* output.h (Output_reloc::Output_reloc <output section>): Add
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address)
860 : address_(address), local_sym_index_(0), type_(type),
861 is_relative_(false), is_symbolless_(false),
862 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
863 {
864 // this->type_ is a bitfield; make sure TYPE fits.
865 gold_assert(this->type_ == type);
866 this->u1_.relobj = NULL;
867 this->u2_.od = od;
868 }
869
870 template<bool dynamic, int size, bool big_endian>
871 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
872 unsigned int type,
873 Sized_relobj<size, big_endian>* relobj,
874 unsigned int shndx,
875 Address address)
876 : address_(address), local_sym_index_(0), type_(type),
877 is_relative_(false), is_symbolless_(false),
878 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
879 {
880 gold_assert(shndx != INVALID_CODE);
881 // this->type_ is a bitfield; make sure TYPE fits.
882 gold_assert(this->type_ == type);
883 this->u1_.relobj = NULL;
884 this->u2_.relobj = relobj;
885 }
886
887 // A target specific relocation.
888
889 template<bool dynamic, int size, bool big_endian>
890 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
891 unsigned int type,
892 void* arg,
893 Output_data* od,
894 Address address)
895 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896 is_relative_(false), is_symbolless_(false),
897 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
898 {
899 // this->type_ is a bitfield; make sure TYPE fits.
900 gold_assert(this->type_ == type);
901 this->u1_.arg = arg;
902 this->u2_.od = od;
903 }
904
905 template<bool dynamic, int size, bool big_endian>
906 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
907 unsigned int type,
908 void* arg,
909 Sized_relobj<size, big_endian>* relobj,
910 unsigned int shndx,
911 Address address)
912 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
913 is_relative_(false), is_symbolless_(false),
914 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
915 {
916 gold_assert(shndx != INVALID_CODE);
917 // this->type_ is a bitfield; make sure TYPE fits.
918 gold_assert(this->type_ == type);
919 this->u1_.arg = arg;
920 this->u2_.relobj = relobj;
921 }
922
923 // Record that we need a dynamic symbol index for this relocation.
924
925 template<bool dynamic, int size, bool big_endian>
926 void
927 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
928 set_needs_dynsym_index()
929 {
930 if (this->is_symbolless_)
931 return;
932 switch (this->local_sym_index_)
933 {
934 case INVALID_CODE:
935 gold_unreachable();
936
937 case GSYM_CODE:
938 this->u1_.gsym->set_needs_dynsym_entry();
939 break;
940
941 case SECTION_CODE:
942 this->u1_.os->set_needs_dynsym_index();
943 break;
944
945 case TARGET_CODE:
946 // The target must take care of this if necessary.
947 break;
948
949 case 0:
950 break;
951
952 default:
953 {
954 const unsigned int lsi = this->local_sym_index_;
955 Sized_relobj_file<size, big_endian>* relobj =
956 this->u1_.relobj->sized_relobj();
957 gold_assert(relobj != NULL);
958 if (!this->is_section_symbol_)
959 relobj->set_needs_output_dynsym_entry(lsi);
960 else
961 relobj->output_section(lsi)->set_needs_dynsym_index();
962 }
963 break;
964 }
965 }
966
967 // Get the symbol index of a relocation.
968
969 template<bool dynamic, int size, bool big_endian>
970 unsigned int
971 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
972 const
973 {
974 unsigned int index;
975 if (this->is_symbolless_)
976 return 0;
977 switch (this->local_sym_index_)
978 {
979 case INVALID_CODE:
980 gold_unreachable();
981
982 case GSYM_CODE:
983 if (this->u1_.gsym == NULL)
984 index = 0;
985 else if (dynamic)
986 index = this->u1_.gsym->dynsym_index();
987 else
988 index = this->u1_.gsym->symtab_index();
989 break;
990
991 case SECTION_CODE:
992 if (dynamic)
993 index = this->u1_.os->dynsym_index();
994 else
995 index = this->u1_.os->symtab_index();
996 break;
997
998 case TARGET_CODE:
999 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1000 this->type_);
1001 break;
1002
1003 case 0:
1004 // Relocations without symbols use a symbol index of 0.
1005 index = 0;
1006 break;
1007
1008 default:
1009 {
1010 const unsigned int lsi = this->local_sym_index_;
1011 Sized_relobj_file<size, big_endian>* relobj =
1012 this->u1_.relobj->sized_relobj();
1013 gold_assert(relobj != NULL);
1014 if (!this->is_section_symbol_)
1015 {
1016 if (dynamic)
1017 index = relobj->dynsym_index(lsi);
1018 else
1019 index = relobj->symtab_index(lsi);
1020 }
1021 else
1022 {
1023 Output_section* os = relobj->output_section(lsi);
1024 gold_assert(os != NULL);
1025 if (dynamic)
1026 index = os->dynsym_index();
1027 else
1028 index = os->symtab_index();
1029 }
1030 }
1031 break;
1032 }
1033 gold_assert(index != -1U);
1034 return index;
1035 }
1036
1037 // For a local section symbol, get the address of the offset ADDEND
1038 // within the input section.
1039
1040 template<bool dynamic, int size, bool big_endian>
1041 typename elfcpp::Elf_types<size>::Elf_Addr
1042 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1043 local_section_offset(Addend addend) const
1044 {
1045 gold_assert(this->local_sym_index_ != GSYM_CODE
1046 && this->local_sym_index_ != SECTION_CODE
1047 && this->local_sym_index_ != TARGET_CODE
1048 && this->local_sym_index_ != INVALID_CODE
1049 && this->local_sym_index_ != 0
1050 && this->is_section_symbol_);
1051 const unsigned int lsi = this->local_sym_index_;
1052 Output_section* os = this->u1_.relobj->output_section(lsi);
1053 gold_assert(os != NULL);
1054 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1055 if (offset != invalid_address)
1056 return offset + addend;
1057 // This is a merge section.
1058 Sized_relobj_file<size, big_endian>* relobj =
1059 this->u1_.relobj->sized_relobj();
1060 gold_assert(relobj != NULL);
1061 offset = os->output_address(relobj, lsi, addend);
1062 gold_assert(offset != invalid_address);
1063 return offset;
1064 }
1065
1066 // Get the output address of a relocation.
1067
1068 template<bool dynamic, int size, bool big_endian>
1069 typename elfcpp::Elf_types<size>::Elf_Addr
1070 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1071 {
1072 Address address = this->address_;
1073 if (this->shndx_ != INVALID_CODE)
1074 {
1075 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1076 gold_assert(os != NULL);
1077 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1078 if (off != invalid_address)
1079 address += os->address() + off;
1080 else
1081 {
1082 Sized_relobj_file<size, big_endian>* relobj =
1083 this->u2_.relobj->sized_relobj();
1084 gold_assert(relobj != NULL);
1085 address = os->output_address(relobj, this->shndx_, address);
1086 gold_assert(address != invalid_address);
1087 }
1088 }
1089 else if (this->u2_.od != NULL)
1090 address += this->u2_.od->address();
1091 return address;
1092 }
1093
1094 // Write out the offset and info fields of a Rel or Rela relocation
1095 // entry.
1096
1097 template<bool dynamic, int size, bool big_endian>
1098 template<typename Write_rel>
1099 void
1100 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1101 Write_rel* wr) const
1102 {
1103 wr->put_r_offset(this->get_address());
1104 unsigned int sym_index = this->get_symbol_index();
1105 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1106 }
1107
1108 // Write out a Rel relocation.
1109
1110 template<bool dynamic, int size, bool big_endian>
1111 void
1112 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1113 unsigned char* pov) const
1114 {
1115 elfcpp::Rel_write<size, big_endian> orel(pov);
1116 this->write_rel(&orel);
1117 }
1118
1119 // Get the value of the symbol referred to by a Rel relocation.
1120
1121 template<bool dynamic, int size, bool big_endian>
1122 typename elfcpp::Elf_types<size>::Elf_Addr
1123 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1124 Addend addend) const
1125 {
1126 if (this->local_sym_index_ == GSYM_CODE)
1127 {
1128 const Sized_symbol<size>* sym;
1129 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1130 if (this->use_plt_offset_ && sym->has_plt_offset())
1131 {
1132 uint64_t plt_address =
1133 parameters->target().plt_address_for_global(sym);
1134 return plt_address + sym->plt_offset();
1135 }
1136 else
1137 return sym->value() + addend;
1138 }
1139 if (this->local_sym_index_ == SECTION_CODE)
1140 {
1141 gold_assert(!this->use_plt_offset_);
1142 return this->u1_.os->address() + addend;
1143 }
1144 gold_assert(this->local_sym_index_ != TARGET_CODE
1145 && this->local_sym_index_ != INVALID_CODE
1146 && this->local_sym_index_ != 0
1147 && !this->is_section_symbol_);
1148 const unsigned int lsi = this->local_sym_index_;
1149 Sized_relobj_file<size, big_endian>* relobj =
1150 this->u1_.relobj->sized_relobj();
1151 gold_assert(relobj != NULL);
1152 if (this->use_plt_offset_)
1153 {
1154 uint64_t plt_address =
1155 parameters->target().plt_address_for_local(relobj, lsi);
1156 return plt_address + relobj->local_plt_offset(lsi);
1157 }
1158 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1159 return symval->value(relobj, addend);
1160 }
1161
1162 // Reloc comparison. This function sorts the dynamic relocs for the
1163 // benefit of the dynamic linker. First we sort all relative relocs
1164 // to the front. Among relative relocs, we sort by output address.
1165 // Among non-relative relocs, we sort by symbol index, then by output
1166 // address.
1167
1168 template<bool dynamic, int size, bool big_endian>
1169 int
1170 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1171 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1172 const
1173 {
1174 if (this->is_relative_)
1175 {
1176 if (!r2.is_relative_)
1177 return -1;
1178 // Otherwise sort by reloc address below.
1179 }
1180 else if (r2.is_relative_)
1181 return 1;
1182 else
1183 {
1184 unsigned int sym1 = this->get_symbol_index();
1185 unsigned int sym2 = r2.get_symbol_index();
1186 if (sym1 < sym2)
1187 return -1;
1188 else if (sym1 > sym2)
1189 return 1;
1190 // Otherwise sort by reloc address.
1191 }
1192
1193 section_offset_type addr1 = this->get_address();
1194 section_offset_type addr2 = r2.get_address();
1195 if (addr1 < addr2)
1196 return -1;
1197 else if (addr1 > addr2)
1198 return 1;
1199
1200 // Final tie breaker, in order to generate the same output on any
1201 // host: reloc type.
1202 unsigned int type1 = this->type_;
1203 unsigned int type2 = r2.type_;
1204 if (type1 < type2)
1205 return -1;
1206 else if (type1 > type2)
1207 return 1;
1208
1209 // These relocs appear to be exactly the same.
1210 return 0;
1211 }
1212
1213 // Write out a Rela relocation.
1214
1215 template<bool dynamic, int size, bool big_endian>
1216 void
1217 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1218 unsigned char* pov) const
1219 {
1220 elfcpp::Rela_write<size, big_endian> orel(pov);
1221 this->rel_.write_rel(&orel);
1222 Addend addend = this->addend_;
1223 if (this->rel_.is_target_specific())
1224 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1225 this->rel_.type(), addend);
1226 else if (this->rel_.is_symbolless())
1227 addend = this->rel_.symbol_value(addend);
1228 else if (this->rel_.is_local_section_symbol())
1229 addend = this->rel_.local_section_offset(addend);
1230 orel.put_r_addend(addend);
1231 }
1232
1233 // Output_data_reloc_base methods.
1234
1235 // Adjust the output section.
1236
1237 template<int sh_type, bool dynamic, int size, bool big_endian>
1238 void
1239 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1240 ::do_adjust_output_section(Output_section* os)
1241 {
1242 if (sh_type == elfcpp::SHT_REL)
1243 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1244 else if (sh_type == elfcpp::SHT_RELA)
1245 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1246 else
1247 gold_unreachable();
1248
1249 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1250 // static link. The backends will generate a dynamic reloc section
1251 // to hold this. In that case we don't want to link to the dynsym
1252 // section, because there isn't one.
1253 if (!dynamic)
1254 os->set_should_link_to_symtab();
1255 else if (parameters->doing_static_link())
1256 ;
1257 else
1258 os->set_should_link_to_dynsym();
1259 }
1260
1261 // Write out relocation data.
1262
1263 template<int sh_type, bool dynamic, int size, bool big_endian>
1264 void
1265 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1266 Output_file* of)
1267 {
1268 const off_t off = this->offset();
1269 const off_t oview_size = this->data_size();
1270 unsigned char* const oview = of->get_output_view(off, oview_size);
1271
1272 if (this->sort_relocs())
1273 {
1274 gold_assert(dynamic);
1275 std::sort(this->relocs_.begin(), this->relocs_.end(),
1276 Sort_relocs_comparison());
1277 }
1278
1279 unsigned char* pov = oview;
1280 for (typename Relocs::const_iterator p = this->relocs_.begin();
1281 p != this->relocs_.end();
1282 ++p)
1283 {
1284 p->write(pov);
1285 pov += reloc_size;
1286 }
1287
1288 gold_assert(pov - oview == oview_size);
1289
1290 of->write_output_view(off, oview_size, oview);
1291
1292 // We no longer need the relocation entries.
1293 this->relocs_.clear();
1294 }
1295
1296 // Class Output_relocatable_relocs.
1297
1298 template<int sh_type, int size, bool big_endian>
1299 void
1300 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1301 {
1302 this->set_data_size(this->rr_->output_reloc_count()
1303 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1304 }
1305
1306 // class Output_data_group.
1307
1308 template<int size, bool big_endian>
1309 Output_data_group<size, big_endian>::Output_data_group(
1310 Sized_relobj_file<size, big_endian>* relobj,
1311 section_size_type entry_count,
1312 elfcpp::Elf_Word flags,
1313 std::vector<unsigned int>* input_shndxes)
1314 : Output_section_data(entry_count * 4, 4, false),
1315 relobj_(relobj),
1316 flags_(flags)
1317 {
1318 this->input_shndxes_.swap(*input_shndxes);
1319 }
1320
1321 // Write out the section group, which means translating the section
1322 // indexes to apply to the output file.
1323
1324 template<int size, bool big_endian>
1325 void
1326 Output_data_group<size, big_endian>::do_write(Output_file* of)
1327 {
1328 const off_t off = this->offset();
1329 const section_size_type oview_size =
1330 convert_to_section_size_type(this->data_size());
1331 unsigned char* const oview = of->get_output_view(off, oview_size);
1332
1333 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1334 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1335 ++contents;
1336
1337 for (std::vector<unsigned int>::const_iterator p =
1338 this->input_shndxes_.begin();
1339 p != this->input_shndxes_.end();
1340 ++p, ++contents)
1341 {
1342 Output_section* os = this->relobj_->output_section(*p);
1343
1344 unsigned int output_shndx;
1345 if (os != NULL)
1346 output_shndx = os->out_shndx();
1347 else
1348 {
1349 this->relobj_->error(_("section group retained but "
1350 "group element discarded"));
1351 output_shndx = 0;
1352 }
1353
1354 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1355 }
1356
1357 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1358 gold_assert(wrote == oview_size);
1359
1360 of->write_output_view(off, oview_size, oview);
1361
1362 // We no longer need this information.
1363 this->input_shndxes_.clear();
1364 }
1365
1366 // Output_data_got::Got_entry methods.
1367
1368 // Write out the entry.
1369
1370 template<int size, bool big_endian>
1371 void
1372 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1373 {
1374 Valtype val = 0;
1375
1376 switch (this->local_sym_index_)
1377 {
1378 case GSYM_CODE:
1379 {
1380 // If the symbol is resolved locally, we need to write out the
1381 // link-time value, which will be relocated dynamically by a
1382 // RELATIVE relocation.
1383 Symbol* gsym = this->u_.gsym;
1384 if (this->use_plt_offset_ && gsym->has_plt_offset())
1385 val = (parameters->target().plt_address_for_global(gsym)
1386 + gsym->plt_offset());
1387 else
1388 {
1389 Sized_symbol<size>* sgsym;
1390 // This cast is a bit ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol to be
1392 // as small as possible.
1393 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1394 val = sgsym->value();
1395 }
1396 }
1397 break;
1398
1399 case CONSTANT_CODE:
1400 val = this->u_.constant;
1401 break;
1402
1403 case RESERVED_CODE:
1404 // If we're doing an incremental update, don't touch this GOT entry.
1405 if (parameters->incremental_update())
1406 return;
1407 val = this->u_.constant;
1408 break;
1409
1410 default:
1411 {
1412 const Relobj* object = this->u_.object;
1413 const unsigned int lsi = this->local_sym_index_;
1414 if (!this->use_plt_offset_)
1415 {
1416 uint64_t lval = object->local_symbol_value(lsi, 0);
1417 val = convert_types<Valtype, uint64_t>(lval);
1418 }
1419 else
1420 {
1421 uint64_t plt_address =
1422 parameters->target().plt_address_for_local(object, lsi);
1423 val = plt_address + object->local_plt_offset(lsi);
1424 }
1425 }
1426 break;
1427 }
1428
1429 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1430 }
1431
1432 // Output_data_got methods.
1433
1434 // Add an entry for a global symbol to the GOT. This returns true if
1435 // this is a new GOT entry, false if the symbol already had a GOT
1436 // entry.
1437
1438 template<int size, bool big_endian>
1439 bool
1440 Output_data_got<size, big_endian>::add_global(
1441 Symbol* gsym,
1442 unsigned int got_type)
1443 {
1444 if (gsym->has_got_offset(got_type))
1445 return false;
1446
1447 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1448 gsym->set_got_offset(got_type, got_offset);
1449 return true;
1450 }
1451
1452 // Like add_global, but use the PLT offset.
1453
1454 template<int size, bool big_endian>
1455 bool
1456 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1457 unsigned int got_type)
1458 {
1459 if (gsym->has_got_offset(got_type))
1460 return false;
1461
1462 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1463 gsym->set_got_offset(got_type, got_offset);
1464 return true;
1465 }
1466
1467 // Add an entry for a global symbol to the GOT, and add a dynamic
1468 // relocation of type R_TYPE for the GOT entry.
1469
1470 template<int size, bool big_endian>
1471 void
1472 Output_data_got<size, big_endian>::add_global_with_rel(
1473 Symbol* gsym,
1474 unsigned int got_type,
1475 Output_data_reloc_generic* rel_dyn,
1476 unsigned int r_type)
1477 {
1478 if (gsym->has_got_offset(got_type))
1479 return;
1480
1481 unsigned int got_offset = this->add_got_entry(Got_entry());
1482 gsym->set_got_offset(got_type, got_offset);
1483 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1484 }
1485
1486 // Add a pair of entries for a global symbol to the GOT, and add
1487 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1488 // If R_TYPE_2 == 0, add the second entry with no relocation.
1489 template<int size, bool big_endian>
1490 void
1491 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1492 Symbol* gsym,
1493 unsigned int got_type,
1494 Output_data_reloc_generic* rel_dyn,
1495 unsigned int r_type_1,
1496 unsigned int r_type_2)
1497 {
1498 if (gsym->has_got_offset(got_type))
1499 return;
1500
1501 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1502 gsym->set_got_offset(got_type, got_offset);
1503 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1504
1505 if (r_type_2 != 0)
1506 rel_dyn->add_global_generic(gsym, r_type_2, this,
1507 got_offset + size / 8, 0);
1508 }
1509
1510 // Add an entry for a local symbol to the GOT. This returns true if
1511 // this is a new GOT entry, false if the symbol already has a GOT
1512 // entry.
1513
1514 template<int size, bool big_endian>
1515 bool
1516 Output_data_got<size, big_endian>::add_local(
1517 Relobj* object,
1518 unsigned int symndx,
1519 unsigned int got_type)
1520 {
1521 if (object->local_has_got_offset(symndx, got_type))
1522 return false;
1523
1524 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1525 false));
1526 object->set_local_got_offset(symndx, got_type, got_offset);
1527 return true;
1528 }
1529
1530 // Like add_local, but use the PLT offset.
1531
1532 template<int size, bool big_endian>
1533 bool
1534 Output_data_got<size, big_endian>::add_local_plt(
1535 Relobj* object,
1536 unsigned int symndx,
1537 unsigned int got_type)
1538 {
1539 if (object->local_has_got_offset(symndx, got_type))
1540 return false;
1541
1542 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1543 true));
1544 object->set_local_got_offset(symndx, got_type, got_offset);
1545 return true;
1546 }
1547
1548 // Add an entry for a local symbol to the GOT, and add a dynamic
1549 // relocation of type R_TYPE for the GOT entry.
1550
1551 template<int size, bool big_endian>
1552 void
1553 Output_data_got<size, big_endian>::add_local_with_rel(
1554 Relobj* object,
1555 unsigned int symndx,
1556 unsigned int got_type,
1557 Output_data_reloc_generic* rel_dyn,
1558 unsigned int r_type)
1559 {
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return;
1562
1563 unsigned int got_offset = this->add_got_entry(Got_entry());
1564 object->set_local_got_offset(symndx, got_type, got_offset);
1565 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1566 }
1567
1568 // Add a pair of entries for a local symbol to the GOT, and add
1569 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1570 // If R_TYPE_2 == 0, add the second entry with no relocation.
1571 template<int size, bool big_endian>
1572 void
1573 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1574 Relobj* object,
1575 unsigned int symndx,
1576 unsigned int shndx,
1577 unsigned int got_type,
1578 Output_data_reloc_generic* rel_dyn,
1579 unsigned int r_type_1,
1580 unsigned int r_type_2)
1581 {
1582 if (object->local_has_got_offset(symndx, got_type))
1583 return;
1584
1585 unsigned int got_offset =
1586 this->add_got_entry_pair(Got_entry(),
1587 Got_entry(object, symndx, false));
1588 object->set_local_got_offset(symndx, got_type, got_offset);
1589 Output_section* os = object->output_section(shndx);
1590 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1591
1592 if (r_type_2 != 0)
1593 rel_dyn->add_output_section_generic(os, r_type_2, this,
1594 got_offset + size / 8, 0);
1595 }
1596
1597 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1598
1599 template<int size, bool big_endian>
1600 void
1601 Output_data_got<size, big_endian>::reserve_local(
1602 unsigned int i,
1603 Relobj* object,
1604 unsigned int sym_index,
1605 unsigned int got_type)
1606 {
1607 this->do_reserve_slot(i);
1608 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1609 }
1610
1611 // Reserve a slot in the GOT for a global symbol.
1612
1613 template<int size, bool big_endian>
1614 void
1615 Output_data_got<size, big_endian>::reserve_global(
1616 unsigned int i,
1617 Symbol* gsym,
1618 unsigned int got_type)
1619 {
1620 this->do_reserve_slot(i);
1621 gsym->set_got_offset(got_type, this->got_offset(i));
1622 }
1623
1624 // Write out the GOT.
1625
1626 template<int size, bool big_endian>
1627 void
1628 Output_data_got<size, big_endian>::do_write(Output_file* of)
1629 {
1630 const int add = size / 8;
1631
1632 const off_t off = this->offset();
1633 const off_t oview_size = this->data_size();
1634 unsigned char* const oview = of->get_output_view(off, oview_size);
1635
1636 unsigned char* pov = oview;
1637 for (typename Got_entries::const_iterator p = this->entries_.begin();
1638 p != this->entries_.end();
1639 ++p)
1640 {
1641 p->write(pov);
1642 pov += add;
1643 }
1644
1645 gold_assert(pov - oview == oview_size);
1646
1647 of->write_output_view(off, oview_size, oview);
1648
1649 // We no longer need the GOT entries.
1650 this->entries_.clear();
1651 }
1652
1653 // Create a new GOT entry and return its offset.
1654
1655 template<int size, bool big_endian>
1656 unsigned int
1657 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1658 {
1659 if (!this->is_data_size_valid())
1660 {
1661 this->entries_.push_back(got_entry);
1662 this->set_got_size();
1663 return this->last_got_offset();
1664 }
1665 else
1666 {
1667 // For an incremental update, find an available slot.
1668 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1669 if (got_offset == -1)
1670 gold_fallback(_("out of patch space (GOT);"
1671 " relink with --incremental-full"));
1672 unsigned int got_index = got_offset / (size / 8);
1673 gold_assert(got_index < this->entries_.size());
1674 this->entries_[got_index] = got_entry;
1675 return static_cast<unsigned int>(got_offset);
1676 }
1677 }
1678
1679 // Create a pair of new GOT entries and return the offset of the first.
1680
1681 template<int size, bool big_endian>
1682 unsigned int
1683 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1684 Got_entry got_entry_2)
1685 {
1686 if (!this->is_data_size_valid())
1687 {
1688 unsigned int got_offset;
1689 this->entries_.push_back(got_entry_1);
1690 got_offset = this->last_got_offset();
1691 this->entries_.push_back(got_entry_2);
1692 this->set_got_size();
1693 return got_offset;
1694 }
1695 else
1696 {
1697 // For an incremental update, find an available pair of slots.
1698 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1699 if (got_offset == -1)
1700 gold_fallback(_("out of patch space (GOT);"
1701 " relink with --incremental-full"));
1702 unsigned int got_index = got_offset / (size / 8);
1703 gold_assert(got_index < this->entries_.size());
1704 this->entries_[got_index] = got_entry_1;
1705 this->entries_[got_index + 1] = got_entry_2;
1706 return static_cast<unsigned int>(got_offset);
1707 }
1708 }
1709
1710 // Replace GOT entry I with a new value.
1711
1712 template<int size, bool big_endian>
1713 void
1714 Output_data_got<size, big_endian>::replace_got_entry(
1715 unsigned int i,
1716 Got_entry got_entry)
1717 {
1718 gold_assert(i < this->entries_.size());
1719 this->entries_[i] = got_entry;
1720 }
1721
1722 // Output_data_dynamic::Dynamic_entry methods.
1723
1724 // Write out the entry.
1725
1726 template<int size, bool big_endian>
1727 void
1728 Output_data_dynamic::Dynamic_entry::write(
1729 unsigned char* pov,
1730 const Stringpool* pool) const
1731 {
1732 typename elfcpp::Elf_types<size>::Elf_WXword val;
1733 switch (this->offset_)
1734 {
1735 case DYNAMIC_NUMBER:
1736 val = this->u_.val;
1737 break;
1738
1739 case DYNAMIC_SECTION_SIZE:
1740 val = this->u_.od->data_size();
1741 if (this->od2 != NULL)
1742 val += this->od2->data_size();
1743 break;
1744
1745 case DYNAMIC_SYMBOL:
1746 {
1747 const Sized_symbol<size>* s =
1748 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1749 val = s->value();
1750 }
1751 break;
1752
1753 case DYNAMIC_STRING:
1754 val = pool->get_offset(this->u_.str);
1755 break;
1756
1757 default:
1758 val = this->u_.od->address() + this->offset_;
1759 break;
1760 }
1761
1762 elfcpp::Dyn_write<size, big_endian> dw(pov);
1763 dw.put_d_tag(this->tag_);
1764 dw.put_d_val(val);
1765 }
1766
1767 // Output_data_dynamic methods.
1768
1769 // Adjust the output section to set the entry size.
1770
1771 void
1772 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1773 {
1774 if (parameters->target().get_size() == 32)
1775 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1776 else if (parameters->target().get_size() == 64)
1777 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1778 else
1779 gold_unreachable();
1780 }
1781
1782 // Set the final data size.
1783
1784 void
1785 Output_data_dynamic::set_final_data_size()
1786 {
1787 // Add the terminating entry if it hasn't been added.
1788 // Because of relaxation, we can run this multiple times.
1789 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1790 {
1791 int extra = parameters->options().spare_dynamic_tags();
1792 for (int i = 0; i < extra; ++i)
1793 this->add_constant(elfcpp::DT_NULL, 0);
1794 this->add_constant(elfcpp::DT_NULL, 0);
1795 }
1796
1797 int dyn_size;
1798 if (parameters->target().get_size() == 32)
1799 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1800 else if (parameters->target().get_size() == 64)
1801 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1802 else
1803 gold_unreachable();
1804 this->set_data_size(this->entries_.size() * dyn_size);
1805 }
1806
1807 // Write out the dynamic entries.
1808
1809 void
1810 Output_data_dynamic::do_write(Output_file* of)
1811 {
1812 switch (parameters->size_and_endianness())
1813 {
1814 #ifdef HAVE_TARGET_32_LITTLE
1815 case Parameters::TARGET_32_LITTLE:
1816 this->sized_write<32, false>(of);
1817 break;
1818 #endif
1819 #ifdef HAVE_TARGET_32_BIG
1820 case Parameters::TARGET_32_BIG:
1821 this->sized_write<32, true>(of);
1822 break;
1823 #endif
1824 #ifdef HAVE_TARGET_64_LITTLE
1825 case Parameters::TARGET_64_LITTLE:
1826 this->sized_write<64, false>(of);
1827 break;
1828 #endif
1829 #ifdef HAVE_TARGET_64_BIG
1830 case Parameters::TARGET_64_BIG:
1831 this->sized_write<64, true>(of);
1832 break;
1833 #endif
1834 default:
1835 gold_unreachable();
1836 }
1837 }
1838
1839 template<int size, bool big_endian>
1840 void
1841 Output_data_dynamic::sized_write(Output_file* of)
1842 {
1843 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1844
1845 const off_t offset = this->offset();
1846 const off_t oview_size = this->data_size();
1847 unsigned char* const oview = of->get_output_view(offset, oview_size);
1848
1849 unsigned char* pov = oview;
1850 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1851 p != this->entries_.end();
1852 ++p)
1853 {
1854 p->write<size, big_endian>(pov, this->pool_);
1855 pov += dyn_size;
1856 }
1857
1858 gold_assert(pov - oview == oview_size);
1859
1860 of->write_output_view(offset, oview_size, oview);
1861
1862 // We no longer need the dynamic entries.
1863 this->entries_.clear();
1864 }
1865
1866 // Class Output_symtab_xindex.
1867
1868 void
1869 Output_symtab_xindex::do_write(Output_file* of)
1870 {
1871 const off_t offset = this->offset();
1872 const off_t oview_size = this->data_size();
1873 unsigned char* const oview = of->get_output_view(offset, oview_size);
1874
1875 memset(oview, 0, oview_size);
1876
1877 if (parameters->target().is_big_endian())
1878 this->endian_do_write<true>(oview);
1879 else
1880 this->endian_do_write<false>(oview);
1881
1882 of->write_output_view(offset, oview_size, oview);
1883
1884 // We no longer need the data.
1885 this->entries_.clear();
1886 }
1887
1888 template<bool big_endian>
1889 void
1890 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1891 {
1892 for (Xindex_entries::const_iterator p = this->entries_.begin();
1893 p != this->entries_.end();
1894 ++p)
1895 {
1896 unsigned int symndx = p->first;
1897 gold_assert(symndx * 4 < this->data_size());
1898 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1899 }
1900 }
1901
1902 // Output_fill_debug_info methods.
1903
1904 // Return the minimum size needed for a dummy compilation unit header.
1905
1906 size_t
1907 Output_fill_debug_info::do_minimum_hole_size() const
1908 {
1909 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1910 // address_size.
1911 const size_t len = 4 + 2 + 4 + 1;
1912 // For type units, add type_signature, type_offset.
1913 if (this->is_debug_types_)
1914 return len + 8 + 4;
1915 return len;
1916 }
1917
1918 // Write a dummy compilation unit header to fill a hole in the
1919 // .debug_info or .debug_types section.
1920
1921 void
1922 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1923 {
1924 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1925 static_cast<long>(off), static_cast<long>(len));
1926
1927 gold_assert(len >= this->do_minimum_hole_size());
1928
1929 unsigned char* const oview = of->get_output_view(off, len);
1930 unsigned char* pov = oview;
1931
1932 // Write header fields: unit_length, version, debug_abbrev_offset,
1933 // address_size.
1934 if (this->is_big_endian())
1935 {
1936 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1937 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1938 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1939 }
1940 else
1941 {
1942 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1943 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1944 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1945 }
1946 pov += 4 + 2 + 4;
1947 *pov++ = 4;
1948
1949 // For type units, the additional header fields -- type_signature,
1950 // type_offset -- can be filled with zeroes.
1951
1952 // Fill the remainder of the free space with zeroes. The first
1953 // zero should tell the consumer there are no DIEs to read in this
1954 // compilation unit.
1955 if (pov < oview + len)
1956 memset(pov, 0, oview + len - pov);
1957
1958 of->write_output_view(off, len, oview);
1959 }
1960
1961 // Output_fill_debug_line methods.
1962
1963 // Return the minimum size needed for a dummy line number program header.
1964
1965 size_t
1966 Output_fill_debug_line::do_minimum_hole_size() const
1967 {
1968 // Line number program header fields: unit_length, version, header_length,
1969 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1970 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1971 const size_t len = 4 + 2 + 4 + this->header_length;
1972 return len;
1973 }
1974
1975 // Write a dummy line number program header to fill a hole in the
1976 // .debug_line section.
1977
1978 void
1979 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1980 {
1981 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1982 static_cast<long>(off), static_cast<long>(len));
1983
1984 gold_assert(len >= this->do_minimum_hole_size());
1985
1986 unsigned char* const oview = of->get_output_view(off, len);
1987 unsigned char* pov = oview;
1988
1989 // Write header fields: unit_length, version, header_length,
1990 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1991 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1992 // We set the header_length field to cover the entire hole, so the
1993 // line number program is empty.
1994 if (this->is_big_endian())
1995 {
1996 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1997 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1998 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1999 }
2000 else
2001 {
2002 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2003 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2004 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2005 }
2006 pov += 4 + 2 + 4;
2007 *pov++ = 1; // minimum_instruction_length
2008 *pov++ = 0; // default_is_stmt
2009 *pov++ = 0; // line_base
2010 *pov++ = 5; // line_range
2011 *pov++ = 13; // opcode_base
2012 *pov++ = 0; // standard_opcode_lengths[1]
2013 *pov++ = 1; // standard_opcode_lengths[2]
2014 *pov++ = 1; // standard_opcode_lengths[3]
2015 *pov++ = 1; // standard_opcode_lengths[4]
2016 *pov++ = 1; // standard_opcode_lengths[5]
2017 *pov++ = 0; // standard_opcode_lengths[6]
2018 *pov++ = 0; // standard_opcode_lengths[7]
2019 *pov++ = 0; // standard_opcode_lengths[8]
2020 *pov++ = 1; // standard_opcode_lengths[9]
2021 *pov++ = 0; // standard_opcode_lengths[10]
2022 *pov++ = 0; // standard_opcode_lengths[11]
2023 *pov++ = 1; // standard_opcode_lengths[12]
2024 *pov++ = 0; // include_directories (empty)
2025 *pov++ = 0; // filenames (empty)
2026
2027 // Some consumers don't check the header_length field, and simply
2028 // start reading the line number program immediately following the
2029 // header. For those consumers, we fill the remainder of the free
2030 // space with DW_LNS_set_basic_block opcodes. These are effectively
2031 // no-ops: the resulting line table program will not create any rows.
2032 if (pov < oview + len)
2033 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2034
2035 of->write_output_view(off, len, oview);
2036 }
2037
2038 // Output_section::Input_section methods.
2039
2040 // Return the current data size. For an input section we store the size here.
2041 // For an Output_section_data, we have to ask it for the size.
2042
2043 off_t
2044 Output_section::Input_section::current_data_size() const
2045 {
2046 if (this->is_input_section())
2047 return this->u1_.data_size;
2048 else
2049 {
2050 this->u2_.posd->pre_finalize_data_size();
2051 return this->u2_.posd->current_data_size();
2052 }
2053 }
2054
2055 // Return the data size. For an input section we store the size here.
2056 // For an Output_section_data, we have to ask it for the size.
2057
2058 off_t
2059 Output_section::Input_section::data_size() const
2060 {
2061 if (this->is_input_section())
2062 return this->u1_.data_size;
2063 else
2064 return this->u2_.posd->data_size();
2065 }
2066
2067 // Return the object for an input section.
2068
2069 Relobj*
2070 Output_section::Input_section::relobj() const
2071 {
2072 if (this->is_input_section())
2073 return this->u2_.object;
2074 else if (this->is_merge_section())
2075 {
2076 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2077 return this->u2_.pomb->first_relobj();
2078 }
2079 else if (this->is_relaxed_input_section())
2080 return this->u2_.poris->relobj();
2081 else
2082 gold_unreachable();
2083 }
2084
2085 // Return the input section index for an input section.
2086
2087 unsigned int
2088 Output_section::Input_section::shndx() const
2089 {
2090 if (this->is_input_section())
2091 return this->shndx_;
2092 else if (this->is_merge_section())
2093 {
2094 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2095 return this->u2_.pomb->first_shndx();
2096 }
2097 else if (this->is_relaxed_input_section())
2098 return this->u2_.poris->shndx();
2099 else
2100 gold_unreachable();
2101 }
2102
2103 // Set the address and file offset.
2104
2105 void
2106 Output_section::Input_section::set_address_and_file_offset(
2107 uint64_t address,
2108 off_t file_offset,
2109 off_t section_file_offset)
2110 {
2111 if (this->is_input_section())
2112 this->u2_.object->set_section_offset(this->shndx_,
2113 file_offset - section_file_offset);
2114 else
2115 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2116 }
2117
2118 // Reset the address and file offset.
2119
2120 void
2121 Output_section::Input_section::reset_address_and_file_offset()
2122 {
2123 if (!this->is_input_section())
2124 this->u2_.posd->reset_address_and_file_offset();
2125 }
2126
2127 // Finalize the data size.
2128
2129 void
2130 Output_section::Input_section::finalize_data_size()
2131 {
2132 if (!this->is_input_section())
2133 this->u2_.posd->finalize_data_size();
2134 }
2135
2136 // Try to turn an input offset into an output offset. We want to
2137 // return the output offset relative to the start of this
2138 // Input_section in the output section.
2139
2140 inline bool
2141 Output_section::Input_section::output_offset(
2142 const Relobj* object,
2143 unsigned int shndx,
2144 section_offset_type offset,
2145 section_offset_type* poutput) const
2146 {
2147 if (!this->is_input_section())
2148 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2149 else
2150 {
2151 if (this->shndx_ != shndx || this->u2_.object != object)
2152 return false;
2153 *poutput = offset;
2154 return true;
2155 }
2156 }
2157
2158 // Return whether this is the merge section for the input section
2159 // SHNDX in OBJECT.
2160
2161 inline bool
2162 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2163 unsigned int shndx) const
2164 {
2165 if (this->is_input_section())
2166 return false;
2167 return this->u2_.posd->is_merge_section_for(object, shndx);
2168 }
2169
2170 // Write out the data. We don't have to do anything for an input
2171 // section--they are handled via Object::relocate--but this is where
2172 // we write out the data for an Output_section_data.
2173
2174 void
2175 Output_section::Input_section::write(Output_file* of)
2176 {
2177 if (!this->is_input_section())
2178 this->u2_.posd->write(of);
2179 }
2180
2181 // Write the data to a buffer. As for write(), we don't have to do
2182 // anything for an input section.
2183
2184 void
2185 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2186 {
2187 if (!this->is_input_section())
2188 this->u2_.posd->write_to_buffer(buffer);
2189 }
2190
2191 // Print to a map file.
2192
2193 void
2194 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2195 {
2196 switch (this->shndx_)
2197 {
2198 case OUTPUT_SECTION_CODE:
2199 case MERGE_DATA_SECTION_CODE:
2200 case MERGE_STRING_SECTION_CODE:
2201 this->u2_.posd->print_to_mapfile(mapfile);
2202 break;
2203
2204 case RELAXED_INPUT_SECTION_CODE:
2205 {
2206 Output_relaxed_input_section* relaxed_section =
2207 this->relaxed_input_section();
2208 mapfile->print_input_section(relaxed_section->relobj(),
2209 relaxed_section->shndx());
2210 }
2211 break;
2212 default:
2213 mapfile->print_input_section(this->u2_.object, this->shndx_);
2214 break;
2215 }
2216 }
2217
2218 // Output_section methods.
2219
2220 // Construct an Output_section. NAME will point into a Stringpool.
2221
2222 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2223 elfcpp::Elf_Xword flags)
2224 : name_(name),
2225 addralign_(0),
2226 entsize_(0),
2227 load_address_(0),
2228 link_section_(NULL),
2229 link_(0),
2230 info_section_(NULL),
2231 info_symndx_(NULL),
2232 info_(0),
2233 type_(type),
2234 flags_(flags),
2235 order_(ORDER_INVALID),
2236 out_shndx_(-1U),
2237 symtab_index_(0),
2238 dynsym_index_(0),
2239 input_sections_(),
2240 first_input_offset_(0),
2241 fills_(),
2242 postprocessing_buffer_(NULL),
2243 needs_symtab_index_(false),
2244 needs_dynsym_index_(false),
2245 should_link_to_symtab_(false),
2246 should_link_to_dynsym_(false),
2247 after_input_sections_(false),
2248 requires_postprocessing_(false),
2249 found_in_sections_clause_(false),
2250 has_load_address_(false),
2251 info_uses_section_index_(false),
2252 input_section_order_specified_(false),
2253 may_sort_attached_input_sections_(false),
2254 must_sort_attached_input_sections_(false),
2255 attached_input_sections_are_sorted_(false),
2256 is_relro_(false),
2257 is_small_section_(false),
2258 is_large_section_(false),
2259 generate_code_fills_at_write_(false),
2260 is_entsize_zero_(false),
2261 section_offsets_need_adjustment_(false),
2262 is_noload_(false),
2263 always_keeps_input_sections_(false),
2264 has_fixed_layout_(false),
2265 is_patch_space_allowed_(false),
2266 is_unique_segment_(false),
2267 tls_offset_(0),
2268 extra_segment_flags_(0),
2269 segment_alignment_(0),
2270 checkpoint_(NULL),
2271 lookup_maps_(new Output_section_lookup_maps),
2272 free_list_(),
2273 free_space_fill_(NULL),
2274 patch_space_(0)
2275 {
2276 // An unallocated section has no address. Forcing this means that
2277 // we don't need special treatment for symbols defined in debug
2278 // sections.
2279 if ((flags & elfcpp::SHF_ALLOC) == 0)
2280 this->set_address(0);
2281 }
2282
2283 Output_section::~Output_section()
2284 {
2285 delete this->checkpoint_;
2286 }
2287
2288 // Set the entry size.
2289
2290 void
2291 Output_section::set_entsize(uint64_t v)
2292 {
2293 if (this->is_entsize_zero_)
2294 ;
2295 else if (this->entsize_ == 0)
2296 this->entsize_ = v;
2297 else if (this->entsize_ != v)
2298 {
2299 this->entsize_ = 0;
2300 this->is_entsize_zero_ = 1;
2301 }
2302 }
2303
2304 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2305 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2306 // relocation section which applies to this section, or 0 if none, or
2307 // -1U if more than one. Return the offset of the input section
2308 // within the output section. Return -1 if the input section will
2309 // receive special handling. In the normal case we don't always keep
2310 // track of input sections for an Output_section. Instead, each
2311 // Object keeps track of the Output_section for each of its input
2312 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2313 // track of input sections here; this is used when SECTIONS appears in
2314 // a linker script.
2315
2316 template<int size, bool big_endian>
2317 off_t
2318 Output_section::add_input_section(Layout* layout,
2319 Sized_relobj_file<size, big_endian>* object,
2320 unsigned int shndx,
2321 const char* secname,
2322 const elfcpp::Shdr<size, big_endian>& shdr,
2323 unsigned int reloc_shndx,
2324 bool have_sections_script)
2325 {
2326 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2327 if ((addralign & (addralign - 1)) != 0)
2328 {
2329 object->error(_("invalid alignment %lu for section \"%s\""),
2330 static_cast<unsigned long>(addralign), secname);
2331 addralign = 1;
2332 }
2333
2334 if (addralign > this->addralign_)
2335 this->addralign_ = addralign;
2336
2337 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2338 uint64_t entsize = shdr.get_sh_entsize();
2339
2340 // .debug_str is a mergeable string section, but is not always so
2341 // marked by compilers. Mark manually here so we can optimize.
2342 if (strcmp(secname, ".debug_str") == 0)
2343 {
2344 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2345 entsize = 1;
2346 }
2347
2348 this->update_flags_for_input_section(sh_flags);
2349 this->set_entsize(entsize);
2350
2351 // If this is a SHF_MERGE section, we pass all the input sections to
2352 // a Output_data_merge. We don't try to handle relocations for such
2353 // a section. We don't try to handle empty merge sections--they
2354 // mess up the mappings, and are useless anyhow.
2355 // FIXME: Need to handle merge sections during incremental update.
2356 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2357 && reloc_shndx == 0
2358 && shdr.get_sh_size() > 0
2359 && !parameters->incremental())
2360 {
2361 // Keep information about merged input sections for rebuilding fast
2362 // lookup maps if we have sections-script or we do relaxation.
2363 bool keeps_input_sections = (this->always_keeps_input_sections_
2364 || have_sections_script
2365 || parameters->target().may_relax());
2366
2367 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2368 addralign, keeps_input_sections))
2369 {
2370 // Tell the relocation routines that they need to call the
2371 // output_offset method to determine the final address.
2372 return -1;
2373 }
2374 }
2375
2376 section_size_type input_section_size = shdr.get_sh_size();
2377 section_size_type uncompressed_size;
2378 if (object->section_is_compressed(shndx, &uncompressed_size))
2379 input_section_size = uncompressed_size;
2380
2381 off_t offset_in_section;
2382 off_t aligned_offset_in_section;
2383 if (this->has_fixed_layout())
2384 {
2385 // For incremental updates, find a chunk of unused space in the section.
2386 offset_in_section = this->free_list_.allocate(input_section_size,
2387 addralign, 0);
2388 if (offset_in_section == -1)
2389 gold_fallback(_("out of patch space in section %s; "
2390 "relink with --incremental-full"),
2391 this->name());
2392 aligned_offset_in_section = offset_in_section;
2393 }
2394 else
2395 {
2396 offset_in_section = this->current_data_size_for_child();
2397 aligned_offset_in_section = align_address(offset_in_section,
2398 addralign);
2399 this->set_current_data_size_for_child(aligned_offset_in_section
2400 + input_section_size);
2401 }
2402
2403 // Determine if we want to delay code-fill generation until the output
2404 // section is written. When the target is relaxing, we want to delay fill
2405 // generating to avoid adjusting them during relaxation. Also, if we are
2406 // sorting input sections we must delay fill generation.
2407 if (!this->generate_code_fills_at_write_
2408 && !have_sections_script
2409 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2410 && parameters->target().has_code_fill()
2411 && (parameters->target().may_relax()
2412 || layout->is_section_ordering_specified()))
2413 {
2414 gold_assert(this->fills_.empty());
2415 this->generate_code_fills_at_write_ = true;
2416 }
2417
2418 if (aligned_offset_in_section > offset_in_section
2419 && !this->generate_code_fills_at_write_
2420 && !have_sections_script
2421 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2422 && parameters->target().has_code_fill())
2423 {
2424 // We need to add some fill data. Using fill_list_ when
2425 // possible is an optimization, since we will often have fill
2426 // sections without input sections.
2427 off_t fill_len = aligned_offset_in_section - offset_in_section;
2428 if (this->input_sections_.empty())
2429 this->fills_.push_back(Fill(offset_in_section, fill_len));
2430 else
2431 {
2432 std::string fill_data(parameters->target().code_fill(fill_len));
2433 Output_data_const* odc = new Output_data_const(fill_data, 1);
2434 this->input_sections_.push_back(Input_section(odc));
2435 }
2436 }
2437
2438 // We need to keep track of this section if we are already keeping
2439 // track of sections, or if we are relaxing. Also, if this is a
2440 // section which requires sorting, or which may require sorting in
2441 // the future, we keep track of the sections. If the
2442 // --section-ordering-file option is used to specify the order of
2443 // sections, we need to keep track of sections.
2444 if (this->always_keeps_input_sections_
2445 || have_sections_script
2446 || !this->input_sections_.empty()
2447 || this->may_sort_attached_input_sections()
2448 || this->must_sort_attached_input_sections()
2449 || parameters->options().user_set_Map()
2450 || parameters->target().may_relax()
2451 || layout->is_section_ordering_specified())
2452 {
2453 Input_section isecn(object, shndx, input_section_size, addralign);
2454 /* If section ordering is requested by specifying a ordering file,
2455 using --section-ordering-file, match the section name with
2456 a pattern. */
2457 if (parameters->options().section_ordering_file())
2458 {
2459 unsigned int section_order_index =
2460 layout->find_section_order_index(std::string(secname));
2461 if (section_order_index != 0)
2462 {
2463 isecn.set_section_order_index(section_order_index);
2464 this->set_input_section_order_specified();
2465 }
2466 }
2467 if (this->has_fixed_layout())
2468 {
2469 // For incremental updates, finalize the address and offset now.
2470 uint64_t addr = this->address();
2471 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2472 aligned_offset_in_section,
2473 this->offset());
2474 }
2475 this->input_sections_.push_back(isecn);
2476 }
2477
2478 return aligned_offset_in_section;
2479 }
2480
2481 // Add arbitrary data to an output section.
2482
2483 void
2484 Output_section::add_output_section_data(Output_section_data* posd)
2485 {
2486 Input_section inp(posd);
2487 this->add_output_section_data(&inp);
2488
2489 if (posd->is_data_size_valid())
2490 {
2491 off_t offset_in_section;
2492 if (this->has_fixed_layout())
2493 {
2494 // For incremental updates, find a chunk of unused space.
2495 offset_in_section = this->free_list_.allocate(posd->data_size(),
2496 posd->addralign(), 0);
2497 if (offset_in_section == -1)
2498 gold_fallback(_("out of patch space in section %s; "
2499 "relink with --incremental-full"),
2500 this->name());
2501 // Finalize the address and offset now.
2502 uint64_t addr = this->address();
2503 off_t offset = this->offset();
2504 posd->set_address_and_file_offset(addr + offset_in_section,
2505 offset + offset_in_section);
2506 }
2507 else
2508 {
2509 offset_in_section = this->current_data_size_for_child();
2510 off_t aligned_offset_in_section = align_address(offset_in_section,
2511 posd->addralign());
2512 this->set_current_data_size_for_child(aligned_offset_in_section
2513 + posd->data_size());
2514 }
2515 }
2516 else if (this->has_fixed_layout())
2517 {
2518 // For incremental updates, arrange for the data to have a fixed layout.
2519 // This will mean that additions to the data must be allocated from
2520 // free space within the containing output section.
2521 uint64_t addr = this->address();
2522 posd->set_address(addr);
2523 posd->set_file_offset(0);
2524 // FIXME: This should eventually be unreachable.
2525 // gold_unreachable();
2526 }
2527 }
2528
2529 // Add a relaxed input section.
2530
2531 void
2532 Output_section::add_relaxed_input_section(Layout* layout,
2533 Output_relaxed_input_section* poris,
2534 const std::string& name)
2535 {
2536 Input_section inp(poris);
2537
2538 // If the --section-ordering-file option is used to specify the order of
2539 // sections, we need to keep track of sections.
2540 if (layout->is_section_ordering_specified())
2541 {
2542 unsigned int section_order_index =
2543 layout->find_section_order_index(name);
2544 if (section_order_index != 0)
2545 {
2546 inp.set_section_order_index(section_order_index);
2547 this->set_input_section_order_specified();
2548 }
2549 }
2550
2551 this->add_output_section_data(&inp);
2552 if (this->lookup_maps_->is_valid())
2553 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2554 poris->shndx(), poris);
2555
2556 // For a relaxed section, we use the current data size. Linker scripts
2557 // get all the input sections, including relaxed one from an output
2558 // section and add them back to them same output section to compute the
2559 // output section size. If we do not account for sizes of relaxed input
2560 // sections, an output section would be incorrectly sized.
2561 off_t offset_in_section = this->current_data_size_for_child();
2562 off_t aligned_offset_in_section = align_address(offset_in_section,
2563 poris->addralign());
2564 this->set_current_data_size_for_child(aligned_offset_in_section
2565 + poris->current_data_size());
2566 }
2567
2568 // Add arbitrary data to an output section by Input_section.
2569
2570 void
2571 Output_section::add_output_section_data(Input_section* inp)
2572 {
2573 if (this->input_sections_.empty())
2574 this->first_input_offset_ = this->current_data_size_for_child();
2575
2576 this->input_sections_.push_back(*inp);
2577
2578 uint64_t addralign = inp->addralign();
2579 if (addralign > this->addralign_)
2580 this->addralign_ = addralign;
2581
2582 inp->set_output_section(this);
2583 }
2584
2585 // Add a merge section to an output section.
2586
2587 void
2588 Output_section::add_output_merge_section(Output_section_data* posd,
2589 bool is_string, uint64_t entsize)
2590 {
2591 Input_section inp(posd, is_string, entsize);
2592 this->add_output_section_data(&inp);
2593 }
2594
2595 // Add an input section to a SHF_MERGE section.
2596
2597 bool
2598 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2599 uint64_t flags, uint64_t entsize,
2600 uint64_t addralign,
2601 bool keeps_input_sections)
2602 {
2603 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2604
2605 // We only merge strings if the alignment is not more than the
2606 // character size. This could be handled, but it's unusual.
2607 if (is_string && addralign > entsize)
2608 return false;
2609
2610 // We cannot restore merged input section states.
2611 gold_assert(this->checkpoint_ == NULL);
2612
2613 // Look up merge sections by required properties.
2614 // Currently, we only invalidate the lookup maps in script processing
2615 // and relaxation. We should not have done either when we reach here.
2616 // So we assume that the lookup maps are valid to simply code.
2617 gold_assert(this->lookup_maps_->is_valid());
2618 Merge_section_properties msp(is_string, entsize, addralign);
2619 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2620 bool is_new = false;
2621 if (pomb != NULL)
2622 {
2623 gold_assert(pomb->is_string() == is_string
2624 && pomb->entsize() == entsize
2625 && pomb->addralign() == addralign);
2626 }
2627 else
2628 {
2629 // Create a new Output_merge_data or Output_merge_string_data.
2630 if (!is_string)
2631 pomb = new Output_merge_data(entsize, addralign);
2632 else
2633 {
2634 switch (entsize)
2635 {
2636 case 1:
2637 pomb = new Output_merge_string<char>(addralign);
2638 break;
2639 case 2:
2640 pomb = new Output_merge_string<uint16_t>(addralign);
2641 break;
2642 case 4:
2643 pomb = new Output_merge_string<uint32_t>(addralign);
2644 break;
2645 default:
2646 return false;
2647 }
2648 }
2649 // If we need to do script processing or relaxation, we need to keep
2650 // the original input sections to rebuild the fast lookup maps.
2651 if (keeps_input_sections)
2652 pomb->set_keeps_input_sections();
2653 is_new = true;
2654 }
2655
2656 if (pomb->add_input_section(object, shndx))
2657 {
2658 // Add new merge section to this output section and link merge
2659 // section properties to new merge section in map.
2660 if (is_new)
2661 {
2662 this->add_output_merge_section(pomb, is_string, entsize);
2663 this->lookup_maps_->add_merge_section(msp, pomb);
2664 }
2665
2666 // Add input section to new merge section and link input section to new
2667 // merge section in map.
2668 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2669 return true;
2670 }
2671 else
2672 {
2673 // If add_input_section failed, delete new merge section to avoid
2674 // exporting empty merge sections in Output_section::get_input_section.
2675 if (is_new)
2676 delete pomb;
2677 return false;
2678 }
2679 }
2680
2681 // Build a relaxation map to speed up relaxation of existing input sections.
2682 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2683
2684 void
2685 Output_section::build_relaxation_map(
2686 const Input_section_list& input_sections,
2687 size_t limit,
2688 Relaxation_map* relaxation_map) const
2689 {
2690 for (size_t i = 0; i < limit; ++i)
2691 {
2692 const Input_section& is(input_sections[i]);
2693 if (is.is_input_section() || is.is_relaxed_input_section())
2694 {
2695 Section_id sid(is.relobj(), is.shndx());
2696 (*relaxation_map)[sid] = i;
2697 }
2698 }
2699 }
2700
2701 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2702 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2703 // indices of INPUT_SECTIONS.
2704
2705 void
2706 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2707 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2708 const Relaxation_map& map,
2709 Input_section_list* input_sections)
2710 {
2711 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2712 {
2713 Output_relaxed_input_section* poris = relaxed_sections[i];
2714 Section_id sid(poris->relobj(), poris->shndx());
2715 Relaxation_map::const_iterator p = map.find(sid);
2716 gold_assert(p != map.end());
2717 gold_assert((*input_sections)[p->second].is_input_section());
2718
2719 // Remember section order index of original input section
2720 // if it is set. Copy it to the relaxed input section.
2721 unsigned int soi =
2722 (*input_sections)[p->second].section_order_index();
2723 (*input_sections)[p->second] = Input_section(poris);
2724 (*input_sections)[p->second].set_section_order_index(soi);
2725 }
2726 }
2727
2728 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2729 // is a vector of pointers to Output_relaxed_input_section or its derived
2730 // classes. The relaxed sections must correspond to existing input sections.
2731
2732 void
2733 Output_section::convert_input_sections_to_relaxed_sections(
2734 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2735 {
2736 gold_assert(parameters->target().may_relax());
2737
2738 // We want to make sure that restore_states does not undo the effect of
2739 // this. If there is no checkpoint active, just search the current
2740 // input section list and replace the sections there. If there is
2741 // a checkpoint, also replace the sections there.
2742
2743 // By default, we look at the whole list.
2744 size_t limit = this->input_sections_.size();
2745
2746 if (this->checkpoint_ != NULL)
2747 {
2748 // Replace input sections with relaxed input section in the saved
2749 // copy of the input section list.
2750 if (this->checkpoint_->input_sections_saved())
2751 {
2752 Relaxation_map map;
2753 this->build_relaxation_map(
2754 *(this->checkpoint_->input_sections()),
2755 this->checkpoint_->input_sections()->size(),
2756 &map);
2757 this->convert_input_sections_in_list_to_relaxed_sections(
2758 relaxed_sections,
2759 map,
2760 this->checkpoint_->input_sections());
2761 }
2762 else
2763 {
2764 // We have not copied the input section list yet. Instead, just
2765 // look at the portion that would be saved.
2766 limit = this->checkpoint_->input_sections_size();
2767 }
2768 }
2769
2770 // Convert input sections in input_section_list.
2771 Relaxation_map map;
2772 this->build_relaxation_map(this->input_sections_, limit, &map);
2773 this->convert_input_sections_in_list_to_relaxed_sections(
2774 relaxed_sections,
2775 map,
2776 &this->input_sections_);
2777
2778 // Update fast look-up map.
2779 if (this->lookup_maps_->is_valid())
2780 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2781 {
2782 Output_relaxed_input_section* poris = relaxed_sections[i];
2783 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2784 poris->shndx(), poris);
2785 }
2786 }
2787
2788 // Update the output section flags based on input section flags.
2789
2790 void
2791 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2792 {
2793 // If we created the section with SHF_ALLOC clear, we set the
2794 // address. If we are now setting the SHF_ALLOC flag, we need to
2795 // undo that.
2796 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2797 && (flags & elfcpp::SHF_ALLOC) != 0)
2798 this->mark_address_invalid();
2799
2800 this->flags_ |= (flags
2801 & (elfcpp::SHF_WRITE
2802 | elfcpp::SHF_ALLOC
2803 | elfcpp::SHF_EXECINSTR));
2804
2805 if ((flags & elfcpp::SHF_MERGE) == 0)
2806 this->flags_ &=~ elfcpp::SHF_MERGE;
2807 else
2808 {
2809 if (this->current_data_size_for_child() == 0)
2810 this->flags_ |= elfcpp::SHF_MERGE;
2811 }
2812
2813 if ((flags & elfcpp::SHF_STRINGS) == 0)
2814 this->flags_ &=~ elfcpp::SHF_STRINGS;
2815 else
2816 {
2817 if (this->current_data_size_for_child() == 0)
2818 this->flags_ |= elfcpp::SHF_STRINGS;
2819 }
2820 }
2821
2822 // Find the merge section into which an input section with index SHNDX in
2823 // OBJECT has been added. Return NULL if none found.
2824
2825 Output_section_data*
2826 Output_section::find_merge_section(const Relobj* object,
2827 unsigned int shndx) const
2828 {
2829 if (!this->lookup_maps_->is_valid())
2830 this->build_lookup_maps();
2831 return this->lookup_maps_->find_merge_section(object, shndx);
2832 }
2833
2834 // Build the lookup maps for merge and relaxed sections. This is needs
2835 // to be declared as a const methods so that it is callable with a const
2836 // Output_section pointer. The method only updates states of the maps.
2837
2838 void
2839 Output_section::build_lookup_maps() const
2840 {
2841 this->lookup_maps_->clear();
2842 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2843 p != this->input_sections_.end();
2844 ++p)
2845 {
2846 if (p->is_merge_section())
2847 {
2848 Output_merge_base* pomb = p->output_merge_base();
2849 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2850 pomb->addralign());
2851 this->lookup_maps_->add_merge_section(msp, pomb);
2852 for (Output_merge_base::Input_sections::const_iterator is =
2853 pomb->input_sections_begin();
2854 is != pomb->input_sections_end();
2855 ++is)
2856 {
2857 const Const_section_id& csid = *is;
2858 this->lookup_maps_->add_merge_input_section(csid.first,
2859 csid.second, pomb);
2860 }
2861
2862 }
2863 else if (p->is_relaxed_input_section())
2864 {
2865 Output_relaxed_input_section* poris = p->relaxed_input_section();
2866 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2867 poris->shndx(), poris);
2868 }
2869 }
2870 }
2871
2872 // Find an relaxed input section corresponding to an input section
2873 // in OBJECT with index SHNDX.
2874
2875 const Output_relaxed_input_section*
2876 Output_section::find_relaxed_input_section(const Relobj* object,
2877 unsigned int shndx) const
2878 {
2879 if (!this->lookup_maps_->is_valid())
2880 this->build_lookup_maps();
2881 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2882 }
2883
2884 // Given an address OFFSET relative to the start of input section
2885 // SHNDX in OBJECT, return whether this address is being included in
2886 // the final link. This should only be called if SHNDX in OBJECT has
2887 // a special mapping.
2888
2889 bool
2890 Output_section::is_input_address_mapped(const Relobj* object,
2891 unsigned int shndx,
2892 off_t offset) const
2893 {
2894 // Look at the Output_section_data_maps first.
2895 const Output_section_data* posd = this->find_merge_section(object, shndx);
2896 if (posd == NULL)
2897 posd = this->find_relaxed_input_section(object, shndx);
2898
2899 if (posd != NULL)
2900 {
2901 section_offset_type output_offset;
2902 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2903 gold_assert(found);
2904 return output_offset != -1;
2905 }
2906
2907 // Fall back to the slow look-up.
2908 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2909 p != this->input_sections_.end();
2910 ++p)
2911 {
2912 section_offset_type output_offset;
2913 if (p->output_offset(object, shndx, offset, &output_offset))
2914 return output_offset != -1;
2915 }
2916
2917 // By default we assume that the address is mapped. This should
2918 // only be called after we have passed all sections to Layout. At
2919 // that point we should know what we are discarding.
2920 return true;
2921 }
2922
2923 // Given an address OFFSET relative to the start of input section
2924 // SHNDX in object OBJECT, return the output offset relative to the
2925 // start of the input section in the output section. This should only
2926 // be called if SHNDX in OBJECT has a special mapping.
2927
2928 section_offset_type
2929 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2930 section_offset_type offset) const
2931 {
2932 // This can only be called meaningfully when we know the data size
2933 // of this.
2934 gold_assert(this->is_data_size_valid());
2935
2936 // Look at the Output_section_data_maps first.
2937 const Output_section_data* posd = this->find_merge_section(object, shndx);
2938 if (posd == NULL)
2939 posd = this->find_relaxed_input_section(object, shndx);
2940 if (posd != NULL)
2941 {
2942 section_offset_type output_offset;
2943 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2944 gold_assert(found);
2945 return output_offset;
2946 }
2947
2948 // Fall back to the slow look-up.
2949 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2950 p != this->input_sections_.end();
2951 ++p)
2952 {
2953 section_offset_type output_offset;
2954 if (p->output_offset(object, shndx, offset, &output_offset))
2955 return output_offset;
2956 }
2957 gold_unreachable();
2958 }
2959
2960 // Return the output virtual address of OFFSET relative to the start
2961 // of input section SHNDX in object OBJECT.
2962
2963 uint64_t
2964 Output_section::output_address(const Relobj* object, unsigned int shndx,
2965 off_t offset) const
2966 {
2967 uint64_t addr = this->address() + this->first_input_offset_;
2968
2969 // Look at the Output_section_data_maps first.
2970 const Output_section_data* posd = this->find_merge_section(object, shndx);
2971 if (posd == NULL)
2972 posd = this->find_relaxed_input_section(object, shndx);
2973 if (posd != NULL && posd->is_address_valid())
2974 {
2975 section_offset_type output_offset;
2976 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2977 gold_assert(found);
2978 return posd->address() + output_offset;
2979 }
2980
2981 // Fall back to the slow look-up.
2982 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2983 p != this->input_sections_.end();
2984 ++p)
2985 {
2986 addr = align_address(addr, p->addralign());
2987 section_offset_type output_offset;
2988 if (p->output_offset(object, shndx, offset, &output_offset))
2989 {
2990 if (output_offset == -1)
2991 return -1ULL;
2992 return addr + output_offset;
2993 }
2994 addr += p->data_size();
2995 }
2996
2997 // If we get here, it means that we don't know the mapping for this
2998 // input section. This might happen in principle if
2999 // add_input_section were called before add_output_section_data.
3000 // But it should never actually happen.
3001
3002 gold_unreachable();
3003 }
3004
3005 // Find the output address of the start of the merged section for
3006 // input section SHNDX in object OBJECT.
3007
3008 bool
3009 Output_section::find_starting_output_address(const Relobj* object,
3010 unsigned int shndx,
3011 uint64_t* paddr) const
3012 {
3013 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3014 // Looking up the merge section map does not always work as we sometimes
3015 // find a merge section without its address set.
3016 uint64_t addr = this->address() + this->first_input_offset_;
3017 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3018 p != this->input_sections_.end();
3019 ++p)
3020 {
3021 addr = align_address(addr, p->addralign());
3022
3023 // It would be nice if we could use the existing output_offset
3024 // method to get the output offset of input offset 0.
3025 // Unfortunately we don't know for sure that input offset 0 is
3026 // mapped at all.
3027 if (p->is_merge_section_for(object, shndx))
3028 {
3029 *paddr = addr;
3030 return true;
3031 }
3032
3033 addr += p->data_size();
3034 }
3035
3036 // We couldn't find a merge output section for this input section.
3037 return false;
3038 }
3039
3040 // Update the data size of an Output_section.
3041
3042 void
3043 Output_section::update_data_size()
3044 {
3045 if (this->input_sections_.empty())
3046 return;
3047
3048 if (this->must_sort_attached_input_sections()
3049 || this->input_section_order_specified())
3050 this->sort_attached_input_sections();
3051
3052 off_t off = this->first_input_offset_;
3053 for (Input_section_list::iterator p = this->input_sections_.begin();
3054 p != this->input_sections_.end();
3055 ++p)
3056 {
3057 off = align_address(off, p->addralign());
3058 off += p->current_data_size();
3059 }
3060
3061 this->set_current_data_size_for_child(off);
3062 }
3063
3064 // Set the data size of an Output_section. This is where we handle
3065 // setting the addresses of any Output_section_data objects.
3066
3067 void
3068 Output_section::set_final_data_size()
3069 {
3070 off_t data_size;
3071
3072 if (this->input_sections_.empty())
3073 data_size = this->current_data_size_for_child();
3074 else
3075 {
3076 if (this->must_sort_attached_input_sections()
3077 || this->input_section_order_specified())
3078 this->sort_attached_input_sections();
3079
3080 uint64_t address = this->address();
3081 off_t startoff = this->offset();
3082 off_t off = startoff + this->first_input_offset_;
3083 for (Input_section_list::iterator p = this->input_sections_.begin();
3084 p != this->input_sections_.end();
3085 ++p)
3086 {
3087 off = align_address(off, p->addralign());
3088 p->set_address_and_file_offset(address + (off - startoff), off,
3089 startoff);
3090 off += p->data_size();
3091 }
3092 data_size = off - startoff;
3093 }
3094
3095 // For full incremental links, we want to allocate some patch space
3096 // in most sections for subsequent incremental updates.
3097 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3098 {
3099 double pct = parameters->options().incremental_patch();
3100 size_t extra = static_cast<size_t>(data_size * pct);
3101 if (this->free_space_fill_ != NULL
3102 && this->free_space_fill_->minimum_hole_size() > extra)
3103 extra = this->free_space_fill_->minimum_hole_size();
3104 off_t new_size = align_address(data_size + extra, this->addralign());
3105 this->patch_space_ = new_size - data_size;
3106 gold_debug(DEBUG_INCREMENTAL,
3107 "set_final_data_size: %08lx + %08lx: section %s",
3108 static_cast<long>(data_size),
3109 static_cast<long>(this->patch_space_),
3110 this->name());
3111 data_size = new_size;
3112 }
3113
3114 this->set_data_size(data_size);
3115 }
3116
3117 // Reset the address and file offset.
3118
3119 void
3120 Output_section::do_reset_address_and_file_offset()
3121 {
3122 // An unallocated section has no address. Forcing this means that
3123 // we don't need special treatment for symbols defined in debug
3124 // sections. We do the same in the constructor. This does not
3125 // apply to NOLOAD sections though.
3126 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3127 this->set_address(0);
3128
3129 for (Input_section_list::iterator p = this->input_sections_.begin();
3130 p != this->input_sections_.end();
3131 ++p)
3132 p->reset_address_and_file_offset();
3133
3134 // Remove any patch space that was added in set_final_data_size.
3135 if (this->patch_space_ > 0)
3136 {
3137 this->set_current_data_size_for_child(this->current_data_size_for_child()
3138 - this->patch_space_);
3139 this->patch_space_ = 0;
3140 }
3141 }
3142
3143 // Return true if address and file offset have the values after reset.
3144
3145 bool
3146 Output_section::do_address_and_file_offset_have_reset_values() const
3147 {
3148 if (this->is_offset_valid())
3149 return false;
3150
3151 // An unallocated section has address 0 after its construction or a reset.
3152 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3153 return this->is_address_valid() && this->address() == 0;
3154 else
3155 return !this->is_address_valid();
3156 }
3157
3158 // Set the TLS offset. Called only for SHT_TLS sections.
3159
3160 void
3161 Output_section::do_set_tls_offset(uint64_t tls_base)
3162 {
3163 this->tls_offset_ = this->address() - tls_base;
3164 }
3165
3166 // In a few cases we need to sort the input sections attached to an
3167 // output section. This is used to implement the type of constructor
3168 // priority ordering implemented by the GNU linker, in which the
3169 // priority becomes part of the section name and the sections are
3170 // sorted by name. We only do this for an output section if we see an
3171 // attached input section matching ".ctors.*", ".dtors.*",
3172 // ".init_array.*" or ".fini_array.*".
3173
3174 class Output_section::Input_section_sort_entry
3175 {
3176 public:
3177 Input_section_sort_entry()
3178 : input_section_(), index_(-1U), section_has_name_(false),
3179 section_name_()
3180 { }
3181
3182 Input_section_sort_entry(const Input_section& input_section,
3183 unsigned int index,
3184 bool must_sort_attached_input_sections)
3185 : input_section_(input_section), index_(index),
3186 section_has_name_(input_section.is_input_section()
3187 || input_section.is_relaxed_input_section())
3188 {
3189 if (this->section_has_name_
3190 && must_sort_attached_input_sections)
3191 {
3192 // This is only called single-threaded from Layout::finalize,
3193 // so it is OK to lock. Unfortunately we have no way to pass
3194 // in a Task token.
3195 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3196 Object* obj = (input_section.is_input_section()
3197 ? input_section.relobj()
3198 : input_section.relaxed_input_section()->relobj());
3199 Task_lock_obj<Object> tl(dummy_task, obj);
3200
3201 // This is a slow operation, which should be cached in
3202 // Layout::layout if this becomes a speed problem.
3203 this->section_name_ = obj->section_name(input_section.shndx());
3204 }
3205 }
3206
3207 // Return the Input_section.
3208 const Input_section&
3209 input_section() const
3210 {
3211 gold_assert(this->index_ != -1U);
3212 return this->input_section_;
3213 }
3214
3215 // The index of this entry in the original list. This is used to
3216 // make the sort stable.
3217 unsigned int
3218 index() const
3219 {
3220 gold_assert(this->index_ != -1U);
3221 return this->index_;
3222 }
3223
3224 // Whether there is a section name.
3225 bool
3226 section_has_name() const
3227 { return this->section_has_name_; }
3228
3229 // The section name.
3230 const std::string&
3231 section_name() const
3232 {
3233 gold_assert(this->section_has_name_);
3234 return this->section_name_;
3235 }
3236
3237 // Return true if the section name has a priority. This is assumed
3238 // to be true if it has a dot after the initial dot.
3239 bool
3240 has_priority() const
3241 {
3242 gold_assert(this->section_has_name_);
3243 return this->section_name_.find('.', 1) != std::string::npos;
3244 }
3245
3246 // Return the priority. Believe it or not, gcc encodes the priority
3247 // differently for .ctors/.dtors and .init_array/.fini_array
3248 // sections.
3249 unsigned int
3250 get_priority() const
3251 {
3252 gold_assert(this->section_has_name_);
3253 bool is_ctors;
3254 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3255 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3256 is_ctors = true;
3257 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3258 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3259 is_ctors = false;
3260 else
3261 return 0;
3262 char* end;
3263 unsigned long prio = strtoul((this->section_name_.c_str()
3264 + (is_ctors ? 7 : 12)),
3265 &end, 10);
3266 if (*end != '\0')
3267 return 0;
3268 else if (is_ctors)
3269 return 65535 - prio;
3270 else
3271 return prio;
3272 }
3273
3274 // Return true if this an input file whose base name matches
3275 // FILE_NAME. The base name must have an extension of ".o", and
3276 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3277 // This is to match crtbegin.o as well as crtbeginS.o without
3278 // getting confused by other possibilities. Overall matching the
3279 // file name this way is a dreadful hack, but the GNU linker does it
3280 // in order to better support gcc, and we need to be compatible.
3281 bool
3282 match_file_name(const char* file_name) const
3283 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3284
3285 // Returns 1 if THIS should appear before S in section order, -1 if S
3286 // appears before THIS and 0 if they are not comparable.
3287 int
3288 compare_section_ordering(const Input_section_sort_entry& s) const
3289 {
3290 unsigned int this_secn_index = this->input_section_.section_order_index();
3291 unsigned int s_secn_index = s.input_section().section_order_index();
3292 if (this_secn_index > 0 && s_secn_index > 0)
3293 {
3294 if (this_secn_index < s_secn_index)
3295 return 1;
3296 else if (this_secn_index > s_secn_index)
3297 return -1;
3298 }
3299 return 0;
3300 }
3301
3302 private:
3303 // The Input_section we are sorting.
3304 Input_section input_section_;
3305 // The index of this Input_section in the original list.
3306 unsigned int index_;
3307 // Whether this Input_section has a section name--it won't if this
3308 // is some random Output_section_data.
3309 bool section_has_name_;
3310 // The section name if there is one.
3311 std::string section_name_;
3312 };
3313
3314 // Return true if S1 should come before S2 in the output section.
3315
3316 bool
3317 Output_section::Input_section_sort_compare::operator()(
3318 const Output_section::Input_section_sort_entry& s1,
3319 const Output_section::Input_section_sort_entry& s2) const
3320 {
3321 // crtbegin.o must come first.
3322 bool s1_begin = s1.match_file_name("crtbegin");
3323 bool s2_begin = s2.match_file_name("crtbegin");
3324 if (s1_begin || s2_begin)
3325 {
3326 if (!s1_begin)
3327 return false;
3328 if (!s2_begin)
3329 return true;
3330 return s1.index() < s2.index();
3331 }
3332
3333 // crtend.o must come last.
3334 bool s1_end = s1.match_file_name("crtend");
3335 bool s2_end = s2.match_file_name("crtend");
3336 if (s1_end || s2_end)
3337 {
3338 if (!s1_end)
3339 return true;
3340 if (!s2_end)
3341 return false;
3342 return s1.index() < s2.index();
3343 }
3344
3345 // We sort all the sections with no names to the end.
3346 if (!s1.section_has_name() || !s2.section_has_name())
3347 {
3348 if (s1.section_has_name())
3349 return true;
3350 if (s2.section_has_name())
3351 return false;
3352 return s1.index() < s2.index();
3353 }
3354
3355 // A section with a priority follows a section without a priority.
3356 bool s1_has_priority = s1.has_priority();
3357 bool s2_has_priority = s2.has_priority();
3358 if (s1_has_priority && !s2_has_priority)
3359 return false;
3360 if (!s1_has_priority && s2_has_priority)
3361 return true;
3362
3363 // Check if a section order exists for these sections through a section
3364 // ordering file. If sequence_num is 0, an order does not exist.
3365 int sequence_num = s1.compare_section_ordering(s2);
3366 if (sequence_num != 0)
3367 return sequence_num == 1;
3368
3369 // Otherwise we sort by name.
3370 int compare = s1.section_name().compare(s2.section_name());
3371 if (compare != 0)
3372 return compare < 0;
3373
3374 // Otherwise we keep the input order.
3375 return s1.index() < s2.index();
3376 }
3377
3378 // Return true if S1 should come before S2 in an .init_array or .fini_array
3379 // output section.
3380
3381 bool
3382 Output_section::Input_section_sort_init_fini_compare::operator()(
3383 const Output_section::Input_section_sort_entry& s1,
3384 const Output_section::Input_section_sort_entry& s2) const
3385 {
3386 // We sort all the sections with no names to the end.
3387 if (!s1.section_has_name() || !s2.section_has_name())
3388 {
3389 if (s1.section_has_name())
3390 return true;
3391 if (s2.section_has_name())
3392 return false;
3393 return s1.index() < s2.index();
3394 }
3395
3396 // A section without a priority follows a section with a priority.
3397 // This is the reverse of .ctors and .dtors sections.
3398 bool s1_has_priority = s1.has_priority();
3399 bool s2_has_priority = s2.has_priority();
3400 if (s1_has_priority && !s2_has_priority)
3401 return true;
3402 if (!s1_has_priority && s2_has_priority)
3403 return false;
3404
3405 // .ctors and .dtors sections without priority come after
3406 // .init_array and .fini_array sections without priority.
3407 if (!s1_has_priority
3408 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3409 && s1.section_name() != s2.section_name())
3410 return false;
3411 if (!s2_has_priority
3412 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3413 && s2.section_name() != s1.section_name())
3414 return true;
3415
3416 // Sort by priority if we can.
3417 if (s1_has_priority)
3418 {
3419 unsigned int s1_prio = s1.get_priority();
3420 unsigned int s2_prio = s2.get_priority();
3421 if (s1_prio < s2_prio)
3422 return true;
3423 else if (s1_prio > s2_prio)
3424 return false;
3425 }
3426
3427 // Check if a section order exists for these sections through a section
3428 // ordering file. If sequence_num is 0, an order does not exist.
3429 int sequence_num = s1.compare_section_ordering(s2);
3430 if (sequence_num != 0)
3431 return sequence_num == 1;
3432
3433 // Otherwise we sort by name.
3434 int compare = s1.section_name().compare(s2.section_name());
3435 if (compare != 0)
3436 return compare < 0;
3437
3438 // Otherwise we keep the input order.
3439 return s1.index() < s2.index();
3440 }
3441
3442 // Return true if S1 should come before S2. Sections that do not match
3443 // any pattern in the section ordering file are placed ahead of the sections
3444 // that match some pattern.
3445
3446 bool
3447 Output_section::Input_section_sort_section_order_index_compare::operator()(
3448 const Output_section::Input_section_sort_entry& s1,
3449 const Output_section::Input_section_sort_entry& s2) const
3450 {
3451 unsigned int s1_secn_index = s1.input_section().section_order_index();
3452 unsigned int s2_secn_index = s2.input_section().section_order_index();
3453
3454 // Keep input order if section ordering cannot determine order.
3455 if (s1_secn_index == s2_secn_index)
3456 return s1.index() < s2.index();
3457
3458 return s1_secn_index < s2_secn_index;
3459 }
3460
3461 // This updates the section order index of input sections according to the
3462 // the order specified in the mapping from Section id to order index.
3463
3464 void
3465 Output_section::update_section_layout(
3466 const Section_layout_order* order_map)
3467 {
3468 for (Input_section_list::iterator p = this->input_sections_.begin();
3469 p != this->input_sections_.end();
3470 ++p)
3471 {
3472 if (p->is_input_section()
3473 || p->is_relaxed_input_section())
3474 {
3475 Object* obj = (p->is_input_section()
3476 ? p->relobj()
3477 : p->relaxed_input_section()->relobj());
3478 unsigned int shndx = p->shndx();
3479 Section_layout_order::const_iterator it
3480 = order_map->find(Section_id(obj, shndx));
3481 if (it == order_map->end())
3482 continue;
3483 unsigned int section_order_index = it->second;
3484 if (section_order_index != 0)
3485 {
3486 p->set_section_order_index(section_order_index);
3487 this->set_input_section_order_specified();
3488 }
3489 }
3490 }
3491 }
3492
3493 // Sort the input sections attached to an output section.
3494
3495 void
3496 Output_section::sort_attached_input_sections()
3497 {
3498 if (this->attached_input_sections_are_sorted_)
3499 return;
3500
3501 if (this->checkpoint_ != NULL
3502 && !this->checkpoint_->input_sections_saved())
3503 this->checkpoint_->save_input_sections();
3504
3505 // The only thing we know about an input section is the object and
3506 // the section index. We need the section name. Recomputing this
3507 // is slow but this is an unusual case. If this becomes a speed
3508 // problem we can cache the names as required in Layout::layout.
3509
3510 // We start by building a larger vector holding a copy of each
3511 // Input_section, plus its current index in the list and its name.
3512 std::vector<Input_section_sort_entry> sort_list;
3513
3514 unsigned int i = 0;
3515 for (Input_section_list::iterator p = this->input_sections_.begin();
3516 p != this->input_sections_.end();
3517 ++p, ++i)
3518 sort_list.push_back(Input_section_sort_entry(*p, i,
3519 this->must_sort_attached_input_sections()));
3520
3521 // Sort the input sections.
3522 if (this->must_sort_attached_input_sections())
3523 {
3524 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3525 || this->type() == elfcpp::SHT_INIT_ARRAY
3526 || this->type() == elfcpp::SHT_FINI_ARRAY)
3527 std::sort(sort_list.begin(), sort_list.end(),
3528 Input_section_sort_init_fini_compare());
3529 else
3530 std::sort(sort_list.begin(), sort_list.end(),
3531 Input_section_sort_compare());
3532 }
3533 else
3534 {
3535 gold_assert(this->input_section_order_specified());
3536 std::sort(sort_list.begin(), sort_list.end(),
3537 Input_section_sort_section_order_index_compare());
3538 }
3539
3540 // Copy the sorted input sections back to our list.
3541 this->input_sections_.clear();
3542 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3543 p != sort_list.end();
3544 ++p)
3545 this->input_sections_.push_back(p->input_section());
3546 sort_list.clear();
3547
3548 // Remember that we sorted the input sections, since we might get
3549 // called again.
3550 this->attached_input_sections_are_sorted_ = true;
3551 }
3552
3553 // Write the section header to *OSHDR.
3554
3555 template<int size, bool big_endian>
3556 void
3557 Output_section::write_header(const Layout* layout,
3558 const Stringpool* secnamepool,
3559 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3560 {
3561 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3562 oshdr->put_sh_type(this->type_);
3563
3564 elfcpp::Elf_Xword flags = this->flags_;
3565 if (this->info_section_ != NULL && this->info_uses_section_index_)
3566 flags |= elfcpp::SHF_INFO_LINK;
3567 oshdr->put_sh_flags(flags);
3568
3569 oshdr->put_sh_addr(this->address());
3570 oshdr->put_sh_offset(this->offset());
3571 oshdr->put_sh_size(this->data_size());
3572 if (this->link_section_ != NULL)
3573 oshdr->put_sh_link(this->link_section_->out_shndx());
3574 else if (this->should_link_to_symtab_)
3575 oshdr->put_sh_link(layout->symtab_section_shndx());
3576 else if (this->should_link_to_dynsym_)
3577 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3578 else
3579 oshdr->put_sh_link(this->link_);
3580
3581 elfcpp::Elf_Word info;
3582 if (this->info_section_ != NULL)
3583 {
3584 if (this->info_uses_section_index_)
3585 info = this->info_section_->out_shndx();
3586 else
3587 info = this->info_section_->symtab_index();
3588 }
3589 else if (this->info_symndx_ != NULL)
3590 info = this->info_symndx_->symtab_index();
3591 else
3592 info = this->info_;
3593 oshdr->put_sh_info(info);
3594
3595 oshdr->put_sh_addralign(this->addralign_);
3596 oshdr->put_sh_entsize(this->entsize_);
3597 }
3598
3599 // Write out the data. For input sections the data is written out by
3600 // Object::relocate, but we have to handle Output_section_data objects
3601 // here.
3602
3603 void
3604 Output_section::do_write(Output_file* of)
3605 {
3606 gold_assert(!this->requires_postprocessing());
3607
3608 // If the target performs relaxation, we delay filler generation until now.
3609 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3610
3611 off_t output_section_file_offset = this->offset();
3612 for (Fill_list::iterator p = this->fills_.begin();
3613 p != this->fills_.end();
3614 ++p)
3615 {
3616 std::string fill_data(parameters->target().code_fill(p->length()));
3617 of->write(output_section_file_offset + p->section_offset(),
3618 fill_data.data(), fill_data.size());
3619 }
3620
3621 off_t off = this->offset() + this->first_input_offset_;
3622 for (Input_section_list::iterator p = this->input_sections_.begin();
3623 p != this->input_sections_.end();
3624 ++p)
3625 {
3626 off_t aligned_off = align_address(off, p->addralign());
3627 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3628 {
3629 size_t fill_len = aligned_off - off;
3630 std::string fill_data(parameters->target().code_fill(fill_len));
3631 of->write(off, fill_data.data(), fill_data.size());
3632 }
3633
3634 p->write(of);
3635 off = aligned_off + p->data_size();
3636 }
3637
3638 // For incremental links, fill in unused chunks in debug sections
3639 // with dummy compilation unit headers.
3640 if (this->free_space_fill_ != NULL)
3641 {
3642 for (Free_list::Const_iterator p = this->free_list_.begin();
3643 p != this->free_list_.end();
3644 ++p)
3645 {
3646 off_t off = p->start_;
3647 size_t len = p->end_ - off;
3648 this->free_space_fill_->write(of, this->offset() + off, len);
3649 }
3650 if (this->patch_space_ > 0)
3651 {
3652 off_t off = this->current_data_size_for_child() - this->patch_space_;
3653 this->free_space_fill_->write(of, this->offset() + off,
3654 this->patch_space_);
3655 }
3656 }
3657 }
3658
3659 // If a section requires postprocessing, create the buffer to use.
3660
3661 void
3662 Output_section::create_postprocessing_buffer()
3663 {
3664 gold_assert(this->requires_postprocessing());
3665
3666 if (this->postprocessing_buffer_ != NULL)
3667 return;
3668
3669 if (!this->input_sections_.empty())
3670 {
3671 off_t off = this->first_input_offset_;
3672 for (Input_section_list::iterator p = this->input_sections_.begin();
3673 p != this->input_sections_.end();
3674 ++p)
3675 {
3676 off = align_address(off, p->addralign());
3677 p->finalize_data_size();
3678 off += p->data_size();
3679 }
3680 this->set_current_data_size_for_child(off);
3681 }
3682
3683 off_t buffer_size = this->current_data_size_for_child();
3684 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3685 }
3686
3687 // Write all the data of an Output_section into the postprocessing
3688 // buffer. This is used for sections which require postprocessing,
3689 // such as compression. Input sections are handled by
3690 // Object::Relocate.
3691
3692 void
3693 Output_section::write_to_postprocessing_buffer()
3694 {
3695 gold_assert(this->requires_postprocessing());
3696
3697 // If the target performs relaxation, we delay filler generation until now.
3698 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3699
3700 unsigned char* buffer = this->postprocessing_buffer();
3701 for (Fill_list::iterator p = this->fills_.begin();
3702 p != this->fills_.end();
3703 ++p)
3704 {
3705 std::string fill_data(parameters->target().code_fill(p->length()));
3706 memcpy(buffer + p->section_offset(), fill_data.data(),
3707 fill_data.size());
3708 }
3709
3710 off_t off = this->first_input_offset_;
3711 for (Input_section_list::iterator p = this->input_sections_.begin();
3712 p != this->input_sections_.end();
3713 ++p)
3714 {
3715 off_t aligned_off = align_address(off, p->addralign());
3716 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3717 {
3718 size_t fill_len = aligned_off - off;
3719 std::string fill_data(parameters->target().code_fill(fill_len));
3720 memcpy(buffer + off, fill_data.data(), fill_data.size());
3721 }
3722
3723 p->write_to_buffer(buffer + aligned_off);
3724 off = aligned_off + p->data_size();
3725 }
3726 }
3727
3728 // Get the input sections for linker script processing. We leave
3729 // behind the Output_section_data entries. Note that this may be
3730 // slightly incorrect for merge sections. We will leave them behind,
3731 // but it is possible that the script says that they should follow
3732 // some other input sections, as in:
3733 // .rodata { *(.rodata) *(.rodata.cst*) }
3734 // For that matter, we don't handle this correctly:
3735 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3736 // With luck this will never matter.
3737
3738 uint64_t
3739 Output_section::get_input_sections(
3740 uint64_t address,
3741 const std::string& fill,
3742 std::list<Input_section>* input_sections)
3743 {
3744 if (this->checkpoint_ != NULL
3745 && !this->checkpoint_->input_sections_saved())
3746 this->checkpoint_->save_input_sections();
3747
3748 // Invalidate fast look-up maps.
3749 this->lookup_maps_->invalidate();
3750
3751 uint64_t orig_address = address;
3752
3753 address = align_address(address, this->addralign());
3754
3755 Input_section_list remaining;
3756 for (Input_section_list::iterator p = this->input_sections_.begin();
3757 p != this->input_sections_.end();
3758 ++p)
3759 {
3760 if (p->is_input_section()
3761 || p->is_relaxed_input_section()
3762 || p->is_merge_section())
3763 input_sections->push_back(*p);
3764 else
3765 {
3766 uint64_t aligned_address = align_address(address, p->addralign());
3767 if (aligned_address != address && !fill.empty())
3768 {
3769 section_size_type length =
3770 convert_to_section_size_type(aligned_address - address);
3771 std::string this_fill;
3772 this_fill.reserve(length);
3773 while (this_fill.length() + fill.length() <= length)
3774 this_fill += fill;
3775 if (this_fill.length() < length)
3776 this_fill.append(fill, 0, length - this_fill.length());
3777
3778 Output_section_data* posd = new Output_data_const(this_fill, 0);
3779 remaining.push_back(Input_section(posd));
3780 }
3781 address = aligned_address;
3782
3783 remaining.push_back(*p);
3784
3785 p->finalize_data_size();
3786 address += p->data_size();
3787 }
3788 }
3789
3790 this->input_sections_.swap(remaining);
3791 this->first_input_offset_ = 0;
3792
3793 uint64_t data_size = address - orig_address;
3794 this->set_current_data_size_for_child(data_size);
3795 return data_size;
3796 }
3797
3798 // Add a script input section. SIS is an Output_section::Input_section,
3799 // which can be either a plain input section or a special input section like
3800 // a relaxed input section. For a special input section, its size must be
3801 // finalized.
3802
3803 void
3804 Output_section::add_script_input_section(const Input_section& sis)
3805 {
3806 uint64_t data_size = sis.data_size();
3807 uint64_t addralign = sis.addralign();
3808 if (addralign > this->addralign_)
3809 this->addralign_ = addralign;
3810
3811 off_t offset_in_section = this->current_data_size_for_child();
3812 off_t aligned_offset_in_section = align_address(offset_in_section,
3813 addralign);
3814
3815 this->set_current_data_size_for_child(aligned_offset_in_section
3816 + data_size);
3817
3818 this->input_sections_.push_back(sis);
3819
3820 // Update fast lookup maps if necessary.
3821 if (this->lookup_maps_->is_valid())
3822 {
3823 if (sis.is_merge_section())
3824 {
3825 Output_merge_base* pomb = sis.output_merge_base();
3826 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3827 pomb->addralign());
3828 this->lookup_maps_->add_merge_section(msp, pomb);
3829 for (Output_merge_base::Input_sections::const_iterator p =
3830 pomb->input_sections_begin();
3831 p != pomb->input_sections_end();
3832 ++p)
3833 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3834 pomb);
3835 }
3836 else if (sis.is_relaxed_input_section())
3837 {
3838 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3839 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3840 poris->shndx(), poris);
3841 }
3842 }
3843 }
3844
3845 // Save states for relaxation.
3846
3847 void
3848 Output_section::save_states()
3849 {
3850 gold_assert(this->checkpoint_ == NULL);
3851 Checkpoint_output_section* checkpoint =
3852 new Checkpoint_output_section(this->addralign_, this->flags_,
3853 this->input_sections_,
3854 this->first_input_offset_,
3855 this->attached_input_sections_are_sorted_);
3856 this->checkpoint_ = checkpoint;
3857 gold_assert(this->fills_.empty());
3858 }
3859
3860 void
3861 Output_section::discard_states()
3862 {
3863 gold_assert(this->checkpoint_ != NULL);
3864 delete this->checkpoint_;
3865 this->checkpoint_ = NULL;
3866 gold_assert(this->fills_.empty());
3867
3868 // Simply invalidate the fast lookup maps since we do not keep
3869 // track of them.
3870 this->lookup_maps_->invalidate();
3871 }
3872
3873 void
3874 Output_section::restore_states()
3875 {
3876 gold_assert(this->checkpoint_ != NULL);
3877 Checkpoint_output_section* checkpoint = this->checkpoint_;
3878
3879 this->addralign_ = checkpoint->addralign();
3880 this->flags_ = checkpoint->flags();
3881 this->first_input_offset_ = checkpoint->first_input_offset();
3882
3883 if (!checkpoint->input_sections_saved())
3884 {
3885 // If we have not copied the input sections, just resize it.
3886 size_t old_size = checkpoint->input_sections_size();
3887 gold_assert(this->input_sections_.size() >= old_size);
3888 this->input_sections_.resize(old_size);
3889 }
3890 else
3891 {
3892 // We need to copy the whole list. This is not efficient for
3893 // extremely large output with hundreads of thousands of input
3894 // objects. We may need to re-think how we should pass sections
3895 // to scripts.
3896 this->input_sections_ = *checkpoint->input_sections();
3897 }
3898
3899 this->attached_input_sections_are_sorted_ =
3900 checkpoint->attached_input_sections_are_sorted();
3901
3902 // Simply invalidate the fast lookup maps since we do not keep
3903 // track of them.
3904 this->lookup_maps_->invalidate();
3905 }
3906
3907 // Update the section offsets of input sections in this. This is required if
3908 // relaxation causes some input sections to change sizes.
3909
3910 void
3911 Output_section::adjust_section_offsets()
3912 {
3913 if (!this->section_offsets_need_adjustment_)
3914 return;
3915
3916 off_t off = 0;
3917 for (Input_section_list::iterator p = this->input_sections_.begin();
3918 p != this->input_sections_.end();
3919 ++p)
3920 {
3921 off = align_address(off, p->addralign());
3922 if (p->is_input_section())
3923 p->relobj()->set_section_offset(p->shndx(), off);
3924 off += p->data_size();
3925 }
3926
3927 this->section_offsets_need_adjustment_ = false;
3928 }
3929
3930 // Print to the map file.
3931
3932 void
3933 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3934 {
3935 mapfile->print_output_section(this);
3936
3937 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3938 p != this->input_sections_.end();
3939 ++p)
3940 p->print_to_mapfile(mapfile);
3941 }
3942
3943 // Print stats for merge sections to stderr.
3944
3945 void
3946 Output_section::print_merge_stats()
3947 {
3948 Input_section_list::iterator p;
3949 for (p = this->input_sections_.begin();
3950 p != this->input_sections_.end();
3951 ++p)
3952 p->print_merge_stats(this->name_);
3953 }
3954
3955 // Set a fixed layout for the section. Used for incremental update links.
3956
3957 void
3958 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3959 off_t sh_size, uint64_t sh_addralign)
3960 {
3961 this->addralign_ = sh_addralign;
3962 this->set_current_data_size(sh_size);
3963 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3964 this->set_address(sh_addr);
3965 this->set_file_offset(sh_offset);
3966 this->finalize_data_size();
3967 this->free_list_.init(sh_size, false);
3968 this->has_fixed_layout_ = true;
3969 }
3970
3971 // Reserve space within the fixed layout for the section. Used for
3972 // incremental update links.
3973
3974 void
3975 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3976 {
3977 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3978 }
3979
3980 // Allocate space from the free list for the section. Used for
3981 // incremental update links.
3982
3983 off_t
3984 Output_section::allocate(off_t len, uint64_t addralign)
3985 {
3986 return this->free_list_.allocate(len, addralign, 0);
3987 }
3988
3989 // Output segment methods.
3990
3991 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3992 : vaddr_(0),
3993 paddr_(0),
3994 memsz_(0),
3995 max_align_(0),
3996 min_p_align_(0),
3997 offset_(0),
3998 filesz_(0),
3999 type_(type),
4000 flags_(flags),
4001 is_max_align_known_(false),
4002 are_addresses_set_(false),
4003 is_large_data_segment_(false),
4004 is_unique_segment_(false)
4005 {
4006 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4007 // the flags.
4008 if (type == elfcpp::PT_TLS)
4009 this->flags_ = elfcpp::PF_R;
4010 }
4011
4012 // Add an Output_section to a PT_LOAD Output_segment.
4013
4014 void
4015 Output_segment::add_output_section_to_load(Layout* layout,
4016 Output_section* os,
4017 elfcpp::Elf_Word seg_flags)
4018 {
4019 gold_assert(this->type() == elfcpp::PT_LOAD);
4020 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4021 gold_assert(!this->is_max_align_known_);
4022 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4023
4024 this->update_flags_for_output_section(seg_flags);
4025
4026 // We don't want to change the ordering if we have a linker script
4027 // with a SECTIONS clause.
4028 Output_section_order order = os->order();
4029 if (layout->script_options()->saw_sections_clause())
4030 order = static_cast<Output_section_order>(0);
4031 else
4032 gold_assert(order != ORDER_INVALID);
4033
4034 this->output_lists_[order].push_back(os);
4035 }
4036
4037 // Add an Output_section to a non-PT_LOAD Output_segment.
4038
4039 void
4040 Output_segment::add_output_section_to_nonload(Output_section* os,
4041 elfcpp::Elf_Word seg_flags)
4042 {
4043 gold_assert(this->type() != elfcpp::PT_LOAD);
4044 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4045 gold_assert(!this->is_max_align_known_);
4046
4047 this->update_flags_for_output_section(seg_flags);
4048
4049 this->output_lists_[0].push_back(os);
4050 }
4051
4052 // Remove an Output_section from this segment. It is an error if it
4053 // is not present.
4054
4055 void
4056 Output_segment::remove_output_section(Output_section* os)
4057 {
4058 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4059 {
4060 Output_data_list* pdl = &this->output_lists_[i];
4061 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4062 {
4063 if (*p == os)
4064 {
4065 pdl->erase(p);
4066 return;
4067 }
4068 }
4069 }
4070 gold_unreachable();
4071 }
4072
4073 // Add an Output_data (which need not be an Output_section) to the
4074 // start of a segment.
4075
4076 void
4077 Output_segment::add_initial_output_data(Output_data* od)
4078 {
4079 gold_assert(!this->is_max_align_known_);
4080 Output_data_list::iterator p = this->output_lists_[0].begin();
4081 this->output_lists_[0].insert(p, od);
4082 }
4083
4084 // Return true if this segment has any sections which hold actual
4085 // data, rather than being a BSS section.
4086
4087 bool
4088 Output_segment::has_any_data_sections() const
4089 {
4090 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4091 {
4092 const Output_data_list* pdl = &this->output_lists_[i];
4093 for (Output_data_list::const_iterator p = pdl->begin();
4094 p != pdl->end();
4095 ++p)
4096 {
4097 if (!(*p)->is_section())
4098 return true;
4099 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4100 return true;
4101 }
4102 }
4103 return false;
4104 }
4105
4106 // Return whether the first data section (not counting TLS sections)
4107 // is a relro section.
4108
4109 bool
4110 Output_segment::is_first_section_relro() const
4111 {
4112 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113 {
4114 if (i == static_cast<int>(ORDER_TLS_DATA)
4115 || i == static_cast<int>(ORDER_TLS_BSS))
4116 continue;
4117 const Output_data_list* pdl = &this->output_lists_[i];
4118 if (!pdl->empty())
4119 {
4120 Output_data* p = pdl->front();
4121 return p->is_section() && p->output_section()->is_relro();
4122 }
4123 }
4124 return false;
4125 }
4126
4127 // Return the maximum alignment of the Output_data in Output_segment.
4128
4129 uint64_t
4130 Output_segment::maximum_alignment()
4131 {
4132 if (!this->is_max_align_known_)
4133 {
4134 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4135 {
4136 const Output_data_list* pdl = &this->output_lists_[i];
4137 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4138 if (addralign > this->max_align_)
4139 this->max_align_ = addralign;
4140 }
4141 this->is_max_align_known_ = true;
4142 }
4143
4144 return this->max_align_;
4145 }
4146
4147 // Return the maximum alignment of a list of Output_data.
4148
4149 uint64_t
4150 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4151 {
4152 uint64_t ret = 0;
4153 for (Output_data_list::const_iterator p = pdl->begin();
4154 p != pdl->end();
4155 ++p)
4156 {
4157 uint64_t addralign = (*p)->addralign();
4158 if (addralign > ret)
4159 ret = addralign;
4160 }
4161 return ret;
4162 }
4163
4164 // Return whether this segment has any dynamic relocs.
4165
4166 bool
4167 Output_segment::has_dynamic_reloc() const
4168 {
4169 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4170 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4171 return true;
4172 return false;
4173 }
4174
4175 // Return whether this Output_data_list has any dynamic relocs.
4176
4177 bool
4178 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4179 {
4180 for (Output_data_list::const_iterator p = pdl->begin();
4181 p != pdl->end();
4182 ++p)
4183 if ((*p)->has_dynamic_reloc())
4184 return true;
4185 return false;
4186 }
4187
4188 // Set the section addresses for an Output_segment. If RESET is true,
4189 // reset the addresses first. ADDR is the address and *POFF is the
4190 // file offset. Set the section indexes starting with *PSHNDX.
4191 // INCREASE_RELRO is the size of the portion of the first non-relro
4192 // section that should be included in the PT_GNU_RELRO segment.
4193 // If this segment has relro sections, and has been aligned for
4194 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4195 // the immediately following segment. Update *HAS_RELRO, *POFF,
4196 // and *PSHNDX.
4197
4198 uint64_t
4199 Output_segment::set_section_addresses(Layout* layout, bool reset,
4200 uint64_t addr,
4201 unsigned int* increase_relro,
4202 bool* has_relro,
4203 off_t* poff,
4204 unsigned int* pshndx)
4205 {
4206 gold_assert(this->type_ == elfcpp::PT_LOAD);
4207
4208 uint64_t last_relro_pad = 0;
4209 off_t orig_off = *poff;
4210
4211 bool in_tls = false;
4212
4213 // If we have relro sections, we need to pad forward now so that the
4214 // relro sections plus INCREASE_RELRO end on a common page boundary.
4215 if (parameters->options().relro()
4216 && this->is_first_section_relro()
4217 && (!this->are_addresses_set_ || reset))
4218 {
4219 uint64_t relro_size = 0;
4220 off_t off = *poff;
4221 uint64_t max_align = 0;
4222 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4223 {
4224 Output_data_list* pdl = &this->output_lists_[i];
4225 Output_data_list::iterator p;
4226 for (p = pdl->begin(); p != pdl->end(); ++p)
4227 {
4228 if (!(*p)->is_section())
4229 break;
4230 uint64_t align = (*p)->addralign();
4231 if (align > max_align)
4232 max_align = align;
4233 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4234 in_tls = true;
4235 else if (in_tls)
4236 {
4237 // Align the first non-TLS section to the alignment
4238 // of the TLS segment.
4239 align = max_align;
4240 in_tls = false;
4241 }
4242 relro_size = align_address(relro_size, align);
4243 // Ignore the size of the .tbss section.
4244 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4245 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4246 continue;
4247 if ((*p)->is_address_valid())
4248 relro_size += (*p)->data_size();
4249 else
4250 {
4251 // FIXME: This could be faster.
4252 (*p)->set_address_and_file_offset(addr + relro_size,
4253 off + relro_size);
4254 relro_size += (*p)->data_size();
4255 (*p)->reset_address_and_file_offset();
4256 }
4257 }
4258 if (p != pdl->end())
4259 break;
4260 }
4261 relro_size += *increase_relro;
4262 // Pad the total relro size to a multiple of the maximum
4263 // section alignment seen.
4264 uint64_t aligned_size = align_address(relro_size, max_align);
4265 // Note the amount of padding added after the last relro section.
4266 last_relro_pad = aligned_size - relro_size;
4267 *has_relro = true;
4268
4269 uint64_t page_align = parameters->target().common_pagesize();
4270
4271 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4272 uint64_t desired_align = page_align - (aligned_size % page_align);
4273 if (desired_align < *poff % page_align)
4274 *poff += page_align - *poff % page_align;
4275 *poff += desired_align - *poff % page_align;
4276 addr += *poff - orig_off;
4277 orig_off = *poff;
4278 }
4279
4280 if (!reset && this->are_addresses_set_)
4281 {
4282 gold_assert(this->paddr_ == addr);
4283 addr = this->vaddr_;
4284 }
4285 else
4286 {
4287 this->vaddr_ = addr;
4288 this->paddr_ = addr;
4289 this->are_addresses_set_ = true;
4290 }
4291
4292 in_tls = false;
4293
4294 this->offset_ = orig_off;
4295
4296 off_t off = 0;
4297 uint64_t ret;
4298 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4299 {
4300 if (i == static_cast<int>(ORDER_RELRO_LAST))
4301 {
4302 *poff += last_relro_pad;
4303 addr += last_relro_pad;
4304 if (this->output_lists_[i].empty())
4305 {
4306 // If there is nothing in the ORDER_RELRO_LAST list,
4307 // the padding will occur at the end of the relro
4308 // segment, and we need to add it to *INCREASE_RELRO.
4309 *increase_relro += last_relro_pad;
4310 }
4311 }
4312 addr = this->set_section_list_addresses(layout, reset,
4313 &this->output_lists_[i],
4314 addr, poff, pshndx, &in_tls);
4315 if (i < static_cast<int>(ORDER_SMALL_BSS))
4316 {
4317 this->filesz_ = *poff - orig_off;
4318 off = *poff;
4319 }
4320
4321 ret = addr;
4322 }
4323
4324 // If the last section was a TLS section, align upward to the
4325 // alignment of the TLS segment, so that the overall size of the TLS
4326 // segment is aligned.
4327 if (in_tls)
4328 {
4329 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4330 *poff = align_address(*poff, segment_align);
4331 }
4332
4333 this->memsz_ = *poff - orig_off;
4334
4335 // Ignore the file offset adjustments made by the BSS Output_data
4336 // objects.
4337 *poff = off;
4338
4339 return ret;
4340 }
4341
4342 // Set the addresses and file offsets in a list of Output_data
4343 // structures.
4344
4345 uint64_t
4346 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4347 Output_data_list* pdl,
4348 uint64_t addr, off_t* poff,
4349 unsigned int* pshndx,
4350 bool* in_tls)
4351 {
4352 off_t startoff = *poff;
4353 // For incremental updates, we may allocate non-fixed sections from
4354 // free space in the file. This keeps track of the high-water mark.
4355 off_t maxoff = startoff;
4356
4357 off_t off = startoff;
4358 for (Output_data_list::iterator p = pdl->begin();
4359 p != pdl->end();
4360 ++p)
4361 {
4362 if (reset)
4363 (*p)->reset_address_and_file_offset();
4364
4365 // When doing an incremental update or when using a linker script,
4366 // the section will most likely already have an address.
4367 if (!(*p)->is_address_valid())
4368 {
4369 uint64_t align = (*p)->addralign();
4370
4371 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4372 {
4373 // Give the first TLS section the alignment of the
4374 // entire TLS segment. Otherwise the TLS segment as a
4375 // whole may be misaligned.
4376 if (!*in_tls)
4377 {
4378 Output_segment* tls_segment = layout->tls_segment();
4379 gold_assert(tls_segment != NULL);
4380 uint64_t segment_align = tls_segment->maximum_alignment();
4381 gold_assert(segment_align >= align);
4382 align = segment_align;
4383
4384 *in_tls = true;
4385 }
4386 }
4387 else
4388 {
4389 // If this is the first section after the TLS segment,
4390 // align it to at least the alignment of the TLS
4391 // segment, so that the size of the overall TLS segment
4392 // is aligned.
4393 if (*in_tls)
4394 {
4395 uint64_t segment_align =
4396 layout->tls_segment()->maximum_alignment();
4397 if (segment_align > align)
4398 align = segment_align;
4399
4400 *in_tls = false;
4401 }
4402 }
4403
4404 if (!parameters->incremental_update())
4405 {
4406 off = align_address(off, align);
4407 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4408 }
4409 else
4410 {
4411 // Incremental update: allocate file space from free list.
4412 (*p)->pre_finalize_data_size();
4413 off_t current_size = (*p)->current_data_size();
4414 off = layout->allocate(current_size, align, startoff);
4415 if (off == -1)
4416 {
4417 gold_assert((*p)->output_section() != NULL);
4418 gold_fallback(_("out of patch space for section %s; "
4419 "relink with --incremental-full"),
4420 (*p)->output_section()->name());
4421 }
4422 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4423 if ((*p)->data_size() > current_size)
4424 {
4425 gold_assert((*p)->output_section() != NULL);
4426 gold_fallback(_("%s: section changed size; "
4427 "relink with --incremental-full"),
4428 (*p)->output_section()->name());
4429 }
4430 }
4431 }
4432 else if (parameters->incremental_update())
4433 {
4434 // For incremental updates, use the fixed offset for the
4435 // high-water mark computation.
4436 off = (*p)->offset();
4437 }
4438 else
4439 {
4440 // The script may have inserted a skip forward, but it
4441 // better not have moved backward.
4442 if ((*p)->address() >= addr + (off - startoff))
4443 off += (*p)->address() - (addr + (off - startoff));
4444 else
4445 {
4446 if (!layout->script_options()->saw_sections_clause())
4447 gold_unreachable();
4448 else
4449 {
4450 Output_section* os = (*p)->output_section();
4451
4452 // Cast to unsigned long long to avoid format warnings.
4453 unsigned long long previous_dot =
4454 static_cast<unsigned long long>(addr + (off - startoff));
4455 unsigned long long dot =
4456 static_cast<unsigned long long>((*p)->address());
4457
4458 if (os == NULL)
4459 gold_error(_("dot moves backward in linker script "
4460 "from 0x%llx to 0x%llx"), previous_dot, dot);
4461 else
4462 gold_error(_("address of section '%s' moves backward "
4463 "from 0x%llx to 0x%llx"),
4464 os->name(), previous_dot, dot);
4465 }
4466 }
4467 (*p)->set_file_offset(off);
4468 (*p)->finalize_data_size();
4469 }
4470
4471 if (parameters->incremental_update())
4472 gold_debug(DEBUG_INCREMENTAL,
4473 "set_section_list_addresses: %08lx %08lx %s",
4474 static_cast<long>(off),
4475 static_cast<long>((*p)->data_size()),
4476 ((*p)->output_section() != NULL
4477 ? (*p)->output_section()->name() : "(special)"));
4478
4479 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4480 // section. Such a section does not affect the size of a
4481 // PT_LOAD segment.
4482 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4483 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4484 off += (*p)->data_size();
4485
4486 if (off > maxoff)
4487 maxoff = off;
4488
4489 if ((*p)->is_section())
4490 {
4491 (*p)->set_out_shndx(*pshndx);
4492 ++*pshndx;
4493 }
4494 }
4495
4496 *poff = maxoff;
4497 return addr + (maxoff - startoff);
4498 }
4499
4500 // For a non-PT_LOAD segment, set the offset from the sections, if
4501 // any. Add INCREASE to the file size and the memory size.
4502
4503 void
4504 Output_segment::set_offset(unsigned int increase)
4505 {
4506 gold_assert(this->type_ != elfcpp::PT_LOAD);
4507
4508 gold_assert(!this->are_addresses_set_);
4509
4510 // A non-load section only uses output_lists_[0].
4511
4512 Output_data_list* pdl = &this->output_lists_[0];
4513
4514 if (pdl->empty())
4515 {
4516 gold_assert(increase == 0);
4517 this->vaddr_ = 0;
4518 this->paddr_ = 0;
4519 this->are_addresses_set_ = true;
4520 this->memsz_ = 0;
4521 this->min_p_align_ = 0;
4522 this->offset_ = 0;
4523 this->filesz_ = 0;
4524 return;
4525 }
4526
4527 // Find the first and last section by address.
4528 const Output_data* first = NULL;
4529 const Output_data* last_data = NULL;
4530 const Output_data* last_bss = NULL;
4531 for (Output_data_list::const_iterator p = pdl->begin();
4532 p != pdl->end();
4533 ++p)
4534 {
4535 if (first == NULL
4536 || (*p)->address() < first->address()
4537 || ((*p)->address() == first->address()
4538 && (*p)->data_size() < first->data_size()))
4539 first = *p;
4540 const Output_data** plast;
4541 if ((*p)->is_section()
4542 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4543 plast = &last_bss;
4544 else
4545 plast = &last_data;
4546 if (*plast == NULL
4547 || (*p)->address() > (*plast)->address()
4548 || ((*p)->address() == (*plast)->address()
4549 && (*p)->data_size() > (*plast)->data_size()))
4550 *plast = *p;
4551 }
4552
4553 this->vaddr_ = first->address();
4554 this->paddr_ = (first->has_load_address()
4555 ? first->load_address()
4556 : this->vaddr_);
4557 this->are_addresses_set_ = true;
4558 this->offset_ = first->offset();
4559
4560 if (last_data == NULL)
4561 this->filesz_ = 0;
4562 else
4563 this->filesz_ = (last_data->address()
4564 + last_data->data_size()
4565 - this->vaddr_);
4566
4567 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4568 this->memsz_ = (last->address()
4569 + last->data_size()
4570 - this->vaddr_);
4571
4572 this->filesz_ += increase;
4573 this->memsz_ += increase;
4574
4575 // If this is a RELRO segment, verify that the segment ends at a
4576 // page boundary.
4577 if (this->type_ == elfcpp::PT_GNU_RELRO)
4578 {
4579 uint64_t page_align = parameters->target().common_pagesize();
4580 uint64_t segment_end = this->vaddr_ + this->memsz_;
4581 if (parameters->incremental_update())
4582 {
4583 // The INCREASE_RELRO calculation is bypassed for an incremental
4584 // update, so we need to adjust the segment size manually here.
4585 segment_end = align_address(segment_end, page_align);
4586 this->memsz_ = segment_end - this->vaddr_;
4587 }
4588 else
4589 gold_assert(segment_end == align_address(segment_end, page_align));
4590 }
4591
4592 // If this is a TLS segment, align the memory size. The code in
4593 // set_section_list ensures that the section after the TLS segment
4594 // is aligned to give us room.
4595 if (this->type_ == elfcpp::PT_TLS)
4596 {
4597 uint64_t segment_align = this->maximum_alignment();
4598 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4599 this->memsz_ = align_address(this->memsz_, segment_align);
4600 }
4601 }
4602
4603 // Set the TLS offsets of the sections in the PT_TLS segment.
4604
4605 void
4606 Output_segment::set_tls_offsets()
4607 {
4608 gold_assert(this->type_ == elfcpp::PT_TLS);
4609
4610 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4611 p != this->output_lists_[0].end();
4612 ++p)
4613 (*p)->set_tls_offset(this->vaddr_);
4614 }
4615
4616 // Return the load address of the first section.
4617
4618 uint64_t
4619 Output_segment::first_section_load_address() const
4620 {
4621 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4622 {
4623 const Output_data_list* pdl = &this->output_lists_[i];
4624 for (Output_data_list::const_iterator p = pdl->begin();
4625 p != pdl->end();
4626 ++p)
4627 {
4628 if ((*p)->is_section())
4629 return ((*p)->has_load_address()
4630 ? (*p)->load_address()
4631 : (*p)->address());
4632 }
4633 }
4634 gold_unreachable();
4635 }
4636
4637 // Return the number of Output_sections in an Output_segment.
4638
4639 unsigned int
4640 Output_segment::output_section_count() const
4641 {
4642 unsigned int ret = 0;
4643 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4644 ret += this->output_section_count_list(&this->output_lists_[i]);
4645 return ret;
4646 }
4647
4648 // Return the number of Output_sections in an Output_data_list.
4649
4650 unsigned int
4651 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4652 {
4653 unsigned int count = 0;
4654 for (Output_data_list::const_iterator p = pdl->begin();
4655 p != pdl->end();
4656 ++p)
4657 {
4658 if ((*p)->is_section())
4659 ++count;
4660 }
4661 return count;
4662 }
4663
4664 // Return the section attached to the list segment with the lowest
4665 // load address. This is used when handling a PHDRS clause in a
4666 // linker script.
4667
4668 Output_section*
4669 Output_segment::section_with_lowest_load_address() const
4670 {
4671 Output_section* found = NULL;
4672 uint64_t found_lma = 0;
4673 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4674 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4675 &found_lma);
4676 return found;
4677 }
4678
4679 // Look through a list for a section with a lower load address.
4680
4681 void
4682 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4683 Output_section** found,
4684 uint64_t* found_lma) const
4685 {
4686 for (Output_data_list::const_iterator p = pdl->begin();
4687 p != pdl->end();
4688 ++p)
4689 {
4690 if (!(*p)->is_section())
4691 continue;
4692 Output_section* os = static_cast<Output_section*>(*p);
4693 uint64_t lma = (os->has_load_address()
4694 ? os->load_address()
4695 : os->address());
4696 if (*found == NULL || lma < *found_lma)
4697 {
4698 *found = os;
4699 *found_lma = lma;
4700 }
4701 }
4702 }
4703
4704 // Write the segment data into *OPHDR.
4705
4706 template<int size, bool big_endian>
4707 void
4708 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4709 {
4710 ophdr->put_p_type(this->type_);
4711 ophdr->put_p_offset(this->offset_);
4712 ophdr->put_p_vaddr(this->vaddr_);
4713 ophdr->put_p_paddr(this->paddr_);
4714 ophdr->put_p_filesz(this->filesz_);
4715 ophdr->put_p_memsz(this->memsz_);
4716 ophdr->put_p_flags(this->flags_);
4717 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4718 }
4719
4720 // Write the section headers into V.
4721
4722 template<int size, bool big_endian>
4723 unsigned char*
4724 Output_segment::write_section_headers(const Layout* layout,
4725 const Stringpool* secnamepool,
4726 unsigned char* v,
4727 unsigned int* pshndx) const
4728 {
4729 // Every section that is attached to a segment must be attached to a
4730 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4731 // segments.
4732 if (this->type_ != elfcpp::PT_LOAD)
4733 return v;
4734
4735 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4736 {
4737 const Output_data_list* pdl = &this->output_lists_[i];
4738 v = this->write_section_headers_list<size, big_endian>(layout,
4739 secnamepool,
4740 pdl,
4741 v, pshndx);
4742 }
4743
4744 return v;
4745 }
4746
4747 template<int size, bool big_endian>
4748 unsigned char*
4749 Output_segment::write_section_headers_list(const Layout* layout,
4750 const Stringpool* secnamepool,
4751 const Output_data_list* pdl,
4752 unsigned char* v,
4753 unsigned int* pshndx) const
4754 {
4755 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4756 for (Output_data_list::const_iterator p = pdl->begin();
4757 p != pdl->end();
4758 ++p)
4759 {
4760 if ((*p)->is_section())
4761 {
4762 const Output_section* ps = static_cast<const Output_section*>(*p);
4763 gold_assert(*pshndx == ps->out_shndx());
4764 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4765 ps->write_header(layout, secnamepool, &oshdr);
4766 v += shdr_size;
4767 ++*pshndx;
4768 }
4769 }
4770 return v;
4771 }
4772
4773 // Print the output sections to the map file.
4774
4775 void
4776 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4777 {
4778 if (this->type() != elfcpp::PT_LOAD)
4779 return;
4780 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4781 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4782 }
4783
4784 // Print an output section list to the map file.
4785
4786 void
4787 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4788 const Output_data_list* pdl) const
4789 {
4790 for (Output_data_list::const_iterator p = pdl->begin();
4791 p != pdl->end();
4792 ++p)
4793 (*p)->print_to_mapfile(mapfile);
4794 }
4795
4796 // Output_file methods.
4797
4798 Output_file::Output_file(const char* name)
4799 : name_(name),
4800 o_(-1),
4801 file_size_(0),
4802 base_(NULL),
4803 map_is_anonymous_(false),
4804 map_is_allocated_(false),
4805 is_temporary_(false)
4806 {
4807 }
4808
4809 // Try to open an existing file. Returns false if the file doesn't
4810 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4811 // NULL, open that file as the base for incremental linking, and
4812 // copy its contents to the new output file. This routine can
4813 // be called for incremental updates, in which case WRITABLE should
4814 // be true, or by the incremental-dump utility, in which case
4815 // WRITABLE should be false.
4816
4817 bool
4818 Output_file::open_base_file(const char* base_name, bool writable)
4819 {
4820 // The name "-" means "stdout".
4821 if (strcmp(this->name_, "-") == 0)
4822 return false;
4823
4824 bool use_base_file = base_name != NULL;
4825 if (!use_base_file)
4826 base_name = this->name_;
4827 else if (strcmp(base_name, this->name_) == 0)
4828 gold_fatal(_("%s: incremental base and output file name are the same"),
4829 base_name);
4830
4831 // Don't bother opening files with a size of zero.
4832 struct stat s;
4833 if (::stat(base_name, &s) != 0)
4834 {
4835 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4836 return false;
4837 }
4838 if (s.st_size == 0)
4839 {
4840 gold_info(_("%s: incremental base file is empty"), base_name);
4841 return false;
4842 }
4843
4844 // If we're using a base file, we want to open it read-only.
4845 if (use_base_file)
4846 writable = false;
4847
4848 int oflags = writable ? O_RDWR : O_RDONLY;
4849 int o = open_descriptor(-1, base_name, oflags, 0);
4850 if (o < 0)
4851 {
4852 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4853 return false;
4854 }
4855
4856 // If the base file and the output file are different, open a
4857 // new output file and read the contents from the base file into
4858 // the newly-mapped region.
4859 if (use_base_file)
4860 {
4861 this->open(s.st_size);
4862 ssize_t bytes_to_read = s.st_size;
4863 unsigned char* p = this->base_;
4864 while (bytes_to_read > 0)
4865 {
4866 ssize_t len = ::read(o, p, bytes_to_read);
4867 if (len < 0)
4868 {
4869 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4870 return false;
4871 }
4872 if (len == 0)
4873 {
4874 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4875 base_name,
4876 static_cast<long long>(s.st_size - bytes_to_read),
4877 static_cast<long long>(s.st_size));
4878 return false;
4879 }
4880 p += len;
4881 bytes_to_read -= len;
4882 }
4883 ::close(o);
4884 return true;
4885 }
4886
4887 this->o_ = o;
4888 this->file_size_ = s.st_size;
4889
4890 if (!this->map_no_anonymous(writable))
4891 {
4892 release_descriptor(o, true);
4893 this->o_ = -1;
4894 this->file_size_ = 0;
4895 return false;
4896 }
4897
4898 return true;
4899 }
4900
4901 // Open the output file.
4902
4903 void
4904 Output_file::open(off_t file_size)
4905 {
4906 this->file_size_ = file_size;
4907
4908 // Unlink the file first; otherwise the open() may fail if the file
4909 // is busy (e.g. it's an executable that's currently being executed).
4910 //
4911 // However, the linker may be part of a system where a zero-length
4912 // file is created for it to write to, with tight permissions (gcc
4913 // 2.95 did something like this). Unlinking the file would work
4914 // around those permission controls, so we only unlink if the file
4915 // has a non-zero size. We also unlink only regular files to avoid
4916 // trouble with directories/etc.
4917 //
4918 // If we fail, continue; this command is merely a best-effort attempt
4919 // to improve the odds for open().
4920
4921 // We let the name "-" mean "stdout"
4922 if (!this->is_temporary_)
4923 {
4924 if (strcmp(this->name_, "-") == 0)
4925 this->o_ = STDOUT_FILENO;
4926 else
4927 {
4928 struct stat s;
4929 if (::stat(this->name_, &s) == 0
4930 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4931 {
4932 if (s.st_size != 0)
4933 ::unlink(this->name_);
4934 else if (!parameters->options().relocatable())
4935 {
4936 // If we don't unlink the existing file, add execute
4937 // permission where read permissions already exist
4938 // and where the umask permits.
4939 int mask = ::umask(0);
4940 ::umask(mask);
4941 s.st_mode |= (s.st_mode & 0444) >> 2;
4942 ::chmod(this->name_, s.st_mode & ~mask);
4943 }
4944 }
4945
4946 int mode = parameters->options().relocatable() ? 0666 : 0777;
4947 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4948 mode);
4949 if (o < 0)
4950 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4951 this->o_ = o;
4952 }
4953 }
4954
4955 this->map();
4956 }
4957
4958 // Resize the output file.
4959
4960 void
4961 Output_file::resize(off_t file_size)
4962 {
4963 // If the mmap is mapping an anonymous memory buffer, this is easy:
4964 // just mremap to the new size. If it's mapping to a file, we want
4965 // to unmap to flush to the file, then remap after growing the file.
4966 if (this->map_is_anonymous_)
4967 {
4968 void* base;
4969 if (!this->map_is_allocated_)
4970 {
4971 base = ::mremap(this->base_, this->file_size_, file_size,
4972 MREMAP_MAYMOVE);
4973 if (base == MAP_FAILED)
4974 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4975 }
4976 else
4977 {
4978 base = realloc(this->base_, file_size);
4979 if (base == NULL)
4980 gold_nomem();
4981 if (file_size > this->file_size_)
4982 memset(static_cast<char*>(base) + this->file_size_, 0,
4983 file_size - this->file_size_);
4984 }
4985 this->base_ = static_cast<unsigned char*>(base);
4986 this->file_size_ = file_size;
4987 }
4988 else
4989 {
4990 this->unmap();
4991 this->file_size_ = file_size;
4992 if (!this->map_no_anonymous(true))
4993 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4994 }
4995 }
4996
4997 // Map an anonymous block of memory which will later be written to the
4998 // file. Return whether the map succeeded.
4999
5000 bool
5001 Output_file::map_anonymous()
5002 {
5003 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5004 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5005 if (base == MAP_FAILED)
5006 {
5007 base = malloc(this->file_size_);
5008 if (base == NULL)
5009 return false;
5010 memset(base, 0, this->file_size_);
5011 this->map_is_allocated_ = true;
5012 }
5013 this->base_ = static_cast<unsigned char*>(base);
5014 this->map_is_anonymous_ = true;
5015 return true;
5016 }
5017
5018 // Map the file into memory. Return whether the mapping succeeded.
5019 // If WRITABLE is true, map with write access.
5020
5021 bool
5022 Output_file::map_no_anonymous(bool writable)
5023 {
5024 const int o = this->o_;
5025
5026 // If the output file is not a regular file, don't try to mmap it;
5027 // instead, we'll mmap a block of memory (an anonymous buffer), and
5028 // then later write the buffer to the file.
5029 void* base;
5030 struct stat statbuf;
5031 if (o == STDOUT_FILENO || o == STDERR_FILENO
5032 || ::fstat(o, &statbuf) != 0
5033 || !S_ISREG(statbuf.st_mode)
5034 || this->is_temporary_)
5035 return false;
5036
5037 // Ensure that we have disk space available for the file. If we
5038 // don't do this, it is possible that we will call munmap, close,
5039 // and exit with dirty buffers still in the cache with no assigned
5040 // disk blocks. If the disk is out of space at that point, the
5041 // output file will wind up incomplete, but we will have already
5042 // exited. The alternative to fallocate would be to use fdatasync,
5043 // but that would be a more significant performance hit.
5044 if (writable)
5045 {
5046 int err = gold_fallocate(o, 0, this->file_size_);
5047 if (err != 0)
5048 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5049 }
5050
5051 // Map the file into memory.
5052 int prot = PROT_READ;
5053 if (writable)
5054 prot |= PROT_WRITE;
5055 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5056
5057 // The mmap call might fail because of file system issues: the file
5058 // system might not support mmap at all, or it might not support
5059 // mmap with PROT_WRITE.
5060 if (base == MAP_FAILED)
5061 return false;
5062
5063 this->map_is_anonymous_ = false;
5064 this->base_ = static_cast<unsigned char*>(base);
5065 return true;
5066 }
5067
5068 // Map the file into memory.
5069
5070 void
5071 Output_file::map()
5072 {
5073 if (parameters->options().mmap_output_file()
5074 && this->map_no_anonymous(true))
5075 return;
5076
5077 // The mmap call might fail because of file system issues: the file
5078 // system might not support mmap at all, or it might not support
5079 // mmap with PROT_WRITE. I'm not sure which errno values we will
5080 // see in all cases, so if the mmap fails for any reason and we
5081 // don't care about file contents, try for an anonymous map.
5082 if (this->map_anonymous())
5083 return;
5084
5085 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5086 this->name_, static_cast<unsigned long>(this->file_size_),
5087 strerror(errno));
5088 }
5089
5090 // Unmap the file from memory.
5091
5092 void
5093 Output_file::unmap()
5094 {
5095 if (this->map_is_anonymous_)
5096 {
5097 // We've already written out the data, so there is no reason to
5098 // waste time unmapping or freeing the memory.
5099 }
5100 else
5101 {
5102 if (::munmap(this->base_, this->file_size_) < 0)
5103 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5104 }
5105 this->base_ = NULL;
5106 }
5107
5108 // Close the output file.
5109
5110 void
5111 Output_file::close()
5112 {
5113 // If the map isn't file-backed, we need to write it now.
5114 if (this->map_is_anonymous_ && !this->is_temporary_)
5115 {
5116 size_t bytes_to_write = this->file_size_;
5117 size_t offset = 0;
5118 while (bytes_to_write > 0)
5119 {
5120 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5121 bytes_to_write);
5122 if (bytes_written == 0)
5123 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5124 else if (bytes_written < 0)
5125 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5126 else
5127 {
5128 bytes_to_write -= bytes_written;
5129 offset += bytes_written;
5130 }
5131 }
5132 }
5133 this->unmap();
5134
5135 // We don't close stdout or stderr
5136 if (this->o_ != STDOUT_FILENO
5137 && this->o_ != STDERR_FILENO
5138 && !this->is_temporary_)
5139 if (::close(this->o_) < 0)
5140 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5141 this->o_ = -1;
5142 }
5143
5144 // Instantiate the templates we need. We could use the configure
5145 // script to restrict this to only the ones for implemented targets.
5146
5147 #ifdef HAVE_TARGET_32_LITTLE
5148 template
5149 off_t
5150 Output_section::add_input_section<32, false>(
5151 Layout* layout,
5152 Sized_relobj_file<32, false>* object,
5153 unsigned int shndx,
5154 const char* secname,
5155 const elfcpp::Shdr<32, false>& shdr,
5156 unsigned int reloc_shndx,
5157 bool have_sections_script);
5158 #endif
5159
5160 #ifdef HAVE_TARGET_32_BIG
5161 template
5162 off_t
5163 Output_section::add_input_section<32, true>(
5164 Layout* layout,
5165 Sized_relobj_file<32, true>* object,
5166 unsigned int shndx,
5167 const char* secname,
5168 const elfcpp::Shdr<32, true>& shdr,
5169 unsigned int reloc_shndx,
5170 bool have_sections_script);
5171 #endif
5172
5173 #ifdef HAVE_TARGET_64_LITTLE
5174 template
5175 off_t
5176 Output_section::add_input_section<64, false>(
5177 Layout* layout,
5178 Sized_relobj_file<64, false>* object,
5179 unsigned int shndx,
5180 const char* secname,
5181 const elfcpp::Shdr<64, false>& shdr,
5182 unsigned int reloc_shndx,
5183 bool have_sections_script);
5184 #endif
5185
5186 #ifdef HAVE_TARGET_64_BIG
5187 template
5188 off_t
5189 Output_section::add_input_section<64, true>(
5190 Layout* layout,
5191 Sized_relobj_file<64, true>* object,
5192 unsigned int shndx,
5193 const char* secname,
5194 const elfcpp::Shdr<64, true>& shdr,
5195 unsigned int reloc_shndx,
5196 bool have_sections_script);
5197 #endif
5198
5199 #ifdef HAVE_TARGET_32_LITTLE
5200 template
5201 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5202 #endif
5203
5204 #ifdef HAVE_TARGET_32_BIG
5205 template
5206 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5207 #endif
5208
5209 #ifdef HAVE_TARGET_64_LITTLE
5210 template
5211 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5212 #endif
5213
5214 #ifdef HAVE_TARGET_64_BIG
5215 template
5216 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5217 #endif
5218
5219 #ifdef HAVE_TARGET_32_LITTLE
5220 template
5221 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5222 #endif
5223
5224 #ifdef HAVE_TARGET_32_BIG
5225 template
5226 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5227 #endif
5228
5229 #ifdef HAVE_TARGET_64_LITTLE
5230 template
5231 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5232 #endif
5233
5234 #ifdef HAVE_TARGET_64_BIG
5235 template
5236 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5237 #endif
5238
5239 #ifdef HAVE_TARGET_32_LITTLE
5240 template
5241 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5242 #endif
5243
5244 #ifdef HAVE_TARGET_32_BIG
5245 template
5246 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5247 #endif
5248
5249 #ifdef HAVE_TARGET_64_LITTLE
5250 template
5251 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5252 #endif
5253
5254 #ifdef HAVE_TARGET_64_BIG
5255 template
5256 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5257 #endif
5258
5259 #ifdef HAVE_TARGET_32_LITTLE
5260 template
5261 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5262 #endif
5263
5264 #ifdef HAVE_TARGET_32_BIG
5265 template
5266 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5267 #endif
5268
5269 #ifdef HAVE_TARGET_64_LITTLE
5270 template
5271 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5272 #endif
5273
5274 #ifdef HAVE_TARGET_64_BIG
5275 template
5276 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5277 #endif
5278
5279 #ifdef HAVE_TARGET_32_LITTLE
5280 template
5281 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5282 #endif
5283
5284 #ifdef HAVE_TARGET_32_BIG
5285 template
5286 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5287 #endif
5288
5289 #ifdef HAVE_TARGET_64_LITTLE
5290 template
5291 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5292 #endif
5293
5294 #ifdef HAVE_TARGET_64_BIG
5295 template
5296 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5297 #endif
5298
5299 #ifdef HAVE_TARGET_32_LITTLE
5300 template
5301 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5302 #endif
5303
5304 #ifdef HAVE_TARGET_32_BIG
5305 template
5306 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5307 #endif
5308
5309 #ifdef HAVE_TARGET_64_LITTLE
5310 template
5311 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5312 #endif
5313
5314 #ifdef HAVE_TARGET_64_BIG
5315 template
5316 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5317 #endif
5318
5319 #ifdef HAVE_TARGET_32_LITTLE
5320 template
5321 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5322 #endif
5323
5324 #ifdef HAVE_TARGET_32_BIG
5325 template
5326 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5327 #endif
5328
5329 #ifdef HAVE_TARGET_64_LITTLE
5330 template
5331 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5332 #endif
5333
5334 #ifdef HAVE_TARGET_64_BIG
5335 template
5336 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5337 #endif
5338
5339 #ifdef HAVE_TARGET_32_LITTLE
5340 template
5341 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5342 #endif
5343
5344 #ifdef HAVE_TARGET_32_BIG
5345 template
5346 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5347 #endif
5348
5349 #ifdef HAVE_TARGET_64_LITTLE
5350 template
5351 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5352 #endif
5353
5354 #ifdef HAVE_TARGET_64_BIG
5355 template
5356 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5357 #endif
5358
5359 #ifdef HAVE_TARGET_32_LITTLE
5360 template
5361 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5362 #endif
5363
5364 #ifdef HAVE_TARGET_32_BIG
5365 template
5366 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5367 #endif
5368
5369 #ifdef HAVE_TARGET_64_LITTLE
5370 template
5371 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_64_BIG
5375 template
5376 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_32_LITTLE
5380 template
5381 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_32_BIG
5385 template
5386 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_64_LITTLE
5390 template
5391 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_64_BIG
5395 template
5396 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_32_LITTLE
5400 template
5401 class Output_data_group<32, false>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_32_BIG
5405 template
5406 class Output_data_group<32, true>;
5407 #endif
5408
5409 #ifdef HAVE_TARGET_64_LITTLE
5410 template
5411 class Output_data_group<64, false>;
5412 #endif
5413
5414 #ifdef HAVE_TARGET_64_BIG
5415 template
5416 class Output_data_group<64, true>;
5417 #endif
5418
5419 #ifdef HAVE_TARGET_32_LITTLE
5420 template
5421 class Output_data_got<32, false>;
5422 #endif
5423
5424 #ifdef HAVE_TARGET_32_BIG
5425 template
5426 class Output_data_got<32, true>;
5427 #endif
5428
5429 #ifdef HAVE_TARGET_64_LITTLE
5430 template
5431 class Output_data_got<64, false>;
5432 #endif
5433
5434 #ifdef HAVE_TARGET_64_BIG
5435 template
5436 class Output_data_got<64, true>;
5437 #endif
5438
5439 } // End namespace gold.
This page took 0.133246 seconds and 5 git commands to generate.