gold/
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address)
815 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
816 is_relative_(false), is_symbolless_(false),
817 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
818 {
819 // this->type_ is a bitfield; make sure TYPE fits.
820 gold_assert(this->type_ == type);
821 this->u1_.os = os;
822 this->u2_.od = od;
823 if (dynamic)
824 this->set_needs_dynsym_index();
825 else
826 os->set_needs_symtab_index();
827 }
828
829 template<bool dynamic, int size, bool big_endian>
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831 Output_section* os,
832 unsigned int type,
833 Sized_relobj<size, big_endian>* relobj,
834 unsigned int shndx,
835 Address address)
836 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
837 is_relative_(false), is_symbolless_(false),
838 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
839 {
840 gold_assert(shndx != INVALID_CODE);
841 // this->type_ is a bitfield; make sure TYPE fits.
842 gold_assert(this->type_ == type);
843 this->u1_.os = os;
844 this->u2_.relobj = relobj;
845 if (dynamic)
846 this->set_needs_dynsym_index();
847 else
848 os->set_needs_symtab_index();
849 }
850
851 // An absolute relocation.
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Output_data* od,
857 Address address)
858 : address_(address), local_sym_index_(0), type_(type),
859 is_relative_(false), is_symbolless_(false),
860 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
861 {
862 // this->type_ is a bitfield; make sure TYPE fits.
863 gold_assert(this->type_ == type);
864 this->u1_.relobj = NULL;
865 this->u2_.od = od;
866 }
867
868 template<bool dynamic, int size, bool big_endian>
869 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870 unsigned int type,
871 Sized_relobj<size, big_endian>* relobj,
872 unsigned int shndx,
873 Address address)
874 : address_(address), local_sym_index_(0), type_(type),
875 is_relative_(false), is_symbolless_(false),
876 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
877 {
878 gold_assert(shndx != INVALID_CODE);
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_ == type);
881 this->u1_.relobj = NULL;
882 this->u2_.relobj = relobj;
883 }
884
885 // A target specific relocation.
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889 unsigned int type,
890 void* arg,
891 Output_data* od,
892 Address address)
893 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894 is_relative_(false), is_symbolless_(false),
895 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
896 {
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_ == type);
899 this->u1_.arg = arg;
900 this->u2_.od = od;
901 }
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Sized_relobj<size, big_endian>* relobj,
908 unsigned int shndx,
909 Address address)
910 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
911 is_relative_(false), is_symbolless_(false),
912 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
913 {
914 gold_assert(shndx != INVALID_CODE);
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_ == type);
917 this->u1_.arg = arg;
918 this->u2_.relobj = relobj;
919 }
920
921 // Record that we need a dynamic symbol index for this relocation.
922
923 template<bool dynamic, int size, bool big_endian>
924 void
925 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926 set_needs_dynsym_index()
927 {
928 if (this->is_symbolless_)
929 return;
930 switch (this->local_sym_index_)
931 {
932 case INVALID_CODE:
933 gold_unreachable();
934
935 case GSYM_CODE:
936 this->u1_.gsym->set_needs_dynsym_entry();
937 break;
938
939 case SECTION_CODE:
940 this->u1_.os->set_needs_dynsym_index();
941 break;
942
943 case TARGET_CODE:
944 // The target must take care of this if necessary.
945 break;
946
947 case 0:
948 break;
949
950 default:
951 {
952 const unsigned int lsi = this->local_sym_index_;
953 Sized_relobj_file<size, big_endian>* relobj =
954 this->u1_.relobj->sized_relobj();
955 gold_assert(relobj != NULL);
956 if (!this->is_section_symbol_)
957 relobj->set_needs_output_dynsym_entry(lsi);
958 else
959 relobj->output_section(lsi)->set_needs_dynsym_index();
960 }
961 break;
962 }
963 }
964
965 // Get the symbol index of a relocation.
966
967 template<bool dynamic, int size, bool big_endian>
968 unsigned int
969 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970 const
971 {
972 unsigned int index;
973 if (this->is_symbolless_)
974 return 0;
975 switch (this->local_sym_index_)
976 {
977 case INVALID_CODE:
978 gold_unreachable();
979
980 case GSYM_CODE:
981 if (this->u1_.gsym == NULL)
982 index = 0;
983 else if (dynamic)
984 index = this->u1_.gsym->dynsym_index();
985 else
986 index = this->u1_.gsym->symtab_index();
987 break;
988
989 case SECTION_CODE:
990 if (dynamic)
991 index = this->u1_.os->dynsym_index();
992 else
993 index = this->u1_.os->symtab_index();
994 break;
995
996 case TARGET_CODE:
997 index = parameters->target().reloc_symbol_index(this->u1_.arg,
998 this->type_);
999 break;
1000
1001 case 0:
1002 // Relocations without symbols use a symbol index of 0.
1003 index = 0;
1004 break;
1005
1006 default:
1007 {
1008 const unsigned int lsi = this->local_sym_index_;
1009 Sized_relobj_file<size, big_endian>* relobj =
1010 this->u1_.relobj->sized_relobj();
1011 gold_assert(relobj != NULL);
1012 if (!this->is_section_symbol_)
1013 {
1014 if (dynamic)
1015 index = relobj->dynsym_index(lsi);
1016 else
1017 index = relobj->symtab_index(lsi);
1018 }
1019 else
1020 {
1021 Output_section* os = relobj->output_section(lsi);
1022 gold_assert(os != NULL);
1023 if (dynamic)
1024 index = os->dynsym_index();
1025 else
1026 index = os->symtab_index();
1027 }
1028 }
1029 break;
1030 }
1031 gold_assert(index != -1U);
1032 return index;
1033 }
1034
1035 // For a local section symbol, get the address of the offset ADDEND
1036 // within the input section.
1037
1038 template<bool dynamic, int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1041 local_section_offset(Addend addend) const
1042 {
1043 gold_assert(this->local_sym_index_ != GSYM_CODE
1044 && this->local_sym_index_ != SECTION_CODE
1045 && this->local_sym_index_ != TARGET_CODE
1046 && this->local_sym_index_ != INVALID_CODE
1047 && this->local_sym_index_ != 0
1048 && this->is_section_symbol_);
1049 const unsigned int lsi = this->local_sym_index_;
1050 Output_section* os = this->u1_.relobj->output_section(lsi);
1051 gold_assert(os != NULL);
1052 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1053 if (offset != invalid_address)
1054 return offset + addend;
1055 // This is a merge section.
1056 Sized_relobj_file<size, big_endian>* relobj =
1057 this->u1_.relobj->sized_relobj();
1058 gold_assert(relobj != NULL);
1059 offset = os->output_address(relobj, lsi, addend);
1060 gold_assert(offset != invalid_address);
1061 return offset;
1062 }
1063
1064 // Get the output address of a relocation.
1065
1066 template<bool dynamic, int size, bool big_endian>
1067 typename elfcpp::Elf_types<size>::Elf_Addr
1068 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1069 {
1070 Address address = this->address_;
1071 if (this->shndx_ != INVALID_CODE)
1072 {
1073 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1074 gold_assert(os != NULL);
1075 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1076 if (off != invalid_address)
1077 address += os->address() + off;
1078 else
1079 {
1080 Sized_relobj_file<size, big_endian>* relobj =
1081 this->u2_.relobj->sized_relobj();
1082 gold_assert(relobj != NULL);
1083 address = os->output_address(relobj, this->shndx_, address);
1084 gold_assert(address != invalid_address);
1085 }
1086 }
1087 else if (this->u2_.od != NULL)
1088 address += this->u2_.od->address();
1089 return address;
1090 }
1091
1092 // Write out the offset and info fields of a Rel or Rela relocation
1093 // entry.
1094
1095 template<bool dynamic, int size, bool big_endian>
1096 template<typename Write_rel>
1097 void
1098 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099 Write_rel* wr) const
1100 {
1101 wr->put_r_offset(this->get_address());
1102 unsigned int sym_index = this->get_symbol_index();
1103 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1104 }
1105
1106 // Write out a Rel relocation.
1107
1108 template<bool dynamic, int size, bool big_endian>
1109 void
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111 unsigned char* pov) const
1112 {
1113 elfcpp::Rel_write<size, big_endian> orel(pov);
1114 this->write_rel(&orel);
1115 }
1116
1117 // Get the value of the symbol referred to by a Rel relocation.
1118
1119 template<bool dynamic, int size, bool big_endian>
1120 typename elfcpp::Elf_types<size>::Elf_Addr
1121 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1122 Addend addend) const
1123 {
1124 if (this->local_sym_index_ == GSYM_CODE)
1125 {
1126 const Sized_symbol<size>* sym;
1127 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1128 if (this->use_plt_offset_ && sym->has_plt_offset())
1129 {
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_global(sym);
1132 return plt_address + sym->plt_offset();
1133 }
1134 else
1135 return sym->value() + addend;
1136 }
1137 gold_assert(this->local_sym_index_ != SECTION_CODE
1138 && this->local_sym_index_ != TARGET_CODE
1139 && this->local_sym_index_ != INVALID_CODE
1140 && this->local_sym_index_ != 0
1141 && !this->is_section_symbol_);
1142 const unsigned int lsi = this->local_sym_index_;
1143 Sized_relobj_file<size, big_endian>* relobj =
1144 this->u1_.relobj->sized_relobj();
1145 gold_assert(relobj != NULL);
1146 if (this->use_plt_offset_)
1147 {
1148 uint64_t plt_address =
1149 parameters->target().plt_address_for_local(relobj, lsi);
1150 return plt_address + relobj->local_plt_offset(lsi);
1151 }
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int size, bool big_endian>
1365 void
1366 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1367 {
1368 Valtype val = 0;
1369
1370 switch (this->local_sym_index_)
1371 {
1372 case GSYM_CODE:
1373 {
1374 // If the symbol is resolved locally, we need to write out the
1375 // link-time value, which will be relocated dynamically by a
1376 // RELATIVE relocation.
1377 Symbol* gsym = this->u_.gsym;
1378 if (this->use_plt_offset_ && gsym->has_plt_offset())
1379 val = (parameters->target().plt_address_for_global(gsym)
1380 + gsym->plt_offset());
1381 else
1382 {
1383 Sized_symbol<size>* sgsym;
1384 // This cast is a bit ugly. We don't want to put a
1385 // virtual method in Symbol, because we want Symbol to be
1386 // as small as possible.
1387 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388 val = sgsym->value();
1389 }
1390 }
1391 break;
1392
1393 case CONSTANT_CODE:
1394 val = this->u_.constant;
1395 break;
1396
1397 case RESERVED_CODE:
1398 // If we're doing an incremental update, don't touch this GOT entry.
1399 if (parameters->incremental_update())
1400 return;
1401 val = this->u_.constant;
1402 break;
1403
1404 default:
1405 {
1406 const Relobj* object = this->u_.object;
1407 const unsigned int lsi = this->local_sym_index_;
1408 if (!this->use_plt_offset_)
1409 {
1410 uint64_t lval = object->local_symbol_value(lsi, 0);
1411 val = convert_types<Valtype, uint64_t>(lval);
1412 }
1413 else
1414 {
1415 uint64_t plt_address =
1416 parameters->target().plt_address_for_local(object, lsi);
1417 val = plt_address + object->local_plt_offset(lsi);
1418 }
1419 }
1420 break;
1421 }
1422
1423 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1424 }
1425
1426 // Output_data_got methods.
1427
1428 // Add an entry for a global symbol to the GOT. This returns true if
1429 // this is a new GOT entry, false if the symbol already had a GOT
1430 // entry.
1431
1432 template<int size, bool big_endian>
1433 bool
1434 Output_data_got<size, big_endian>::add_global(
1435 Symbol* gsym,
1436 unsigned int got_type)
1437 {
1438 if (gsym->has_got_offset(got_type))
1439 return false;
1440
1441 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442 gsym->set_got_offset(got_type, got_offset);
1443 return true;
1444 }
1445
1446 // Like add_global, but use the PLT offset.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451 unsigned int got_type)
1452 {
1453 if (gsym->has_got_offset(got_type))
1454 return false;
1455
1456 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457 gsym->set_got_offset(got_type, got_offset);
1458 return true;
1459 }
1460
1461 // Add an entry for a global symbol to the GOT, and add a dynamic
1462 // relocation of type R_TYPE for the GOT entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_got<size, big_endian>::add_global_with_rel(
1467 Symbol* gsym,
1468 unsigned int got_type,
1469 Output_data_reloc_generic* rel_dyn,
1470 unsigned int r_type)
1471 {
1472 if (gsym->has_got_offset(got_type))
1473 return;
1474
1475 unsigned int got_offset = this->add_got_entry(Got_entry());
1476 gsym->set_got_offset(got_type, got_offset);
1477 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1478 }
1479
1480 // Add a pair of entries for a global symbol to the GOT, and add
1481 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482 // If R_TYPE_2 == 0, add the second entry with no relocation.
1483 template<int size, bool big_endian>
1484 void
1485 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486 Symbol* gsym,
1487 unsigned int got_type,
1488 Output_data_reloc_generic* rel_dyn,
1489 unsigned int r_type_1,
1490 unsigned int r_type_2)
1491 {
1492 if (gsym->has_got_offset(got_type))
1493 return;
1494
1495 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1496 gsym->set_got_offset(got_type, got_offset);
1497 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1498
1499 if (r_type_2 != 0)
1500 rel_dyn->add_global_generic(gsym, r_type_2, this,
1501 got_offset + size / 8, 0);
1502 }
1503
1504 // Add an entry for a local symbol to the GOT. This returns true if
1505 // this is a new GOT entry, false if the symbol already has a GOT
1506 // entry.
1507
1508 template<int size, bool big_endian>
1509 bool
1510 Output_data_got<size, big_endian>::add_local(
1511 Relobj* object,
1512 unsigned int symndx,
1513 unsigned int got_type)
1514 {
1515 if (object->local_has_got_offset(symndx, got_type))
1516 return false;
1517
1518 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519 false));
1520 object->set_local_got_offset(symndx, got_type, got_offset);
1521 return true;
1522 }
1523
1524 // Like add_local, but use the PLT offset.
1525
1526 template<int size, bool big_endian>
1527 bool
1528 Output_data_got<size, big_endian>::add_local_plt(
1529 Relobj* object,
1530 unsigned int symndx,
1531 unsigned int got_type)
1532 {
1533 if (object->local_has_got_offset(symndx, got_type))
1534 return false;
1535
1536 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537 true));
1538 object->set_local_got_offset(symndx, got_type, got_offset);
1539 return true;
1540 }
1541
1542 // Add an entry for a local symbol to the GOT, and add a dynamic
1543 // relocation of type R_TYPE for the GOT entry.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Output_data_got<size, big_endian>::add_local_with_rel(
1548 Relobj* object,
1549 unsigned int symndx,
1550 unsigned int got_type,
1551 Output_data_reloc_generic* rel_dyn,
1552 unsigned int r_type)
1553 {
1554 if (object->local_has_got_offset(symndx, got_type))
1555 return;
1556
1557 unsigned int got_offset = this->add_got_entry(Got_entry());
1558 object->set_local_got_offset(symndx, got_type, got_offset);
1559 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1560 }
1561
1562 // Add a pair of entries for a local symbol to the GOT, and add
1563 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564 // If R_TYPE_2 == 0, add the second entry with no relocation.
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1568 Relobj* object,
1569 unsigned int symndx,
1570 unsigned int shndx,
1571 unsigned int got_type,
1572 Output_data_reloc_generic* rel_dyn,
1573 unsigned int r_type_1,
1574 unsigned int r_type_2)
1575 {
1576 if (object->local_has_got_offset(symndx, got_type))
1577 return;
1578
1579 unsigned int got_offset =
1580 this->add_got_entry_pair(Got_entry(),
1581 Got_entry(object, symndx, false));
1582 object->set_local_got_offset(symndx, got_type, got_offset);
1583 Output_section* os = object->output_section(shndx);
1584 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1585
1586 if (r_type_2 != 0)
1587 rel_dyn->add_output_section_generic(os, r_type_2, this,
1588 got_offset + size / 8, 0);
1589 }
1590
1591 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593 template<int size, bool big_endian>
1594 void
1595 Output_data_got<size, big_endian>::reserve_local(
1596 unsigned int i,
1597 Relobj* object,
1598 unsigned int sym_index,
1599 unsigned int got_type)
1600 {
1601 this->do_reserve_slot(i);
1602 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1603 }
1604
1605 // Reserve a slot in the GOT for a global symbol.
1606
1607 template<int size, bool big_endian>
1608 void
1609 Output_data_got<size, big_endian>::reserve_global(
1610 unsigned int i,
1611 Symbol* gsym,
1612 unsigned int got_type)
1613 {
1614 this->do_reserve_slot(i);
1615 gsym->set_got_offset(got_type, this->got_offset(i));
1616 }
1617
1618 // Write out the GOT.
1619
1620 template<int size, bool big_endian>
1621 void
1622 Output_data_got<size, big_endian>::do_write(Output_file* of)
1623 {
1624 const int add = size / 8;
1625
1626 const off_t off = this->offset();
1627 const off_t oview_size = this->data_size();
1628 unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630 unsigned char* pov = oview;
1631 for (typename Got_entries::const_iterator p = this->entries_.begin();
1632 p != this->entries_.end();
1633 ++p)
1634 {
1635 p->write(pov);
1636 pov += add;
1637 }
1638
1639 gold_assert(pov - oview == oview_size);
1640
1641 of->write_output_view(off, oview_size, oview);
1642
1643 // We no longer need the GOT entries.
1644 this->entries_.clear();
1645 }
1646
1647 // Create a new GOT entry and return its offset.
1648
1649 template<int size, bool big_endian>
1650 unsigned int
1651 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652 {
1653 if (!this->is_data_size_valid())
1654 {
1655 this->entries_.push_back(got_entry);
1656 this->set_got_size();
1657 return this->last_got_offset();
1658 }
1659 else
1660 {
1661 // For an incremental update, find an available slot.
1662 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663 if (got_offset == -1)
1664 gold_fallback(_("out of patch space (GOT);"
1665 " relink with --incremental-full"));
1666 unsigned int got_index = got_offset / (size / 8);
1667 gold_assert(got_index < this->entries_.size());
1668 this->entries_[got_index] = got_entry;
1669 return static_cast<unsigned int>(got_offset);
1670 }
1671 }
1672
1673 // Create a pair of new GOT entries and return the offset of the first.
1674
1675 template<int size, bool big_endian>
1676 unsigned int
1677 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678 Got_entry got_entry_2)
1679 {
1680 if (!this->is_data_size_valid())
1681 {
1682 unsigned int got_offset;
1683 this->entries_.push_back(got_entry_1);
1684 got_offset = this->last_got_offset();
1685 this->entries_.push_back(got_entry_2);
1686 this->set_got_size();
1687 return got_offset;
1688 }
1689 else
1690 {
1691 // For an incremental update, find an available pair of slots.
1692 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693 if (got_offset == -1)
1694 gold_fallback(_("out of patch space (GOT);"
1695 " relink with --incremental-full"));
1696 unsigned int got_index = got_offset / (size / 8);
1697 gold_assert(got_index < this->entries_.size());
1698 this->entries_[got_index] = got_entry_1;
1699 this->entries_[got_index + 1] = got_entry_2;
1700 return static_cast<unsigned int>(got_offset);
1701 }
1702 }
1703
1704 // Output_data_dynamic::Dynamic_entry methods.
1705
1706 // Write out the entry.
1707
1708 template<int size, bool big_endian>
1709 void
1710 Output_data_dynamic::Dynamic_entry::write(
1711 unsigned char* pov,
1712 const Stringpool* pool) const
1713 {
1714 typename elfcpp::Elf_types<size>::Elf_WXword val;
1715 switch (this->offset_)
1716 {
1717 case DYNAMIC_NUMBER:
1718 val = this->u_.val;
1719 break;
1720
1721 case DYNAMIC_SECTION_SIZE:
1722 val = this->u_.od->data_size();
1723 if (this->od2 != NULL)
1724 val += this->od2->data_size();
1725 break;
1726
1727 case DYNAMIC_SYMBOL:
1728 {
1729 const Sized_symbol<size>* s =
1730 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1731 val = s->value();
1732 }
1733 break;
1734
1735 case DYNAMIC_STRING:
1736 val = pool->get_offset(this->u_.str);
1737 break;
1738
1739 default:
1740 val = this->u_.od->address() + this->offset_;
1741 break;
1742 }
1743
1744 elfcpp::Dyn_write<size, big_endian> dw(pov);
1745 dw.put_d_tag(this->tag_);
1746 dw.put_d_val(val);
1747 }
1748
1749 // Output_data_dynamic methods.
1750
1751 // Adjust the output section to set the entry size.
1752
1753 void
1754 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1755 {
1756 if (parameters->target().get_size() == 32)
1757 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1758 else if (parameters->target().get_size() == 64)
1759 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1760 else
1761 gold_unreachable();
1762 }
1763
1764 // Set the final data size.
1765
1766 void
1767 Output_data_dynamic::set_final_data_size()
1768 {
1769 // Add the terminating entry if it hasn't been added.
1770 // Because of relaxation, we can run this multiple times.
1771 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1772 {
1773 int extra = parameters->options().spare_dynamic_tags();
1774 for (int i = 0; i < extra; ++i)
1775 this->add_constant(elfcpp::DT_NULL, 0);
1776 this->add_constant(elfcpp::DT_NULL, 0);
1777 }
1778
1779 int dyn_size;
1780 if (parameters->target().get_size() == 32)
1781 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1782 else if (parameters->target().get_size() == 64)
1783 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1784 else
1785 gold_unreachable();
1786 this->set_data_size(this->entries_.size() * dyn_size);
1787 }
1788
1789 // Write out the dynamic entries.
1790
1791 void
1792 Output_data_dynamic::do_write(Output_file* of)
1793 {
1794 switch (parameters->size_and_endianness())
1795 {
1796 #ifdef HAVE_TARGET_32_LITTLE
1797 case Parameters::TARGET_32_LITTLE:
1798 this->sized_write<32, false>(of);
1799 break;
1800 #endif
1801 #ifdef HAVE_TARGET_32_BIG
1802 case Parameters::TARGET_32_BIG:
1803 this->sized_write<32, true>(of);
1804 break;
1805 #endif
1806 #ifdef HAVE_TARGET_64_LITTLE
1807 case Parameters::TARGET_64_LITTLE:
1808 this->sized_write<64, false>(of);
1809 break;
1810 #endif
1811 #ifdef HAVE_TARGET_64_BIG
1812 case Parameters::TARGET_64_BIG:
1813 this->sized_write<64, true>(of);
1814 break;
1815 #endif
1816 default:
1817 gold_unreachable();
1818 }
1819 }
1820
1821 template<int size, bool big_endian>
1822 void
1823 Output_data_dynamic::sized_write(Output_file* of)
1824 {
1825 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1826
1827 const off_t offset = this->offset();
1828 const off_t oview_size = this->data_size();
1829 unsigned char* const oview = of->get_output_view(offset, oview_size);
1830
1831 unsigned char* pov = oview;
1832 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1833 p != this->entries_.end();
1834 ++p)
1835 {
1836 p->write<size, big_endian>(pov, this->pool_);
1837 pov += dyn_size;
1838 }
1839
1840 gold_assert(pov - oview == oview_size);
1841
1842 of->write_output_view(offset, oview_size, oview);
1843
1844 // We no longer need the dynamic entries.
1845 this->entries_.clear();
1846 }
1847
1848 // Class Output_symtab_xindex.
1849
1850 void
1851 Output_symtab_xindex::do_write(Output_file* of)
1852 {
1853 const off_t offset = this->offset();
1854 const off_t oview_size = this->data_size();
1855 unsigned char* const oview = of->get_output_view(offset, oview_size);
1856
1857 memset(oview, 0, oview_size);
1858
1859 if (parameters->target().is_big_endian())
1860 this->endian_do_write<true>(oview);
1861 else
1862 this->endian_do_write<false>(oview);
1863
1864 of->write_output_view(offset, oview_size, oview);
1865
1866 // We no longer need the data.
1867 this->entries_.clear();
1868 }
1869
1870 template<bool big_endian>
1871 void
1872 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1873 {
1874 for (Xindex_entries::const_iterator p = this->entries_.begin();
1875 p != this->entries_.end();
1876 ++p)
1877 {
1878 unsigned int symndx = p->first;
1879 gold_assert(symndx * 4 < this->data_size());
1880 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1881 }
1882 }
1883
1884 // Output_fill_debug_info methods.
1885
1886 // Return the minimum size needed for a dummy compilation unit header.
1887
1888 size_t
1889 Output_fill_debug_info::do_minimum_hole_size() const
1890 {
1891 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1892 // address_size.
1893 const size_t len = 4 + 2 + 4 + 1;
1894 // For type units, add type_signature, type_offset.
1895 if (this->is_debug_types_)
1896 return len + 8 + 4;
1897 return len;
1898 }
1899
1900 // Write a dummy compilation unit header to fill a hole in the
1901 // .debug_info or .debug_types section.
1902
1903 void
1904 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1905 {
1906 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1907 static_cast<long>(off), static_cast<long>(len));
1908
1909 gold_assert(len >= this->do_minimum_hole_size());
1910
1911 unsigned char* const oview = of->get_output_view(off, len);
1912 unsigned char* pov = oview;
1913
1914 // Write header fields: unit_length, version, debug_abbrev_offset,
1915 // address_size.
1916 if (this->is_big_endian())
1917 {
1918 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1919 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1920 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1921 }
1922 else
1923 {
1924 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1925 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1926 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1927 }
1928 pov += 4 + 2 + 4;
1929 *pov++ = 4;
1930
1931 // For type units, the additional header fields -- type_signature,
1932 // type_offset -- can be filled with zeroes.
1933
1934 // Fill the remainder of the free space with zeroes. The first
1935 // zero should tell the consumer there are no DIEs to read in this
1936 // compilation unit.
1937 if (pov < oview + len)
1938 memset(pov, 0, oview + len - pov);
1939
1940 of->write_output_view(off, len, oview);
1941 }
1942
1943 // Output_fill_debug_line methods.
1944
1945 // Return the minimum size needed for a dummy line number program header.
1946
1947 size_t
1948 Output_fill_debug_line::do_minimum_hole_size() const
1949 {
1950 // Line number program header fields: unit_length, version, header_length,
1951 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1952 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1953 const size_t len = 4 + 2 + 4 + this->header_length;
1954 return len;
1955 }
1956
1957 // Write a dummy line number program header to fill a hole in the
1958 // .debug_line section.
1959
1960 void
1961 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1962 {
1963 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1964 static_cast<long>(off), static_cast<long>(len));
1965
1966 gold_assert(len >= this->do_minimum_hole_size());
1967
1968 unsigned char* const oview = of->get_output_view(off, len);
1969 unsigned char* pov = oview;
1970
1971 // Write header fields: unit_length, version, header_length,
1972 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1973 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1974 // We set the header_length field to cover the entire hole, so the
1975 // line number program is empty.
1976 if (this->is_big_endian())
1977 {
1978 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1979 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1980 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1981 }
1982 else
1983 {
1984 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1985 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1986 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1987 }
1988 pov += 4 + 2 + 4;
1989 *pov++ = 1; // minimum_instruction_length
1990 *pov++ = 0; // default_is_stmt
1991 *pov++ = 0; // line_base
1992 *pov++ = 5; // line_range
1993 *pov++ = 13; // opcode_base
1994 *pov++ = 0; // standard_opcode_lengths[1]
1995 *pov++ = 1; // standard_opcode_lengths[2]
1996 *pov++ = 1; // standard_opcode_lengths[3]
1997 *pov++ = 1; // standard_opcode_lengths[4]
1998 *pov++ = 1; // standard_opcode_lengths[5]
1999 *pov++ = 0; // standard_opcode_lengths[6]
2000 *pov++ = 0; // standard_opcode_lengths[7]
2001 *pov++ = 0; // standard_opcode_lengths[8]
2002 *pov++ = 1; // standard_opcode_lengths[9]
2003 *pov++ = 0; // standard_opcode_lengths[10]
2004 *pov++ = 0; // standard_opcode_lengths[11]
2005 *pov++ = 1; // standard_opcode_lengths[12]
2006 *pov++ = 0; // include_directories (empty)
2007 *pov++ = 0; // filenames (empty)
2008
2009 // Some consumers don't check the header_length field, and simply
2010 // start reading the line number program immediately following the
2011 // header. For those consumers, we fill the remainder of the free
2012 // space with DW_LNS_set_basic_block opcodes. These are effectively
2013 // no-ops: the resulting line table program will not create any rows.
2014 if (pov < oview + len)
2015 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2016
2017 of->write_output_view(off, len, oview);
2018 }
2019
2020 // Output_section::Input_section methods.
2021
2022 // Return the current data size. For an input section we store the size here.
2023 // For an Output_section_data, we have to ask it for the size.
2024
2025 off_t
2026 Output_section::Input_section::current_data_size() const
2027 {
2028 if (this->is_input_section())
2029 return this->u1_.data_size;
2030 else
2031 {
2032 this->u2_.posd->pre_finalize_data_size();
2033 return this->u2_.posd->current_data_size();
2034 }
2035 }
2036
2037 // Return the data size. For an input section we store the size here.
2038 // For an Output_section_data, we have to ask it for the size.
2039
2040 off_t
2041 Output_section::Input_section::data_size() const
2042 {
2043 if (this->is_input_section())
2044 return this->u1_.data_size;
2045 else
2046 return this->u2_.posd->data_size();
2047 }
2048
2049 // Return the object for an input section.
2050
2051 Relobj*
2052 Output_section::Input_section::relobj() const
2053 {
2054 if (this->is_input_section())
2055 return this->u2_.object;
2056 else if (this->is_merge_section())
2057 {
2058 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2059 return this->u2_.pomb->first_relobj();
2060 }
2061 else if (this->is_relaxed_input_section())
2062 return this->u2_.poris->relobj();
2063 else
2064 gold_unreachable();
2065 }
2066
2067 // Return the input section index for an input section.
2068
2069 unsigned int
2070 Output_section::Input_section::shndx() const
2071 {
2072 if (this->is_input_section())
2073 return this->shndx_;
2074 else if (this->is_merge_section())
2075 {
2076 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2077 return this->u2_.pomb->first_shndx();
2078 }
2079 else if (this->is_relaxed_input_section())
2080 return this->u2_.poris->shndx();
2081 else
2082 gold_unreachable();
2083 }
2084
2085 // Set the address and file offset.
2086
2087 void
2088 Output_section::Input_section::set_address_and_file_offset(
2089 uint64_t address,
2090 off_t file_offset,
2091 off_t section_file_offset)
2092 {
2093 if (this->is_input_section())
2094 this->u2_.object->set_section_offset(this->shndx_,
2095 file_offset - section_file_offset);
2096 else
2097 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2098 }
2099
2100 // Reset the address and file offset.
2101
2102 void
2103 Output_section::Input_section::reset_address_and_file_offset()
2104 {
2105 if (!this->is_input_section())
2106 this->u2_.posd->reset_address_and_file_offset();
2107 }
2108
2109 // Finalize the data size.
2110
2111 void
2112 Output_section::Input_section::finalize_data_size()
2113 {
2114 if (!this->is_input_section())
2115 this->u2_.posd->finalize_data_size();
2116 }
2117
2118 // Try to turn an input offset into an output offset. We want to
2119 // return the output offset relative to the start of this
2120 // Input_section in the output section.
2121
2122 inline bool
2123 Output_section::Input_section::output_offset(
2124 const Relobj* object,
2125 unsigned int shndx,
2126 section_offset_type offset,
2127 section_offset_type* poutput) const
2128 {
2129 if (!this->is_input_section())
2130 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2131 else
2132 {
2133 if (this->shndx_ != shndx || this->u2_.object != object)
2134 return false;
2135 *poutput = offset;
2136 return true;
2137 }
2138 }
2139
2140 // Return whether this is the merge section for the input section
2141 // SHNDX in OBJECT.
2142
2143 inline bool
2144 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2145 unsigned int shndx) const
2146 {
2147 if (this->is_input_section())
2148 return false;
2149 return this->u2_.posd->is_merge_section_for(object, shndx);
2150 }
2151
2152 // Write out the data. We don't have to do anything for an input
2153 // section--they are handled via Object::relocate--but this is where
2154 // we write out the data for an Output_section_data.
2155
2156 void
2157 Output_section::Input_section::write(Output_file* of)
2158 {
2159 if (!this->is_input_section())
2160 this->u2_.posd->write(of);
2161 }
2162
2163 // Write the data to a buffer. As for write(), we don't have to do
2164 // anything for an input section.
2165
2166 void
2167 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2168 {
2169 if (!this->is_input_section())
2170 this->u2_.posd->write_to_buffer(buffer);
2171 }
2172
2173 // Print to a map file.
2174
2175 void
2176 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2177 {
2178 switch (this->shndx_)
2179 {
2180 case OUTPUT_SECTION_CODE:
2181 case MERGE_DATA_SECTION_CODE:
2182 case MERGE_STRING_SECTION_CODE:
2183 this->u2_.posd->print_to_mapfile(mapfile);
2184 break;
2185
2186 case RELAXED_INPUT_SECTION_CODE:
2187 {
2188 Output_relaxed_input_section* relaxed_section =
2189 this->relaxed_input_section();
2190 mapfile->print_input_section(relaxed_section->relobj(),
2191 relaxed_section->shndx());
2192 }
2193 break;
2194 default:
2195 mapfile->print_input_section(this->u2_.object, this->shndx_);
2196 break;
2197 }
2198 }
2199
2200 // Output_section methods.
2201
2202 // Construct an Output_section. NAME will point into a Stringpool.
2203
2204 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2205 elfcpp::Elf_Xword flags)
2206 : name_(name),
2207 addralign_(0),
2208 entsize_(0),
2209 load_address_(0),
2210 link_section_(NULL),
2211 link_(0),
2212 info_section_(NULL),
2213 info_symndx_(NULL),
2214 info_(0),
2215 type_(type),
2216 flags_(flags),
2217 order_(ORDER_INVALID),
2218 out_shndx_(-1U),
2219 symtab_index_(0),
2220 dynsym_index_(0),
2221 input_sections_(),
2222 first_input_offset_(0),
2223 fills_(),
2224 postprocessing_buffer_(NULL),
2225 needs_symtab_index_(false),
2226 needs_dynsym_index_(false),
2227 should_link_to_symtab_(false),
2228 should_link_to_dynsym_(false),
2229 after_input_sections_(false),
2230 requires_postprocessing_(false),
2231 found_in_sections_clause_(false),
2232 has_load_address_(false),
2233 info_uses_section_index_(false),
2234 input_section_order_specified_(false),
2235 may_sort_attached_input_sections_(false),
2236 must_sort_attached_input_sections_(false),
2237 attached_input_sections_are_sorted_(false),
2238 is_relro_(false),
2239 is_small_section_(false),
2240 is_large_section_(false),
2241 generate_code_fills_at_write_(false),
2242 is_entsize_zero_(false),
2243 section_offsets_need_adjustment_(false),
2244 is_noload_(false),
2245 always_keeps_input_sections_(false),
2246 has_fixed_layout_(false),
2247 is_patch_space_allowed_(false),
2248 tls_offset_(0),
2249 checkpoint_(NULL),
2250 lookup_maps_(new Output_section_lookup_maps),
2251 free_list_(),
2252 free_space_fill_(NULL),
2253 patch_space_(0)
2254 {
2255 // An unallocated section has no address. Forcing this means that
2256 // we don't need special treatment for symbols defined in debug
2257 // sections.
2258 if ((flags & elfcpp::SHF_ALLOC) == 0)
2259 this->set_address(0);
2260 }
2261
2262 Output_section::~Output_section()
2263 {
2264 delete this->checkpoint_;
2265 }
2266
2267 // Set the entry size.
2268
2269 void
2270 Output_section::set_entsize(uint64_t v)
2271 {
2272 if (this->is_entsize_zero_)
2273 ;
2274 else if (this->entsize_ == 0)
2275 this->entsize_ = v;
2276 else if (this->entsize_ != v)
2277 {
2278 this->entsize_ = 0;
2279 this->is_entsize_zero_ = 1;
2280 }
2281 }
2282
2283 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2284 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2285 // relocation section which applies to this section, or 0 if none, or
2286 // -1U if more than one. Return the offset of the input section
2287 // within the output section. Return -1 if the input section will
2288 // receive special handling. In the normal case we don't always keep
2289 // track of input sections for an Output_section. Instead, each
2290 // Object keeps track of the Output_section for each of its input
2291 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2292 // track of input sections here; this is used when SECTIONS appears in
2293 // a linker script.
2294
2295 template<int size, bool big_endian>
2296 off_t
2297 Output_section::add_input_section(Layout* layout,
2298 Sized_relobj_file<size, big_endian>* object,
2299 unsigned int shndx,
2300 const char* secname,
2301 const elfcpp::Shdr<size, big_endian>& shdr,
2302 unsigned int reloc_shndx,
2303 bool have_sections_script)
2304 {
2305 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2306 if ((addralign & (addralign - 1)) != 0)
2307 {
2308 object->error(_("invalid alignment %lu for section \"%s\""),
2309 static_cast<unsigned long>(addralign), secname);
2310 addralign = 1;
2311 }
2312
2313 if (addralign > this->addralign_)
2314 this->addralign_ = addralign;
2315
2316 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2317 uint64_t entsize = shdr.get_sh_entsize();
2318
2319 // .debug_str is a mergeable string section, but is not always so
2320 // marked by compilers. Mark manually here so we can optimize.
2321 if (strcmp(secname, ".debug_str") == 0)
2322 {
2323 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2324 entsize = 1;
2325 }
2326
2327 this->update_flags_for_input_section(sh_flags);
2328 this->set_entsize(entsize);
2329
2330 // If this is a SHF_MERGE section, we pass all the input sections to
2331 // a Output_data_merge. We don't try to handle relocations for such
2332 // a section. We don't try to handle empty merge sections--they
2333 // mess up the mappings, and are useless anyhow.
2334 // FIXME: Need to handle merge sections during incremental update.
2335 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2336 && reloc_shndx == 0
2337 && shdr.get_sh_size() > 0
2338 && !parameters->incremental())
2339 {
2340 // Keep information about merged input sections for rebuilding fast
2341 // lookup maps if we have sections-script or we do relaxation.
2342 bool keeps_input_sections = (this->always_keeps_input_sections_
2343 || have_sections_script
2344 || parameters->target().may_relax());
2345
2346 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2347 addralign, keeps_input_sections))
2348 {
2349 // Tell the relocation routines that they need to call the
2350 // output_offset method to determine the final address.
2351 return -1;
2352 }
2353 }
2354
2355 section_size_type input_section_size = shdr.get_sh_size();
2356 section_size_type uncompressed_size;
2357 if (object->section_is_compressed(shndx, &uncompressed_size))
2358 input_section_size = uncompressed_size;
2359
2360 off_t offset_in_section;
2361 off_t aligned_offset_in_section;
2362 if (this->has_fixed_layout())
2363 {
2364 // For incremental updates, find a chunk of unused space in the section.
2365 offset_in_section = this->free_list_.allocate(input_section_size,
2366 addralign, 0);
2367 if (offset_in_section == -1)
2368 gold_fallback(_("out of patch space in section %s; "
2369 "relink with --incremental-full"),
2370 this->name());
2371 aligned_offset_in_section = offset_in_section;
2372 }
2373 else
2374 {
2375 offset_in_section = this->current_data_size_for_child();
2376 aligned_offset_in_section = align_address(offset_in_section,
2377 addralign);
2378 this->set_current_data_size_for_child(aligned_offset_in_section
2379 + input_section_size);
2380 }
2381
2382 // Determine if we want to delay code-fill generation until the output
2383 // section is written. When the target is relaxing, we want to delay fill
2384 // generating to avoid adjusting them during relaxation. Also, if we are
2385 // sorting input sections we must delay fill generation.
2386 if (!this->generate_code_fills_at_write_
2387 && !have_sections_script
2388 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2389 && parameters->target().has_code_fill()
2390 && (parameters->target().may_relax()
2391 || layout->is_section_ordering_specified()))
2392 {
2393 gold_assert(this->fills_.empty());
2394 this->generate_code_fills_at_write_ = true;
2395 }
2396
2397 if (aligned_offset_in_section > offset_in_section
2398 && !this->generate_code_fills_at_write_
2399 && !have_sections_script
2400 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2401 && parameters->target().has_code_fill())
2402 {
2403 // We need to add some fill data. Using fill_list_ when
2404 // possible is an optimization, since we will often have fill
2405 // sections without input sections.
2406 off_t fill_len = aligned_offset_in_section - offset_in_section;
2407 if (this->input_sections_.empty())
2408 this->fills_.push_back(Fill(offset_in_section, fill_len));
2409 else
2410 {
2411 std::string fill_data(parameters->target().code_fill(fill_len));
2412 Output_data_const* odc = new Output_data_const(fill_data, 1);
2413 this->input_sections_.push_back(Input_section(odc));
2414 }
2415 }
2416
2417 // We need to keep track of this section if we are already keeping
2418 // track of sections, or if we are relaxing. Also, if this is a
2419 // section which requires sorting, or which may require sorting in
2420 // the future, we keep track of the sections. If the
2421 // --section-ordering-file option is used to specify the order of
2422 // sections, we need to keep track of sections.
2423 if (this->always_keeps_input_sections_
2424 || have_sections_script
2425 || !this->input_sections_.empty()
2426 || this->may_sort_attached_input_sections()
2427 || this->must_sort_attached_input_sections()
2428 || parameters->options().user_set_Map()
2429 || parameters->target().may_relax()
2430 || layout->is_section_ordering_specified())
2431 {
2432 Input_section isecn(object, shndx, input_section_size, addralign);
2433 /* If section ordering is requested by specifying a ordering file,
2434 using --section-ordering-file, match the section name with
2435 a pattern. */
2436 if (parameters->options().section_ordering_file())
2437 {
2438 unsigned int section_order_index =
2439 layout->find_section_order_index(std::string(secname));
2440 if (section_order_index != 0)
2441 {
2442 isecn.set_section_order_index(section_order_index);
2443 this->set_input_section_order_specified();
2444 }
2445 }
2446 if (this->has_fixed_layout())
2447 {
2448 // For incremental updates, finalize the address and offset now.
2449 uint64_t addr = this->address();
2450 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2451 aligned_offset_in_section,
2452 this->offset());
2453 }
2454 this->input_sections_.push_back(isecn);
2455 }
2456
2457 return aligned_offset_in_section;
2458 }
2459
2460 // Add arbitrary data to an output section.
2461
2462 void
2463 Output_section::add_output_section_data(Output_section_data* posd)
2464 {
2465 Input_section inp(posd);
2466 this->add_output_section_data(&inp);
2467
2468 if (posd->is_data_size_valid())
2469 {
2470 off_t offset_in_section;
2471 if (this->has_fixed_layout())
2472 {
2473 // For incremental updates, find a chunk of unused space.
2474 offset_in_section = this->free_list_.allocate(posd->data_size(),
2475 posd->addralign(), 0);
2476 if (offset_in_section == -1)
2477 gold_fallback(_("out of patch space in section %s; "
2478 "relink with --incremental-full"),
2479 this->name());
2480 // Finalize the address and offset now.
2481 uint64_t addr = this->address();
2482 off_t offset = this->offset();
2483 posd->set_address_and_file_offset(addr + offset_in_section,
2484 offset + offset_in_section);
2485 }
2486 else
2487 {
2488 offset_in_section = this->current_data_size_for_child();
2489 off_t aligned_offset_in_section = align_address(offset_in_section,
2490 posd->addralign());
2491 this->set_current_data_size_for_child(aligned_offset_in_section
2492 + posd->data_size());
2493 }
2494 }
2495 else if (this->has_fixed_layout())
2496 {
2497 // For incremental updates, arrange for the data to have a fixed layout.
2498 // This will mean that additions to the data must be allocated from
2499 // free space within the containing output section.
2500 uint64_t addr = this->address();
2501 posd->set_address(addr);
2502 posd->set_file_offset(0);
2503 // FIXME: This should eventually be unreachable.
2504 // gold_unreachable();
2505 }
2506 }
2507
2508 // Add a relaxed input section.
2509
2510 void
2511 Output_section::add_relaxed_input_section(Layout* layout,
2512 Output_relaxed_input_section* poris,
2513 const std::string& name)
2514 {
2515 Input_section inp(poris);
2516
2517 // If the --section-ordering-file option is used to specify the order of
2518 // sections, we need to keep track of sections.
2519 if (layout->is_section_ordering_specified())
2520 {
2521 unsigned int section_order_index =
2522 layout->find_section_order_index(name);
2523 if (section_order_index != 0)
2524 {
2525 inp.set_section_order_index(section_order_index);
2526 this->set_input_section_order_specified();
2527 }
2528 }
2529
2530 this->add_output_section_data(&inp);
2531 if (this->lookup_maps_->is_valid())
2532 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2533 poris->shndx(), poris);
2534
2535 // For a relaxed section, we use the current data size. Linker scripts
2536 // get all the input sections, including relaxed one from an output
2537 // section and add them back to them same output section to compute the
2538 // output section size. If we do not account for sizes of relaxed input
2539 // sections, an output section would be incorrectly sized.
2540 off_t offset_in_section = this->current_data_size_for_child();
2541 off_t aligned_offset_in_section = align_address(offset_in_section,
2542 poris->addralign());
2543 this->set_current_data_size_for_child(aligned_offset_in_section
2544 + poris->current_data_size());
2545 }
2546
2547 // Add arbitrary data to an output section by Input_section.
2548
2549 void
2550 Output_section::add_output_section_data(Input_section* inp)
2551 {
2552 if (this->input_sections_.empty())
2553 this->first_input_offset_ = this->current_data_size_for_child();
2554
2555 this->input_sections_.push_back(*inp);
2556
2557 uint64_t addralign = inp->addralign();
2558 if (addralign > this->addralign_)
2559 this->addralign_ = addralign;
2560
2561 inp->set_output_section(this);
2562 }
2563
2564 // Add a merge section to an output section.
2565
2566 void
2567 Output_section::add_output_merge_section(Output_section_data* posd,
2568 bool is_string, uint64_t entsize)
2569 {
2570 Input_section inp(posd, is_string, entsize);
2571 this->add_output_section_data(&inp);
2572 }
2573
2574 // Add an input section to a SHF_MERGE section.
2575
2576 bool
2577 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2578 uint64_t flags, uint64_t entsize,
2579 uint64_t addralign,
2580 bool keeps_input_sections)
2581 {
2582 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2583
2584 // We only merge strings if the alignment is not more than the
2585 // character size. This could be handled, but it's unusual.
2586 if (is_string && addralign > entsize)
2587 return false;
2588
2589 // We cannot restore merged input section states.
2590 gold_assert(this->checkpoint_ == NULL);
2591
2592 // Look up merge sections by required properties.
2593 // Currently, we only invalidate the lookup maps in script processing
2594 // and relaxation. We should not have done either when we reach here.
2595 // So we assume that the lookup maps are valid to simply code.
2596 gold_assert(this->lookup_maps_->is_valid());
2597 Merge_section_properties msp(is_string, entsize, addralign);
2598 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2599 bool is_new = false;
2600 if (pomb != NULL)
2601 {
2602 gold_assert(pomb->is_string() == is_string
2603 && pomb->entsize() == entsize
2604 && pomb->addralign() == addralign);
2605 }
2606 else
2607 {
2608 // Create a new Output_merge_data or Output_merge_string_data.
2609 if (!is_string)
2610 pomb = new Output_merge_data(entsize, addralign);
2611 else
2612 {
2613 switch (entsize)
2614 {
2615 case 1:
2616 pomb = new Output_merge_string<char>(addralign);
2617 break;
2618 case 2:
2619 pomb = new Output_merge_string<uint16_t>(addralign);
2620 break;
2621 case 4:
2622 pomb = new Output_merge_string<uint32_t>(addralign);
2623 break;
2624 default:
2625 return false;
2626 }
2627 }
2628 // If we need to do script processing or relaxation, we need to keep
2629 // the original input sections to rebuild the fast lookup maps.
2630 if (keeps_input_sections)
2631 pomb->set_keeps_input_sections();
2632 is_new = true;
2633 }
2634
2635 if (pomb->add_input_section(object, shndx))
2636 {
2637 // Add new merge section to this output section and link merge
2638 // section properties to new merge section in map.
2639 if (is_new)
2640 {
2641 this->add_output_merge_section(pomb, is_string, entsize);
2642 this->lookup_maps_->add_merge_section(msp, pomb);
2643 }
2644
2645 // Add input section to new merge section and link input section to new
2646 // merge section in map.
2647 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2648 return true;
2649 }
2650 else
2651 {
2652 // If add_input_section failed, delete new merge section to avoid
2653 // exporting empty merge sections in Output_section::get_input_section.
2654 if (is_new)
2655 delete pomb;
2656 return false;
2657 }
2658 }
2659
2660 // Build a relaxation map to speed up relaxation of existing input sections.
2661 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2662
2663 void
2664 Output_section::build_relaxation_map(
2665 const Input_section_list& input_sections,
2666 size_t limit,
2667 Relaxation_map* relaxation_map) const
2668 {
2669 for (size_t i = 0; i < limit; ++i)
2670 {
2671 const Input_section& is(input_sections[i]);
2672 if (is.is_input_section() || is.is_relaxed_input_section())
2673 {
2674 Section_id sid(is.relobj(), is.shndx());
2675 (*relaxation_map)[sid] = i;
2676 }
2677 }
2678 }
2679
2680 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2681 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2682 // indices of INPUT_SECTIONS.
2683
2684 void
2685 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2686 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2687 const Relaxation_map& map,
2688 Input_section_list* input_sections)
2689 {
2690 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2691 {
2692 Output_relaxed_input_section* poris = relaxed_sections[i];
2693 Section_id sid(poris->relobj(), poris->shndx());
2694 Relaxation_map::const_iterator p = map.find(sid);
2695 gold_assert(p != map.end());
2696 gold_assert((*input_sections)[p->second].is_input_section());
2697
2698 // Remember section order index of original input section
2699 // if it is set. Copy it to the relaxed input section.
2700 unsigned int soi =
2701 (*input_sections)[p->second].section_order_index();
2702 (*input_sections)[p->second] = Input_section(poris);
2703 (*input_sections)[p->second].set_section_order_index(soi);
2704 }
2705 }
2706
2707 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2708 // is a vector of pointers to Output_relaxed_input_section or its derived
2709 // classes. The relaxed sections must correspond to existing input sections.
2710
2711 void
2712 Output_section::convert_input_sections_to_relaxed_sections(
2713 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2714 {
2715 gold_assert(parameters->target().may_relax());
2716
2717 // We want to make sure that restore_states does not undo the effect of
2718 // this. If there is no checkpoint active, just search the current
2719 // input section list and replace the sections there. If there is
2720 // a checkpoint, also replace the sections there.
2721
2722 // By default, we look at the whole list.
2723 size_t limit = this->input_sections_.size();
2724
2725 if (this->checkpoint_ != NULL)
2726 {
2727 // Replace input sections with relaxed input section in the saved
2728 // copy of the input section list.
2729 if (this->checkpoint_->input_sections_saved())
2730 {
2731 Relaxation_map map;
2732 this->build_relaxation_map(
2733 *(this->checkpoint_->input_sections()),
2734 this->checkpoint_->input_sections()->size(),
2735 &map);
2736 this->convert_input_sections_in_list_to_relaxed_sections(
2737 relaxed_sections,
2738 map,
2739 this->checkpoint_->input_sections());
2740 }
2741 else
2742 {
2743 // We have not copied the input section list yet. Instead, just
2744 // look at the portion that would be saved.
2745 limit = this->checkpoint_->input_sections_size();
2746 }
2747 }
2748
2749 // Convert input sections in input_section_list.
2750 Relaxation_map map;
2751 this->build_relaxation_map(this->input_sections_, limit, &map);
2752 this->convert_input_sections_in_list_to_relaxed_sections(
2753 relaxed_sections,
2754 map,
2755 &this->input_sections_);
2756
2757 // Update fast look-up map.
2758 if (this->lookup_maps_->is_valid())
2759 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2760 {
2761 Output_relaxed_input_section* poris = relaxed_sections[i];
2762 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2763 poris->shndx(), poris);
2764 }
2765 }
2766
2767 // Update the output section flags based on input section flags.
2768
2769 void
2770 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2771 {
2772 // If we created the section with SHF_ALLOC clear, we set the
2773 // address. If we are now setting the SHF_ALLOC flag, we need to
2774 // undo that.
2775 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2776 && (flags & elfcpp::SHF_ALLOC) != 0)
2777 this->mark_address_invalid();
2778
2779 this->flags_ |= (flags
2780 & (elfcpp::SHF_WRITE
2781 | elfcpp::SHF_ALLOC
2782 | elfcpp::SHF_EXECINSTR));
2783
2784 if ((flags & elfcpp::SHF_MERGE) == 0)
2785 this->flags_ &=~ elfcpp::SHF_MERGE;
2786 else
2787 {
2788 if (this->current_data_size_for_child() == 0)
2789 this->flags_ |= elfcpp::SHF_MERGE;
2790 }
2791
2792 if ((flags & elfcpp::SHF_STRINGS) == 0)
2793 this->flags_ &=~ elfcpp::SHF_STRINGS;
2794 else
2795 {
2796 if (this->current_data_size_for_child() == 0)
2797 this->flags_ |= elfcpp::SHF_STRINGS;
2798 }
2799 }
2800
2801 // Find the merge section into which an input section with index SHNDX in
2802 // OBJECT has been added. Return NULL if none found.
2803
2804 Output_section_data*
2805 Output_section::find_merge_section(const Relobj* object,
2806 unsigned int shndx) const
2807 {
2808 if (!this->lookup_maps_->is_valid())
2809 this->build_lookup_maps();
2810 return this->lookup_maps_->find_merge_section(object, shndx);
2811 }
2812
2813 // Build the lookup maps for merge and relaxed sections. This is needs
2814 // to be declared as a const methods so that it is callable with a const
2815 // Output_section pointer. The method only updates states of the maps.
2816
2817 void
2818 Output_section::build_lookup_maps() const
2819 {
2820 this->lookup_maps_->clear();
2821 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2822 p != this->input_sections_.end();
2823 ++p)
2824 {
2825 if (p->is_merge_section())
2826 {
2827 Output_merge_base* pomb = p->output_merge_base();
2828 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2829 pomb->addralign());
2830 this->lookup_maps_->add_merge_section(msp, pomb);
2831 for (Output_merge_base::Input_sections::const_iterator is =
2832 pomb->input_sections_begin();
2833 is != pomb->input_sections_end();
2834 ++is)
2835 {
2836 const Const_section_id& csid = *is;
2837 this->lookup_maps_->add_merge_input_section(csid.first,
2838 csid.second, pomb);
2839 }
2840
2841 }
2842 else if (p->is_relaxed_input_section())
2843 {
2844 Output_relaxed_input_section* poris = p->relaxed_input_section();
2845 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2846 poris->shndx(), poris);
2847 }
2848 }
2849 }
2850
2851 // Find an relaxed input section corresponding to an input section
2852 // in OBJECT with index SHNDX.
2853
2854 const Output_relaxed_input_section*
2855 Output_section::find_relaxed_input_section(const Relobj* object,
2856 unsigned int shndx) const
2857 {
2858 if (!this->lookup_maps_->is_valid())
2859 this->build_lookup_maps();
2860 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2861 }
2862
2863 // Given an address OFFSET relative to the start of input section
2864 // SHNDX in OBJECT, return whether this address is being included in
2865 // the final link. This should only be called if SHNDX in OBJECT has
2866 // a special mapping.
2867
2868 bool
2869 Output_section::is_input_address_mapped(const Relobj* object,
2870 unsigned int shndx,
2871 off_t offset) const
2872 {
2873 // Look at the Output_section_data_maps first.
2874 const Output_section_data* posd = this->find_merge_section(object, shndx);
2875 if (posd == NULL)
2876 posd = this->find_relaxed_input_section(object, shndx);
2877
2878 if (posd != NULL)
2879 {
2880 section_offset_type output_offset;
2881 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2882 gold_assert(found);
2883 return output_offset != -1;
2884 }
2885
2886 // Fall back to the slow look-up.
2887 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2888 p != this->input_sections_.end();
2889 ++p)
2890 {
2891 section_offset_type output_offset;
2892 if (p->output_offset(object, shndx, offset, &output_offset))
2893 return output_offset != -1;
2894 }
2895
2896 // By default we assume that the address is mapped. This should
2897 // only be called after we have passed all sections to Layout. At
2898 // that point we should know what we are discarding.
2899 return true;
2900 }
2901
2902 // Given an address OFFSET relative to the start of input section
2903 // SHNDX in object OBJECT, return the output offset relative to the
2904 // start of the input section in the output section. This should only
2905 // be called if SHNDX in OBJECT has a special mapping.
2906
2907 section_offset_type
2908 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2909 section_offset_type offset) const
2910 {
2911 // This can only be called meaningfully when we know the data size
2912 // of this.
2913 gold_assert(this->is_data_size_valid());
2914
2915 // Look at the Output_section_data_maps first.
2916 const Output_section_data* posd = this->find_merge_section(object, shndx);
2917 if (posd == NULL)
2918 posd = this->find_relaxed_input_section(object, shndx);
2919 if (posd != NULL)
2920 {
2921 section_offset_type output_offset;
2922 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2923 gold_assert(found);
2924 return output_offset;
2925 }
2926
2927 // Fall back to the slow look-up.
2928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2929 p != this->input_sections_.end();
2930 ++p)
2931 {
2932 section_offset_type output_offset;
2933 if (p->output_offset(object, shndx, offset, &output_offset))
2934 return output_offset;
2935 }
2936 gold_unreachable();
2937 }
2938
2939 // Return the output virtual address of OFFSET relative to the start
2940 // of input section SHNDX in object OBJECT.
2941
2942 uint64_t
2943 Output_section::output_address(const Relobj* object, unsigned int shndx,
2944 off_t offset) const
2945 {
2946 uint64_t addr = this->address() + this->first_input_offset_;
2947
2948 // Look at the Output_section_data_maps first.
2949 const Output_section_data* posd = this->find_merge_section(object, shndx);
2950 if (posd == NULL)
2951 posd = this->find_relaxed_input_section(object, shndx);
2952 if (posd != NULL && posd->is_address_valid())
2953 {
2954 section_offset_type output_offset;
2955 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2956 gold_assert(found);
2957 return posd->address() + output_offset;
2958 }
2959
2960 // Fall back to the slow look-up.
2961 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2962 p != this->input_sections_.end();
2963 ++p)
2964 {
2965 addr = align_address(addr, p->addralign());
2966 section_offset_type output_offset;
2967 if (p->output_offset(object, shndx, offset, &output_offset))
2968 {
2969 if (output_offset == -1)
2970 return -1ULL;
2971 return addr + output_offset;
2972 }
2973 addr += p->data_size();
2974 }
2975
2976 // If we get here, it means that we don't know the mapping for this
2977 // input section. This might happen in principle if
2978 // add_input_section were called before add_output_section_data.
2979 // But it should never actually happen.
2980
2981 gold_unreachable();
2982 }
2983
2984 // Find the output address of the start of the merged section for
2985 // input section SHNDX in object OBJECT.
2986
2987 bool
2988 Output_section::find_starting_output_address(const Relobj* object,
2989 unsigned int shndx,
2990 uint64_t* paddr) const
2991 {
2992 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2993 // Looking up the merge section map does not always work as we sometimes
2994 // find a merge section without its address set.
2995 uint64_t addr = this->address() + this->first_input_offset_;
2996 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2997 p != this->input_sections_.end();
2998 ++p)
2999 {
3000 addr = align_address(addr, p->addralign());
3001
3002 // It would be nice if we could use the existing output_offset
3003 // method to get the output offset of input offset 0.
3004 // Unfortunately we don't know for sure that input offset 0 is
3005 // mapped at all.
3006 if (p->is_merge_section_for(object, shndx))
3007 {
3008 *paddr = addr;
3009 return true;
3010 }
3011
3012 addr += p->data_size();
3013 }
3014
3015 // We couldn't find a merge output section for this input section.
3016 return false;
3017 }
3018
3019 // Update the data size of an Output_section.
3020
3021 void
3022 Output_section::update_data_size()
3023 {
3024 if (this->input_sections_.empty())
3025 return;
3026
3027 if (this->must_sort_attached_input_sections()
3028 || this->input_section_order_specified())
3029 this->sort_attached_input_sections();
3030
3031 off_t off = this->first_input_offset_;
3032 for (Input_section_list::iterator p = this->input_sections_.begin();
3033 p != this->input_sections_.end();
3034 ++p)
3035 {
3036 off = align_address(off, p->addralign());
3037 off += p->current_data_size();
3038 }
3039
3040 this->set_current_data_size_for_child(off);
3041 }
3042
3043 // Set the data size of an Output_section. This is where we handle
3044 // setting the addresses of any Output_section_data objects.
3045
3046 void
3047 Output_section::set_final_data_size()
3048 {
3049 off_t data_size;
3050
3051 if (this->input_sections_.empty())
3052 data_size = this->current_data_size_for_child();
3053 else
3054 {
3055 if (this->must_sort_attached_input_sections()
3056 || this->input_section_order_specified())
3057 this->sort_attached_input_sections();
3058
3059 uint64_t address = this->address();
3060 off_t startoff = this->offset();
3061 off_t off = startoff + this->first_input_offset_;
3062 for (Input_section_list::iterator p = this->input_sections_.begin();
3063 p != this->input_sections_.end();
3064 ++p)
3065 {
3066 off = align_address(off, p->addralign());
3067 p->set_address_and_file_offset(address + (off - startoff), off,
3068 startoff);
3069 off += p->data_size();
3070 }
3071 data_size = off - startoff;
3072 }
3073
3074 // For full incremental links, we want to allocate some patch space
3075 // in most sections for subsequent incremental updates.
3076 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3077 {
3078 double pct = parameters->options().incremental_patch();
3079 size_t extra = static_cast<size_t>(data_size * pct);
3080 if (this->free_space_fill_ != NULL
3081 && this->free_space_fill_->minimum_hole_size() > extra)
3082 extra = this->free_space_fill_->minimum_hole_size();
3083 off_t new_size = align_address(data_size + extra, this->addralign());
3084 this->patch_space_ = new_size - data_size;
3085 gold_debug(DEBUG_INCREMENTAL,
3086 "set_final_data_size: %08lx + %08lx: section %s",
3087 static_cast<long>(data_size),
3088 static_cast<long>(this->patch_space_),
3089 this->name());
3090 data_size = new_size;
3091 }
3092
3093 this->set_data_size(data_size);
3094 }
3095
3096 // Reset the address and file offset.
3097
3098 void
3099 Output_section::do_reset_address_and_file_offset()
3100 {
3101 // An unallocated section has no address. Forcing this means that
3102 // we don't need special treatment for symbols defined in debug
3103 // sections. We do the same in the constructor. This does not
3104 // apply to NOLOAD sections though.
3105 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3106 this->set_address(0);
3107
3108 for (Input_section_list::iterator p = this->input_sections_.begin();
3109 p != this->input_sections_.end();
3110 ++p)
3111 p->reset_address_and_file_offset();
3112
3113 // Remove any patch space that was added in set_final_data_size.
3114 if (this->patch_space_ > 0)
3115 {
3116 this->set_current_data_size_for_child(this->current_data_size_for_child()
3117 - this->patch_space_);
3118 this->patch_space_ = 0;
3119 }
3120 }
3121
3122 // Return true if address and file offset have the values after reset.
3123
3124 bool
3125 Output_section::do_address_and_file_offset_have_reset_values() const
3126 {
3127 if (this->is_offset_valid())
3128 return false;
3129
3130 // An unallocated section has address 0 after its construction or a reset.
3131 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3132 return this->is_address_valid() && this->address() == 0;
3133 else
3134 return !this->is_address_valid();
3135 }
3136
3137 // Set the TLS offset. Called only for SHT_TLS sections.
3138
3139 void
3140 Output_section::do_set_tls_offset(uint64_t tls_base)
3141 {
3142 this->tls_offset_ = this->address() - tls_base;
3143 }
3144
3145 // In a few cases we need to sort the input sections attached to an
3146 // output section. This is used to implement the type of constructor
3147 // priority ordering implemented by the GNU linker, in which the
3148 // priority becomes part of the section name and the sections are
3149 // sorted by name. We only do this for an output section if we see an
3150 // attached input section matching ".ctors.*", ".dtors.*",
3151 // ".init_array.*" or ".fini_array.*".
3152
3153 class Output_section::Input_section_sort_entry
3154 {
3155 public:
3156 Input_section_sort_entry()
3157 : input_section_(), index_(-1U), section_has_name_(false),
3158 section_name_()
3159 { }
3160
3161 Input_section_sort_entry(const Input_section& input_section,
3162 unsigned int index,
3163 bool must_sort_attached_input_sections)
3164 : input_section_(input_section), index_(index),
3165 section_has_name_(input_section.is_input_section()
3166 || input_section.is_relaxed_input_section())
3167 {
3168 if (this->section_has_name_
3169 && must_sort_attached_input_sections)
3170 {
3171 // This is only called single-threaded from Layout::finalize,
3172 // so it is OK to lock. Unfortunately we have no way to pass
3173 // in a Task token.
3174 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3175 Object* obj = (input_section.is_input_section()
3176 ? input_section.relobj()
3177 : input_section.relaxed_input_section()->relobj());
3178 Task_lock_obj<Object> tl(dummy_task, obj);
3179
3180 // This is a slow operation, which should be cached in
3181 // Layout::layout if this becomes a speed problem.
3182 this->section_name_ = obj->section_name(input_section.shndx());
3183 }
3184 }
3185
3186 // Return the Input_section.
3187 const Input_section&
3188 input_section() const
3189 {
3190 gold_assert(this->index_ != -1U);
3191 return this->input_section_;
3192 }
3193
3194 // The index of this entry in the original list. This is used to
3195 // make the sort stable.
3196 unsigned int
3197 index() const
3198 {
3199 gold_assert(this->index_ != -1U);
3200 return this->index_;
3201 }
3202
3203 // Whether there is a section name.
3204 bool
3205 section_has_name() const
3206 { return this->section_has_name_; }
3207
3208 // The section name.
3209 const std::string&
3210 section_name() const
3211 {
3212 gold_assert(this->section_has_name_);
3213 return this->section_name_;
3214 }
3215
3216 // Return true if the section name has a priority. This is assumed
3217 // to be true if it has a dot after the initial dot.
3218 bool
3219 has_priority() const
3220 {
3221 gold_assert(this->section_has_name_);
3222 return this->section_name_.find('.', 1) != std::string::npos;
3223 }
3224
3225 // Return the priority. Believe it or not, gcc encodes the priority
3226 // differently for .ctors/.dtors and .init_array/.fini_array
3227 // sections.
3228 unsigned int
3229 get_priority() const
3230 {
3231 gold_assert(this->section_has_name_);
3232 bool is_ctors;
3233 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3234 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3235 is_ctors = true;
3236 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3237 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3238 is_ctors = false;
3239 else
3240 return 0;
3241 char* end;
3242 unsigned long prio = strtoul((this->section_name_.c_str()
3243 + (is_ctors ? 7 : 12)),
3244 &end, 10);
3245 if (*end != '\0')
3246 return 0;
3247 else if (is_ctors)
3248 return 65535 - prio;
3249 else
3250 return prio;
3251 }
3252
3253 // Return true if this an input file whose base name matches
3254 // FILE_NAME. The base name must have an extension of ".o", and
3255 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3256 // This is to match crtbegin.o as well as crtbeginS.o without
3257 // getting confused by other possibilities. Overall matching the
3258 // file name this way is a dreadful hack, but the GNU linker does it
3259 // in order to better support gcc, and we need to be compatible.
3260 bool
3261 match_file_name(const char* file_name) const
3262 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3263
3264 // Returns 1 if THIS should appear before S in section order, -1 if S
3265 // appears before THIS and 0 if they are not comparable.
3266 int
3267 compare_section_ordering(const Input_section_sort_entry& s) const
3268 {
3269 unsigned int this_secn_index = this->input_section_.section_order_index();
3270 unsigned int s_secn_index = s.input_section().section_order_index();
3271 if (this_secn_index > 0 && s_secn_index > 0)
3272 {
3273 if (this_secn_index < s_secn_index)
3274 return 1;
3275 else if (this_secn_index > s_secn_index)
3276 return -1;
3277 }
3278 return 0;
3279 }
3280
3281 private:
3282 // The Input_section we are sorting.
3283 Input_section input_section_;
3284 // The index of this Input_section in the original list.
3285 unsigned int index_;
3286 // Whether this Input_section has a section name--it won't if this
3287 // is some random Output_section_data.
3288 bool section_has_name_;
3289 // The section name if there is one.
3290 std::string section_name_;
3291 };
3292
3293 // Return true if S1 should come before S2 in the output section.
3294
3295 bool
3296 Output_section::Input_section_sort_compare::operator()(
3297 const Output_section::Input_section_sort_entry& s1,
3298 const Output_section::Input_section_sort_entry& s2) const
3299 {
3300 // crtbegin.o must come first.
3301 bool s1_begin = s1.match_file_name("crtbegin");
3302 bool s2_begin = s2.match_file_name("crtbegin");
3303 if (s1_begin || s2_begin)
3304 {
3305 if (!s1_begin)
3306 return false;
3307 if (!s2_begin)
3308 return true;
3309 return s1.index() < s2.index();
3310 }
3311
3312 // crtend.o must come last.
3313 bool s1_end = s1.match_file_name("crtend");
3314 bool s2_end = s2.match_file_name("crtend");
3315 if (s1_end || s2_end)
3316 {
3317 if (!s1_end)
3318 return true;
3319 if (!s2_end)
3320 return false;
3321 return s1.index() < s2.index();
3322 }
3323
3324 // We sort all the sections with no names to the end.
3325 if (!s1.section_has_name() || !s2.section_has_name())
3326 {
3327 if (s1.section_has_name())
3328 return true;
3329 if (s2.section_has_name())
3330 return false;
3331 return s1.index() < s2.index();
3332 }
3333
3334 // A section with a priority follows a section without a priority.
3335 bool s1_has_priority = s1.has_priority();
3336 bool s2_has_priority = s2.has_priority();
3337 if (s1_has_priority && !s2_has_priority)
3338 return false;
3339 if (!s1_has_priority && s2_has_priority)
3340 return true;
3341
3342 // Check if a section order exists for these sections through a section
3343 // ordering file. If sequence_num is 0, an order does not exist.
3344 int sequence_num = s1.compare_section_ordering(s2);
3345 if (sequence_num != 0)
3346 return sequence_num == 1;
3347
3348 // Otherwise we sort by name.
3349 int compare = s1.section_name().compare(s2.section_name());
3350 if (compare != 0)
3351 return compare < 0;
3352
3353 // Otherwise we keep the input order.
3354 return s1.index() < s2.index();
3355 }
3356
3357 // Return true if S1 should come before S2 in an .init_array or .fini_array
3358 // output section.
3359
3360 bool
3361 Output_section::Input_section_sort_init_fini_compare::operator()(
3362 const Output_section::Input_section_sort_entry& s1,
3363 const Output_section::Input_section_sort_entry& s2) const
3364 {
3365 // We sort all the sections with no names to the end.
3366 if (!s1.section_has_name() || !s2.section_has_name())
3367 {
3368 if (s1.section_has_name())
3369 return true;
3370 if (s2.section_has_name())
3371 return false;
3372 return s1.index() < s2.index();
3373 }
3374
3375 // A section without a priority follows a section with a priority.
3376 // This is the reverse of .ctors and .dtors sections.
3377 bool s1_has_priority = s1.has_priority();
3378 bool s2_has_priority = s2.has_priority();
3379 if (s1_has_priority && !s2_has_priority)
3380 return true;
3381 if (!s1_has_priority && s2_has_priority)
3382 return false;
3383
3384 // .ctors and .dtors sections without priority come after
3385 // .init_array and .fini_array sections without priority.
3386 if (!s1_has_priority
3387 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3388 && s1.section_name() != s2.section_name())
3389 return false;
3390 if (!s2_has_priority
3391 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3392 && s2.section_name() != s1.section_name())
3393 return true;
3394
3395 // Sort by priority if we can.
3396 if (s1_has_priority)
3397 {
3398 unsigned int s1_prio = s1.get_priority();
3399 unsigned int s2_prio = s2.get_priority();
3400 if (s1_prio < s2_prio)
3401 return true;
3402 else if (s1_prio > s2_prio)
3403 return false;
3404 }
3405
3406 // Check if a section order exists for these sections through a section
3407 // ordering file. If sequence_num is 0, an order does not exist.
3408 int sequence_num = s1.compare_section_ordering(s2);
3409 if (sequence_num != 0)
3410 return sequence_num == 1;
3411
3412 // Otherwise we sort by name.
3413 int compare = s1.section_name().compare(s2.section_name());
3414 if (compare != 0)
3415 return compare < 0;
3416
3417 // Otherwise we keep the input order.
3418 return s1.index() < s2.index();
3419 }
3420
3421 // Return true if S1 should come before S2. Sections that do not match
3422 // any pattern in the section ordering file are placed ahead of the sections
3423 // that match some pattern.
3424
3425 bool
3426 Output_section::Input_section_sort_section_order_index_compare::operator()(
3427 const Output_section::Input_section_sort_entry& s1,
3428 const Output_section::Input_section_sort_entry& s2) const
3429 {
3430 unsigned int s1_secn_index = s1.input_section().section_order_index();
3431 unsigned int s2_secn_index = s2.input_section().section_order_index();
3432
3433 // Keep input order if section ordering cannot determine order.
3434 if (s1_secn_index == s2_secn_index)
3435 return s1.index() < s2.index();
3436
3437 return s1_secn_index < s2_secn_index;
3438 }
3439
3440 // This updates the section order index of input sections according to the
3441 // the order specified in the mapping from Section id to order index.
3442
3443 void
3444 Output_section::update_section_layout(
3445 const Section_layout_order* order_map)
3446 {
3447 for (Input_section_list::iterator p = this->input_sections_.begin();
3448 p != this->input_sections_.end();
3449 ++p)
3450 {
3451 if (p->is_input_section()
3452 || p->is_relaxed_input_section())
3453 {
3454 Object* obj = (p->is_input_section()
3455 ? p->relobj()
3456 : p->relaxed_input_section()->relobj());
3457 unsigned int shndx = p->shndx();
3458 Section_layout_order::const_iterator it
3459 = order_map->find(Section_id(obj, shndx));
3460 if (it == order_map->end())
3461 continue;
3462 unsigned int section_order_index = it->second;
3463 if (section_order_index != 0)
3464 {
3465 p->set_section_order_index(section_order_index);
3466 this->set_input_section_order_specified();
3467 }
3468 }
3469 }
3470 }
3471
3472 // Sort the input sections attached to an output section.
3473
3474 void
3475 Output_section::sort_attached_input_sections()
3476 {
3477 if (this->attached_input_sections_are_sorted_)
3478 return;
3479
3480 if (this->checkpoint_ != NULL
3481 && !this->checkpoint_->input_sections_saved())
3482 this->checkpoint_->save_input_sections();
3483
3484 // The only thing we know about an input section is the object and
3485 // the section index. We need the section name. Recomputing this
3486 // is slow but this is an unusual case. If this becomes a speed
3487 // problem we can cache the names as required in Layout::layout.
3488
3489 // We start by building a larger vector holding a copy of each
3490 // Input_section, plus its current index in the list and its name.
3491 std::vector<Input_section_sort_entry> sort_list;
3492
3493 unsigned int i = 0;
3494 for (Input_section_list::iterator p = this->input_sections_.begin();
3495 p != this->input_sections_.end();
3496 ++p, ++i)
3497 sort_list.push_back(Input_section_sort_entry(*p, i,
3498 this->must_sort_attached_input_sections()));
3499
3500 // Sort the input sections.
3501 if (this->must_sort_attached_input_sections())
3502 {
3503 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3504 || this->type() == elfcpp::SHT_INIT_ARRAY
3505 || this->type() == elfcpp::SHT_FINI_ARRAY)
3506 std::sort(sort_list.begin(), sort_list.end(),
3507 Input_section_sort_init_fini_compare());
3508 else
3509 std::sort(sort_list.begin(), sort_list.end(),
3510 Input_section_sort_compare());
3511 }
3512 else
3513 {
3514 gold_assert(this->input_section_order_specified());
3515 std::sort(sort_list.begin(), sort_list.end(),
3516 Input_section_sort_section_order_index_compare());
3517 }
3518
3519 // Copy the sorted input sections back to our list.
3520 this->input_sections_.clear();
3521 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3522 p != sort_list.end();
3523 ++p)
3524 this->input_sections_.push_back(p->input_section());
3525 sort_list.clear();
3526
3527 // Remember that we sorted the input sections, since we might get
3528 // called again.
3529 this->attached_input_sections_are_sorted_ = true;
3530 }
3531
3532 // Write the section header to *OSHDR.
3533
3534 template<int size, bool big_endian>
3535 void
3536 Output_section::write_header(const Layout* layout,
3537 const Stringpool* secnamepool,
3538 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3539 {
3540 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3541 oshdr->put_sh_type(this->type_);
3542
3543 elfcpp::Elf_Xword flags = this->flags_;
3544 if (this->info_section_ != NULL && this->info_uses_section_index_)
3545 flags |= elfcpp::SHF_INFO_LINK;
3546 oshdr->put_sh_flags(flags);
3547
3548 oshdr->put_sh_addr(this->address());
3549 oshdr->put_sh_offset(this->offset());
3550 oshdr->put_sh_size(this->data_size());
3551 if (this->link_section_ != NULL)
3552 oshdr->put_sh_link(this->link_section_->out_shndx());
3553 else if (this->should_link_to_symtab_)
3554 oshdr->put_sh_link(layout->symtab_section_shndx());
3555 else if (this->should_link_to_dynsym_)
3556 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3557 else
3558 oshdr->put_sh_link(this->link_);
3559
3560 elfcpp::Elf_Word info;
3561 if (this->info_section_ != NULL)
3562 {
3563 if (this->info_uses_section_index_)
3564 info = this->info_section_->out_shndx();
3565 else
3566 info = this->info_section_->symtab_index();
3567 }
3568 else if (this->info_symndx_ != NULL)
3569 info = this->info_symndx_->symtab_index();
3570 else
3571 info = this->info_;
3572 oshdr->put_sh_info(info);
3573
3574 oshdr->put_sh_addralign(this->addralign_);
3575 oshdr->put_sh_entsize(this->entsize_);
3576 }
3577
3578 // Write out the data. For input sections the data is written out by
3579 // Object::relocate, but we have to handle Output_section_data objects
3580 // here.
3581
3582 void
3583 Output_section::do_write(Output_file* of)
3584 {
3585 gold_assert(!this->requires_postprocessing());
3586
3587 // If the target performs relaxation, we delay filler generation until now.
3588 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3589
3590 off_t output_section_file_offset = this->offset();
3591 for (Fill_list::iterator p = this->fills_.begin();
3592 p != this->fills_.end();
3593 ++p)
3594 {
3595 std::string fill_data(parameters->target().code_fill(p->length()));
3596 of->write(output_section_file_offset + p->section_offset(),
3597 fill_data.data(), fill_data.size());
3598 }
3599
3600 off_t off = this->offset() + this->first_input_offset_;
3601 for (Input_section_list::iterator p = this->input_sections_.begin();
3602 p != this->input_sections_.end();
3603 ++p)
3604 {
3605 off_t aligned_off = align_address(off, p->addralign());
3606 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3607 {
3608 size_t fill_len = aligned_off - off;
3609 std::string fill_data(parameters->target().code_fill(fill_len));
3610 of->write(off, fill_data.data(), fill_data.size());
3611 }
3612
3613 p->write(of);
3614 off = aligned_off + p->data_size();
3615 }
3616
3617 // For incremental links, fill in unused chunks in debug sections
3618 // with dummy compilation unit headers.
3619 if (this->free_space_fill_ != NULL)
3620 {
3621 for (Free_list::Const_iterator p = this->free_list_.begin();
3622 p != this->free_list_.end();
3623 ++p)
3624 {
3625 off_t off = p->start_;
3626 size_t len = p->end_ - off;
3627 this->free_space_fill_->write(of, this->offset() + off, len);
3628 }
3629 if (this->patch_space_ > 0)
3630 {
3631 off_t off = this->current_data_size_for_child() - this->patch_space_;
3632 this->free_space_fill_->write(of, this->offset() + off,
3633 this->patch_space_);
3634 }
3635 }
3636 }
3637
3638 // If a section requires postprocessing, create the buffer to use.
3639
3640 void
3641 Output_section::create_postprocessing_buffer()
3642 {
3643 gold_assert(this->requires_postprocessing());
3644
3645 if (this->postprocessing_buffer_ != NULL)
3646 return;
3647
3648 if (!this->input_sections_.empty())
3649 {
3650 off_t off = this->first_input_offset_;
3651 for (Input_section_list::iterator p = this->input_sections_.begin();
3652 p != this->input_sections_.end();
3653 ++p)
3654 {
3655 off = align_address(off, p->addralign());
3656 p->finalize_data_size();
3657 off += p->data_size();
3658 }
3659 this->set_current_data_size_for_child(off);
3660 }
3661
3662 off_t buffer_size = this->current_data_size_for_child();
3663 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3664 }
3665
3666 // Write all the data of an Output_section into the postprocessing
3667 // buffer. This is used for sections which require postprocessing,
3668 // such as compression. Input sections are handled by
3669 // Object::Relocate.
3670
3671 void
3672 Output_section::write_to_postprocessing_buffer()
3673 {
3674 gold_assert(this->requires_postprocessing());
3675
3676 // If the target performs relaxation, we delay filler generation until now.
3677 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3678
3679 unsigned char* buffer = this->postprocessing_buffer();
3680 for (Fill_list::iterator p = this->fills_.begin();
3681 p != this->fills_.end();
3682 ++p)
3683 {
3684 std::string fill_data(parameters->target().code_fill(p->length()));
3685 memcpy(buffer + p->section_offset(), fill_data.data(),
3686 fill_data.size());
3687 }
3688
3689 off_t off = this->first_input_offset_;
3690 for (Input_section_list::iterator p = this->input_sections_.begin();
3691 p != this->input_sections_.end();
3692 ++p)
3693 {
3694 off_t aligned_off = align_address(off, p->addralign());
3695 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3696 {
3697 size_t fill_len = aligned_off - off;
3698 std::string fill_data(parameters->target().code_fill(fill_len));
3699 memcpy(buffer + off, fill_data.data(), fill_data.size());
3700 }
3701
3702 p->write_to_buffer(buffer + aligned_off);
3703 off = aligned_off + p->data_size();
3704 }
3705 }
3706
3707 // Get the input sections for linker script processing. We leave
3708 // behind the Output_section_data entries. Note that this may be
3709 // slightly incorrect for merge sections. We will leave them behind,
3710 // but it is possible that the script says that they should follow
3711 // some other input sections, as in:
3712 // .rodata { *(.rodata) *(.rodata.cst*) }
3713 // For that matter, we don't handle this correctly:
3714 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3715 // With luck this will never matter.
3716
3717 uint64_t
3718 Output_section::get_input_sections(
3719 uint64_t address,
3720 const std::string& fill,
3721 std::list<Input_section>* input_sections)
3722 {
3723 if (this->checkpoint_ != NULL
3724 && !this->checkpoint_->input_sections_saved())
3725 this->checkpoint_->save_input_sections();
3726
3727 // Invalidate fast look-up maps.
3728 this->lookup_maps_->invalidate();
3729
3730 uint64_t orig_address = address;
3731
3732 address = align_address(address, this->addralign());
3733
3734 Input_section_list remaining;
3735 for (Input_section_list::iterator p = this->input_sections_.begin();
3736 p != this->input_sections_.end();
3737 ++p)
3738 {
3739 if (p->is_input_section()
3740 || p->is_relaxed_input_section()
3741 || p->is_merge_section())
3742 input_sections->push_back(*p);
3743 else
3744 {
3745 uint64_t aligned_address = align_address(address, p->addralign());
3746 if (aligned_address != address && !fill.empty())
3747 {
3748 section_size_type length =
3749 convert_to_section_size_type(aligned_address - address);
3750 std::string this_fill;
3751 this_fill.reserve(length);
3752 while (this_fill.length() + fill.length() <= length)
3753 this_fill += fill;
3754 if (this_fill.length() < length)
3755 this_fill.append(fill, 0, length - this_fill.length());
3756
3757 Output_section_data* posd = new Output_data_const(this_fill, 0);
3758 remaining.push_back(Input_section(posd));
3759 }
3760 address = aligned_address;
3761
3762 remaining.push_back(*p);
3763
3764 p->finalize_data_size();
3765 address += p->data_size();
3766 }
3767 }
3768
3769 this->input_sections_.swap(remaining);
3770 this->first_input_offset_ = 0;
3771
3772 uint64_t data_size = address - orig_address;
3773 this->set_current_data_size_for_child(data_size);
3774 return data_size;
3775 }
3776
3777 // Add a script input section. SIS is an Output_section::Input_section,
3778 // which can be either a plain input section or a special input section like
3779 // a relaxed input section. For a special input section, its size must be
3780 // finalized.
3781
3782 void
3783 Output_section::add_script_input_section(const Input_section& sis)
3784 {
3785 uint64_t data_size = sis.data_size();
3786 uint64_t addralign = sis.addralign();
3787 if (addralign > this->addralign_)
3788 this->addralign_ = addralign;
3789
3790 off_t offset_in_section = this->current_data_size_for_child();
3791 off_t aligned_offset_in_section = align_address(offset_in_section,
3792 addralign);
3793
3794 this->set_current_data_size_for_child(aligned_offset_in_section
3795 + data_size);
3796
3797 this->input_sections_.push_back(sis);
3798
3799 // Update fast lookup maps if necessary.
3800 if (this->lookup_maps_->is_valid())
3801 {
3802 if (sis.is_merge_section())
3803 {
3804 Output_merge_base* pomb = sis.output_merge_base();
3805 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3806 pomb->addralign());
3807 this->lookup_maps_->add_merge_section(msp, pomb);
3808 for (Output_merge_base::Input_sections::const_iterator p =
3809 pomb->input_sections_begin();
3810 p != pomb->input_sections_end();
3811 ++p)
3812 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3813 pomb);
3814 }
3815 else if (sis.is_relaxed_input_section())
3816 {
3817 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3818 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3819 poris->shndx(), poris);
3820 }
3821 }
3822 }
3823
3824 // Save states for relaxation.
3825
3826 void
3827 Output_section::save_states()
3828 {
3829 gold_assert(this->checkpoint_ == NULL);
3830 Checkpoint_output_section* checkpoint =
3831 new Checkpoint_output_section(this->addralign_, this->flags_,
3832 this->input_sections_,
3833 this->first_input_offset_,
3834 this->attached_input_sections_are_sorted_);
3835 this->checkpoint_ = checkpoint;
3836 gold_assert(this->fills_.empty());
3837 }
3838
3839 void
3840 Output_section::discard_states()
3841 {
3842 gold_assert(this->checkpoint_ != NULL);
3843 delete this->checkpoint_;
3844 this->checkpoint_ = NULL;
3845 gold_assert(this->fills_.empty());
3846
3847 // Simply invalidate the fast lookup maps since we do not keep
3848 // track of them.
3849 this->lookup_maps_->invalidate();
3850 }
3851
3852 void
3853 Output_section::restore_states()
3854 {
3855 gold_assert(this->checkpoint_ != NULL);
3856 Checkpoint_output_section* checkpoint = this->checkpoint_;
3857
3858 this->addralign_ = checkpoint->addralign();
3859 this->flags_ = checkpoint->flags();
3860 this->first_input_offset_ = checkpoint->first_input_offset();
3861
3862 if (!checkpoint->input_sections_saved())
3863 {
3864 // If we have not copied the input sections, just resize it.
3865 size_t old_size = checkpoint->input_sections_size();
3866 gold_assert(this->input_sections_.size() >= old_size);
3867 this->input_sections_.resize(old_size);
3868 }
3869 else
3870 {
3871 // We need to copy the whole list. This is not efficient for
3872 // extremely large output with hundreads of thousands of input
3873 // objects. We may need to re-think how we should pass sections
3874 // to scripts.
3875 this->input_sections_ = *checkpoint->input_sections();
3876 }
3877
3878 this->attached_input_sections_are_sorted_ =
3879 checkpoint->attached_input_sections_are_sorted();
3880
3881 // Simply invalidate the fast lookup maps since we do not keep
3882 // track of them.
3883 this->lookup_maps_->invalidate();
3884 }
3885
3886 // Update the section offsets of input sections in this. This is required if
3887 // relaxation causes some input sections to change sizes.
3888
3889 void
3890 Output_section::adjust_section_offsets()
3891 {
3892 if (!this->section_offsets_need_adjustment_)
3893 return;
3894
3895 off_t off = 0;
3896 for (Input_section_list::iterator p = this->input_sections_.begin();
3897 p != this->input_sections_.end();
3898 ++p)
3899 {
3900 off = align_address(off, p->addralign());
3901 if (p->is_input_section())
3902 p->relobj()->set_section_offset(p->shndx(), off);
3903 off += p->data_size();
3904 }
3905
3906 this->section_offsets_need_adjustment_ = false;
3907 }
3908
3909 // Print to the map file.
3910
3911 void
3912 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3913 {
3914 mapfile->print_output_section(this);
3915
3916 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3917 p != this->input_sections_.end();
3918 ++p)
3919 p->print_to_mapfile(mapfile);
3920 }
3921
3922 // Print stats for merge sections to stderr.
3923
3924 void
3925 Output_section::print_merge_stats()
3926 {
3927 Input_section_list::iterator p;
3928 for (p = this->input_sections_.begin();
3929 p != this->input_sections_.end();
3930 ++p)
3931 p->print_merge_stats(this->name_);
3932 }
3933
3934 // Set a fixed layout for the section. Used for incremental update links.
3935
3936 void
3937 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3938 off_t sh_size, uint64_t sh_addralign)
3939 {
3940 this->addralign_ = sh_addralign;
3941 this->set_current_data_size(sh_size);
3942 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3943 this->set_address(sh_addr);
3944 this->set_file_offset(sh_offset);
3945 this->finalize_data_size();
3946 this->free_list_.init(sh_size, false);
3947 this->has_fixed_layout_ = true;
3948 }
3949
3950 // Reserve space within the fixed layout for the section. Used for
3951 // incremental update links.
3952
3953 void
3954 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3955 {
3956 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3957 }
3958
3959 // Allocate space from the free list for the section. Used for
3960 // incremental update links.
3961
3962 off_t
3963 Output_section::allocate(off_t len, uint64_t addralign)
3964 {
3965 return this->free_list_.allocate(len, addralign, 0);
3966 }
3967
3968 // Output segment methods.
3969
3970 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3971 : vaddr_(0),
3972 paddr_(0),
3973 memsz_(0),
3974 max_align_(0),
3975 min_p_align_(0),
3976 offset_(0),
3977 filesz_(0),
3978 type_(type),
3979 flags_(flags),
3980 is_max_align_known_(false),
3981 are_addresses_set_(false),
3982 is_large_data_segment_(false)
3983 {
3984 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3985 // the flags.
3986 if (type == elfcpp::PT_TLS)
3987 this->flags_ = elfcpp::PF_R;
3988 }
3989
3990 // Add an Output_section to a PT_LOAD Output_segment.
3991
3992 void
3993 Output_segment::add_output_section_to_load(Layout* layout,
3994 Output_section* os,
3995 elfcpp::Elf_Word seg_flags)
3996 {
3997 gold_assert(this->type() == elfcpp::PT_LOAD);
3998 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3999 gold_assert(!this->is_max_align_known_);
4000 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4001
4002 this->update_flags_for_output_section(seg_flags);
4003
4004 // We don't want to change the ordering if we have a linker script
4005 // with a SECTIONS clause.
4006 Output_section_order order = os->order();
4007 if (layout->script_options()->saw_sections_clause())
4008 order = static_cast<Output_section_order>(0);
4009 else
4010 gold_assert(order != ORDER_INVALID);
4011
4012 this->output_lists_[order].push_back(os);
4013 }
4014
4015 // Add an Output_section to a non-PT_LOAD Output_segment.
4016
4017 void
4018 Output_segment::add_output_section_to_nonload(Output_section* os,
4019 elfcpp::Elf_Word seg_flags)
4020 {
4021 gold_assert(this->type() != elfcpp::PT_LOAD);
4022 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4023 gold_assert(!this->is_max_align_known_);
4024
4025 this->update_flags_for_output_section(seg_flags);
4026
4027 this->output_lists_[0].push_back(os);
4028 }
4029
4030 // Remove an Output_section from this segment. It is an error if it
4031 // is not present.
4032
4033 void
4034 Output_segment::remove_output_section(Output_section* os)
4035 {
4036 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4037 {
4038 Output_data_list* pdl = &this->output_lists_[i];
4039 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4040 {
4041 if (*p == os)
4042 {
4043 pdl->erase(p);
4044 return;
4045 }
4046 }
4047 }
4048 gold_unreachable();
4049 }
4050
4051 // Add an Output_data (which need not be an Output_section) to the
4052 // start of a segment.
4053
4054 void
4055 Output_segment::add_initial_output_data(Output_data* od)
4056 {
4057 gold_assert(!this->is_max_align_known_);
4058 Output_data_list::iterator p = this->output_lists_[0].begin();
4059 this->output_lists_[0].insert(p, od);
4060 }
4061
4062 // Return true if this segment has any sections which hold actual
4063 // data, rather than being a BSS section.
4064
4065 bool
4066 Output_segment::has_any_data_sections() const
4067 {
4068 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4069 {
4070 const Output_data_list* pdl = &this->output_lists_[i];
4071 for (Output_data_list::const_iterator p = pdl->begin();
4072 p != pdl->end();
4073 ++p)
4074 {
4075 if (!(*p)->is_section())
4076 return true;
4077 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4078 return true;
4079 }
4080 }
4081 return false;
4082 }
4083
4084 // Return whether the first data section (not counting TLS sections)
4085 // is a relro section.
4086
4087 bool
4088 Output_segment::is_first_section_relro() const
4089 {
4090 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4091 {
4092 if (i == static_cast<int>(ORDER_TLS_DATA)
4093 || i == static_cast<int>(ORDER_TLS_BSS))
4094 continue;
4095 const Output_data_list* pdl = &this->output_lists_[i];
4096 if (!pdl->empty())
4097 {
4098 Output_data* p = pdl->front();
4099 return p->is_section() && p->output_section()->is_relro();
4100 }
4101 }
4102 return false;
4103 }
4104
4105 // Return the maximum alignment of the Output_data in Output_segment.
4106
4107 uint64_t
4108 Output_segment::maximum_alignment()
4109 {
4110 if (!this->is_max_align_known_)
4111 {
4112 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4113 {
4114 const Output_data_list* pdl = &this->output_lists_[i];
4115 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4116 if (addralign > this->max_align_)
4117 this->max_align_ = addralign;
4118 }
4119 this->is_max_align_known_ = true;
4120 }
4121
4122 return this->max_align_;
4123 }
4124
4125 // Return the maximum alignment of a list of Output_data.
4126
4127 uint64_t
4128 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4129 {
4130 uint64_t ret = 0;
4131 for (Output_data_list::const_iterator p = pdl->begin();
4132 p != pdl->end();
4133 ++p)
4134 {
4135 uint64_t addralign = (*p)->addralign();
4136 if (addralign > ret)
4137 ret = addralign;
4138 }
4139 return ret;
4140 }
4141
4142 // Return whether this segment has any dynamic relocs.
4143
4144 bool
4145 Output_segment::has_dynamic_reloc() const
4146 {
4147 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4148 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4149 return true;
4150 return false;
4151 }
4152
4153 // Return whether this Output_data_list has any dynamic relocs.
4154
4155 bool
4156 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4157 {
4158 for (Output_data_list::const_iterator p = pdl->begin();
4159 p != pdl->end();
4160 ++p)
4161 if ((*p)->has_dynamic_reloc())
4162 return true;
4163 return false;
4164 }
4165
4166 // Set the section addresses for an Output_segment. If RESET is true,
4167 // reset the addresses first. ADDR is the address and *POFF is the
4168 // file offset. Set the section indexes starting with *PSHNDX.
4169 // INCREASE_RELRO is the size of the portion of the first non-relro
4170 // section that should be included in the PT_GNU_RELRO segment.
4171 // If this segment has relro sections, and has been aligned for
4172 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4173 // the immediately following segment. Update *HAS_RELRO, *POFF,
4174 // and *PSHNDX.
4175
4176 uint64_t
4177 Output_segment::set_section_addresses(Layout* layout, bool reset,
4178 uint64_t addr,
4179 unsigned int* increase_relro,
4180 bool* has_relro,
4181 off_t* poff,
4182 unsigned int* pshndx)
4183 {
4184 gold_assert(this->type_ == elfcpp::PT_LOAD);
4185
4186 uint64_t last_relro_pad = 0;
4187 off_t orig_off = *poff;
4188
4189 bool in_tls = false;
4190
4191 // If we have relro sections, we need to pad forward now so that the
4192 // relro sections plus INCREASE_RELRO end on a common page boundary.
4193 if (parameters->options().relro()
4194 && this->is_first_section_relro()
4195 && (!this->are_addresses_set_ || reset))
4196 {
4197 uint64_t relro_size = 0;
4198 off_t off = *poff;
4199 uint64_t max_align = 0;
4200 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4201 {
4202 Output_data_list* pdl = &this->output_lists_[i];
4203 Output_data_list::iterator p;
4204 for (p = pdl->begin(); p != pdl->end(); ++p)
4205 {
4206 if (!(*p)->is_section())
4207 break;
4208 uint64_t align = (*p)->addralign();
4209 if (align > max_align)
4210 max_align = align;
4211 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4212 in_tls = true;
4213 else if (in_tls)
4214 {
4215 // Align the first non-TLS section to the alignment
4216 // of the TLS segment.
4217 align = max_align;
4218 in_tls = false;
4219 }
4220 relro_size = align_address(relro_size, align);
4221 // Ignore the size of the .tbss section.
4222 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4223 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4224 continue;
4225 if ((*p)->is_address_valid())
4226 relro_size += (*p)->data_size();
4227 else
4228 {
4229 // FIXME: This could be faster.
4230 (*p)->set_address_and_file_offset(addr + relro_size,
4231 off + relro_size);
4232 relro_size += (*p)->data_size();
4233 (*p)->reset_address_and_file_offset();
4234 }
4235 }
4236 if (p != pdl->end())
4237 break;
4238 }
4239 relro_size += *increase_relro;
4240 // Pad the total relro size to a multiple of the maximum
4241 // section alignment seen.
4242 uint64_t aligned_size = align_address(relro_size, max_align);
4243 // Note the amount of padding added after the last relro section.
4244 last_relro_pad = aligned_size - relro_size;
4245 *has_relro = true;
4246
4247 uint64_t page_align = parameters->target().common_pagesize();
4248
4249 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4250 uint64_t desired_align = page_align - (aligned_size % page_align);
4251 if (desired_align < *poff % page_align)
4252 *poff += page_align - *poff % page_align;
4253 *poff += desired_align - *poff % page_align;
4254 addr += *poff - orig_off;
4255 orig_off = *poff;
4256 }
4257
4258 if (!reset && this->are_addresses_set_)
4259 {
4260 gold_assert(this->paddr_ == addr);
4261 addr = this->vaddr_;
4262 }
4263 else
4264 {
4265 this->vaddr_ = addr;
4266 this->paddr_ = addr;
4267 this->are_addresses_set_ = true;
4268 }
4269
4270 in_tls = false;
4271
4272 this->offset_ = orig_off;
4273
4274 off_t off = 0;
4275 uint64_t ret;
4276 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4277 {
4278 if (i == static_cast<int>(ORDER_RELRO_LAST))
4279 {
4280 *poff += last_relro_pad;
4281 addr += last_relro_pad;
4282 if (this->output_lists_[i].empty())
4283 {
4284 // If there is nothing in the ORDER_RELRO_LAST list,
4285 // the padding will occur at the end of the relro
4286 // segment, and we need to add it to *INCREASE_RELRO.
4287 *increase_relro += last_relro_pad;
4288 }
4289 }
4290 addr = this->set_section_list_addresses(layout, reset,
4291 &this->output_lists_[i],
4292 addr, poff, pshndx, &in_tls);
4293 if (i < static_cast<int>(ORDER_SMALL_BSS))
4294 {
4295 this->filesz_ = *poff - orig_off;
4296 off = *poff;
4297 }
4298
4299 ret = addr;
4300 }
4301
4302 // If the last section was a TLS section, align upward to the
4303 // alignment of the TLS segment, so that the overall size of the TLS
4304 // segment is aligned.
4305 if (in_tls)
4306 {
4307 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4308 *poff = align_address(*poff, segment_align);
4309 }
4310
4311 this->memsz_ = *poff - orig_off;
4312
4313 // Ignore the file offset adjustments made by the BSS Output_data
4314 // objects.
4315 *poff = off;
4316
4317 return ret;
4318 }
4319
4320 // Set the addresses and file offsets in a list of Output_data
4321 // structures.
4322
4323 uint64_t
4324 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4325 Output_data_list* pdl,
4326 uint64_t addr, off_t* poff,
4327 unsigned int* pshndx,
4328 bool* in_tls)
4329 {
4330 off_t startoff = *poff;
4331 // For incremental updates, we may allocate non-fixed sections from
4332 // free space in the file. This keeps track of the high-water mark.
4333 off_t maxoff = startoff;
4334
4335 off_t off = startoff;
4336 for (Output_data_list::iterator p = pdl->begin();
4337 p != pdl->end();
4338 ++p)
4339 {
4340 if (reset)
4341 (*p)->reset_address_and_file_offset();
4342
4343 // When doing an incremental update or when using a linker script,
4344 // the section will most likely already have an address.
4345 if (!(*p)->is_address_valid())
4346 {
4347 uint64_t align = (*p)->addralign();
4348
4349 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4350 {
4351 // Give the first TLS section the alignment of the
4352 // entire TLS segment. Otherwise the TLS segment as a
4353 // whole may be misaligned.
4354 if (!*in_tls)
4355 {
4356 Output_segment* tls_segment = layout->tls_segment();
4357 gold_assert(tls_segment != NULL);
4358 uint64_t segment_align = tls_segment->maximum_alignment();
4359 gold_assert(segment_align >= align);
4360 align = segment_align;
4361
4362 *in_tls = true;
4363 }
4364 }
4365 else
4366 {
4367 // If this is the first section after the TLS segment,
4368 // align it to at least the alignment of the TLS
4369 // segment, so that the size of the overall TLS segment
4370 // is aligned.
4371 if (*in_tls)
4372 {
4373 uint64_t segment_align =
4374 layout->tls_segment()->maximum_alignment();
4375 if (segment_align > align)
4376 align = segment_align;
4377
4378 *in_tls = false;
4379 }
4380 }
4381
4382 if (!parameters->incremental_update())
4383 {
4384 off = align_address(off, align);
4385 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4386 }
4387 else
4388 {
4389 // Incremental update: allocate file space from free list.
4390 (*p)->pre_finalize_data_size();
4391 off_t current_size = (*p)->current_data_size();
4392 off = layout->allocate(current_size, align, startoff);
4393 if (off == -1)
4394 {
4395 gold_assert((*p)->output_section() != NULL);
4396 gold_fallback(_("out of patch space for section %s; "
4397 "relink with --incremental-full"),
4398 (*p)->output_section()->name());
4399 }
4400 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4401 if ((*p)->data_size() > current_size)
4402 {
4403 gold_assert((*p)->output_section() != NULL);
4404 gold_fallback(_("%s: section changed size; "
4405 "relink with --incremental-full"),
4406 (*p)->output_section()->name());
4407 }
4408 }
4409 }
4410 else if (parameters->incremental_update())
4411 {
4412 // For incremental updates, use the fixed offset for the
4413 // high-water mark computation.
4414 off = (*p)->offset();
4415 }
4416 else
4417 {
4418 // The script may have inserted a skip forward, but it
4419 // better not have moved backward.
4420 if ((*p)->address() >= addr + (off - startoff))
4421 off += (*p)->address() - (addr + (off - startoff));
4422 else
4423 {
4424 if (!layout->script_options()->saw_sections_clause())
4425 gold_unreachable();
4426 else
4427 {
4428 Output_section* os = (*p)->output_section();
4429
4430 // Cast to unsigned long long to avoid format warnings.
4431 unsigned long long previous_dot =
4432 static_cast<unsigned long long>(addr + (off - startoff));
4433 unsigned long long dot =
4434 static_cast<unsigned long long>((*p)->address());
4435
4436 if (os == NULL)
4437 gold_error(_("dot moves backward in linker script "
4438 "from 0x%llx to 0x%llx"), previous_dot, dot);
4439 else
4440 gold_error(_("address of section '%s' moves backward "
4441 "from 0x%llx to 0x%llx"),
4442 os->name(), previous_dot, dot);
4443 }
4444 }
4445 (*p)->set_file_offset(off);
4446 (*p)->finalize_data_size();
4447 }
4448
4449 if (parameters->incremental_update())
4450 gold_debug(DEBUG_INCREMENTAL,
4451 "set_section_list_addresses: %08lx %08lx %s",
4452 static_cast<long>(off),
4453 static_cast<long>((*p)->data_size()),
4454 ((*p)->output_section() != NULL
4455 ? (*p)->output_section()->name() : "(special)"));
4456
4457 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4458 // section. Such a section does not affect the size of a
4459 // PT_LOAD segment.
4460 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4461 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4462 off += (*p)->data_size();
4463
4464 if (off > maxoff)
4465 maxoff = off;
4466
4467 if ((*p)->is_section())
4468 {
4469 (*p)->set_out_shndx(*pshndx);
4470 ++*pshndx;
4471 }
4472 }
4473
4474 *poff = maxoff;
4475 return addr + (maxoff - startoff);
4476 }
4477
4478 // For a non-PT_LOAD segment, set the offset from the sections, if
4479 // any. Add INCREASE to the file size and the memory size.
4480
4481 void
4482 Output_segment::set_offset(unsigned int increase)
4483 {
4484 gold_assert(this->type_ != elfcpp::PT_LOAD);
4485
4486 gold_assert(!this->are_addresses_set_);
4487
4488 // A non-load section only uses output_lists_[0].
4489
4490 Output_data_list* pdl = &this->output_lists_[0];
4491
4492 if (pdl->empty())
4493 {
4494 gold_assert(increase == 0);
4495 this->vaddr_ = 0;
4496 this->paddr_ = 0;
4497 this->are_addresses_set_ = true;
4498 this->memsz_ = 0;
4499 this->min_p_align_ = 0;
4500 this->offset_ = 0;
4501 this->filesz_ = 0;
4502 return;
4503 }
4504
4505 // Find the first and last section by address.
4506 const Output_data* first = NULL;
4507 const Output_data* last_data = NULL;
4508 const Output_data* last_bss = NULL;
4509 for (Output_data_list::const_iterator p = pdl->begin();
4510 p != pdl->end();
4511 ++p)
4512 {
4513 if (first == NULL
4514 || (*p)->address() < first->address()
4515 || ((*p)->address() == first->address()
4516 && (*p)->data_size() < first->data_size()))
4517 first = *p;
4518 const Output_data** plast;
4519 if ((*p)->is_section()
4520 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4521 plast = &last_bss;
4522 else
4523 plast = &last_data;
4524 if (*plast == NULL
4525 || (*p)->address() > (*plast)->address()
4526 || ((*p)->address() == (*plast)->address()
4527 && (*p)->data_size() > (*plast)->data_size()))
4528 *plast = *p;
4529 }
4530
4531 this->vaddr_ = first->address();
4532 this->paddr_ = (first->has_load_address()
4533 ? first->load_address()
4534 : this->vaddr_);
4535 this->are_addresses_set_ = true;
4536 this->offset_ = first->offset();
4537
4538 if (last_data == NULL)
4539 this->filesz_ = 0;
4540 else
4541 this->filesz_ = (last_data->address()
4542 + last_data->data_size()
4543 - this->vaddr_);
4544
4545 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4546 this->memsz_ = (last->address()
4547 + last->data_size()
4548 - this->vaddr_);
4549
4550 this->filesz_ += increase;
4551 this->memsz_ += increase;
4552
4553 // If this is a RELRO segment, verify that the segment ends at a
4554 // page boundary.
4555 if (this->type_ == elfcpp::PT_GNU_RELRO)
4556 {
4557 uint64_t page_align = parameters->target().common_pagesize();
4558 uint64_t segment_end = this->vaddr_ + this->memsz_;
4559 if (parameters->incremental_update())
4560 {
4561 // The INCREASE_RELRO calculation is bypassed for an incremental
4562 // update, so we need to adjust the segment size manually here.
4563 segment_end = align_address(segment_end, page_align);
4564 this->memsz_ = segment_end - this->vaddr_;
4565 }
4566 else
4567 gold_assert(segment_end == align_address(segment_end, page_align));
4568 }
4569
4570 // If this is a TLS segment, align the memory size. The code in
4571 // set_section_list ensures that the section after the TLS segment
4572 // is aligned to give us room.
4573 if (this->type_ == elfcpp::PT_TLS)
4574 {
4575 uint64_t segment_align = this->maximum_alignment();
4576 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4577 this->memsz_ = align_address(this->memsz_, segment_align);
4578 }
4579 }
4580
4581 // Set the TLS offsets of the sections in the PT_TLS segment.
4582
4583 void
4584 Output_segment::set_tls_offsets()
4585 {
4586 gold_assert(this->type_ == elfcpp::PT_TLS);
4587
4588 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4589 p != this->output_lists_[0].end();
4590 ++p)
4591 (*p)->set_tls_offset(this->vaddr_);
4592 }
4593
4594 // Return the load address of the first section.
4595
4596 uint64_t
4597 Output_segment::first_section_load_address() const
4598 {
4599 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4600 {
4601 const Output_data_list* pdl = &this->output_lists_[i];
4602 for (Output_data_list::const_iterator p = pdl->begin();
4603 p != pdl->end();
4604 ++p)
4605 {
4606 if ((*p)->is_section())
4607 return ((*p)->has_load_address()
4608 ? (*p)->load_address()
4609 : (*p)->address());
4610 }
4611 }
4612 gold_unreachable();
4613 }
4614
4615 // Return the number of Output_sections in an Output_segment.
4616
4617 unsigned int
4618 Output_segment::output_section_count() const
4619 {
4620 unsigned int ret = 0;
4621 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4622 ret += this->output_section_count_list(&this->output_lists_[i]);
4623 return ret;
4624 }
4625
4626 // Return the number of Output_sections in an Output_data_list.
4627
4628 unsigned int
4629 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4630 {
4631 unsigned int count = 0;
4632 for (Output_data_list::const_iterator p = pdl->begin();
4633 p != pdl->end();
4634 ++p)
4635 {
4636 if ((*p)->is_section())
4637 ++count;
4638 }
4639 return count;
4640 }
4641
4642 // Return the section attached to the list segment with the lowest
4643 // load address. This is used when handling a PHDRS clause in a
4644 // linker script.
4645
4646 Output_section*
4647 Output_segment::section_with_lowest_load_address() const
4648 {
4649 Output_section* found = NULL;
4650 uint64_t found_lma = 0;
4651 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4652 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4653 &found_lma);
4654 return found;
4655 }
4656
4657 // Look through a list for a section with a lower load address.
4658
4659 void
4660 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4661 Output_section** found,
4662 uint64_t* found_lma) const
4663 {
4664 for (Output_data_list::const_iterator p = pdl->begin();
4665 p != pdl->end();
4666 ++p)
4667 {
4668 if (!(*p)->is_section())
4669 continue;
4670 Output_section* os = static_cast<Output_section*>(*p);
4671 uint64_t lma = (os->has_load_address()
4672 ? os->load_address()
4673 : os->address());
4674 if (*found == NULL || lma < *found_lma)
4675 {
4676 *found = os;
4677 *found_lma = lma;
4678 }
4679 }
4680 }
4681
4682 // Write the segment data into *OPHDR.
4683
4684 template<int size, bool big_endian>
4685 void
4686 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4687 {
4688 ophdr->put_p_type(this->type_);
4689 ophdr->put_p_offset(this->offset_);
4690 ophdr->put_p_vaddr(this->vaddr_);
4691 ophdr->put_p_paddr(this->paddr_);
4692 ophdr->put_p_filesz(this->filesz_);
4693 ophdr->put_p_memsz(this->memsz_);
4694 ophdr->put_p_flags(this->flags_);
4695 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4696 }
4697
4698 // Write the section headers into V.
4699
4700 template<int size, bool big_endian>
4701 unsigned char*
4702 Output_segment::write_section_headers(const Layout* layout,
4703 const Stringpool* secnamepool,
4704 unsigned char* v,
4705 unsigned int* pshndx) const
4706 {
4707 // Every section that is attached to a segment must be attached to a
4708 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4709 // segments.
4710 if (this->type_ != elfcpp::PT_LOAD)
4711 return v;
4712
4713 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4714 {
4715 const Output_data_list* pdl = &this->output_lists_[i];
4716 v = this->write_section_headers_list<size, big_endian>(layout,
4717 secnamepool,
4718 pdl,
4719 v, pshndx);
4720 }
4721
4722 return v;
4723 }
4724
4725 template<int size, bool big_endian>
4726 unsigned char*
4727 Output_segment::write_section_headers_list(const Layout* layout,
4728 const Stringpool* secnamepool,
4729 const Output_data_list* pdl,
4730 unsigned char* v,
4731 unsigned int* pshndx) const
4732 {
4733 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4734 for (Output_data_list::const_iterator p = pdl->begin();
4735 p != pdl->end();
4736 ++p)
4737 {
4738 if ((*p)->is_section())
4739 {
4740 const Output_section* ps = static_cast<const Output_section*>(*p);
4741 gold_assert(*pshndx == ps->out_shndx());
4742 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4743 ps->write_header(layout, secnamepool, &oshdr);
4744 v += shdr_size;
4745 ++*pshndx;
4746 }
4747 }
4748 return v;
4749 }
4750
4751 // Print the output sections to the map file.
4752
4753 void
4754 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4755 {
4756 if (this->type() != elfcpp::PT_LOAD)
4757 return;
4758 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4759 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4760 }
4761
4762 // Print an output section list to the map file.
4763
4764 void
4765 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4766 const Output_data_list* pdl) const
4767 {
4768 for (Output_data_list::const_iterator p = pdl->begin();
4769 p != pdl->end();
4770 ++p)
4771 (*p)->print_to_mapfile(mapfile);
4772 }
4773
4774 // Output_file methods.
4775
4776 Output_file::Output_file(const char* name)
4777 : name_(name),
4778 o_(-1),
4779 file_size_(0),
4780 base_(NULL),
4781 map_is_anonymous_(false),
4782 map_is_allocated_(false),
4783 is_temporary_(false)
4784 {
4785 }
4786
4787 // Try to open an existing file. Returns false if the file doesn't
4788 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4789 // NULL, open that file as the base for incremental linking, and
4790 // copy its contents to the new output file. This routine can
4791 // be called for incremental updates, in which case WRITABLE should
4792 // be true, or by the incremental-dump utility, in which case
4793 // WRITABLE should be false.
4794
4795 bool
4796 Output_file::open_base_file(const char* base_name, bool writable)
4797 {
4798 // The name "-" means "stdout".
4799 if (strcmp(this->name_, "-") == 0)
4800 return false;
4801
4802 bool use_base_file = base_name != NULL;
4803 if (!use_base_file)
4804 base_name = this->name_;
4805 else if (strcmp(base_name, this->name_) == 0)
4806 gold_fatal(_("%s: incremental base and output file name are the same"),
4807 base_name);
4808
4809 // Don't bother opening files with a size of zero.
4810 struct stat s;
4811 if (::stat(base_name, &s) != 0)
4812 {
4813 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4814 return false;
4815 }
4816 if (s.st_size == 0)
4817 {
4818 gold_info(_("%s: incremental base file is empty"), base_name);
4819 return false;
4820 }
4821
4822 // If we're using a base file, we want to open it read-only.
4823 if (use_base_file)
4824 writable = false;
4825
4826 int oflags = writable ? O_RDWR : O_RDONLY;
4827 int o = open_descriptor(-1, base_name, oflags, 0);
4828 if (o < 0)
4829 {
4830 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4831 return false;
4832 }
4833
4834 // If the base file and the output file are different, open a
4835 // new output file and read the contents from the base file into
4836 // the newly-mapped region.
4837 if (use_base_file)
4838 {
4839 this->open(s.st_size);
4840 ssize_t bytes_to_read = s.st_size;
4841 unsigned char* p = this->base_;
4842 while (bytes_to_read > 0)
4843 {
4844 ssize_t len = ::read(o, p, bytes_to_read);
4845 if (len < 0)
4846 {
4847 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4848 return false;
4849 }
4850 if (len == 0)
4851 {
4852 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4853 base_name,
4854 static_cast<long long>(s.st_size - bytes_to_read),
4855 static_cast<long long>(s.st_size));
4856 return false;
4857 }
4858 p += len;
4859 bytes_to_read -= len;
4860 }
4861 ::close(o);
4862 return true;
4863 }
4864
4865 this->o_ = o;
4866 this->file_size_ = s.st_size;
4867
4868 if (!this->map_no_anonymous(writable))
4869 {
4870 release_descriptor(o, true);
4871 this->o_ = -1;
4872 this->file_size_ = 0;
4873 return false;
4874 }
4875
4876 return true;
4877 }
4878
4879 // Open the output file.
4880
4881 void
4882 Output_file::open(off_t file_size)
4883 {
4884 this->file_size_ = file_size;
4885
4886 // Unlink the file first; otherwise the open() may fail if the file
4887 // is busy (e.g. it's an executable that's currently being executed).
4888 //
4889 // However, the linker may be part of a system where a zero-length
4890 // file is created for it to write to, with tight permissions (gcc
4891 // 2.95 did something like this). Unlinking the file would work
4892 // around those permission controls, so we only unlink if the file
4893 // has a non-zero size. We also unlink only regular files to avoid
4894 // trouble with directories/etc.
4895 //
4896 // If we fail, continue; this command is merely a best-effort attempt
4897 // to improve the odds for open().
4898
4899 // We let the name "-" mean "stdout"
4900 if (!this->is_temporary_)
4901 {
4902 if (strcmp(this->name_, "-") == 0)
4903 this->o_ = STDOUT_FILENO;
4904 else
4905 {
4906 struct stat s;
4907 if (::stat(this->name_, &s) == 0
4908 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4909 {
4910 if (s.st_size != 0)
4911 ::unlink(this->name_);
4912 else if (!parameters->options().relocatable())
4913 {
4914 // If we don't unlink the existing file, add execute
4915 // permission where read permissions already exist
4916 // and where the umask permits.
4917 int mask = ::umask(0);
4918 ::umask(mask);
4919 s.st_mode |= (s.st_mode & 0444) >> 2;
4920 ::chmod(this->name_, s.st_mode & ~mask);
4921 }
4922 }
4923
4924 int mode = parameters->options().relocatable() ? 0666 : 0777;
4925 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4926 mode);
4927 if (o < 0)
4928 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4929 this->o_ = o;
4930 }
4931 }
4932
4933 this->map();
4934 }
4935
4936 // Resize the output file.
4937
4938 void
4939 Output_file::resize(off_t file_size)
4940 {
4941 // If the mmap is mapping an anonymous memory buffer, this is easy:
4942 // just mremap to the new size. If it's mapping to a file, we want
4943 // to unmap to flush to the file, then remap after growing the file.
4944 if (this->map_is_anonymous_)
4945 {
4946 void* base;
4947 if (!this->map_is_allocated_)
4948 {
4949 base = ::mremap(this->base_, this->file_size_, file_size,
4950 MREMAP_MAYMOVE);
4951 if (base == MAP_FAILED)
4952 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4953 }
4954 else
4955 {
4956 base = realloc(this->base_, file_size);
4957 if (base == NULL)
4958 gold_nomem();
4959 if (file_size > this->file_size_)
4960 memset(static_cast<char*>(base) + this->file_size_, 0,
4961 file_size - this->file_size_);
4962 }
4963 this->base_ = static_cast<unsigned char*>(base);
4964 this->file_size_ = file_size;
4965 }
4966 else
4967 {
4968 this->unmap();
4969 this->file_size_ = file_size;
4970 if (!this->map_no_anonymous(true))
4971 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4972 }
4973 }
4974
4975 // Map an anonymous block of memory which will later be written to the
4976 // file. Return whether the map succeeded.
4977
4978 bool
4979 Output_file::map_anonymous()
4980 {
4981 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4982 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4983 if (base == MAP_FAILED)
4984 {
4985 base = malloc(this->file_size_);
4986 if (base == NULL)
4987 return false;
4988 memset(base, 0, this->file_size_);
4989 this->map_is_allocated_ = true;
4990 }
4991 this->base_ = static_cast<unsigned char*>(base);
4992 this->map_is_anonymous_ = true;
4993 return true;
4994 }
4995
4996 // Map the file into memory. Return whether the mapping succeeded.
4997 // If WRITABLE is true, map with write access.
4998
4999 bool
5000 Output_file::map_no_anonymous(bool writable)
5001 {
5002 const int o = this->o_;
5003
5004 // If the output file is not a regular file, don't try to mmap it;
5005 // instead, we'll mmap a block of memory (an anonymous buffer), and
5006 // then later write the buffer to the file.
5007 void* base;
5008 struct stat statbuf;
5009 if (o == STDOUT_FILENO || o == STDERR_FILENO
5010 || ::fstat(o, &statbuf) != 0
5011 || !S_ISREG(statbuf.st_mode)
5012 || this->is_temporary_)
5013 return false;
5014
5015 // Ensure that we have disk space available for the file. If we
5016 // don't do this, it is possible that we will call munmap, close,
5017 // and exit with dirty buffers still in the cache with no assigned
5018 // disk blocks. If the disk is out of space at that point, the
5019 // output file will wind up incomplete, but we will have already
5020 // exited. The alternative to fallocate would be to use fdatasync,
5021 // but that would be a more significant performance hit.
5022 if (writable)
5023 {
5024 int err = gold_fallocate(o, 0, this->file_size_);
5025 if (err != 0)
5026 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5027 }
5028
5029 // Map the file into memory.
5030 int prot = PROT_READ;
5031 if (writable)
5032 prot |= PROT_WRITE;
5033 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5034
5035 // The mmap call might fail because of file system issues: the file
5036 // system might not support mmap at all, or it might not support
5037 // mmap with PROT_WRITE.
5038 if (base == MAP_FAILED)
5039 return false;
5040
5041 this->map_is_anonymous_ = false;
5042 this->base_ = static_cast<unsigned char*>(base);
5043 return true;
5044 }
5045
5046 // Map the file into memory.
5047
5048 void
5049 Output_file::map()
5050 {
5051 if (parameters->options().mmap_output_file()
5052 && this->map_no_anonymous(true))
5053 return;
5054
5055 // The mmap call might fail because of file system issues: the file
5056 // system might not support mmap at all, or it might not support
5057 // mmap with PROT_WRITE. I'm not sure which errno values we will
5058 // see in all cases, so if the mmap fails for any reason and we
5059 // don't care about file contents, try for an anonymous map.
5060 if (this->map_anonymous())
5061 return;
5062
5063 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5064 this->name_, static_cast<unsigned long>(this->file_size_),
5065 strerror(errno));
5066 }
5067
5068 // Unmap the file from memory.
5069
5070 void
5071 Output_file::unmap()
5072 {
5073 if (this->map_is_anonymous_)
5074 {
5075 // We've already written out the data, so there is no reason to
5076 // waste time unmapping or freeing the memory.
5077 }
5078 else
5079 {
5080 if (::munmap(this->base_, this->file_size_) < 0)
5081 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5082 }
5083 this->base_ = NULL;
5084 }
5085
5086 // Close the output file.
5087
5088 void
5089 Output_file::close()
5090 {
5091 // If the map isn't file-backed, we need to write it now.
5092 if (this->map_is_anonymous_ && !this->is_temporary_)
5093 {
5094 size_t bytes_to_write = this->file_size_;
5095 size_t offset = 0;
5096 while (bytes_to_write > 0)
5097 {
5098 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5099 bytes_to_write);
5100 if (bytes_written == 0)
5101 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5102 else if (bytes_written < 0)
5103 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5104 else
5105 {
5106 bytes_to_write -= bytes_written;
5107 offset += bytes_written;
5108 }
5109 }
5110 }
5111 this->unmap();
5112
5113 // We don't close stdout or stderr
5114 if (this->o_ != STDOUT_FILENO
5115 && this->o_ != STDERR_FILENO
5116 && !this->is_temporary_)
5117 if (::close(this->o_) < 0)
5118 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5119 this->o_ = -1;
5120 }
5121
5122 // Instantiate the templates we need. We could use the configure
5123 // script to restrict this to only the ones for implemented targets.
5124
5125 #ifdef HAVE_TARGET_32_LITTLE
5126 template
5127 off_t
5128 Output_section::add_input_section<32, false>(
5129 Layout* layout,
5130 Sized_relobj_file<32, false>* object,
5131 unsigned int shndx,
5132 const char* secname,
5133 const elfcpp::Shdr<32, false>& shdr,
5134 unsigned int reloc_shndx,
5135 bool have_sections_script);
5136 #endif
5137
5138 #ifdef HAVE_TARGET_32_BIG
5139 template
5140 off_t
5141 Output_section::add_input_section<32, true>(
5142 Layout* layout,
5143 Sized_relobj_file<32, true>* object,
5144 unsigned int shndx,
5145 const char* secname,
5146 const elfcpp::Shdr<32, true>& shdr,
5147 unsigned int reloc_shndx,
5148 bool have_sections_script);
5149 #endif
5150
5151 #ifdef HAVE_TARGET_64_LITTLE
5152 template
5153 off_t
5154 Output_section::add_input_section<64, false>(
5155 Layout* layout,
5156 Sized_relobj_file<64, false>* object,
5157 unsigned int shndx,
5158 const char* secname,
5159 const elfcpp::Shdr<64, false>& shdr,
5160 unsigned int reloc_shndx,
5161 bool have_sections_script);
5162 #endif
5163
5164 #ifdef HAVE_TARGET_64_BIG
5165 template
5166 off_t
5167 Output_section::add_input_section<64, true>(
5168 Layout* layout,
5169 Sized_relobj_file<64, true>* object,
5170 unsigned int shndx,
5171 const char* secname,
5172 const elfcpp::Shdr<64, true>& shdr,
5173 unsigned int reloc_shndx,
5174 bool have_sections_script);
5175 #endif
5176
5177 #ifdef HAVE_TARGET_32_LITTLE
5178 template
5179 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5180 #endif
5181
5182 #ifdef HAVE_TARGET_32_BIG
5183 template
5184 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5185 #endif
5186
5187 #ifdef HAVE_TARGET_64_LITTLE
5188 template
5189 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5190 #endif
5191
5192 #ifdef HAVE_TARGET_64_BIG
5193 template
5194 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5195 #endif
5196
5197 #ifdef HAVE_TARGET_32_LITTLE
5198 template
5199 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5200 #endif
5201
5202 #ifdef HAVE_TARGET_32_BIG
5203 template
5204 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5205 #endif
5206
5207 #ifdef HAVE_TARGET_64_LITTLE
5208 template
5209 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5210 #endif
5211
5212 #ifdef HAVE_TARGET_64_BIG
5213 template
5214 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5215 #endif
5216
5217 #ifdef HAVE_TARGET_32_LITTLE
5218 template
5219 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5220 #endif
5221
5222 #ifdef HAVE_TARGET_32_BIG
5223 template
5224 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5225 #endif
5226
5227 #ifdef HAVE_TARGET_64_LITTLE
5228 template
5229 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5230 #endif
5231
5232 #ifdef HAVE_TARGET_64_BIG
5233 template
5234 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5235 #endif
5236
5237 #ifdef HAVE_TARGET_32_LITTLE
5238 template
5239 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5240 #endif
5241
5242 #ifdef HAVE_TARGET_32_BIG
5243 template
5244 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5245 #endif
5246
5247 #ifdef HAVE_TARGET_64_LITTLE
5248 template
5249 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5250 #endif
5251
5252 #ifdef HAVE_TARGET_64_BIG
5253 template
5254 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5255 #endif
5256
5257 #ifdef HAVE_TARGET_32_LITTLE
5258 template
5259 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5260 #endif
5261
5262 #ifdef HAVE_TARGET_32_BIG
5263 template
5264 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5265 #endif
5266
5267 #ifdef HAVE_TARGET_64_LITTLE
5268 template
5269 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5270 #endif
5271
5272 #ifdef HAVE_TARGET_64_BIG
5273 template
5274 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5275 #endif
5276
5277 #ifdef HAVE_TARGET_32_LITTLE
5278 template
5279 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5280 #endif
5281
5282 #ifdef HAVE_TARGET_32_BIG
5283 template
5284 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5285 #endif
5286
5287 #ifdef HAVE_TARGET_64_LITTLE
5288 template
5289 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5290 #endif
5291
5292 #ifdef HAVE_TARGET_64_BIG
5293 template
5294 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5295 #endif
5296
5297 #ifdef HAVE_TARGET_32_LITTLE
5298 template
5299 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5300 #endif
5301
5302 #ifdef HAVE_TARGET_32_BIG
5303 template
5304 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5305 #endif
5306
5307 #ifdef HAVE_TARGET_64_LITTLE
5308 template
5309 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5310 #endif
5311
5312 #ifdef HAVE_TARGET_64_BIG
5313 template
5314 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5315 #endif
5316
5317 #ifdef HAVE_TARGET_32_LITTLE
5318 template
5319 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5320 #endif
5321
5322 #ifdef HAVE_TARGET_32_BIG
5323 template
5324 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5325 #endif
5326
5327 #ifdef HAVE_TARGET_64_LITTLE
5328 template
5329 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5330 #endif
5331
5332 #ifdef HAVE_TARGET_64_BIG
5333 template
5334 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5335 #endif
5336
5337 #ifdef HAVE_TARGET_32_LITTLE
5338 template
5339 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5340 #endif
5341
5342 #ifdef HAVE_TARGET_32_BIG
5343 template
5344 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5345 #endif
5346
5347 #ifdef HAVE_TARGET_64_LITTLE
5348 template
5349 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5350 #endif
5351
5352 #ifdef HAVE_TARGET_64_BIG
5353 template
5354 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5355 #endif
5356
5357 #ifdef HAVE_TARGET_32_LITTLE
5358 template
5359 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5360 #endif
5361
5362 #ifdef HAVE_TARGET_32_BIG
5363 template
5364 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5365 #endif
5366
5367 #ifdef HAVE_TARGET_64_LITTLE
5368 template
5369 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5370 #endif
5371
5372 #ifdef HAVE_TARGET_64_BIG
5373 template
5374 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5375 #endif
5376
5377 #ifdef HAVE_TARGET_32_LITTLE
5378 template
5379 class Output_data_group<32, false>;
5380 #endif
5381
5382 #ifdef HAVE_TARGET_32_BIG
5383 template
5384 class Output_data_group<32, true>;
5385 #endif
5386
5387 #ifdef HAVE_TARGET_64_LITTLE
5388 template
5389 class Output_data_group<64, false>;
5390 #endif
5391
5392 #ifdef HAVE_TARGET_64_BIG
5393 template
5394 class Output_data_group<64, true>;
5395 #endif
5396
5397 #ifdef HAVE_TARGET_32_LITTLE
5398 template
5399 class Output_data_got<32, false>;
5400 #endif
5401
5402 #ifdef HAVE_TARGET_32_BIG
5403 template
5404 class Output_data_got<32, true>;
5405 #endif
5406
5407 #ifdef HAVE_TARGET_64_LITTLE
5408 template
5409 class Output_data_got<64, false>;
5410 #endif
5411
5412 #ifdef HAVE_TARGET_64_BIG
5413 template
5414 class Output_data_got<64, true>;
5415 #endif
5416
5417 } // End namespace gold.
This page took 0.136315 seconds and 5 git commands to generate.