2010-01-22 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative)
642 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
643 is_relative_(is_relative), is_section_symbol_(false), shndx_(INVALID_CODE)
644 {
645 // this->type_ is a bitfield; make sure TYPE fits.
646 gold_assert(this->type_ == type);
647 this->u1_.gsym = gsym;
648 this->u2_.od = od;
649 if (dynamic)
650 this->set_needs_dynsym_index();
651 }
652
653 template<bool dynamic, int size, bool big_endian>
654 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
655 Symbol* gsym,
656 unsigned int type,
657 Sized_relobj<size, big_endian>* relobj,
658 unsigned int shndx,
659 Address address,
660 bool is_relative)
661 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
662 is_relative_(is_relative), is_section_symbol_(false), shndx_(shndx)
663 {
664 gold_assert(shndx != INVALID_CODE);
665 // this->type_ is a bitfield; make sure TYPE fits.
666 gold_assert(this->type_ == type);
667 this->u1_.gsym = gsym;
668 this->u2_.relobj = relobj;
669 if (dynamic)
670 this->set_needs_dynsym_index();
671 }
672
673 // A reloc against a local symbol.
674
675 template<bool dynamic, int size, bool big_endian>
676 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
677 Sized_relobj<size, big_endian>* relobj,
678 unsigned int local_sym_index,
679 unsigned int type,
680 Output_data* od,
681 Address address,
682 bool is_relative,
683 bool is_section_symbol)
684 : address_(address), local_sym_index_(local_sym_index), type_(type),
685 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
686 shndx_(INVALID_CODE)
687 {
688 gold_assert(local_sym_index != GSYM_CODE
689 && local_sym_index != INVALID_CODE);
690 // this->type_ is a bitfield; make sure TYPE fits.
691 gold_assert(this->type_ == type);
692 this->u1_.relobj = relobj;
693 this->u2_.od = od;
694 if (dynamic)
695 this->set_needs_dynsym_index();
696 }
697
698 template<bool dynamic, int size, bool big_endian>
699 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
700 Sized_relobj<size, big_endian>* relobj,
701 unsigned int local_sym_index,
702 unsigned int type,
703 unsigned int shndx,
704 Address address,
705 bool is_relative,
706 bool is_section_symbol)
707 : address_(address), local_sym_index_(local_sym_index), type_(type),
708 is_relative_(is_relative), is_section_symbol_(is_section_symbol),
709 shndx_(shndx)
710 {
711 gold_assert(local_sym_index != GSYM_CODE
712 && local_sym_index != INVALID_CODE);
713 gold_assert(shndx != INVALID_CODE);
714 // this->type_ is a bitfield; make sure TYPE fits.
715 gold_assert(this->type_ == type);
716 this->u1_.relobj = relobj;
717 this->u2_.relobj = relobj;
718 if (dynamic)
719 this->set_needs_dynsym_index();
720 }
721
722 // A reloc against the STT_SECTION symbol of an output section.
723
724 template<bool dynamic, int size, bool big_endian>
725 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
726 Output_section* os,
727 unsigned int type,
728 Output_data* od,
729 Address address)
730 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
731 is_relative_(false), is_section_symbol_(true), shndx_(INVALID_CODE)
732 {
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.os = os;
736 this->u2_.od = od;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 else
740 os->set_needs_symtab_index();
741 }
742
743 template<bool dynamic, int size, bool big_endian>
744 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
745 Output_section* os,
746 unsigned int type,
747 Sized_relobj<size, big_endian>* relobj,
748 unsigned int shndx,
749 Address address)
750 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
751 is_relative_(false), is_section_symbol_(true), shndx_(shndx)
752 {
753 gold_assert(shndx != INVALID_CODE);
754 // this->type_ is a bitfield; make sure TYPE fits.
755 gold_assert(this->type_ == type);
756 this->u1_.os = os;
757 this->u2_.relobj = relobj;
758 if (dynamic)
759 this->set_needs_dynsym_index();
760 else
761 os->set_needs_symtab_index();
762 }
763
764 // An absolute relocation.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 unsigned int type,
769 Output_data* od,
770 Address address)
771 : address_(address), local_sym_index_(0), type_(type),
772 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
773 {
774 // this->type_ is a bitfield; make sure TYPE fits.
775 gold_assert(this->type_ == type);
776 this->u1_.relobj = NULL;
777 this->u2_.od = od;
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 unsigned int type,
783 Sized_relobj<size, big_endian>* relobj,
784 unsigned int shndx,
785 Address address)
786 : address_(address), local_sym_index_(0), type_(type),
787 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
788 {
789 gold_assert(shndx != INVALID_CODE);
790 // this->type_ is a bitfield; make sure TYPE fits.
791 gold_assert(this->type_ == type);
792 this->u1_.relobj = NULL;
793 this->u2_.relobj = relobj;
794 }
795
796 // A target specific relocation.
797
798 template<bool dynamic, int size, bool big_endian>
799 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
800 unsigned int type,
801 void* arg,
802 Output_data* od,
803 Address address)
804 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
805 is_relative_(false), is_section_symbol_(false), shndx_(INVALID_CODE)
806 {
807 // this->type_ is a bitfield; make sure TYPE fits.
808 gold_assert(this->type_ == type);
809 this->u1_.arg = arg;
810 this->u2_.od = od;
811 }
812
813 template<bool dynamic, int size, bool big_endian>
814 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
815 unsigned int type,
816 void* arg,
817 Sized_relobj<size, big_endian>* relobj,
818 unsigned int shndx,
819 Address address)
820 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
821 is_relative_(false), is_section_symbol_(false), shndx_(shndx)
822 {
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
826 this->u1_.arg = arg;
827 this->u2_.relobj = relobj;
828 }
829
830 // Record that we need a dynamic symbol index for this relocation.
831
832 template<bool dynamic, int size, bool big_endian>
833 void
834 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
835 set_needs_dynsym_index()
836 {
837 if (this->is_relative_)
838 return;
839 switch (this->local_sym_index_)
840 {
841 case INVALID_CODE:
842 gold_unreachable();
843
844 case GSYM_CODE:
845 this->u1_.gsym->set_needs_dynsym_entry();
846 break;
847
848 case SECTION_CODE:
849 this->u1_.os->set_needs_dynsym_index();
850 break;
851
852 case TARGET_CODE:
853 // The target must take care of this if necessary.
854 break;
855
856 case 0:
857 break;
858
859 default:
860 {
861 const unsigned int lsi = this->local_sym_index_;
862 if (!this->is_section_symbol_)
863 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
864 else
865 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
866 }
867 break;
868 }
869 }
870
871 // Get the symbol index of a relocation.
872
873 template<bool dynamic, int size, bool big_endian>
874 unsigned int
875 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
876 const
877 {
878 unsigned int index;
879 switch (this->local_sym_index_)
880 {
881 case INVALID_CODE:
882 gold_unreachable();
883
884 case GSYM_CODE:
885 if (this->u1_.gsym == NULL)
886 index = 0;
887 else if (dynamic)
888 index = this->u1_.gsym->dynsym_index();
889 else
890 index = this->u1_.gsym->symtab_index();
891 break;
892
893 case SECTION_CODE:
894 if (dynamic)
895 index = this->u1_.os->dynsym_index();
896 else
897 index = this->u1_.os->symtab_index();
898 break;
899
900 case TARGET_CODE:
901 index = parameters->target().reloc_symbol_index(this->u1_.arg,
902 this->type_);
903 break;
904
905 case 0:
906 // Relocations without symbols use a symbol index of 0.
907 index = 0;
908 break;
909
910 default:
911 {
912 const unsigned int lsi = this->local_sym_index_;
913 if (!this->is_section_symbol_)
914 {
915 if (dynamic)
916 index = this->u1_.relobj->dynsym_index(lsi);
917 else
918 index = this->u1_.relobj->symtab_index(lsi);
919 }
920 else
921 {
922 Output_section* os = this->u1_.relobj->output_section(lsi);
923 gold_assert(os != NULL);
924 if (dynamic)
925 index = os->dynsym_index();
926 else
927 index = os->symtab_index();
928 }
929 }
930 break;
931 }
932 gold_assert(index != -1U);
933 return index;
934 }
935
936 // For a local section symbol, get the address of the offset ADDEND
937 // within the input section.
938
939 template<bool dynamic, int size, bool big_endian>
940 typename elfcpp::Elf_types<size>::Elf_Addr
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 local_section_offset(Addend addend) const
943 {
944 gold_assert(this->local_sym_index_ != GSYM_CODE
945 && this->local_sym_index_ != SECTION_CODE
946 && this->local_sym_index_ != TARGET_CODE
947 && this->local_sym_index_ != INVALID_CODE
948 && this->local_sym_index_ != 0
949 && this->is_section_symbol_);
950 const unsigned int lsi = this->local_sym_index_;
951 Output_section* os = this->u1_.relobj->output_section(lsi);
952 gold_assert(os != NULL);
953 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
954 if (offset != invalid_address)
955 return offset + addend;
956 // This is a merge section.
957 offset = os->output_address(this->u1_.relobj, lsi, addend);
958 gold_assert(offset != invalid_address);
959 return offset;
960 }
961
962 // Get the output address of a relocation.
963
964 template<bool dynamic, int size, bool big_endian>
965 typename elfcpp::Elf_types<size>::Elf_Addr
966 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
967 {
968 Address address = this->address_;
969 if (this->shndx_ != INVALID_CODE)
970 {
971 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
972 gold_assert(os != NULL);
973 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
974 if (off != invalid_address)
975 address += os->address() + off;
976 else
977 {
978 address = os->output_address(this->u2_.relobj, this->shndx_,
979 address);
980 gold_assert(address != invalid_address);
981 }
982 }
983 else if (this->u2_.od != NULL)
984 address += this->u2_.od->address();
985 return address;
986 }
987
988 // Write out the offset and info fields of a Rel or Rela relocation
989 // entry.
990
991 template<bool dynamic, int size, bool big_endian>
992 template<typename Write_rel>
993 void
994 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
995 Write_rel* wr) const
996 {
997 wr->put_r_offset(this->get_address());
998 unsigned int sym_index = this->is_relative_ ? 0 : this->get_symbol_index();
999 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1000 }
1001
1002 // Write out a Rel relocation.
1003
1004 template<bool dynamic, int size, bool big_endian>
1005 void
1006 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1007 unsigned char* pov) const
1008 {
1009 elfcpp::Rel_write<size, big_endian> orel(pov);
1010 this->write_rel(&orel);
1011 }
1012
1013 // Get the value of the symbol referred to by a Rel relocation.
1014
1015 template<bool dynamic, int size, bool big_endian>
1016 typename elfcpp::Elf_types<size>::Elf_Addr
1017 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1018 Addend addend) const
1019 {
1020 if (this->local_sym_index_ == GSYM_CODE)
1021 {
1022 const Sized_symbol<size>* sym;
1023 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1024 return sym->value() + addend;
1025 }
1026 gold_assert(this->local_sym_index_ != SECTION_CODE
1027 && this->local_sym_index_ != TARGET_CODE
1028 && this->local_sym_index_ != INVALID_CODE
1029 && this->local_sym_index_ != 0
1030 && !this->is_section_symbol_);
1031 const unsigned int lsi = this->local_sym_index_;
1032 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1033 return symval->value(this->u1_.relobj, addend);
1034 }
1035
1036 // Reloc comparison. This function sorts the dynamic relocs for the
1037 // benefit of the dynamic linker. First we sort all relative relocs
1038 // to the front. Among relative relocs, we sort by output address.
1039 // Among non-relative relocs, we sort by symbol index, then by output
1040 // address.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 int
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1046 const
1047 {
1048 if (this->is_relative_)
1049 {
1050 if (!r2.is_relative_)
1051 return -1;
1052 // Otherwise sort by reloc address below.
1053 }
1054 else if (r2.is_relative_)
1055 return 1;
1056 else
1057 {
1058 unsigned int sym1 = this->get_symbol_index();
1059 unsigned int sym2 = r2.get_symbol_index();
1060 if (sym1 < sym2)
1061 return -1;
1062 else if (sym1 > sym2)
1063 return 1;
1064 // Otherwise sort by reloc address.
1065 }
1066
1067 section_offset_type addr1 = this->get_address();
1068 section_offset_type addr2 = r2.get_address();
1069 if (addr1 < addr2)
1070 return -1;
1071 else if (addr1 > addr2)
1072 return 1;
1073
1074 // Final tie breaker, in order to generate the same output on any
1075 // host: reloc type.
1076 unsigned int type1 = this->type_;
1077 unsigned int type2 = r2.type_;
1078 if (type1 < type2)
1079 return -1;
1080 else if (type1 > type2)
1081 return 1;
1082
1083 // These relocs appear to be exactly the same.
1084 return 0;
1085 }
1086
1087 // Write out a Rela relocation.
1088
1089 template<bool dynamic, int size, bool big_endian>
1090 void
1091 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1092 unsigned char* pov) const
1093 {
1094 elfcpp::Rela_write<size, big_endian> orel(pov);
1095 this->rel_.write_rel(&orel);
1096 Addend addend = this->addend_;
1097 if (this->rel_.is_target_specific())
1098 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1099 this->rel_.type(), addend);
1100 else if (this->rel_.is_relative())
1101 addend = this->rel_.symbol_value(addend);
1102 else if (this->rel_.is_local_section_symbol())
1103 addend = this->rel_.local_section_offset(addend);
1104 orel.put_r_addend(addend);
1105 }
1106
1107 // Output_data_reloc_base methods.
1108
1109 // Adjust the output section.
1110
1111 template<int sh_type, bool dynamic, int size, bool big_endian>
1112 void
1113 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1114 ::do_adjust_output_section(Output_section* os)
1115 {
1116 if (sh_type == elfcpp::SHT_REL)
1117 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1118 else if (sh_type == elfcpp::SHT_RELA)
1119 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1120 else
1121 gold_unreachable();
1122 if (dynamic)
1123 os->set_should_link_to_dynsym();
1124 else
1125 os->set_should_link_to_symtab();
1126 }
1127
1128 // Write out relocation data.
1129
1130 template<int sh_type, bool dynamic, int size, bool big_endian>
1131 void
1132 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1133 Output_file* of)
1134 {
1135 const off_t off = this->offset();
1136 const off_t oview_size = this->data_size();
1137 unsigned char* const oview = of->get_output_view(off, oview_size);
1138
1139 if (this->sort_relocs())
1140 {
1141 gold_assert(dynamic);
1142 std::sort(this->relocs_.begin(), this->relocs_.end(),
1143 Sort_relocs_comparison());
1144 }
1145
1146 unsigned char* pov = oview;
1147 for (typename Relocs::const_iterator p = this->relocs_.begin();
1148 p != this->relocs_.end();
1149 ++p)
1150 {
1151 p->write(pov);
1152 pov += reloc_size;
1153 }
1154
1155 gold_assert(pov - oview == oview_size);
1156
1157 of->write_output_view(off, oview_size, oview);
1158
1159 // We no longer need the relocation entries.
1160 this->relocs_.clear();
1161 }
1162
1163 // Class Output_relocatable_relocs.
1164
1165 template<int sh_type, int size, bool big_endian>
1166 void
1167 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1168 {
1169 this->set_data_size(this->rr_->output_reloc_count()
1170 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1171 }
1172
1173 // class Output_data_group.
1174
1175 template<int size, bool big_endian>
1176 Output_data_group<size, big_endian>::Output_data_group(
1177 Sized_relobj<size, big_endian>* relobj,
1178 section_size_type entry_count,
1179 elfcpp::Elf_Word flags,
1180 std::vector<unsigned int>* input_shndxes)
1181 : Output_section_data(entry_count * 4, 4, false),
1182 relobj_(relobj),
1183 flags_(flags)
1184 {
1185 this->input_shndxes_.swap(*input_shndxes);
1186 }
1187
1188 // Write out the section group, which means translating the section
1189 // indexes to apply to the output file.
1190
1191 template<int size, bool big_endian>
1192 void
1193 Output_data_group<size, big_endian>::do_write(Output_file* of)
1194 {
1195 const off_t off = this->offset();
1196 const section_size_type oview_size =
1197 convert_to_section_size_type(this->data_size());
1198 unsigned char* const oview = of->get_output_view(off, oview_size);
1199
1200 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1201 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1202 ++contents;
1203
1204 for (std::vector<unsigned int>::const_iterator p =
1205 this->input_shndxes_.begin();
1206 p != this->input_shndxes_.end();
1207 ++p, ++contents)
1208 {
1209 Output_section* os = this->relobj_->output_section(*p);
1210
1211 unsigned int output_shndx;
1212 if (os != NULL)
1213 output_shndx = os->out_shndx();
1214 else
1215 {
1216 this->relobj_->error(_("section group retained but "
1217 "group element discarded"));
1218 output_shndx = 0;
1219 }
1220
1221 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1222 }
1223
1224 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1225 gold_assert(wrote == oview_size);
1226
1227 of->write_output_view(off, oview_size, oview);
1228
1229 // We no longer need this information.
1230 this->input_shndxes_.clear();
1231 }
1232
1233 // Output_data_got::Got_entry methods.
1234
1235 // Write out the entry.
1236
1237 template<int size, bool big_endian>
1238 void
1239 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1240 {
1241 Valtype val = 0;
1242
1243 switch (this->local_sym_index_)
1244 {
1245 case GSYM_CODE:
1246 {
1247 // If the symbol is resolved locally, we need to write out the
1248 // link-time value, which will be relocated dynamically by a
1249 // RELATIVE relocation.
1250 Symbol* gsym = this->u_.gsym;
1251 Sized_symbol<size>* sgsym;
1252 // This cast is a bit ugly. We don't want to put a
1253 // virtual method in Symbol, because we want Symbol to be
1254 // as small as possible.
1255 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1256 val = sgsym->value();
1257 }
1258 break;
1259
1260 case CONSTANT_CODE:
1261 val = this->u_.constant;
1262 break;
1263
1264 default:
1265 {
1266 const unsigned int lsi = this->local_sym_index_;
1267 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1268 val = symval->value(this->u_.object, 0);
1269 }
1270 break;
1271 }
1272
1273 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1274 }
1275
1276 // Output_data_got methods.
1277
1278 // Add an entry for a global symbol to the GOT. This returns true if
1279 // this is a new GOT entry, false if the symbol already had a GOT
1280 // entry.
1281
1282 template<int size, bool big_endian>
1283 bool
1284 Output_data_got<size, big_endian>::add_global(
1285 Symbol* gsym,
1286 unsigned int got_type)
1287 {
1288 if (gsym->has_got_offset(got_type))
1289 return false;
1290
1291 this->entries_.push_back(Got_entry(gsym));
1292 this->set_got_size();
1293 gsym->set_got_offset(got_type, this->last_got_offset());
1294 return true;
1295 }
1296
1297 // Add an entry for a global symbol to the GOT, and add a dynamic
1298 // relocation of type R_TYPE for the GOT entry.
1299 template<int size, bool big_endian>
1300 void
1301 Output_data_got<size, big_endian>::add_global_with_rel(
1302 Symbol* gsym,
1303 unsigned int got_type,
1304 Rel_dyn* rel_dyn,
1305 unsigned int r_type)
1306 {
1307 if (gsym->has_got_offset(got_type))
1308 return;
1309
1310 this->entries_.push_back(Got_entry());
1311 this->set_got_size();
1312 unsigned int got_offset = this->last_got_offset();
1313 gsym->set_got_offset(got_type, got_offset);
1314 rel_dyn->add_global(gsym, r_type, this, got_offset);
1315 }
1316
1317 template<int size, bool big_endian>
1318 void
1319 Output_data_got<size, big_endian>::add_global_with_rela(
1320 Symbol* gsym,
1321 unsigned int got_type,
1322 Rela_dyn* rela_dyn,
1323 unsigned int r_type)
1324 {
1325 if (gsym->has_got_offset(got_type))
1326 return;
1327
1328 this->entries_.push_back(Got_entry());
1329 this->set_got_size();
1330 unsigned int got_offset = this->last_got_offset();
1331 gsym->set_got_offset(got_type, got_offset);
1332 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1333 }
1334
1335 // Add a pair of entries for a global symbol to the GOT, and add
1336 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1337 // If R_TYPE_2 == 0, add the second entry with no relocation.
1338 template<int size, bool big_endian>
1339 void
1340 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1341 Symbol* gsym,
1342 unsigned int got_type,
1343 Rel_dyn* rel_dyn,
1344 unsigned int r_type_1,
1345 unsigned int r_type_2)
1346 {
1347 if (gsym->has_got_offset(got_type))
1348 return;
1349
1350 this->entries_.push_back(Got_entry());
1351 unsigned int got_offset = this->last_got_offset();
1352 gsym->set_got_offset(got_type, got_offset);
1353 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1354
1355 this->entries_.push_back(Got_entry());
1356 if (r_type_2 != 0)
1357 {
1358 got_offset = this->last_got_offset();
1359 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1360 }
1361
1362 this->set_got_size();
1363 }
1364
1365 template<int size, bool big_endian>
1366 void
1367 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1368 Symbol* gsym,
1369 unsigned int got_type,
1370 Rela_dyn* rela_dyn,
1371 unsigned int r_type_1,
1372 unsigned int r_type_2)
1373 {
1374 if (gsym->has_got_offset(got_type))
1375 return;
1376
1377 this->entries_.push_back(Got_entry());
1378 unsigned int got_offset = this->last_got_offset();
1379 gsym->set_got_offset(got_type, got_offset);
1380 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1381
1382 this->entries_.push_back(Got_entry());
1383 if (r_type_2 != 0)
1384 {
1385 got_offset = this->last_got_offset();
1386 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1387 }
1388
1389 this->set_got_size();
1390 }
1391
1392 // Add an entry for a local symbol to the GOT. This returns true if
1393 // this is a new GOT entry, false if the symbol already has a GOT
1394 // entry.
1395
1396 template<int size, bool big_endian>
1397 bool
1398 Output_data_got<size, big_endian>::add_local(
1399 Sized_relobj<size, big_endian>* object,
1400 unsigned int symndx,
1401 unsigned int got_type)
1402 {
1403 if (object->local_has_got_offset(symndx, got_type))
1404 return false;
1405
1406 this->entries_.push_back(Got_entry(object, symndx));
1407 this->set_got_size();
1408 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1409 return true;
1410 }
1411
1412 // Add an entry for a local symbol to the GOT, and add a dynamic
1413 // relocation of type R_TYPE for the GOT entry.
1414 template<int size, bool big_endian>
1415 void
1416 Output_data_got<size, big_endian>::add_local_with_rel(
1417 Sized_relobj<size, big_endian>* object,
1418 unsigned int symndx,
1419 unsigned int got_type,
1420 Rel_dyn* rel_dyn,
1421 unsigned int r_type)
1422 {
1423 if (object->local_has_got_offset(symndx, got_type))
1424 return;
1425
1426 this->entries_.push_back(Got_entry());
1427 this->set_got_size();
1428 unsigned int got_offset = this->last_got_offset();
1429 object->set_local_got_offset(symndx, got_type, got_offset);
1430 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1431 }
1432
1433 template<int size, bool big_endian>
1434 void
1435 Output_data_got<size, big_endian>::add_local_with_rela(
1436 Sized_relobj<size, big_endian>* object,
1437 unsigned int symndx,
1438 unsigned int got_type,
1439 Rela_dyn* rela_dyn,
1440 unsigned int r_type)
1441 {
1442 if (object->local_has_got_offset(symndx, got_type))
1443 return;
1444
1445 this->entries_.push_back(Got_entry());
1446 this->set_got_size();
1447 unsigned int got_offset = this->last_got_offset();
1448 object->set_local_got_offset(symndx, got_type, got_offset);
1449 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1450 }
1451
1452 // Add a pair of entries for a local symbol to the GOT, and add
1453 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1454 // If R_TYPE_2 == 0, add the second entry with no relocation.
1455 template<int size, bool big_endian>
1456 void
1457 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1458 Sized_relobj<size, big_endian>* object,
1459 unsigned int symndx,
1460 unsigned int shndx,
1461 unsigned int got_type,
1462 Rel_dyn* rel_dyn,
1463 unsigned int r_type_1,
1464 unsigned int r_type_2)
1465 {
1466 if (object->local_has_got_offset(symndx, got_type))
1467 return;
1468
1469 this->entries_.push_back(Got_entry());
1470 unsigned int got_offset = this->last_got_offset();
1471 object->set_local_got_offset(symndx, got_type, got_offset);
1472 Output_section* os = object->output_section(shndx);
1473 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1474
1475 this->entries_.push_back(Got_entry(object, symndx));
1476 if (r_type_2 != 0)
1477 {
1478 got_offset = this->last_got_offset();
1479 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1480 }
1481
1482 this->set_got_size();
1483 }
1484
1485 template<int size, bool big_endian>
1486 void
1487 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1488 Sized_relobj<size, big_endian>* object,
1489 unsigned int symndx,
1490 unsigned int shndx,
1491 unsigned int got_type,
1492 Rela_dyn* rela_dyn,
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
1495 {
1496 if (object->local_has_got_offset(symndx, got_type))
1497 return;
1498
1499 this->entries_.push_back(Got_entry());
1500 unsigned int got_offset = this->last_got_offset();
1501 object->set_local_got_offset(symndx, got_type, got_offset);
1502 Output_section* os = object->output_section(shndx);
1503 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1504
1505 this->entries_.push_back(Got_entry(object, symndx));
1506 if (r_type_2 != 0)
1507 {
1508 got_offset = this->last_got_offset();
1509 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1510 }
1511
1512 this->set_got_size();
1513 }
1514
1515 // Write out the GOT.
1516
1517 template<int size, bool big_endian>
1518 void
1519 Output_data_got<size, big_endian>::do_write(Output_file* of)
1520 {
1521 const int add = size / 8;
1522
1523 const off_t off = this->offset();
1524 const off_t oview_size = this->data_size();
1525 unsigned char* const oview = of->get_output_view(off, oview_size);
1526
1527 unsigned char* pov = oview;
1528 for (typename Got_entries::const_iterator p = this->entries_.begin();
1529 p != this->entries_.end();
1530 ++p)
1531 {
1532 p->write(pov);
1533 pov += add;
1534 }
1535
1536 gold_assert(pov - oview == oview_size);
1537
1538 of->write_output_view(off, oview_size, oview);
1539
1540 // We no longer need the GOT entries.
1541 this->entries_.clear();
1542 }
1543
1544 // Output_data_dynamic::Dynamic_entry methods.
1545
1546 // Write out the entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_dynamic::Dynamic_entry::write(
1551 unsigned char* pov,
1552 const Stringpool* pool) const
1553 {
1554 typename elfcpp::Elf_types<size>::Elf_WXword val;
1555 switch (this->offset_)
1556 {
1557 case DYNAMIC_NUMBER:
1558 val = this->u_.val;
1559 break;
1560
1561 case DYNAMIC_SECTION_SIZE:
1562 val = this->u_.od->data_size();
1563 break;
1564
1565 case DYNAMIC_SYMBOL:
1566 {
1567 const Sized_symbol<size>* s =
1568 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1569 val = s->value();
1570 }
1571 break;
1572
1573 case DYNAMIC_STRING:
1574 val = pool->get_offset(this->u_.str);
1575 break;
1576
1577 default:
1578 val = this->u_.od->address() + this->offset_;
1579 break;
1580 }
1581
1582 elfcpp::Dyn_write<size, big_endian> dw(pov);
1583 dw.put_d_tag(this->tag_);
1584 dw.put_d_val(val);
1585 }
1586
1587 // Output_data_dynamic methods.
1588
1589 // Adjust the output section to set the entry size.
1590
1591 void
1592 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1593 {
1594 if (parameters->target().get_size() == 32)
1595 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1596 else if (parameters->target().get_size() == 64)
1597 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1598 else
1599 gold_unreachable();
1600 }
1601
1602 // Set the final data size.
1603
1604 void
1605 Output_data_dynamic::set_final_data_size()
1606 {
1607 // Add the terminating entry if it hasn't been added.
1608 // Because of relaxation, we can run this multiple times.
1609 if (this->entries_.empty()
1610 || this->entries_.rbegin()->tag() != elfcpp::DT_NULL)
1611 this->add_constant(elfcpp::DT_NULL, 0);
1612
1613 int dyn_size;
1614 if (parameters->target().get_size() == 32)
1615 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1616 else if (parameters->target().get_size() == 64)
1617 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1618 else
1619 gold_unreachable();
1620 this->set_data_size(this->entries_.size() * dyn_size);
1621 }
1622
1623 // Write out the dynamic entries.
1624
1625 void
1626 Output_data_dynamic::do_write(Output_file* of)
1627 {
1628 switch (parameters->size_and_endianness())
1629 {
1630 #ifdef HAVE_TARGET_32_LITTLE
1631 case Parameters::TARGET_32_LITTLE:
1632 this->sized_write<32, false>(of);
1633 break;
1634 #endif
1635 #ifdef HAVE_TARGET_32_BIG
1636 case Parameters::TARGET_32_BIG:
1637 this->sized_write<32, true>(of);
1638 break;
1639 #endif
1640 #ifdef HAVE_TARGET_64_LITTLE
1641 case Parameters::TARGET_64_LITTLE:
1642 this->sized_write<64, false>(of);
1643 break;
1644 #endif
1645 #ifdef HAVE_TARGET_64_BIG
1646 case Parameters::TARGET_64_BIG:
1647 this->sized_write<64, true>(of);
1648 break;
1649 #endif
1650 default:
1651 gold_unreachable();
1652 }
1653 }
1654
1655 template<int size, bool big_endian>
1656 void
1657 Output_data_dynamic::sized_write(Output_file* of)
1658 {
1659 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1660
1661 const off_t offset = this->offset();
1662 const off_t oview_size = this->data_size();
1663 unsigned char* const oview = of->get_output_view(offset, oview_size);
1664
1665 unsigned char* pov = oview;
1666 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1667 p != this->entries_.end();
1668 ++p)
1669 {
1670 p->write<size, big_endian>(pov, this->pool_);
1671 pov += dyn_size;
1672 }
1673
1674 gold_assert(pov - oview == oview_size);
1675
1676 of->write_output_view(offset, oview_size, oview);
1677
1678 // We no longer need the dynamic entries.
1679 this->entries_.clear();
1680 }
1681
1682 // Class Output_symtab_xindex.
1683
1684 void
1685 Output_symtab_xindex::do_write(Output_file* of)
1686 {
1687 const off_t offset = this->offset();
1688 const off_t oview_size = this->data_size();
1689 unsigned char* const oview = of->get_output_view(offset, oview_size);
1690
1691 memset(oview, 0, oview_size);
1692
1693 if (parameters->target().is_big_endian())
1694 this->endian_do_write<true>(oview);
1695 else
1696 this->endian_do_write<false>(oview);
1697
1698 of->write_output_view(offset, oview_size, oview);
1699
1700 // We no longer need the data.
1701 this->entries_.clear();
1702 }
1703
1704 template<bool big_endian>
1705 void
1706 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1707 {
1708 for (Xindex_entries::const_iterator p = this->entries_.begin();
1709 p != this->entries_.end();
1710 ++p)
1711 {
1712 unsigned int symndx = p->first;
1713 gold_assert(symndx * 4 < this->data_size());
1714 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1715 }
1716 }
1717
1718 // Output_section::Input_section methods.
1719
1720 // Return the data size. For an input section we store the size here.
1721 // For an Output_section_data, we have to ask it for the size.
1722
1723 off_t
1724 Output_section::Input_section::data_size() const
1725 {
1726 if (this->is_input_section())
1727 return this->u1_.data_size;
1728 else
1729 return this->u2_.posd->data_size();
1730 }
1731
1732 // Set the address and file offset.
1733
1734 void
1735 Output_section::Input_section::set_address_and_file_offset(
1736 uint64_t address,
1737 off_t file_offset,
1738 off_t section_file_offset)
1739 {
1740 if (this->is_input_section())
1741 this->u2_.object->set_section_offset(this->shndx_,
1742 file_offset - section_file_offset);
1743 else
1744 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1745 }
1746
1747 // Reset the address and file offset.
1748
1749 void
1750 Output_section::Input_section::reset_address_and_file_offset()
1751 {
1752 if (!this->is_input_section())
1753 this->u2_.posd->reset_address_and_file_offset();
1754 }
1755
1756 // Finalize the data size.
1757
1758 void
1759 Output_section::Input_section::finalize_data_size()
1760 {
1761 if (!this->is_input_section())
1762 this->u2_.posd->finalize_data_size();
1763 }
1764
1765 // Try to turn an input offset into an output offset. We want to
1766 // return the output offset relative to the start of this
1767 // Input_section in the output section.
1768
1769 inline bool
1770 Output_section::Input_section::output_offset(
1771 const Relobj* object,
1772 unsigned int shndx,
1773 section_offset_type offset,
1774 section_offset_type *poutput) const
1775 {
1776 if (!this->is_input_section())
1777 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1778 else
1779 {
1780 if (this->shndx_ != shndx || this->u2_.object != object)
1781 return false;
1782 *poutput = offset;
1783 return true;
1784 }
1785 }
1786
1787 // Return whether this is the merge section for the input section
1788 // SHNDX in OBJECT.
1789
1790 inline bool
1791 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1792 unsigned int shndx) const
1793 {
1794 if (this->is_input_section())
1795 return false;
1796 return this->u2_.posd->is_merge_section_for(object, shndx);
1797 }
1798
1799 // Write out the data. We don't have to do anything for an input
1800 // section--they are handled via Object::relocate--but this is where
1801 // we write out the data for an Output_section_data.
1802
1803 void
1804 Output_section::Input_section::write(Output_file* of)
1805 {
1806 if (!this->is_input_section())
1807 this->u2_.posd->write(of);
1808 }
1809
1810 // Write the data to a buffer. As for write(), we don't have to do
1811 // anything for an input section.
1812
1813 void
1814 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1815 {
1816 if (!this->is_input_section())
1817 this->u2_.posd->write_to_buffer(buffer);
1818 }
1819
1820 // Print to a map file.
1821
1822 void
1823 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1824 {
1825 switch (this->shndx_)
1826 {
1827 case OUTPUT_SECTION_CODE:
1828 case MERGE_DATA_SECTION_CODE:
1829 case MERGE_STRING_SECTION_CODE:
1830 this->u2_.posd->print_to_mapfile(mapfile);
1831 break;
1832
1833 case RELAXED_INPUT_SECTION_CODE:
1834 {
1835 Output_relaxed_input_section* relaxed_section =
1836 this->relaxed_input_section();
1837 mapfile->print_input_section(relaxed_section->relobj(),
1838 relaxed_section->shndx());
1839 }
1840 break;
1841 default:
1842 mapfile->print_input_section(this->u2_.object, this->shndx_);
1843 break;
1844 }
1845 }
1846
1847 // Output_section methods.
1848
1849 // Construct an Output_section. NAME will point into a Stringpool.
1850
1851 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1852 elfcpp::Elf_Xword flags)
1853 : name_(name),
1854 addralign_(0),
1855 entsize_(0),
1856 load_address_(0),
1857 link_section_(NULL),
1858 link_(0),
1859 info_section_(NULL),
1860 info_symndx_(NULL),
1861 info_(0),
1862 type_(type),
1863 flags_(flags),
1864 out_shndx_(-1U),
1865 symtab_index_(0),
1866 dynsym_index_(0),
1867 input_sections_(),
1868 first_input_offset_(0),
1869 fills_(),
1870 postprocessing_buffer_(NULL),
1871 needs_symtab_index_(false),
1872 needs_dynsym_index_(false),
1873 should_link_to_symtab_(false),
1874 should_link_to_dynsym_(false),
1875 after_input_sections_(false),
1876 requires_postprocessing_(false),
1877 found_in_sections_clause_(false),
1878 has_load_address_(false),
1879 info_uses_section_index_(false),
1880 may_sort_attached_input_sections_(false),
1881 must_sort_attached_input_sections_(false),
1882 attached_input_sections_are_sorted_(false),
1883 is_relro_(false),
1884 is_relro_local_(false),
1885 is_last_relro_(false),
1886 is_first_non_relro_(false),
1887 is_small_section_(false),
1888 is_large_section_(false),
1889 is_interp_(false),
1890 is_dynamic_linker_section_(false),
1891 generate_code_fills_at_write_(false),
1892 is_entsize_zero_(false),
1893 section_offsets_need_adjustment_(false),
1894 tls_offset_(0),
1895 checkpoint_(NULL),
1896 merge_section_map_(),
1897 merge_section_by_properties_map_(),
1898 relaxed_input_section_map_(),
1899 is_relaxed_input_section_map_valid_(true)
1900 {
1901 // An unallocated section has no address. Forcing this means that
1902 // we don't need special treatment for symbols defined in debug
1903 // sections.
1904 if ((flags & elfcpp::SHF_ALLOC) == 0)
1905 this->set_address(0);
1906 }
1907
1908 Output_section::~Output_section()
1909 {
1910 delete this->checkpoint_;
1911 }
1912
1913 // Set the entry size.
1914
1915 void
1916 Output_section::set_entsize(uint64_t v)
1917 {
1918 if (this->is_entsize_zero_)
1919 ;
1920 else if (this->entsize_ == 0)
1921 this->entsize_ = v;
1922 else if (this->entsize_ != v)
1923 {
1924 this->entsize_ = 0;
1925 this->is_entsize_zero_ = 1;
1926 }
1927 }
1928
1929 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1930 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1931 // relocation section which applies to this section, or 0 if none, or
1932 // -1U if more than one. Return the offset of the input section
1933 // within the output section. Return -1 if the input section will
1934 // receive special handling. In the normal case we don't always keep
1935 // track of input sections for an Output_section. Instead, each
1936 // Object keeps track of the Output_section for each of its input
1937 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1938 // track of input sections here; this is used when SECTIONS appears in
1939 // a linker script.
1940
1941 template<int size, bool big_endian>
1942 off_t
1943 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1944 unsigned int shndx,
1945 const char* secname,
1946 const elfcpp::Shdr<size, big_endian>& shdr,
1947 unsigned int reloc_shndx,
1948 bool have_sections_script)
1949 {
1950 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1951 if ((addralign & (addralign - 1)) != 0)
1952 {
1953 object->error(_("invalid alignment %lu for section \"%s\""),
1954 static_cast<unsigned long>(addralign), secname);
1955 addralign = 1;
1956 }
1957
1958 if (addralign > this->addralign_)
1959 this->addralign_ = addralign;
1960
1961 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1962 uint64_t entsize = shdr.get_sh_entsize();
1963
1964 // .debug_str is a mergeable string section, but is not always so
1965 // marked by compilers. Mark manually here so we can optimize.
1966 if (strcmp(secname, ".debug_str") == 0)
1967 {
1968 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1969 entsize = 1;
1970 }
1971
1972 this->update_flags_for_input_section(sh_flags);
1973 this->set_entsize(entsize);
1974
1975 // If this is a SHF_MERGE section, we pass all the input sections to
1976 // a Output_data_merge. We don't try to handle relocations for such
1977 // a section. We don't try to handle empty merge sections--they
1978 // mess up the mappings, and are useless anyhow.
1979 if ((sh_flags & elfcpp::SHF_MERGE) != 0
1980 && reloc_shndx == 0
1981 && shdr.get_sh_size() > 0)
1982 {
1983 if (this->add_merge_input_section(object, shndx, sh_flags,
1984 entsize, addralign))
1985 {
1986 // Tell the relocation routines that they need to call the
1987 // output_offset method to determine the final address.
1988 return -1;
1989 }
1990 }
1991
1992 off_t offset_in_section = this->current_data_size_for_child();
1993 off_t aligned_offset_in_section = align_address(offset_in_section,
1994 addralign);
1995
1996 // Determine if we want to delay code-fill generation until the output
1997 // section is written. When the target is relaxing, we want to delay fill
1998 // generating to avoid adjusting them during relaxation.
1999 if (!this->generate_code_fills_at_write_
2000 && !have_sections_script
2001 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2002 && parameters->target().has_code_fill()
2003 && parameters->target().may_relax())
2004 {
2005 gold_assert(this->fills_.empty());
2006 this->generate_code_fills_at_write_ = true;
2007 }
2008
2009 if (aligned_offset_in_section > offset_in_section
2010 && !this->generate_code_fills_at_write_
2011 && !have_sections_script
2012 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2013 && parameters->target().has_code_fill())
2014 {
2015 // We need to add some fill data. Using fill_list_ when
2016 // possible is an optimization, since we will often have fill
2017 // sections without input sections.
2018 off_t fill_len = aligned_offset_in_section - offset_in_section;
2019 if (this->input_sections_.empty())
2020 this->fills_.push_back(Fill(offset_in_section, fill_len));
2021 else
2022 {
2023 std::string fill_data(parameters->target().code_fill(fill_len));
2024 Output_data_const* odc = new Output_data_const(fill_data, 1);
2025 this->input_sections_.push_back(Input_section(odc));
2026 }
2027 }
2028
2029 this->set_current_data_size_for_child(aligned_offset_in_section
2030 + shdr.get_sh_size());
2031
2032 // We need to keep track of this section if we are already keeping
2033 // track of sections, or if we are relaxing. Also, if this is a
2034 // section which requires sorting, or which may require sorting in
2035 // the future, we keep track of the sections.
2036 if (have_sections_script
2037 || !this->input_sections_.empty()
2038 || this->may_sort_attached_input_sections()
2039 || this->must_sort_attached_input_sections()
2040 || parameters->options().user_set_Map()
2041 || parameters->target().may_relax())
2042 this->input_sections_.push_back(Input_section(object, shndx,
2043 shdr.get_sh_size(),
2044 addralign));
2045
2046 return aligned_offset_in_section;
2047 }
2048
2049 // Add arbitrary data to an output section.
2050
2051 void
2052 Output_section::add_output_section_data(Output_section_data* posd)
2053 {
2054 Input_section inp(posd);
2055 this->add_output_section_data(&inp);
2056
2057 if (posd->is_data_size_valid())
2058 {
2059 off_t offset_in_section = this->current_data_size_for_child();
2060 off_t aligned_offset_in_section = align_address(offset_in_section,
2061 posd->addralign());
2062 this->set_current_data_size_for_child(aligned_offset_in_section
2063 + posd->data_size());
2064 }
2065 }
2066
2067 // Add a relaxed input section.
2068
2069 void
2070 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2071 {
2072 Input_section inp(poris);
2073 this->add_output_section_data(&inp);
2074 if (this->is_relaxed_input_section_map_valid_)
2075 {
2076 Const_section_id csid(poris->relobj(), poris->shndx());
2077 this->relaxed_input_section_map_[csid] = poris;
2078 }
2079
2080 // For a relaxed section, we use the current data size. Linker scripts
2081 // get all the input sections, including relaxed one from an output
2082 // section and add them back to them same output section to compute the
2083 // output section size. If we do not account for sizes of relaxed input
2084 // sections, an output section would be incorrectly sized.
2085 off_t offset_in_section = this->current_data_size_for_child();
2086 off_t aligned_offset_in_section = align_address(offset_in_section,
2087 poris->addralign());
2088 this->set_current_data_size_for_child(aligned_offset_in_section
2089 + poris->current_data_size());
2090 }
2091
2092 // Add arbitrary data to an output section by Input_section.
2093
2094 void
2095 Output_section::add_output_section_data(Input_section* inp)
2096 {
2097 if (this->input_sections_.empty())
2098 this->first_input_offset_ = this->current_data_size_for_child();
2099
2100 this->input_sections_.push_back(*inp);
2101
2102 uint64_t addralign = inp->addralign();
2103 if (addralign > this->addralign_)
2104 this->addralign_ = addralign;
2105
2106 inp->set_output_section(this);
2107 }
2108
2109 // Add a merge section to an output section.
2110
2111 void
2112 Output_section::add_output_merge_section(Output_section_data* posd,
2113 bool is_string, uint64_t entsize)
2114 {
2115 Input_section inp(posd, is_string, entsize);
2116 this->add_output_section_data(&inp);
2117 }
2118
2119 // Add an input section to a SHF_MERGE section.
2120
2121 bool
2122 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2123 uint64_t flags, uint64_t entsize,
2124 uint64_t addralign)
2125 {
2126 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2127
2128 // We only merge strings if the alignment is not more than the
2129 // character size. This could be handled, but it's unusual.
2130 if (is_string && addralign > entsize)
2131 return false;
2132
2133 // We cannot restore merged input section states.
2134 gold_assert(this->checkpoint_ == NULL);
2135
2136 // Look up merge sections by required properties.
2137 Merge_section_properties msp(is_string, entsize, addralign);
2138 Merge_section_by_properties_map::const_iterator p =
2139 this->merge_section_by_properties_map_.find(msp);
2140 if (p != this->merge_section_by_properties_map_.end())
2141 {
2142 Output_merge_base* merge_section = p->second;
2143 merge_section->add_input_section(object, shndx);
2144 gold_assert(merge_section->is_string() == is_string
2145 && merge_section->entsize() == entsize
2146 && merge_section->addralign() == addralign);
2147
2148 // Link input section to found merge section.
2149 Const_section_id csid(object, shndx);
2150 this->merge_section_map_[csid] = merge_section;
2151 return true;
2152 }
2153
2154 // We handle the actual constant merging in Output_merge_data or
2155 // Output_merge_string_data.
2156 Output_merge_base* pomb;
2157 if (!is_string)
2158 pomb = new Output_merge_data(entsize, addralign);
2159 else
2160 {
2161 switch (entsize)
2162 {
2163 case 1:
2164 pomb = new Output_merge_string<char>(addralign);
2165 break;
2166 case 2:
2167 pomb = new Output_merge_string<uint16_t>(addralign);
2168 break;
2169 case 4:
2170 pomb = new Output_merge_string<uint32_t>(addralign);
2171 break;
2172 default:
2173 return false;
2174 }
2175 }
2176
2177 // Add new merge section to this output section and link merge section
2178 // properties to new merge section in map.
2179 this->add_output_merge_section(pomb, is_string, entsize);
2180 this->merge_section_by_properties_map_[msp] = pomb;
2181
2182 // Add input section to new merge section and link input section to new
2183 // merge section in map.
2184 pomb->add_input_section(object, shndx);
2185 Const_section_id csid(object, shndx);
2186 this->merge_section_map_[csid] = pomb;
2187
2188 return true;
2189 }
2190
2191 // Build a relaxation map to speed up relaxation of existing input sections.
2192 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2193
2194 void
2195 Output_section::build_relaxation_map(
2196 const Input_section_list& input_sections,
2197 size_t limit,
2198 Relaxation_map* relaxation_map) const
2199 {
2200 for (size_t i = 0; i < limit; ++i)
2201 {
2202 const Input_section& is(input_sections[i]);
2203 if (is.is_input_section() || is.is_relaxed_input_section())
2204 {
2205 Section_id sid(is.relobj(), is.shndx());
2206 (*relaxation_map)[sid] = i;
2207 }
2208 }
2209 }
2210
2211 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2212 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2213 // indices of INPUT_SECTIONS.
2214
2215 void
2216 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2217 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2218 const Relaxation_map& map,
2219 Input_section_list* input_sections)
2220 {
2221 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2222 {
2223 Output_relaxed_input_section* poris = relaxed_sections[i];
2224 Section_id sid(poris->relobj(), poris->shndx());
2225 Relaxation_map::const_iterator p = map.find(sid);
2226 gold_assert(p != map.end());
2227 gold_assert((*input_sections)[p->second].is_input_section());
2228 (*input_sections)[p->second] = Input_section(poris);
2229 }
2230 }
2231
2232 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2233 // is a vector of pointers to Output_relaxed_input_section or its derived
2234 // classes. The relaxed sections must correspond to existing input sections.
2235
2236 void
2237 Output_section::convert_input_sections_to_relaxed_sections(
2238 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2239 {
2240 gold_assert(parameters->target().may_relax());
2241
2242 // We want to make sure that restore_states does not undo the effect of
2243 // this. If there is no checkpoint active, just search the current
2244 // input section list and replace the sections there. If there is
2245 // a checkpoint, also replace the sections there.
2246
2247 // By default, we look at the whole list.
2248 size_t limit = this->input_sections_.size();
2249
2250 if (this->checkpoint_ != NULL)
2251 {
2252 // Replace input sections with relaxed input section in the saved
2253 // copy of the input section list.
2254 if (this->checkpoint_->input_sections_saved())
2255 {
2256 Relaxation_map map;
2257 this->build_relaxation_map(
2258 *(this->checkpoint_->input_sections()),
2259 this->checkpoint_->input_sections()->size(),
2260 &map);
2261 this->convert_input_sections_in_list_to_relaxed_sections(
2262 relaxed_sections,
2263 map,
2264 this->checkpoint_->input_sections());
2265 }
2266 else
2267 {
2268 // We have not copied the input section list yet. Instead, just
2269 // look at the portion that would be saved.
2270 limit = this->checkpoint_->input_sections_size();
2271 }
2272 }
2273
2274 // Convert input sections in input_section_list.
2275 Relaxation_map map;
2276 this->build_relaxation_map(this->input_sections_, limit, &map);
2277 this->convert_input_sections_in_list_to_relaxed_sections(
2278 relaxed_sections,
2279 map,
2280 &this->input_sections_);
2281
2282 // Update fast look-up map.
2283 if (this->is_relaxed_input_section_map_valid_)
2284 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2285 {
2286 Output_relaxed_input_section* poris = relaxed_sections[i];
2287 Const_section_id csid(poris->relobj(), poris->shndx());
2288 this->relaxed_input_section_map_[csid] = poris;
2289 }
2290 }
2291
2292 // Update the output section flags based on input section flags.
2293
2294 void
2295 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2296 {
2297 // If we created the section with SHF_ALLOC clear, we set the
2298 // address. If we are now setting the SHF_ALLOC flag, we need to
2299 // undo that.
2300 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2301 && (flags & elfcpp::SHF_ALLOC) != 0)
2302 this->mark_address_invalid();
2303
2304 this->flags_ |= (flags
2305 & (elfcpp::SHF_WRITE
2306 | elfcpp::SHF_ALLOC
2307 | elfcpp::SHF_EXECINSTR));
2308
2309 if ((flags & elfcpp::SHF_MERGE) == 0)
2310 this->flags_ &=~ elfcpp::SHF_MERGE;
2311 else
2312 {
2313 if (this->current_data_size_for_child() == 0)
2314 this->flags_ |= elfcpp::SHF_MERGE;
2315 }
2316
2317 if ((flags & elfcpp::SHF_STRINGS) == 0)
2318 this->flags_ &=~ elfcpp::SHF_STRINGS;
2319 else
2320 {
2321 if (this->current_data_size_for_child() == 0)
2322 this->flags_ |= elfcpp::SHF_STRINGS;
2323 }
2324 }
2325
2326 // Find the merge section into which an input section with index SHNDX in
2327 // OBJECT has been added. Return NULL if none found.
2328
2329 Output_section_data*
2330 Output_section::find_merge_section(const Relobj* object,
2331 unsigned int shndx) const
2332 {
2333 Const_section_id csid(object, shndx);
2334 Output_section_data_by_input_section_map::const_iterator p =
2335 this->merge_section_map_.find(csid);
2336 if (p != this->merge_section_map_.end())
2337 {
2338 Output_section_data* posd = p->second;
2339 gold_assert(posd->is_merge_section_for(object, shndx));
2340 return posd;
2341 }
2342 else
2343 return NULL;
2344 }
2345
2346 // Find an relaxed input section corresponding to an input section
2347 // in OBJECT with index SHNDX.
2348
2349 const Output_relaxed_input_section*
2350 Output_section::find_relaxed_input_section(const Relobj* object,
2351 unsigned int shndx) const
2352 {
2353 // Be careful that the map may not be valid due to input section export
2354 // to scripts or a check-point restore.
2355 if (!this->is_relaxed_input_section_map_valid_)
2356 {
2357 // Rebuild the map as needed.
2358 this->relaxed_input_section_map_.clear();
2359 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2360 p != this->input_sections_.end();
2361 ++p)
2362 if (p->is_relaxed_input_section())
2363 {
2364 Const_section_id csid(p->relobj(), p->shndx());
2365 this->relaxed_input_section_map_[csid] =
2366 p->relaxed_input_section();
2367 }
2368 this->is_relaxed_input_section_map_valid_ = true;
2369 }
2370
2371 Const_section_id csid(object, shndx);
2372 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2373 this->relaxed_input_section_map_.find(csid);
2374 if (p != this->relaxed_input_section_map_.end())
2375 return p->second;
2376 else
2377 return NULL;
2378 }
2379
2380 // Given an address OFFSET relative to the start of input section
2381 // SHNDX in OBJECT, return whether this address is being included in
2382 // the final link. This should only be called if SHNDX in OBJECT has
2383 // a special mapping.
2384
2385 bool
2386 Output_section::is_input_address_mapped(const Relobj* object,
2387 unsigned int shndx,
2388 off_t offset) const
2389 {
2390 // Look at the Output_section_data_maps first.
2391 const Output_section_data* posd = this->find_merge_section(object, shndx);
2392 if (posd == NULL)
2393 posd = this->find_relaxed_input_section(object, shndx);
2394
2395 if (posd != NULL)
2396 {
2397 section_offset_type output_offset;
2398 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2399 gold_assert(found);
2400 return output_offset != -1;
2401 }
2402
2403 // Fall back to the slow look-up.
2404 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2405 p != this->input_sections_.end();
2406 ++p)
2407 {
2408 section_offset_type output_offset;
2409 if (p->output_offset(object, shndx, offset, &output_offset))
2410 return output_offset != -1;
2411 }
2412
2413 // By default we assume that the address is mapped. This should
2414 // only be called after we have passed all sections to Layout. At
2415 // that point we should know what we are discarding.
2416 return true;
2417 }
2418
2419 // Given an address OFFSET relative to the start of input section
2420 // SHNDX in object OBJECT, return the output offset relative to the
2421 // start of the input section in the output section. This should only
2422 // be called if SHNDX in OBJECT has a special mapping.
2423
2424 section_offset_type
2425 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2426 section_offset_type offset) const
2427 {
2428 // This can only be called meaningfully when we know the data size
2429 // of this.
2430 gold_assert(this->is_data_size_valid());
2431
2432 // Look at the Output_section_data_maps first.
2433 const Output_section_data* posd = this->find_merge_section(object, shndx);
2434 if (posd == NULL)
2435 posd = this->find_relaxed_input_section(object, shndx);
2436 if (posd != NULL)
2437 {
2438 section_offset_type output_offset;
2439 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2440 gold_assert(found);
2441 return output_offset;
2442 }
2443
2444 // Fall back to the slow look-up.
2445 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2446 p != this->input_sections_.end();
2447 ++p)
2448 {
2449 section_offset_type output_offset;
2450 if (p->output_offset(object, shndx, offset, &output_offset))
2451 return output_offset;
2452 }
2453 gold_unreachable();
2454 }
2455
2456 // Return the output virtual address of OFFSET relative to the start
2457 // of input section SHNDX in object OBJECT.
2458
2459 uint64_t
2460 Output_section::output_address(const Relobj* object, unsigned int shndx,
2461 off_t offset) const
2462 {
2463 uint64_t addr = this->address() + this->first_input_offset_;
2464
2465 // Look at the Output_section_data_maps first.
2466 const Output_section_data* posd = this->find_merge_section(object, shndx);
2467 if (posd == NULL)
2468 posd = this->find_relaxed_input_section(object, shndx);
2469 if (posd != NULL && posd->is_address_valid())
2470 {
2471 section_offset_type output_offset;
2472 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2473 gold_assert(found);
2474 return posd->address() + output_offset;
2475 }
2476
2477 // Fall back to the slow look-up.
2478 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2479 p != this->input_sections_.end();
2480 ++p)
2481 {
2482 addr = align_address(addr, p->addralign());
2483 section_offset_type output_offset;
2484 if (p->output_offset(object, shndx, offset, &output_offset))
2485 {
2486 if (output_offset == -1)
2487 return -1ULL;
2488 return addr + output_offset;
2489 }
2490 addr += p->data_size();
2491 }
2492
2493 // If we get here, it means that we don't know the mapping for this
2494 // input section. This might happen in principle if
2495 // add_input_section were called before add_output_section_data.
2496 // But it should never actually happen.
2497
2498 gold_unreachable();
2499 }
2500
2501 // Find the output address of the start of the merged section for
2502 // input section SHNDX in object OBJECT.
2503
2504 bool
2505 Output_section::find_starting_output_address(const Relobj* object,
2506 unsigned int shndx,
2507 uint64_t* paddr) const
2508 {
2509 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2510 // Looking up the merge section map does not always work as we sometimes
2511 // find a merge section without its address set.
2512 uint64_t addr = this->address() + this->first_input_offset_;
2513 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2514 p != this->input_sections_.end();
2515 ++p)
2516 {
2517 addr = align_address(addr, p->addralign());
2518
2519 // It would be nice if we could use the existing output_offset
2520 // method to get the output offset of input offset 0.
2521 // Unfortunately we don't know for sure that input offset 0 is
2522 // mapped at all.
2523 if (p->is_merge_section_for(object, shndx))
2524 {
2525 *paddr = addr;
2526 return true;
2527 }
2528
2529 addr += p->data_size();
2530 }
2531
2532 // We couldn't find a merge output section for this input section.
2533 return false;
2534 }
2535
2536 // Set the data size of an Output_section. This is where we handle
2537 // setting the addresses of any Output_section_data objects.
2538
2539 void
2540 Output_section::set_final_data_size()
2541 {
2542 if (this->input_sections_.empty())
2543 {
2544 this->set_data_size(this->current_data_size_for_child());
2545 return;
2546 }
2547
2548 if (this->must_sort_attached_input_sections())
2549 this->sort_attached_input_sections();
2550
2551 uint64_t address = this->address();
2552 off_t startoff = this->offset();
2553 off_t off = startoff + this->first_input_offset_;
2554 for (Input_section_list::iterator p = this->input_sections_.begin();
2555 p != this->input_sections_.end();
2556 ++p)
2557 {
2558 off = align_address(off, p->addralign());
2559 p->set_address_and_file_offset(address + (off - startoff), off,
2560 startoff);
2561 off += p->data_size();
2562 }
2563
2564 this->set_data_size(off - startoff);
2565 }
2566
2567 // Reset the address and file offset.
2568
2569 void
2570 Output_section::do_reset_address_and_file_offset()
2571 {
2572 // An unallocated section has no address. Forcing this means that
2573 // we don't need special treatment for symbols defined in debug
2574 // sections. We do the same in the constructor.
2575 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2576 this->set_address(0);
2577
2578 for (Input_section_list::iterator p = this->input_sections_.begin();
2579 p != this->input_sections_.end();
2580 ++p)
2581 p->reset_address_and_file_offset();
2582 }
2583
2584 // Return true if address and file offset have the values after reset.
2585
2586 bool
2587 Output_section::do_address_and_file_offset_have_reset_values() const
2588 {
2589 if (this->is_offset_valid())
2590 return false;
2591
2592 // An unallocated section has address 0 after its construction or a reset.
2593 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2594 return this->is_address_valid() && this->address() == 0;
2595 else
2596 return !this->is_address_valid();
2597 }
2598
2599 // Set the TLS offset. Called only for SHT_TLS sections.
2600
2601 void
2602 Output_section::do_set_tls_offset(uint64_t tls_base)
2603 {
2604 this->tls_offset_ = this->address() - tls_base;
2605 }
2606
2607 // In a few cases we need to sort the input sections attached to an
2608 // output section. This is used to implement the type of constructor
2609 // priority ordering implemented by the GNU linker, in which the
2610 // priority becomes part of the section name and the sections are
2611 // sorted by name. We only do this for an output section if we see an
2612 // attached input section matching ".ctor.*", ".dtor.*",
2613 // ".init_array.*" or ".fini_array.*".
2614
2615 class Output_section::Input_section_sort_entry
2616 {
2617 public:
2618 Input_section_sort_entry()
2619 : input_section_(), index_(-1U), section_has_name_(false),
2620 section_name_()
2621 { }
2622
2623 Input_section_sort_entry(const Input_section& input_section,
2624 unsigned int index)
2625 : input_section_(input_section), index_(index),
2626 section_has_name_(input_section.is_input_section()
2627 || input_section.is_relaxed_input_section())
2628 {
2629 if (this->section_has_name_)
2630 {
2631 // This is only called single-threaded from Layout::finalize,
2632 // so it is OK to lock. Unfortunately we have no way to pass
2633 // in a Task token.
2634 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2635 Object* obj = (input_section.is_input_section()
2636 ? input_section.relobj()
2637 : input_section.relaxed_input_section()->relobj());
2638 Task_lock_obj<Object> tl(dummy_task, obj);
2639
2640 // This is a slow operation, which should be cached in
2641 // Layout::layout if this becomes a speed problem.
2642 this->section_name_ = obj->section_name(input_section.shndx());
2643 }
2644 }
2645
2646 // Return the Input_section.
2647 const Input_section&
2648 input_section() const
2649 {
2650 gold_assert(this->index_ != -1U);
2651 return this->input_section_;
2652 }
2653
2654 // The index of this entry in the original list. This is used to
2655 // make the sort stable.
2656 unsigned int
2657 index() const
2658 {
2659 gold_assert(this->index_ != -1U);
2660 return this->index_;
2661 }
2662
2663 // Whether there is a section name.
2664 bool
2665 section_has_name() const
2666 { return this->section_has_name_; }
2667
2668 // The section name.
2669 const std::string&
2670 section_name() const
2671 {
2672 gold_assert(this->section_has_name_);
2673 return this->section_name_;
2674 }
2675
2676 // Return true if the section name has a priority. This is assumed
2677 // to be true if it has a dot after the initial dot.
2678 bool
2679 has_priority() const
2680 {
2681 gold_assert(this->section_has_name_);
2682 return this->section_name_.find('.', 1);
2683 }
2684
2685 // Return true if this an input file whose base name matches
2686 // FILE_NAME. The base name must have an extension of ".o", and
2687 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2688 // This is to match crtbegin.o as well as crtbeginS.o without
2689 // getting confused by other possibilities. Overall matching the
2690 // file name this way is a dreadful hack, but the GNU linker does it
2691 // in order to better support gcc, and we need to be compatible.
2692 bool
2693 match_file_name(const char* match_file_name) const
2694 {
2695 const std::string& file_name(this->input_section_.relobj()->name());
2696 const char* base_name = lbasename(file_name.c_str());
2697 size_t match_len = strlen(match_file_name);
2698 if (strncmp(base_name, match_file_name, match_len) != 0)
2699 return false;
2700 size_t base_len = strlen(base_name);
2701 if (base_len != match_len + 2 && base_len != match_len + 3)
2702 return false;
2703 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2704 }
2705
2706 private:
2707 // The Input_section we are sorting.
2708 Input_section input_section_;
2709 // The index of this Input_section in the original list.
2710 unsigned int index_;
2711 // Whether this Input_section has a section name--it won't if this
2712 // is some random Output_section_data.
2713 bool section_has_name_;
2714 // The section name if there is one.
2715 std::string section_name_;
2716 };
2717
2718 // Return true if S1 should come before S2 in the output section.
2719
2720 bool
2721 Output_section::Input_section_sort_compare::operator()(
2722 const Output_section::Input_section_sort_entry& s1,
2723 const Output_section::Input_section_sort_entry& s2) const
2724 {
2725 // crtbegin.o must come first.
2726 bool s1_begin = s1.match_file_name("crtbegin");
2727 bool s2_begin = s2.match_file_name("crtbegin");
2728 if (s1_begin || s2_begin)
2729 {
2730 if (!s1_begin)
2731 return false;
2732 if (!s2_begin)
2733 return true;
2734 return s1.index() < s2.index();
2735 }
2736
2737 // crtend.o must come last.
2738 bool s1_end = s1.match_file_name("crtend");
2739 bool s2_end = s2.match_file_name("crtend");
2740 if (s1_end || s2_end)
2741 {
2742 if (!s1_end)
2743 return true;
2744 if (!s2_end)
2745 return false;
2746 return s1.index() < s2.index();
2747 }
2748
2749 // We sort all the sections with no names to the end.
2750 if (!s1.section_has_name() || !s2.section_has_name())
2751 {
2752 if (s1.section_has_name())
2753 return true;
2754 if (s2.section_has_name())
2755 return false;
2756 return s1.index() < s2.index();
2757 }
2758
2759 // A section with a priority follows a section without a priority.
2760 // The GNU linker does this for all but .init_array sections; until
2761 // further notice we'll assume that that is an mistake.
2762 bool s1_has_priority = s1.has_priority();
2763 bool s2_has_priority = s2.has_priority();
2764 if (s1_has_priority && !s2_has_priority)
2765 return false;
2766 if (!s1_has_priority && s2_has_priority)
2767 return true;
2768
2769 // Otherwise we sort by name.
2770 int compare = s1.section_name().compare(s2.section_name());
2771 if (compare != 0)
2772 return compare < 0;
2773
2774 // Otherwise we keep the input order.
2775 return s1.index() < s2.index();
2776 }
2777
2778 // Sort the input sections attached to an output section.
2779
2780 void
2781 Output_section::sort_attached_input_sections()
2782 {
2783 if (this->attached_input_sections_are_sorted_)
2784 return;
2785
2786 if (this->checkpoint_ != NULL
2787 && !this->checkpoint_->input_sections_saved())
2788 this->checkpoint_->save_input_sections();
2789
2790 // The only thing we know about an input section is the object and
2791 // the section index. We need the section name. Recomputing this
2792 // is slow but this is an unusual case. If this becomes a speed
2793 // problem we can cache the names as required in Layout::layout.
2794
2795 // We start by building a larger vector holding a copy of each
2796 // Input_section, plus its current index in the list and its name.
2797 std::vector<Input_section_sort_entry> sort_list;
2798
2799 unsigned int i = 0;
2800 for (Input_section_list::iterator p = this->input_sections_.begin();
2801 p != this->input_sections_.end();
2802 ++p, ++i)
2803 sort_list.push_back(Input_section_sort_entry(*p, i));
2804
2805 // Sort the input sections.
2806 std::sort(sort_list.begin(), sort_list.end(), Input_section_sort_compare());
2807
2808 // Copy the sorted input sections back to our list.
2809 this->input_sections_.clear();
2810 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2811 p != sort_list.end();
2812 ++p)
2813 this->input_sections_.push_back(p->input_section());
2814
2815 // Remember that we sorted the input sections, since we might get
2816 // called again.
2817 this->attached_input_sections_are_sorted_ = true;
2818 }
2819
2820 // Write the section header to *OSHDR.
2821
2822 template<int size, bool big_endian>
2823 void
2824 Output_section::write_header(const Layout* layout,
2825 const Stringpool* secnamepool,
2826 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2827 {
2828 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2829 oshdr->put_sh_type(this->type_);
2830
2831 elfcpp::Elf_Xword flags = this->flags_;
2832 if (this->info_section_ != NULL && this->info_uses_section_index_)
2833 flags |= elfcpp::SHF_INFO_LINK;
2834 oshdr->put_sh_flags(flags);
2835
2836 oshdr->put_sh_addr(this->address());
2837 oshdr->put_sh_offset(this->offset());
2838 oshdr->put_sh_size(this->data_size());
2839 if (this->link_section_ != NULL)
2840 oshdr->put_sh_link(this->link_section_->out_shndx());
2841 else if (this->should_link_to_symtab_)
2842 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2843 else if (this->should_link_to_dynsym_)
2844 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2845 else
2846 oshdr->put_sh_link(this->link_);
2847
2848 elfcpp::Elf_Word info;
2849 if (this->info_section_ != NULL)
2850 {
2851 if (this->info_uses_section_index_)
2852 info = this->info_section_->out_shndx();
2853 else
2854 info = this->info_section_->symtab_index();
2855 }
2856 else if (this->info_symndx_ != NULL)
2857 info = this->info_symndx_->symtab_index();
2858 else
2859 info = this->info_;
2860 oshdr->put_sh_info(info);
2861
2862 oshdr->put_sh_addralign(this->addralign_);
2863 oshdr->put_sh_entsize(this->entsize_);
2864 }
2865
2866 // Write out the data. For input sections the data is written out by
2867 // Object::relocate, but we have to handle Output_section_data objects
2868 // here.
2869
2870 void
2871 Output_section::do_write(Output_file* of)
2872 {
2873 gold_assert(!this->requires_postprocessing());
2874
2875 // If the target performs relaxation, we delay filler generation until now.
2876 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2877
2878 off_t output_section_file_offset = this->offset();
2879 for (Fill_list::iterator p = this->fills_.begin();
2880 p != this->fills_.end();
2881 ++p)
2882 {
2883 std::string fill_data(parameters->target().code_fill(p->length()));
2884 of->write(output_section_file_offset + p->section_offset(),
2885 fill_data.data(), fill_data.size());
2886 }
2887
2888 off_t off = this->offset() + this->first_input_offset_;
2889 for (Input_section_list::iterator p = this->input_sections_.begin();
2890 p != this->input_sections_.end();
2891 ++p)
2892 {
2893 off_t aligned_off = align_address(off, p->addralign());
2894 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2895 {
2896 size_t fill_len = aligned_off - off;
2897 std::string fill_data(parameters->target().code_fill(fill_len));
2898 of->write(off, fill_data.data(), fill_data.size());
2899 }
2900
2901 p->write(of);
2902 off = aligned_off + p->data_size();
2903 }
2904 }
2905
2906 // If a section requires postprocessing, create the buffer to use.
2907
2908 void
2909 Output_section::create_postprocessing_buffer()
2910 {
2911 gold_assert(this->requires_postprocessing());
2912
2913 if (this->postprocessing_buffer_ != NULL)
2914 return;
2915
2916 if (!this->input_sections_.empty())
2917 {
2918 off_t off = this->first_input_offset_;
2919 for (Input_section_list::iterator p = this->input_sections_.begin();
2920 p != this->input_sections_.end();
2921 ++p)
2922 {
2923 off = align_address(off, p->addralign());
2924 p->finalize_data_size();
2925 off += p->data_size();
2926 }
2927 this->set_current_data_size_for_child(off);
2928 }
2929
2930 off_t buffer_size = this->current_data_size_for_child();
2931 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2932 }
2933
2934 // Write all the data of an Output_section into the postprocessing
2935 // buffer. This is used for sections which require postprocessing,
2936 // such as compression. Input sections are handled by
2937 // Object::Relocate.
2938
2939 void
2940 Output_section::write_to_postprocessing_buffer()
2941 {
2942 gold_assert(this->requires_postprocessing());
2943
2944 // If the target performs relaxation, we delay filler generation until now.
2945 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2946
2947 unsigned char* buffer = this->postprocessing_buffer();
2948 for (Fill_list::iterator p = this->fills_.begin();
2949 p != this->fills_.end();
2950 ++p)
2951 {
2952 std::string fill_data(parameters->target().code_fill(p->length()));
2953 memcpy(buffer + p->section_offset(), fill_data.data(),
2954 fill_data.size());
2955 }
2956
2957 off_t off = this->first_input_offset_;
2958 for (Input_section_list::iterator p = this->input_sections_.begin();
2959 p != this->input_sections_.end();
2960 ++p)
2961 {
2962 off_t aligned_off = align_address(off, p->addralign());
2963 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2964 {
2965 size_t fill_len = aligned_off - off;
2966 std::string fill_data(parameters->target().code_fill(fill_len));
2967 memcpy(buffer + off, fill_data.data(), fill_data.size());
2968 }
2969
2970 p->write_to_buffer(buffer + aligned_off);
2971 off = aligned_off + p->data_size();
2972 }
2973 }
2974
2975 // Get the input sections for linker script processing. We leave
2976 // behind the Output_section_data entries. Note that this may be
2977 // slightly incorrect for merge sections. We will leave them behind,
2978 // but it is possible that the script says that they should follow
2979 // some other input sections, as in:
2980 // .rodata { *(.rodata) *(.rodata.cst*) }
2981 // For that matter, we don't handle this correctly:
2982 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
2983 // With luck this will never matter.
2984
2985 uint64_t
2986 Output_section::get_input_sections(
2987 uint64_t address,
2988 const std::string& fill,
2989 std::list<Simple_input_section>* input_sections)
2990 {
2991 if (this->checkpoint_ != NULL
2992 && !this->checkpoint_->input_sections_saved())
2993 this->checkpoint_->save_input_sections();
2994
2995 // Invalidate the relaxed input section map.
2996 this->is_relaxed_input_section_map_valid_ = false;
2997
2998 uint64_t orig_address = address;
2999
3000 address = align_address(address, this->addralign());
3001
3002 Input_section_list remaining;
3003 for (Input_section_list::iterator p = this->input_sections_.begin();
3004 p != this->input_sections_.end();
3005 ++p)
3006 {
3007 if (p->is_input_section())
3008 input_sections->push_back(Simple_input_section(p->relobj(),
3009 p->shndx()));
3010 else if (p->is_relaxed_input_section())
3011 input_sections->push_back(
3012 Simple_input_section(p->relaxed_input_section()));
3013 else
3014 {
3015 uint64_t aligned_address = align_address(address, p->addralign());
3016 if (aligned_address != address && !fill.empty())
3017 {
3018 section_size_type length =
3019 convert_to_section_size_type(aligned_address - address);
3020 std::string this_fill;
3021 this_fill.reserve(length);
3022 while (this_fill.length() + fill.length() <= length)
3023 this_fill += fill;
3024 if (this_fill.length() < length)
3025 this_fill.append(fill, 0, length - this_fill.length());
3026
3027 Output_section_data* posd = new Output_data_const(this_fill, 0);
3028 remaining.push_back(Input_section(posd));
3029 }
3030 address = aligned_address;
3031
3032 remaining.push_back(*p);
3033
3034 p->finalize_data_size();
3035 address += p->data_size();
3036 }
3037 }
3038
3039 this->input_sections_.swap(remaining);
3040 this->first_input_offset_ = 0;
3041
3042 uint64_t data_size = address - orig_address;
3043 this->set_current_data_size_for_child(data_size);
3044 return data_size;
3045 }
3046
3047 // Add an simple input section.
3048
3049 void
3050 Output_section::add_simple_input_section(const Simple_input_section& sis,
3051 off_t data_size,
3052 uint64_t addralign)
3053 {
3054 if (addralign > this->addralign_)
3055 this->addralign_ = addralign;
3056
3057 off_t offset_in_section = this->current_data_size_for_child();
3058 off_t aligned_offset_in_section = align_address(offset_in_section,
3059 addralign);
3060
3061 this->set_current_data_size_for_child(aligned_offset_in_section
3062 + data_size);
3063
3064 Input_section is =
3065 (sis.is_relaxed_input_section()
3066 ? Input_section(sis.relaxed_input_section())
3067 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3068 this->input_sections_.push_back(is);
3069 }
3070
3071 // Save states for relaxation.
3072
3073 void
3074 Output_section::save_states()
3075 {
3076 gold_assert(this->checkpoint_ == NULL);
3077 Checkpoint_output_section* checkpoint =
3078 new Checkpoint_output_section(this->addralign_, this->flags_,
3079 this->input_sections_,
3080 this->first_input_offset_,
3081 this->attached_input_sections_are_sorted_);
3082 this->checkpoint_ = checkpoint;
3083 gold_assert(this->fills_.empty());
3084 }
3085
3086 void
3087 Output_section::discard_states()
3088 {
3089 gold_assert(this->checkpoint_ != NULL);
3090 delete this->checkpoint_;
3091 this->checkpoint_ = NULL;
3092 gold_assert(this->fills_.empty());
3093
3094 // Simply invalidate the relaxed input section map since we do not keep
3095 // track of it.
3096 this->is_relaxed_input_section_map_valid_ = false;
3097 }
3098
3099 void
3100 Output_section::restore_states()
3101 {
3102 gold_assert(this->checkpoint_ != NULL);
3103 Checkpoint_output_section* checkpoint = this->checkpoint_;
3104
3105 this->addralign_ = checkpoint->addralign();
3106 this->flags_ = checkpoint->flags();
3107 this->first_input_offset_ = checkpoint->first_input_offset();
3108
3109 if (!checkpoint->input_sections_saved())
3110 {
3111 // If we have not copied the input sections, just resize it.
3112 size_t old_size = checkpoint->input_sections_size();
3113 gold_assert(this->input_sections_.size() >= old_size);
3114 this->input_sections_.resize(old_size);
3115 }
3116 else
3117 {
3118 // We need to copy the whole list. This is not efficient for
3119 // extremely large output with hundreads of thousands of input
3120 // objects. We may need to re-think how we should pass sections
3121 // to scripts.
3122 this->input_sections_ = *checkpoint->input_sections();
3123 }
3124
3125 this->attached_input_sections_are_sorted_ =
3126 checkpoint->attached_input_sections_are_sorted();
3127
3128 // Simply invalidate the relaxed input section map since we do not keep
3129 // track of it.
3130 this->is_relaxed_input_section_map_valid_ = false;
3131 }
3132
3133 // Update the section offsets of input sections in this. This is required if
3134 // relaxation causes some input sections to change sizes.
3135
3136 void
3137 Output_section::adjust_section_offsets()
3138 {
3139 if (!this->section_offsets_need_adjustment_)
3140 return;
3141
3142 off_t off = 0;
3143 for (Input_section_list::iterator p = this->input_sections_.begin();
3144 p != this->input_sections_.end();
3145 ++p)
3146 {
3147 off = align_address(off, p->addralign());
3148 if (p->is_input_section())
3149 p->relobj()->set_section_offset(p->shndx(), off);
3150 off += p->data_size();
3151 }
3152
3153 this->section_offsets_need_adjustment_ = false;
3154 }
3155
3156 // Print to the map file.
3157
3158 void
3159 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3160 {
3161 mapfile->print_output_section(this);
3162
3163 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3164 p != this->input_sections_.end();
3165 ++p)
3166 p->print_to_mapfile(mapfile);
3167 }
3168
3169 // Print stats for merge sections to stderr.
3170
3171 void
3172 Output_section::print_merge_stats()
3173 {
3174 Input_section_list::iterator p;
3175 for (p = this->input_sections_.begin();
3176 p != this->input_sections_.end();
3177 ++p)
3178 p->print_merge_stats(this->name_);
3179 }
3180
3181 // Output segment methods.
3182
3183 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3184 : output_data_(),
3185 output_bss_(),
3186 vaddr_(0),
3187 paddr_(0),
3188 memsz_(0),
3189 max_align_(0),
3190 min_p_align_(0),
3191 offset_(0),
3192 filesz_(0),
3193 type_(type),
3194 flags_(flags),
3195 is_max_align_known_(false),
3196 are_addresses_set_(false),
3197 is_large_data_segment_(false)
3198 {
3199 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3200 // the flags.
3201 if (type == elfcpp::PT_TLS)
3202 this->flags_ = elfcpp::PF_R;
3203 }
3204
3205 // Add an Output_section to an Output_segment.
3206
3207 void
3208 Output_segment::add_output_section(Output_section* os,
3209 elfcpp::Elf_Word seg_flags,
3210 bool do_sort)
3211 {
3212 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3213 gold_assert(!this->is_max_align_known_);
3214 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3215 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3216
3217 this->update_flags_for_output_section(seg_flags);
3218
3219 Output_segment::Output_data_list* pdl;
3220 if (os->type() == elfcpp::SHT_NOBITS)
3221 pdl = &this->output_bss_;
3222 else
3223 pdl = &this->output_data_;
3224
3225 // Note that while there may be many input sections in an output
3226 // section, there are normally only a few output sections in an
3227 // output segment. The loops below are expected to be fast.
3228
3229 // So that PT_NOTE segments will work correctly, we need to ensure
3230 // that all SHT_NOTE sections are adjacent.
3231 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3232 {
3233 Output_segment::Output_data_list::iterator p = pdl->end();
3234 do
3235 {
3236 --p;
3237 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3238 {
3239 ++p;
3240 pdl->insert(p, os);
3241 return;
3242 }
3243 }
3244 while (p != pdl->begin());
3245 }
3246
3247 // Similarly, so that PT_TLS segments will work, we need to group
3248 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3249 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3250 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3251 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3252 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3253 // segment.
3254 if (this->type_ != elfcpp::PT_TLS
3255 && (os->flags() & elfcpp::SHF_TLS) != 0)
3256 {
3257 pdl = &this->output_data_;
3258 if (!pdl->empty())
3259 {
3260 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3261 bool sawtls = false;
3262 Output_segment::Output_data_list::iterator p = pdl->end();
3263 gold_assert(p != pdl->begin());
3264 do
3265 {
3266 --p;
3267 bool insert;
3268 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3269 {
3270 sawtls = true;
3271 // Put a NOBITS section after the first TLS section.
3272 // Put a PROGBITS section after the first
3273 // TLS/PROGBITS section.
3274 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3275 }
3276 else
3277 {
3278 // If we've gone past the TLS sections, but we've
3279 // seen a TLS section, then we need to insert this
3280 // section now.
3281 insert = sawtls;
3282 }
3283
3284 if (insert)
3285 {
3286 ++p;
3287 pdl->insert(p, os);
3288 return;
3289 }
3290 }
3291 while (p != pdl->begin());
3292 }
3293
3294 // There are no TLS sections yet; put this one at the requested
3295 // location in the section list.
3296 }
3297
3298 if (do_sort)
3299 {
3300 // For the PT_GNU_RELRO segment, we need to group relro
3301 // sections, and we need to put them before any non-relro
3302 // sections. Any relro local sections go before relro non-local
3303 // sections. One section may be marked as the last relro
3304 // section.
3305 if (os->is_relro())
3306 {
3307 gold_assert(pdl == &this->output_data_);
3308 Output_segment::Output_data_list::iterator p;
3309 for (p = pdl->begin(); p != pdl->end(); ++p)
3310 {
3311 if (!(*p)->is_section())
3312 break;
3313
3314 Output_section* pos = (*p)->output_section();
3315 if (!pos->is_relro()
3316 || (os->is_relro_local() && !pos->is_relro_local())
3317 || (!os->is_last_relro() && pos->is_last_relro()))
3318 break;
3319 }
3320
3321 pdl->insert(p, os);
3322 return;
3323 }
3324
3325 // One section may be marked as the first section which follows
3326 // the relro sections.
3327 if (os->is_first_non_relro())
3328 {
3329 gold_assert(pdl == &this->output_data_);
3330 Output_segment::Output_data_list::iterator p;
3331 for (p = pdl->begin(); p != pdl->end(); ++p)
3332 {
3333 if (!(*p)->is_section())
3334 break;
3335
3336 Output_section* pos = (*p)->output_section();
3337 if (!pos->is_relro())
3338 break;
3339 }
3340
3341 pdl->insert(p, os);
3342 return;
3343 }
3344 }
3345
3346 // Small data sections go at the end of the list of data sections.
3347 // If OS is not small, and there are small sections, we have to
3348 // insert it before the first small section.
3349 if (os->type() != elfcpp::SHT_NOBITS
3350 && !os->is_small_section()
3351 && !pdl->empty()
3352 && pdl->back()->is_section()
3353 && pdl->back()->output_section()->is_small_section())
3354 {
3355 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3356 p != pdl->end();
3357 ++p)
3358 {
3359 if ((*p)->is_section()
3360 && (*p)->output_section()->is_small_section())
3361 {
3362 pdl->insert(p, os);
3363 return;
3364 }
3365 }
3366 gold_unreachable();
3367 }
3368
3369 // A small BSS section goes at the start of the BSS sections, after
3370 // other small BSS sections.
3371 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3372 {
3373 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3374 p != pdl->end();
3375 ++p)
3376 {
3377 if (!(*p)->is_section()
3378 || !(*p)->output_section()->is_small_section())
3379 {
3380 pdl->insert(p, os);
3381 return;
3382 }
3383 }
3384 }
3385
3386 // A large BSS section goes at the end of the BSS sections, which
3387 // means that one that is not large must come before the first large
3388 // one.
3389 if (os->type() == elfcpp::SHT_NOBITS
3390 && !os->is_large_section()
3391 && !pdl->empty()
3392 && pdl->back()->is_section()
3393 && pdl->back()->output_section()->is_large_section())
3394 {
3395 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3396 p != pdl->end();
3397 ++p)
3398 {
3399 if ((*p)->is_section()
3400 && (*p)->output_section()->is_large_section())
3401 {
3402 pdl->insert(p, os);
3403 return;
3404 }
3405 }
3406 gold_unreachable();
3407 }
3408
3409 // We do some further output section sorting in order to make the
3410 // generated program run more efficiently. We should only do this
3411 // when not using a linker script, so it is controled by the DO_SORT
3412 // parameter.
3413 if (do_sort)
3414 {
3415 // FreeBSD requires the .interp section to be in the first page
3416 // of the executable. That is a more efficient location anyhow
3417 // for any OS, since it means that the kernel will have the data
3418 // handy after it reads the program headers.
3419 if (os->is_interp() && !pdl->empty())
3420 {
3421 pdl->insert(pdl->begin(), os);
3422 return;
3423 }
3424
3425 // Put loadable non-writable notes immediately after the .interp
3426 // sections, so that the PT_NOTE segment is on the first page of
3427 // the executable.
3428 if (os->type() == elfcpp::SHT_NOTE
3429 && (os->flags() & elfcpp::SHF_WRITE) == 0
3430 && !pdl->empty())
3431 {
3432 Output_segment::Output_data_list::iterator p = pdl->begin();
3433 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3434 ++p;
3435 pdl->insert(p, os);
3436 return;
3437 }
3438
3439 // If this section is used by the dynamic linker, and it is not
3440 // writable, then put it first, after the .interp section and
3441 // any loadable notes. This makes it more likely that the
3442 // dynamic linker will have to read less data from the disk.
3443 if (os->is_dynamic_linker_section()
3444 && !pdl->empty()
3445 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3446 {
3447 bool is_reloc = (os->type() == elfcpp::SHT_REL
3448 || os->type() == elfcpp::SHT_RELA);
3449 Output_segment::Output_data_list::iterator p = pdl->begin();
3450 while (p != pdl->end()
3451 && (*p)->is_section()
3452 && ((*p)->output_section()->is_dynamic_linker_section()
3453 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3454 {
3455 // Put reloc sections after the other ones. Putting the
3456 // dynamic reloc sections first confuses BFD, notably
3457 // objcopy and strip.
3458 if (!is_reloc
3459 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3460 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3461 break;
3462 ++p;
3463 }
3464 pdl->insert(p, os);
3465 return;
3466 }
3467 }
3468
3469 // If there were no constraints on the output section, just add it
3470 // to the end of the list.
3471 pdl->push_back(os);
3472 }
3473
3474 // Remove an Output_section from this segment. It is an error if it
3475 // is not present.
3476
3477 void
3478 Output_segment::remove_output_section(Output_section* os)
3479 {
3480 // We only need this for SHT_PROGBITS.
3481 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3482 for (Output_data_list::iterator p = this->output_data_.begin();
3483 p != this->output_data_.end();
3484 ++p)
3485 {
3486 if (*p == os)
3487 {
3488 this->output_data_.erase(p);
3489 return;
3490 }
3491 }
3492 gold_unreachable();
3493 }
3494
3495 // Add an Output_data (which need not be an Output_section) to the
3496 // start of a segment.
3497
3498 void
3499 Output_segment::add_initial_output_data(Output_data* od)
3500 {
3501 gold_assert(!this->is_max_align_known_);
3502 this->output_data_.push_front(od);
3503 }
3504
3505 // Return whether the first data section is a relro section.
3506
3507 bool
3508 Output_segment::is_first_section_relro() const
3509 {
3510 return (!this->output_data_.empty()
3511 && this->output_data_.front()->is_section()
3512 && this->output_data_.front()->output_section()->is_relro());
3513 }
3514
3515 // Return the maximum alignment of the Output_data in Output_segment.
3516
3517 uint64_t
3518 Output_segment::maximum_alignment()
3519 {
3520 if (!this->is_max_align_known_)
3521 {
3522 uint64_t addralign;
3523
3524 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3525 if (addralign > this->max_align_)
3526 this->max_align_ = addralign;
3527
3528 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3529 if (addralign > this->max_align_)
3530 this->max_align_ = addralign;
3531
3532 this->is_max_align_known_ = true;
3533 }
3534
3535 return this->max_align_;
3536 }
3537
3538 // Return the maximum alignment of a list of Output_data.
3539
3540 uint64_t
3541 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3542 {
3543 uint64_t ret = 0;
3544 for (Output_data_list::const_iterator p = pdl->begin();
3545 p != pdl->end();
3546 ++p)
3547 {
3548 uint64_t addralign = (*p)->addralign();
3549 if (addralign > ret)
3550 ret = addralign;
3551 }
3552 return ret;
3553 }
3554
3555 // Return the number of dynamic relocs applied to this segment.
3556
3557 unsigned int
3558 Output_segment::dynamic_reloc_count() const
3559 {
3560 return (this->dynamic_reloc_count_list(&this->output_data_)
3561 + this->dynamic_reloc_count_list(&this->output_bss_));
3562 }
3563
3564 // Return the number of dynamic relocs applied to an Output_data_list.
3565
3566 unsigned int
3567 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3568 {
3569 unsigned int count = 0;
3570 for (Output_data_list::const_iterator p = pdl->begin();
3571 p != pdl->end();
3572 ++p)
3573 count += (*p)->dynamic_reloc_count();
3574 return count;
3575 }
3576
3577 // Set the section addresses for an Output_segment. If RESET is true,
3578 // reset the addresses first. ADDR is the address and *POFF is the
3579 // file offset. Set the section indexes starting with *PSHNDX.
3580 // Return the address of the immediately following segment. Update
3581 // *POFF and *PSHNDX.
3582
3583 uint64_t
3584 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3585 uint64_t addr,
3586 unsigned int increase_relro,
3587 off_t* poff,
3588 unsigned int* pshndx)
3589 {
3590 gold_assert(this->type_ == elfcpp::PT_LOAD);
3591
3592 off_t orig_off = *poff;
3593
3594 // If we have relro sections, we need to pad forward now so that the
3595 // relro sections plus INCREASE_RELRO end on a common page boundary.
3596 if (parameters->options().relro()
3597 && this->is_first_section_relro()
3598 && (!this->are_addresses_set_ || reset))
3599 {
3600 uint64_t relro_size = 0;
3601 off_t off = *poff;
3602 for (Output_data_list::iterator p = this->output_data_.begin();
3603 p != this->output_data_.end();
3604 ++p)
3605 {
3606 if (!(*p)->is_section())
3607 break;
3608 Output_section* pos = (*p)->output_section();
3609 if (!pos->is_relro())
3610 break;
3611 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3612 if ((*p)->is_address_valid())
3613 relro_size += (*p)->data_size();
3614 else
3615 {
3616 // FIXME: This could be faster.
3617 (*p)->set_address_and_file_offset(addr + relro_size,
3618 off + relro_size);
3619 relro_size += (*p)->data_size();
3620 (*p)->reset_address_and_file_offset();
3621 }
3622 }
3623 relro_size += increase_relro;
3624
3625 uint64_t page_align = parameters->target().common_pagesize();
3626
3627 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3628 uint64_t desired_align = page_align - (relro_size % page_align);
3629 if (desired_align < *poff % page_align)
3630 *poff += page_align - *poff % page_align;
3631 *poff += desired_align - *poff % page_align;
3632 addr += *poff - orig_off;
3633 orig_off = *poff;
3634 }
3635
3636 if (!reset && this->are_addresses_set_)
3637 {
3638 gold_assert(this->paddr_ == addr);
3639 addr = this->vaddr_;
3640 }
3641 else
3642 {
3643 this->vaddr_ = addr;
3644 this->paddr_ = addr;
3645 this->are_addresses_set_ = true;
3646 }
3647
3648 bool in_tls = false;
3649
3650 this->offset_ = orig_off;
3651
3652 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3653 addr, poff, pshndx, &in_tls);
3654 this->filesz_ = *poff - orig_off;
3655
3656 off_t off = *poff;
3657
3658 uint64_t ret = this->set_section_list_addresses(layout, reset,
3659 &this->output_bss_,
3660 addr, poff, pshndx,
3661 &in_tls);
3662
3663 // If the last section was a TLS section, align upward to the
3664 // alignment of the TLS segment, so that the overall size of the TLS
3665 // segment is aligned.
3666 if (in_tls)
3667 {
3668 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3669 *poff = align_address(*poff, segment_align);
3670 }
3671
3672 this->memsz_ = *poff - orig_off;
3673
3674 // Ignore the file offset adjustments made by the BSS Output_data
3675 // objects.
3676 *poff = off;
3677
3678 return ret;
3679 }
3680
3681 // Set the addresses and file offsets in a list of Output_data
3682 // structures.
3683
3684 uint64_t
3685 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3686 Output_data_list* pdl,
3687 uint64_t addr, off_t* poff,
3688 unsigned int* pshndx,
3689 bool* in_tls)
3690 {
3691 off_t startoff = *poff;
3692
3693 off_t off = startoff;
3694 for (Output_data_list::iterator p = pdl->begin();
3695 p != pdl->end();
3696 ++p)
3697 {
3698 if (reset)
3699 (*p)->reset_address_and_file_offset();
3700
3701 // When using a linker script the section will most likely
3702 // already have an address.
3703 if (!(*p)->is_address_valid())
3704 {
3705 uint64_t align = (*p)->addralign();
3706
3707 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3708 {
3709 // Give the first TLS section the alignment of the
3710 // entire TLS segment. Otherwise the TLS segment as a
3711 // whole may be misaligned.
3712 if (!*in_tls)
3713 {
3714 Output_segment* tls_segment = layout->tls_segment();
3715 gold_assert(tls_segment != NULL);
3716 uint64_t segment_align = tls_segment->maximum_alignment();
3717 gold_assert(segment_align >= align);
3718 align = segment_align;
3719
3720 *in_tls = true;
3721 }
3722 }
3723 else
3724 {
3725 // If this is the first section after the TLS segment,
3726 // align it to at least the alignment of the TLS
3727 // segment, so that the size of the overall TLS segment
3728 // is aligned.
3729 if (*in_tls)
3730 {
3731 uint64_t segment_align =
3732 layout->tls_segment()->maximum_alignment();
3733 if (segment_align > align)
3734 align = segment_align;
3735
3736 *in_tls = false;
3737 }
3738 }
3739
3740 off = align_address(off, align);
3741 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3742 }
3743 else
3744 {
3745 // The script may have inserted a skip forward, but it
3746 // better not have moved backward.
3747 if ((*p)->address() >= addr + (off - startoff))
3748 off += (*p)->address() - (addr + (off - startoff));
3749 else
3750 {
3751 if (!layout->script_options()->saw_sections_clause())
3752 gold_unreachable();
3753 else
3754 {
3755 Output_section* os = (*p)->output_section();
3756
3757 // Cast to unsigned long long to avoid format warnings.
3758 unsigned long long previous_dot =
3759 static_cast<unsigned long long>(addr + (off - startoff));
3760 unsigned long long dot =
3761 static_cast<unsigned long long>((*p)->address());
3762
3763 if (os == NULL)
3764 gold_error(_("dot moves backward in linker script "
3765 "from 0x%llx to 0x%llx"), previous_dot, dot);
3766 else
3767 gold_error(_("address of section '%s' moves backward "
3768 "from 0x%llx to 0x%llx"),
3769 os->name(), previous_dot, dot);
3770 }
3771 }
3772 (*p)->set_file_offset(off);
3773 (*p)->finalize_data_size();
3774 }
3775
3776 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3777 // section. Such a section does not affect the size of a
3778 // PT_LOAD segment.
3779 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3780 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3781 off += (*p)->data_size();
3782
3783 if ((*p)->is_section())
3784 {
3785 (*p)->set_out_shndx(*pshndx);
3786 ++*pshndx;
3787 }
3788 }
3789
3790 *poff = off;
3791 return addr + (off - startoff);
3792 }
3793
3794 // For a non-PT_LOAD segment, set the offset from the sections, if
3795 // any. Add INCREASE to the file size and the memory size.
3796
3797 void
3798 Output_segment::set_offset(unsigned int increase)
3799 {
3800 gold_assert(this->type_ != elfcpp::PT_LOAD);
3801
3802 gold_assert(!this->are_addresses_set_);
3803
3804 if (this->output_data_.empty() && this->output_bss_.empty())
3805 {
3806 gold_assert(increase == 0);
3807 this->vaddr_ = 0;
3808 this->paddr_ = 0;
3809 this->are_addresses_set_ = true;
3810 this->memsz_ = 0;
3811 this->min_p_align_ = 0;
3812 this->offset_ = 0;
3813 this->filesz_ = 0;
3814 return;
3815 }
3816
3817 const Output_data* first;
3818 if (this->output_data_.empty())
3819 first = this->output_bss_.front();
3820 else
3821 first = this->output_data_.front();
3822 this->vaddr_ = first->address();
3823 this->paddr_ = (first->has_load_address()
3824 ? first->load_address()
3825 : this->vaddr_);
3826 this->are_addresses_set_ = true;
3827 this->offset_ = first->offset();
3828
3829 if (this->output_data_.empty())
3830 this->filesz_ = 0;
3831 else
3832 {
3833 const Output_data* last_data = this->output_data_.back();
3834 this->filesz_ = (last_data->address()
3835 + last_data->data_size()
3836 - this->vaddr_);
3837 }
3838
3839 const Output_data* last;
3840 if (this->output_bss_.empty())
3841 last = this->output_data_.back();
3842 else
3843 last = this->output_bss_.back();
3844 this->memsz_ = (last->address()
3845 + last->data_size()
3846 - this->vaddr_);
3847
3848 this->filesz_ += increase;
3849 this->memsz_ += increase;
3850
3851 // If this is a TLS segment, align the memory size. The code in
3852 // set_section_list ensures that the section after the TLS segment
3853 // is aligned to give us room.
3854 if (this->type_ == elfcpp::PT_TLS)
3855 {
3856 uint64_t segment_align = this->maximum_alignment();
3857 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3858 this->memsz_ = align_address(this->memsz_, segment_align);
3859 }
3860 }
3861
3862 // Set the TLS offsets of the sections in the PT_TLS segment.
3863
3864 void
3865 Output_segment::set_tls_offsets()
3866 {
3867 gold_assert(this->type_ == elfcpp::PT_TLS);
3868
3869 for (Output_data_list::iterator p = this->output_data_.begin();
3870 p != this->output_data_.end();
3871 ++p)
3872 (*p)->set_tls_offset(this->vaddr_);
3873
3874 for (Output_data_list::iterator p = this->output_bss_.begin();
3875 p != this->output_bss_.end();
3876 ++p)
3877 (*p)->set_tls_offset(this->vaddr_);
3878 }
3879
3880 // Return the address of the first section.
3881
3882 uint64_t
3883 Output_segment::first_section_load_address() const
3884 {
3885 for (Output_data_list::const_iterator p = this->output_data_.begin();
3886 p != this->output_data_.end();
3887 ++p)
3888 if ((*p)->is_section())
3889 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3890
3891 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3892 p != this->output_bss_.end();
3893 ++p)
3894 if ((*p)->is_section())
3895 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3896
3897 gold_unreachable();
3898 }
3899
3900 // Return the number of Output_sections in an Output_segment.
3901
3902 unsigned int
3903 Output_segment::output_section_count() const
3904 {
3905 return (this->output_section_count_list(&this->output_data_)
3906 + this->output_section_count_list(&this->output_bss_));
3907 }
3908
3909 // Return the number of Output_sections in an Output_data_list.
3910
3911 unsigned int
3912 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3913 {
3914 unsigned int count = 0;
3915 for (Output_data_list::const_iterator p = pdl->begin();
3916 p != pdl->end();
3917 ++p)
3918 {
3919 if ((*p)->is_section())
3920 ++count;
3921 }
3922 return count;
3923 }
3924
3925 // Return the section attached to the list segment with the lowest
3926 // load address. This is used when handling a PHDRS clause in a
3927 // linker script.
3928
3929 Output_section*
3930 Output_segment::section_with_lowest_load_address() const
3931 {
3932 Output_section* found = NULL;
3933 uint64_t found_lma = 0;
3934 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3935
3936 Output_section* found_data = found;
3937 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3938 if (found != found_data && found_data != NULL)
3939 {
3940 gold_error(_("nobits section %s may not precede progbits section %s "
3941 "in same segment"),
3942 found->name(), found_data->name());
3943 return NULL;
3944 }
3945
3946 return found;
3947 }
3948
3949 // Look through a list for a section with a lower load address.
3950
3951 void
3952 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
3953 Output_section** found,
3954 uint64_t* found_lma) const
3955 {
3956 for (Output_data_list::const_iterator p = pdl->begin();
3957 p != pdl->end();
3958 ++p)
3959 {
3960 if (!(*p)->is_section())
3961 continue;
3962 Output_section* os = static_cast<Output_section*>(*p);
3963 uint64_t lma = (os->has_load_address()
3964 ? os->load_address()
3965 : os->address());
3966 if (*found == NULL || lma < *found_lma)
3967 {
3968 *found = os;
3969 *found_lma = lma;
3970 }
3971 }
3972 }
3973
3974 // Write the segment data into *OPHDR.
3975
3976 template<int size, bool big_endian>
3977 void
3978 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
3979 {
3980 ophdr->put_p_type(this->type_);
3981 ophdr->put_p_offset(this->offset_);
3982 ophdr->put_p_vaddr(this->vaddr_);
3983 ophdr->put_p_paddr(this->paddr_);
3984 ophdr->put_p_filesz(this->filesz_);
3985 ophdr->put_p_memsz(this->memsz_);
3986 ophdr->put_p_flags(this->flags_);
3987 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
3988 }
3989
3990 // Write the section headers into V.
3991
3992 template<int size, bool big_endian>
3993 unsigned char*
3994 Output_segment::write_section_headers(const Layout* layout,
3995 const Stringpool* secnamepool,
3996 unsigned char* v,
3997 unsigned int *pshndx) const
3998 {
3999 // Every section that is attached to a segment must be attached to a
4000 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4001 // segments.
4002 if (this->type_ != elfcpp::PT_LOAD)
4003 return v;
4004
4005 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4006 &this->output_data_,
4007 v, pshndx);
4008 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4009 &this->output_bss_,
4010 v, pshndx);
4011 return v;
4012 }
4013
4014 template<int size, bool big_endian>
4015 unsigned char*
4016 Output_segment::write_section_headers_list(const Layout* layout,
4017 const Stringpool* secnamepool,
4018 const Output_data_list* pdl,
4019 unsigned char* v,
4020 unsigned int* pshndx) const
4021 {
4022 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4023 for (Output_data_list::const_iterator p = pdl->begin();
4024 p != pdl->end();
4025 ++p)
4026 {
4027 if ((*p)->is_section())
4028 {
4029 const Output_section* ps = static_cast<const Output_section*>(*p);
4030 gold_assert(*pshndx == ps->out_shndx());
4031 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4032 ps->write_header(layout, secnamepool, &oshdr);
4033 v += shdr_size;
4034 ++*pshndx;
4035 }
4036 }
4037 return v;
4038 }
4039
4040 // Print the output sections to the map file.
4041
4042 void
4043 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4044 {
4045 if (this->type() != elfcpp::PT_LOAD)
4046 return;
4047 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4048 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4049 }
4050
4051 // Print an output section list to the map file.
4052
4053 void
4054 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4055 const Output_data_list* pdl) const
4056 {
4057 for (Output_data_list::const_iterator p = pdl->begin();
4058 p != pdl->end();
4059 ++p)
4060 (*p)->print_to_mapfile(mapfile);
4061 }
4062
4063 // Output_file methods.
4064
4065 Output_file::Output_file(const char* name)
4066 : name_(name),
4067 o_(-1),
4068 file_size_(0),
4069 base_(NULL),
4070 map_is_anonymous_(false),
4071 is_temporary_(false)
4072 {
4073 }
4074
4075 // Try to open an existing file. Returns false if the file doesn't
4076 // exist, has a size of 0 or can't be mmapped.
4077
4078 bool
4079 Output_file::open_for_modification()
4080 {
4081 // The name "-" means "stdout".
4082 if (strcmp(this->name_, "-") == 0)
4083 return false;
4084
4085 // Don't bother opening files with a size of zero.
4086 struct stat s;
4087 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4088 return false;
4089
4090 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4091 if (o < 0)
4092 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4093 this->o_ = o;
4094 this->file_size_ = s.st_size;
4095
4096 // If the file can't be mmapped, copying the content to an anonymous
4097 // map will probably negate the performance benefits of incremental
4098 // linking. This could be helped by using views and loading only
4099 // the necessary parts, but this is not supported as of now.
4100 if (!this->map_no_anonymous())
4101 {
4102 release_descriptor(o, true);
4103 this->o_ = -1;
4104 this->file_size_ = 0;
4105 return false;
4106 }
4107
4108 return true;
4109 }
4110
4111 // Open the output file.
4112
4113 void
4114 Output_file::open(off_t file_size)
4115 {
4116 this->file_size_ = file_size;
4117
4118 // Unlink the file first; otherwise the open() may fail if the file
4119 // is busy (e.g. it's an executable that's currently being executed).
4120 //
4121 // However, the linker may be part of a system where a zero-length
4122 // file is created for it to write to, with tight permissions (gcc
4123 // 2.95 did something like this). Unlinking the file would work
4124 // around those permission controls, so we only unlink if the file
4125 // has a non-zero size. We also unlink only regular files to avoid
4126 // trouble with directories/etc.
4127 //
4128 // If we fail, continue; this command is merely a best-effort attempt
4129 // to improve the odds for open().
4130
4131 // We let the name "-" mean "stdout"
4132 if (!this->is_temporary_)
4133 {
4134 if (strcmp(this->name_, "-") == 0)
4135 this->o_ = STDOUT_FILENO;
4136 else
4137 {
4138 struct stat s;
4139 if (::stat(this->name_, &s) == 0
4140 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4141 {
4142 if (s.st_size != 0)
4143 ::unlink(this->name_);
4144 else if (!parameters->options().relocatable())
4145 {
4146 // If we don't unlink the existing file, add execute
4147 // permission where read permissions already exist
4148 // and where the umask permits.
4149 int mask = ::umask(0);
4150 ::umask(mask);
4151 s.st_mode |= (s.st_mode & 0444) >> 2;
4152 ::chmod(this->name_, s.st_mode & ~mask);
4153 }
4154 }
4155
4156 int mode = parameters->options().relocatable() ? 0666 : 0777;
4157 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4158 mode);
4159 if (o < 0)
4160 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4161 this->o_ = o;
4162 }
4163 }
4164
4165 this->map();
4166 }
4167
4168 // Resize the output file.
4169
4170 void
4171 Output_file::resize(off_t file_size)
4172 {
4173 // If the mmap is mapping an anonymous memory buffer, this is easy:
4174 // just mremap to the new size. If it's mapping to a file, we want
4175 // to unmap to flush to the file, then remap after growing the file.
4176 if (this->map_is_anonymous_)
4177 {
4178 void* base = ::mremap(this->base_, this->file_size_, file_size,
4179 MREMAP_MAYMOVE);
4180 if (base == MAP_FAILED)
4181 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4182 this->base_ = static_cast<unsigned char*>(base);
4183 this->file_size_ = file_size;
4184 }
4185 else
4186 {
4187 this->unmap();
4188 this->file_size_ = file_size;
4189 if (!this->map_no_anonymous())
4190 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4191 }
4192 }
4193
4194 // Map an anonymous block of memory which will later be written to the
4195 // file. Return whether the map succeeded.
4196
4197 bool
4198 Output_file::map_anonymous()
4199 {
4200 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4201 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4202 if (base != MAP_FAILED)
4203 {
4204 this->map_is_anonymous_ = true;
4205 this->base_ = static_cast<unsigned char*>(base);
4206 return true;
4207 }
4208 return false;
4209 }
4210
4211 // Map the file into memory. Return whether the mapping succeeded.
4212
4213 bool
4214 Output_file::map_no_anonymous()
4215 {
4216 const int o = this->o_;
4217
4218 // If the output file is not a regular file, don't try to mmap it;
4219 // instead, we'll mmap a block of memory (an anonymous buffer), and
4220 // then later write the buffer to the file.
4221 void* base;
4222 struct stat statbuf;
4223 if (o == STDOUT_FILENO || o == STDERR_FILENO
4224 || ::fstat(o, &statbuf) != 0
4225 || !S_ISREG(statbuf.st_mode)
4226 || this->is_temporary_)
4227 return false;
4228
4229 // Ensure that we have disk space available for the file. If we
4230 // don't do this, it is possible that we will call munmap, close,
4231 // and exit with dirty buffers still in the cache with no assigned
4232 // disk blocks. If the disk is out of space at that point, the
4233 // output file will wind up incomplete, but we will have already
4234 // exited. The alternative to fallocate would be to use fdatasync,
4235 // but that would be a more significant performance hit.
4236 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4237 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4238
4239 // Map the file into memory.
4240 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4241 MAP_SHARED, o, 0);
4242
4243 // The mmap call might fail because of file system issues: the file
4244 // system might not support mmap at all, or it might not support
4245 // mmap with PROT_WRITE.
4246 if (base == MAP_FAILED)
4247 return false;
4248
4249 this->map_is_anonymous_ = false;
4250 this->base_ = static_cast<unsigned char*>(base);
4251 return true;
4252 }
4253
4254 // Map the file into memory.
4255
4256 void
4257 Output_file::map()
4258 {
4259 if (this->map_no_anonymous())
4260 return;
4261
4262 // The mmap call might fail because of file system issues: the file
4263 // system might not support mmap at all, or it might not support
4264 // mmap with PROT_WRITE. I'm not sure which errno values we will
4265 // see in all cases, so if the mmap fails for any reason and we
4266 // don't care about file contents, try for an anonymous map.
4267 if (this->map_anonymous())
4268 return;
4269
4270 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4271 this->name_, static_cast<unsigned long>(this->file_size_),
4272 strerror(errno));
4273 }
4274
4275 // Unmap the file from memory.
4276
4277 void
4278 Output_file::unmap()
4279 {
4280 if (::munmap(this->base_, this->file_size_) < 0)
4281 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4282 this->base_ = NULL;
4283 }
4284
4285 // Close the output file.
4286
4287 void
4288 Output_file::close()
4289 {
4290 // If the map isn't file-backed, we need to write it now.
4291 if (this->map_is_anonymous_ && !this->is_temporary_)
4292 {
4293 size_t bytes_to_write = this->file_size_;
4294 size_t offset = 0;
4295 while (bytes_to_write > 0)
4296 {
4297 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4298 bytes_to_write);
4299 if (bytes_written == 0)
4300 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4301 else if (bytes_written < 0)
4302 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4303 else
4304 {
4305 bytes_to_write -= bytes_written;
4306 offset += bytes_written;
4307 }
4308 }
4309 }
4310 this->unmap();
4311
4312 // We don't close stdout or stderr
4313 if (this->o_ != STDOUT_FILENO
4314 && this->o_ != STDERR_FILENO
4315 && !this->is_temporary_)
4316 if (::close(this->o_) < 0)
4317 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4318 this->o_ = -1;
4319 }
4320
4321 // Instantiate the templates we need. We could use the configure
4322 // script to restrict this to only the ones for implemented targets.
4323
4324 #ifdef HAVE_TARGET_32_LITTLE
4325 template
4326 off_t
4327 Output_section::add_input_section<32, false>(
4328 Sized_relobj<32, false>* object,
4329 unsigned int shndx,
4330 const char* secname,
4331 const elfcpp::Shdr<32, false>& shdr,
4332 unsigned int reloc_shndx,
4333 bool have_sections_script);
4334 #endif
4335
4336 #ifdef HAVE_TARGET_32_BIG
4337 template
4338 off_t
4339 Output_section::add_input_section<32, true>(
4340 Sized_relobj<32, true>* object,
4341 unsigned int shndx,
4342 const char* secname,
4343 const elfcpp::Shdr<32, true>& shdr,
4344 unsigned int reloc_shndx,
4345 bool have_sections_script);
4346 #endif
4347
4348 #ifdef HAVE_TARGET_64_LITTLE
4349 template
4350 off_t
4351 Output_section::add_input_section<64, false>(
4352 Sized_relobj<64, false>* object,
4353 unsigned int shndx,
4354 const char* secname,
4355 const elfcpp::Shdr<64, false>& shdr,
4356 unsigned int reloc_shndx,
4357 bool have_sections_script);
4358 #endif
4359
4360 #ifdef HAVE_TARGET_64_BIG
4361 template
4362 off_t
4363 Output_section::add_input_section<64, true>(
4364 Sized_relobj<64, true>* object,
4365 unsigned int shndx,
4366 const char* secname,
4367 const elfcpp::Shdr<64, true>& shdr,
4368 unsigned int reloc_shndx,
4369 bool have_sections_script);
4370 #endif
4371
4372 #ifdef HAVE_TARGET_32_LITTLE
4373 template
4374 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4375 #endif
4376
4377 #ifdef HAVE_TARGET_32_BIG
4378 template
4379 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4380 #endif
4381
4382 #ifdef HAVE_TARGET_64_LITTLE
4383 template
4384 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4385 #endif
4386
4387 #ifdef HAVE_TARGET_64_BIG
4388 template
4389 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4390 #endif
4391
4392 #ifdef HAVE_TARGET_32_LITTLE
4393 template
4394 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4395 #endif
4396
4397 #ifdef HAVE_TARGET_32_BIG
4398 template
4399 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4400 #endif
4401
4402 #ifdef HAVE_TARGET_64_LITTLE
4403 template
4404 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4405 #endif
4406
4407 #ifdef HAVE_TARGET_64_BIG
4408 template
4409 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4410 #endif
4411
4412 #ifdef HAVE_TARGET_32_LITTLE
4413 template
4414 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4415 #endif
4416
4417 #ifdef HAVE_TARGET_32_BIG
4418 template
4419 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4420 #endif
4421
4422 #ifdef HAVE_TARGET_64_LITTLE
4423 template
4424 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4425 #endif
4426
4427 #ifdef HAVE_TARGET_64_BIG
4428 template
4429 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4430 #endif
4431
4432 #ifdef HAVE_TARGET_32_LITTLE
4433 template
4434 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4435 #endif
4436
4437 #ifdef HAVE_TARGET_32_BIG
4438 template
4439 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4440 #endif
4441
4442 #ifdef HAVE_TARGET_64_LITTLE
4443 template
4444 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4445 #endif
4446
4447 #ifdef HAVE_TARGET_64_BIG
4448 template
4449 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4450 #endif
4451
4452 #ifdef HAVE_TARGET_32_LITTLE
4453 template
4454 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4455 #endif
4456
4457 #ifdef HAVE_TARGET_32_BIG
4458 template
4459 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4460 #endif
4461
4462 #ifdef HAVE_TARGET_64_LITTLE
4463 template
4464 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4465 #endif
4466
4467 #ifdef HAVE_TARGET_64_BIG
4468 template
4469 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4470 #endif
4471
4472 #ifdef HAVE_TARGET_32_LITTLE
4473 template
4474 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4475 #endif
4476
4477 #ifdef HAVE_TARGET_32_BIG
4478 template
4479 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4480 #endif
4481
4482 #ifdef HAVE_TARGET_64_LITTLE
4483 template
4484 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4485 #endif
4486
4487 #ifdef HAVE_TARGET_64_BIG
4488 template
4489 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4490 #endif
4491
4492 #ifdef HAVE_TARGET_32_LITTLE
4493 template
4494 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4495 #endif
4496
4497 #ifdef HAVE_TARGET_32_BIG
4498 template
4499 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4500 #endif
4501
4502 #ifdef HAVE_TARGET_64_LITTLE
4503 template
4504 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4505 #endif
4506
4507 #ifdef HAVE_TARGET_64_BIG
4508 template
4509 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4510 #endif
4511
4512 #ifdef HAVE_TARGET_32_LITTLE
4513 template
4514 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4515 #endif
4516
4517 #ifdef HAVE_TARGET_32_BIG
4518 template
4519 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4520 #endif
4521
4522 #ifdef HAVE_TARGET_64_LITTLE
4523 template
4524 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4525 #endif
4526
4527 #ifdef HAVE_TARGET_64_BIG
4528 template
4529 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4530 #endif
4531
4532 #ifdef HAVE_TARGET_32_LITTLE
4533 template
4534 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4535 #endif
4536
4537 #ifdef HAVE_TARGET_32_BIG
4538 template
4539 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4540 #endif
4541
4542 #ifdef HAVE_TARGET_64_LITTLE
4543 template
4544 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4545 #endif
4546
4547 #ifdef HAVE_TARGET_64_BIG
4548 template
4549 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4550 #endif
4551
4552 #ifdef HAVE_TARGET_32_LITTLE
4553 template
4554 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4555 #endif
4556
4557 #ifdef HAVE_TARGET_32_BIG
4558 template
4559 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4560 #endif
4561
4562 #ifdef HAVE_TARGET_64_LITTLE
4563 template
4564 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4565 #endif
4566
4567 #ifdef HAVE_TARGET_64_BIG
4568 template
4569 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4570 #endif
4571
4572 #ifdef HAVE_TARGET_32_LITTLE
4573 template
4574 class Output_data_group<32, false>;
4575 #endif
4576
4577 #ifdef HAVE_TARGET_32_BIG
4578 template
4579 class Output_data_group<32, true>;
4580 #endif
4581
4582 #ifdef HAVE_TARGET_64_LITTLE
4583 template
4584 class Output_data_group<64, false>;
4585 #endif
4586
4587 #ifdef HAVE_TARGET_64_BIG
4588 template
4589 class Output_data_group<64, true>;
4590 #endif
4591
4592 #ifdef HAVE_TARGET_32_LITTLE
4593 template
4594 class Output_data_got<32, false>;
4595 #endif
4596
4597 #ifdef HAVE_TARGET_32_BIG
4598 template
4599 class Output_data_got<32, true>;
4600 #endif
4601
4602 #ifdef HAVE_TARGET_64_LITTLE
4603 template
4604 class Output_data_got<64, false>;
4605 #endif
4606
4607 #ifdef HAVE_TARGET_64_BIG
4608 template
4609 class Output_data_got<64, true>;
4610 #endif
4611
4612 } // End namespace gold.
This page took 0.133219 seconds and 5 git commands to generate.