PR gold/14566
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address)
860 : address_(address), local_sym_index_(0), type_(type),
861 is_relative_(false), is_symbolless_(false),
862 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
863 {
864 // this->type_ is a bitfield; make sure TYPE fits.
865 gold_assert(this->type_ == type);
866 this->u1_.relobj = NULL;
867 this->u2_.od = od;
868 }
869
870 template<bool dynamic, int size, bool big_endian>
871 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
872 unsigned int type,
873 Sized_relobj<size, big_endian>* relobj,
874 unsigned int shndx,
875 Address address)
876 : address_(address), local_sym_index_(0), type_(type),
877 is_relative_(false), is_symbolless_(false),
878 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
879 {
880 gold_assert(shndx != INVALID_CODE);
881 // this->type_ is a bitfield; make sure TYPE fits.
882 gold_assert(this->type_ == type);
883 this->u1_.relobj = NULL;
884 this->u2_.relobj = relobj;
885 }
886
887 // A target specific relocation.
888
889 template<bool dynamic, int size, bool big_endian>
890 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
891 unsigned int type,
892 void* arg,
893 Output_data* od,
894 Address address)
895 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
896 is_relative_(false), is_symbolless_(false),
897 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
898 {
899 // this->type_ is a bitfield; make sure TYPE fits.
900 gold_assert(this->type_ == type);
901 this->u1_.arg = arg;
902 this->u2_.od = od;
903 }
904
905 template<bool dynamic, int size, bool big_endian>
906 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
907 unsigned int type,
908 void* arg,
909 Sized_relobj<size, big_endian>* relobj,
910 unsigned int shndx,
911 Address address)
912 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
913 is_relative_(false), is_symbolless_(false),
914 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
915 {
916 gold_assert(shndx != INVALID_CODE);
917 // this->type_ is a bitfield; make sure TYPE fits.
918 gold_assert(this->type_ == type);
919 this->u1_.arg = arg;
920 this->u2_.relobj = relobj;
921 }
922
923 // Record that we need a dynamic symbol index for this relocation.
924
925 template<bool dynamic, int size, bool big_endian>
926 void
927 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
928 set_needs_dynsym_index()
929 {
930 if (this->is_symbolless_)
931 return;
932 switch (this->local_sym_index_)
933 {
934 case INVALID_CODE:
935 gold_unreachable();
936
937 case GSYM_CODE:
938 this->u1_.gsym->set_needs_dynsym_entry();
939 break;
940
941 case SECTION_CODE:
942 this->u1_.os->set_needs_dynsym_index();
943 break;
944
945 case TARGET_CODE:
946 // The target must take care of this if necessary.
947 break;
948
949 case 0:
950 break;
951
952 default:
953 {
954 const unsigned int lsi = this->local_sym_index_;
955 Sized_relobj_file<size, big_endian>* relobj =
956 this->u1_.relobj->sized_relobj();
957 gold_assert(relobj != NULL);
958 if (!this->is_section_symbol_)
959 relobj->set_needs_output_dynsym_entry(lsi);
960 else
961 relobj->output_section(lsi)->set_needs_dynsym_index();
962 }
963 break;
964 }
965 }
966
967 // Get the symbol index of a relocation.
968
969 template<bool dynamic, int size, bool big_endian>
970 unsigned int
971 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
972 const
973 {
974 unsigned int index;
975 if (this->is_symbolless_)
976 return 0;
977 switch (this->local_sym_index_)
978 {
979 case INVALID_CODE:
980 gold_unreachable();
981
982 case GSYM_CODE:
983 if (this->u1_.gsym == NULL)
984 index = 0;
985 else if (dynamic)
986 index = this->u1_.gsym->dynsym_index();
987 else
988 index = this->u1_.gsym->symtab_index();
989 break;
990
991 case SECTION_CODE:
992 if (dynamic)
993 index = this->u1_.os->dynsym_index();
994 else
995 index = this->u1_.os->symtab_index();
996 break;
997
998 case TARGET_CODE:
999 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1000 this->type_);
1001 break;
1002
1003 case 0:
1004 // Relocations without symbols use a symbol index of 0.
1005 index = 0;
1006 break;
1007
1008 default:
1009 {
1010 const unsigned int lsi = this->local_sym_index_;
1011 Sized_relobj_file<size, big_endian>* relobj =
1012 this->u1_.relobj->sized_relobj();
1013 gold_assert(relobj != NULL);
1014 if (!this->is_section_symbol_)
1015 {
1016 if (dynamic)
1017 index = relobj->dynsym_index(lsi);
1018 else
1019 index = relobj->symtab_index(lsi);
1020 }
1021 else
1022 {
1023 Output_section* os = relobj->output_section(lsi);
1024 gold_assert(os != NULL);
1025 if (dynamic)
1026 index = os->dynsym_index();
1027 else
1028 index = os->symtab_index();
1029 }
1030 }
1031 break;
1032 }
1033 gold_assert(index != -1U);
1034 return index;
1035 }
1036
1037 // For a local section symbol, get the address of the offset ADDEND
1038 // within the input section.
1039
1040 template<bool dynamic, int size, bool big_endian>
1041 typename elfcpp::Elf_types<size>::Elf_Addr
1042 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1043 local_section_offset(Addend addend) const
1044 {
1045 gold_assert(this->local_sym_index_ != GSYM_CODE
1046 && this->local_sym_index_ != SECTION_CODE
1047 && this->local_sym_index_ != TARGET_CODE
1048 && this->local_sym_index_ != INVALID_CODE
1049 && this->local_sym_index_ != 0
1050 && this->is_section_symbol_);
1051 const unsigned int lsi = this->local_sym_index_;
1052 Output_section* os = this->u1_.relobj->output_section(lsi);
1053 gold_assert(os != NULL);
1054 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1055 if (offset != invalid_address)
1056 return offset + addend;
1057 // This is a merge section.
1058 Sized_relobj_file<size, big_endian>* relobj =
1059 this->u1_.relobj->sized_relobj();
1060 gold_assert(relobj != NULL);
1061 offset = os->output_address(relobj, lsi, addend);
1062 gold_assert(offset != invalid_address);
1063 return offset;
1064 }
1065
1066 // Get the output address of a relocation.
1067
1068 template<bool dynamic, int size, bool big_endian>
1069 typename elfcpp::Elf_types<size>::Elf_Addr
1070 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1071 {
1072 Address address = this->address_;
1073 if (this->shndx_ != INVALID_CODE)
1074 {
1075 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1076 gold_assert(os != NULL);
1077 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1078 if (off != invalid_address)
1079 address += os->address() + off;
1080 else
1081 {
1082 Sized_relobj_file<size, big_endian>* relobj =
1083 this->u2_.relobj->sized_relobj();
1084 gold_assert(relobj != NULL);
1085 address = os->output_address(relobj, this->shndx_, address);
1086 gold_assert(address != invalid_address);
1087 }
1088 }
1089 else if (this->u2_.od != NULL)
1090 address += this->u2_.od->address();
1091 return address;
1092 }
1093
1094 // Write out the offset and info fields of a Rel or Rela relocation
1095 // entry.
1096
1097 template<bool dynamic, int size, bool big_endian>
1098 template<typename Write_rel>
1099 void
1100 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1101 Write_rel* wr) const
1102 {
1103 wr->put_r_offset(this->get_address());
1104 unsigned int sym_index = this->get_symbol_index();
1105 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1106 }
1107
1108 // Write out a Rel relocation.
1109
1110 template<bool dynamic, int size, bool big_endian>
1111 void
1112 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1113 unsigned char* pov) const
1114 {
1115 elfcpp::Rel_write<size, big_endian> orel(pov);
1116 this->write_rel(&orel);
1117 }
1118
1119 // Get the value of the symbol referred to by a Rel relocation.
1120
1121 template<bool dynamic, int size, bool big_endian>
1122 typename elfcpp::Elf_types<size>::Elf_Addr
1123 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1124 Addend addend) const
1125 {
1126 if (this->local_sym_index_ == GSYM_CODE)
1127 {
1128 const Sized_symbol<size>* sym;
1129 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1130 if (this->use_plt_offset_ && sym->has_plt_offset())
1131 {
1132 uint64_t plt_address =
1133 parameters->target().plt_address_for_global(sym);
1134 return plt_address + sym->plt_offset();
1135 }
1136 else
1137 return sym->value() + addend;
1138 }
1139 if (this->local_sym_index_ == SECTION_CODE)
1140 {
1141 gold_assert(!this->use_plt_offset_);
1142 return this->u1_.os->address() + addend;
1143 }
1144 gold_assert(this->local_sym_index_ != TARGET_CODE
1145 && this->local_sym_index_ != INVALID_CODE
1146 && this->local_sym_index_ != 0
1147 && !this->is_section_symbol_);
1148 const unsigned int lsi = this->local_sym_index_;
1149 Sized_relobj_file<size, big_endian>* relobj =
1150 this->u1_.relobj->sized_relobj();
1151 gold_assert(relobj != NULL);
1152 if (this->use_plt_offset_)
1153 {
1154 uint64_t plt_address =
1155 parameters->target().plt_address_for_local(relobj, lsi);
1156 return plt_address + relobj->local_plt_offset(lsi);
1157 }
1158 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1159 return symval->value(relobj, addend);
1160 }
1161
1162 // Reloc comparison. This function sorts the dynamic relocs for the
1163 // benefit of the dynamic linker. First we sort all relative relocs
1164 // to the front. Among relative relocs, we sort by output address.
1165 // Among non-relative relocs, we sort by symbol index, then by output
1166 // address.
1167
1168 template<bool dynamic, int size, bool big_endian>
1169 int
1170 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1171 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1172 const
1173 {
1174 if (this->is_relative_)
1175 {
1176 if (!r2.is_relative_)
1177 return -1;
1178 // Otherwise sort by reloc address below.
1179 }
1180 else if (r2.is_relative_)
1181 return 1;
1182 else
1183 {
1184 unsigned int sym1 = this->get_symbol_index();
1185 unsigned int sym2 = r2.get_symbol_index();
1186 if (sym1 < sym2)
1187 return -1;
1188 else if (sym1 > sym2)
1189 return 1;
1190 // Otherwise sort by reloc address.
1191 }
1192
1193 section_offset_type addr1 = this->get_address();
1194 section_offset_type addr2 = r2.get_address();
1195 if (addr1 < addr2)
1196 return -1;
1197 else if (addr1 > addr2)
1198 return 1;
1199
1200 // Final tie breaker, in order to generate the same output on any
1201 // host: reloc type.
1202 unsigned int type1 = this->type_;
1203 unsigned int type2 = r2.type_;
1204 if (type1 < type2)
1205 return -1;
1206 else if (type1 > type2)
1207 return 1;
1208
1209 // These relocs appear to be exactly the same.
1210 return 0;
1211 }
1212
1213 // Write out a Rela relocation.
1214
1215 template<bool dynamic, int size, bool big_endian>
1216 void
1217 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1218 unsigned char* pov) const
1219 {
1220 elfcpp::Rela_write<size, big_endian> orel(pov);
1221 this->rel_.write_rel(&orel);
1222 Addend addend = this->addend_;
1223 if (this->rel_.is_target_specific())
1224 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1225 this->rel_.type(), addend);
1226 else if (this->rel_.is_symbolless())
1227 addend = this->rel_.symbol_value(addend);
1228 else if (this->rel_.is_local_section_symbol())
1229 addend = this->rel_.local_section_offset(addend);
1230 orel.put_r_addend(addend);
1231 }
1232
1233 // Output_data_reloc_base methods.
1234
1235 // Adjust the output section.
1236
1237 template<int sh_type, bool dynamic, int size, bool big_endian>
1238 void
1239 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1240 ::do_adjust_output_section(Output_section* os)
1241 {
1242 if (sh_type == elfcpp::SHT_REL)
1243 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1244 else if (sh_type == elfcpp::SHT_RELA)
1245 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1246 else
1247 gold_unreachable();
1248
1249 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1250 // static link. The backends will generate a dynamic reloc section
1251 // to hold this. In that case we don't want to link to the dynsym
1252 // section, because there isn't one.
1253 if (!dynamic)
1254 os->set_should_link_to_symtab();
1255 else if (parameters->doing_static_link())
1256 ;
1257 else
1258 os->set_should_link_to_dynsym();
1259 }
1260
1261 // Write out relocation data.
1262
1263 template<int sh_type, bool dynamic, int size, bool big_endian>
1264 void
1265 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1266 Output_file* of)
1267 {
1268 const off_t off = this->offset();
1269 const off_t oview_size = this->data_size();
1270 unsigned char* const oview = of->get_output_view(off, oview_size);
1271
1272 if (this->sort_relocs())
1273 {
1274 gold_assert(dynamic);
1275 std::sort(this->relocs_.begin(), this->relocs_.end(),
1276 Sort_relocs_comparison());
1277 }
1278
1279 unsigned char* pov = oview;
1280 for (typename Relocs::const_iterator p = this->relocs_.begin();
1281 p != this->relocs_.end();
1282 ++p)
1283 {
1284 p->write(pov);
1285 pov += reloc_size;
1286 }
1287
1288 gold_assert(pov - oview == oview_size);
1289
1290 of->write_output_view(off, oview_size, oview);
1291
1292 // We no longer need the relocation entries.
1293 this->relocs_.clear();
1294 }
1295
1296 // Class Output_relocatable_relocs.
1297
1298 template<int sh_type, int size, bool big_endian>
1299 void
1300 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1301 {
1302 this->set_data_size(this->rr_->output_reloc_count()
1303 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1304 }
1305
1306 // class Output_data_group.
1307
1308 template<int size, bool big_endian>
1309 Output_data_group<size, big_endian>::Output_data_group(
1310 Sized_relobj_file<size, big_endian>* relobj,
1311 section_size_type entry_count,
1312 elfcpp::Elf_Word flags,
1313 std::vector<unsigned int>* input_shndxes)
1314 : Output_section_data(entry_count * 4, 4, false),
1315 relobj_(relobj),
1316 flags_(flags)
1317 {
1318 this->input_shndxes_.swap(*input_shndxes);
1319 }
1320
1321 // Write out the section group, which means translating the section
1322 // indexes to apply to the output file.
1323
1324 template<int size, bool big_endian>
1325 void
1326 Output_data_group<size, big_endian>::do_write(Output_file* of)
1327 {
1328 const off_t off = this->offset();
1329 const section_size_type oview_size =
1330 convert_to_section_size_type(this->data_size());
1331 unsigned char* const oview = of->get_output_view(off, oview_size);
1332
1333 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1334 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1335 ++contents;
1336
1337 for (std::vector<unsigned int>::const_iterator p =
1338 this->input_shndxes_.begin();
1339 p != this->input_shndxes_.end();
1340 ++p, ++contents)
1341 {
1342 Output_section* os = this->relobj_->output_section(*p);
1343
1344 unsigned int output_shndx;
1345 if (os != NULL)
1346 output_shndx = os->out_shndx();
1347 else
1348 {
1349 this->relobj_->error(_("section group retained but "
1350 "group element discarded"));
1351 output_shndx = 0;
1352 }
1353
1354 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1355 }
1356
1357 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1358 gold_assert(wrote == oview_size);
1359
1360 of->write_output_view(off, oview_size, oview);
1361
1362 // We no longer need this information.
1363 this->input_shndxes_.clear();
1364 }
1365
1366 // Output_data_got::Got_entry methods.
1367
1368 // Write out the entry.
1369
1370 template<int size, bool big_endian>
1371 void
1372 Output_data_got<size, big_endian>::Got_entry::write(
1373 unsigned int got_indx,
1374 unsigned char* pov) const
1375 {
1376 Valtype val = 0;
1377
1378 switch (this->local_sym_index_)
1379 {
1380 case GSYM_CODE:
1381 {
1382 // If the symbol is resolved locally, we need to write out the
1383 // link-time value, which will be relocated dynamically by a
1384 // RELATIVE relocation.
1385 Symbol* gsym = this->u_.gsym;
1386 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1387 val = (parameters->target().plt_address_for_global(gsym)
1388 + gsym->plt_offset());
1389 else
1390 {
1391 Sized_symbol<size>* sgsym;
1392 // This cast is a bit ugly. We don't want to put a
1393 // virtual method in Symbol, because we want Symbol to be
1394 // as small as possible.
1395 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1396 val = sgsym->value();
1397 if (this->use_plt_or_tls_offset_ && gsym->type() == elfcpp::STT_TLS)
1398 val += parameters->target().tls_offset_for_global(gsym,
1399 got_indx);
1400 }
1401 }
1402 break;
1403
1404 case CONSTANT_CODE:
1405 val = this->u_.constant;
1406 break;
1407
1408 case RESERVED_CODE:
1409 // If we're doing an incremental update, don't touch this GOT entry.
1410 if (parameters->incremental_update())
1411 return;
1412 val = this->u_.constant;
1413 break;
1414
1415 default:
1416 {
1417 const Sized_relobj_file<size, big_endian>* object
1418 = static_cast<Sized_relobj_file<size, big_endian>*>(this->u_.object);
1419 const unsigned int lsi = this->local_sym_index_;
1420 bool is_tls = object->local_symbol(lsi)->is_tls_symbol();
1421 if (this->use_plt_or_tls_offset_ && !is_tls)
1422 {
1423 uint64_t plt_address =
1424 parameters->target().plt_address_for_local(object, lsi);
1425 val = plt_address + object->local_plt_offset(lsi);
1426 }
1427 else
1428 {
1429 uint64_t lval = object->local_symbol_value(lsi, 0);
1430 val = convert_types<Valtype, uint64_t>(lval);
1431 if (this->use_plt_or_tls_offset_ && is_tls)
1432 val += parameters->target().tls_offset_for_local(object, lsi,
1433 got_indx);
1434 }
1435 }
1436 break;
1437 }
1438
1439 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1440 }
1441
1442 // Output_data_got methods.
1443
1444 // Add an entry for a global symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already had a GOT
1446 // entry.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_global(
1451 Symbol* gsym,
1452 unsigned int got_type)
1453 {
1454 if (gsym->has_got_offset(got_type))
1455 return false;
1456
1457 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1458 gsym->set_got_offset(got_type, got_offset);
1459 return true;
1460 }
1461
1462 // Like add_global, but use the PLT offset.
1463
1464 template<int size, bool big_endian>
1465 bool
1466 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1467 unsigned int got_type)
1468 {
1469 if (gsym->has_got_offset(got_type))
1470 return false;
1471
1472 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1473 gsym->set_got_offset(got_type, got_offset);
1474 return true;
1475 }
1476
1477 // Add an entry for a global symbol to the GOT, and add a dynamic
1478 // relocation of type R_TYPE for the GOT entry.
1479
1480 template<int size, bool big_endian>
1481 void
1482 Output_data_got<size, big_endian>::add_global_with_rel(
1483 Symbol* gsym,
1484 unsigned int got_type,
1485 Output_data_reloc_generic* rel_dyn,
1486 unsigned int r_type)
1487 {
1488 if (gsym->has_got_offset(got_type))
1489 return;
1490
1491 unsigned int got_offset = this->add_got_entry(Got_entry());
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1494 }
1495
1496 // Add a pair of entries for a global symbol to the GOT, and add
1497 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1498 // If R_TYPE_2 == 0, add the second entry with no relocation.
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1502 Symbol* gsym,
1503 unsigned int got_type,
1504 Output_data_reloc_generic* rel_dyn,
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
1507 {
1508 if (gsym->has_got_offset(got_type))
1509 return;
1510
1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512 gsym->set_got_offset(got_type, got_offset);
1513 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1514
1515 if (r_type_2 != 0)
1516 rel_dyn->add_global_generic(gsym, r_type_2, this,
1517 got_offset + size / 8, 0);
1518 }
1519
1520 // Add an entry for a local symbol to the GOT. This returns true if
1521 // this is a new GOT entry, false if the symbol already has a GOT
1522 // entry.
1523
1524 template<int size, bool big_endian>
1525 bool
1526 Output_data_got<size, big_endian>::add_local(
1527 Relobj* object,
1528 unsigned int symndx,
1529 unsigned int got_type)
1530 {
1531 if (object->local_has_got_offset(symndx, got_type))
1532 return false;
1533
1534 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1535 false));
1536 object->set_local_got_offset(symndx, got_type, got_offset);
1537 return true;
1538 }
1539
1540 // Like add_local, but use the PLT offset.
1541
1542 template<int size, bool big_endian>
1543 bool
1544 Output_data_got<size, big_endian>::add_local_plt(
1545 Relobj* object,
1546 unsigned int symndx,
1547 unsigned int got_type)
1548 {
1549 if (object->local_has_got_offset(symndx, got_type))
1550 return false;
1551
1552 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1553 true));
1554 object->set_local_got_offset(symndx, got_type, got_offset);
1555 return true;
1556 }
1557
1558 // Add an entry for a local symbol to the GOT, and add a dynamic
1559 // relocation of type R_TYPE for the GOT entry.
1560
1561 template<int size, bool big_endian>
1562 void
1563 Output_data_got<size, big_endian>::add_local_with_rel(
1564 Relobj* object,
1565 unsigned int symndx,
1566 unsigned int got_type,
1567 Output_data_reloc_generic* rel_dyn,
1568 unsigned int r_type)
1569 {
1570 if (object->local_has_got_offset(symndx, got_type))
1571 return;
1572
1573 unsigned int got_offset = this->add_got_entry(Got_entry());
1574 object->set_local_got_offset(symndx, got_type, got_offset);
1575 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1576 }
1577
1578 // Add a pair of entries for a local symbol to the GOT, and add
1579 // a dynamic relocation of type R_TYPE using the section symbol of
1580 // the output section to which input section SHNDX maps, on the first.
1581 // The first got entry will have a value of zero, the second the
1582 // value of the local symbol.
1583 template<int size, bool big_endian>
1584 void
1585 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1586 Relobj* object,
1587 unsigned int symndx,
1588 unsigned int shndx,
1589 unsigned int got_type,
1590 Output_data_reloc_generic* rel_dyn,
1591 unsigned int r_type)
1592 {
1593 if (object->local_has_got_offset(symndx, got_type))
1594 return;
1595
1596 unsigned int got_offset =
1597 this->add_got_entry_pair(Got_entry(),
1598 Got_entry(object, symndx, false));
1599 object->set_local_got_offset(symndx, got_type, got_offset);
1600 Output_section* os = object->output_section(shndx);
1601 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1602 }
1603
1604 // Add a pair of entries for a local symbol to the GOT, and add
1605 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1606 // The first got entry will have a value of zero, the second the
1607 // value of the local symbol offset by Target::tls_offset_for_local.
1608 template<int size, bool big_endian>
1609 void
1610 Output_data_got<size, big_endian>::add_local_tls_pair(
1611 Relobj* object,
1612 unsigned int symndx,
1613 unsigned int got_type,
1614 Output_data_reloc_generic* rel_dyn,
1615 unsigned int r_type)
1616 {
1617 if (object->local_has_got_offset(symndx, got_type))
1618 return;
1619
1620 unsigned int got_offset
1621 = this->add_got_entry_pair(Got_entry(),
1622 Got_entry(object, symndx, true));
1623 object->set_local_got_offset(symndx, got_type, got_offset);
1624 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1625 }
1626
1627 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1628
1629 template<int size, bool big_endian>
1630 void
1631 Output_data_got<size, big_endian>::reserve_local(
1632 unsigned int i,
1633 Relobj* object,
1634 unsigned int sym_index,
1635 unsigned int got_type)
1636 {
1637 this->do_reserve_slot(i);
1638 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1639 }
1640
1641 // Reserve a slot in the GOT for a global symbol.
1642
1643 template<int size, bool big_endian>
1644 void
1645 Output_data_got<size, big_endian>::reserve_global(
1646 unsigned int i,
1647 Symbol* gsym,
1648 unsigned int got_type)
1649 {
1650 this->do_reserve_slot(i);
1651 gsym->set_got_offset(got_type, this->got_offset(i));
1652 }
1653
1654 // Write out the GOT.
1655
1656 template<int size, bool big_endian>
1657 void
1658 Output_data_got<size, big_endian>::do_write(Output_file* of)
1659 {
1660 const int add = size / 8;
1661
1662 const off_t off = this->offset();
1663 const off_t oview_size = this->data_size();
1664 unsigned char* const oview = of->get_output_view(off, oview_size);
1665
1666 unsigned char* pov = oview;
1667 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1668 {
1669 this->entries_[i].write(i, pov);
1670 pov += add;
1671 }
1672
1673 gold_assert(pov - oview == oview_size);
1674
1675 of->write_output_view(off, oview_size, oview);
1676
1677 // We no longer need the GOT entries.
1678 this->entries_.clear();
1679 }
1680
1681 // Create a new GOT entry and return its offset.
1682
1683 template<int size, bool big_endian>
1684 unsigned int
1685 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1686 {
1687 if (!this->is_data_size_valid())
1688 {
1689 this->entries_.push_back(got_entry);
1690 this->set_got_size();
1691 return this->last_got_offset();
1692 }
1693 else
1694 {
1695 // For an incremental update, find an available slot.
1696 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1697 if (got_offset == -1)
1698 gold_fallback(_("out of patch space (GOT);"
1699 " relink with --incremental-full"));
1700 unsigned int got_index = got_offset / (size / 8);
1701 gold_assert(got_index < this->entries_.size());
1702 this->entries_[got_index] = got_entry;
1703 return static_cast<unsigned int>(got_offset);
1704 }
1705 }
1706
1707 // Create a pair of new GOT entries and return the offset of the first.
1708
1709 template<int size, bool big_endian>
1710 unsigned int
1711 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1712 Got_entry got_entry_2)
1713 {
1714 if (!this->is_data_size_valid())
1715 {
1716 unsigned int got_offset;
1717 this->entries_.push_back(got_entry_1);
1718 got_offset = this->last_got_offset();
1719 this->entries_.push_back(got_entry_2);
1720 this->set_got_size();
1721 return got_offset;
1722 }
1723 else
1724 {
1725 // For an incremental update, find an available pair of slots.
1726 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1727 if (got_offset == -1)
1728 gold_fallback(_("out of patch space (GOT);"
1729 " relink with --incremental-full"));
1730 unsigned int got_index = got_offset / (size / 8);
1731 gold_assert(got_index < this->entries_.size());
1732 this->entries_[got_index] = got_entry_1;
1733 this->entries_[got_index + 1] = got_entry_2;
1734 return static_cast<unsigned int>(got_offset);
1735 }
1736 }
1737
1738 // Replace GOT entry I with a new value.
1739
1740 template<int size, bool big_endian>
1741 void
1742 Output_data_got<size, big_endian>::replace_got_entry(
1743 unsigned int i,
1744 Got_entry got_entry)
1745 {
1746 gold_assert(i < this->entries_.size());
1747 this->entries_[i] = got_entry;
1748 }
1749
1750 // Output_data_dynamic::Dynamic_entry methods.
1751
1752 // Write out the entry.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Output_data_dynamic::Dynamic_entry::write(
1757 unsigned char* pov,
1758 const Stringpool* pool) const
1759 {
1760 typename elfcpp::Elf_types<size>::Elf_WXword val;
1761 switch (this->offset_)
1762 {
1763 case DYNAMIC_NUMBER:
1764 val = this->u_.val;
1765 break;
1766
1767 case DYNAMIC_SECTION_SIZE:
1768 val = this->u_.od->data_size();
1769 if (this->od2 != NULL)
1770 val += this->od2->data_size();
1771 break;
1772
1773 case DYNAMIC_SYMBOL:
1774 {
1775 const Sized_symbol<size>* s =
1776 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1777 val = s->value();
1778 }
1779 break;
1780
1781 case DYNAMIC_STRING:
1782 val = pool->get_offset(this->u_.str);
1783 break;
1784
1785 default:
1786 val = this->u_.od->address() + this->offset_;
1787 break;
1788 }
1789
1790 elfcpp::Dyn_write<size, big_endian> dw(pov);
1791 dw.put_d_tag(this->tag_);
1792 dw.put_d_val(val);
1793 }
1794
1795 // Output_data_dynamic methods.
1796
1797 // Adjust the output section to set the entry size.
1798
1799 void
1800 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1801 {
1802 if (parameters->target().get_size() == 32)
1803 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1804 else if (parameters->target().get_size() == 64)
1805 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1806 else
1807 gold_unreachable();
1808 }
1809
1810 // Set the final data size.
1811
1812 void
1813 Output_data_dynamic::set_final_data_size()
1814 {
1815 // Add the terminating entry if it hasn't been added.
1816 // Because of relaxation, we can run this multiple times.
1817 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1818 {
1819 int extra = parameters->options().spare_dynamic_tags();
1820 for (int i = 0; i < extra; ++i)
1821 this->add_constant(elfcpp::DT_NULL, 0);
1822 this->add_constant(elfcpp::DT_NULL, 0);
1823 }
1824
1825 int dyn_size;
1826 if (parameters->target().get_size() == 32)
1827 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1828 else if (parameters->target().get_size() == 64)
1829 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1830 else
1831 gold_unreachable();
1832 this->set_data_size(this->entries_.size() * dyn_size);
1833 }
1834
1835 // Write out the dynamic entries.
1836
1837 void
1838 Output_data_dynamic::do_write(Output_file* of)
1839 {
1840 switch (parameters->size_and_endianness())
1841 {
1842 #ifdef HAVE_TARGET_32_LITTLE
1843 case Parameters::TARGET_32_LITTLE:
1844 this->sized_write<32, false>(of);
1845 break;
1846 #endif
1847 #ifdef HAVE_TARGET_32_BIG
1848 case Parameters::TARGET_32_BIG:
1849 this->sized_write<32, true>(of);
1850 break;
1851 #endif
1852 #ifdef HAVE_TARGET_64_LITTLE
1853 case Parameters::TARGET_64_LITTLE:
1854 this->sized_write<64, false>(of);
1855 break;
1856 #endif
1857 #ifdef HAVE_TARGET_64_BIG
1858 case Parameters::TARGET_64_BIG:
1859 this->sized_write<64, true>(of);
1860 break;
1861 #endif
1862 default:
1863 gold_unreachable();
1864 }
1865 }
1866
1867 template<int size, bool big_endian>
1868 void
1869 Output_data_dynamic::sized_write(Output_file* of)
1870 {
1871 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1872
1873 const off_t offset = this->offset();
1874 const off_t oview_size = this->data_size();
1875 unsigned char* const oview = of->get_output_view(offset, oview_size);
1876
1877 unsigned char* pov = oview;
1878 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1879 p != this->entries_.end();
1880 ++p)
1881 {
1882 p->write<size, big_endian>(pov, this->pool_);
1883 pov += dyn_size;
1884 }
1885
1886 gold_assert(pov - oview == oview_size);
1887
1888 of->write_output_view(offset, oview_size, oview);
1889
1890 // We no longer need the dynamic entries.
1891 this->entries_.clear();
1892 }
1893
1894 // Class Output_symtab_xindex.
1895
1896 void
1897 Output_symtab_xindex::do_write(Output_file* of)
1898 {
1899 const off_t offset = this->offset();
1900 const off_t oview_size = this->data_size();
1901 unsigned char* const oview = of->get_output_view(offset, oview_size);
1902
1903 memset(oview, 0, oview_size);
1904
1905 if (parameters->target().is_big_endian())
1906 this->endian_do_write<true>(oview);
1907 else
1908 this->endian_do_write<false>(oview);
1909
1910 of->write_output_view(offset, oview_size, oview);
1911
1912 // We no longer need the data.
1913 this->entries_.clear();
1914 }
1915
1916 template<bool big_endian>
1917 void
1918 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1919 {
1920 for (Xindex_entries::const_iterator p = this->entries_.begin();
1921 p != this->entries_.end();
1922 ++p)
1923 {
1924 unsigned int symndx = p->first;
1925 gold_assert(symndx * 4 < this->data_size());
1926 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1927 }
1928 }
1929
1930 // Output_fill_debug_info methods.
1931
1932 // Return the minimum size needed for a dummy compilation unit header.
1933
1934 size_t
1935 Output_fill_debug_info::do_minimum_hole_size() const
1936 {
1937 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1938 // address_size.
1939 const size_t len = 4 + 2 + 4 + 1;
1940 // For type units, add type_signature, type_offset.
1941 if (this->is_debug_types_)
1942 return len + 8 + 4;
1943 return len;
1944 }
1945
1946 // Write a dummy compilation unit header to fill a hole in the
1947 // .debug_info or .debug_types section.
1948
1949 void
1950 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1951 {
1952 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1953 static_cast<long>(off), static_cast<long>(len));
1954
1955 gold_assert(len >= this->do_minimum_hole_size());
1956
1957 unsigned char* const oview = of->get_output_view(off, len);
1958 unsigned char* pov = oview;
1959
1960 // Write header fields: unit_length, version, debug_abbrev_offset,
1961 // address_size.
1962 if (this->is_big_endian())
1963 {
1964 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1965 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1966 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1967 }
1968 else
1969 {
1970 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1971 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1972 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1973 }
1974 pov += 4 + 2 + 4;
1975 *pov++ = 4;
1976
1977 // For type units, the additional header fields -- type_signature,
1978 // type_offset -- can be filled with zeroes.
1979
1980 // Fill the remainder of the free space with zeroes. The first
1981 // zero should tell the consumer there are no DIEs to read in this
1982 // compilation unit.
1983 if (pov < oview + len)
1984 memset(pov, 0, oview + len - pov);
1985
1986 of->write_output_view(off, len, oview);
1987 }
1988
1989 // Output_fill_debug_line methods.
1990
1991 // Return the minimum size needed for a dummy line number program header.
1992
1993 size_t
1994 Output_fill_debug_line::do_minimum_hole_size() const
1995 {
1996 // Line number program header fields: unit_length, version, header_length,
1997 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1998 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1999 const size_t len = 4 + 2 + 4 + this->header_length;
2000 return len;
2001 }
2002
2003 // Write a dummy line number program header to fill a hole in the
2004 // .debug_line section.
2005
2006 void
2007 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2008 {
2009 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2010 static_cast<long>(off), static_cast<long>(len));
2011
2012 gold_assert(len >= this->do_minimum_hole_size());
2013
2014 unsigned char* const oview = of->get_output_view(off, len);
2015 unsigned char* pov = oview;
2016
2017 // Write header fields: unit_length, version, header_length,
2018 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2019 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2020 // We set the header_length field to cover the entire hole, so the
2021 // line number program is empty.
2022 if (this->is_big_endian())
2023 {
2024 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2025 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2026 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2027 }
2028 else
2029 {
2030 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2031 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2032 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2033 }
2034 pov += 4 + 2 + 4;
2035 *pov++ = 1; // minimum_instruction_length
2036 *pov++ = 0; // default_is_stmt
2037 *pov++ = 0; // line_base
2038 *pov++ = 5; // line_range
2039 *pov++ = 13; // opcode_base
2040 *pov++ = 0; // standard_opcode_lengths[1]
2041 *pov++ = 1; // standard_opcode_lengths[2]
2042 *pov++ = 1; // standard_opcode_lengths[3]
2043 *pov++ = 1; // standard_opcode_lengths[4]
2044 *pov++ = 1; // standard_opcode_lengths[5]
2045 *pov++ = 0; // standard_opcode_lengths[6]
2046 *pov++ = 0; // standard_opcode_lengths[7]
2047 *pov++ = 0; // standard_opcode_lengths[8]
2048 *pov++ = 1; // standard_opcode_lengths[9]
2049 *pov++ = 0; // standard_opcode_lengths[10]
2050 *pov++ = 0; // standard_opcode_lengths[11]
2051 *pov++ = 1; // standard_opcode_lengths[12]
2052 *pov++ = 0; // include_directories (empty)
2053 *pov++ = 0; // filenames (empty)
2054
2055 // Some consumers don't check the header_length field, and simply
2056 // start reading the line number program immediately following the
2057 // header. For those consumers, we fill the remainder of the free
2058 // space with DW_LNS_set_basic_block opcodes. These are effectively
2059 // no-ops: the resulting line table program will not create any rows.
2060 if (pov < oview + len)
2061 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2062
2063 of->write_output_view(off, len, oview);
2064 }
2065
2066 // Output_section::Input_section methods.
2067
2068 // Return the current data size. For an input section we store the size here.
2069 // For an Output_section_data, we have to ask it for the size.
2070
2071 off_t
2072 Output_section::Input_section::current_data_size() const
2073 {
2074 if (this->is_input_section())
2075 return this->u1_.data_size;
2076 else
2077 {
2078 this->u2_.posd->pre_finalize_data_size();
2079 return this->u2_.posd->current_data_size();
2080 }
2081 }
2082
2083 // Return the data size. For an input section we store the size here.
2084 // For an Output_section_data, we have to ask it for the size.
2085
2086 off_t
2087 Output_section::Input_section::data_size() const
2088 {
2089 if (this->is_input_section())
2090 return this->u1_.data_size;
2091 else
2092 return this->u2_.posd->data_size();
2093 }
2094
2095 // Return the object for an input section.
2096
2097 Relobj*
2098 Output_section::Input_section::relobj() const
2099 {
2100 if (this->is_input_section())
2101 return this->u2_.object;
2102 else if (this->is_merge_section())
2103 {
2104 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2105 return this->u2_.pomb->first_relobj();
2106 }
2107 else if (this->is_relaxed_input_section())
2108 return this->u2_.poris->relobj();
2109 else
2110 gold_unreachable();
2111 }
2112
2113 // Return the input section index for an input section.
2114
2115 unsigned int
2116 Output_section::Input_section::shndx() const
2117 {
2118 if (this->is_input_section())
2119 return this->shndx_;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_shndx();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->shndx();
2127 else
2128 gold_unreachable();
2129 }
2130
2131 // Set the address and file offset.
2132
2133 void
2134 Output_section::Input_section::set_address_and_file_offset(
2135 uint64_t address,
2136 off_t file_offset,
2137 off_t section_file_offset)
2138 {
2139 if (this->is_input_section())
2140 this->u2_.object->set_section_offset(this->shndx_,
2141 file_offset - section_file_offset);
2142 else
2143 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2144 }
2145
2146 // Reset the address and file offset.
2147
2148 void
2149 Output_section::Input_section::reset_address_and_file_offset()
2150 {
2151 if (!this->is_input_section())
2152 this->u2_.posd->reset_address_and_file_offset();
2153 }
2154
2155 // Finalize the data size.
2156
2157 void
2158 Output_section::Input_section::finalize_data_size()
2159 {
2160 if (!this->is_input_section())
2161 this->u2_.posd->finalize_data_size();
2162 }
2163
2164 // Try to turn an input offset into an output offset. We want to
2165 // return the output offset relative to the start of this
2166 // Input_section in the output section.
2167
2168 inline bool
2169 Output_section::Input_section::output_offset(
2170 const Relobj* object,
2171 unsigned int shndx,
2172 section_offset_type offset,
2173 section_offset_type* poutput) const
2174 {
2175 if (!this->is_input_section())
2176 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2177 else
2178 {
2179 if (this->shndx_ != shndx || this->u2_.object != object)
2180 return false;
2181 *poutput = offset;
2182 return true;
2183 }
2184 }
2185
2186 // Return whether this is the merge section for the input section
2187 // SHNDX in OBJECT.
2188
2189 inline bool
2190 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2191 unsigned int shndx) const
2192 {
2193 if (this->is_input_section())
2194 return false;
2195 return this->u2_.posd->is_merge_section_for(object, shndx);
2196 }
2197
2198 // Write out the data. We don't have to do anything for an input
2199 // section--they are handled via Object::relocate--but this is where
2200 // we write out the data for an Output_section_data.
2201
2202 void
2203 Output_section::Input_section::write(Output_file* of)
2204 {
2205 if (!this->is_input_section())
2206 this->u2_.posd->write(of);
2207 }
2208
2209 // Write the data to a buffer. As for write(), we don't have to do
2210 // anything for an input section.
2211
2212 void
2213 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2214 {
2215 if (!this->is_input_section())
2216 this->u2_.posd->write_to_buffer(buffer);
2217 }
2218
2219 // Print to a map file.
2220
2221 void
2222 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2223 {
2224 switch (this->shndx_)
2225 {
2226 case OUTPUT_SECTION_CODE:
2227 case MERGE_DATA_SECTION_CODE:
2228 case MERGE_STRING_SECTION_CODE:
2229 this->u2_.posd->print_to_mapfile(mapfile);
2230 break;
2231
2232 case RELAXED_INPUT_SECTION_CODE:
2233 {
2234 Output_relaxed_input_section* relaxed_section =
2235 this->relaxed_input_section();
2236 mapfile->print_input_section(relaxed_section->relobj(),
2237 relaxed_section->shndx());
2238 }
2239 break;
2240 default:
2241 mapfile->print_input_section(this->u2_.object, this->shndx_);
2242 break;
2243 }
2244 }
2245
2246 // Output_section methods.
2247
2248 // Construct an Output_section. NAME will point into a Stringpool.
2249
2250 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2251 elfcpp::Elf_Xword flags)
2252 : name_(name),
2253 addralign_(0),
2254 entsize_(0),
2255 load_address_(0),
2256 link_section_(NULL),
2257 link_(0),
2258 info_section_(NULL),
2259 info_symndx_(NULL),
2260 info_(0),
2261 type_(type),
2262 flags_(flags),
2263 order_(ORDER_INVALID),
2264 out_shndx_(-1U),
2265 symtab_index_(0),
2266 dynsym_index_(0),
2267 input_sections_(),
2268 first_input_offset_(0),
2269 fills_(),
2270 postprocessing_buffer_(NULL),
2271 needs_symtab_index_(false),
2272 needs_dynsym_index_(false),
2273 should_link_to_symtab_(false),
2274 should_link_to_dynsym_(false),
2275 after_input_sections_(false),
2276 requires_postprocessing_(false),
2277 found_in_sections_clause_(false),
2278 has_load_address_(false),
2279 info_uses_section_index_(false),
2280 input_section_order_specified_(false),
2281 may_sort_attached_input_sections_(false),
2282 must_sort_attached_input_sections_(false),
2283 attached_input_sections_are_sorted_(false),
2284 is_relro_(false),
2285 is_small_section_(false),
2286 is_large_section_(false),
2287 generate_code_fills_at_write_(false),
2288 is_entsize_zero_(false),
2289 section_offsets_need_adjustment_(false),
2290 is_noload_(false),
2291 always_keeps_input_sections_(false),
2292 has_fixed_layout_(false),
2293 is_patch_space_allowed_(false),
2294 is_unique_segment_(false),
2295 tls_offset_(0),
2296 extra_segment_flags_(0),
2297 segment_alignment_(0),
2298 checkpoint_(NULL),
2299 lookup_maps_(new Output_section_lookup_maps),
2300 free_list_(),
2301 free_space_fill_(NULL),
2302 patch_space_(0)
2303 {
2304 // An unallocated section has no address. Forcing this means that
2305 // we don't need special treatment for symbols defined in debug
2306 // sections.
2307 if ((flags & elfcpp::SHF_ALLOC) == 0)
2308 this->set_address(0);
2309 }
2310
2311 Output_section::~Output_section()
2312 {
2313 delete this->checkpoint_;
2314 }
2315
2316 // Set the entry size.
2317
2318 void
2319 Output_section::set_entsize(uint64_t v)
2320 {
2321 if (this->is_entsize_zero_)
2322 ;
2323 else if (this->entsize_ == 0)
2324 this->entsize_ = v;
2325 else if (this->entsize_ != v)
2326 {
2327 this->entsize_ = 0;
2328 this->is_entsize_zero_ = 1;
2329 }
2330 }
2331
2332 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2333 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2334 // relocation section which applies to this section, or 0 if none, or
2335 // -1U if more than one. Return the offset of the input section
2336 // within the output section. Return -1 if the input section will
2337 // receive special handling. In the normal case we don't always keep
2338 // track of input sections for an Output_section. Instead, each
2339 // Object keeps track of the Output_section for each of its input
2340 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2341 // track of input sections here; this is used when SECTIONS appears in
2342 // a linker script.
2343
2344 template<int size, bool big_endian>
2345 off_t
2346 Output_section::add_input_section(Layout* layout,
2347 Sized_relobj_file<size, big_endian>* object,
2348 unsigned int shndx,
2349 const char* secname,
2350 const elfcpp::Shdr<size, big_endian>& shdr,
2351 unsigned int reloc_shndx,
2352 bool have_sections_script)
2353 {
2354 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2355 if ((addralign & (addralign - 1)) != 0)
2356 {
2357 object->error(_("invalid alignment %lu for section \"%s\""),
2358 static_cast<unsigned long>(addralign), secname);
2359 addralign = 1;
2360 }
2361
2362 if (addralign > this->addralign_)
2363 this->addralign_ = addralign;
2364
2365 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2366 uint64_t entsize = shdr.get_sh_entsize();
2367
2368 // .debug_str is a mergeable string section, but is not always so
2369 // marked by compilers. Mark manually here so we can optimize.
2370 if (strcmp(secname, ".debug_str") == 0)
2371 {
2372 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2373 entsize = 1;
2374 }
2375
2376 this->update_flags_for_input_section(sh_flags);
2377 this->set_entsize(entsize);
2378
2379 // If this is a SHF_MERGE section, we pass all the input sections to
2380 // a Output_data_merge. We don't try to handle relocations for such
2381 // a section. We don't try to handle empty merge sections--they
2382 // mess up the mappings, and are useless anyhow.
2383 // FIXME: Need to handle merge sections during incremental update.
2384 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2385 && reloc_shndx == 0
2386 && shdr.get_sh_size() > 0
2387 && !parameters->incremental())
2388 {
2389 // Keep information about merged input sections for rebuilding fast
2390 // lookup maps if we have sections-script or we do relaxation.
2391 bool keeps_input_sections = (this->always_keeps_input_sections_
2392 || have_sections_script
2393 || parameters->target().may_relax());
2394
2395 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2396 addralign, keeps_input_sections))
2397 {
2398 // Tell the relocation routines that they need to call the
2399 // output_offset method to determine the final address.
2400 return -1;
2401 }
2402 }
2403
2404 section_size_type input_section_size = shdr.get_sh_size();
2405 section_size_type uncompressed_size;
2406 if (object->section_is_compressed(shndx, &uncompressed_size))
2407 input_section_size = uncompressed_size;
2408
2409 off_t offset_in_section;
2410 off_t aligned_offset_in_section;
2411 if (this->has_fixed_layout())
2412 {
2413 // For incremental updates, find a chunk of unused space in the section.
2414 offset_in_section = this->free_list_.allocate(input_section_size,
2415 addralign, 0);
2416 if (offset_in_section == -1)
2417 gold_fallback(_("out of patch space in section %s; "
2418 "relink with --incremental-full"),
2419 this->name());
2420 aligned_offset_in_section = offset_in_section;
2421 }
2422 else
2423 {
2424 offset_in_section = this->current_data_size_for_child();
2425 aligned_offset_in_section = align_address(offset_in_section,
2426 addralign);
2427 this->set_current_data_size_for_child(aligned_offset_in_section
2428 + input_section_size);
2429 }
2430
2431 // Determine if we want to delay code-fill generation until the output
2432 // section is written. When the target is relaxing, we want to delay fill
2433 // generating to avoid adjusting them during relaxation. Also, if we are
2434 // sorting input sections we must delay fill generation.
2435 if (!this->generate_code_fills_at_write_
2436 && !have_sections_script
2437 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2438 && parameters->target().has_code_fill()
2439 && (parameters->target().may_relax()
2440 || layout->is_section_ordering_specified()))
2441 {
2442 gold_assert(this->fills_.empty());
2443 this->generate_code_fills_at_write_ = true;
2444 }
2445
2446 if (aligned_offset_in_section > offset_in_section
2447 && !this->generate_code_fills_at_write_
2448 && !have_sections_script
2449 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2450 && parameters->target().has_code_fill())
2451 {
2452 // We need to add some fill data. Using fill_list_ when
2453 // possible is an optimization, since we will often have fill
2454 // sections without input sections.
2455 off_t fill_len = aligned_offset_in_section - offset_in_section;
2456 if (this->input_sections_.empty())
2457 this->fills_.push_back(Fill(offset_in_section, fill_len));
2458 else
2459 {
2460 std::string fill_data(parameters->target().code_fill(fill_len));
2461 Output_data_const* odc = new Output_data_const(fill_data, 1);
2462 this->input_sections_.push_back(Input_section(odc));
2463 }
2464 }
2465
2466 // We need to keep track of this section if we are already keeping
2467 // track of sections, or if we are relaxing. Also, if this is a
2468 // section which requires sorting, or which may require sorting in
2469 // the future, we keep track of the sections. If the
2470 // --section-ordering-file option is used to specify the order of
2471 // sections, we need to keep track of sections.
2472 if (this->always_keeps_input_sections_
2473 || have_sections_script
2474 || !this->input_sections_.empty()
2475 || this->may_sort_attached_input_sections()
2476 || this->must_sort_attached_input_sections()
2477 || parameters->options().user_set_Map()
2478 || parameters->target().may_relax()
2479 || layout->is_section_ordering_specified())
2480 {
2481 Input_section isecn(object, shndx, input_section_size, addralign);
2482 /* If section ordering is requested by specifying a ordering file,
2483 using --section-ordering-file, match the section name with
2484 a pattern. */
2485 if (parameters->options().section_ordering_file())
2486 {
2487 unsigned int section_order_index =
2488 layout->find_section_order_index(std::string(secname));
2489 if (section_order_index != 0)
2490 {
2491 isecn.set_section_order_index(section_order_index);
2492 this->set_input_section_order_specified();
2493 }
2494 }
2495 if (this->has_fixed_layout())
2496 {
2497 // For incremental updates, finalize the address and offset now.
2498 uint64_t addr = this->address();
2499 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2500 aligned_offset_in_section,
2501 this->offset());
2502 }
2503 this->input_sections_.push_back(isecn);
2504 }
2505
2506 return aligned_offset_in_section;
2507 }
2508
2509 // Add arbitrary data to an output section.
2510
2511 void
2512 Output_section::add_output_section_data(Output_section_data* posd)
2513 {
2514 Input_section inp(posd);
2515 this->add_output_section_data(&inp);
2516
2517 if (posd->is_data_size_valid())
2518 {
2519 off_t offset_in_section;
2520 if (this->has_fixed_layout())
2521 {
2522 // For incremental updates, find a chunk of unused space.
2523 offset_in_section = this->free_list_.allocate(posd->data_size(),
2524 posd->addralign(), 0);
2525 if (offset_in_section == -1)
2526 gold_fallback(_("out of patch space in section %s; "
2527 "relink with --incremental-full"),
2528 this->name());
2529 // Finalize the address and offset now.
2530 uint64_t addr = this->address();
2531 off_t offset = this->offset();
2532 posd->set_address_and_file_offset(addr + offset_in_section,
2533 offset + offset_in_section);
2534 }
2535 else
2536 {
2537 offset_in_section = this->current_data_size_for_child();
2538 off_t aligned_offset_in_section = align_address(offset_in_section,
2539 posd->addralign());
2540 this->set_current_data_size_for_child(aligned_offset_in_section
2541 + posd->data_size());
2542 }
2543 }
2544 else if (this->has_fixed_layout())
2545 {
2546 // For incremental updates, arrange for the data to have a fixed layout.
2547 // This will mean that additions to the data must be allocated from
2548 // free space within the containing output section.
2549 uint64_t addr = this->address();
2550 posd->set_address(addr);
2551 posd->set_file_offset(0);
2552 // FIXME: This should eventually be unreachable.
2553 // gold_unreachable();
2554 }
2555 }
2556
2557 // Add a relaxed input section.
2558
2559 void
2560 Output_section::add_relaxed_input_section(Layout* layout,
2561 Output_relaxed_input_section* poris,
2562 const std::string& name)
2563 {
2564 Input_section inp(poris);
2565
2566 // If the --section-ordering-file option is used to specify the order of
2567 // sections, we need to keep track of sections.
2568 if (layout->is_section_ordering_specified())
2569 {
2570 unsigned int section_order_index =
2571 layout->find_section_order_index(name);
2572 if (section_order_index != 0)
2573 {
2574 inp.set_section_order_index(section_order_index);
2575 this->set_input_section_order_specified();
2576 }
2577 }
2578
2579 this->add_output_section_data(&inp);
2580 if (this->lookup_maps_->is_valid())
2581 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2582 poris->shndx(), poris);
2583
2584 // For a relaxed section, we use the current data size. Linker scripts
2585 // get all the input sections, including relaxed one from an output
2586 // section and add them back to them same output section to compute the
2587 // output section size. If we do not account for sizes of relaxed input
2588 // sections, an output section would be incorrectly sized.
2589 off_t offset_in_section = this->current_data_size_for_child();
2590 off_t aligned_offset_in_section = align_address(offset_in_section,
2591 poris->addralign());
2592 this->set_current_data_size_for_child(aligned_offset_in_section
2593 + poris->current_data_size());
2594 }
2595
2596 // Add arbitrary data to an output section by Input_section.
2597
2598 void
2599 Output_section::add_output_section_data(Input_section* inp)
2600 {
2601 if (this->input_sections_.empty())
2602 this->first_input_offset_ = this->current_data_size_for_child();
2603
2604 this->input_sections_.push_back(*inp);
2605
2606 uint64_t addralign = inp->addralign();
2607 if (addralign > this->addralign_)
2608 this->addralign_ = addralign;
2609
2610 inp->set_output_section(this);
2611 }
2612
2613 // Add a merge section to an output section.
2614
2615 void
2616 Output_section::add_output_merge_section(Output_section_data* posd,
2617 bool is_string, uint64_t entsize)
2618 {
2619 Input_section inp(posd, is_string, entsize);
2620 this->add_output_section_data(&inp);
2621 }
2622
2623 // Add an input section to a SHF_MERGE section.
2624
2625 bool
2626 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2627 uint64_t flags, uint64_t entsize,
2628 uint64_t addralign,
2629 bool keeps_input_sections)
2630 {
2631 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2632
2633 // We only merge strings if the alignment is not more than the
2634 // character size. This could be handled, but it's unusual.
2635 if (is_string && addralign > entsize)
2636 return false;
2637
2638 // We cannot restore merged input section states.
2639 gold_assert(this->checkpoint_ == NULL);
2640
2641 // Look up merge sections by required properties.
2642 // Currently, we only invalidate the lookup maps in script processing
2643 // and relaxation. We should not have done either when we reach here.
2644 // So we assume that the lookup maps are valid to simply code.
2645 gold_assert(this->lookup_maps_->is_valid());
2646 Merge_section_properties msp(is_string, entsize, addralign);
2647 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2648 bool is_new = false;
2649 if (pomb != NULL)
2650 {
2651 gold_assert(pomb->is_string() == is_string
2652 && pomb->entsize() == entsize
2653 && pomb->addralign() == addralign);
2654 }
2655 else
2656 {
2657 // Create a new Output_merge_data or Output_merge_string_data.
2658 if (!is_string)
2659 pomb = new Output_merge_data(entsize, addralign);
2660 else
2661 {
2662 switch (entsize)
2663 {
2664 case 1:
2665 pomb = new Output_merge_string<char>(addralign);
2666 break;
2667 case 2:
2668 pomb = new Output_merge_string<uint16_t>(addralign);
2669 break;
2670 case 4:
2671 pomb = new Output_merge_string<uint32_t>(addralign);
2672 break;
2673 default:
2674 return false;
2675 }
2676 }
2677 // If we need to do script processing or relaxation, we need to keep
2678 // the original input sections to rebuild the fast lookup maps.
2679 if (keeps_input_sections)
2680 pomb->set_keeps_input_sections();
2681 is_new = true;
2682 }
2683
2684 if (pomb->add_input_section(object, shndx))
2685 {
2686 // Add new merge section to this output section and link merge
2687 // section properties to new merge section in map.
2688 if (is_new)
2689 {
2690 this->add_output_merge_section(pomb, is_string, entsize);
2691 this->lookup_maps_->add_merge_section(msp, pomb);
2692 }
2693
2694 // Add input section to new merge section and link input section to new
2695 // merge section in map.
2696 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2697 return true;
2698 }
2699 else
2700 {
2701 // If add_input_section failed, delete new merge section to avoid
2702 // exporting empty merge sections in Output_section::get_input_section.
2703 if (is_new)
2704 delete pomb;
2705 return false;
2706 }
2707 }
2708
2709 // Build a relaxation map to speed up relaxation of existing input sections.
2710 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2711
2712 void
2713 Output_section::build_relaxation_map(
2714 const Input_section_list& input_sections,
2715 size_t limit,
2716 Relaxation_map* relaxation_map) const
2717 {
2718 for (size_t i = 0; i < limit; ++i)
2719 {
2720 const Input_section& is(input_sections[i]);
2721 if (is.is_input_section() || is.is_relaxed_input_section())
2722 {
2723 Section_id sid(is.relobj(), is.shndx());
2724 (*relaxation_map)[sid] = i;
2725 }
2726 }
2727 }
2728
2729 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2730 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2731 // indices of INPUT_SECTIONS.
2732
2733 void
2734 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2735 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2736 const Relaxation_map& map,
2737 Input_section_list* input_sections)
2738 {
2739 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2740 {
2741 Output_relaxed_input_section* poris = relaxed_sections[i];
2742 Section_id sid(poris->relobj(), poris->shndx());
2743 Relaxation_map::const_iterator p = map.find(sid);
2744 gold_assert(p != map.end());
2745 gold_assert((*input_sections)[p->second].is_input_section());
2746
2747 // Remember section order index of original input section
2748 // if it is set. Copy it to the relaxed input section.
2749 unsigned int soi =
2750 (*input_sections)[p->second].section_order_index();
2751 (*input_sections)[p->second] = Input_section(poris);
2752 (*input_sections)[p->second].set_section_order_index(soi);
2753 }
2754 }
2755
2756 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2757 // is a vector of pointers to Output_relaxed_input_section or its derived
2758 // classes. The relaxed sections must correspond to existing input sections.
2759
2760 void
2761 Output_section::convert_input_sections_to_relaxed_sections(
2762 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2763 {
2764 gold_assert(parameters->target().may_relax());
2765
2766 // We want to make sure that restore_states does not undo the effect of
2767 // this. If there is no checkpoint active, just search the current
2768 // input section list and replace the sections there. If there is
2769 // a checkpoint, also replace the sections there.
2770
2771 // By default, we look at the whole list.
2772 size_t limit = this->input_sections_.size();
2773
2774 if (this->checkpoint_ != NULL)
2775 {
2776 // Replace input sections with relaxed input section in the saved
2777 // copy of the input section list.
2778 if (this->checkpoint_->input_sections_saved())
2779 {
2780 Relaxation_map map;
2781 this->build_relaxation_map(
2782 *(this->checkpoint_->input_sections()),
2783 this->checkpoint_->input_sections()->size(),
2784 &map);
2785 this->convert_input_sections_in_list_to_relaxed_sections(
2786 relaxed_sections,
2787 map,
2788 this->checkpoint_->input_sections());
2789 }
2790 else
2791 {
2792 // We have not copied the input section list yet. Instead, just
2793 // look at the portion that would be saved.
2794 limit = this->checkpoint_->input_sections_size();
2795 }
2796 }
2797
2798 // Convert input sections in input_section_list.
2799 Relaxation_map map;
2800 this->build_relaxation_map(this->input_sections_, limit, &map);
2801 this->convert_input_sections_in_list_to_relaxed_sections(
2802 relaxed_sections,
2803 map,
2804 &this->input_sections_);
2805
2806 // Update fast look-up map.
2807 if (this->lookup_maps_->is_valid())
2808 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2809 {
2810 Output_relaxed_input_section* poris = relaxed_sections[i];
2811 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2812 poris->shndx(), poris);
2813 }
2814 }
2815
2816 // Update the output section flags based on input section flags.
2817
2818 void
2819 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2820 {
2821 // If we created the section with SHF_ALLOC clear, we set the
2822 // address. If we are now setting the SHF_ALLOC flag, we need to
2823 // undo that.
2824 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2825 && (flags & elfcpp::SHF_ALLOC) != 0)
2826 this->mark_address_invalid();
2827
2828 this->flags_ |= (flags
2829 & (elfcpp::SHF_WRITE
2830 | elfcpp::SHF_ALLOC
2831 | elfcpp::SHF_EXECINSTR));
2832
2833 if ((flags & elfcpp::SHF_MERGE) == 0)
2834 this->flags_ &=~ elfcpp::SHF_MERGE;
2835 else
2836 {
2837 if (this->current_data_size_for_child() == 0)
2838 this->flags_ |= elfcpp::SHF_MERGE;
2839 }
2840
2841 if ((flags & elfcpp::SHF_STRINGS) == 0)
2842 this->flags_ &=~ elfcpp::SHF_STRINGS;
2843 else
2844 {
2845 if (this->current_data_size_for_child() == 0)
2846 this->flags_ |= elfcpp::SHF_STRINGS;
2847 }
2848 }
2849
2850 // Find the merge section into which an input section with index SHNDX in
2851 // OBJECT has been added. Return NULL if none found.
2852
2853 Output_section_data*
2854 Output_section::find_merge_section(const Relobj* object,
2855 unsigned int shndx) const
2856 {
2857 if (!this->lookup_maps_->is_valid())
2858 this->build_lookup_maps();
2859 return this->lookup_maps_->find_merge_section(object, shndx);
2860 }
2861
2862 // Build the lookup maps for merge and relaxed sections. This is needs
2863 // to be declared as a const methods so that it is callable with a const
2864 // Output_section pointer. The method only updates states of the maps.
2865
2866 void
2867 Output_section::build_lookup_maps() const
2868 {
2869 this->lookup_maps_->clear();
2870 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2871 p != this->input_sections_.end();
2872 ++p)
2873 {
2874 if (p->is_merge_section())
2875 {
2876 Output_merge_base* pomb = p->output_merge_base();
2877 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2878 pomb->addralign());
2879 this->lookup_maps_->add_merge_section(msp, pomb);
2880 for (Output_merge_base::Input_sections::const_iterator is =
2881 pomb->input_sections_begin();
2882 is != pomb->input_sections_end();
2883 ++is)
2884 {
2885 const Const_section_id& csid = *is;
2886 this->lookup_maps_->add_merge_input_section(csid.first,
2887 csid.second, pomb);
2888 }
2889
2890 }
2891 else if (p->is_relaxed_input_section())
2892 {
2893 Output_relaxed_input_section* poris = p->relaxed_input_section();
2894 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2895 poris->shndx(), poris);
2896 }
2897 }
2898 }
2899
2900 // Find an relaxed input section corresponding to an input section
2901 // in OBJECT with index SHNDX.
2902
2903 const Output_relaxed_input_section*
2904 Output_section::find_relaxed_input_section(const Relobj* object,
2905 unsigned int shndx) const
2906 {
2907 if (!this->lookup_maps_->is_valid())
2908 this->build_lookup_maps();
2909 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2910 }
2911
2912 // Given an address OFFSET relative to the start of input section
2913 // SHNDX in OBJECT, return whether this address is being included in
2914 // the final link. This should only be called if SHNDX in OBJECT has
2915 // a special mapping.
2916
2917 bool
2918 Output_section::is_input_address_mapped(const Relobj* object,
2919 unsigned int shndx,
2920 off_t offset) const
2921 {
2922 // Look at the Output_section_data_maps first.
2923 const Output_section_data* posd = this->find_merge_section(object, shndx);
2924 if (posd == NULL)
2925 posd = this->find_relaxed_input_section(object, shndx);
2926
2927 if (posd != NULL)
2928 {
2929 section_offset_type output_offset;
2930 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2931 gold_assert(found);
2932 return output_offset != -1;
2933 }
2934
2935 // Fall back to the slow look-up.
2936 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2937 p != this->input_sections_.end();
2938 ++p)
2939 {
2940 section_offset_type output_offset;
2941 if (p->output_offset(object, shndx, offset, &output_offset))
2942 return output_offset != -1;
2943 }
2944
2945 // By default we assume that the address is mapped. This should
2946 // only be called after we have passed all sections to Layout. At
2947 // that point we should know what we are discarding.
2948 return true;
2949 }
2950
2951 // Given an address OFFSET relative to the start of input section
2952 // SHNDX in object OBJECT, return the output offset relative to the
2953 // start of the input section in the output section. This should only
2954 // be called if SHNDX in OBJECT has a special mapping.
2955
2956 section_offset_type
2957 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2958 section_offset_type offset) const
2959 {
2960 // This can only be called meaningfully when we know the data size
2961 // of this.
2962 gold_assert(this->is_data_size_valid());
2963
2964 // Look at the Output_section_data_maps first.
2965 const Output_section_data* posd = this->find_merge_section(object, shndx);
2966 if (posd == NULL)
2967 posd = this->find_relaxed_input_section(object, shndx);
2968 if (posd != NULL)
2969 {
2970 section_offset_type output_offset;
2971 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2972 gold_assert(found);
2973 return output_offset;
2974 }
2975
2976 // Fall back to the slow look-up.
2977 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2978 p != this->input_sections_.end();
2979 ++p)
2980 {
2981 section_offset_type output_offset;
2982 if (p->output_offset(object, shndx, offset, &output_offset))
2983 return output_offset;
2984 }
2985 gold_unreachable();
2986 }
2987
2988 // Return the output virtual address of OFFSET relative to the start
2989 // of input section SHNDX in object OBJECT.
2990
2991 uint64_t
2992 Output_section::output_address(const Relobj* object, unsigned int shndx,
2993 off_t offset) const
2994 {
2995 uint64_t addr = this->address() + this->first_input_offset_;
2996
2997 // Look at the Output_section_data_maps first.
2998 const Output_section_data* posd = this->find_merge_section(object, shndx);
2999 if (posd == NULL)
3000 posd = this->find_relaxed_input_section(object, shndx);
3001 if (posd != NULL && posd->is_address_valid())
3002 {
3003 section_offset_type output_offset;
3004 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3005 gold_assert(found);
3006 return posd->address() + output_offset;
3007 }
3008
3009 // Fall back to the slow look-up.
3010 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3011 p != this->input_sections_.end();
3012 ++p)
3013 {
3014 addr = align_address(addr, p->addralign());
3015 section_offset_type output_offset;
3016 if (p->output_offset(object, shndx, offset, &output_offset))
3017 {
3018 if (output_offset == -1)
3019 return -1ULL;
3020 return addr + output_offset;
3021 }
3022 addr += p->data_size();
3023 }
3024
3025 // If we get here, it means that we don't know the mapping for this
3026 // input section. This might happen in principle if
3027 // add_input_section were called before add_output_section_data.
3028 // But it should never actually happen.
3029
3030 gold_unreachable();
3031 }
3032
3033 // Find the output address of the start of the merged section for
3034 // input section SHNDX in object OBJECT.
3035
3036 bool
3037 Output_section::find_starting_output_address(const Relobj* object,
3038 unsigned int shndx,
3039 uint64_t* paddr) const
3040 {
3041 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3042 // Looking up the merge section map does not always work as we sometimes
3043 // find a merge section without its address set.
3044 uint64_t addr = this->address() + this->first_input_offset_;
3045 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3046 p != this->input_sections_.end();
3047 ++p)
3048 {
3049 addr = align_address(addr, p->addralign());
3050
3051 // It would be nice if we could use the existing output_offset
3052 // method to get the output offset of input offset 0.
3053 // Unfortunately we don't know for sure that input offset 0 is
3054 // mapped at all.
3055 if (p->is_merge_section_for(object, shndx))
3056 {
3057 *paddr = addr;
3058 return true;
3059 }
3060
3061 addr += p->data_size();
3062 }
3063
3064 // We couldn't find a merge output section for this input section.
3065 return false;
3066 }
3067
3068 // Update the data size of an Output_section.
3069
3070 void
3071 Output_section::update_data_size()
3072 {
3073 if (this->input_sections_.empty())
3074 return;
3075
3076 if (this->must_sort_attached_input_sections()
3077 || this->input_section_order_specified())
3078 this->sort_attached_input_sections();
3079
3080 off_t off = this->first_input_offset_;
3081 for (Input_section_list::iterator p = this->input_sections_.begin();
3082 p != this->input_sections_.end();
3083 ++p)
3084 {
3085 off = align_address(off, p->addralign());
3086 off += p->current_data_size();
3087 }
3088
3089 this->set_current_data_size_for_child(off);
3090 }
3091
3092 // Set the data size of an Output_section. This is where we handle
3093 // setting the addresses of any Output_section_data objects.
3094
3095 void
3096 Output_section::set_final_data_size()
3097 {
3098 off_t data_size;
3099
3100 if (this->input_sections_.empty())
3101 data_size = this->current_data_size_for_child();
3102 else
3103 {
3104 if (this->must_sort_attached_input_sections()
3105 || this->input_section_order_specified())
3106 this->sort_attached_input_sections();
3107
3108 uint64_t address = this->address();
3109 off_t startoff = this->offset();
3110 off_t off = startoff + this->first_input_offset_;
3111 for (Input_section_list::iterator p = this->input_sections_.begin();
3112 p != this->input_sections_.end();
3113 ++p)
3114 {
3115 off = align_address(off, p->addralign());
3116 p->set_address_and_file_offset(address + (off - startoff), off,
3117 startoff);
3118 off += p->data_size();
3119 }
3120 data_size = off - startoff;
3121 }
3122
3123 // For full incremental links, we want to allocate some patch space
3124 // in most sections for subsequent incremental updates.
3125 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3126 {
3127 double pct = parameters->options().incremental_patch();
3128 size_t extra = static_cast<size_t>(data_size * pct);
3129 if (this->free_space_fill_ != NULL
3130 && this->free_space_fill_->minimum_hole_size() > extra)
3131 extra = this->free_space_fill_->minimum_hole_size();
3132 off_t new_size = align_address(data_size + extra, this->addralign());
3133 this->patch_space_ = new_size - data_size;
3134 gold_debug(DEBUG_INCREMENTAL,
3135 "set_final_data_size: %08lx + %08lx: section %s",
3136 static_cast<long>(data_size),
3137 static_cast<long>(this->patch_space_),
3138 this->name());
3139 data_size = new_size;
3140 }
3141
3142 this->set_data_size(data_size);
3143 }
3144
3145 // Reset the address and file offset.
3146
3147 void
3148 Output_section::do_reset_address_and_file_offset()
3149 {
3150 // An unallocated section has no address. Forcing this means that
3151 // we don't need special treatment for symbols defined in debug
3152 // sections. We do the same in the constructor. This does not
3153 // apply to NOLOAD sections though.
3154 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3155 this->set_address(0);
3156
3157 for (Input_section_list::iterator p = this->input_sections_.begin();
3158 p != this->input_sections_.end();
3159 ++p)
3160 p->reset_address_and_file_offset();
3161
3162 // Remove any patch space that was added in set_final_data_size.
3163 if (this->patch_space_ > 0)
3164 {
3165 this->set_current_data_size_for_child(this->current_data_size_for_child()
3166 - this->patch_space_);
3167 this->patch_space_ = 0;
3168 }
3169 }
3170
3171 // Return true if address and file offset have the values after reset.
3172
3173 bool
3174 Output_section::do_address_and_file_offset_have_reset_values() const
3175 {
3176 if (this->is_offset_valid())
3177 return false;
3178
3179 // An unallocated section has address 0 after its construction or a reset.
3180 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3181 return this->is_address_valid() && this->address() == 0;
3182 else
3183 return !this->is_address_valid();
3184 }
3185
3186 // Set the TLS offset. Called only for SHT_TLS sections.
3187
3188 void
3189 Output_section::do_set_tls_offset(uint64_t tls_base)
3190 {
3191 this->tls_offset_ = this->address() - tls_base;
3192 }
3193
3194 // In a few cases we need to sort the input sections attached to an
3195 // output section. This is used to implement the type of constructor
3196 // priority ordering implemented by the GNU linker, in which the
3197 // priority becomes part of the section name and the sections are
3198 // sorted by name. We only do this for an output section if we see an
3199 // attached input section matching ".ctors.*", ".dtors.*",
3200 // ".init_array.*" or ".fini_array.*".
3201
3202 class Output_section::Input_section_sort_entry
3203 {
3204 public:
3205 Input_section_sort_entry()
3206 : input_section_(), index_(-1U), section_has_name_(false),
3207 section_name_()
3208 { }
3209
3210 Input_section_sort_entry(const Input_section& input_section,
3211 unsigned int index,
3212 bool must_sort_attached_input_sections)
3213 : input_section_(input_section), index_(index),
3214 section_has_name_(input_section.is_input_section()
3215 || input_section.is_relaxed_input_section())
3216 {
3217 if (this->section_has_name_
3218 && must_sort_attached_input_sections)
3219 {
3220 // This is only called single-threaded from Layout::finalize,
3221 // so it is OK to lock. Unfortunately we have no way to pass
3222 // in a Task token.
3223 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3224 Object* obj = (input_section.is_input_section()
3225 ? input_section.relobj()
3226 : input_section.relaxed_input_section()->relobj());
3227 Task_lock_obj<Object> tl(dummy_task, obj);
3228
3229 // This is a slow operation, which should be cached in
3230 // Layout::layout if this becomes a speed problem.
3231 this->section_name_ = obj->section_name(input_section.shndx());
3232 }
3233 }
3234
3235 // Return the Input_section.
3236 const Input_section&
3237 input_section() const
3238 {
3239 gold_assert(this->index_ != -1U);
3240 return this->input_section_;
3241 }
3242
3243 // The index of this entry in the original list. This is used to
3244 // make the sort stable.
3245 unsigned int
3246 index() const
3247 {
3248 gold_assert(this->index_ != -1U);
3249 return this->index_;
3250 }
3251
3252 // Whether there is a section name.
3253 bool
3254 section_has_name() const
3255 { return this->section_has_name_; }
3256
3257 // The section name.
3258 const std::string&
3259 section_name() const
3260 {
3261 gold_assert(this->section_has_name_);
3262 return this->section_name_;
3263 }
3264
3265 // Return true if the section name has a priority. This is assumed
3266 // to be true if it has a dot after the initial dot.
3267 bool
3268 has_priority() const
3269 {
3270 gold_assert(this->section_has_name_);
3271 return this->section_name_.find('.', 1) != std::string::npos;
3272 }
3273
3274 // Return the priority. Believe it or not, gcc encodes the priority
3275 // differently for .ctors/.dtors and .init_array/.fini_array
3276 // sections.
3277 unsigned int
3278 get_priority() const
3279 {
3280 gold_assert(this->section_has_name_);
3281 bool is_ctors;
3282 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3283 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3284 is_ctors = true;
3285 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3286 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3287 is_ctors = false;
3288 else
3289 return 0;
3290 char* end;
3291 unsigned long prio = strtoul((this->section_name_.c_str()
3292 + (is_ctors ? 7 : 12)),
3293 &end, 10);
3294 if (*end != '\0')
3295 return 0;
3296 else if (is_ctors)
3297 return 65535 - prio;
3298 else
3299 return prio;
3300 }
3301
3302 // Return true if this an input file whose base name matches
3303 // FILE_NAME. The base name must have an extension of ".o", and
3304 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3305 // This is to match crtbegin.o as well as crtbeginS.o without
3306 // getting confused by other possibilities. Overall matching the
3307 // file name this way is a dreadful hack, but the GNU linker does it
3308 // in order to better support gcc, and we need to be compatible.
3309 bool
3310 match_file_name(const char* file_name) const
3311 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3312
3313 // Returns 1 if THIS should appear before S in section order, -1 if S
3314 // appears before THIS and 0 if they are not comparable.
3315 int
3316 compare_section_ordering(const Input_section_sort_entry& s) const
3317 {
3318 unsigned int this_secn_index = this->input_section_.section_order_index();
3319 unsigned int s_secn_index = s.input_section().section_order_index();
3320 if (this_secn_index > 0 && s_secn_index > 0)
3321 {
3322 if (this_secn_index < s_secn_index)
3323 return 1;
3324 else if (this_secn_index > s_secn_index)
3325 return -1;
3326 }
3327 return 0;
3328 }
3329
3330 private:
3331 // The Input_section we are sorting.
3332 Input_section input_section_;
3333 // The index of this Input_section in the original list.
3334 unsigned int index_;
3335 // Whether this Input_section has a section name--it won't if this
3336 // is some random Output_section_data.
3337 bool section_has_name_;
3338 // The section name if there is one.
3339 std::string section_name_;
3340 };
3341
3342 // Return true if S1 should come before S2 in the output section.
3343
3344 bool
3345 Output_section::Input_section_sort_compare::operator()(
3346 const Output_section::Input_section_sort_entry& s1,
3347 const Output_section::Input_section_sort_entry& s2) const
3348 {
3349 // crtbegin.o must come first.
3350 bool s1_begin = s1.match_file_name("crtbegin");
3351 bool s2_begin = s2.match_file_name("crtbegin");
3352 if (s1_begin || s2_begin)
3353 {
3354 if (!s1_begin)
3355 return false;
3356 if (!s2_begin)
3357 return true;
3358 return s1.index() < s2.index();
3359 }
3360
3361 // crtend.o must come last.
3362 bool s1_end = s1.match_file_name("crtend");
3363 bool s2_end = s2.match_file_name("crtend");
3364 if (s1_end || s2_end)
3365 {
3366 if (!s1_end)
3367 return true;
3368 if (!s2_end)
3369 return false;
3370 return s1.index() < s2.index();
3371 }
3372
3373 // We sort all the sections with no names to the end.
3374 if (!s1.section_has_name() || !s2.section_has_name())
3375 {
3376 if (s1.section_has_name())
3377 return true;
3378 if (s2.section_has_name())
3379 return false;
3380 return s1.index() < s2.index();
3381 }
3382
3383 // A section with a priority follows a section without a priority.
3384 bool s1_has_priority = s1.has_priority();
3385 bool s2_has_priority = s2.has_priority();
3386 if (s1_has_priority && !s2_has_priority)
3387 return false;
3388 if (!s1_has_priority && s2_has_priority)
3389 return true;
3390
3391 // Check if a section order exists for these sections through a section
3392 // ordering file. If sequence_num is 0, an order does not exist.
3393 int sequence_num = s1.compare_section_ordering(s2);
3394 if (sequence_num != 0)
3395 return sequence_num == 1;
3396
3397 // Otherwise we sort by name.
3398 int compare = s1.section_name().compare(s2.section_name());
3399 if (compare != 0)
3400 return compare < 0;
3401
3402 // Otherwise we keep the input order.
3403 return s1.index() < s2.index();
3404 }
3405
3406 // Return true if S1 should come before S2 in an .init_array or .fini_array
3407 // output section.
3408
3409 bool
3410 Output_section::Input_section_sort_init_fini_compare::operator()(
3411 const Output_section::Input_section_sort_entry& s1,
3412 const Output_section::Input_section_sort_entry& s2) const
3413 {
3414 // We sort all the sections with no names to the end.
3415 if (!s1.section_has_name() || !s2.section_has_name())
3416 {
3417 if (s1.section_has_name())
3418 return true;
3419 if (s2.section_has_name())
3420 return false;
3421 return s1.index() < s2.index();
3422 }
3423
3424 // A section without a priority follows a section with a priority.
3425 // This is the reverse of .ctors and .dtors sections.
3426 bool s1_has_priority = s1.has_priority();
3427 bool s2_has_priority = s2.has_priority();
3428 if (s1_has_priority && !s2_has_priority)
3429 return true;
3430 if (!s1_has_priority && s2_has_priority)
3431 return false;
3432
3433 // .ctors and .dtors sections without priority come after
3434 // .init_array and .fini_array sections without priority.
3435 if (!s1_has_priority
3436 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3437 && s1.section_name() != s2.section_name())
3438 return false;
3439 if (!s2_has_priority
3440 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3441 && s2.section_name() != s1.section_name())
3442 return true;
3443
3444 // Sort by priority if we can.
3445 if (s1_has_priority)
3446 {
3447 unsigned int s1_prio = s1.get_priority();
3448 unsigned int s2_prio = s2.get_priority();
3449 if (s1_prio < s2_prio)
3450 return true;
3451 else if (s1_prio > s2_prio)
3452 return false;
3453 }
3454
3455 // Check if a section order exists for these sections through a section
3456 // ordering file. If sequence_num is 0, an order does not exist.
3457 int sequence_num = s1.compare_section_ordering(s2);
3458 if (sequence_num != 0)
3459 return sequence_num == 1;
3460
3461 // Otherwise we sort by name.
3462 int compare = s1.section_name().compare(s2.section_name());
3463 if (compare != 0)
3464 return compare < 0;
3465
3466 // Otherwise we keep the input order.
3467 return s1.index() < s2.index();
3468 }
3469
3470 // Return true if S1 should come before S2. Sections that do not match
3471 // any pattern in the section ordering file are placed ahead of the sections
3472 // that match some pattern.
3473
3474 bool
3475 Output_section::Input_section_sort_section_order_index_compare::operator()(
3476 const Output_section::Input_section_sort_entry& s1,
3477 const Output_section::Input_section_sort_entry& s2) const
3478 {
3479 unsigned int s1_secn_index = s1.input_section().section_order_index();
3480 unsigned int s2_secn_index = s2.input_section().section_order_index();
3481
3482 // Keep input order if section ordering cannot determine order.
3483 if (s1_secn_index == s2_secn_index)
3484 return s1.index() < s2.index();
3485
3486 return s1_secn_index < s2_secn_index;
3487 }
3488
3489 // This updates the section order index of input sections according to the
3490 // the order specified in the mapping from Section id to order index.
3491
3492 void
3493 Output_section::update_section_layout(
3494 const Section_layout_order* order_map)
3495 {
3496 for (Input_section_list::iterator p = this->input_sections_.begin();
3497 p != this->input_sections_.end();
3498 ++p)
3499 {
3500 if (p->is_input_section()
3501 || p->is_relaxed_input_section())
3502 {
3503 Object* obj = (p->is_input_section()
3504 ? p->relobj()
3505 : p->relaxed_input_section()->relobj());
3506 unsigned int shndx = p->shndx();
3507 Section_layout_order::const_iterator it
3508 = order_map->find(Section_id(obj, shndx));
3509 if (it == order_map->end())
3510 continue;
3511 unsigned int section_order_index = it->second;
3512 if (section_order_index != 0)
3513 {
3514 p->set_section_order_index(section_order_index);
3515 this->set_input_section_order_specified();
3516 }
3517 }
3518 }
3519 }
3520
3521 // Sort the input sections attached to an output section.
3522
3523 void
3524 Output_section::sort_attached_input_sections()
3525 {
3526 if (this->attached_input_sections_are_sorted_)
3527 return;
3528
3529 if (this->checkpoint_ != NULL
3530 && !this->checkpoint_->input_sections_saved())
3531 this->checkpoint_->save_input_sections();
3532
3533 // The only thing we know about an input section is the object and
3534 // the section index. We need the section name. Recomputing this
3535 // is slow but this is an unusual case. If this becomes a speed
3536 // problem we can cache the names as required in Layout::layout.
3537
3538 // We start by building a larger vector holding a copy of each
3539 // Input_section, plus its current index in the list and its name.
3540 std::vector<Input_section_sort_entry> sort_list;
3541
3542 unsigned int i = 0;
3543 for (Input_section_list::iterator p = this->input_sections_.begin();
3544 p != this->input_sections_.end();
3545 ++p, ++i)
3546 sort_list.push_back(Input_section_sort_entry(*p, i,
3547 this->must_sort_attached_input_sections()));
3548
3549 // Sort the input sections.
3550 if (this->must_sort_attached_input_sections())
3551 {
3552 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3553 || this->type() == elfcpp::SHT_INIT_ARRAY
3554 || this->type() == elfcpp::SHT_FINI_ARRAY)
3555 std::sort(sort_list.begin(), sort_list.end(),
3556 Input_section_sort_init_fini_compare());
3557 else
3558 std::sort(sort_list.begin(), sort_list.end(),
3559 Input_section_sort_compare());
3560 }
3561 else
3562 {
3563 gold_assert(this->input_section_order_specified());
3564 std::sort(sort_list.begin(), sort_list.end(),
3565 Input_section_sort_section_order_index_compare());
3566 }
3567
3568 // Copy the sorted input sections back to our list.
3569 this->input_sections_.clear();
3570 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3571 p != sort_list.end();
3572 ++p)
3573 this->input_sections_.push_back(p->input_section());
3574 sort_list.clear();
3575
3576 // Remember that we sorted the input sections, since we might get
3577 // called again.
3578 this->attached_input_sections_are_sorted_ = true;
3579 }
3580
3581 // Write the section header to *OSHDR.
3582
3583 template<int size, bool big_endian>
3584 void
3585 Output_section::write_header(const Layout* layout,
3586 const Stringpool* secnamepool,
3587 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3588 {
3589 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3590 oshdr->put_sh_type(this->type_);
3591
3592 elfcpp::Elf_Xword flags = this->flags_;
3593 if (this->info_section_ != NULL && this->info_uses_section_index_)
3594 flags |= elfcpp::SHF_INFO_LINK;
3595 oshdr->put_sh_flags(flags);
3596
3597 oshdr->put_sh_addr(this->address());
3598 oshdr->put_sh_offset(this->offset());
3599 oshdr->put_sh_size(this->data_size());
3600 if (this->link_section_ != NULL)
3601 oshdr->put_sh_link(this->link_section_->out_shndx());
3602 else if (this->should_link_to_symtab_)
3603 oshdr->put_sh_link(layout->symtab_section_shndx());
3604 else if (this->should_link_to_dynsym_)
3605 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3606 else
3607 oshdr->put_sh_link(this->link_);
3608
3609 elfcpp::Elf_Word info;
3610 if (this->info_section_ != NULL)
3611 {
3612 if (this->info_uses_section_index_)
3613 info = this->info_section_->out_shndx();
3614 else
3615 info = this->info_section_->symtab_index();
3616 }
3617 else if (this->info_symndx_ != NULL)
3618 info = this->info_symndx_->symtab_index();
3619 else
3620 info = this->info_;
3621 oshdr->put_sh_info(info);
3622
3623 oshdr->put_sh_addralign(this->addralign_);
3624 oshdr->put_sh_entsize(this->entsize_);
3625 }
3626
3627 // Write out the data. For input sections the data is written out by
3628 // Object::relocate, but we have to handle Output_section_data objects
3629 // here.
3630
3631 void
3632 Output_section::do_write(Output_file* of)
3633 {
3634 gold_assert(!this->requires_postprocessing());
3635
3636 // If the target performs relaxation, we delay filler generation until now.
3637 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3638
3639 off_t output_section_file_offset = this->offset();
3640 for (Fill_list::iterator p = this->fills_.begin();
3641 p != this->fills_.end();
3642 ++p)
3643 {
3644 std::string fill_data(parameters->target().code_fill(p->length()));
3645 of->write(output_section_file_offset + p->section_offset(),
3646 fill_data.data(), fill_data.size());
3647 }
3648
3649 off_t off = this->offset() + this->first_input_offset_;
3650 for (Input_section_list::iterator p = this->input_sections_.begin();
3651 p != this->input_sections_.end();
3652 ++p)
3653 {
3654 off_t aligned_off = align_address(off, p->addralign());
3655 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3656 {
3657 size_t fill_len = aligned_off - off;
3658 std::string fill_data(parameters->target().code_fill(fill_len));
3659 of->write(off, fill_data.data(), fill_data.size());
3660 }
3661
3662 p->write(of);
3663 off = aligned_off + p->data_size();
3664 }
3665
3666 // For incremental links, fill in unused chunks in debug sections
3667 // with dummy compilation unit headers.
3668 if (this->free_space_fill_ != NULL)
3669 {
3670 for (Free_list::Const_iterator p = this->free_list_.begin();
3671 p != this->free_list_.end();
3672 ++p)
3673 {
3674 off_t off = p->start_;
3675 size_t len = p->end_ - off;
3676 this->free_space_fill_->write(of, this->offset() + off, len);
3677 }
3678 if (this->patch_space_ > 0)
3679 {
3680 off_t off = this->current_data_size_for_child() - this->patch_space_;
3681 this->free_space_fill_->write(of, this->offset() + off,
3682 this->patch_space_);
3683 }
3684 }
3685 }
3686
3687 // If a section requires postprocessing, create the buffer to use.
3688
3689 void
3690 Output_section::create_postprocessing_buffer()
3691 {
3692 gold_assert(this->requires_postprocessing());
3693
3694 if (this->postprocessing_buffer_ != NULL)
3695 return;
3696
3697 if (!this->input_sections_.empty())
3698 {
3699 off_t off = this->first_input_offset_;
3700 for (Input_section_list::iterator p = this->input_sections_.begin();
3701 p != this->input_sections_.end();
3702 ++p)
3703 {
3704 off = align_address(off, p->addralign());
3705 p->finalize_data_size();
3706 off += p->data_size();
3707 }
3708 this->set_current_data_size_for_child(off);
3709 }
3710
3711 off_t buffer_size = this->current_data_size_for_child();
3712 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3713 }
3714
3715 // Write all the data of an Output_section into the postprocessing
3716 // buffer. This is used for sections which require postprocessing,
3717 // such as compression. Input sections are handled by
3718 // Object::Relocate.
3719
3720 void
3721 Output_section::write_to_postprocessing_buffer()
3722 {
3723 gold_assert(this->requires_postprocessing());
3724
3725 // If the target performs relaxation, we delay filler generation until now.
3726 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3727
3728 unsigned char* buffer = this->postprocessing_buffer();
3729 for (Fill_list::iterator p = this->fills_.begin();
3730 p != this->fills_.end();
3731 ++p)
3732 {
3733 std::string fill_data(parameters->target().code_fill(p->length()));
3734 memcpy(buffer + p->section_offset(), fill_data.data(),
3735 fill_data.size());
3736 }
3737
3738 off_t off = this->first_input_offset_;
3739 for (Input_section_list::iterator p = this->input_sections_.begin();
3740 p != this->input_sections_.end();
3741 ++p)
3742 {
3743 off_t aligned_off = align_address(off, p->addralign());
3744 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3745 {
3746 size_t fill_len = aligned_off - off;
3747 std::string fill_data(parameters->target().code_fill(fill_len));
3748 memcpy(buffer + off, fill_data.data(), fill_data.size());
3749 }
3750
3751 p->write_to_buffer(buffer + aligned_off);
3752 off = aligned_off + p->data_size();
3753 }
3754 }
3755
3756 // Get the input sections for linker script processing. We leave
3757 // behind the Output_section_data entries. Note that this may be
3758 // slightly incorrect for merge sections. We will leave them behind,
3759 // but it is possible that the script says that they should follow
3760 // some other input sections, as in:
3761 // .rodata { *(.rodata) *(.rodata.cst*) }
3762 // For that matter, we don't handle this correctly:
3763 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3764 // With luck this will never matter.
3765
3766 uint64_t
3767 Output_section::get_input_sections(
3768 uint64_t address,
3769 const std::string& fill,
3770 std::list<Input_section>* input_sections)
3771 {
3772 if (this->checkpoint_ != NULL
3773 && !this->checkpoint_->input_sections_saved())
3774 this->checkpoint_->save_input_sections();
3775
3776 // Invalidate fast look-up maps.
3777 this->lookup_maps_->invalidate();
3778
3779 uint64_t orig_address = address;
3780
3781 address = align_address(address, this->addralign());
3782
3783 Input_section_list remaining;
3784 for (Input_section_list::iterator p = this->input_sections_.begin();
3785 p != this->input_sections_.end();
3786 ++p)
3787 {
3788 if (p->is_input_section()
3789 || p->is_relaxed_input_section()
3790 || p->is_merge_section())
3791 input_sections->push_back(*p);
3792 else
3793 {
3794 uint64_t aligned_address = align_address(address, p->addralign());
3795 if (aligned_address != address && !fill.empty())
3796 {
3797 section_size_type length =
3798 convert_to_section_size_type(aligned_address - address);
3799 std::string this_fill;
3800 this_fill.reserve(length);
3801 while (this_fill.length() + fill.length() <= length)
3802 this_fill += fill;
3803 if (this_fill.length() < length)
3804 this_fill.append(fill, 0, length - this_fill.length());
3805
3806 Output_section_data* posd = new Output_data_const(this_fill, 0);
3807 remaining.push_back(Input_section(posd));
3808 }
3809 address = aligned_address;
3810
3811 remaining.push_back(*p);
3812
3813 p->finalize_data_size();
3814 address += p->data_size();
3815 }
3816 }
3817
3818 this->input_sections_.swap(remaining);
3819 this->first_input_offset_ = 0;
3820
3821 uint64_t data_size = address - orig_address;
3822 this->set_current_data_size_for_child(data_size);
3823 return data_size;
3824 }
3825
3826 // Add a script input section. SIS is an Output_section::Input_section,
3827 // which can be either a plain input section or a special input section like
3828 // a relaxed input section. For a special input section, its size must be
3829 // finalized.
3830
3831 void
3832 Output_section::add_script_input_section(const Input_section& sis)
3833 {
3834 uint64_t data_size = sis.data_size();
3835 uint64_t addralign = sis.addralign();
3836 if (addralign > this->addralign_)
3837 this->addralign_ = addralign;
3838
3839 off_t offset_in_section = this->current_data_size_for_child();
3840 off_t aligned_offset_in_section = align_address(offset_in_section,
3841 addralign);
3842
3843 this->set_current_data_size_for_child(aligned_offset_in_section
3844 + data_size);
3845
3846 this->input_sections_.push_back(sis);
3847
3848 // Update fast lookup maps if necessary.
3849 if (this->lookup_maps_->is_valid())
3850 {
3851 if (sis.is_merge_section())
3852 {
3853 Output_merge_base* pomb = sis.output_merge_base();
3854 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3855 pomb->addralign());
3856 this->lookup_maps_->add_merge_section(msp, pomb);
3857 for (Output_merge_base::Input_sections::const_iterator p =
3858 pomb->input_sections_begin();
3859 p != pomb->input_sections_end();
3860 ++p)
3861 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3862 pomb);
3863 }
3864 else if (sis.is_relaxed_input_section())
3865 {
3866 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3867 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3868 poris->shndx(), poris);
3869 }
3870 }
3871 }
3872
3873 // Save states for relaxation.
3874
3875 void
3876 Output_section::save_states()
3877 {
3878 gold_assert(this->checkpoint_ == NULL);
3879 Checkpoint_output_section* checkpoint =
3880 new Checkpoint_output_section(this->addralign_, this->flags_,
3881 this->input_sections_,
3882 this->first_input_offset_,
3883 this->attached_input_sections_are_sorted_);
3884 this->checkpoint_ = checkpoint;
3885 gold_assert(this->fills_.empty());
3886 }
3887
3888 void
3889 Output_section::discard_states()
3890 {
3891 gold_assert(this->checkpoint_ != NULL);
3892 delete this->checkpoint_;
3893 this->checkpoint_ = NULL;
3894 gold_assert(this->fills_.empty());
3895
3896 // Simply invalidate the fast lookup maps since we do not keep
3897 // track of them.
3898 this->lookup_maps_->invalidate();
3899 }
3900
3901 void
3902 Output_section::restore_states()
3903 {
3904 gold_assert(this->checkpoint_ != NULL);
3905 Checkpoint_output_section* checkpoint = this->checkpoint_;
3906
3907 this->addralign_ = checkpoint->addralign();
3908 this->flags_ = checkpoint->flags();
3909 this->first_input_offset_ = checkpoint->first_input_offset();
3910
3911 if (!checkpoint->input_sections_saved())
3912 {
3913 // If we have not copied the input sections, just resize it.
3914 size_t old_size = checkpoint->input_sections_size();
3915 gold_assert(this->input_sections_.size() >= old_size);
3916 this->input_sections_.resize(old_size);
3917 }
3918 else
3919 {
3920 // We need to copy the whole list. This is not efficient for
3921 // extremely large output with hundreads of thousands of input
3922 // objects. We may need to re-think how we should pass sections
3923 // to scripts.
3924 this->input_sections_ = *checkpoint->input_sections();
3925 }
3926
3927 this->attached_input_sections_are_sorted_ =
3928 checkpoint->attached_input_sections_are_sorted();
3929
3930 // Simply invalidate the fast lookup maps since we do not keep
3931 // track of them.
3932 this->lookup_maps_->invalidate();
3933 }
3934
3935 // Update the section offsets of input sections in this. This is required if
3936 // relaxation causes some input sections to change sizes.
3937
3938 void
3939 Output_section::adjust_section_offsets()
3940 {
3941 if (!this->section_offsets_need_adjustment_)
3942 return;
3943
3944 off_t off = 0;
3945 for (Input_section_list::iterator p = this->input_sections_.begin();
3946 p != this->input_sections_.end();
3947 ++p)
3948 {
3949 off = align_address(off, p->addralign());
3950 if (p->is_input_section())
3951 p->relobj()->set_section_offset(p->shndx(), off);
3952 off += p->data_size();
3953 }
3954
3955 this->section_offsets_need_adjustment_ = false;
3956 }
3957
3958 // Print to the map file.
3959
3960 void
3961 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3962 {
3963 mapfile->print_output_section(this);
3964
3965 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3966 p != this->input_sections_.end();
3967 ++p)
3968 p->print_to_mapfile(mapfile);
3969 }
3970
3971 // Print stats for merge sections to stderr.
3972
3973 void
3974 Output_section::print_merge_stats()
3975 {
3976 Input_section_list::iterator p;
3977 for (p = this->input_sections_.begin();
3978 p != this->input_sections_.end();
3979 ++p)
3980 p->print_merge_stats(this->name_);
3981 }
3982
3983 // Set a fixed layout for the section. Used for incremental update links.
3984
3985 void
3986 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3987 off_t sh_size, uint64_t sh_addralign)
3988 {
3989 this->addralign_ = sh_addralign;
3990 this->set_current_data_size(sh_size);
3991 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3992 this->set_address(sh_addr);
3993 this->set_file_offset(sh_offset);
3994 this->finalize_data_size();
3995 this->free_list_.init(sh_size, false);
3996 this->has_fixed_layout_ = true;
3997 }
3998
3999 // Reserve space within the fixed layout for the section. Used for
4000 // incremental update links.
4001
4002 void
4003 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4004 {
4005 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4006 }
4007
4008 // Allocate space from the free list for the section. Used for
4009 // incremental update links.
4010
4011 off_t
4012 Output_section::allocate(off_t len, uint64_t addralign)
4013 {
4014 return this->free_list_.allocate(len, addralign, 0);
4015 }
4016
4017 // Output segment methods.
4018
4019 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4020 : vaddr_(0),
4021 paddr_(0),
4022 memsz_(0),
4023 max_align_(0),
4024 min_p_align_(0),
4025 offset_(0),
4026 filesz_(0),
4027 type_(type),
4028 flags_(flags),
4029 is_max_align_known_(false),
4030 are_addresses_set_(false),
4031 is_large_data_segment_(false),
4032 is_unique_segment_(false)
4033 {
4034 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4035 // the flags.
4036 if (type == elfcpp::PT_TLS)
4037 this->flags_ = elfcpp::PF_R;
4038 }
4039
4040 // Add an Output_section to a PT_LOAD Output_segment.
4041
4042 void
4043 Output_segment::add_output_section_to_load(Layout* layout,
4044 Output_section* os,
4045 elfcpp::Elf_Word seg_flags)
4046 {
4047 gold_assert(this->type() == elfcpp::PT_LOAD);
4048 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4049 gold_assert(!this->is_max_align_known_);
4050 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4051
4052 this->update_flags_for_output_section(seg_flags);
4053
4054 // We don't want to change the ordering if we have a linker script
4055 // with a SECTIONS clause.
4056 Output_section_order order = os->order();
4057 if (layout->script_options()->saw_sections_clause())
4058 order = static_cast<Output_section_order>(0);
4059 else
4060 gold_assert(order != ORDER_INVALID);
4061
4062 this->output_lists_[order].push_back(os);
4063 }
4064
4065 // Add an Output_section to a non-PT_LOAD Output_segment.
4066
4067 void
4068 Output_segment::add_output_section_to_nonload(Output_section* os,
4069 elfcpp::Elf_Word seg_flags)
4070 {
4071 gold_assert(this->type() != elfcpp::PT_LOAD);
4072 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4073 gold_assert(!this->is_max_align_known_);
4074
4075 this->update_flags_for_output_section(seg_flags);
4076
4077 this->output_lists_[0].push_back(os);
4078 }
4079
4080 // Remove an Output_section from this segment. It is an error if it
4081 // is not present.
4082
4083 void
4084 Output_segment::remove_output_section(Output_section* os)
4085 {
4086 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4087 {
4088 Output_data_list* pdl = &this->output_lists_[i];
4089 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4090 {
4091 if (*p == os)
4092 {
4093 pdl->erase(p);
4094 return;
4095 }
4096 }
4097 }
4098 gold_unreachable();
4099 }
4100
4101 // Add an Output_data (which need not be an Output_section) to the
4102 // start of a segment.
4103
4104 void
4105 Output_segment::add_initial_output_data(Output_data* od)
4106 {
4107 gold_assert(!this->is_max_align_known_);
4108 Output_data_list::iterator p = this->output_lists_[0].begin();
4109 this->output_lists_[0].insert(p, od);
4110 }
4111
4112 // Return true if this segment has any sections which hold actual
4113 // data, rather than being a BSS section.
4114
4115 bool
4116 Output_segment::has_any_data_sections() const
4117 {
4118 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4119 {
4120 const Output_data_list* pdl = &this->output_lists_[i];
4121 for (Output_data_list::const_iterator p = pdl->begin();
4122 p != pdl->end();
4123 ++p)
4124 {
4125 if (!(*p)->is_section())
4126 return true;
4127 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4128 return true;
4129 }
4130 }
4131 return false;
4132 }
4133
4134 // Return whether the first data section (not counting TLS sections)
4135 // is a relro section.
4136
4137 bool
4138 Output_segment::is_first_section_relro() const
4139 {
4140 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4141 {
4142 if (i == static_cast<int>(ORDER_TLS_DATA)
4143 || i == static_cast<int>(ORDER_TLS_BSS))
4144 continue;
4145 const Output_data_list* pdl = &this->output_lists_[i];
4146 if (!pdl->empty())
4147 {
4148 Output_data* p = pdl->front();
4149 return p->is_section() && p->output_section()->is_relro();
4150 }
4151 }
4152 return false;
4153 }
4154
4155 // Return the maximum alignment of the Output_data in Output_segment.
4156
4157 uint64_t
4158 Output_segment::maximum_alignment()
4159 {
4160 if (!this->is_max_align_known_)
4161 {
4162 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4163 {
4164 const Output_data_list* pdl = &this->output_lists_[i];
4165 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4166 if (addralign > this->max_align_)
4167 this->max_align_ = addralign;
4168 }
4169 this->is_max_align_known_ = true;
4170 }
4171
4172 return this->max_align_;
4173 }
4174
4175 // Return the maximum alignment of a list of Output_data.
4176
4177 uint64_t
4178 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4179 {
4180 uint64_t ret = 0;
4181 for (Output_data_list::const_iterator p = pdl->begin();
4182 p != pdl->end();
4183 ++p)
4184 {
4185 uint64_t addralign = (*p)->addralign();
4186 if (addralign > ret)
4187 ret = addralign;
4188 }
4189 return ret;
4190 }
4191
4192 // Return whether this segment has any dynamic relocs.
4193
4194 bool
4195 Output_segment::has_dynamic_reloc() const
4196 {
4197 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4198 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4199 return true;
4200 return false;
4201 }
4202
4203 // Return whether this Output_data_list has any dynamic relocs.
4204
4205 bool
4206 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4207 {
4208 for (Output_data_list::const_iterator p = pdl->begin();
4209 p != pdl->end();
4210 ++p)
4211 if ((*p)->has_dynamic_reloc())
4212 return true;
4213 return false;
4214 }
4215
4216 // Set the section addresses for an Output_segment. If RESET is true,
4217 // reset the addresses first. ADDR is the address and *POFF is the
4218 // file offset. Set the section indexes starting with *PSHNDX.
4219 // INCREASE_RELRO is the size of the portion of the first non-relro
4220 // section that should be included in the PT_GNU_RELRO segment.
4221 // If this segment has relro sections, and has been aligned for
4222 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4223 // the immediately following segment. Update *HAS_RELRO, *POFF,
4224 // and *PSHNDX.
4225
4226 uint64_t
4227 Output_segment::set_section_addresses(Layout* layout, bool reset,
4228 uint64_t addr,
4229 unsigned int* increase_relro,
4230 bool* has_relro,
4231 off_t* poff,
4232 unsigned int* pshndx)
4233 {
4234 gold_assert(this->type_ == elfcpp::PT_LOAD);
4235
4236 uint64_t last_relro_pad = 0;
4237 off_t orig_off = *poff;
4238
4239 bool in_tls = false;
4240
4241 // If we have relro sections, we need to pad forward now so that the
4242 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4243 if (parameters->options().relro()
4244 && this->is_first_section_relro()
4245 && (!this->are_addresses_set_ || reset))
4246 {
4247 uint64_t relro_size = 0;
4248 off_t off = *poff;
4249 uint64_t max_align = 0;
4250 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4251 {
4252 Output_data_list* pdl = &this->output_lists_[i];
4253 Output_data_list::iterator p;
4254 for (p = pdl->begin(); p != pdl->end(); ++p)
4255 {
4256 if (!(*p)->is_section())
4257 break;
4258 uint64_t align = (*p)->addralign();
4259 if (align > max_align)
4260 max_align = align;
4261 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4262 in_tls = true;
4263 else if (in_tls)
4264 {
4265 // Align the first non-TLS section to the alignment
4266 // of the TLS segment.
4267 align = max_align;
4268 in_tls = false;
4269 }
4270 relro_size = align_address(relro_size, align);
4271 // Ignore the size of the .tbss section.
4272 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4273 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4274 continue;
4275 if ((*p)->is_address_valid())
4276 relro_size += (*p)->data_size();
4277 else
4278 {
4279 // FIXME: This could be faster.
4280 (*p)->set_address_and_file_offset(addr + relro_size,
4281 off + relro_size);
4282 relro_size += (*p)->data_size();
4283 (*p)->reset_address_and_file_offset();
4284 }
4285 }
4286 if (p != pdl->end())
4287 break;
4288 }
4289 relro_size += *increase_relro;
4290 // Pad the total relro size to a multiple of the maximum
4291 // section alignment seen.
4292 uint64_t aligned_size = align_address(relro_size, max_align);
4293 // Note the amount of padding added after the last relro section.
4294 last_relro_pad = aligned_size - relro_size;
4295 *has_relro = true;
4296
4297 uint64_t page_align = parameters->target().abi_pagesize();
4298
4299 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4300 uint64_t desired_align = page_align - (aligned_size % page_align);
4301 if (desired_align < *poff % page_align)
4302 *poff += page_align - *poff % page_align;
4303 *poff += desired_align - *poff % page_align;
4304 addr += *poff - orig_off;
4305 orig_off = *poff;
4306 }
4307
4308 if (!reset && this->are_addresses_set_)
4309 {
4310 gold_assert(this->paddr_ == addr);
4311 addr = this->vaddr_;
4312 }
4313 else
4314 {
4315 this->vaddr_ = addr;
4316 this->paddr_ = addr;
4317 this->are_addresses_set_ = true;
4318 }
4319
4320 in_tls = false;
4321
4322 this->offset_ = orig_off;
4323
4324 off_t off = 0;
4325 uint64_t ret;
4326 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4327 {
4328 if (i == static_cast<int>(ORDER_RELRO_LAST))
4329 {
4330 *poff += last_relro_pad;
4331 addr += last_relro_pad;
4332 if (this->output_lists_[i].empty())
4333 {
4334 // If there is nothing in the ORDER_RELRO_LAST list,
4335 // the padding will occur at the end of the relro
4336 // segment, and we need to add it to *INCREASE_RELRO.
4337 *increase_relro += last_relro_pad;
4338 }
4339 }
4340 addr = this->set_section_list_addresses(layout, reset,
4341 &this->output_lists_[i],
4342 addr, poff, pshndx, &in_tls);
4343 if (i < static_cast<int>(ORDER_SMALL_BSS))
4344 {
4345 this->filesz_ = *poff - orig_off;
4346 off = *poff;
4347 }
4348
4349 ret = addr;
4350 }
4351
4352 // If the last section was a TLS section, align upward to the
4353 // alignment of the TLS segment, so that the overall size of the TLS
4354 // segment is aligned.
4355 if (in_tls)
4356 {
4357 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4358 *poff = align_address(*poff, segment_align);
4359 }
4360
4361 this->memsz_ = *poff - orig_off;
4362
4363 // Ignore the file offset adjustments made by the BSS Output_data
4364 // objects.
4365 *poff = off;
4366
4367 return ret;
4368 }
4369
4370 // Set the addresses and file offsets in a list of Output_data
4371 // structures.
4372
4373 uint64_t
4374 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4375 Output_data_list* pdl,
4376 uint64_t addr, off_t* poff,
4377 unsigned int* pshndx,
4378 bool* in_tls)
4379 {
4380 off_t startoff = *poff;
4381 // For incremental updates, we may allocate non-fixed sections from
4382 // free space in the file. This keeps track of the high-water mark.
4383 off_t maxoff = startoff;
4384
4385 off_t off = startoff;
4386 for (Output_data_list::iterator p = pdl->begin();
4387 p != pdl->end();
4388 ++p)
4389 {
4390 if (reset)
4391 (*p)->reset_address_and_file_offset();
4392
4393 // When doing an incremental update or when using a linker script,
4394 // the section will most likely already have an address.
4395 if (!(*p)->is_address_valid())
4396 {
4397 uint64_t align = (*p)->addralign();
4398
4399 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4400 {
4401 // Give the first TLS section the alignment of the
4402 // entire TLS segment. Otherwise the TLS segment as a
4403 // whole may be misaligned.
4404 if (!*in_tls)
4405 {
4406 Output_segment* tls_segment = layout->tls_segment();
4407 gold_assert(tls_segment != NULL);
4408 uint64_t segment_align = tls_segment->maximum_alignment();
4409 gold_assert(segment_align >= align);
4410 align = segment_align;
4411
4412 *in_tls = true;
4413 }
4414 }
4415 else
4416 {
4417 // If this is the first section after the TLS segment,
4418 // align it to at least the alignment of the TLS
4419 // segment, so that the size of the overall TLS segment
4420 // is aligned.
4421 if (*in_tls)
4422 {
4423 uint64_t segment_align =
4424 layout->tls_segment()->maximum_alignment();
4425 if (segment_align > align)
4426 align = segment_align;
4427
4428 *in_tls = false;
4429 }
4430 }
4431
4432 if (!parameters->incremental_update())
4433 {
4434 off = align_address(off, align);
4435 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4436 }
4437 else
4438 {
4439 // Incremental update: allocate file space from free list.
4440 (*p)->pre_finalize_data_size();
4441 off_t current_size = (*p)->current_data_size();
4442 off = layout->allocate(current_size, align, startoff);
4443 if (off == -1)
4444 {
4445 gold_assert((*p)->output_section() != NULL);
4446 gold_fallback(_("out of patch space for section %s; "
4447 "relink with --incremental-full"),
4448 (*p)->output_section()->name());
4449 }
4450 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4451 if ((*p)->data_size() > current_size)
4452 {
4453 gold_assert((*p)->output_section() != NULL);
4454 gold_fallback(_("%s: section changed size; "
4455 "relink with --incremental-full"),
4456 (*p)->output_section()->name());
4457 }
4458 }
4459 }
4460 else if (parameters->incremental_update())
4461 {
4462 // For incremental updates, use the fixed offset for the
4463 // high-water mark computation.
4464 off = (*p)->offset();
4465 }
4466 else
4467 {
4468 // The script may have inserted a skip forward, but it
4469 // better not have moved backward.
4470 if ((*p)->address() >= addr + (off - startoff))
4471 off += (*p)->address() - (addr + (off - startoff));
4472 else
4473 {
4474 if (!layout->script_options()->saw_sections_clause())
4475 gold_unreachable();
4476 else
4477 {
4478 Output_section* os = (*p)->output_section();
4479
4480 // Cast to unsigned long long to avoid format warnings.
4481 unsigned long long previous_dot =
4482 static_cast<unsigned long long>(addr + (off - startoff));
4483 unsigned long long dot =
4484 static_cast<unsigned long long>((*p)->address());
4485
4486 if (os == NULL)
4487 gold_error(_("dot moves backward in linker script "
4488 "from 0x%llx to 0x%llx"), previous_dot, dot);
4489 else
4490 gold_error(_("address of section '%s' moves backward "
4491 "from 0x%llx to 0x%llx"),
4492 os->name(), previous_dot, dot);
4493 }
4494 }
4495 (*p)->set_file_offset(off);
4496 (*p)->finalize_data_size();
4497 }
4498
4499 if (parameters->incremental_update())
4500 gold_debug(DEBUG_INCREMENTAL,
4501 "set_section_list_addresses: %08lx %08lx %s",
4502 static_cast<long>(off),
4503 static_cast<long>((*p)->data_size()),
4504 ((*p)->output_section() != NULL
4505 ? (*p)->output_section()->name() : "(special)"));
4506
4507 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4508 // section. Such a section does not affect the size of a
4509 // PT_LOAD segment.
4510 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4511 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4512 off += (*p)->data_size();
4513
4514 if (off > maxoff)
4515 maxoff = off;
4516
4517 if ((*p)->is_section())
4518 {
4519 (*p)->set_out_shndx(*pshndx);
4520 ++*pshndx;
4521 }
4522 }
4523
4524 *poff = maxoff;
4525 return addr + (maxoff - startoff);
4526 }
4527
4528 // For a non-PT_LOAD segment, set the offset from the sections, if
4529 // any. Add INCREASE to the file size and the memory size.
4530
4531 void
4532 Output_segment::set_offset(unsigned int increase)
4533 {
4534 gold_assert(this->type_ != elfcpp::PT_LOAD);
4535
4536 gold_assert(!this->are_addresses_set_);
4537
4538 // A non-load section only uses output_lists_[0].
4539
4540 Output_data_list* pdl = &this->output_lists_[0];
4541
4542 if (pdl->empty())
4543 {
4544 gold_assert(increase == 0);
4545 this->vaddr_ = 0;
4546 this->paddr_ = 0;
4547 this->are_addresses_set_ = true;
4548 this->memsz_ = 0;
4549 this->min_p_align_ = 0;
4550 this->offset_ = 0;
4551 this->filesz_ = 0;
4552 return;
4553 }
4554
4555 // Find the first and last section by address.
4556 const Output_data* first = NULL;
4557 const Output_data* last_data = NULL;
4558 const Output_data* last_bss = NULL;
4559 for (Output_data_list::const_iterator p = pdl->begin();
4560 p != pdl->end();
4561 ++p)
4562 {
4563 if (first == NULL
4564 || (*p)->address() < first->address()
4565 || ((*p)->address() == first->address()
4566 && (*p)->data_size() < first->data_size()))
4567 first = *p;
4568 const Output_data** plast;
4569 if ((*p)->is_section()
4570 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4571 plast = &last_bss;
4572 else
4573 plast = &last_data;
4574 if (*plast == NULL
4575 || (*p)->address() > (*plast)->address()
4576 || ((*p)->address() == (*plast)->address()
4577 && (*p)->data_size() > (*plast)->data_size()))
4578 *plast = *p;
4579 }
4580
4581 this->vaddr_ = first->address();
4582 this->paddr_ = (first->has_load_address()
4583 ? first->load_address()
4584 : this->vaddr_);
4585 this->are_addresses_set_ = true;
4586 this->offset_ = first->offset();
4587
4588 if (last_data == NULL)
4589 this->filesz_ = 0;
4590 else
4591 this->filesz_ = (last_data->address()
4592 + last_data->data_size()
4593 - this->vaddr_);
4594
4595 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4596 this->memsz_ = (last->address()
4597 + last->data_size()
4598 - this->vaddr_);
4599
4600 this->filesz_ += increase;
4601 this->memsz_ += increase;
4602
4603 // If this is a RELRO segment, verify that the segment ends at a
4604 // page boundary.
4605 if (this->type_ == elfcpp::PT_GNU_RELRO)
4606 {
4607 uint64_t page_align = parameters->target().abi_pagesize();
4608 uint64_t segment_end = this->vaddr_ + this->memsz_;
4609 if (parameters->incremental_update())
4610 {
4611 // The INCREASE_RELRO calculation is bypassed for an incremental
4612 // update, so we need to adjust the segment size manually here.
4613 segment_end = align_address(segment_end, page_align);
4614 this->memsz_ = segment_end - this->vaddr_;
4615 }
4616 else
4617 gold_assert(segment_end == align_address(segment_end, page_align));
4618 }
4619
4620 // If this is a TLS segment, align the memory size. The code in
4621 // set_section_list ensures that the section after the TLS segment
4622 // is aligned to give us room.
4623 if (this->type_ == elfcpp::PT_TLS)
4624 {
4625 uint64_t segment_align = this->maximum_alignment();
4626 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4627 this->memsz_ = align_address(this->memsz_, segment_align);
4628 }
4629 }
4630
4631 // Set the TLS offsets of the sections in the PT_TLS segment.
4632
4633 void
4634 Output_segment::set_tls_offsets()
4635 {
4636 gold_assert(this->type_ == elfcpp::PT_TLS);
4637
4638 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4639 p != this->output_lists_[0].end();
4640 ++p)
4641 (*p)->set_tls_offset(this->vaddr_);
4642 }
4643
4644 // Return the first section.
4645
4646 Output_section*
4647 Output_segment::first_section() const
4648 {
4649 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4650 {
4651 const Output_data_list* pdl = &this->output_lists_[i];
4652 for (Output_data_list::const_iterator p = pdl->begin();
4653 p != pdl->end();
4654 ++p)
4655 {
4656 if ((*p)->is_section())
4657 return (*p)->output_section();
4658 }
4659 }
4660 gold_unreachable();
4661 }
4662
4663 // Return the number of Output_sections in an Output_segment.
4664
4665 unsigned int
4666 Output_segment::output_section_count() const
4667 {
4668 unsigned int ret = 0;
4669 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4670 ret += this->output_section_count_list(&this->output_lists_[i]);
4671 return ret;
4672 }
4673
4674 // Return the number of Output_sections in an Output_data_list.
4675
4676 unsigned int
4677 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4678 {
4679 unsigned int count = 0;
4680 for (Output_data_list::const_iterator p = pdl->begin();
4681 p != pdl->end();
4682 ++p)
4683 {
4684 if ((*p)->is_section())
4685 ++count;
4686 }
4687 return count;
4688 }
4689
4690 // Return the section attached to the list segment with the lowest
4691 // load address. This is used when handling a PHDRS clause in a
4692 // linker script.
4693
4694 Output_section*
4695 Output_segment::section_with_lowest_load_address() const
4696 {
4697 Output_section* found = NULL;
4698 uint64_t found_lma = 0;
4699 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4700 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4701 &found_lma);
4702 return found;
4703 }
4704
4705 // Look through a list for a section with a lower load address.
4706
4707 void
4708 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4709 Output_section** found,
4710 uint64_t* found_lma) const
4711 {
4712 for (Output_data_list::const_iterator p = pdl->begin();
4713 p != pdl->end();
4714 ++p)
4715 {
4716 if (!(*p)->is_section())
4717 continue;
4718 Output_section* os = static_cast<Output_section*>(*p);
4719 uint64_t lma = (os->has_load_address()
4720 ? os->load_address()
4721 : os->address());
4722 if (*found == NULL || lma < *found_lma)
4723 {
4724 *found = os;
4725 *found_lma = lma;
4726 }
4727 }
4728 }
4729
4730 // Write the segment data into *OPHDR.
4731
4732 template<int size, bool big_endian>
4733 void
4734 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4735 {
4736 ophdr->put_p_type(this->type_);
4737 ophdr->put_p_offset(this->offset_);
4738 ophdr->put_p_vaddr(this->vaddr_);
4739 ophdr->put_p_paddr(this->paddr_);
4740 ophdr->put_p_filesz(this->filesz_);
4741 ophdr->put_p_memsz(this->memsz_);
4742 ophdr->put_p_flags(this->flags_);
4743 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4744 }
4745
4746 // Write the section headers into V.
4747
4748 template<int size, bool big_endian>
4749 unsigned char*
4750 Output_segment::write_section_headers(const Layout* layout,
4751 const Stringpool* secnamepool,
4752 unsigned char* v,
4753 unsigned int* pshndx) const
4754 {
4755 // Every section that is attached to a segment must be attached to a
4756 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4757 // segments.
4758 if (this->type_ != elfcpp::PT_LOAD)
4759 return v;
4760
4761 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4762 {
4763 const Output_data_list* pdl = &this->output_lists_[i];
4764 v = this->write_section_headers_list<size, big_endian>(layout,
4765 secnamepool,
4766 pdl,
4767 v, pshndx);
4768 }
4769
4770 return v;
4771 }
4772
4773 template<int size, bool big_endian>
4774 unsigned char*
4775 Output_segment::write_section_headers_list(const Layout* layout,
4776 const Stringpool* secnamepool,
4777 const Output_data_list* pdl,
4778 unsigned char* v,
4779 unsigned int* pshndx) const
4780 {
4781 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4782 for (Output_data_list::const_iterator p = pdl->begin();
4783 p != pdl->end();
4784 ++p)
4785 {
4786 if ((*p)->is_section())
4787 {
4788 const Output_section* ps = static_cast<const Output_section*>(*p);
4789 gold_assert(*pshndx == ps->out_shndx());
4790 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4791 ps->write_header(layout, secnamepool, &oshdr);
4792 v += shdr_size;
4793 ++*pshndx;
4794 }
4795 }
4796 return v;
4797 }
4798
4799 // Print the output sections to the map file.
4800
4801 void
4802 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4803 {
4804 if (this->type() != elfcpp::PT_LOAD)
4805 return;
4806 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4807 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4808 }
4809
4810 // Print an output section list to the map file.
4811
4812 void
4813 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4814 const Output_data_list* pdl) const
4815 {
4816 for (Output_data_list::const_iterator p = pdl->begin();
4817 p != pdl->end();
4818 ++p)
4819 (*p)->print_to_mapfile(mapfile);
4820 }
4821
4822 // Output_file methods.
4823
4824 Output_file::Output_file(const char* name)
4825 : name_(name),
4826 o_(-1),
4827 file_size_(0),
4828 base_(NULL),
4829 map_is_anonymous_(false),
4830 map_is_allocated_(false),
4831 is_temporary_(false)
4832 {
4833 }
4834
4835 // Try to open an existing file. Returns false if the file doesn't
4836 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4837 // NULL, open that file as the base for incremental linking, and
4838 // copy its contents to the new output file. This routine can
4839 // be called for incremental updates, in which case WRITABLE should
4840 // be true, or by the incremental-dump utility, in which case
4841 // WRITABLE should be false.
4842
4843 bool
4844 Output_file::open_base_file(const char* base_name, bool writable)
4845 {
4846 // The name "-" means "stdout".
4847 if (strcmp(this->name_, "-") == 0)
4848 return false;
4849
4850 bool use_base_file = base_name != NULL;
4851 if (!use_base_file)
4852 base_name = this->name_;
4853 else if (strcmp(base_name, this->name_) == 0)
4854 gold_fatal(_("%s: incremental base and output file name are the same"),
4855 base_name);
4856
4857 // Don't bother opening files with a size of zero.
4858 struct stat s;
4859 if (::stat(base_name, &s) != 0)
4860 {
4861 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4862 return false;
4863 }
4864 if (s.st_size == 0)
4865 {
4866 gold_info(_("%s: incremental base file is empty"), base_name);
4867 return false;
4868 }
4869
4870 // If we're using a base file, we want to open it read-only.
4871 if (use_base_file)
4872 writable = false;
4873
4874 int oflags = writable ? O_RDWR : O_RDONLY;
4875 int o = open_descriptor(-1, base_name, oflags, 0);
4876 if (o < 0)
4877 {
4878 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4879 return false;
4880 }
4881
4882 // If the base file and the output file are different, open a
4883 // new output file and read the contents from the base file into
4884 // the newly-mapped region.
4885 if (use_base_file)
4886 {
4887 this->open(s.st_size);
4888 ssize_t bytes_to_read = s.st_size;
4889 unsigned char* p = this->base_;
4890 while (bytes_to_read > 0)
4891 {
4892 ssize_t len = ::read(o, p, bytes_to_read);
4893 if (len < 0)
4894 {
4895 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4896 return false;
4897 }
4898 if (len == 0)
4899 {
4900 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4901 base_name,
4902 static_cast<long long>(s.st_size - bytes_to_read),
4903 static_cast<long long>(s.st_size));
4904 return false;
4905 }
4906 p += len;
4907 bytes_to_read -= len;
4908 }
4909 ::close(o);
4910 return true;
4911 }
4912
4913 this->o_ = o;
4914 this->file_size_ = s.st_size;
4915
4916 if (!this->map_no_anonymous(writable))
4917 {
4918 release_descriptor(o, true);
4919 this->o_ = -1;
4920 this->file_size_ = 0;
4921 return false;
4922 }
4923
4924 return true;
4925 }
4926
4927 // Open the output file.
4928
4929 void
4930 Output_file::open(off_t file_size)
4931 {
4932 this->file_size_ = file_size;
4933
4934 // Unlink the file first; otherwise the open() may fail if the file
4935 // is busy (e.g. it's an executable that's currently being executed).
4936 //
4937 // However, the linker may be part of a system where a zero-length
4938 // file is created for it to write to, with tight permissions (gcc
4939 // 2.95 did something like this). Unlinking the file would work
4940 // around those permission controls, so we only unlink if the file
4941 // has a non-zero size. We also unlink only regular files to avoid
4942 // trouble with directories/etc.
4943 //
4944 // If we fail, continue; this command is merely a best-effort attempt
4945 // to improve the odds for open().
4946
4947 // We let the name "-" mean "stdout"
4948 if (!this->is_temporary_)
4949 {
4950 if (strcmp(this->name_, "-") == 0)
4951 this->o_ = STDOUT_FILENO;
4952 else
4953 {
4954 struct stat s;
4955 if (::stat(this->name_, &s) == 0
4956 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4957 {
4958 if (s.st_size != 0)
4959 ::unlink(this->name_);
4960 else if (!parameters->options().relocatable())
4961 {
4962 // If we don't unlink the existing file, add execute
4963 // permission where read permissions already exist
4964 // and where the umask permits.
4965 int mask = ::umask(0);
4966 ::umask(mask);
4967 s.st_mode |= (s.st_mode & 0444) >> 2;
4968 ::chmod(this->name_, s.st_mode & ~mask);
4969 }
4970 }
4971
4972 int mode = parameters->options().relocatable() ? 0666 : 0777;
4973 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4974 mode);
4975 if (o < 0)
4976 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4977 this->o_ = o;
4978 }
4979 }
4980
4981 this->map();
4982 }
4983
4984 // Resize the output file.
4985
4986 void
4987 Output_file::resize(off_t file_size)
4988 {
4989 // If the mmap is mapping an anonymous memory buffer, this is easy:
4990 // just mremap to the new size. If it's mapping to a file, we want
4991 // to unmap to flush to the file, then remap after growing the file.
4992 if (this->map_is_anonymous_)
4993 {
4994 void* base;
4995 if (!this->map_is_allocated_)
4996 {
4997 base = ::mremap(this->base_, this->file_size_, file_size,
4998 MREMAP_MAYMOVE);
4999 if (base == MAP_FAILED)
5000 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5001 }
5002 else
5003 {
5004 base = realloc(this->base_, file_size);
5005 if (base == NULL)
5006 gold_nomem();
5007 if (file_size > this->file_size_)
5008 memset(static_cast<char*>(base) + this->file_size_, 0,
5009 file_size - this->file_size_);
5010 }
5011 this->base_ = static_cast<unsigned char*>(base);
5012 this->file_size_ = file_size;
5013 }
5014 else
5015 {
5016 this->unmap();
5017 this->file_size_ = file_size;
5018 if (!this->map_no_anonymous(true))
5019 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5020 }
5021 }
5022
5023 // Map an anonymous block of memory which will later be written to the
5024 // file. Return whether the map succeeded.
5025
5026 bool
5027 Output_file::map_anonymous()
5028 {
5029 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5030 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5031 if (base == MAP_FAILED)
5032 {
5033 base = malloc(this->file_size_);
5034 if (base == NULL)
5035 return false;
5036 memset(base, 0, this->file_size_);
5037 this->map_is_allocated_ = true;
5038 }
5039 this->base_ = static_cast<unsigned char*>(base);
5040 this->map_is_anonymous_ = true;
5041 return true;
5042 }
5043
5044 // Map the file into memory. Return whether the mapping succeeded.
5045 // If WRITABLE is true, map with write access.
5046
5047 bool
5048 Output_file::map_no_anonymous(bool writable)
5049 {
5050 const int o = this->o_;
5051
5052 // If the output file is not a regular file, don't try to mmap it;
5053 // instead, we'll mmap a block of memory (an anonymous buffer), and
5054 // then later write the buffer to the file.
5055 void* base;
5056 struct stat statbuf;
5057 if (o == STDOUT_FILENO || o == STDERR_FILENO
5058 || ::fstat(o, &statbuf) != 0
5059 || !S_ISREG(statbuf.st_mode)
5060 || this->is_temporary_)
5061 return false;
5062
5063 // Ensure that we have disk space available for the file. If we
5064 // don't do this, it is possible that we will call munmap, close,
5065 // and exit with dirty buffers still in the cache with no assigned
5066 // disk blocks. If the disk is out of space at that point, the
5067 // output file will wind up incomplete, but we will have already
5068 // exited. The alternative to fallocate would be to use fdatasync,
5069 // but that would be a more significant performance hit.
5070 if (writable)
5071 {
5072 int err = gold_fallocate(o, 0, this->file_size_);
5073 if (err != 0)
5074 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5075 }
5076
5077 // Map the file into memory.
5078 int prot = PROT_READ;
5079 if (writable)
5080 prot |= PROT_WRITE;
5081 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5082
5083 // The mmap call might fail because of file system issues: the file
5084 // system might not support mmap at all, or it might not support
5085 // mmap with PROT_WRITE.
5086 if (base == MAP_FAILED)
5087 return false;
5088
5089 this->map_is_anonymous_ = false;
5090 this->base_ = static_cast<unsigned char*>(base);
5091 return true;
5092 }
5093
5094 // Map the file into memory.
5095
5096 void
5097 Output_file::map()
5098 {
5099 if (parameters->options().mmap_output_file()
5100 && this->map_no_anonymous(true))
5101 return;
5102
5103 // The mmap call might fail because of file system issues: the file
5104 // system might not support mmap at all, or it might not support
5105 // mmap with PROT_WRITE. I'm not sure which errno values we will
5106 // see in all cases, so if the mmap fails for any reason and we
5107 // don't care about file contents, try for an anonymous map.
5108 if (this->map_anonymous())
5109 return;
5110
5111 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5112 this->name_, static_cast<unsigned long>(this->file_size_),
5113 strerror(errno));
5114 }
5115
5116 // Unmap the file from memory.
5117
5118 void
5119 Output_file::unmap()
5120 {
5121 if (this->map_is_anonymous_)
5122 {
5123 // We've already written out the data, so there is no reason to
5124 // waste time unmapping or freeing the memory.
5125 }
5126 else
5127 {
5128 if (::munmap(this->base_, this->file_size_) < 0)
5129 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5130 }
5131 this->base_ = NULL;
5132 }
5133
5134 // Close the output file.
5135
5136 void
5137 Output_file::close()
5138 {
5139 // If the map isn't file-backed, we need to write it now.
5140 if (this->map_is_anonymous_ && !this->is_temporary_)
5141 {
5142 size_t bytes_to_write = this->file_size_;
5143 size_t offset = 0;
5144 while (bytes_to_write > 0)
5145 {
5146 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5147 bytes_to_write);
5148 if (bytes_written == 0)
5149 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5150 else if (bytes_written < 0)
5151 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5152 else
5153 {
5154 bytes_to_write -= bytes_written;
5155 offset += bytes_written;
5156 }
5157 }
5158 }
5159 this->unmap();
5160
5161 // We don't close stdout or stderr
5162 if (this->o_ != STDOUT_FILENO
5163 && this->o_ != STDERR_FILENO
5164 && !this->is_temporary_)
5165 if (::close(this->o_) < 0)
5166 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5167 this->o_ = -1;
5168 }
5169
5170 // Instantiate the templates we need. We could use the configure
5171 // script to restrict this to only the ones for implemented targets.
5172
5173 #ifdef HAVE_TARGET_32_LITTLE
5174 template
5175 off_t
5176 Output_section::add_input_section<32, false>(
5177 Layout* layout,
5178 Sized_relobj_file<32, false>* object,
5179 unsigned int shndx,
5180 const char* secname,
5181 const elfcpp::Shdr<32, false>& shdr,
5182 unsigned int reloc_shndx,
5183 bool have_sections_script);
5184 #endif
5185
5186 #ifdef HAVE_TARGET_32_BIG
5187 template
5188 off_t
5189 Output_section::add_input_section<32, true>(
5190 Layout* layout,
5191 Sized_relobj_file<32, true>* object,
5192 unsigned int shndx,
5193 const char* secname,
5194 const elfcpp::Shdr<32, true>& shdr,
5195 unsigned int reloc_shndx,
5196 bool have_sections_script);
5197 #endif
5198
5199 #ifdef HAVE_TARGET_64_LITTLE
5200 template
5201 off_t
5202 Output_section::add_input_section<64, false>(
5203 Layout* layout,
5204 Sized_relobj_file<64, false>* object,
5205 unsigned int shndx,
5206 const char* secname,
5207 const elfcpp::Shdr<64, false>& shdr,
5208 unsigned int reloc_shndx,
5209 bool have_sections_script);
5210 #endif
5211
5212 #ifdef HAVE_TARGET_64_BIG
5213 template
5214 off_t
5215 Output_section::add_input_section<64, true>(
5216 Layout* layout,
5217 Sized_relobj_file<64, true>* object,
5218 unsigned int shndx,
5219 const char* secname,
5220 const elfcpp::Shdr<64, true>& shdr,
5221 unsigned int reloc_shndx,
5222 bool have_sections_script);
5223 #endif
5224
5225 #ifdef HAVE_TARGET_32_LITTLE
5226 template
5227 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5228 #endif
5229
5230 #ifdef HAVE_TARGET_32_BIG
5231 template
5232 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5233 #endif
5234
5235 #ifdef HAVE_TARGET_64_LITTLE
5236 template
5237 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5238 #endif
5239
5240 #ifdef HAVE_TARGET_64_BIG
5241 template
5242 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5243 #endif
5244
5245 #ifdef HAVE_TARGET_32_LITTLE
5246 template
5247 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5248 #endif
5249
5250 #ifdef HAVE_TARGET_32_BIG
5251 template
5252 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5253 #endif
5254
5255 #ifdef HAVE_TARGET_64_LITTLE
5256 template
5257 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5258 #endif
5259
5260 #ifdef HAVE_TARGET_64_BIG
5261 template
5262 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5263 #endif
5264
5265 #ifdef HAVE_TARGET_32_LITTLE
5266 template
5267 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5268 #endif
5269
5270 #ifdef HAVE_TARGET_32_BIG
5271 template
5272 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5273 #endif
5274
5275 #ifdef HAVE_TARGET_64_LITTLE
5276 template
5277 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5278 #endif
5279
5280 #ifdef HAVE_TARGET_64_BIG
5281 template
5282 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5283 #endif
5284
5285 #ifdef HAVE_TARGET_32_LITTLE
5286 template
5287 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5288 #endif
5289
5290 #ifdef HAVE_TARGET_32_BIG
5291 template
5292 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5293 #endif
5294
5295 #ifdef HAVE_TARGET_64_LITTLE
5296 template
5297 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5298 #endif
5299
5300 #ifdef HAVE_TARGET_64_BIG
5301 template
5302 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5303 #endif
5304
5305 #ifdef HAVE_TARGET_32_LITTLE
5306 template
5307 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5308 #endif
5309
5310 #ifdef HAVE_TARGET_32_BIG
5311 template
5312 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5313 #endif
5314
5315 #ifdef HAVE_TARGET_64_LITTLE
5316 template
5317 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5318 #endif
5319
5320 #ifdef HAVE_TARGET_64_BIG
5321 template
5322 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5323 #endif
5324
5325 #ifdef HAVE_TARGET_32_LITTLE
5326 template
5327 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5328 #endif
5329
5330 #ifdef HAVE_TARGET_32_BIG
5331 template
5332 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5333 #endif
5334
5335 #ifdef HAVE_TARGET_64_LITTLE
5336 template
5337 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_64_BIG
5341 template
5342 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_32_LITTLE
5346 template
5347 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_32_BIG
5351 template
5352 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_64_LITTLE
5356 template
5357 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_64_BIG
5361 template
5362 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_32_LITTLE
5366 template
5367 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_32_BIG
5371 template
5372 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_64_LITTLE
5376 template
5377 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_64_BIG
5381 template
5382 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_32_LITTLE
5386 template
5387 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_32_BIG
5391 template
5392 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_64_LITTLE
5396 template
5397 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_64_BIG
5401 template
5402 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_32_LITTLE
5406 template
5407 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_32_BIG
5411 template
5412 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_64_LITTLE
5416 template
5417 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_64_BIG
5421 template
5422 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_32_LITTLE
5426 template
5427 class Output_data_group<32, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_32_BIG
5431 template
5432 class Output_data_group<32, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_64_LITTLE
5436 template
5437 class Output_data_group<64, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_64_BIG
5441 template
5442 class Output_data_group<64, true>;
5443 #endif
5444
5445 #ifdef HAVE_TARGET_32_LITTLE
5446 template
5447 class Output_data_got<32, false>;
5448 #endif
5449
5450 #ifdef HAVE_TARGET_32_BIG
5451 template
5452 class Output_data_got<32, true>;
5453 #endif
5454
5455 #ifdef HAVE_TARGET_64_LITTLE
5456 template
5457 class Output_data_got<64, false>;
5458 #endif
5459
5460 #ifdef HAVE_TARGET_64_BIG
5461 template
5462 class Output_data_got<64, true>;
5463 #endif
5464
5465 } // End namespace gold.
This page took 0.168689 seconds and 5 git commands to generate.