list for the section. Used for
4074 // incremental update links.
4075
4076 off_t
4077 Output_section::allocate(off_t len, uint64_t addralign)
4078 {
4079 return this->free_list_.allocate(len, addralign, 0);
4080 }
4081
4082 // Output segment methods.
4083
4084 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4085 : vaddr_(0),
4086 paddr_(0),
4087 memsz_(0),
4088 max_align_(0),
4089 min_p_align_(0),
4090 offset_(0),
4091 filesz_(0),
4092 type_(type),
4093 flags_(flags),
4094 is_max_align_known_(false),
4095 are_addresses_set_(false),
4096 is_large_data_segment_(false),
4097 is_unique_segment_(false)
4098 {
4099 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4100 // the flags.
4101 if (type == elfcpp::PT_TLS)
4102 this->flags_ = elfcpp::PF_R;
4103 }
4104
4105 // Add an Output_section to a PT_LOAD Output_segment.
4106
4107 void
4108 Output_segment::add_output_section_to_load(Layout* layout,
4109 Output_section* os,
4110 elfcpp::Elf_Word seg_flags)
4111 {
4112 gold_assert(this->type() == elfcpp::PT_LOAD);
4113 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4114 gold_assert(!this->is_max_align_known_);
4115 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4116
4117 this->update_flags_for_output_section(seg_flags);
4118
4119 // We don't want to change the ordering if we have a linker script
4120 // with a SECTIONS clause.
4121 Output_section_order order = os->order();
4122 if (layout->script_options()->saw_sections_clause())
4123 order = static_cast<Output_section_order>(0);
4124 else
4125 gold_assert(order != ORDER_INVALID);
4126
4127 this->output_lists_[order].push_back(os);
4128 }
4129
4130 // Add an Output_section to a non-PT_LOAD Output_segment.
4131
4132 void
4133 Output_segment::add_output_section_to_nonload(Output_section* os,
4134 elfcpp::Elf_Word seg_flags)
4135 {
4136 gold_assert(this->type() != elfcpp::PT_LOAD);
4137 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4138 gold_assert(!this->is_max_align_known_);
4139
4140 this->update_flags_for_output_section(seg_flags);
4141
4142 this->output_lists_[0].push_back(os);
4143 }
4144
4145 // Remove an Output_section from this segment. It is an error if it
4146 // is not present.
4147
4148 void
4149 Output_segment::remove_output_section(Output_section* os)
4150 {
4151 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4152 {
4153 Output_data_list* pdl = &this->output_lists_[i];
4154 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4155 {
4156 if (*p == os)
4157 {
4158 pdl->erase(p);
4159 return;
4160 }
4161 }
4162 }
4163 gold_unreachable();
4164 }
4165
4166 // Add an Output_data (which need not be an Output_section) to the
4167 // start of a segment.
4168
4169 void
4170 Output_segment::add_initial_output_data(Output_data* od)
4171 {
4172 gold_assert(!this->is_max_align_known_);
4173 Output_data_list::iterator p = this->output_lists_[0].begin();
4174 this->output_lists_[0].insert(p, od);
4175 }
4176
4177 // Return true if this segment has any sections which hold actual
4178 // data, rather than being a BSS section.
4179
4180 bool
4181 Output_segment::has_any_data_sections() const
4182 {
4183 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4184 {
4185 const Output_data_list* pdl = &this->output_lists_[i];
4186 for (Output_data_list::const_iterator p = pdl->begin();
4187 p != pdl->end();
4188 ++p)
4189 {
4190 if (!(*p)->is_section())
4191 return true;
4192 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4193 return true;
4194 }
4195 }
4196 return false;
4197 }
4198
4199 // Return whether the first data section (not counting TLS sections)
4200 // is a relro section.
4201
4202 bool
4203 Output_segment::is_first_section_relro() const
4204 {
4205 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4206 {
4207 if (i == static_cast<int>(ORDER_TLS_BSS))
4208 continue;
4209 const Output_data_list* pdl = &this->output_lists_[i];
4210 if (!pdl->empty())
4211 {
4212 Output_data* p = pdl->front();
4213 return p->is_section() && p->output_section()->is_relro();
4214 }
4215 }
4216 return false;
4217 }
4218
4219 // Return the maximum alignment of the Output_data in Output_segment.
4220
4221 uint64_t
4222 Output_segment::maximum_alignment()
4223 {
4224 if (!this->is_max_align_known_)
4225 {
4226 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4227 {
4228 const Output_data_list* pdl = &this->output_lists_[i];
4229 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4230 if (addralign > this->max_align_)
4231 this->max_align_ = addralign;
4232 }
4233 this->is_max_align_known_ = true;
4234 }
4235
4236 return this->max_align_;
4237 }
4238
4239 // Return the maximum alignment of a list of Output_data.
4240
4241 uint64_t
4242 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4243 {
4244 uint64_t ret = 0;
4245 for (Output_data_list::const_iterator p = pdl->begin();
4246 p != pdl->end();
4247 ++p)
4248 {
4249 uint64_t addralign = (*p)->addralign();
4250 if (addralign > ret)
4251 ret = addralign;
4252 }
4253 return ret;
4254 }
4255
4256 // Return whether this segment has any dynamic relocs.
4257
4258 bool
4259 Output_segment::has_dynamic_reloc() const
4260 {
4261 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4262 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4263 return true;
4264 return false;
4265 }
4266
4267 // Return whether this Output_data_list has any dynamic relocs.
4268
4269 bool
4270 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4271 {
4272 for (Output_data_list::const_iterator p = pdl->begin();
4273 p != pdl->end();
4274 ++p)
4275 if ((*p)->has_dynamic_reloc())
4276 return true;
4277 return false;
4278 }
4279
4280 // Set the section addresses for an Output_segment. If RESET is true,
4281 // reset the addresses first. ADDR is the address and *POFF is the
4282 // file offset. Set the section indexes starting with *PSHNDX.
4283 // INCREASE_RELRO is the size of the portion of the first non-relro
4284 // section that should be included in the PT_GNU_RELRO segment.
4285 // If this segment has relro sections, and has been aligned for
4286 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4287 // the immediately following segment. Update *HAS_RELRO, *POFF,
4288 // and *PSHNDX.
4289
4290 uint64_t
4291 Output_segment::set_section_addresses(const Target* target,
4292 Layout* layout, bool reset,
4293 uint64_t addr,
4294 unsigned int* increase_relro,
4295 bool* has_relro,
4296 off_t* poff,
4297 unsigned int* pshndx)
4298 {
4299 gold_assert(this->type_ == elfcpp::PT_LOAD);
4300
4301 uint64_t last_relro_pad = 0;
4302 off_t orig_off = *poff;
4303
4304 bool in_tls = false;
4305
4306 // If we have relro sections, we need to pad forward now so that the
4307 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4308 if (parameters->options().relro()
4309 && this->is_first_section_relro()
4310 && (!this->are_addresses_set_ || reset))
4311 {
4312 uint64_t relro_size = 0;
4313 off_t off = *poff;
4314 uint64_t max_align = 0;
4315 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4316 {
4317 Output_data_list* pdl = &this->output_lists_[i];
4318 Output_data_list::iterator p;
4319 for (p = pdl->begin(); p != pdl->end(); ++p)
4320 {
4321 if (!(*p)->is_section())
4322 break;
4323 uint64_t align = (*p)->addralign();
4324 if (align > max_align)
4325 max_align = align;
4326 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4327 in_tls = true;
4328 else if (in_tls)
4329 {
4330 // Align the first non-TLS section to the alignment
4331 // of the TLS segment.
4332 align = max_align;
4333 in_tls = false;
4334 }
4335 // Ignore the size of the .tbss section.
4336 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4337 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4338 continue;
4339 relro_size = align_address(relro_size, align);
4340 if ((*p)->is_address_valid())
4341 relro_size += (*p)->data_size();
4342 else
4343 {
4344 // FIXME: This could be faster.
4345 (*p)->set_address_and_file_offset(relro_size,
4346 relro_size);
4347 relro_size += (*p)->data_size();
4348 (*p)->reset_address_and_file_offset();
4349 }
4350 }
4351 if (p != pdl->end())
4352 break;
4353 }
4354 relro_size += *increase_relro;
4355 // Pad the total relro size to a multiple of the maximum
4356 // section alignment seen.
4357 uint64_t aligned_size = align_address(relro_size, max_align);
4358 // Note the amount of padding added after the last relro section.
4359 last_relro_pad = aligned_size - relro_size;
4360 *has_relro = true;
4361
4362 uint64_t page_align = parameters->target().abi_pagesize();
4363
4364 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4365 uint64_t desired_align = page_align - (aligned_size % page_align);
4366 if (desired_align < off % page_align)
4367 off += page_align;
4368 off += desired_align - off % page_align;
4369 addr += off - orig_off;
4370 orig_off = off;
4371 *poff = off;
4372 }
4373
4374 if (!reset && this->are_addresses_set_)
4375 {
4376 gold_assert(this->paddr_ == addr);
4377 addr = this->vaddr_;
4378 }
4379 else
4380 {
4381 this->vaddr_ = addr;
4382 this->paddr_ = addr;
4383 this->are_addresses_set_ = true;
4384 }
4385
4386 in_tls = false;
4387
4388 this->offset_ = orig_off;
4389
4390 off_t off = 0;
4391 uint64_t ret;
4392 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4393 {
4394 if (i == static_cast<int>(ORDER_RELRO_LAST))
4395 {
4396 *poff += last_relro_pad;
4397 addr += last_relro_pad;
4398 if (this->output_lists_[i].empty())
4399 {
4400 // If there is nothing in the ORDER_RELRO_LAST list,
4401 // the padding will occur at the end of the relro
4402 // segment, and we need to add it to *INCREASE_RELRO.
4403 *increase_relro += last_relro_pad;
4404 }
4405 }
4406 addr = this->set_section_list_addresses(layout, reset,
4407 &this->output_lists_[i],
4408 addr, poff, pshndx, &in_tls);
4409 if (i < static_cast<int>(ORDER_SMALL_BSS))
4410 {
4411 this->filesz_ = *poff - orig_off;
4412 off = *poff;
4413 }
4414
4415 ret = addr;
4416 }
4417
4418 // If the last section was a TLS section, align upward to the
4419 // alignment of the TLS segment, so that the overall size of the TLS
4420 // segment is aligned.
4421 if (in_tls)
4422 {
4423 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4424 *poff = align_address(*poff, segment_align);
4425 }
4426
4427 this->memsz_ = *poff - orig_off;
4428
4429 // Ignore the file offset adjustments made by the BSS Output_data
4430 // objects.
4431 *poff = off;
4432
4433 // If code segments must contain only code, and this code segment is
4434 // page-aligned in the file, then fill it out to a whole page with
4435 // code fill (the tail of the segment will not be within any section).
4436 // Thus the entire code segment can be mapped from the file as whole
4437 // pages and that mapping will contain only valid instructions.
4438 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4439 {
4440 uint64_t abi_pagesize = target->abi_pagesize();
4441 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4442 {
4443 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4444
4445 std::string fill_data;
4446 if (target->has_code_fill())
4447 fill_data = target->code_fill(fill_size);
4448 else
4449 fill_data.resize(fill_size); // Zero fill.
4450
4451 Output_data_const* fill = new Output_data_const(fill_data, 0);
4452 fill->set_address(this->vaddr_ + this->memsz_);
4453 fill->set_file_offset(off);
4454 layout->add_relax_output(fill);
4455
4456 off += fill_size;
4457 gold_assert(off % abi_pagesize == 0);
4458 ret += fill_size;
4459 gold_assert(ret % abi_pagesize == 0);
4460
4461 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4462 this->memsz_ = this->filesz_ += fill_size;
4463
4464 *poff = off;
4465 }
4466 }
4467
4468 return ret;
4469 }
4470
4471 // Set the addresses and file offsets in a list of Output_data
4472 // structures.
4473
4474 uint64_t
4475 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4476 Output_data_list* pdl,
4477 uint64_t addr, off_t* poff,
4478 unsigned int* pshndx,
4479 bool* in_tls)
4480 {
4481 off_t startoff = *poff;
4482 // For incremental updates, we may allocate non-fixed sections from
4483 // free space in the file. This keeps track of the high-water mark.
4484 off_t maxoff = startoff;
4485
4486 off_t off = startoff;
4487 for (Output_data_list::iterator p = pdl->begin();
4488 p != pdl->end();
4489 ++p)
4490 {
4491 if (reset)
4492 (*p)->reset_address_and_file_offset();
4493
4494 // When doing an incremental update or when using a linker script,
4495 // the section will most likely already have an address.
4496 if (!(*p)->is_address_valid())
4497 {
4498 uint64_t align = (*p)->addralign();
4499
4500 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4501 {
4502 // Give the first TLS section the alignment of the
4503 // entire TLS segment. Otherwise the TLS segment as a
4504 // whole may be misaligned.
4505 if (!*in_tls)
4506 {
4507 Output_segment* tls_segment = layout->tls_segment();
4508 gold_assert(tls_segment != NULL);
4509 uint64_t segment_align = tls_segment->maximum_alignment();
4510 gold_assert(segment_align >= align);
4511 align = segment_align;
4512
4513 *in_tls = true;
4514 }
4515 }
4516 else
4517 {
4518 // If this is the first section after the TLS segment,
4519 // align it to at least the alignment of the TLS
4520 // segment, so that the size of the overall TLS segment
4521 // is aligned.
4522 if (*in_tls)
4523 {
4524 uint64_t segment_align =
4525 layout->tls_segment()->maximum_alignment();
4526 if (segment_align > align)
4527 align = segment_align;
4528
4529 *in_tls = false;
4530 }
4531 }
4532
4533 if (!parameters->incremental_update())
4534 {
4535 off = align_address(off, align);
4536 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4537 }
4538 else
4539 {
4540 // Incremental update: allocate file space from free list.
4541 (*p)->pre_finalize_data_size();
4542 off_t current_size = (*p)->current_data_size();
4543 off = layout->allocate(current_size, align, startoff);
4544 if (off == -1)
4545 {
4546 gold_assert((*p)->output_section() != NULL);
4547 gold_fallback(_("out of patch space for section %s; "
4548 "relink with --incremental-full"),
4549 (*p)->output_section()->name());
4550 }
4551 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4552 if ((*p)->data_size() > current_size)
4553 {
4554 gold_assert((*p)->output_section() != NULL);
4555 gold_fallback(_("%s: section changed size; "
4556 "relink with --incremental-full"),
4557 (*p)->output_section()->name());
4558 }
4559 }
4560 }
4561 else if (parameters->incremental_update())
4562 {
4563 // For incremental updates, use the fixed offset for the
4564 // high-water mark computation.
4565 off = (*p)->offset();
4566 }
4567 else
4568 {
4569 // The script may have inserted a skip forward, but it
4570 // better not have moved backward.
4571 if ((*p)->address() >= addr + (off - startoff))
4572 off += (*p)->address() - (addr + (off - startoff));
4573 else
4574 {
4575 if (!layout->script_options()->saw_sections_clause())
4576 gold_unreachable();
4577 else
4578 {
4579 Output_section* os = (*p)->output_section();
4580
4581 // Cast to unsigned long long to avoid format warnings.
4582 unsigned long long previous_dot =
4583 static_cast<unsigned long long>(addr + (off - startoff));
4584 unsigned long long dot =
4585 static_cast<unsigned long long>((*p)->address());
4586
4587 if (os == NULL)
4588 gold_error(_("dot moves backward in linker script "
4589 "from 0x%llx to 0x%llx"), previous_dot, dot);
4590 else
4591 gold_error(_("address of section '%s' moves backward "
4592 "from 0x%llx to 0x%llx"),
4593 os->name(), previous_dot, dot);
4594 }
4595 }
4596 (*p)->set_file_offset(off);
4597 (*p)->finalize_data_size();
4598 }
4599
4600 if (parameters->incremental_update())
4601 gold_debug(DEBUG_INCREMENTAL,
4602 "set_section_list_addresses: %08lx %08lx %s",
4603 static_cast<long>(off),
4604 static_cast<long>((*p)->data_size()),
4605 ((*p)->output_section() != NULL
4606 ? (*p)->output_section()->name() : "(special)"));
4607
4608 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4609 // section. Such a section does not affect the size of a
4610 // PT_LOAD segment.
4611 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4612 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4613 off += (*p)->data_size();
4614
4615 if (off > maxoff)
4616 maxoff = off;
4617
4618 if ((*p)->is_section())
4619 {
4620 (*p)->set_out_shndx(*pshndx);
4621 ++*pshndx;
4622 }
4623 }
4624
4625 *poff = maxoff;
4626 return addr + (maxoff - startoff);
4627 }
4628
4629 // For a non-PT_LOAD segment, set the offset from the sections, if
4630 // any. Add INCREASE to the file size and the memory size.
4631
4632 void
4633 Output_segment::set_offset(unsigned int increase)
4634 {
4635 gold_assert(this->type_ != elfcpp::PT_LOAD);
4636
4637 gold_assert(!this->are_addresses_set_);
4638
4639 // A non-load section only uses output_lists_[0].
4640
4641 Output_data_list* pdl = &this->output_lists_[0];
4642
4643 if (pdl->empty())
4644 {
4645 gold_assert(increase == 0);
4646 this->vaddr_ = 0;
4647 this->paddr_ = 0;
4648 this->are_addresses_set_ = true;
4649 this->memsz_ = 0;
4650 this->min_p_align_ = 0;
4651 this->offset_ = 0;
4652 this->filesz_ = 0;
4653 return;
4654 }
4655
4656 // Find the first and last section by address.
4657 const Output_data* first = NULL;
4658 const Output_data* last_data = NULL;
4659 const Output_data* last_bss = NULL;
4660 for (Output_data_list::const_iterator p = pdl->begin();
4661 p != pdl->end();
4662 ++p)
4663 {
4664 if (first == NULL
4665 || (*p)->address() < first->address()
4666 || ((*p)->address() == first->address()
4667 && (*p)->data_size() < first->data_size()))
4668 first = *p;
4669 const Output_data** plast;
4670 if ((*p)->is_section()
4671 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4672 plast = &last_bss;
4673 else
4674 plast = &last_data;
4675 if (*plast == NULL
4676 || (*p)->address() > (*plast)->address()
4677 || ((*p)->address() == (*plast)->address()
4678 && (*p)->data_size() > (*plast)->data_size()))
4679 *plast = *p;
4680 }
4681
4682 this->vaddr_ = first->address();
4683 this->paddr_ = (first->has_load_address()
4684 ? first->load_address()
4685 : this->vaddr_);
4686 this->are_addresses_set_ = true;
4687 this->offset_ = first->offset();
4688
4689 if (last_data == NULL)
4690 this->filesz_ = 0;
4691 else
4692 this->filesz_ = (last_data->address()
4693 + last_data->data_size()
4694 - this->vaddr_);
4695
4696 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4697 this->memsz_ = (last->address()
4698 + last->data_size()
4699 - this->vaddr_);
4700
4701 this->filesz_ += increase;
4702 this->memsz_ += increase;
4703
4704 // If this is a RELRO segment, verify that the segment ends at a
4705 // page boundary.
4706 if (this->type_ == elfcpp::PT_GNU_RELRO)
4707 {
4708 uint64_t page_align = parameters->target().abi_pagesize();
4709 uint64_t segment_end = this->vaddr_ + this->memsz_;
4710 if (parameters->incremental_update())
4711 {
4712 // The INCREASE_RELRO calculation is bypassed for an incremental
4713 // update, so we need to adjust the segment size manually here.
4714 segment_end = align_address(segment_end, page_align);
4715 this->memsz_ = segment_end - this->vaddr_;
4716 }
4717 else
4718 gold_assert(segment_end == align_address(segment_end, page_align));
4719 }
4720
4721 // If this is a TLS segment, align the memory size. The code in
4722 // set_section_list ensures that the section after the TLS segment
4723 // is aligned to give us room.
4724 if (this->type_ == elfcpp::PT_TLS)
4725 {
4726 uint64_t segment_align = this->maximum_alignment();
4727 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4728 this->memsz_ = align_address(this->memsz_, segment_align);
4729 }
4730 }
4731
4732 // Set the TLS offsets of the sections in the PT_TLS segment.
4733
4734 void
4735 Output_segment::set_tls_offsets()
4736 {
4737 gold_assert(this->type_ == elfcpp::PT_TLS);
4738
4739 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4740 p != this->output_lists_[0].end();
4741 ++p)
4742 (*p)->set_tls_offset(this->vaddr_);
4743 }
4744
4745 // Return the first section.
4746
4747 Output_section*
4748 Output_segment::first_section() const
4749 {
4750 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4751 {
4752 const Output_data_list* pdl = &this->output_lists_[i];
4753 for (Output_data_list::const_iterator p = pdl->begin();
4754 p != pdl->end();
4755 ++p)
4756 {
4757 if ((*p)->is_section())
4758 return (*p)->output_section();
4759 }
4760 }
4761 gold_unreachable();
4762 }
4763
4764 // Return the number of Output_sections in an Output_segment.
4765
4766 unsigned int
4767 Output_segment::output_section_count() const
4768 {
4769 unsigned int ret = 0;
4770 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4771 ret += this->output_section_count_list(&this->output_lists_[i]);
4772 return ret;
4773 }
4774
4775 // Return the number of Output_sections in an Output_data_list.
4776
4777 unsigned int
4778 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4779 {
4780 unsigned int count = 0;
4781 for (Output_data_list::const_iterator p = pdl->begin();
4782 p != pdl->end();
4783 ++p)
4784 {
4785 if ((*p)->is_section())
4786 ++count;
4787 }
4788 return count;
4789 }
4790
4791 // Return the section attached to the list segment with the lowest
4792 // load address. This is used when handling a PHDRS clause in a
4793 // linker script.
4794
4795 Output_section*
4796 Output_segment::section_with_lowest_load_address() const
4797 {
4798 Output_section* found = NULL;
4799 uint64_t found_lma = 0;
4800 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4801 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4802 &found_lma);
4803 return found;
4804 }
4805
4806 // Look through a list for a section with a lower load address.
4807
4808 void
4809 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4810 Output_section** found,
4811 uint64_t* found_lma) const
4812 {
4813 for (Output_data_list::const_iterator p = pdl->begin();
4814 p != pdl->end();
4815 ++p)
4816 {
4817 if (!(*p)->is_section())
4818 continue;
4819 Output_section* os = static_cast<Output_section*>(*p);
4820 uint64_t lma = (os->has_load_address()
4821 ? os->load_address()
4822 : os->address());
4823 if (*found == NULL || lma < *found_lma)
4824 {
4825 *found = os;
4826 *found_lma = lma;
4827 }
4828 }
4829 }
4830
4831 // Write the segment data into *OPHDR.
4832
4833 template<int size, bool big_endian>
4834 void
4835 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4836 {
4837 ophdr->put_p_type(this->type_);
4838 ophdr->put_p_offset(this->offset_);
4839 ophdr->put_p_vaddr(this->vaddr_);
4840 ophdr->put_p_paddr(this->paddr_);
4841 ophdr->put_p_filesz(this->filesz_);
4842 ophdr->put_p_memsz(this->memsz_);
4843 ophdr->put_p_flags(this->flags_);
4844 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4845 }
4846
4847 // Write the section headers into V.
4848
4849 template<int size, bool big_endian>
4850 unsigned char*
4851 Output_segment::write_section_headers(const Layout* layout,
4852 const Stringpool* secnamepool,
4853 unsigned char* v,
4854 unsigned int* pshndx) const
4855 {
4856 // Every section that is attached to a segment must be attached to a
4857 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4858 // segments.
4859 if (this->type_ != elfcpp::PT_LOAD)
4860 return v;
4861
4862 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4863 {
4864 const Output_data_list* pdl = &this->output_lists_[i];
4865 v = this->write_section_headers_list<size, big_endian>(layout,
4866 secnamepool,
4867 pdl,
4868 v, pshndx);
4869 }
4870
4871 return v;
4872 }
4873
4874 template<int size, bool big_endian>
4875 unsigned char*
4876 Output_segment::write_section_headers_list(const Layout* layout,
4877 const Stringpool* secnamepool,
4878 const Output_data_list* pdl,
4879 unsigned char* v,
4880 unsigned int* pshndx) const
4881 {
4882 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4883 for (Output_data_list::const_iterator p = pdl->begin();
4884 p != pdl->end();
4885 ++p)
4886 {
4887 if ((*p)->is_section())
4888 {
4889 const Output_section* ps = static_cast<const Output_section*>(*p);
4890 gold_assert(*pshndx == ps->out_shndx());
4891 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4892 ps->write_header(layout, secnamepool, &oshdr);
4893 v += shdr_size;
4894 ++*pshndx;
4895 }
4896 }
4897 return v;
4898 }
4899
4900 // Print the output sections to the map file.
4901
4902 void
4903 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4904 {
4905 if (this->type() != elfcpp::PT_LOAD)
4906 return;
4907 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4908 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4909 }
4910
4911 // Print an output section list to the map file.
4912
4913 void
4914 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4915 const Output_data_list* pdl) const
4916 {
4917 for (Output_data_list::const_iterator p = pdl->begin();
4918 p != pdl->end();
4919 ++p)
4920 (*p)->print_to_mapfile(mapfile);
4921 }
4922
4923 // Output_file methods.
4924
4925 Output_file::Output_file(const char* name)
4926 : name_(name),
4927 o_(-1),
4928 file_size_(0),
4929 base_(NULL),
4930 map_is_anonymous_(false),
4931 map_is_allocated_(false),
4932 is_temporary_(false)
4933 {
4934 }
4935
4936 // Try to open an existing file. Returns false if the file doesn't
4937 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4938 // NULL, open that file as the base for incremental linking, and
4939 // copy its contents to the new output file. This routine can
4940 // be called for incremental updates, in which case WRITABLE should
4941 // be true, or by the incremental-dump utility, in which case
4942 // WRITABLE should be false.
4943
4944 bool
4945 Output_file::open_base_file(const char* base_name, bool writable)
4946 {
4947 // The name "-" means "stdout".
4948 if (strcmp(this->name_, "-") == 0)
4949 return false;
4950
4951 bool use_base_file = base_name != NULL;
4952 if (!use_base_file)
4953 base_name = this->name_;
4954 else if (strcmp(base_name, this->name_) == 0)
4955 gold_fatal(_("%s: incremental base and output file name are the same"),
4956 base_name);
4957
4958 // Don't bother opening files with a size of zero.
4959 struct stat s;
4960 if (::stat(base_name, &s) != 0)
4961 {
4962 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4963 return false;
4964 }
4965 if (s.st_size == 0)
4966 {
4967 gold_info(_("%s: incremental base file is empty"), base_name);
4968 return false;
4969 }
4970
4971 // If we're using a base file, we want to open it read-only.
4972 if (use_base_file)
4973 writable = false;
4974
4975 int oflags = writable ? O_RDWR : O_RDONLY;
4976 int o = open_descriptor(-1, base_name, oflags, 0);
4977 if (o < 0)
4978 {
4979 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4980 return false;
4981 }
4982
4983 // If the base file and the output file are different, open a
4984 // new output file and read the contents from the base file into
4985 // the newly-mapped region.
4986 if (use_base_file)
4987 {
4988 this->open(s.st_size);
4989 ssize_t bytes_to_read = s.st_size;
4990 unsigned char* p = this->base_;
4991 while (bytes_to_read > 0)
4992 {
4993 ssize_t len = ::read(o, p, bytes_to_read);
4994 if (len < 0)
4995 {
4996 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4997 return false;
4998 }
4999 if (len == 0)
5000 {
5001 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5002 base_name,
5003 static_cast<long long>(s.st_size - bytes_to_read),
5004 static_cast<long long>(s.st_size));
5005 return false;
5006 }
5007 p += len;
5008 bytes_to_read -= len;
5009 }
5010 ::close(o);
5011 return true;
5012 }
5013
5014 this->o_ = o;
5015 this->file_size_ = s.st_size;
5016
5017 if (!this->map_no_anonymous(writable))
5018 {
5019 release_descriptor(o, true);
5020 this->o_ = -1;
5021 this->file_size_ = 0;
5022 return false;
5023 }
5024
5025 return true;
5026 }
5027
5028 // Open the output file.
5029
5030 void
5031 Output_file::open(off_t file_size)
5032 {
5033 this->file_size_ = file_size;
5034
5035 // Unlink the file first; otherwise the open() may fail if the file
5036 // is busy (e.g. it's an executable that's currently being executed).
5037 //
5038 // However, the linker may be part of a system where a zero-length
5039 // file is created for it to write to, with tight permissions (gcc
5040 // 2.95 did something like this). Unlinking the file would work
5041 // around those permission controls, so we only unlink if the file
5042 // has a non-zero size. We also unlink only regular files to avoid
5043 // trouble with directories/etc.
5044 //
5045 // If we fail, continue; this command is merely a best-effort attempt
5046 // to improve the odds for open().
5047
5048 // We let the name "-" mean "stdout"
5049 if (!this->is_temporary_)
5050 {
5051 if (strcmp(this->name_, "-") == 0)
5052 this->o_ = STDOUT_FILENO;
5053 else
5054 {
5055 struct stat s;
5056 if (::stat(this->name_, &s) == 0
5057 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5058 {
5059 if (s.st_size != 0)
5060 ::unlink(this->name_);
5061 else if (!parameters->options().relocatable())
5062 {
5063 // If we don't unlink the existing file, add execute
5064 // permission where read permissions already exist
5065 // and where the umask permits.
5066 int mask = ::umask(0);
5067 ::umask(mask);
5068 s.st_mode |= (s.st_mode & 0444) >> 2;
5069 ::chmod(this->name_, s.st_mode & ~mask);
5070 }
5071 }
5072
5073 int mode = parameters->options().relocatable() ? 0666 : 0777;
5074 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5075 mode);
5076 if (o < 0)
5077 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5078 this->o_ = o;
5079 }
5080 }
5081
5082 this->map();
5083 }
5084
5085 // Resize the output file.
5086
5087 void
5088 Output_file::resize(off_t file_size)
5089 {
5090 // If the mmap is mapping an anonymous memory buffer, this is easy:
5091 // just mremap to the new size. If it's mapping to a file, we want
5092 // to unmap to flush to the file, then remap after growing the file.
5093 if (this->map_is_anonymous_)
5094 {
5095 void* base;
5096 if (!this->map_is_allocated_)
5097 {
5098 base = ::mremap(this->base_, this->file_size_, file_size,
5099 MREMAP_MAYMOVE);
5100 if (base == MAP_FAILED)
5101 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5102 }
5103 else
5104 {
5105 base = realloc(this->base_, file_size);
5106 if (base == NULL)
5107 gold_nomem();
5108 if (file_size > this->file_size_)
5109 memset(static_cast<char*>(base) + this->file_size_, 0,
5110 file_size - this->file_size_);
5111 }
5112 this->base_ = static_cast<unsigned char*>(base);
5113 this->file_size_ = file_size;
5114 }
5115 else
5116 {
5117 this->unmap();
5118 this->file_size_ = file_size;
5119 if (!this->map_no_anonymous(true))
5120 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5121 }
5122 }
5123
5124 // Map an anonymous block of memory which will later be written to the
5125 // file. Return whether the map succeeded.
5126
5127 bool
5128 Output_file::map_anonymous()
5129 {
5130 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5131 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5132 if (base == MAP_FAILED)
5133 {
5134 base = malloc(this->file_size_);
5135 if (base == NULL)
5136 return false;
5137 memset(base, 0, this->file_size_);
5138 this->map_is_allocated_ = true;
5139 }
5140 this->base_ = static_cast<unsigned char*>(base);
5141 this->map_is_anonymous_ = true;
5142 return true;
5143 }
5144
5145 // Map the file into memory. Return whether the mapping succeeded.
5146 // If WRITABLE is true, map with write access.
5147
5148 bool
5149 Output_file::map_no_anonymous(bool writable)
5150 {
5151 const int o = this->o_;
5152
5153 // If the output file is not a regular file, don't try to mmap it;
5154 // instead, we'll mmap a block of memory (an anonymous buffer), and
5155 // then later write the buffer to the file.
5156 void* base;
5157 struct stat statbuf;
5158 if (o == STDOUT_FILENO || o == STDERR_FILENO
5159 || ::fstat(o, &statbuf) != 0
5160 || !S_ISREG(statbuf.st_mode)
5161 || this->is_temporary_)
5162 return false;
5163
5164 // Ensure that we have disk space available for the file. If we
5165 // don't do this, it is possible that we will call munmap, close,
5166 // and exit with dirty buffers still in the cache with no assigned
5167 // disk blocks. If the disk is out of space at that point, the
5168 // output file will wind up incomplete, but we will have already
5169 // exited. The alternative to fallocate would be to use fdatasync,
5170 // but that would be a more significant performance hit.
5171 if (writable)
5172 {
5173 int err = gold_fallocate(o, 0, this->file_size_);
5174 if (err != 0)
5175 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5176 }
5177
5178 // Map the file into memory.
5179 int prot = PROT_READ;
5180 if (writable)
5181 prot |= PROT_WRITE;
5182 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5183
5184 // The mmap call might fail because of file system issues: the file
5185 // system might not support mmap at all, or it might not support
5186 // mmap with PROT_WRITE.
5187 if (base == MAP_FAILED)
5188 return false;
5189
5190 this->map_is_anonymous_ = false;
5191 this->base_ = static_cast<unsigned char*>(base);
5192 return true;
5193 }
5194
5195 // Map the file into memory.
5196
5197 void
5198 Output_file::map()
5199 {
5200 if (parameters->options().mmap_output_file()
5201 && this->map_no_anonymous(true))
5202 return;
5203
5204 // The mmap call might fail because of file system issues: the file
5205 // system might not support mmap at all, or it might not support
5206 // mmap with PROT_WRITE. I'm not sure which errno values we will
5207 // see in all cases, so if the mmap fails for any reason and we
5208 // don't care about file contents, try for an anonymous map.
5209 if (this->map_anonymous())
5210 return;
5211
5212 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5213 this->name_, static_cast<unsigned long>(this->file_size_),
5214 strerror(errno));
5215 }
5216
5217 // Unmap the file from memory.
5218
5219 void
5220 Output_file::unmap()
5221 {
5222 if (this->map_is_anonymous_)
5223 {
5224 // We've already written out the data, so there is no reason to
5225 // waste time unmapping or freeing the memory.
5226 }
5227 else
5228 {
5229 if (::munmap(this->base_, this->file_size_) < 0)
5230 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5231 }
5232 this->base_ = NULL;
5233 }
5234
5235 // Close the output file.
5236
5237 void
5238 Output_file::close()
5239 {
5240 // If the map isn't file-backed, we need to write it now.
5241 if (this->map_is_anonymous_ && !this->is_temporary_)
5242 {
5243 size_t bytes_to_write = this->file_size_;
5244 size_t offset = 0;
5245 while (bytes_to_write > 0)
5246 {
5247 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5248 bytes_to_write);
5249 if (bytes_written == 0)
5250 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5251 else if (bytes_written < 0)
5252 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5253 else
5254 {
5255 bytes_to_write -= bytes_written;
5256 offset += bytes_written;
5257 }
5258 }
5259 }
5260 this->unmap();
5261
5262 // We don't close stdout or stderr
5263 if (this->o_ != STDOUT_FILENO
5264 && this->o_ != STDERR_FILENO
5265 && !this->is_temporary_)
5266 if (::close(this->o_) < 0)
5267 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5268 this->o_ = -1;
5269 }
5270
5271 // Instantiate the templates we need. We could use the configure
5272 // script to restrict this to only the ones for implemented targets.
5273
5274 #ifdef HAVE_TARGET_32_LITTLE
5275 template
5276 off_t
5277 Output_section::add_input_section<32, false>(
5278 Layout* layout,
5279 Sized_relobj_file<32, false>* object,
5280 unsigned int shndx,
5281 const char* secname,
5282 const elfcpp::Shdr<32, false>& shdr,
5283 unsigned int reloc_shndx,
5284 bool have_sections_script);
5285 #endif
5286
5287 #ifdef HAVE_TARGET_32_BIG
5288 template
5289 off_t
5290 Output_section::add_input_section<32, true>(
5291 Layout* layout,
5292 Sized_relobj_file<32, true>* object,
5293 unsigned int shndx,
5294 const char* secname,
5295 const elfcpp::Shdr<32, true>& shdr,
5296 unsigned int reloc_shndx,
5297 bool have_sections_script);
5298 #endif
5299
5300 #ifdef HAVE_TARGET_64_LITTLE
5301 template
5302 off_t
5303 Output_section::add_input_section<64, false>(
5304 Layout* layout,
5305 Sized_relobj_file<64, false>* object,
5306 unsigned int shndx,
5307 const char* secname,
5308 const elfcpp::Shdr<64, false>& shdr,
5309 unsigned int reloc_shndx,
5310 bool have_sections_script);
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_BIG
5314 template
5315 off_t
5316 Output_section::add_input_section<64, true>(
5317 Layout* layout,
5318 Sized_relobj_file<64, true>* object,
5319 unsigned int shndx,
5320 const char* secname,
5321 const elfcpp::Shdr<64, true>& shdr,
5322 unsigned int reloc_shndx,
5323 bool have_sections_script);
5324 #endif
5325
5326 #ifdef HAVE_TARGET_32_LITTLE
5327 template
5328 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5329 #endif
5330
5331 #ifdef HAVE_TARGET_32_BIG
5332 template
5333 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5334 #endif
5335
5336 #ifdef HAVE_TARGET_64_LITTLE
5337 template
5338 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5339 #endif
5340
5341 #ifdef HAVE_TARGET_64_BIG
5342 template
5343 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5344 #endif
5345
5346 #ifdef HAVE_TARGET_32_LITTLE
5347 template
5348 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5349 #endif
5350
5351 #ifdef HAVE_TARGET_32_BIG
5352 template
5353 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5354 #endif
5355
5356 #ifdef HAVE_TARGET_64_LITTLE
5357 template
5358 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5359 #endif
5360
5361 #ifdef HAVE_TARGET_64_BIG
5362 template
5363 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5364 #endif
5365
5366 #ifdef HAVE_TARGET_32_LITTLE
5367 template
5368 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5369 #endif
5370
5371 #ifdef HAVE_TARGET_32_BIG
5372 template
5373 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5374 #endif
5375
5376 #ifdef HAVE_TARGET_64_LITTLE
5377 template
5378 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5379 #endif
5380
5381 #ifdef HAVE_TARGET_64_BIG
5382 template
5383 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5384 #endif
5385
5386 #ifdef HAVE_TARGET_32_LITTLE
5387 template
5388 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5389 #endif
5390
5391 #ifdef HAVE_TARGET_32_BIG
5392 template
5393 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5394 #endif
5395
5396 #ifdef HAVE_TARGET_64_LITTLE
5397 template
5398 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5399 #endif
5400
5401 #ifdef HAVE_TARGET_64_BIG
5402 template
5403 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5404 #endif
5405
5406 #ifdef HAVE_TARGET_32_LITTLE
5407 template
5408 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5409 #endif
5410
5411 #ifdef HAVE_TARGET_32_BIG
5412 template
5413 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5414 #endif
5415
5416 #ifdef HAVE_TARGET_64_LITTLE
5417 template
5418 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5419 #endif
5420
5421 #ifdef HAVE_TARGET_64_BIG
5422 template
5423 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5424 #endif
5425
5426 #ifdef HAVE_TARGET_32_LITTLE
5427 template
5428 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5429 #endif
5430
5431 #ifdef HAVE_TARGET_32_BIG
5432 template
5433 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5434 #endif
5435
5436 #ifdef HAVE_TARGET_64_LITTLE
5437 template
5438 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5439 #endif
5440
5441 #ifdef HAVE_TARGET_64_BIG
5442 template
5443 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5444 #endif
5445
5446 #ifdef HAVE_TARGET_32_LITTLE
5447 template
5448 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5449 #endif
5450
5451 #ifdef HAVE_TARGET_32_BIG
5452 template
5453 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5454 #endif
5455
5456 #ifdef HAVE_TARGET_64_LITTLE
5457 template
5458 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5459 #endif
5460
5461 #ifdef HAVE_TARGET_64_BIG
5462 template
5463 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5464 #endif
5465
5466 #ifdef HAVE_TARGET_32_LITTLE
5467 template
5468 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5469 #endif
5470
5471 #ifdef HAVE_TARGET_32_BIG
5472 template
5473 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5474 #endif
5475
5476 #ifdef HAVE_TARGET_64_LITTLE
5477 template
5478 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5479 #endif
5480
5481 #ifdef HAVE_TARGET_64_BIG
5482 template
5483 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5484 #endif
5485
5486 #ifdef HAVE_TARGET_32_LITTLE
5487 template
5488 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5489 #endif
5490
5491 #ifdef HAVE_TARGET_32_BIG
5492 template
5493 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5494 #endif
5495
5496 #ifdef HAVE_TARGET_64_LITTLE
5497 template
5498 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5499 #endif
5500
5501 #ifdef HAVE_TARGET_64_BIG
5502 template
5503 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5504 #endif
5505
5506 #ifdef HAVE_TARGET_32_LITTLE
5507 template
5508 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5509 #endif
5510
5511 #ifdef HAVE_TARGET_32_BIG
5512 template
5513 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5514 #endif
5515
5516 #ifdef HAVE_TARGET_64_LITTLE
5517 template
5518 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5519 #endif
5520
5521 #ifdef HAVE_TARGET_64_BIG
5522 template
5523 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5524 #endif
5525
5526 #ifdef HAVE_TARGET_32_LITTLE
5527 template
5528 class Output_data_group<32, false>;
5529 #endif
5530
5531 #ifdef HAVE_TARGET_32_BIG
5532 template
5533 class Output_data_group<32, true>;
5534 #endif
5535
5536 #ifdef HAVE_TARGET_64_LITTLE
5537 template
5538 class Output_data_group<64, false>;
5539 #endif
5540
5541 #ifdef HAVE_TARGET_64_BIG
5542 template
5543 class Output_data_group<64, true>;
5544 #endif
5545
5546 template
5547 class Output_data_got<32, false>;
5548
5549 template
5550 class Output_data_got<32, true>;
5551
5552 template
5553 class Output_data_got<64, false>;
5554
5555 template
5556 class Output_data_got<64, true>;
5557
5558 } // End namespace gold.
This page took 0.228399 seconds and 5 git commands to generate.